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Euphausiids, or krill, are important energy links between primary producers and higher trophic levels in the California Current Ecosystem (CCE),
but a thorough understanding of their variability at the coast-wide scale is limited. Using fisheries acoustics data collected during biennial joint
US–Canada Integrated Ecosystem and Acoustic Trawl Surveys for Pacific hake (Merluccius productus), we developed a time series (n = 8 years;
2007–2019 odd years inclusive, and 2012) of krill abundance and examined relationships with environmental factors. Krill were located in waters
off the west coasts of the United States and Canada, primarily in shallow basins and on the continental shelf, with greatest kernel density
estimates near Cape Mendocino and the Juan de Fuca eddy system. Coast-wide krill abundance was variable, and lowest in 2015 during an
extended marine heat wave, when 91% were located in British Columbia. Using hierarchical generalized additive models, we predicted greatest
krill abundance in cooler waters (0.2◦C below the time series average), within 10–20 km of the shelf break, and in bottom depths between 200
and 400 m. This newly developed coast-wide time series of krill abundance and distribution will inform ecosystem-based fisheries management
efforts, and offers additional opportunities for studies of krill-dependent fish, seabirds, and marine mammals.
Keywords: Euphausia pacifica, fisheries acoustics, frequency differencing, krill, Merluccius productus, Pacific hake, Thysanoessa spinifera.

Introduction

Zooplankton are an important energy link between phyto-
plankton and higher trophic levels throughout the world’s
oceans (Richardson, 2008). In the northeast Pacific Ocean, eu-
phausiids (Euphausiacea), or krill, are key zooplankton prey
for a range of fish, seabirds, and marine mammals (Mauch-
line and Fisher, 1969). The highly productive California Cur-
rent Ecosystem (CCE) supports a number of krill popula-
tions (Brinton, 1962), which in turn sustain important fishery
resources including Pacific hake, Merluccius productus (Liv-
ingston, 1983) and Pacific salmon, Oncorhynchus spp (Peter-
son et al., 1982). Krill in the CCE are also important prey
for other predators such as Cassin’s auklets, Ptychoramphus
aleuticus, and blue whales, Balaenoptera musculus (Croll et
al., 1998; Sydeman et al., 2006). Research on krill in the CCE
has led to important insights on relationships between abun-
dance, distribution, and dynamic ocean conditions (Mackas
et al., 2001; Santora et al., 2011). However, a lack of broad-
scale and spatially comprehensive data has prevented a full
understanding of coast-wide patterns in krill distribution and
variability in abundance, and analyses of the potential effects
on dependent fish, seabirds, and marine mammals.

Krill abundance in the CCE increases seasonally in response
to local primary production, which peaks in spring and sum-

mer (Mackas, 1992). This time period is typically charac-
terized by intense wind-driven upwelling, which brings cold,
nutrient-rich waters to the surface that generate large phyto-
plankton blooms and are positively correlated with increased
krill abundance (Ressler et al., 2005; Checkley and Barth,
2009). Dense krill aggregations are related to the location
of bathymetric features including the continental shelf break
and submarine canyons, where primary productivity is often
enhanced (Mackas, 1992; Peterson et al., 2000; Santora et
al., 2018). Krill often occur in patchily distributed aggrega-
tions, which result from the interaction of horizontal transport
downstream of upwelling centers and a behavioural response
of zooplankton to swim downwards against vertical currents
(Mackas et al., 1985, 1997; Genin, 2004). Mesoscale circu-
lation patterns then maintain krill aggregations by increasing
the residence time of upwelled water and prolonging primary
production, allowing for extended grazing periods (Ressler et
al., 2005).

Basin-scale interannual and decadal temperature fluctu-
ations also influence krill populations. The abundance of
the most dominant and broadly ranging krill species in the
CCE, Euphausia pacifica, is correlated to cool ocean condi-
tions dominated by strong upwelling and sustained primary
production (Brinton, 1962). Increases in water temperature
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and decreases in primary production related to El Niño–
Southern Oscillation (ENSO) events can reduce the overall
abundance of E. pacifica, as well as neritic, cold-water Thysa-
noessa spinifera that co-occur with E. pacifica (Brinton and
Townsend, 2003; Cimino et al., 2020). ENSO events also al-
ter the species composition of krill in the CCE by increas-
ing poleward transport, resulting in greater abundances of
warm-water krill species and fewer cold-water species (Mari-
novic et al., 2002). A recent marine heat wave during 2014–
2016 increased surface ocean water temperatures (Di Lorenzo
and Mantua, 2016) and reduced the overall abundance of
cold-water krill species in parts of the CCE (Peterson et al.,
2017; Lavaniegos et al., 2019). Warmer waters associated
with the marine heat wave also negatively impacted growth
rates of E. pacifica and overall adult size (Robertson and
Bjorkstedt, 2020), indicating that temperature plays an im-
portant role in the overall abundance and growth of krill in
the CCE.

Krill abundance and distribution are often quantified us-
ing fisheries acoustics surveys because continuous, high-
resolution horizontal and vertical data can be used to examine
krill aggregations at a range of spatial scales. Acoustic surveys
have successfully assessed krill populations in the Southern
Ocean (Hewitt et al., 2003), northern Atlantic Ocean (Ever-
son et al., 2007; McQuinn et al., 2015), and eastern Pacific
Ocean (Swartzman and Hickey, 2003). In the CCE, a number
of studies using acoustic data collected at smaller geographic
scales have linked krill abundance and distribution to environ-
mental conditions (Ressler et al., 2005; Santora et al., 2011).
However, systematically collected acoustic data throughout
the full extent of the CCE has not been previously avail-
able to analyze coast-wide patterns of krill abundance and
distribution.

The goal of this study was to process archived acoustic data
collected during biennial joint US–Canada Integrated Ecosys-
tem and Acoustic Trawl Surveys for Pacific hake to develop a
time series of krill abundance and distribution in the CCE. We
identified krill in the acoustic backscatter and quantified spa-
tiotemporal variability in abundance between 2007 and 2019,
in a survey area of approximately 221 000 km2 from south-
ern California, United States, to northern British Columbia,
Canada. We also estimated relationships to bathymetric habi-
tat features and dynamic environmental conditions includ-
ing primary production and temperature to develop a bet-
ter understanding of krill variability in the CCE to inform
ecosystem-based management.

Material and methods

Survey area and study design

We used data from the National Oceanic and Atmospheric
Administration Northwest Fisheries Science Center (hereafter,
NOAA) and Fisheries and Oceans Canada (hereafter, DFO),
which have conducted biennial joint US–Canada Integrated
Ecosystem and Acoustic Trawl Surveys for Pacific hake along
the west coasts of the United States and Canada since 2003.
The biennial surveys were conducted during the summer
months (June–September) when hake occurred in feeding ag-
gregations near the continental shelf break. All surveys be-
gan in the south near Point Conception, California, United
States (34.5◦N), and moved north through British Columbia,
Canada to Dixon Entrance, Alaska, United States (54.4◦N).

Each transect line crossed between the 50 m isobath and the
1500 m isobath, which allowed for data collection across con-
tinental shelf, shelf break, and slope habitat. Transects were
generally oriented in an east–west direction along the coast
except near Dixon Entrance, where they were oriented north–
south (Figure 1). Transects were spaced approximately 16 or
32 km (10 or 20 nmi) apart, and the southern and northern
extents, and to a lesser degree offshore extent, were deter-
mined by observed hake distribution (Fleischer et al., 2008).
The number of total transects surveyed varied annually, but
typically ranged between 110 and 150 in total (Table 1).
We used echosounder data from eight surveys between 2007
and 2019 (odd years inclusive, plus 2012) that included at
least 38 and 120 kHz data that could be used to identify
krill.

Acoustic data collection and processing

Downward-looking Simrad EK60 narrow-band, split-beam
echosounders were used to collect acoustic data at multiple
frequencies (18, 38, 70, 120, and/or 200 kHz) from multiple
research vessels (Table 1). Depending on the vessel configura-
tion and other survey needs, not all acoustic frequencies were
available during each year; the 38 and 120 kHz data were
common among all years. Acoustic data were recorded con-
tinuously from the sea surface to a depth of 750 m during day-
light hours (i.e. from local sunrise to sunset, approximately 15
h per day). The normal ship survey speed was 5.1 m s–1 (10
knots) and data were collected using a 1.024-ms narrow-band
pulse at a ping rate of 1 ping s–1. All echosounders were cali-
brated prior to and/or after each survey using standard sphere
methods (Demer et al., 2015).

On-transect acoustic data were processed using Echoview
version 9.0 (Echoview Pty Ltd, Hobart, Australia). Noise
spikes were removed from all files using Echoview’s impulse
noise removal operator, and false bottoms were visually iden-
tified in the echogram and manually removed. Seafloor echoes
were detected acoustically, inspected, and manually corrected
as needed. Background noise was estimated based on the the-
ory from De Robertis and Higginbottom (2007) using mean
volume backscattering strength (Sv or MVBS, dB re 1 m–1)
measured in 40 ping × 10 m cells, and removed by subtract-
ing the estimated background noise value from the original
Sv values, using a maximum noise threshold of −125 dB and
a signal-to-noise ratio filter with a threshold of 10 dB. Sam-
ples that did not pass this filter were classed as empty water,
followed by smoothing of all cells to 5 pings × 5 samples.
To account for variation in transducer depth on each vessel,
the near-field range of the 38 kHz echosounder, surface noise
intrusion, and to remove scattering from non-adult krill and
other targets near the surface, data from within 50 m of the
water surface were excluded from analyses. To account for
decreasing signal-to-noise ratio with depth, particularly for
the 120 kHz echosounder, data below a depth of 300 m were
also excluded. In areas where the seafloor was shallower than
300 m, data from within 1 m of the seafloor were removed to
avoid possible bottom echo intrusion. A small amount of krill
backscatter very close to the seafloor may have been omitted
due to this processing step, but we believed it to be negligible.
The described distribution of adult krill during the day gen-
erally encompasses 100–250 m (Mackas et al., 1997), so we
assumed that the majority of krill present in the water column
were detected using these methods.
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Figure 1. Study area along the west coast of the United States and Canada displaying bathymetric features and acoustic transect locations for a typical
survey. Continental shelf habitat classifications are based on relief, from Harris et al. (2014). International North Pacific Fishery Commission (INPFC)
geographical areas are labelled and separated by latitude with dashed lines. All geographic features mentioned in the text are also labelled.

Table 1. Summary of biennial joint US–Canada Integrated Ecosystem and Acoustic Trawl Surveys for Pacific hake used in this study by year, vessel,
echosounder frequencies used, survey extent and date range, and total transects sampled by NOAA Fisheries Northwest Fisheries Science Center and
DFO.

Year Vessel Echosounder frequencies
Min–max
latitude Start date End date

Number of transects
used in analyses

2007 MF (NOAA) 18, 38, 120, 200 (NOAA) 35.8–54.9 20-June 22-August 132 (NOAA)
2009 MF (NOAA), WER (DFO) 18, 38, 120, 200 (NOAA); 38, 120 (DFO) 35.7–54.7 30-June 6-September 77 (NOAA), 44 (DFO)
2011 SH (NOAA), WER (DFO) 18, 38, 70, 120, 200 (NOAA); 38, 120 (DFO) 35.2–54.9 26-June 10-September 83 (NOAA), 41 (DFO)
2012 SH (NOAA), WER (DFO) 18, 38, 70, 120, 200 (NOAA); 38, 120 (DFO) 35.8–55.3 27-June 7-September 73 (NOAA), 45 (DFO)
2013 SH (NOAA), WER (DFO) 18, 38, 70, 120, 200 (NOAA); 18, 38, 120

(DFO)
34.9–54.8 13-June 12-September 98 (NOAA), 36 (DFO)

2015 SH (NOAA), WER (DFO) 18, 38, 70, 120, 200 (NOAA); 18, 38, 120
(DFO)

32.7–55.1 20-June 8-September 89 (NOAA), 29 (DFO)

2017 SH (NOAA), NP (DFO) 18, 38, 120 (NOAA); 38, 120 (DFO) 34.5–54.8 25-June 8-September 94 (NOAA), 35 (DFO)
2019 SH (NOAA), NP (DFO) 18, 38, 70, 120, 200 (NOAA); 38, 120 (DFO) 34.4–54.8 17-June 13-September 78 (NOAA), 35 (DFO)

MF: Miller Freeman, WER: W.E. Ricker, SH: Bell M. Shimada, and NP: Nordic Pearl.

Krill identification and abundance estimation

To classify krill from acoustic backscatter, we used an algo-
rithm developed by Gauthier et al. (Supplemental Material)
that applies frequency differencing methods to differentiate
krill from other acoustic targets based on their distinct fre-
quency response using MVBS measured at 38 and 120 kHz
(De Robertis et al., 2010). The automated algorithm was de-
veloped using multi-frequency acoustic backscatter and asso-
ciated net samples of E. pacifica and T. spinifera collected dur-

ing several research surveys in waters off the west coast of
Vancouver Island, British Columbia, Canada (Supplemental
Material). Krill were identified by matching 120 kHz cells to
38 kHz cells in space and time using ping times and sample ge-
ometry, and then using a �MVBS120–38 range of 10.0–16.3 dB,
which encompasses published frequency difference ranges cal-
culated for krill in other parts of the North Pacific (McKelvey
and Wilson, 2006; De Robertis et al., 2010; Simonsen et al.,
2016). Matching cells with MVBS values less than a −70 dB
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integration threshold at 120 kHz were excluded. All acous-
tic backscatter was treated as non-differentiated E. pacifica
and T. spinifera because the frequency response of these two
species overlaps at 38 and 120 kHz (Supplemental Material).

Georeferenced 120 kHz volumetric (Sv) and integrated
area backscatter (nautical-area-backscattering coefficient, sA

or NASC, m2 nmi–2) attributed to krill were exported in 926 m
(0.5 nmi) horizontal by 10 m vertical bins. To verify that the
algorithm was correctly identifying krill and excluding tar-
gets such as swim-bladdered fish, maximum Sv values within
each exported cell were examined at the transect level, and
cells with Sv values in the 90th percentile of all values on
the transect were scrutinized and corrected as needed to re-
move misclassifications (e.g. bottom intrusion). An additional
10% of transects in each year were randomly selected and
visually scrutinized, with a focus on cells with high mean Sv

values that were classified as krill. Reviewed files with correc-
tions were then re-exported. We further limited our analyses
to cells with MVBS values greater than −80 dB, which repre-
sents approximately 3–4 krill m–3 in each 926 m horizontal
by 10 m vertical bin, assuming a target strength of −74.7 dB
at 120 kHz (Miyashita et al., 1996). We classed exported cells
where MVBS values were less than −80 dB as empty water.
This resulted in the removal of data from an additional 3.1%
of cells across all years of the study. All subsequent analyses
used integrated NASC values, which is an index of relative
krill abundance and is a proxy for krill biomass.

Spatial variability

To ensure interannual comparisons of krill abundance and
distribution were not biased by variation in survey extent,
we limited our analyses to data that fell within the com-
mon latitudinal range of all years (35.8–54.7◦N). To quan-
tify interannual variation of krill distributions in the wa-
ter column, we calculated mean NASC in each 10-m ver-
tical bin along each transect for each year. We then calcu-
lated the weighted mean depth of krill and tested for dif-
ferences among years using a one-way ANOVA (Zar, 1999).
To obtain a measure of krill abundance through the wa-
ter column, we summed NASC in each 10-m vertical bin
for each 0.5-nmi horizontal cell, and aggregated data into
20 km (10.8 nmi) along-transect bins to minimize autocor-
relation. We then examined interannual variation in mean
NASC with a Kruskal–Wallis test (Zar, 1999). To examine
variability in annual north–south krill distributions, we cal-
culated the mean NASC in five regions defined for fisheries
management by the International North Pacific Fishery Coun-
cil (INPFC) based on latitude and oceanographic characteris-
tics (Forrester et al., 1983): Monterey (35.5–40.5◦N), Eureka
(40.5–43.0◦N), Columbia (43.0–47.5◦N), Vancouver (47.5–
50.5◦N), and Charlotte (50.5–54.5◦N; Figure 1). We calcu-
lated the annual percentage of krill in each INPFC region, as
well as the geographic center of gravity (COG) of krill as a
measure of spatial variation in the 8-year time series.

To identify areas of greater of krill abundance, we used ker-
nel density estimation (KDE) to create an annual density sur-
face of krill using NASC in 20 km (10.8 nmi) along-transect
bins. KDE is a simple non-parametric statistical technique that
estimates a real-valued function as the weighted average of
neighboring observed data (Worton, 1989). The weight is de-
fined by the kernel, such that closer points are given greater
weights, and smoothness is set by the kernel bandwidth. For

this study we used a bandwidth of 50 km and 2000 cells to
create the grid. We also used KDE to generate a map of krill
density across the full time series, from 2007 to 2019.

Relationship to environmental conditions

To characterize krill abundance in relation to geomorphic
features and environmental conditions, we compiled data on
bathymetry, chl a concentration, and temperature. We used
a seafloor geomorphic features map to examine krill relation-
ships to bathymetric features including continental shelf (shal-
low seafloor < 200 m water depth), slope (narrow band of
deepening seafloor from the continental shelf edge, ∼200–
500 m water depth), shallow basins (seafloor depressions
with closed bathymetric contours occurring on the continen-
tal shelf), and submarine canyons (steep-walled valleys that
incise the slope; full definitions available from Harris et al.,
2014). In total, 45.2% (10 608 040 km2) of the survey area
was continental shelf habitat, 54.5% (12 790 233 km2) was
slope habitat, 0.19% (44 926 km2) was submarine canyon
habitat, and 0.07% (15 926 km2) was shallow basin habi-
tat (Harris et al., 2014). Polygons of each bathymetric feature
were spatially matched to the centroid of each 0.5 nmi cell,
and krill in each 0.5 nmi cell were categorized as being associ-
ated with shelf, slope, basin, or canyon habitat. In a few cases,
transects extended into offshore waters beyond the polygons
used in this study; 0.5 nmi cells in this area were categorized as
offshore-associated. We tested for differences in mean NASC
in each habitat using a Kruskal–Wallis test, and post hoc Dunn
test to determine which habitats were significantly different
(Zar, 1999).

We obtained bottom depth values for the centroid of each
0.5 nmi cell using a composite bathymetry grid of the study
domain in ArcMap (v.10.6; ESRI, Redlands, CA). The grids
were created by combining three, 3-arc-second resolution
Coastal Relief Models (Vols. 6–8; National Geophysical Data
Center, 2003, 2013; Carignan et al., 2013) with 15-arc-second
resolution SRTM15 + data (Smith and Sandwell, 1997;
Becker et al., 2009; Sandwell et al., 2014). National Geophys-
ical Data Center (NGDC) Coastal Relief Models completely
cover all land areas and consistently cover aquatic depths to
approximately 2000 m. Deeper than 2000 m, NGDC data
become inconsistent, so we filled in missing areas using re-
sampled (to 3-arc-second) SRTM15 + data to obtain bottom
depth values for the small number of transects that extended
offshore into deeper waters. Using the same geomorphic fea-
tures map from Harris et al. (2014), we measured the distance
of the centroid of each 0.5-nmi cell to the edge of the nearest
submarine canyon, shallow basin, and continental shelf break
(200 m isobath).

To assess relationships between krill abundance and
primary production, we accessed monthly composite
chl a data (mg m–3) from the Aqua MODIS satellite
(NASA/GSFC OBPG, 2020) using the R packages “rerd-
dap” and “rerddapXtracto” (Chamberlain, 2019; Simons,
2019; Mendelssohn, 2020). The centroid of each 0.5-nmi cell
was assigned a single log-transformed chl a value based on the
shortest distance between the center of the cell and the grid.
We matched monthly composites of chl a grid values at 4 km
resolution to the month of survey sampling to account for
variation in primary production as the survey moved through
the CCE from south to north, a range of approximately
2600 km.
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To characterize temperatures experienced by krill within
the water column, we used in situ temperature mea-
sured at a grid of sampling stations during each sur-
vey by temperature–depth profilers attached to trawl head-
ropes, expendable bathythermographs, and conductivity–
temperature–depth (CTD) instruments, as well as underway
CTD measurements collected at sampling locations along
transects (see Malick et al., 2020 for full details). We used ordi-
nary kriging (Cressie, 1993) to interpolate temperatures mea-
sured at a depth of 100 m to a 20 km2 grid that encompassed
all sampling locations across survey years, which allowed us to
estimate annual temperature surfaces at depth. To remove the
effect of latitude on temperature, we calculated grid-cell spe-
cific temperature anomalies by subtracting the average tem-
perature for each grid cell across the 8-year time series from
the annual temperature within each grid cell (Malick et al.,
2020). The centroid of each 0.5-nmi cell was assigned a sin-
gle 100-m temperature anomaly value based on the shortest
distance to the gridded surface of temperature anomalies.

To facilitate analyses on the same spatial scale, we gridded
krill abundance data into 20 km2 cells for further analyses
and calculated mean values for distance to bathymetric fea-
tures, bottom depth, chl a, and temperature. To examine vari-
ation in the two dynamic variables, chl a and temperature,
we plotted the distribution of all values for each year and
calculated the median value. For temperature, we used the
median temperature anomaly in each year to classify ocean
conditions as cool, neutral, or warm following Malick et al.
(2020).

Statistical models

We developed hierarchical generalized additive models (or
HGAMs; Pedersen et al., 2019) using the mgcv package
(Wood, 2006) in R (R Core Team, 2016) to examine relation-
ships between krill abundance (20 km2 cells) and environmen-
tal conditions. GAM models assume predictors have an addi-
tive effect and use smooth functions to model the effect of
the predictors on the response variable (Wood and Augustin,
2002). HGAMs allow modelling of non-linear functional re-
lationships between covariates and can account for within-
group variability (Pedersen et al., 2019). We modelled each
response variable, krill presence and krill abundance (posi-
tive krill values) separately, and evaluated the influence of dis-
tance to the shelf break (km), distance to the nearest subma-
rine canyon (km), bottom depth (m), chl a (mg m–3, log scale;
l_chla), and 100-m temperature anomaly (◦C; temp_anom) on
NASC. To account for interannual variability in spatial distri-
butions, we included a spatial term (interaction of latitude and
longitude), grouped by year. Both models were of the same
general form. For the occurrence component we used a logis-
tic model, where Zi indicates the presence (1, NASC > 0) or
absence (0, if NASC = 0) for the ith observation, and μi is the
probability of occurrence [Equation (1)].

Zi ∼ Bernoulli (μi)

logit (μi) = yeari + te
(
lati, loni, by = year

) + s
(
shel fi

)

+ s (canyoni) + s
(
depthi

) + s
(
l_chlai

)

+ s (temp_anomi) . (1)

For the positive component of the model, we modelled the
observed krill abundance, Yi, using a gamma likelihood with
a log-link, modelling the mean abundance, ϕi, conditional on

krill presence [Equation (2)].

Yi ∼ Gamma (ϕi, γ )

log (ϕi) = yeari + te
(
lati, loni, by = year

) + s
(
shel fi

)

+ s (canyoni) + s
(
depthi

) + s
(
l_chlai

)

+ s (temp_anomi) . (2)

In both models, yeari is a factor for survey year, s() indi-
cates the smooth effect of each covariate, and te() indicates a
tensor-product smooth for the two covariates. Thin plate re-
gression splines were used as smoothing functions, and spline
shrinkage was used to perform automatic smoothness selec-
tion of covariates. We restricted the number of basis func-
tions contributing to each smooth by limiting the number of
polynomial curve joins, or knots (k = 5 for all smooths, see
mgcv package, Wood, 2006). Inspection of smooth terms re-
vealed partial effects that were biologically reasonable and
avoided overfitting (i.e. excessive wiggliness). We evaluated a
range of models, including models without the spatial term,
and used deviance explained, changes in Akaike’s informa-
tion criterion (�AIC), and Akaike weights (ωi) to select best-
fit models (Akaike, 1998). Normalized residuals were plotted
to check for violations of model assumptions. The partial ef-
fect of each covariate retained in each final model was plotted
to examine the relationship. The final models were then used
to predict probability of krill occurrence (μ) and abundance
conditioned on presence (ϕ). We generated an unconditional
prediction for krill abundance, X, by multiplying the occur-
rence and positive components (i.e. X = μ∗ϕ). All analyses
were performed using R software version 3.6.2 (R Core Team,
2016).

Results

Krill aggregations were distributed between 50 and 300 m
in the water column (Figure 2), with an average depth of
148 ± 44 m that did not vary significantly among years
(F7,192 = 0.734, p = 0.643). While krill depth distributions
were stable, abundance varied spatially along the coast and
among years (H7 = 177.3, p < 0.001; Figure 3a). Mean NASC
was lowest in 2015 (59.3 ± 371.0 m2 nmi–2), and greatest in
2013 (198.7 ± 698.0 m2 nmi–2; Figure 3b). On average, krill
were relatively evenly distributed within INPFC geographic
areas, with a mean of 58.6% of krill occurring in US areas, and
41.4% occurring in Canadian areas (Figure 3b). While krill
abundance was very low in 2015 throughout most of US west
coast waters, krill abundance was high in Canadian west coast
waters, where 90.6% of krill were located, including 76.5% in
the northernmost INPFC area in our study (Charlotte; Figure
3b). As a result, the geographic COG was located farther
north in 2015 compared to other years (Figure 3a). In con-
trast, in 2009 only 21.6% of krill were located in Canadian
west coast waters, and greatest abundances were located in
the southernmost INPFC area in our study (Monterey; Figure
3b), resulting in a southerly shift in the geographic COG
(Figure 3a).

The location of greatest kernel density estimates (KDE) of
krill was also variable (Figure 4). When all years were ag-
gregated, increased density estimates were located in the area
between Cape Mendocino in northern California and Cape
Blanco in southern Oregon, and the Juan de Fuca eddy sys-
tem near the border between the United States and Canada
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Spatiotemporal variability of euphausiids in the California Current Ecosystem 1317

Figure 2. Annual depth distribution of krill abundance (NASC) in the 8-year time series. Data are presented in 10-m vertical depth bins. Labelled dashed
lines indicate the weighted mean depth of krill within each year.

Figure 3. Spatial distribution of krill abundance (NASC) observed during joint US–Canada Integrated Ecosystem and Acoustic Trawl Surveys for Pacific
hake during 2007–2019, including (a) NASC in binned 20-km cells along transects, with blue stars representing the geographic COG and dashed lines
and separate colours delineating each International North Pacific Fishery Commission (INPFC) geographical area; and (b) mean annual NASC in each
INPFC area.
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1318 E.M. Phillips et al.

Figure 4. KDE of krill distribution based on NASC (a) across all years in the time series, and (b)–(i) each individual year. KDE results are shown on a
standardized (0–1) scale.

(Figure 4a). However, when analyzing each year separately,
KDE indicated that increased krill abundances were located
in different areas along the coast. For example, increased krill
density estimates occurred near the shelf break off the Oregon
coast in 2011, 2012, 2013, and 2017 (Figure 4d–f and h), and
in waters near Haida Gwaii in 2011 and 2015 (Figure 4d and
g).

Krill were observed in a range of bathymetric habi-
tats, with greatest NASC values in shallow basins and
on the continental shelf, followed by submarine canyons
and slope habitat (Figure 5). Mean NASC was significantly
different among all habitats (H4 = 460.49, p < 0.001),
except between slope and canyon habitats (Dunn’s test,
p = 0.587).

Coast-wide median temperature anomalies were lower than
−0.1◦C in 4 of the 8 years of our study (2007, 2009, 2012,
and 2013), and were classified as cool (Figure 6a). The me-
dian temperature anomaly in 2011 was −0.07◦C, and classi-
fied as neutral. The three most recent years in the time series
(2015, 2017, and 2019) all had median temperature anoma-
lies greater than +0.3◦C, which we classified as warm ocean
conditions. In comparison to variation in temperature anoma-
lies, chl a concentrations were less variable and the median
value of chl a was above 0.46 mg m–3 (log scale) in all years
(Figure 6b).

Krill were present in 53.2% of the gridded 20 km2 cells used
in our analyses. HGAM models of krill presence and positive
values indicated a significant effect of annual spatial variabil-
ity (spatial interaction term retained in final models, Table 2).
Plots of partial effects indicated similar relationships between
krill presence and positive values (Figures 7 and 8), and all
covariates had a significant effect (Table 2). Proximity to the
continental shelf break (within 20 km) and shallower bottom
depths (< 750 m) had the strongest influence on krill, while
proximity to submarine canyons exhibited a weak influence.
Intermediate values of chl a concentration (∼1 mg m–3, log
scale) had a significant effect on krill presence, and a slight
influence on krill positive values. Temperature anomalies at a
depth of 100 m had a significant influence on krill presence,
with temperature anomalies above 0◦C having a negative ef-
fect on krill in both models.

Based on the HGAM results, predictions of unconditional
krill abundance showed generally similar patterns between
years for bathymetric covariates, with abundance predicted to
be highest within 10–20 km of the shelf break (Figure 9). In
2015, krill abundances were predicted to be greatest slightly
off the shelf compared to other years. Predictions of krill abun-
dance in relation to submarine canyons were greatest ∼10 km
from submarine canyons. Greatest abundances of krill were
consistently predicted to occur in areas with bottom depths
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Spatiotemporal variability of euphausiids in the California Current Ecosystem 1319

Figure 5. Distribution of annual mean krill abundances (NASC) in each
bathymetric habitat. Boxplot—dark line: median; box: interquartile range
(IQR); error bars: max/min within 1.5 × IQR above/below IQR; and dots:
outliers.

of ∼300 m, with the exception of 2009 and 2012 when krill
abundance was greatest in waters of depths of ∼700 m (Figure
9). In terms of dynamic covariates, greatest krill abundances
were predicted at intermediate values of chl a (between 0.5
and 2.0 mg m–3, log scale). Interestingly, peaks in krill abun-
dance in 2013 and 2015, years with the highest and lowest
abundances in our study, were associated with lower chl a
values (∼0.25 mg m–3, log scale). In contrast, predictions of
krill varied substantially in relation to temperature anomalies.
We found that unconditional krill abundance was predicted
to be greatest during periods when temperature anomalies

were below 0◦C, or cool ocean conditions, with a peak in pre-
dicted abundance when temperature anomalies were approx-
imately −0.2◦C. When temperature anomalies were greater
than 0◦C, during warm ocean conditions, unconditional krill
abundances generally declined.

Discussion

Using an archived fisheries acoustics dataset, we developed
a time-series of coast-wide krill abundance and distribution
in the CCE. We demonstrated that while krill vertical distri-
butions were stable across the eight surveys, with an average
depth of 148 m, overall abundances and spatial distributions
varied substantially along the US and Canadian west coasts.
Krill aggregations were primarily located near the Juan de
Fuca eddy system and the region between Cape Mendocino,
California, and Cape Blanco, Oregon, and to a lesser extent
near the shelf break in Oregon, and Haida Gwaii and Queen
Charlotte Sound, British Columbia. Variation in temperature
exhibited the strongest influence on krill abundance, and low-
est abundances were observed in 2015 during a marine heat
wave. Bathymetry was also an important factor, and great-
est krill abundance occurred in waters shallower than 400 m
near the shelf break and associated with shallow basin habi-
tats. This study provides insights into the spatiotemporal vari-
ation of krill in the CCE and relationships to environmental
conditions, which will be useful for future studies of krill pop-
ulations in a changing environment.

Our results demonstrate that krill presence and abundance
was strongly associated with continental shelf habitats, partic-
ularly within 20 km of the shelf break. This pattern occurred
regardless of continental shelf width, which can be very nar-
row in the southern part of the California Current, and wider
along the Washington and British Columbia coast. Areas with
sharp changes in bathymetry, such as near the continental
shelf break, as well as basin and submarine canyon edges, are
known to support krill populations (Mackas, 1992; Peterson
et al., 2000; Santora et al., 2018). Dynamic mixing of cold,
nutrient-rich waters along these bathymetric gradients gener-

Figure 6. Annual distribution of (a) anomalies from the mean temperature (◦C) at a depth of 100 m, and (b) chl a concentration (mg m−3; log scale). For
the temperature plots, blue shading indicates that the median temperature anomaly was below −0.1◦C, which we classified as cool ocean conditions;
red shading indicates that the median anomaly was above +0.3◦C, which we considered warm ocean conditions; and grey shading in 2011 indicates that
the median anomaly was between −0.1◦C and 0.1◦C, considered neutral ocean conditions (Malick et al., 2020). For the chl a plots, median values were
greater than 0.46 mg m−3 in all years, indicated by green shading.
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Table 2. Description of HGAMs developed to evaluate the influence of bathymetric and environmental covariates on krill presence and krill non-zero
abundance (NASC). For each model formulation tested, the corresponding effective degrees of freedom (edf), deviance explained, AIC and differences
(�AIC), and ωi are presented. Final models are in bold.

Model
description Model name Model construction edf

Deviance
explained AIC �AIC ωi

Krill presence
with spatial
interaction

kp.1 Full model 88.8 25.1 2679.3 0.0 0.99
kp.2 Drop chl a 85.9 24.1 2712.3 33.0 6.9E-08
kp.3 Drop bottom depth 86.8 20.9 2824.5 145.2 2.9E-32
kp.4 Drop temp anomaly 78.6 17.9 3562.2 882.9 1.9E-192
kp.5 Drop distance to canyon 83.0 18.2 3558.9 879.6 1.0E-191
kp.6 Drop shelf distance 71.5 9.6 3890.4 1211.1 1.0E-263
kp.7 Drop spatial interaction term 8.0 2.9 4038.8 1359.5 6.0E-296

Krill presence
with only
latitude

kp.1l Full model 51.6 20.3 2764.5 85.2 3.2E-19
kp.2l Drop chl a 56.5 20.5 2774.7 95.4 1.9E-21
kp.3l Drop bottom depth 46.1 16.1 2903.6 224.3 2.0E-49
kp.4l Drop temp anomaly 48.9 15.3 3610.1 930.8 7.5E-203
kp.5l Drop distance to canyon 50.8 15.3 3612.7 933.4 2.0E-203
kp.6l Drop shelf distance 43.1 7.4 3924.4 1245.1 4.3E-271

Krill presence
with no
spatial
interaction

kp.1s Full model 27.4 16.4 2846.9 167.6 4.1E-37
kp.2s Drop chl a 23.8 15.8 2868.2 188.9 9.3E-42
kp.3s Drop bottom depth 19.8 12.0 2988.4 309.1 7.5E-68
kp.4s Drop temp anomaly 15.8 10.9 3726.3 1047.0 4.4E-228
kp.5s Drop distance to canyon 12.0 10.4 3739.5 1060.2 5.9E-231
kp.6s Drop shelf distance 31.6 6.6 3936.5 1257.2 1.0E-273

Krill
abundance
with spatial
interaction

kd.1 Full model 113.6 29.8 27509.3 0.0 1.00
kd.2 Drop chl a 111.3 29.7 27551.6 42.3 6.5E-10
kd.3 Drop bottom depth 103.7 27.9 27612.8 103.5 3.3E-23
kd.4 Drop temp anomaly 104.5 25.7 33934.7 6425.4 0.0
kd.5 Drop distance to canyon 88.5 24.4 33968.8 6459.5 0.0
kd.6 Drop shelf distance 81.9 17.7 34280.2 6770.9 0.0
kd.7 Drop spatial effect 9.0 1.8 34814.9 7305.6 0.0

Krill
abundance
with only
latitude

kd.1l Full model 78.1 29.8 27620.6 111.3 6.6E-25
kd.2l Drop chl a 75.1 29.7 27669.7 160.4 1.5E-35
kd.3l Drop bottom depth 69.7 27.9 27700.1 190.8 3.6E-42
kd.4l Drop temp anomaly 67.4 25.7 34104.7 6595.4 0.0E + 00
kd.5l Drop distance to canyon 56.4 24.4 34117.8 6608.5 0.0E + 00
kd.6l Drop shelf distance 46.4 17.7 34444.5 6935.2 0.0E + 00

Krill
abundance
with no
spatial
interaction

kd.1s Full model 25.7 29.8 27975.9 466.6 4.8E-102
kd.2s Drop chl a 22.2 29.7 28020.9 511.6 8.0E-112
kd.3s Drop bottom depth 18.4 27.9 28027.8 518.5 2.6E-113
kd.4s Drop temp anomaly 15.4 25.7 34479.5 6970.2 0.0E + 00
kd.5s Drop distance to canyon 12.7 24.4 34479.0 6969.7 0.0E + 00
kd.6s Drop shelf distance 9.0 17.7 34814.9 7305.6 0.0E + 00

ates phytoplankton blooms that krill consume. Wind relax-
ation events, which often follow periods of strong upwelling,
can maintain primary production in areas that are accessi-
ble by krill for longer periods of time (Ressler et al., 2005).
The relationship between NASC and bottom depth also indi-
cated strong associations with waters near the shelf break and
slightly deeper slope waters (200–400 m). Water depths just
beyond the shelf break can increase rapidly to greater than
750 m, and krill occupying the shelf break habitat can easily
be advected away from areas with strong currents (Dorman
et al., 2011), which may explain the distribution of krill in a
wide range of bottom depths.

Increased krill abundance also occurred near shallow basins
and to a lesser extent near shelf-incising submarine canyons,
which can be found along the west coast of the United States
and Canada (Mackas et al., 1997; Santora et al., 2018). While
the overall area of shallow basins surveyed in this study was
less than 1% of the survey area, these habitats supported the
greatest mean NASC values. In comparison, krill abundances
in submarine canyons were not as high, and there was not a

strong relationship between NASC and proximity to subma-
rine canyons. Nearly all of the submarine canyons in this study
were located in US waters, and comprised less than 0.2% of
the survey area. The weak relationship to submarine canyons
observed in our study, as compared to other recent research
(Santora et al., 2018), may be a result of the fisheries survey de-
sign, our focus on broad, coast-wide descriptions of krill dis-
tributions, and the approach to aggregate data onto a 20 km2

grid. The lack of krill aggregations in central California near
Monterey Bay and the Gulf of the Farallones also contrasts
with previous research (Santora et al., 2011; Fiechter et al.,
2020) and may relate to the timing of our survey and the in-
herent spatiotemporal variability of krill distributions (Evans
et al., 2021). The phenology of krill hotspot formation and
dissolution can vary substantially depending on local changes
in upwelling activity (Ressler et al., 2005; Fiechter et al., 2020;
Evans et al., 2021), and our results may not represent in-
traseasonal variation in krill distributions. A closer examina-
tion of krill abundance at a finer spatial resolution within re-
gions where a large number of canyons occur, and near lo-
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Spatiotemporal variability of euphausiids in the California Current Ecosystem 1321

Figure 7. Partial effects plots of smooth functions in the HGAM model of krill presence. Grey shading around smooth fits represents 95% CIs.

Figure 8. Partial effects plots of smooth functions in the HGAM model of krill abundance (NASC) conditioned on presence. The model used a log-link for
NASC. Grey shading around smooth fits represents 95% CIs.
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1322 E.M. Phillips et al.

Figure 9. Unconditional krill abundance predictions for each of the covariates included in the final HGAM models. Each year is coloured based on the
annual median temperature anomaly (◦C) at depths of 100 m across the study area. Blue shading indicates that the median temperature was below
−0.1◦C, red shading indicates that the median temperature was above + 0.3◦C, and grey shading indicates that the median anomaly was between −0.1
and 0.1◦C.

cations where previous studies have identified krill hotspots,
may reveal stronger habitat relationships. Regardless, our re-
sults highlight the importance of shallow ocean basin habitats
for krill, and suggest that in areas where there are fewer sub-
marine canyons, such as the west coast of British Columbia
and the southernmost portion of the CCE near the Southern
California Bight (which was not part of this study), shallow
basins can also support dense krill aggregations (Fiedler et al.,
1998).

Temperature anomalies at 100-m showed marked variabil-
ity, with cooler conditions occurring in the first part of our
time series (2007, 2009, 2012, and 2013) and warmer con-
ditions occurring during the three most recent years (2015,
2017, and 2019). This is in contrast to chl a concentrations,
which were not as variable across years. Relationships be-
tween krill abundance and chl a were relatively consistent
across the time series, whereas temperature effects were ev-
ident in declines in krill abundance and shifts in their spa-
tial distribution. We confirmed that the extended marine heat
wave, or “Blob”(Leising et al., 2015; Di Lorenzo and Mantua,
2016), negatively impacted krill abundance along the US west
coast in 2015, and can explain the observed ecological impacts

within the rest of the CCE food web, including a widespread
seabird die-off (Peterson et al., 2017; Jones et al., 2018). We
did not detect a significant shift in the depth of krill in 2015,
which were located in an average of 157 m water, indicating
that krill did not move to deeper waters when surface waters
were warm. Interestingly, krill abundance in the northernmost
part of our survey area (British Columbia) were above average
during 2015. Local ocean currents and greater primary pro-
ductivity, perhaps related to a shift in the location of the bi-
furcation of the North Pacific Current (Sydeman et al., 2011;
Malick et al., 2016), or the influence of a shallow shelf and
multiple shallow basins, may have sustained krill populations
in this part of the study area during the marine heat wave.

While we demonstrated that temperature anomalies had a
significant impact on annual krill abundances, shifts in the lo-
cation and timing of upwelling and subsequent primary pro-
duction also appear to play an important role. For example,
2017 and 2019 were also anomalously warm years (Amaya et
al., 2020; Malick et al., 2020, this study), yet krill abundances
did not show significant declines, and were closer to pre-2015
abundances, with aggregations located in both US and Cana-
dian waters. Thus, krill populations appear to be able to take
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advantage of primary productivity even during warmer ocean
temperatures, which may become more common in the future
(Di Lorenzo and Mantua, 2016). Predictions of krill popula-
tion dynamics should account for the interaction of multiple
drivers including temperature and primary production on krill
abundance and distribution (McHenry et al., 2019). It should
be noted that the warmer ocean conditions observed during
2017 and 2019 were not as extensive as the 2014–2016 ma-
rine heat wave, which was unprecedented in terms of spatial
extent and duration (Di Lorenzo and Mantua, 2016; Jacox et
al., 2018). Future large-scale and long duration marine heat
waves may have similarly negative consequences for krill pop-
ulations along the US and Canadian west coasts. Additionally,
we did not directly examine cross-shelf transport, upwelling,
or mesoscale circulation, but the high degree of spatial resolu-
tion in our dataset provides future opportunities for regionally
focused studies of krill abundance that incorporate regional
oceanographic circulation models (Neveu et al., 2016) or in
situ measures of current strength and direction.

For mobile krill predators, the ability to migrate throughout
CCE waters may provide an advantage that increases access
to variable prey resources during the summer months. Because
an average of 41% of krill observed in this study occurred
in Canadian waters, northerly migrations may impart a par-
ticularly significant increase in survival, especially when krill
abundances are low in the southern part of the CCE. During
the 2015 marine heat wave, krill abundance was greatest in
northern British Columbia (Charlotte INPFC region), whereas
in other years, greatest densities occurred in California waters
(Monterey INPFC region). The northern extent of hake migra-
tions is related to poleward transport and warm ocean con-
ditions (Agostini et al., 2006), and our findings suggest that
this may be related to increased densities of krill in the north-
ern California Current, particularly Canadian coastal waters
(Benson et al., 2002). Similarly, blue whales migrating from
the south appear to use memory to locate predictably produc-
tive areas in the CCE to forage (Abrahms et al., 2019), which
may include krill aggregations between Cape Mendocino and
Cape Blanco identified in this study. Further research on rela-
tionships between predator distributions and krill abundance
will provide a better understanding of interannual variation
in the migratory extent of krill-dependent predators.

Ideally, acoustic surveys for zooplankton are paired with
ground truth data to confirm species identifications and
quantify biological information including size, developmen-
tal stage, and reproductive status. Because we used archived
acoustic data that were collected for Pacific hake stock assess-
ment purposes, direct samples of krill aggregations for species-
level identification were not available. We are confident that
our classification algorithm correctly discriminated E. paci-
fica and T. spinifera from other zooplankton (Supplemental
Material). Nonetheless, the overlapping spatial distributions
and frequency response of these two krill species may have
confounded some of our results. Specifically, E. pacifica are
widespread near the shelf-break and in offshore waters, while
T. spinifera are neritic and typically occur in shallower, coastal
shelf waters (Brinton, 1962; Peterson et al., 2000). The rela-
tionship of distance to the continental shelf break indicated
a greater probability of krill either inshore or offshore of the
shelf break, which may reflect fine-scale differences in distri-
butions of these two species that we could not discern in the
acoustic data. Furthermore, there is evidence that T. spinifera
are more common in British Columbia compared to E. paci-

fica (Brinton, 1962), and therefore, some of the spatiotempo-
ral variation in our dataset may be due to species-specific dif-
ferences in abundance in response to local ocean conditions,
particularly in northern British Columbia (Evans et al., 2021).
While net sampling can introduce biases related to escapement
and net avoidance that requires additional methodological
considerations (Greene et al., 1998; McClatchie et al., 2000;
Skjoldal et al., 2013), future research that uses fisheries acous-
tics data coupled with in situ sampling to confirm krill species
identification will allow for studies of species-level abundance
and distribution patterns.

Long-term ecological time series are critical for a better
understanding of ecosystem variation, the development of a
mechanistic understanding of ecological relationships, and to
inform ecosystem-based management (Harvey et al., 2020).
By utilizing existing acoustic data collected from a systematic
fisheries assessment survey of the CCE, we generated bien-
nial estimates of coast-wide krill abundance that represent a
valuable source of information on ecosystem status. Further-
more, by quantifying krill–environment relationships we con-
tribute to a broader understanding of the influence of ocean
conditions on a key component of the CCE food web. This
novel time series presents additional research opportunities,
including the development of forecasts of how changing ocean
conditions may affect krill populations and krill-dependent
predators under a warming and increasingly variable ocean
environment (Sydeman et al., 2013). This 8-year time series
will be updated as new acoustic data are collected and esti-
mates of krill abundance become a standard output of the
joint US–Canada Integrated Ecosystem and Acoustic Trawl
Surveys for Pacific hake, thus providing an ongoing source of
information about krill abundance in the CCE.
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