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Background of FT-NIRS technology and how it works (physics,
analytical chemistry, predictive analytics).

Successful applications of FT-NIRS age estimation (energy density,
reproductive status, stock structure)

Application of Al & deep machine learning (CNN) with FT-NIRS No AA

for age prediction.
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Observation and process errors associated with FT-NIRS

Operational readiness and integration into production



Strategic Initiative work flow
2020 2021 2022 2023 2024

Instrument optimization (AFSC, Jan-Mar 2019) for otoliths

Application

Development *FT-NIRS Workshop (April 2019; Sl planning over 5 years)

*Otolith spectra acquisition (3 species per region x 5-years)

N
'
Discovery I r-Predictive model development (calibration/validation)
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1=l

switchback

*Process control, quality control, fault

Application detection
Implementatlon *Standards, best practices (simulation)
s °*Al/Deep machine learning
Discovery |
switchback ! *Build scientific basis of tech. (publish)
-

Stock Assessment
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Why walleye Pollock & Pacific cod for FT-NIRS application development
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Importance of age data
collection for stock assessments:
a US national perspective

REPORT FROM THE OTOLITH SAMPLING SIZE WORKING GROUP (OSSWG)

WALLEYE POLLOCK
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FT-NIRS = 50-80 / FTE / hour
Unpublished
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FT-NIRS proven technology in other industries

% fat content

Fisheries biology

A transformative approach to a

Fourier transform near infrared
eastern B
Thomas E. Helser, Ir

kson, Jordan Heal nd Jonathan A. Short

hydrocarbon

neuroscience




NIR Spectroscopy: measurement of intra-molecular vibrations

12.500 cm™ (800 nm)
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How are the molecular motions detected and measured ?

Fourier transform near infrared spectrometer

Interferometer detector

NIR source




Interaction of Light and Matter

Diffuse
Reflection

Near Infrared Light

Specular
Reflection

Absorption

eInnovation with Integrity

Fluorescence
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Lambert-Beer's Law: Absorption

I

reflected
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Near Infrared
Light
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Relative Intensities of Infrared Bands
BRUKER

NIR intensity << corresponding Mid-IR.

A Mid-IR
Fundamental
_-E‘ Therefore, with NIR, the neat sample can be presented to
S the instrument without the need for dilution or small path
= lengths.

NIR: Sensitive detectors, electronics

Corroborating information from harmonics/overtones.

Near-infrared

Combination 1st

Overtone 2nd

Overtone 3rd
Overtone

'
Energy

eInnovation with Integrity



What is a near infrared spectrum ?
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How is fish age predicted from otolith NIR spectra?

Measured by FT-NIR
\

Spectral Data

(a)

FT-NIR Age (years)

0 2 4 6 8 10 12 14 16
Traditional Age (years)

train/test

Calibrate/validate

Model
Model uploaded to
instrument

Analyzed by Primary

Reference Method (TMA)

Unknown

Samples

Measured by FT-NIR

Age compositions for assessments



AFSC PROCESSEL}

Proceeding Proceedings of the
Research Fourth Research Workshop
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Fish Age U: of Fish Age Using Fourier
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Classification of fish species from different
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reflectance spectra of otoliths
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Ageing fish at the molecular level using Fo
transform near infrared spectroscopy (FT-
NIRS): A case study of Pacific cod

Original Research Article
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Rapid age estimation of longnose skate (Raja rhina) ver
using near infrared spectroscopy
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Full length article
Fourier transform near infrared spectroscopy of otoliths coupled with deep
learning improves age prediction for long-lived northern rockfish

Irina M. Benson ™', Thomas E. Helser *, Beverly K. Barnett "

Contents lists available at Direct
Fisheries Research
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Otolith morphometry and Fourier transform near-infrared (FT-NIR)
spectroscopy as tools to discriminate archived otoliths of newly detected
cryptic species, Etelis carbunculus and Etelis boweni
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Convolutional layer consists of a kernel
that slides along our data and applies its
weights to the data values.

input data output array

5X1+1X2+3X3=16

Deep learning networks will have
multiple kernels and will produce
multiple output arrays.

Neurons are core processing units of
the network.

Dense layers of neural network is made
up of layers of neurons.

Biological and
eospatial data:

Input Layer

Convi1D Layer

Flatten Layer '
Y
Dense Layer . Input Layer '

"--“Ag,--"‘

| Concatenate Layer '

Y

IIIII'I.IIII.I{* DEHSELaYer '

Y

| Dropout Layer '

h 4

l Dense Layer '

Non-linear activation functions
introduce non-linear properties into
network.

o

RELU

activation

We used Rectified linear unit (RELU)
functions which outputs the input
directly if it is positive, for negative
input outputs zero.

To implement our models we employed
Python using TensorFlow with Keras API
and hyperband optimization (HB) for
hyperparameter tuning.




Contents lists available at ScienceDirect

Fisheries Research

{ P !‘ -
ELSEVIER

journal homepage: www.elsevier.com/locate/fishres

Full length article

Fourier transform near infrared spectroscopy of otoliths coupled with deep

learning improves age prediction for long-lived northern rockfish

Irina M. Benson®+, Thomas E. Helser?, Beverly K. Barnett®
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A Canadian Journal of
Fisheries and
Aquatic Sciences

OPEN ACCESS | Article
The future of fish age estimation: deep machine learning
coupled with Fourier transform near-infrared
spectroscopy of otoliths
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FT-NIRS predicted age

FT-NIRS predicted age
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walleye pollock

(Gadus chalcogrammus) L@D rearing study at Little Port Walter (AK)
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-Eastern Bering Sea walleye

Quantification of FT-NIRS prediction uncertainty 12?11105051;

©2019, 2021, 2022, and 2023

-7 independent age readers
e nwiscAgeingError R package

-6 instrument operators

-2 model scenarios (n = 100
iterations per scenario)
e No age error- randomly assign train/test
° ﬁ;gg error- bootstrap resampling of age
lata

oo

AFSC Spectroscopy Laboratory




walleye pollock

(Gadus chalcogrammus) QuUANtIfication of FT-NIRS prediction uncertainty

Observation error (instrument + operator) of FT-NIRS
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walleye pollock

(Gadus chalcogrammus) QuUANtIfication of FT-NIRS prediction uncertainty
—— 0 090909090909090909090Z9mm 9090909000000
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stock assessments, with application to species in
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walleye pollock
(Gadus chalcogrammus)

Quantification of FT-NIRS prediction uncertainty

0.94
0.92 12
1.1
0.90
3 =
K" % Dataset
=10 [ Age Error
0.88 @ No Age Error
0.9
0.86
2
0.8
0.84
- Test Training Test Training
[a] Dataset
w
11 |
|
||
01
1 2 3 4 5 G T 8 9 10

Agey

Dataset

__| Age Error
No Age Error



Operational framework W

FT-NIRS ageing
approach

RACE, FMA,
special collections

 —

Maintaining
consistency in
Reference age -
data "

<

Double reads
Unscanable

Maintaining

consistency in
FT-NIR otolith

Microscopic ageing

(10% -20% double read
subsample)

\_

Key personnel:

Database manager

Operator
Manager QC tools
Analyst

/ -

QC tools -
J—-——-—-,‘ ~\——’

Edit, QC,
reporting

spectral data

* In-scan check (model based)
* Operator level check
» Manager level check (PLSr)

scanning

Evaluate model

performance
I QcCtools )
good bad |
|
New ages +

spectra

S

Reasons to retrain

* Instrument (operating
environment)

» Sample domain shift

* Unobserved variability

Model
validation

Update model
re-calibrate

4-------—

Stock Assessment
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