QUILLBACK ROCKFISH ROV LENGTH DATA STRATIFICATION BY LATITUDE AND DEPTH

Length Analysis Introduction

Data

- Quillback rockfish length data from California Marine Applied Research and Exploration (MARE) Remotely Operated Vehicle (ROV)
- ROV Stereo Cameras and analytical software used to measure fish length of fish in suitable orientations

Methodology

- Goal: Identify differences in length distributions across latitudinal and depth strata for design-based methods of estimates of abundance
- Statistical Analysis: Kolmogorov-Smirnov (K-S) tests used to assess statistical significance of differences between various length frequency distributions.
- Comparison: MARE ROV length data visually compared with California Recreational Fisheries Survey (CRFS) data for validation

Latitudinal Strata Map

Strata

- North of 40°10' N
- 40°10' N to Point Arena
- Farallon Islands
- Point Arena to Pigeon Point
- Pigeon Point to Point Conception

Map Details

- Colored circles represent individual quillback rockfish with stereo length data
- Black dots represent ROV
 transects used to collect data.

Length Frequency Distributions (LFDs)

LFDs by Stratum

• Displays length frequency distributions from previously discussed strata.

Pattern

• Larger to smaller fish observed along the coast from North to South to Pigeon Point.

Pigeon Point to Point Conception

• Low sample size (n = 13), southern end of range.

Farallon Islands

• Appear much different compared to the adjacent Point Arena – Pigeon Point stratum.

Kolmogorov-Smirnov Test Results

- Most LFDs are significantly different (P < 0.05) across strata
- Statistically significant differences observed in all other stratum combinations

Exceptions: No significant difference in 2 of 4 combinations involving Pigeon Point – Point Conception stratum (low sample size, n = 13)

Coastwide LFDs: 10-meter Depth Strata

Pattern

• Deeper than 40 meters, size correlated with depth

Unexpected Result

- 30-40 meter stratum shows larger fish in shallower waters.
- Mainly from the North of 40°10' N stratum, aligning with anecdotal angler knowledge.

Coastwide LFDs: 10-meter Depth Strata

Low Sample Size: 20-30m

• The 20-30 meter stratum has a low sample size reflecting the range of this species.

Statistical Results

 Matching Letters indicate statistically significant differences (p < 0.05) between distributions.

LFDs: By Depth and Latitudinal Strata

- North of 4010 stratum contains most of the large fish in the 30–40 m depth range
- Matching letters indicate statistically significant differences within each latitudinal depth stratum.

ROV/CRFS COMPARISON

ROV/CRFS Comparison Introduction

California Recreational Fisheries Survey (CRFS) Bio Data

- Quillback Rockfish
- Years 2014 2021

Matching Latitudinal Strata:

• RECFIN_PORT_NAMES matched to previously defined ROV strata.

Redwood (CRFS) North of 40°10' N (ROV)

Redwood (CRFS) North of 40°10' N (ROV)

CRFS

- Slight shift towards larger fish.
- Likely due to gear selectivity

Comparison:

 In general ROV and CRFS, in this stratum, have similar shapes

Wine (CRFS) 40°10' N – Pt. Arena (ROV)

Wine (CRFS) 40°10' N – Pt. Arena (ROV)

Comparison

- ROV able to observe smaller fish.
- Spike in large fish seen in the CRFS data (selectivity)

Bay Area (CRFS) & Pt. Arena – Pigeon Pt (ROV)

Bay Area (CRFS) & Pt. Arena – Pigeon Pt (ROV)

Panel B (Left)

 Distributions appear relatively similar

Panel C (Right)

• ROV contains mainly small fish.

Bay Area (CRFS) & Pt. Arena – Pigeon Pt (ROV)

Pt. Arena – Pigeon Pt. (ROV) Small Fish

Central (CRFS) & Pigeon Pt. – Pt. Conception (ROV)

Key Takeaway

 Despite small sample sizes, the distributions appear very similar.

ROV/CRFS Comparison Conclusions

Redwood (CRFS) North of 40°10' N (ROV)

Validate the ROV data

- Issues due to uncertainty
 in CRFS data
- Highlights need for increased ROV sampling

ROV/CRFS Comparison Conclusions

Wine (CRFS) 40°10' N – Pt. Arena (ROV)

ROV detects smaller fish

- Before they are seen in
 CRFS data
- May be useful to detect recruitment events

Potential Hypotheses Explaining the Pattern of Large to Small Fish

Nursery Ground Hypothesis

30

Length (cm)

20

40

50

- Pt. Arena Pigeon Pt. stratum acts as a nursery ground for small quillback rockfish
- 85% of small fish seen in this stratum only seen in the 2020 super year
- Minimal small fish seen north of 40°10' N

High Fishing Pressure Hypothesis

Fishing Pressure Hypothesis

- Potential high fishing pressure in the Coastal Point Arena – Pigeon Point stratum.
- Note: quillback rockfish distribution closed from 2001 – 2018 for canary and yelloweye rockfish rebuilding measures

ROV Sampling Hypothesis

Potential Bias

 ROV data may not capture larger quillback rockfish in the coastal Point arena – Pigeon Point stratum

Reason

• Sampling locations – as seen by average depth.

Length Analysis Conclusion

Questions?

QUILLBACK ROCKFISH ROV DENSITY DATA STRATIFICATION BY LATITUDE AND DEPTH

Density Analysis Introduction

Data

- Quillback Rockfish density data from California Marine Applied Research and Exploration (MARE) Remotely Operated Vehicle (ROV)
- Transect level data

Methodology

- Goal: Identify differences in densities across latitudinal and depth strata
- **Comparison**: Visual comparisons are made using box and whisker plots

By Latitudinal Strata

Key Takeaways

- Difference in densities observed between Farallon Islands and adjacent coastal region Pt. Arena – Pigeon Pt
- Large sample size from Pt. Arena – Pigeon Pt. compared to Farallon Islands

By Latitudinal Strata

By Latitudinal Strata (Farallons and Pt. Arena – Pigeon Pt. Combined)

Key Takeaways

- Combined with the Farallon Islands, Pt. Arena – Pigeon Pt. changes minimally
- This is due to sample sizes and large number of zero transects in the Pt. Arena – Pigeon Pt. stratum

By Depth Strata

By Depth and Latitudinal Strata

Depth Analysis Conclusion

Questions?