Risk tables (and other ways to incorporate ecosystem considerations)

Approaches to incorporating habitat/ecosystem indicators into salmon harvest management

- Incorporate into risk tables
- Improve forecasting model
- Incorporate into harvest control rule

Risk table approach to incorporating ecosystem considerations (Dorn and Zador 2020)

	Assessment-related considerations	Population dynamics considerations	Environmental/ecosystem considerations
Level 1: Normal	Typical to moderately increased uncertainty; minor unresolved issues in assessment .	Stock trends are typical for the stock; recent recruitment is within normal range.	No apparent environmental/ecosystem concerns.
Level 2: Substantially increased concerns	Substantially increased assessment uncertainty or unresolved issues.	Stock trends are unusual; abundance increasing or decreasing faster than has been seen recently, or recruitment pattern is atypical.	Some indicators showing an adverse signals but the pattern is not consistent across all indicators .
Level 3: Major Concern	Major problems with the stock assessment; very poor fits to data; high level of uncertainty; strong retrospective bias.	Stock trends are highly unusual ; very rapid changes in stock abundance, or highly atypical recruitment patterns.	Multiple indicators showing consistent adverse signals a) across the same trophic level, and/or b) up or down trophic levels (i.e., predators and prey of stock)
Level 4: Extreme concern	Severe problems with the stock assessment; severe retrospective bias. Assessment considered unreliable.	Stock trends are unprecedented. More rapid changes in stock abundance than have ever been seen previously, or a very long stretch of poor recruitment compared to previous patterns.	Extreme anomalies in multiple ecosystem indicators that are highly likely to impact the stock. Potential for cascading effects on other ecosystem components.

EWG risk table adaptation for groundfish

	Environmental/ecosystem considerations	Assessment data inputs	Assessment model fits and structural uncertainty	
Level 1: Favorable	Indicators not used in the stock assessment - show medium to high level of agreement - moderate to strong evidence supporting high species productivity	 Reliable catch reconstruction Informative fishery-independent survey Age & length composition data for landed fish and bycatch for key fleets across a range of years Solid fits to data Maturity data from samples collected across time and the model area Species-specific fecundity in the CEE 	 Most productivity parameters (recruitment, natural mortality, growth) estimated internally Minimal evidence for temporally and/or spatially varying biology Sensitivity model runs within the estimated parametric uncertainty Sensitivities symmetric around base model No long-term trends in recruitment Parameters are well-estimated Minimal evidence of retrospective bias 	
Level 2: Neutral	Majority of indicators - show no notable trends and/or - no apparent environmental and ecosystem concerns	 Historical catches with moderate uncertainty but reliable catches over the last 4+ decades Age & length composition data covering landed catch for fleets with the majority of removals Some gaps in time and/or for bycatch Species-specific maturity Fecundity based across species or regions 	 Moderate fits to data Multiple productivity parameters estimated internally Weak-moderate evidence for temporally and/or spatially varying biology not captured by model Weak-moderate long-term trends in recruitment not captured in the forecast Most parameters are well-estimated some possible evidence of retrospective bias 	
Level 3: Unfavorable	Majority of indicators show - medium to high level of agreement and - moderate to strong evidence supporting low species productivity	 Uncertain catch reconstructions both historically and more recently Limited age composition data Maturity and fecundity based on other species and/or regions 	 Some problematic fits to data most productivity parameters fixed or estimated externally Recruitment deviations are estimable for some portion of the time series, but are only weakly informed by composition data Evidence for temporally and/or spatially varying biology not captured by model Long-term trends in recruitment not captured in the forecast Difficulty estimating parameters Evidence of retrospective bias 	

Application of risk tables to stock assessment process

CCIEA Report (2024), H.1.a CCIEA Team Report 1

- Risk table could inform estimate of
 - Sigma level of scientific uncertainty (higher sigma ~ greater uncertainty -> lower catch levels)
 - P* Council risk tolerance (higher P* ~ higher risk tolerance
 -> higher catch levels)
 - Both sigma and P*
 - Something else (e.g., allowable biological catch directly)
- Recommended using sigma, not P* because upper limit of P* has been fixed at 0.45 and therefore is less suitable to assign for favorable conditions

Draft SSC Review

- Supported revised risk table rubric
- Supported sigma approach, while noting "all pathways ... be considered by the PFMC"
- Supported "nonformulaic" approach for using risk tables to set sigma or P*, while noting that a "defined methodology" would improve consistent application

How would risk tables (or other pathways for incorporating ecosystem conditions) look for salmon?

- CCIEA report did not examine this in detail and referred to methodology review of P* based approach in Satterthwaite and Shelton (2023)
- Draft SSC review has several recommendations:
 - Similar risk table approach could be use if a buffer existed in preseason forecasts
 - Sigma approach doesn't work because forecast model uncertainty is not quantified
 - Improve documentation of salmon forecasts and start accounting for uncertainty
 - Revisit inclusion of environmental covariates (e.g., salmon stoplights) into forecasts
 - Environmental conditions might help determine year-specific escapement goals but "this path is less straightforward"

How would risk tables (or other pathways for incorporating ecosystem conditions) look for salmon?

- Risk table should be produced annually November-March
 - Could adjust uncertainty buffers if they existed
 - Could informally adjust escapement goals
- Risk table rubric
 - How should table be structured?

Possible risk table rubric for SRFC

indices)?

	Habitat Indicators	Assessment data inputs for forecast,	Retrospective assessment of model performance
		run reconstruction, and harvest models	
Level 1: Favorable	Indicators - show medium-high level of agreement - are in the "green or blue" - are fully available for time series	 Reliable data on jack spawners across watershed No gaps/problems estimating commercial, recreational, and in-river harvest Full age structure data for current cohort 	 Minimal evidence for spatially variable trends of spawners in return year Hatcheries met broodstock goal in previous year Forecast model under-predicted stock in previous 1-2 years No overfishing in last two years
Level 2: Neutral	Indicators - are inconsistent - majority are in the "yellow" - are not fully available	 Reliable data on jack spawners with some gaps Few gaps/problems estimating commercial, recreational, and in-river harvest Partial age structure data for current cohort 	 Some evidence for spatially variable trends of spawners in return year Hatcheries mostly met broodstock goal in previous year Minor under/over-prediction of forecast model in previous 1-2 years No overfishing in previous year
Level 3: Unfavorable	Majority of indicators show - Show medium-high level of agreement - are in the "orange/red" - are "gappy"	 Data on jack spawners is spotty Gaps/problems existed estimating commercial, recreational, and in-river harvest Poor age structure data for current cohort 	 Strong evidence for spatially variable trends of spawners in return year Hatcheries did not meet broodstock goal in previous year Forecast model over-predicted stock in previous 1-2 years Overfishing in one of two previous years
• Lor		Focus on forecast model? Additional demographic indicators not used in assessment models (e.g., outmigrant	 Additional retrospective analysis of demographic indicators not used in assessment models?

Existing habitat indicators as reported

Approaches to incorporating habitat/ecosystem indicators into salmon harvest management

- Incorporate into risk tables
- Improve forecasting model
- Incorporate into harvest control rule

Improve forecasting model?

- Winship et al. (2015): No "compelling evidence for stable...environmental variables"
- Other environmental variables that Winship et al. (2015) did not examine?
- What about habitat indicators?
- Other forecasting approaches independent of sibling model?

Existing habitat indicators

Phase
 ● Recruitment
 ◆ Incubation
 ● Hatcheries
 ■ Adult migration
 ● FW & delta
 ♦ Early marine

Improve forecasting model?

- Winship et al. (2015): No "compelling evidence for stable...environmental variables"
- Other environmental variables after 1st ocean year that Winship et al. (2015) did not examine?
- Habitat indicators are not likely candidates because they compete for variance with jacks.
- Other forecasting approaches independent of sibling model?

Model performance

- Indicator SI prediction: model predictions as informed by data from all years
- Leave future out (LFO) indicator SI prediction: true predictions made one year in advance using the years of data before the prediction
- LFO jack-based SI prediction: true predictions using jacks, also one year out as above

Model performance

- Preliminarily, jack models are still better than key indicator model
- However, indicators can make prediction two years in advance

Using indicator and jacks-based models together

Indicators -> Jacks prediction (2 -> 1 years out) Jacks prediction -> Actual SI (1 -> 0 years out)

Actual SI

- Indicator models could provide initial predictions 2 years out, followed up by current method of jack-based predictions one year out.
- Performance of ensemble forecasts could be examined

Approaches to incorporating habitat/ecosystem indicators into salmon harvest management

- Incorporate into risk tables
- Improve forecasting model
- Incorporate into harvest control rule

Oregon Coho harvest control rule

Inference from spawner and smolt monitoring

Possible SRFC harvest control matrix adaptations

Possible SRFC harvest control matrix adaptations

Inference from habitat indicators model Could be multi-model inference

Also could do the two-year advance forecast (e.g., might be more aggressive if two year forecast showed high abundance)

Pros and cons of harvest matrix approach

Pros

- FW/marine phases of demography nicely captured
- Alternately, could independently integrate predictions of two independent models
- Given absence of sigma/P* estimation for salmon, harvest matrix could be more effective for ecosysteminformed harvests than informal application of risk table

Cons

- Creates zones where small changes in forecast can have large effects
- Following sibling model, there's not much extra variation to explain in final ocean year
- Following sibling + habitat indicators models, why not just use multi-model inference instead of a matrix?
- There is currently a lot of interest and momentum in risk table approach

	VL	L	Μ	Н
Н				
Μ				
L				
VL				
Crit				