Agenda Item G.3 Attachment 2 April 2025 https://doi.org/10.25923/fyn8-pn27

NOAA Technical Memorandum NMFS

MARCH 2025

RE-EVALUATION OF THE RECRUITS-PER-SPAWNER AND CALCOFI SST RELATIONSHIP IN PACIFIC SARDINE

Caitlin Allen Akselrud, Alexander Jensen, and Kevin Hill

NOAA Southwest Fisheries Science Center Fisheries Resources Division La Jolla, California

NOAA-TM-NMFS-SWFSC-716

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Southwest Fisheries Science Center

About the NOAA Technical Memorandum series

The National Oceanic and Atmospheric Administration (NOAA), organized in 1970, has evolved into an agency which establishes national policies and manages and conserves our oceanic, coastal, and atmospheric resources. An organizational element within NOAA, the Office of Fisheries is responsible for fisheries policy and the direction of the National Marine Fisheries Service (NMFS).

In addition to its formal publications, the NMFS uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series, however, reflect sound professional work and may be referenced in the formal scientific and technical literature.

SWFSC Technical Memorandums are available online at the following websites:

SWFSC: https://swfsc-publications.fisheries.noaa.gov/

NOAA Repository: https://repository.library.noaa.gov/

Accessibility information

NOAA Fisheries Southwest Fisheries Science Center (SWFSC) is committed to making our publications and supporting electronic documents accessible to individuals of all abilities. The complexity of some of SWFSC's publications, information, data, and products may make access difficult for some. If you encounter material in this document that you cannot access or use, please contact us so that we may assist you. Phone: 858-546-7000

Recommended citation

Allen Akselrud, Caitlin, Alexander Jensen, and Kevin Hill. 2025. Re-evaluation of the recruits-per-spawner and CalCOFI SST relationship in Pacific sardine. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-716. https://doi.org/10.25923/fyn8-pn27

RE-EVALUATION OF THE RECRUITS-PER-SPAWNER AND CALCOFI SST RELATIONSHIP IN PACIFIC SARDINE

Caitlin Allen Akselrud, Alexander Jensen, and Kevin Hill

NOAA Southwest Fisheries Science Center Fisheries Resources Division La Jolla, California

1. Purpose

The purpose of this document is to re-calculate the correlation between the CalCOFI SST index and the indices of biomass and recruits with updated time series data, and to re-examine model selection results and model fit. This analysis follows the documented methods from the Pacific Fishery Management Council's 2013 sardine harvest parameters workshop (PFMC and SWFSC 2013).

2. Background

2.1. 2013 Workshop

The 2013 Pacific sardine harvest parameters workshop selected a general additive model (GAM) to assess the relationship between Pacific sardine recruits/spawner, age 2+ biomass, and the smoothed (non-linear) average sea surface temperatures (SST) measured by the CalCOFI survey. This workshop used a time series of sardine age 2+ biomass (spawners) and recruits that were assembled from previous stock assessments, from 1984-2008 (Table 1; Hill et al., 2010). The results are reported in PFMC and SWFSC (2013). In particular, Appendix Table E.6. of the 2013 Workshop report includes the model results. In re-creating these models, we found the values reported as R-squared in the Appendix E.6. table are squared Pearson correlations and the reported deviance explained values are adjusted R-squared values. We have renamed those values in this report for consistency and clarity (Table 2).

3. Data

3.1. Biomass and Recruitment Time Series

This relationship was re-evaluated by updating the recruits/spawner, age 2+ biomass, and CalCOFI SST time series. Recruits/spawner data for 1984-2004 were appended with the most recent stock assessment estimates of age 2+ biomass and recruits from 2005-2023 (Kuriyama et al, 2024). The decision to supplant 2005-2008 workshop values of recruits/spawner data with more recent data produced by stock assessments is based on the rationale that the most recent stock assessment values represent the best available science.

It is worth noting that the recruits/spawner time series spans changes in stock assessment model structure, assumptions, and an update to the habitat model.

3.2. CalCOFI SST

Values for the average annual CalCOFI SST reported in the workshop and published stock assessment reports also vary slightly. The time series of annual SST values are published stock assessments (2014 - 2023, Table 1). Earlier SST calculations (1984 - 2013) were conducted in a consistent manner with those generated for stock assessment by SWFSC scientists (documented in Kuriyama et al., 2024, section 5.3), and were used in this re-analysis, replacing SST values from the 2013 workshop (Table 1).

4. Methods: 2024 Model Update

Model Configurations:

- 1. Recruits/spawner time series:
 - a. One time series patching together the 1984-2023 data.
 - b. One time series with only the most recent stock assessment data (2005-2023).

- 2. Indicator: fitting to a log(recruits/spawner) relationship, which is consistent with the model chosen in the 2013 workshop.
- 3. GAM type:
 - a. Configuration L model: SST (T_y) as a linear covariate: $\alpha + s(S_y, k = 3) + \beta T_y + \varepsilon_y$ where " α is an intercept parameter, s(x, k = 3) is a nonlinear smooth function of x, and k controls smoothness by limiting the number of parameters in s(x, k = 3), S_y is [age 2+] spawning biomass in year y, β is a slope parameter, T_y is SST, and ε_y is a normally distributed statistical error" (PFMC and SWFSC, 2013).
 - b. Configuration G (consistent with the model chosen in the 2013 workshop): the same as L, but includes a smoother on SST (non-linear covariate), i.e.: $\alpha + s(S_y, k = 3) + s(T_y, k=3) + \varepsilon_y$.
 - c. Configuration B is presented for comparison and does not include the SST covariate, i.e.: $\alpha + s(S_y, k = 3) + \varepsilon_y$.

5. Comparison of 2024 Update Results to 2013 Workshop Results

In comparing the updated time series models to the previous workshop results, we find that the best fitting model is still the GAM with CalCOFI SST as a smoothed covariate (model G) using the extended time series (1984-2023) across metrics for AIC, adjusted-R², squared Pearson correlation (R²), and deviance explained (Table 2). While the adjusted R² in the best-fitting model has decreased to 0.44 from 0.74 with the addition of new data, it remains higher than the analysis based on same time series but with no SST covariate in model B at 0.11 (Table 2). The squared Pearson correlation of the best-fitting model for the extended time series (0.49) is similarly lower than the previously estimated value of 0.76, but is still much higher than the squared correlation of 0.13 for the baseline extended time series model with no SST covariate. In addition, the likelihood ratio tests (LRT) show similar results to the 2013 workshop in rejecting model B in favor of one with temperature as a covariate and indicating that the smoothed covariate term provides improved fit relative to the linear term (Table 3).

6. Additional Discussion

We agree with the workshop evaluation that fitting to the log(recruits/spawner) is a better choice than log(recruits) since log(recruits) will always be greater than 0 as long as temperature is greater than zero, irrespective of spawning abundance (Hurtado-Ferro and Punt, 2013). In addition, the smoothed GAM model fit to the extended time series now exhibits a dome-shaped response to SST, which is representative of a typical biological response to an optimal range of temperatures (e.g., Brewer, 1976; Figure 1).

Table 1. Data available for this reanalysis. Bolded data represent the data used in the full time series reanalysis, and bolded data after 2004 represent data used in the recent time series reanalysis. *Methods for SST estimation are documented in Kuriyama et al. (2024), section 5.3.

Year	BIOMASS (AGES 2+; 10 ³ mt)		RECRUITS (AGE-0; millions)		Workshop Report	Annual SST from Stock Assessment Reports		
	Hill et al. 2010	Kuriyama et al. 2024	Hill et al. 2010	Kuriyama et al. 2024	SST_CC_ann	T_DegC	Source	
1984	13		239		15.99	16.35	*E. Weber, pers. comm.	
1985	21		268		15.67	15.76	E. Weber, pers. comm.	
1986	27		654		15.73	15.98	E. Weber, pers. comm.	
1987	33		885		16.19	16.3	E. Weber, pers. comm.	
1988	54		1270		15.71	15.79	E. Weber, pers. comm.	
1989	84		1084		15.65	15.46	E. Weber, pers. comm.	
1990	119		2261		15.94	15.99	E. Weber, pers. comm.	
1991	134		5354		15.71	15.8	E. Weber, pers. comm.	
1992	168		3910		16.63	16.7	E. Weber, pers. comm.	
1993	250		10078		16.33	16.42	E. Weber, pers. comm.	
1994	329		11130		16.45	16.48	E. Weber, pers. comm.	
1995	562		4223		15.79	15.92	E. Weber, pers. comm.	
1996	821		6252		16.22	16.33	E. Weber, pers. comm.	
1997	820		17156		16.8	16.69	E. Weber, pers. comm.	
1998	772		19743		16.55	16.77	E. Weber, pers. comm.	
1999	1096		3624		15.19	15.28	E. Weber, pers. comm.	
2000	1496		2928		15.73	15.79	E. Weber, pers. comm.	
2001	1324		7959		15.5	15.55	E. Weber, pers. comm.	
2002	1055		804		14.91	14.94	E. Weber, pers. comm.	
2003	922		18578		15.98	16.03	E. Weber, pers. comm.	
2004	670		9617		15.78	15.88	E. Weber, pers. comm.	
2005	967	457	10448	26832	15.36	15.46	E. Weber, pers. comm.	

2006	1032	582	3277	10311	15.72	15.92	E. Weber, pers. comm.
2007	1071	748	3596	5104	15.06	15.15	E. Weber, pers. comm.
2008	848	792	2674	3242	15.13	15.27	E. Weber, pers. comm.
2009		483		5072		15.36	E. Weber, pers. comm.
2010		313		6955		15.55	E. Weber, pers. comm.
2011		267		458		15.56	E. Weber, pers. comm.
2012		278		124		15.29	E. Weber, pers. comm.
2013		147		156		14.91	E. Weber, pers. comm.
2014		64		558		16.77	Hill et al. 2014
2015		32		608		17.47	Hill et al. 2015
2016		35		197		16.33	Hill et al. 2016
2017		39		349		16.12	Hill et al. 2017
2018		40		677		15.89	Hill et al. 2018
2019		28		548		15.98	Hill et al. 2019
2020		31		1589		16.41	Kuriyama et al. 2020
2021		52		559		15.48	Kuriyama et al. 2021
2022		42		571		15.69	Kuriyama et al. 2022
2023		41		728		15.62	Kuriyama et al. 2024

Table 2. Output of the updated model results, with the 2013 workshop model results included in the bottom two rows of the table for comparison. ¹The workshop reported deviance explained values that are actually adjusted R-squared values, and ²the workshop values reported as R-squared in the Appendix E.6. table are squared Pearson correlations; both have been renamed for consistency and comparability with our analysis.

Time series	GAM type	GAM	N	Resid. DF	EDF of SST	AIC	R ² adjusted	Squared Pearson corr. (R ²)
1984-		no SST						
2023	В	covariate	40	38.00	0.00	122.23	0.11	0.13
1984- 2023	G	smooth SST covariate	40	35.50	1.89	106.04	0.44	0.49
1984- 2023	L	linear SST covariate	40	36.69	0.00	112.66	0.32	0.36
2005- 2023	в	no SST covariate	19	17.00	0.00	66.49	-0.04	0.02
2005- 2023	G	smooth SST covariate	19	15.33	1.67	63.42	0.18	0.30
2005- 2023	L	linear SST covariate	19	16.00	0.00	65.18	0.07	0.17
1984- 2008	G	smooth SST covariate	25	21.73	1.27	44.49	0.74 ¹	0.76 ²
1984- 2008	L	linear SST covariate	25	22.00	0.00	44.68	0.73 ¹	0.76 ²

Table 3. Results of likelihood ratio tests between the different model configurations.

Model	Time series	pBG	pBL	pGL
Full timeseries	1984-2023	0	0.0007	0.0046
Short timeseries	2005-2023	0.0414	0.0806	0.0855
2013 workshop	1984-2008	0	0	0.12

7

Figure 1. Plots of GAM results for each smoothed term (s(biomass (mt)) for spawning biomass or s(SST (C)) for temperature). The top figure (A) shows GAM results using the extended time series (1984-2023), and the bottom figure (B) shows GAM results using only the current assessment time series (2005-2023).

References

Brewer, G.D., 1976. Thermal tolerance and resistance of the northern anchovy, *Engraulis mordax*. Fishery Bulletin 74(2): 433-445.

Hill, Kevin T., Nancy C.H. Lo, Beverly J. Macewicz, Paul R. Crone, and Roberto Felix-Uraga. 2010. Assessment of the Pacific sardine resource in 2010 for U.S. management in 2011. U.S. Department of Commerce, NOAA technical memorandum NMFS NOAA-TM-NMFS-SWFSC. https://repository.library.noaa.gov/view/noaa/3771.

Hill K. T., P. R. Crone, D. A. Demer, J. P. Zwolinski, E. Dorval, and B. J. Macewicz. 2014. Assessment of the Pacific sardine resource in 2014 for U.S.A. management in 2014-15. US Department of Commerce. NOAA Tech. Memo. NMFS-SWFSC-531, 305 p.

Hill K. T., P. R. Crone, E. Dorval, and B. J. Macewicz. 2015. Assessment of the Pacific sardine resource in 2015 for U.S.A. management in 2015-16. US Department of Commerce. NOAA Tech. Memo. NMFS-SWFSC-546, 168 p.

Hill K. T., P. R. Crone, E. Dorval, and B. J. Macewicz. 2016. Assessment of the Pacific sardine resource in 2016 for U.S.A. management in 2016-17. US Department of Commerce. NOAA Tech. Memo. NMFS-SWFSC-562, 184 p.

Hill, K.T., P.R. Crone, J.P. Zwolinski. 2017. Assessment of the Pacific sardine resource in 2017 for U.S. management in 2017-18. US Department of Commerce. NOAA Tech. Memo. NMFS-SWFSC-576. 262 p.

Hill, K.T., P.R. Crone, and J.P. Zwolinski. 2018. Assessment of the Pacific sardine resource in 2018 for U.S. management in 2018-19. US Department of Commerce. NOAA Tech. Memo. NMFS-SWFSC-600. 125 p.

Hill, K. T., P. R. Crone, J. P. Zwolinski. 2019. Assessment of the Pacific sardine resource in 2019 for U.S. management in 2019-20. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-615. 130 p.

Hurtado-Ferro, F. and Punt, A., 2013. Initial analyses related to evaluating parameter value choices for Pacific sardine. Pacific Fishery Management Council, 7700 NE Ambassador Place, Suite 101, Portland, OR, 97220. 24 p.

Kuriyama, P.T., J.P. Zwolinski, K.T. Hill, and P.R. Crone. 2020. Assessment of the Pacific sardine resource in 2020 for U.S. management in 2020-2021, U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-628. 191 p.

Kuriyama, P.T., K.T. Hill, J.P. Zwolinski, and P.R. Crone. 2021. Catch-only projection of the Pacific sardine resource in 2021 for U.S. management in 2021-2022. Pacific Fishery Management Council April 2021 Briefing Book, Agenda Item E.4, Attachment 1. 11 p.

Kuriyama, P.T., K.T. Hill, and J.P. Zwolinski. 2022. Update assessment of the Pacific sardine resource in 2022 for U.S. management in 2022-2023. Pacific Fishery Management Council April 2022 Briefing Book, Agenda Item E.3, Attachment 1. 31 p.

Kuriyama, Peter T., Caitlin Allen Akselrud, Juan P. Zwolinski, and Kevin T. Hill. 2024. Assessment of the Pacific sardine resource (*Sardinops sagax*) in 2024 for U.S. management in 2024-2025. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-698. https://doi.org/10.25923/jyw3-ys65

Pacific Fishery Management Council and Southwest Fisheries Science Center (PFMC and SWFSC), 2013. Draft report of the Pacific sardine harvest parameters workshop. Pacific Fishery Management Council, 7700 NE Ambassador Place, Suite 101, Portland, OR, 97220. 36 p.