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Methodology Review Progress Update: FRAM Base Period Documentation 

Presented by: Derek Dapp and Ty Garber 
Work conducted by the Salmon Modeling and Analytical Workgroup (SMAWG) and Salmon Model 

Evaluation Workgroup (MEW) 

Progress since the last methodology review: 

Since the last methodology review, we have focused on documenting the calibration process used to 
develop the Chinook base period.  This information is now available under the “Base Period” tab, in the 
Chinook section, on the FRAM documentation website (see here). The base period documentation was 
designed to seamlessly integrate with the existing web-based FRAM documentation. It is written in R 
Markdown and contains the same user-friendly features, such as hyperlinks to referenced information, 
real-time content updates, easy navigation through table of content, etc. The code can be downloaded 
from GitHub. 

The calibration process uses coded wire tag recoveries that have been processed in CAS and 
FRAMBuilder (additional details available here) to estimate base period parameters used in FRAM such 
as base period exploitation rates, base period cohort sizes, maturation rates, adult equivalent rates, and 
fishery model stock proportions.  These base period parameters are then subsequently used in 
conjunction with annual input data in FRAM pre- and post-season runs to determine fishery-stock 
compositions, cohort sizes, and stock exploitation rates.   

The following sections have been added to the documentation that describe the calibration process: 

• An overview of calibration processes.
• Summaries of the extensive data preparation, decisions, and methodologies requiring updating

before the actual calibration can commence, including several sections on the history of why
decisions were made during base period construction such as whether to build the base period
using CWTs from just marked fish or all CWTs (marked + unmarked), why the base period years
were chosen, how new applications were developed, and how surrogate fisheries were
implemented.

• Detailed descriptions of methods employed to handle sparse or missing CWT recoveries.
• Analyses of CWT recovery patterns.
• A description of main calibration procedures and calibration equations.

o A description of variables and notations used in the calibration process.
o A description of CWT expansion calculations.
o A description of how fishery model stock proportions are determined.
o An overview of how the calibration program estimates the total number of sublegal

encounters and non-retention mortalities.
o A summary of the cohort reconstruction process in the calibration program.
o A description of growth function calculations.
o Sections on calculating key outputs, including exploitation rates, maturation rates, and

adult equivalent rates.
o A description of out-of-base procedures needed to incorporate CWTs from out-of-base

years for stocks with insufficient recoveries during base period years (2008-2013).
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• Several sections that describe the input data used in the calibration program such as
escapements, fisheries, fishery scalers, growth functions, incidental mortality, minimum size
limits, model stock proportions, natural mortality, stocks, terminal fishery flags, and time steps.

• Several sections that define the output data from the calibration program, such as base period
exploitation rates, fishery model stock proportions, maturation rates, sublegal encounter rates,
and base period cohort sizes.

• Descriptions of FRAMBuilder and calibration programs with sections on prerequisites,
conducting runs, code descriptions, transferring output, and specific instructions for producing a
new base period.

• An appendix providing all the tables used in the calibration database.
• A glossary of key terms used in the calibration process.

Next steps: 

Work on the FRAM documentation is on-going and there are several sections that the team would like 
to prioritize future work on for the next methodology review.  These prospective sections are detailed 
below: 

• Estimating the Stock Composition of Sublegal Encounters in the Calibration Process: Landed
catch mortalities in the calibration process are estimated using coded wire tags.  Sublegal fish
are not landed and do not have coded wire tags returned by sampling programs.  Therefore,
sublegal mortalities and stock composition are estimated through a process that combines Von
Bertalanffy growth functions and coded wire tag returns to estimate sublegal mortalities by
stock.

• Canadian Catch Estimates in FRAM and the Calibration Process: Prior to the implementation of
the Canadian iRec system (see here), Canadian catch estimates were not available in locations
and periods where fishery sampling did not occur.  Exclusion of these catch estimates had
potential to bias FRAM exploitation rates in Canadian fisheries low.  We collaborated with
(Fisheries and Oceans Canada) DFO to produce unofficial catch estimates in spatio-temporal
periods lacking fishery sampling.  Documentation of this process will be important for
understanding how inputs were developed as these inputs deviate from official catch estimates
produced by DFO.

• Coded Wire Tag Inputs in the Calibration Process: While there is section dedicated to
FRAMBuilder (the process that converts raw coded wire tags to the format needed by the
calibration program) on the current documentation site and there has been progress made over
the past year on describing special processing cases needed between FRAMBuilder and the
calibration program (in the “Preparation” section of the calibration program documentation),
there is additional processing of coded wire tags in the calibration program that could be
described.

• Catch, Non-Retention, and Target Encounter Rate Inputs in the Calibration Process: Inputs used
in the calibration program come from a wide variety of sources and it would be beneficial to
document where these come from for reproducibility.

• Describing some exceptions for CWT handling, such as imputing freshwater sport recoveries and
dealing with WCVI sport fisheries (inside vs. outside)
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• Calibration Update Cycle: Updating the Chinook base period is a time consuming process that
requires QA/QC from agencies along the West Coast and can potentially affect exploitation rate
outputs used for management.  The SMAWG has developed a calibration update cycle that
should be included in the documentation.

• Fishery Profiles: While fishery names and FRAMIDs are described in Appendix 4, we aim to
expand upon this section by describing the management areas that each fishery represents.
Also, in situations where surrogate fishery or time steps were used, we anticipate documenting
that in the fishery profiles section.

• Calibration Results: We are still discussing what might be the most appropriate material to put
in this section, but we envision putting key outputs from the calibration program into a results
section.  Preliminarily, we might include figures that show output stock compositions in fisheries
during the base period by time step, comparisons of new base period stock compositions with
GSI data where available, and comparisons of how exploitation rates have changed for Puget
Sound stocks across base period versions.

• Description of QAQC procedures.
• Description of outreach performed for new base period due to the many parties involved in the

finalized product.

We appreciate any feedback that the SSC and STT might provide on documentation updates since the 
last methodology review or on future planned documentation updates. 
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Calculation of Chinook FRAM preseason fishery scalers for south of Cape Falcon 
fisheries  

October 2023 Salmon Methodology Review 

Jon Carey / NOAA Fisheries / jonathan.carey@noaa.gov 

During the Pacific Fishery Management Council (Council) salmon fishery preseason planning process, the 
Chinook Fishery Regulation Assessment Model (FRAM) is used to estimate the expected impact from 
proposed fishery regulations on a variety of individual stocks of interest.  Within FRAM, fisheries can be 
modeled using one of two input types: 

• Quota: catch in the fishery set equal to a numeric value input by the user.
• Fishery Scaler: a scale factor relative to the fishing effort that occurred during the reference

base period using a scaler value input by the user.  The resulting catch is a function of the scaler
input, the base period exploitation rates, and the stock abundances.

For fisheries that are quota-managed or have available estimates of projected total catch (all stocks), 
quota inputs are typically used.  When fisheries are managed as seasons and have no estimates of 
projected total catch, a fishery scaler input can be used instead, as has traditionally been the case for 
Council managed fisheries that occur south of Cape Falcon (SOF).  The status quo approach that has 
historically been used to derive fishery scaler inputs is to divide projected effort (an output of the 
Klamath Ocean Harvest Model) in the given year by the mean effort that occurred during the base 
period (currently 2007 – 2013; Table 1) for each fishery (f) and time step (ts).   

𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑒𝑒𝑒𝑒𝑒𝑒_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑓𝑓,𝑡𝑡𝑡𝑡 =
𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑒𝑒𝑆𝑆𝑃𝑃𝑒𝑒𝑃𝑃_𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑒𝑒𝑃𝑃𝑓𝑓,𝑡𝑡𝑡𝑡

𝐵𝐵𝑃𝑃_𝑆𝑆𝑎𝑎𝑎𝑎_𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑒𝑒𝑃𝑃𝑓𝑓,𝑡𝑡𝑡𝑡
(Eq 1) 

The expectation with this approach is that if the stock abundances in the model run year were 
equivalent to the average base period abundance, but the effort in a particular fishery were half of the 
base period effort, then the resulting catch in that fishery would be half of the base period catch.  
Similarly, if the effort in a fishery were equal to the average base period effort, but the abundances in 
the model run were double the base period abundance, then the fishery would be expected to catch 
approximately twice the base period catch.   

We recently discovered that the status quo approach to calculating preseason fishery scalers is missing a 
key component.  When applying this approach for a particular fishery/time period, a critical assumption 
is that the mean fishery scaler during the base period years is equal to or near 1.0.  Beginning with the 
base period upgrade that occurred in 2017, this assumption no longer holds true in some instances 
(Table 2), thus, an additional step is required in deriving fishery scaler inputs for the SOF Council 
fisheries.  Specifically, the ratio of projected effort to mean base period effort must also be multiplied by 
the mean fishery scaler that occurred over the base period years.  A benefit in adding the mean fishery 
scaler term is that it allows a fishery scaler input to be calculated using a reference period (RP) that 
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differs from the base period years, as long as the year range used is consistent for both the mean effort 
and the mean fishery scaler. 

𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑒𝑒𝑒𝑒𝑒𝑒_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑓𝑓,𝑡𝑡𝑡𝑡 =
𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑒𝑒𝑆𝑆𝑃𝑃𝑒𝑒𝑃𝑃_𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑒𝑒𝑃𝑃𝑓𝑓,𝑡𝑡𝑡𝑡

𝐴𝐴𝑎𝑎𝑎𝑎_𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑒𝑒𝑃𝑃𝑓𝑓,𝑡𝑡𝑡𝑡,𝑅𝑅𝑅𝑅
∗ 𝐴𝐴𝑎𝑎𝑎𝑎_𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑓𝑓,𝑡𝑡𝑡𝑡,𝑅𝑅𝑅𝑅 (Eq 2) 

The current Chinook FRAM base period spans fishing years 2007 – 2013.  For two of these years (2008 – 
2009) SOF fisheries were significantly restricted or closed.  Given that, we conducted a retrospective 
assessment to evaluate whether excluding these years and instead using average effort and fishery 
scalers for a reference period of 2010 – 2013 would perform better than using base period years.   For 
this assessment, we projected fishery catches for 2010 through 2018 using two sets of fishery scaler 
inputs for all SOF fishery and time step combinations based on observed effort from Appendix A of the 
Review of 2022 Ocean Salmon Fisheries.  The first set of scalers were calculated using average effort and 
fishery scalers from the base period years (2007 – 2013), while the second set of scalers was calculated 
using a reference period of 2010 – 2013.  Both were calculated using equation 2, which includes the 
adjustment for the average fishery scaler during the reference period. 

Results of this assessment for each fishery on an annual basis are plotted in Figure 1 and performance 
metrics are presented for each reference period in Table 3.  The resulting mean absolute percent errors 
suggest that using the 2010 – 2013 reference period would result in improved precision in catch 
projections for the KMZ troll and sport fisheries, but not the other Central Oregon and Southern 
California fisheries.  The 2010 – 2013 reference period also resulted in mean raw errors for the KMZ 
fisheries that were closer to zero than those produced using 2007 – 2013.  Based on these results, we 
recommend using the 2010 – 2013 reference period for the KMZ fisheries, but maintaining the 2007 – 
2013 reference period for the Central Oregon and Southern California fisheries. 

Using these recommended reference periods, we conducted an additional, similar retrospective 
assessment that compared performance of fishery scalers derived using equation 1 (status quo) and 
those derived using equation 2 (adjusted for average fishery scaler during the reference period).  These 
results are presented in Figure 2 and Table 4, and confirm the need to include the average fishery scaler 
term when calculating the fishery scaler for a given fishery (i.e., use equation 2 instead of equation 1).  
When considering annual performance (summed across the three model time steps), the scalers derived 
using equation 2 performed better in all instances with the exception of two, which were essentially 
identical, regardless of the equation used.  

Given these results, we recommend: 

1. Using equation 2 to calculate Chinook FRAM preseason fishery scaler inputs for Council
fisheries south of Cape Falcon.

2. Using a reference period of 2007 – 2013 (base period years) for the Central Oregon and
Southern California troll and sport fisheries, and a reference period of 2010 – 2013 for the
KMZ troll and sport fisheries.

The goal of these recommendations is to improve the ability of Chinook FRAM to project total catches in 
SOF Council fisheries.  It is worth noting, though, that the implications of these recommendations on key 
Chinook FRAM output will be minimal, as Council fisheries that occur south of Cape Falcon generally 
have minimal impact on Chinook stocks that are assessed using FRAM.  The one exception to this is the 
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Central Oregon Troll fishery, and the recommendations here will have little effect on the calculation of 
fishery scalers for this fishery, as we are not proposing to change the reference period and the average 
fishery scalers during the two time periods when the majority of catch occurs (May-Jun and Jul-Sep) are 
close to a value of 1.0 (Table 2). 

Table 1. Fishing effort for base period years by region, gear type, and time period for south of Cape Falcon fisheries 
as structured in Chinook FRAM.  Effort units are in boat days for troll and angler trips for sport.  Source: PFMC 2023. 
Review of 2022 Ocean Salmon Fisheries. 

TROLL SPORT 
Area Year Oct-Dec May-Jun Jul-Sep Oct-Dec Oct-Dec May-Jun Jul-Sep Oct-Dec 

Ce
nt

ra
l O

R1/
 

2007 1,370 1,955 1,719 406 5,577 9,072 53,202 2,381 
2008 406 0 37 60 2,381 3,253 16,368 2,348 
2009 60 0 634 60 2,348 4,144 60,184 2,009 
2010 60 2,002 1,324 473 2,009 3,823 32,244 1,145 
2011 473 1,968 429 983 1,145 3,398 30,362 1,659 
2012 983 2,370 1,765 1,830 1,659 5,400 36,123 2,895 
2013 1,830 1,905 4,010 2,000 2,895 4,881 49,024 4,437 

’07-’13 Avg 740 1,457 1,417 830 2,573 4,853 39,644 2,411 
’10-’13 Avg 837 2,061 1,882 1,322 1,927 4,376 36,938 2,534 

KM
Z2/

 

2007 184 146 611 59 3,081 8,569 19,723 3,263 
2008 59 0 0 51 3,263 712 3,018 1,065 
2009 51 0 0 0 1,065 268 11,022 0 
2010 0 43 66 72 0 1,436 6,473 2,270 
2011 72 120 295 75 2,270 5,218 14,234 1,757 
2012 75 141 505 54 1,757 13,133 33,404 3,666 
2013 54 452 851 62 3,666 14,274 32,115 3,547 

’07-’13 Avg 71 129 333 53 2,157 6,230 17,141 2,224 
’10-’13 Avg 50 189 429 66 1,923 8,515 21,557 2,810 

So
ut

he
rn

 C
A3/

 

2007 480 3,161 6,879 168 18,422 32,917 33,171 3,602 
2008 168 0 0 0 3,602 0 0 0 
2009 0 0 0 0 0 0 0 16,774 
2010 0 0 1,975 0 16,774 9,506 18,158 15,565 
2011 0 2,383 4,272 117 15,565 12,880 44,851 24,897 
2012 117 5,331 8,417 469 24,897 40,051 50,951 23,759 
2013 469 8,172 8,237 223 23,759 33,502 61,693 22,897 

’07-’13 Avg 176 2,721 4,254 140 14,717 18,408 29,832 15,356 
’10-’13 Avg 147 3,972 5,725 202 20,249 23,985 43,913 21,780 

1/ Includes Tillamook, Newport, and Coos Bay 

2/ Includes Brookings, Crescent City, and Eureka 

3/ Includes Fort Bragg, San Francisco, and Monterey 
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Table 2. Fishery scalers for base period years by region, gear type, and time period for south of Cape Falcon fisheries as 
structured in Chinook FRAM.  Source: Chinook FRAM postseason runs based on calibration Round 7.1.1. 

TROLL SPORT 

Area Year Oct-Dec May-Jun Jul-Sep Oct-Dec Oct-Dec May-Jun Jul-Sep Oct-Dec 

Ce
nt

ra
l O

R 

2007 0.6428 1.7664 2.2044 0.4908 3.6614 0.8689 0.4478 2.4626 
2008 0.1335 0.0000 0.0077 0.0049 1.0663 0.0222 0.0562 0.5390 
2009 0.0021 0.0000 0.0165 0.0102 0.5903 0.0201 0.0488 0.7382 
2010 0.0038 1.7106 0.5532 1.0650 0.2867 0.4606 0.2341 0.1744 
2011 0.7503 1.5578 0.1495 0.6513 0.1541 0.2758 0.2554 0.5429 
2012 0.4210 1.6624 1.1874 3.7281 0.2992 1.6585 0.5049 1.0589 
2013 2.4440 0.8622 2.5443 2.0367 0.5700 1.8706 0.8684 0.5316 

’07-’13 Avg 0.6282 1.0799 0.9519 1.1410 0.9469 0.7395 0.3451 0.8639 
’10-’13 Avg 0.9048 1.4483 1.1086 1.8703 0.3275 1.0664 0.4657 0.5770 

KM
Z 

2007 -- 0.8073 9.5644 -- -- 2.8338 4.2333 -- 
2008 -- 0.0000 0.3388 -- -- 0.0000 0.0946 -- 
2009 -- 0.0000 0.0000 -- -- 0.0000 0.4053 -- 
2010 -- 0.2873 0.4858 -- -- 0.0658 0.2187 -- 
2011 -- 0.9990 1.5414 -- -- 0.5192 1.2617 -- 
2012 -- 1.1814 2.0180 -- -- 1.6961 1.7058 -- 
2013 -- 3.2767 1.7967 -- -- 1.3298 1.3184 -- 

’07-’13 Avg -- 0.9360 2.2493 -- -- 0.9207 1.3197 -- 
’10-’13 Avg -- 1.4361 1.4605 -- -- 0.9027 1.1262 -- 

So
ut

he
rn

 C
A 

2007 -- 1.6114 2.6799 -- 0.4426 1.2997 0.4487 0.1087 
2008 -- 0.0000 0.0000 -- 0.1224 0.0000 0.0000 0.0000 
2009 -- 0.0000 0.0000 -- 0.0000 0.0000 0.0000 1.2951 
2010 -- 0.0000 0.4432 -- 0.3898 0.2235 0.2155 0.3859 
2011 -- 0.6184 1.2533 -- 0.3442 0.2526 0.8712 1.2393 
2012 -- 1.1338 1.1902 -- 0.4378 0.5765 0.3883 0.3357 
2013 -- 1.7630 0.9990 -- 0.2963 0.4566 0.3678 0.2811 

’07-’13 Avg -- 0.7324 0.9379 -- 0.2904 0.4013 0.3274 0.5208 
’10-’13 Avg -- 0.8788 0.9714 -- 0.3670 0.3773 0.4607 0.5605 
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Figure 1. Comparison of 2010 – 2018 actual (black line) annual catches (Oct-Sep management years) with projected catches that 
result from fishery scalers derived using equation 2 with actual effort and 2007 – 2013 (blue line) and 2010 – 2013 (orange line) 
reference periods. 
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Table 3. Comparison of mean raw error, mean percent error, and mean absolute percent error between catches projected using 
fishery scalers derived from 2007 – 2013 and 2010 – 2013 reference periods.  Green shaded cells indicate better annual 
performance. 

2007-13 Reference Period 2010-13 Reference Period 
Oct-Apr May-Jun Jul-Sep Total Oct-Apr May-Jun Jul-Sep Total 

Mean Raw Error 
Central OR Troll 5,056 -9 -5,658 -611 8,622 -1,107 -8,581 -1,066
Central OR Sport 328 -131 -882 -684 -105 163 897 956
KMZ Troll -1,260 3,218 2,098 -1,132 -180 -1,185
KMZ Sport 1,582 4,974 6,380 -575 259 -252
Southern CA Troll 1,757 18,929 20,491 -8,699 1,887 -5,845
Southern CA Sport -3 2,271 -7,876 -5,608 -742 -1,490 -8,509 -10,740

Mean Percent Error 
Central OR Troll 378% 3% -5% -4% 509% -2% -16% -6%
Central OR Sport 135% 2% -5% 1% 8% 64% 38% 35%
KMZ Troll -9% 47% 12% -4% -24% -26%
KMZ Sport 51% 27% 24% 9% -12% -13%
Southern CA Troll -12% 14% 1% -28% -11% -19%
Southern CA Sport -11% 4% -20% -17% -19% -25% -22% -26%

Mean Absolute Percent Error 
Central OR Troll 397% 16% 40% 20% 521% 15% 41% 21% 
Central OR Sport 146% 38% 22% 28% 31% 76% 47% 44% 
KMZ Troll 26% 73% 48% 26% 42% 39% 
KMZ Sport 59% 52% 49% 38% 31% 32% 
Southern CA Troll 26% 24% 21% 29% 23% 26% 
Southern CA Sport 27% 40% 46% 40% 29% 33% 47% 41% 
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Figure 2. Comparison of 2010 – 2018 actual (black line) annual catches (Oct-Sep management years) with projected catches that 
result from fishery scalers derived using equation 1 (blue line) and equation 2 (orange line).  Central Oregon and Southern 
California fishery scalers were derived using a 2007 – 2013 reference period and KMZ fishery scalers were derived using a 2010 – 
2013 reference period.   
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Table 4. Comparison of mean raw error, mean percent error, and mean absolute percent error between catches projected using 
fishery scalers derived from equation 1 (status quo) and equation 2 (average scaler adjusted).  Central Oregon and Southern 
California fishery scalers were derived using a 2007 – 2013 reference period and KMZ fishery scalers were derived using a 2010 – 
2013 reference period.  Green shaded cells indicate better annual performance. 

Original Scaler Equation (Eq 1) Adjusted Scaler Equation (Eq 2) 
Oct-Apr May-Jun Jul-Sep Total Oct-Apr May-Jun Jul-Sep Total 

Mean Raw Error 
Central OR Troll 12,743 -1,713 -5,472 5,558 5,056 -9 -5,658 -611
Central OR Sport 373 38 6,376 6,788 328 -131 -882 -684
KMZ Troll 0 -1,815 -1,457 -3,272 0 -1,006 -180 -1,185
KMZ Sport 0 -75 -1,433 -1,507 0 -511 259 -252
Southern CA Troll 0 18,929 16,030 34,959 0 1,562 18,929 20,491 
Southern CA Sport 22,158 21,582 40,284 84,024 -3 2,271 -7,876 -5,608

Mean Percent Error 
Central OR Troll 661% -5% -3% 4% 378% 3% -5% -4%
Central OR Sport 148% 38% 173% 149% 135% 2% -5% 1%
KMZ Troll -34% -50% -50% -4% -24% -26%
KMZ Sport 19% -25% -19% 9% -12% -13%
Southern CA Troll 17% 12% 12% -12% 14% 1%
Southern CA Sport 205% 152% 130% 138% -11% 4% -20% -17%

Mean Absolute Percent Error 
Central OR Troll 664% 16% 41% 25% 397% 16% 40% 20% 
Central OR Sport 158% 58% 173% 149% 146% 38% 22% 28% 
KMZ Troll 38% 51% 50% 26% 42% 39% 
KMZ Sport 41% 34% 33% 38% 31% 32% 
Southern CA Troll 35% 21% 20% 26% 24% 21% 
Southern CA Sport 205% 156% 138% 144% 27% 40% 46% 40% 
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A re-evaluation of preseason abundance forecasts for Sacramento River winter Chinook salmon 

Tanya Rogers 
Michael O’Farrell 

Fisheries Ecology Division 
Southwest Fisheries Science Center 
National Marine Fisheries Service 

National Oceanic and Atmospheric Administration 
Santa Cruz, CA 

September 22, 2023 

Introduction 

The Sacramento River winter Chinook salmon (SRWC) Evolutionarily Significant Unit (ESU) is 

listed as endangered under the United States Endangered Species Act, and is exposed to ocean salmon 

fisheries occurring along the U.S. west coast, primarily off central California.  

Fishery management measures aimed at reducing impacts to SRWC have been in place since 1989 

(O’Farrell & Satterthwaite 2015). Beginning in 2012, harvest-related impacts on age-3 SRWC have been 

managed using a harvest control rule that specified maximum allowable age-3 impact rates south of Point 

Arena, California, based on a forecast of abundance. Initially, the “forecast” of abundance was the most 

recent three year geometric mean of the number of spawners. However, it was clear that such a 

retrospective measure of abundance would be unable to respond to abrupt changes in abundance brought 

about by, for example, drought conditions. In recognition of this, the Pacific Fishery Management 

Council (PFMC) formed an ad hoc Workgroup in 2016 to explore alternative, forward looking control 

rules for SRWC. In 2018, a new SRWC harvest control rule was adopted by the PFMC. The form of the 

control rule differed from the previously adopted control rule, and it also required a forecast of abundance 

for implementation. A brief description of these changes to SRWC assessment and management can be 

found in PFMC (2018), Appendix A and Appendix D.  

Many common salmon abundance forecasting approaches (e.g., sibling regressions) are not feasible 

for SRWC. Age-2 (jack) returns return estimates are not available when abundance forecasts are needed 

for PFMC fishery planning. While SRWC return to the river in winter, they delay spawning until summer 

and estimates of jack returns are made in the fall. The age-3 portion of the cohort that remained in the 

ocean (rather than returning to the river at age-2) has already encountered ocean fisheries when the age-2 

escapement estimates are first available. Because of this, alternative forecasting methods for SRWC 

needed to be developed. In 2016, alternative forecast methods were presented to the PFMC’s Scientific 
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and Statistical Committee (O’Farrell et al. 2016). Three forecast scenarios were presented: (1) Base, (2) 

ETF, and (3) No JPI. Each of these scenarios utilized inputs derived from a population dynamics model 

(Winship et al. 2014) to forecast SRWC age-3 escapement absent fishing. Descriptions of the forecast 

scenarios can be found in section 4 of O’Farrell et al. (2016), but are also summarized in the Forecast 

Model Specification section that follows. The recommendation stated in O’Farrell et al. (2016) was to use 

the Base model for forecasting SRWC abundance, but to monitor the performance of the ETF model as 

data accumulated. The Base forecasting approach has been used to forecast SRWC abundance each year 

since 2018. However, the performance of the alternative forecasting approaches has not been routinely 

assessed.  

In this report we evaluate the forecast performance for the Base and ETF forecast models for a more 

extended range of years than was possible in 2016. Due to the relatively poor predictive performance of 

these models, we also assessed the performance of alternative models not evaluated in O’Farrell et al. 

(2016). 

Forecast Model Specification 

Base model 

The Base forecasting approach which has been used to forecast SRWC abundance since 2018 is 

described in O’Farrell et al. (2016), section 2. Fitted inputs are the number of natural-origin female 

spawners and the fry-equivalent Juvenile Production Index (JPI), which is the estimated river-origin 

SRWC-sized juveniles passing Red Bluff Diversion Dam (RBDD), standardized to the fry stage (Voss & 

Poytress 2022). This model also uses environmental temperature (DD12: degree days above 12°C from 

May 15–October 31 at Clear Creek Gage; Table 1) as a covariate for the egg-to-fry survival rate. 

Specifically, the egg-to-fry survival rate is modeled using a Beverton-Holt function, and the parameter 

determining maximum survival rate is a function of the temperature covariate.  

It is possible that in some years an empirical estimate of the JPI will not be available. In the absence 

of a JPI estimate, a model-based estimate, derived from the egg-to-fry relationship was developed. This is 

referred to as the no JPI forecasting approach. A diagram showing the steps in the forecast process for the 

Base and no JPI forecast models can be found in Figure 2 of O’Farrell et al. (2016). The performance of 

the no JPI model was not reevaluated in this study. 

ETF model 

The ETF forecasting approach is identical to the Base forecasting approach, with one exception: the 

juvenile survival rate (the survival rate from fry to age-2 in the ocean) is modeled as a function of the 

empirical egg-to-fry survival rate (Table 1). The empirical ETF survival rate is calculated from the JPI, 
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the number of eggs per female, and number of spawning females. As in O’Farrell et al. (2016), we use the 

ETF survival rates from Poytress (2016) for brood years 1996-1999, and the model-based estimates 

reported in O’Farrell et al. (2016) for years 2000-2001. The ETF survival rates used in O’Farrell et al. 

(2016) for brood years 2002-2015 were computed using the number of natural-origin females spawning in 

the river. However, that calculation did not account for hatchery-origin females spawning in the river, 

which contribute to the JPI. Thus, for brood years 2002-2020, we used updated ETF survival rates from 

Voss & Poytress (2022) and a final but unpublished value for brood year 2021 (Poytress, pers. comm.), 

which are based on the total number of females spawning in the river (natural and hatchery origin). Given 

these updates, along with other minor updates to the population dynamics model inputs, the return year 

2012-2015 forecasts from the ETF model differ quite a bit from those reported in O’Farrell et al. (2016). 

The Base model forecasts differ by only a small amount. 

 

Gaussian process (GP) model 

The GP model relates several covariates (the empirical ETF survival rate, temperature covariate, total 

number of spawning females in the river, number of hatchery pre-smolts released; Table 1) directly to 

postseason escapement estimates using a nonparametric function approximator (specifically, a separable 

length scale Bayesian Gaussian process model). The rationale is that postseason escapement will be some 

function of these empirically measurable covariates, plus process noise. The Base and ETF models relate 

the covariates to the target in a complex and indirect way, requiring many assumptions (potentially 

incorrect) about population dynamics, functional forms, and how the covariates relate to population 

processes. The nonparametric approach, on the other hand, fits a flexible function directly relating the 

covariates to the target. This approach makes few assumptions about the shape of this relationship, which 

is informed only by the data. We explored whether this simpler, data-driven approach might produce 

better forecasts. 

There are many different types of flexible function approximators. Some examples are splines, 

generalized additive models (GAMs), random forests, and neural networks. We chose to use Bayesian 

Gaussian process regression because it is relatively conservative (does not tend to over-extrapolate), 

allows for arbitrary interactions among predictors (does not assume additivity), can be fit with relatively 

little data because of the existence of priors, and allows the use of priors to prevent overfitting. The 

posterior mode can also be found quickly using gradient descent methods without the use of MCMC. GPs 

are widely used for spatial interpolation (i.e. kriging), but GPs can be used to flexibly fit any predictor 

surface in any number of dimensions (Rasmussen & Williams 2006).  

We specifically used the GP model formulation described in Munch et al. (2017) and implemented in 

the R package ‘GPEDM’ (Munch & Rogers 2022). The method uses a squared exponential covariance 

14



function, separate inverse length scale hyperparameters for each predictor, and priors on the inverse 

length scale hyperparameters to prevent overfitting (known in the machine learning literature as automatic 

relevance determination, Neal 1996). The priors have a mode at 0, so that irrelevant predictors are 

effectively ‘dropped’ from the model, and are set such that the expected number of local extrema over the 

range of each predictor is 1, thus preventing overly wiggly functions unless sufficiently supported by the 

data. The posterior mode is obtained using the R-prop algorithm (Blum & Riedmiller 2013). For more 

details, see Munch et al. (2017). Although the package and methodology can be used for empirical 

dynamic modeling (EDM), which uses time lags of the target variable (or a mixture of time lags and 

covariates) as predictors, the model used here does not do this. We fit the GP just using covariates. Using 

time lags (EDM) has higher data requirements than are available for SRWC, and we found that time lags 

did not improve prediction of SRWC escapement beyond the available covariates, likely because of 

insufficient data. In the final model, the response variable was the postseason estimate of age-3 

escapement absent fishing (log transformed, thus assuming lognormal error). Predictions were back-

transformed for fit evaluations. Predictor variables were the empirical ETF survival rate, temperature 

covariate (log(x+1) transformed), total number of females (natural + hatchery origin) spawning in the 

river (log transformed), and number of hatchery pre-smolts released (log transformed) for the brood year 

three years prior to the return year to be forecasted. We fit models using all combinations of these 

predictors and selected that with the best performance using leave-future-out cross validation.  

Assessment of Forecast Performance 

Forecasts of the SRWC age-3 escapement absent fishing (𝐸𝐸�30) made with the Base, ETF, and GP 

models were compared to postseason estimates (𝐸𝐸30) using leave-future-out cross validation for return 

years 2012-2022. Predictions were also made and compared for return years 2023-2024, although these 

were not used to evaluate performance since a postseason estimate was not available at the time of 

analysis.  

Two methods were used to estimate 𝐸𝐸30 (Table 2). The first method is identical to that used in 

O’Farrell et al. (2016) 

𝐸𝐸𝑡𝑡,3
0 =

𝐸𝐸𝑡𝑡,𝑎𝑎≥3 × �̅�𝑝3
1 − 𝑖𝑖𝑡𝑡−1,3

 

where 𝐸𝐸𝑡𝑡,𝑎𝑎≥3 is the estimated escapement of SRWC adults (age-3 and older) in year t, �̅�𝑝3is the average 

proportion of adult SRWC escapement that is age-3, and 𝑖𝑖𝑡𝑡−1,3 is the estimated age-3 impact rate. These 

values come from a cohort reconstruction model based on coded wire tag (CWT) data (O’Farrell et al. 

2012). The second method is the same as the first, but year-specific estimates of 𝑝𝑝3 were used instead of 

�̅�𝑝3. Performance of each forecast model was evaluated with respect to 𝐸𝐸30 calculated using the average (as 
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opposed to year-specific) proportion of adult escapement that is age-3. Results were very similar using 

year-specific values, since the average and year-specific 𝐸𝐸30 values were very similar in most years. 

Forecast performance of each method was evaluated using several different metrics. As in O’Farrell 

et al. (2016), we compute mean error (ME, reflecting bias), and root mean squared error (RMSE, 

reflecting accuracy). We also calculated mean percent error (MPE, reflecting bias), mean absolute percent 

error (MAPE, representing accuracy), and median log accuracy ratio (MLAR) (Satterthwaite & Shelton 

2023). The MLAR (Morley et al. 2018) is equally sensitive to proportional over- vs. under-forecasts, with 

positive values indicating over-forecasting. Additionally, we calculated R2, the proportion of variance 

explained, as  

𝑅𝑅2 = 1− 𝛴𝛴𝑡𝑡(𝐸𝐸𝑡𝑡,3
0 − 𝐸𝐸�𝑡𝑡,3

0 )2/𝛴𝛴𝑡𝑡(𝐸𝐸𝑡𝑡,3
0 − 𝐸𝐸�30)2. 

In out-of-sample forecasts, such as we are performing here, the R2 value can be negative, indicating that 

predictions are biased and worse than the mean, 𝐸𝐸�30. Finally, we calculated r, the Pearson correlation 

coefficient between the predicted and observed values, which reflects whether the forecasts follow the 

same trend, but does not account for bias.  

 

Results 

 There were two best performing GP models, which we label GP-1 and GP-2 (Table 3). GP-1 had two 

predictors: the temperature covariate and the number of spawners. GP-2 had the same two predictors as 

GP-1 plus the number of hatchery pre-smolts released. The models had similar RMSE, R2, and r values. 

The GP-1 model had lower MPE and MAPE, whereas the GP-2 model had lower ME. In both models, 

the conditional effect of the temperature covariate was unimodal (Figure 1). Escapement was highest at 

low-mid temperatures and declined with increasing temperature. Escapement at the lowest temperature 

values was still relatively high, but slightly below the peak. This is consistent with plots of the raw data. 

In both models, escapement increased with the number of spawners, although this relationship was 

weaker than that of temperature (Figure 1). As the amount of training data increased, the effect of 

temperature remained fairly consistent, and the effect of spawners became weaker (Figure 1). In the GP-2 

model, the hatchery releases initially had no effect on escapement, but as the most recent years of training 

data were added, hatchery releases were found to have a positive effect on escapement (Figure 1). 

 When using 𝐸𝐸30 based on year-specific (rather than average) estimates as the response variable, the 

GP-1 model and a model with the same predictors plus empirical ETF had similar performance; however, 

the 3 predictor model produced some unrealistic conditional relationships with the predictors and was 

sensitive to starting values of the hyperparameters, so the GP-1 model would be recommended. For this 

response variable, using natural-origin (as opposed to total) spawners also produced somewhat better fits. 
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  The leave-future-out preseason forecasts from each model are presented in Table 2 and Figure 2. As 

was found previously, the ETF model produced less precise estimates than the Base model, particularly 

for return years 2012-2014, which had extremely large credible intervals. The model with the most 

accurate prediction varied from year to year, but the GP predictions tended to be closest most consistently 

(Figure 3). Over return years 2012-2022, the Base model median had the best fit statistics for ME and 

MLAR, but the GP models had the best values for RMSE, MAPE, R2, and r (Table 4). Only the GP 

models had positive R2 and r values. If we exclude the first 3 test years in which the ETF model 

substantially overestimates escapement and evaluate fit statistics just over return years 2015-2022, the 

ETF model median performs somewhat better, with lower RMSE and MAPE than the Base model 

median, and has a positive r value (Table 5). The ETF model predictions were closer to the postseason 

estimates than the Base model in 5 of the last 8 years of test data. However, the GP models still had the 

best ME, RMSE, R2, and r values over this later time period. All models agreed that escapement in 2024 

is going to be relatively low. 

 The empirical ETF survival rates were not well correlated with the juvenile survival rates obtained 

from the cohort reconstruction model (Figure 4). There were some years with high escapement and high 

juvenile survival rates that had moderate ETF survival rates. These tended to be years with favorable 

temperature conditions. 

Discussion 

 We evaluated the relative performance of SRWC abundance forecasts for the status quo Base model, 

the ETF model, and GP models informed by a range of predictor variables. Forecast model performance 

was assessed using a leave-future-out cross validation approach, where accuracy and bias were assessed 

using a range of performance metrics. 

 The ETF model performed better than the Base model in the most recent years, but performance of 

both models in general was poor. Two GP models tended to produce the best performing forecasts. The 

GP models suggested that of the variables available, temperature during egg incubation and outmigration 

(DD12) was the most important and consistent driver in determining SRWC returns. The slight decline in 

returns at the lowest DD12 levels was unexpected, but consistent with the raw data. The declining 

influence of parental spawners and increasing influence of hatchery releases in the GP model in the most 

recent years (Figure 1) likely reflects the sustained increases in hatchery production beginning in brood 

year 2014 (noting that there have been less consistent spikes in hatchery releases occurring prior to brood 

year 2014).  

 The greater accuracy and precision of the GP model forecasts is likely because, in contrast to the 

Base and ETF models, the GP model is fit directly to the target, 𝐸𝐸30, and is more flexible in how the 
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covariates relate to it. The population dynamics model is fit to only two data streams: the number of 

natural-origin female spawners and the JPI. In this case, 𝐸𝐸�30 is a derived quantity based on the number of 

juveniles multiplied by the modeled average juvenile survival rate, fixed maturation rates, and a fixed 

adult survival rate (0.8). The ultimate value of 𝐸𝐸30, which is based on the observed total number of 

spawners, the proportion of total spawners that is age-3, and exploitation rates from the cohort 

reconstruction model, is not part of the likelihood. 

 Forecasts made with the GP models have lower input data requirements than the Base or ETF models, 

and take significantly less time to run. The Base and ETF models require inputs from a cohort 

reconstruction and population dynamics model that are implemented annually. If either model is unable to 

be implemented (which could happen for a variety of reasons), the status quo forecasting procedure would 

need to be modified and/or forced to rely on outdated estimates from the models. In contrast, the GP 

models have inputs that come from very reliable data streams. Estimates of spawners are made each year, 

the number of hatchery SRWC released each year is enumerated, and the DD12 predictor is derived from 

gage data.  

Recommendation 

 Adoption of the GP-2 model for future SRWC abundance forecasts is recommended. This model has 

similar forecast performance to the GP-1 model, with slightly better performance in recent years due to 

the inclusion of data on hatchery releases. Inclusion of hatchery releases in the model is warranted at this 

time because hatchery release numbers have varied substantially in recent years, and it is possible that this 

variability will continue for the foreseeable future.  
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Table 1. Values of covariates used in the models. DD12 is the temperature covariate. 

Brood 
year 

Mgmt 
year 

Return 
year 

Empirical 
ETF DD12 Natural-origin 

female spawners 
Total female 
spawners 

Hatchery 
pre-smolts 

1996 1998 1999 0.213 

1997 1999 2000 0.398 
1998 2000 2001 0.267 6.63 153908 
1999 2001 2002 0.218 0 30840 
2000 2002 2003 0.261 13.79 3494 3501 166206 
2001 2003 2004 0.206 41.13 5014 5289 252684 
2002 2004 2005 0.274 5.63 5408 5711 233613 
2003 2005 2006 0.230 12.51 4972 5217 218617 
2004 2006 2007 0.209 80.21 3049 3293 168261 
2005 2007 2008 0.185 50.49 7203 9049 173344 
2006 2008 2009 0.154 0 7575 8860 196288 
2007 2009 2010 0.211 51.27 1442 1551 71883 
2008 2010 2011 0.175 163.31 1365 1461 146211 
2009 2011 2012 0.335 107.4 2366 2723 198582 
2010 2012 2013 0.375 2.94 692 824 123857 
2011 2013 2014 0.486 0.86 426 491 194264 
2012 2014 2015 0.269 0 880 1497 181857 
2013 2015 2016 0.151 61.19 3400 3680 193155 
2014 2016 2017 0.059 338.74 1399 1744 609311 
2015 2017 2018 0.045 304.01 1592 2062 419690 
2016 2018 2019 0.237 4.01 466 658 141332 
2017 2019 2020 0.487 0 119 374 430292 
2018 2020 2021 0.266 12.65 249 1087 406417 
2019 2021 2022 0.177 0.09 3529 4950 417263 
2020 2022 2023 0.117 37.68 2688 4018 516800 
2021 2023 2024 0.025 316.19 5171 6200 651150 
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Table 2. Postseason escapement estimates and leave-future-out forecasts from each model. 

Brood 
year 

Mgmt 
year 

Return 
year 𝐸𝐸30 yearly 𝐸𝐸30 mean Base 

median/mode 
ETF 

median/mode 
GP-1 

median 
GP-2 

median 
1999 2001 2002 9042 8488 

2000 2002 2003 9732 9070 
2001 2003 2004 6329 5962 
2002 2004 2005 19518 18046 
2003 2005 2006 19569 18862 
2004 2006 2007 1857 2612 
2005 2007 2008 3022 2947 
2006 2008 2009 4483 4142 
2007 2009 2010 1344 1436 
2008 2010 2011 501 694 
2009 2011 2012 3523 3255 11530/5016 27897/11523 1606 1605 
2010 2012 2013 6436 5946 3625/1540 12262/4259 3495 8478 
2011 2013 2014 3163 3060 2623/998 26191/10471 5829 7013 
2012 2014 2015 3990 3709 3754/1330 4319/2527 5488 3114 
2013 2015 2016 843 865 5305/2061 1743/1261 2883 3437 
2014 2016 2017 526 507 3244/1422 270/41 1254 2116 
2015 2017 2018 2280 2112 2412/1250 156/70 715 715 
2016 2018 2019 8757 8119 1594/660 1268/674 6476 6476 
2017 2019 2020 7471 6918 1924/792 8619/3785 2935 2935 
2018 2020 2021 11467 10883 3077/1266 4130/2174 7933 10963 
2019 2021 2022 3997 6369 9063/3319 7069/3421 4313 4732 
2020 2022 2023 5971/2338 2696/1405 4060 5262 
2021 2023 2024 4540/1683 407/199 1062 1118 
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Table 3. Selection of predictors for GP model based on fit statistics for leave-future-out cross validation. 
The best values and selected best models are highlighted in bold. log sc = log scale 

Predictors ME RMSE MPE MAPE MLAR R2 r R2 
(log sc) 

RMSE 
(log sc) 

logDD12, 
ETF, 
logSpawners, 
logHReleases 

417.91 2452.86 21.53 70.47 -0.23 0.36 0.67 0.30 0.76 

ETF, 
logSpawners, 
logHReleases 

1212.29 4102.69 26.62 97.81 -0.67 -0.78 0.06 -0.12 0.96 

GP-2 
logDD12, 
logSpawners, 
logHReleases 

14.44 2286.71 50.08 93.05 -0.17 0.45 0.72 0.19 0.82 

logDD12, ETF, 
logHReleases -577.82 2804.05 36.88 74.64 0.00 0.17 0.73 0.28 0.77 

logDD12, ETF, 
logSpawners 899.10 2938.06 27.80 82.01 -0.32 0.09 0.47 0.09 0.87 

logDD12, 
logHReleases -372.31 2353.71 62.30 98.93 -0.06 0.41 0.71 0.20 0.81 

logSpawners, 
logHReleases 606.92 4463.14 163.04 222.53 -0.16 -1.11 -0.41 -0.93 1.26 

ETF, 
logHReleases -198.43 4668.50 102.66 159.54 -0.48 -1.31 0.01 -0.36 1.06 

ETF, 
logSpawners 1212.33 4102.60 26.62 97.81 -0.67 -0.78 0.06 -0.12 0.96 

GP-1 logDD12,
logSpawners 801.49 2289.16 20.35 74.03 -0.32 0.45 0.72 0.36 0.73 

logDD12, ETF -926.07 3674.38 31.31 70.33 0.33 -0.43 0.67 0.32 0.75 

logHReleases 712.94 4118.21 138.84 194.33 0.18 -0.80 -0.58 -0.69 1.18 

logDD12 -712.47 3105.72 46.25 83.24 0.14 -0.02 0.63 0.32 0.75 

logSpawners 1060.20 3971.90 73.64 133.13 -0.16 -0.67 -0.14 -0.42 1.08 

ETF -52.37 3896.03 75.56 128.73 -0.45 -0.61 0.16 -0.10 0.95 
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Table 4. Fit statistics for each model for leave-future-out forecasts (return years 2012-2022). 

Table 5. Fit statistics for each model for leave-future-out forecasts (return years 2015-2022). 

Model ME RMSE MPE MAPE MLAR R2 r 
Base median 326.55 4642.27 98.86 149.33 0.01 -1.28 -0.16

Base mode 2917.18 4576.52 -17.30 85.09 -1.03 -1.22 -0.19
ETF median -3834.64 10800.30 135.17 187.14 0.15 -11.35 -0.06
ETF mode 1048.82 5061.90 2.71 95.83 -0.60 -1.71 -0.05
GP-1 801.49 2289.16 20.35 74.03 -0.32 0.45 0.72
GP-2 14.44 2286.71 50.08 93.05 -0.17 0.45 0.72

Model ME RMSE MPE MAPE MLAR R2 r 
Base median 1138.63 4513.92 110.82 166.89 0.07 -0.68 -0.11

Base mode 3422.75 5045.10 -12.86 92.55 -0.84 -1.10 -0.18
ETF median 1488.50 3552.25 -16.53 54.92 -0.26 -0.04 0.51
ETF mode 3191.13 4411.94 -54.75 66.19 -1.12 -0.60 0.50
GP-1 935.64 2270.60 28.15 78.99 -0.27 0.58 0.82
GP-2 624.29 2023.62 53.72 100.14 -0.20 0.66 0.83
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Figure 1. Conditional effects of each predictor in the GP-2 model using differing amounts of training 
data (through return year 2011, 2017, and 2022), with other predictors fixed to their mean value 
(interactions among predictors are present but not shown). logDD12 is the temperature covariate. 
Conditional effects for the GP-1 model, which does not include hatchery releases, resemble the first 2 
columns. 
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Figure 2. Postseason escapement estimates (black line) and leave-future-out forecasts (colored lines) 
from each model. Bands are 95% credible intervals (cropped in the Base and ETF models). Solid lines are 
medians and dashed lines (where plotted) are modes.  
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Figure 3. Log accuracy ratio, log(predicted/observed), for leave-future-out forecasts (medians) for each 
model.  
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Figure 4. Hatchery-origin juvenile survival rate (fry to age-2) from the SRWC cohort reconstruction 
model vs. empirical ETF survival rate. Numbers next to points are brood years. logDD12 is the 
temperature covariate.  
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Executive Summary  

Fishery planning and adaptive management for Coho salmon (Oncorhynchus kisutch) stocks 

along the Pacific Coast depend upon reliable preseason forecasting. The largest Coho salmon 

management area governed by the Pacific Fishery Management Council (Council) is the Oregon 

Production Index (OPI) area. OPI natural and hatchery origin Coho originate from stocks produced 

in rivers between Leadbetter Point, Washington and the US/Mexico border. For management 

purposes this area is broken into three stocks: the Oregon Coast Natural (OCN), Lower Columbia 

Natural (LCN), and Oregon Production Index Hatchery (OPI-H) stocks. The current forecasting 

methodology for OPI-H was reviewed in 2021 by the Council (Suring and O’Farrell, 2021). However, 

analyses exploring forecast approaches of OPI-H abundance were last conducted in 1996. Due to 

the history of the model analysis and a decrease in model performance in recent years, the Council 

has asked the OPI Technical Team (OPITT) to explore alternative approaches for the OPI-H Coho 

forecasting.  

In support of the Council’s request for review, this document explores alternative forecasts 

for pre-fishing adult ocean abundance of OPI-H Coho and compares the performance of these 

models to the current forecast methodology. Our alternative approach differs from the current 

approach in multiple ways; it assumes a log-linear relationship between OPI-H abundance and 

covariates, incorporates covariates that reflect conditions in the marine environment, uses 

autoregressive integrated moving average (ARIMA) error structures, and employs multi-model 

(ensemble) predictive inference. We found that the alternative approach would have produced 

considerably smaller forecasting errors on average over the past 15 years than the current 

forecasting approach. We conclude by recommending that the Council adopt the alternative 

approach due to the results of our simulation of historical performance and the greater flexibility of 

the alternative approach to adapt to the demonstrated non-stationary relationship between OPI-H 

Coho abundance and explanatory variables. 

 

Background 

In 2021, the current OPI-H forecast methodology was presented to the Council salmon 

subcommittees for review (Suring and O’Farrell, 2021). A linear model predicts the adult pre-

fishing ocean abundance in year t from jack returns to OPI area basins in year t-1 and variable 

relating delayed smolt releases to jack abundance in year t-1. Conclusions from the 2021 
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methodology review report demonstrate that the current forecast methodology ranked third best 

among the nine Council managed Coho stocks for mean absolute percent error (MAPE) and best for 

relative mean absolute error (RMAE). These results indicate the performance of the current 

forecasting method ranks favorably compared to other methodologies used in Council managed 

Coho stocks. The analysis reported that the forecast model fit the entire dataset well and the 

prediction error was unbiased. However, the report noted the model fit older data better than more 

recent data and that the adjusted R2 value declined over time. Patterns in the t-value results for 

individual regression components indicated that the delayed smolt adjustment metric has been a 

less predictive indicator in more recent timeframes than in the past. The report also stated 

concerns that the current method may be less informative in recent years due to changes in the 

marine environment and hatchery practices.  

Adult salmon abundance is often related to the survival of earlier maturing individuals in 

the same cohort (e.g., jacks) and environmental conditions present during various life history 

stages. The current model exclusively considers jack returns and smolt releases, yet environmental 

conditions have an impact on salmon life history and may be valuable predictors in salmon 

abundance forecasting. Environmental conditions such as the timing and strength of upwelling in 

the California Current, north pacific gyre oscillation (NPGO), El Niño southern oscillation (ENSO), 

sea surface temperature (SST), and sea surface height (SSH) are associated with Coho salmon 

abundance (Rupp et al., 2012). Notably, higher SST and weaker upwelling events were projected to 

negatively impact the survival rates of salmon populations (Crozier et al., 2021). For OCN Coho, the 

timing of the spring transition to upwelling in the California Current, Multivariate ENSO Index, 

upwelling winds, SSH, and SST were significant abundance predictors (Rupp et al., 2012). An 

increased average global SST, more frequent marine heatwaves, and higher variance in circulation 

events generated through climate change may reduce the predictive power of traditional indicators 

of abundance; as such we assess how incorporating environmental data impact the forecasting of 

OPI-H Coho abundance (NOAA, 2021; Litzow et al., 2020; Cheung and Frölicher, 2020). 

There has not been a Council-reviewed analysis that explores alternative forecasting 

approaches or addresses the concerns noted in the 2021 OPI-H methodology review report to date. 

The Council's request to explore alternative forecasting approaches of OPI-H provides an 

opportunity for the OPITT to expand on the analysis reported to the Council in 2021. The objective 

of this review is to evaluate the bias and precision of alternative forecast approaches for the pre-

fishing adult ocean abundance of OPI-H Coho and compare them to the current forecasting 

methodology to improve preseason forecasting. 
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Methods 

Stock description 

The Oregon Production Index hatchery (OPI-H) Coho abundance forecast, a misnomer, 

includes all hatchery production in the OPI area (Leadbetter Point, WA to US/Mexico border) and 

all naturally produced Coho from the Columbia River basin. After the total OPI-H forecast is 

produced, it then gets broken down into individual model stock components for input into the 

preseason Coho Fishery Regulation Assessment Model (FRAM).  The scope of this methodology 

review is limited to exploring alternative forecast approaches of the total OPI-H abundance and 

does not include alternative forecast approaches of the individual model stock components of OPI-

H Coho. 

Postseason abundance estimates of the OPI-H components are generated by cohort 

reconstruction, including all fishery impacts, using a Mixed Stock Model (MSM; Packer et al., 2007). 

In 2008, OPI-H postseason abundance estimates shifted from a stratified random sampling (SRS) 

approach to the MSM. This change to the methodology improved overall accounting of total harvest 

and mortality of OPI-H Coho and became consistent with the methods used in the base period of 

Coho FRAM (PFMC, 2023). In 2011, analysis suggested the abundance estimates from the MSM 

were equivalent to the SRS time series and MSM data was determined as best available data 

starting in 1986 (Suring and O’Farrell, 2021). Annual MSM OPI-H Coho abundance estimates are 

published in Table C-2 of the Council’s Preseason Report I.  

 

Current forecast methodology 

The current forecast approach was implemented in 1996 with a modification to the jack 

returns covariate in 2008 (PFMC, 2023). A multivariate linear regression model assuming normal 

errors is fit to the most current data 𝑡𝑡 is forecasted using jack and smolt production estimates from 

year 𝑡𝑡 − 1 (See Table A4 for the jack and smolt datasets and Table A2 and A3 for a list of facilities 

these values are derived from). The model is:  

Eq. 1.  𝑦𝑦𝑡𝑡  =  𝑎𝑎(𝐽𝐽𝑎𝑎𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐼𝐼𝑡𝑡) +  𝑏𝑏 �𝐽𝐽𝑎𝑎𝐽𝐽𝐽𝐽𝐽𝐽𝑅𝑅𝑡𝑡 ⋅ �
𝑆𝑆𝑆𝑆𝐷𝐷𝑡𝑡−1
𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑡𝑡−1

��+  𝜀𝜀𝑡𝑡  

where 𝑦𝑦𝑡𝑡 is OPI-H abundance in year 𝑡𝑡, Jack OPI is the jack returns to all OPI hatcheries, Jack CR is 

the jack returns to Columbia River hatcheries, SmD is the delayed smolts release from Columbia 
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River hatcheries, and SmCR is the total smolts released from Columbia River hatcheries. The third 

term in this equation, referred to as the “delayed smolt adjustment index”, is intended to address 

the effect of variable proportions of delayed release smolts on the jack to adult ratio (Suring and 

O’Farrell, 2021). Finally, 𝜀𝜀𝑡𝑡 is a normally distributed residual with a mean of zero. Code and the data 

used for this forecasting can be found at https://github.com/ErikSuring/OPIH_Evaluation. Further 

documentation of the current OPI-H forecast methodology approach can be found in the OPI-H 

methodology review summary report submitted to the Council in 2021 for review (Suring and 

O’Farrell, 2021). Documentation for annual forecasts can be found in the Council’s Preseason 

Report I (PFMC, 2023).  

 

 Forecasting Methods Evaluated  

Overview 

 We evaluated a methodology of constructing ensemble forecasts (Dormann et al., 2018), 

where individual models in the ensemble have ARIMA components and covariates. We fit many 

different models with different combinations of covariates, then evaluate the performance of 

individual models, and finally develop ensembles of top-performing models. The approach is 

designed to identify models or ensembles with the highest out-of-sample one-step-ahead 

forecasting performance, and in doing so eliminate the tendency to overfit the in-sample data by 

considering many models. The steps in this procedure were as follows: 

1) Identify a set of covariates and a minimum and maximum number of covariates to include in 

each individual model, 

2) Fit ARIMA models with all unique combinations of covariates to subsets of the data and 

make one-step-ahead forecasts, 

3) Calculate one-step-ahead performance metrics for unique combinations of covariates across 

forecast years, 

4) Generate performance-weighted ensemble forecasts by taking the weighted-mean of a top-

performing subset of models   

5) Evaluate how well forecasts would have performed: 

a. if each of the ensemble approaches had been used in the past 15 years 
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b. if the best performing individual model (based on the prior 15 years of one-step-

ahead performance) had been used. 

c. if the current model had been used in the past 15 years 

Step 1. Identifying the covariate set 

We included 11 covariates in our forecasting, included jack returns and the delayed smolt 

adjustment metric used in the current approach, as well as nine environmental variables (Table 1). 

Six of the environmental covariates explored are covariates used within the OCN forecast 

methodology; May-July PDO, October-December Multivariate Enso Index, July-September Upwelling 

Index, April-June SST, April-June Sea Surface Height, and September-November Upwelling Index 

(Table 1). Further information of the covariates used in OCN forecasts can be found in Rupp et al., 

2012. For new ARIMA models and ensembles, OPI jack abundance was log-transformed because 

these models were fit using a log-link (as opposed to the current methodology using an identity-

link). The adjusted smolt metric was also modified by log-transforming CR jack abundance in its 

calculation:   

Eq. 2.  𝑙𝑙𝑎𝑎𝑙𝑙1_𝑙𝑙𝑙𝑙𝑙𝑙_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = log(𝑙𝑙𝑎𝑎𝑙𝑙1. 𝐽𝐽𝑎𝑎𝐽𝐽𝐽𝐽𝐽𝐽𝑅𝑅) ∗ (𝑙𝑙𝑎𝑎𝑙𝑙1. 𝑆𝑆𝑆𝑆𝑆𝑆/𝑙𝑙𝑎𝑎𝑙𝑙1. 𝑆𝑆𝑆𝑆𝐽𝐽𝑅𝑅) 

In order to compare performance of the new methods with the current methods, the 

current methods were fit with these variables un-modified as shown in Equation 1. 

 

Table 1. Covariates explored for model analysis. 

Predictor variable Abbreviation Data Source 

OPI-H jack abundance; year 
t-1; log-transformed 

lag1_log_JackOPI Erik Suring (ODFW): https:// 
raw.githubusercontent.com/ErikSuring/OPIH
_Evaluation/main/PUB2023.txt 

OPI-H adjusted smolt metric; 
year t-1; lagged t-1 and log 
transformed  

lag1_log_SmAdj Erik Suring (ODFW): https:// 
raw.githubusercontent.com/ErikSuring/OPIH
_Evaluation/main/PUB2023.txt 

North pacific gyre oscillation; 
year t-1 

Lag1_NPGO http://www.o3d.org/npgo/npgo.php 
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Table 1. Continued. 

Pacific decadal oscillation; 
year t-1 

Lag1_PDO https://psl.noaa.gov/pdo/data/pdo.times
eries.ersstv5.csv 

Winter sea surface 
temperature; Average 
October-January 

WSST_A https://www.ncdc.noaa.gov/data-
access/marineocean-data/extended-
reconstructed-sea-surface-temperature-ersst-
v5 average over box from 44˚N–50˚N latitude 
and 120˚W–125˚W longitude 

Pacific decadal oscillation; 
May, Jun., Jul. 

PDO.MJJ https://psl.noaa.gov/pdo/data/pdo.timeserie
s.ersstv5.csv 

Multivariate ENSO Index; 
Oct., Nov., Dec. 

MEI.OND https://psl.noaa.gov/gcos_wgsp/Timeseries/
Data/nino34.long.anom.data  

Upwelling Winds Index; Jul., 
Aug., Sep. 

UWI.JAS Erik Suring (ODFW) from R script used in 
OCN forecast; 
http://orpheus.pfeg.noaa.gov/outgoing/upwe
ll/monthly/upindex.mon. 

Sea surface temperature; 
Apr., May, Jun. 

SST.AMJ Erik Suring (ODFW) from R script used in 
OCN forecast; http://opendap.co-
ops.nos.noaa.gov/dods/IOOS/ 
Water_Temperature.html. 

Sea surface height; Apr., May, 
Jun. 

SSH.AMJ Erik Suring (ODFW) from R script used in 
OCN forecast;   
http://ilikai.soest.hawaii.edu/uhslc/datai.ht
ml. 

Upwelling Winds Index; Sep., 
Oct., Nov. 

UWI.SON Erik Suring (ODFW) from R script used in 
OCN forecast; 
http://orpheus.pfeg.noaa.gov/outgoing/upwe
ll/monthly/upindex.mon. 
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Step 2: Fitting models and forecasting 

For this analysis, we explored forecasting with 1,485 unique covariate combinations,  

Eq. 3. ∑ �𝑆𝑆𝑘𝑘� = 1,485𝑆𝑆𝑚𝑚𝑚𝑚
𝑘𝑘=𝑆𝑆𝑚𝑚𝑚𝑚  

where 𝐽𝐽 is the number of unique covariates in a combination, 𝐽𝐽 = 11 is the total number of 

covariates considered, and min and max were set to 0 and six, respectively, governing the number 

of covariates allowed in combinations. This resulted in 1,485 unique combinations of covariates. 

We fit ARIMA models with each combination of covariates to subsets of the data beginning with the 

first year of post-season run size estimates (𝑡𝑡0 = 1970) and running through subsequent year 𝑡𝑡 ∈

{2007, 2008, 2009 …  2022}. We used each ARIMA model to forecast the run size in year 𝑡𝑡 + 1 such 

that we generated 1,485 unique one-year-ahead forecasts for years 2008–2023. This allowed us to 

evaluate the performance of models with different combinations of covariates in forecasting 

returns in the 15 most recent years (2008-2022) and generate a forecast for the upcoming year 

(2023) for which the post-season run size is unknown.  

The structure of the auto-regressive, differencing, and moving-average components of each 

model (covariate combination and data subset) were selected based on 𝑆𝑆𝐼𝐼𝐽𝐽𝐽𝐽 using the function 

auto.arima within the forecast R package (Hyndman et al., 2023; Hyndman et al., 2008). The generic 

ARIMA model we used with no differencing and lag-1 autoregressive and moving average 

components can be written as: 

Eq. 4. log(𝑦𝑦𝑡𝑡)  =  µ𝑡𝑡 + 𝜙𝜙1(log(𝑦𝑦𝑡𝑡−1)− µ𝑡𝑡−1)  + 𝜃𝜃1𝜀𝜀𝑡𝑡−1 + 𝑆𝑆 +  𝜀𝜀𝑡𝑡 

where 𝑦𝑦 is the observed abundance in year 𝑡𝑡 (𝐽𝐽𝐽𝐽𝐼𝐼𝐻𝐻𝑡𝑡), which after log transformation is equal to the 

sum of the log-mean abundance µ𝑡𝑡 in year 𝑡𝑡, an autoregressive error term where 𝜙𝜙1is multiplied by 

the difference between the log of the observed abundance and log-mean abundance in year 𝑡𝑡 − 1, a 

moving average error term where 𝜃𝜃1 is multiplied by the residual from the previous year, a drift 

term 𝑆𝑆, which is a linear trend (on the log scale), and a residual 𝜀𝜀𝑡𝑡 which is normally distributed 

around zero. The log-mean in year 𝑡𝑡 is estimated by multiple linear regression:  

Eq. 5. µ𝑡𝑡 = 𝑿𝑿𝑿𝑿 

where 𝑿𝑿 is a design matrix of covariates with rows equal to the number of years, and columns equal 

to the number of covariates in a particular model, while b is a vector of coefficients corresponding 
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to the covariates. The first column of X is equal to 1 corresponding to the first coefficient in vector b, 

which is the intercept. Bolding indicates matrix multiplication.  

The function auto.arima implements an algorithm that fits variations of Equation 4 to the 

data, all of which include the residual error and mean terms, but which either includes or does not 

include the autoregressive, moving average, and drift components. It also fits versions of the 

equation where the observations are subject to differencing using the backshift operator and 

evaluates whether additional autoregressive and moving average terms for different lags (other 

than lag 1 shown above) improve model fit. To assess model fit, auto.arima compares the 𝑆𝑆𝐼𝐼𝐽𝐽𝐽𝐽 

value of each of the models it fits, selecting the model with the best combination of autoregressive, 

moving average, drift, and differencing for the particular set of data it is fit to. For purposes of 

simplicity, the differencing and multi-model evaluation within auto.arima is not shown in Equation 

4 but full details of the auto.arima function are available in Hyndman et al., 2023 and Hyndman et 

al., 2008. 

Step 3: Performance evaluation for unique covariate combinations (i.e., individual models) 

We assessed the forecast performance of models with each combination of covariates, 𝑖𝑖, 

based on their mean absolute prediction error (MAPE; Equation 6), root mean square error (RMSE; 

Equation 7), and mean symmetric accuracy (MSA; Equation 8), over the most recent 15 years for 

which abundance data were available: 

Eq. 6. 𝑀𝑀𝑆𝑆𝐽𝐽𝐸𝐸𝑚𝑚 =
∑ (𝑦𝑦�𝑖𝑖,𝑡𝑡

 −𝑦𝑦𝑡𝑡 )/𝑦𝑦𝑡𝑡 
2022
𝑡𝑡=2008

15
∗ 100, 

Eq. 7. 𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸𝑚𝑚 = �∑ (𝑦𝑦�𝑖𝑖,𝑡𝑡
 −𝑦𝑦𝑡𝑡 )22022

𝑡𝑡=2008
15

 , 

Eq. 8. 𝑀𝑀𝑆𝑆𝑆𝑆𝑚𝑚 = �exp �
∑ |log (𝑦𝑦𝑡𝑡 /𝑦𝑦�𝑖𝑖,𝑡𝑡

 )2022
𝑡𝑡=2008 |

15
� − 1�*100, 

where 𝑦𝑦𝑡𝑡  is the postseason estimate of abundance in year 𝑡𝑡 and 𝑦𝑦�𝑚𝑚,𝑡𝑡  is a preseason forecast. For all 

performance error metrics, a lower value is indicative of a higher forecasting accuracy.  
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Step 4: Generating ensemble forecasts 

We generated ensemble forecasts by taking weighted means (harmonic means) of the 𝑀𝑀  =

 10 models with the lowest MAPE.  

Eq. 9. 𝑦𝑦�𝑡𝑡 =
∑ 𝜔𝜔𝑖𝑖𝑦𝑦�𝑖𝑖,𝑡𝑡

 
𝑖𝑖

𝑀𝑀
  

We calculate weights in four different ways to generate four different ensemble forecasts. 

Three of the ways were calculated by normalizing the inverse of a performance metric, 𝑝𝑝𝑚𝑚  , of each 

model: 

Eq. 10. 𝑤𝑤𝑚𝑚 = (𝑝𝑝𝑖𝑖)−1

∑ (𝑝𝑝𝑖𝑖)−1𝑀𝑀
𝑖𝑖=1

  

where the performance metrics were MAPE, RMSE, and MSA. The final method of generating 

weights was to use a Markov-Chain Monte-Carlo optimization algorithm that minimized the MAPE 

of the ensemble forecasts across 2008–2022, termed stacking weights (Smyth and Wolpert 1999). 

Step 5: Evaluating forecast performance  

We evaluated the performance of the current OPI-H forecasting methodology, the four 

different approaches to generating ensemble forecasts, and an approach of choosing a single best 

individual covariate combination (as measured by MAPE in the previous 15 years) to use for 

forecasting returns in each individual year. We simulated the performance of the current OPI-H 

forecasting methodology by refitting the model to expanding windows of the dataset, just as we did 

to simulate the performance of individual ARIMA models. For the ensemble approaches and 

selecting the best individual ARIMA model with covariates, we repeated the 4-step processes 

described above to forecast returns in 2008–2022, where the models used to forecast returns in a 

given year had no access to the observed returns in that year. Thus, when generating ensemble 

weights or selecting the best individual model to forecast 2008 abundance we considered the 

performance of individual models in 1993–2007, when generating a forecast for 2009 we 

considered the performance of individual models in 1994–2008, and so on. Finally, calculated the 

performance metrics shown above for each approach over the 2008 to 2022 period.  
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Results  

The best performing ensemble model, and best performing modeling methodology 

considered was the MAPE-weighted ensemble, which had a MAPE of 36.48, RMSE of 173.47, and 

MSA of 37.62 (Table 2). The current OPI-H methodology had the highest errors of the approaches 

evaluated, with a MAPE of 61.73, an RMSE of 352.20, and an MSA of 66.06. The four ensemble 

models and the approach of selecting the best individual ARIMA model annually had relatively 

similar performance across the years evaluated. Notably, the difference in MAPE between the best-

performing ensemble approach (MAPE weighted) and the worst-performing of the new 

methodologies reviewed (choosing the best individual model) was 1.48, whereas the difference 

between the MAPE-weighted ensemble and the current OPI model was 25.25.  

 

Table 2. Performance of modeling approaches based on 15 years of out-of-sample one-step-ahead 

cross validation. Approaches include selecting a single best individual ARIMA model each year (Best 

individual) as well as weighted ensembles and the current OPI-H forecasting model (Current OPI). 

Ensembles include a “stacking weight” ensemble where an optimization algorithm is used to 

identify the weights that maximize out-of-sample one-step-ahead performance over a sliding 15-

year window (Stack weighted), as well as more traditional ensembles using a harmonic mean 

where model weights are calculated based on skill measured by RMSE (RMSE weighted), MAPE 

(MAPE weighted), or MSA (MSA weighted). 
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In addition to performing similarly in terms of precision, the ensemble models and choosing the 

best individual covariate combination annually produced similar forecasts (Figure 1), with the 

greatest variance across approaches in 2008. The current OPI-H approach was generally more 

different from the multi-model approaches than the multi-model approaches were from one 

another, and the current approach diverged from the other approaches considerably in 2021 and 

2022. The MAPE weighted ensemble approach under-predicted abundance in 2021–2022 but was 

closer to the observed abundance than the current OPI-H approach in those years.  

 

 
Figure 1. One-step-ahead predictions (lines) of total OPI Coho abundance for each year's top 

individual and weighted ensemble model set (colored lines), the MAPE weighted model (black line), 

and the current OPI-H model (gray line) relative to observed abundance (black dots). 
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The mean percent forecast error from 2008 to 2022 for the current forecast and MAPE 

weighted methodologies are 37.5% and 18.6%, respectively (Figure 2). Both the current and MAPE 

weighted methodology have over-predicted the abundance for 10 of the past 15 years (Figure 2). 

However, the MAPE weighted method has consistently less error than the current methodology, 

with the exception of the years 2011, 2012, and 2013. We do not believe the MAPE-weighted 

approach is a biased estimator; rather that 15 years is a small sample size to assess accuracy. Using 

a beta distribution to estimate the proportion of years the MAPE-weighted ensemble forecast is 

above or below the true abundance based on our sample size of 10 forecasts above and 5 below, we 

obtain a 95% CI of 0.38-0.88, indicating no significant difference (p = 0.30) from the expected value 

of 0.5 for an unbiased estimator. 

 

Figure 2. Log10 of percent forecast error plus 1 of the MAPE weighted and current forecast models 

through time. The transformation to the percent error was made so that the distribution of errors 

was less skewed because negative percent errors cannot be less than one whereas positive errors 

can be any magnitude. 
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In addition to assessing the accuracy [bias] and precision of forecast point estimates, we 

assessed the performance of prediction intervals. The post-season estimate of abundance was 

within the 95% prediction interval for the MAPE weighted ensemble for 14 of the 15 (93.33%) of 

years assessed and within the 50% prediction interval for 6 of the 15 (40%) of years assessed, 

indicating that the nominal coverage of the prediction intervals was similar to their true coverage. 

The true coverage was not statistically different from the nominal coverage in either case. 

 

Figure 3. One-year-ahead predictions (black line) of total OPI Coho abundance from the MAPE 

weighted model relative to observed abundance (black dots). Prediction intervals are shown as blue 

shading including 50% (dark), 95% (light). 

 

To provide a sense of what covariate combinations have performed best in forecasting 

returns in the recent past, Table 3 shows the individual model that would have been chosen each 

year based on a 15-year retrospective evaluation. The covariates within the best models explored 
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for each year highlights the dynamic nature of environmental covariates in forecasting OPI-H Coho. 

From 2008 to 2011, the variation in covariates is greater than in models from 2012-2023. There is 

only one year (2008) where the jack return (lagged and logged) and adjusted smolt metric (lagged 

and logged) are both included as covariates. Since 2012, jack returns (lagged and log transformed), 

NPGO (lagged), PDO (lagged), and WSST are consistently present in the models with MEI (Oct., Nov., 

Dec.) becoming more present in the top models starting in 2014. 

 

Table 3. Best-performing covariate combinations based on one-year-ahead MAPE in a 15-year 

retrospective analysis and their forecasts.  

 

 

Discussion 

 This review represents the first exploration of alternative forecast approaches to OPI-H 

Coho in over two decades. This renewed interest was triggered by current forecast methodologies 

becoming less precise through time, which is hypothesized to be due to the lack of ability to capture 

the variability of environmental conditions and changes in the proportion of the population 
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returning as jacks through time (Suring and O’Farrell, 2021). We demonstrated that a multi-model 

approach utilizing ARIMA model structures and environmental predictors would have performed 

better than the current OPI-H Coho forecasting approach over the last fifteen years. The new 

methodology incorporates information on ocean conditions that affect survival, models abundance 

in log space, includes ARIMA error structures, and should be more adaptive from year to year than 

the current method.  

 Our results suggest that incorporating information on marine conditions that affect survival 

can contribute additional predictive power, beyond what is provided by just including jack returns. 

Our findings indicate that NPGO and PDO, which were included in all of the top-performing models, 

contribute information about marine survival that is not captured by jack returns. This may be due 

in part to interannual variability in the proportion of fish returning as jacks or measurement error 

in jack returns. The winter sea surface temperature covariate reflects conditions that would impact 

survival during fish’s second winter at sea, after jacks have already returned, and thus provides 

more recent information that is not reflected in jack returns. Winter sea surface temperature was 

included in 13 out of 16 of the annually top-performing models, demonstrating how including 

environmental indices in forecast models, and particularly those that capture near-term changes, 

can provide valuable information beyond that included in sibling returns from previous years to 

improve prediction. Even the worst performing of the new models that we evaluated was 

substantially better-performing than the current OPI-H forecasting model, demonstrating the 

advantages of including environmental covariates in forecasting models.  

 The proposed forecasting approach differs from the current approach in that it assumes a 

log-linear relationship between adult abundance and jack returns and uses ARIMA error structures. 

Abundance can only be positive, so it should be modeled in log space to constrain predictions to the 

positive domain. Additionally, the use of a log-link assumes heteroskedastic errors (i.e., larger 

variance with larger abundance) which has been observed in the OPI-H and other salmon 

abundance datasets. The log-link also assumes relationships between covariates and abundance are 

multiplicative rather than additive, which better matches generative processes for abundance (e.g., 

survival, which is multiplicative). In addition to fitting adult abundance on a log-link scale, we log 

transformed the jack covariate such that we modeled a linear relationship between adult 

abundance and jack returns when jack returns were included as a covariate in a model. Finally, 

because the ARIMA structure allows for time-varying error in the log-linear predictor, it 

functionally allows for modeling a time varying relationship between covariates like jack returns 

and expected adult abundance (i.e., when exponentiated, the intercept is multiplied by the 
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autoregressive and moving average error terms, and by the jack covariate, in effect allowing for a 

time-varying jack to adult ratio). 

 Importantly, the multi-model forecasting approach and use of an ARIMA structure that can 

change across years allows for the alternative forecasting model to adapt to changing age structure 

and relationships between ocean indices and adult abundance. A challenge with choosing a single 

covariate combination to use for forecasting is that the information contained in those covariates 

may become less predictive through time and other covariate combinations may become more 

predictive. This is illustrated in our finding that the covariates included in the best individual model 

changed over the 2008 to 2022 period. Given the time constraints of agency staff and Council 

members, forecast methodologies can go many years without being reviewed. Therefore, it is 

advantageous to adopt methodologies that are highly flexible and can adapt to changing 

relationships through time. Our approach accomplishes this by systematically evaluating the 

performance of many combinations of covariates in the recent past, generating ensembles of the 

best-performing models to use for forecasting adult abundances in a subsequent year. While the 

multi-model ensemble approach allows the covariates and ARIMA structure to change across years, 

the systematic way in which the covariate combinations and ARIMA structure are determined 

allowed us to simulate how it would have performed in the recent past. The results of this 

simulation suggest that the multi-model ensemble approach performed substantially better than 

the current OPI-H modeling approach on average over the last 15 years, although there were three 

years in which the current OPI-H model performed better than the multi-model approach.  

In considering whether to adopt a multi-model ensemble approach to forecasting OPI-H 

Coho, it may be useful to consider that such an approach has been used in the past by the U.S. v. OR 

Technical Advisory Committee to forecast Chinook salmon returns to the Columbia River (Mark 

Sorel, personal communication) and the Fisheries Research Institute to forecast sockeye salmon 

returns to Bristol Bay (Ovando et al., 2022). Model averaging is a well-studied approach to 

predictive inference and is generally considered to be a useful tool in ecology where noisy data 

abound (Dormann et al., 2018). Finally, the proposed approach expands upon the simpler multi-

model approach featuring weighted ensembles with one-step-ahead simulated retrospective 

forecasts to evaluate performance that was approved through the Council’s methodology review 

process for use in forecasting Willapa Bay Coho in 2021 (Auerbach et al., 2021). We believe this is a 

robust approach that will improve OPI-H forecasts and has the potential to improve other stock 

unit forecasts. 
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Recommended Forecast Method 

Preseason forecasts of salmon stocks are critical metrics for salmon fishery management 

and conservation. Our analysis has identified an ARIMA-based ensemble forecast approach that 

substantially reduced the forecast error compared to the current approach. Due to the MAPE 

weighted harmonic mean ensemble model resulting in the lowest one-step-ahead MAPE score over 

the 15 most recent years, and the benefits of ensemble forecasts, we recommend the MAPE 

weighted ensemble forecast methodology be adopted as the preferred method for forecasting total 

OPI-H pre-fishing adult ocean abundance.  

While we found that weighting models based on the inverse of their MAPE using a simple 

harmonic mean led to better performance than other approaches, we recognize that it would be 

possible to select whichever ensemble or individual model performed bast in the most recent 15-

years, even if the approach of calculating weights or selecting an individual model differed from 

year to year (e.g., a “best individual model or ensemble” approach). We did not evaluate the 

performance of this slightly different approach but could do so and report the results to the Council 

in a future report. We also have explored using machine learning approaches for individual and 

ensemble model construction, including ridge regression and gradient boosted random forests. 

These approaches did not out-perform ARIMA models and the simpler ensemble methods 

presented herein, and we consequently chose not to present these results. However, we intend to 

continue to explore these methods and others all within the same framework of out-of-sample 

performance evaluation described in this report with the goal of continuing to improve OPI-H Coho 

forecast performance. 

The OPITT is confident in our ability to maintain and utilize the MAPE weighted ensemble 

forecasting model. Data inputs required for annual forecasting would remain the same for the jack 

returns and smolt release data. Environmental covariate data are easily accessed through public 

domains and the data are updated before the annual OPITT meeting where the forecast is produced. 

For transparency and reproducibility, the R code that produces the forecast is publicly posted on 

GitHub at https://github.com/wdfw-fp/OPI-H-Forecast-Evaluation-2023, and we plan to formulate 

it into an R package for ease of implementation. 
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Appendix 

 

Table A1: One-year-ahead forecasted abundance of OPI Coho based on the MAPE-weighted 

ensemble approach compared to the actual abundance. 
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Table A2. List of facilities that contribute to the jack escapement values used in the jack return 

covariate.  

Reporting Agency a/  Area  Facility   
WDFW  Columbia River  Beaver Creek Hatchery   
ODFW  Columbia River  Big Creek Hatchery  
FPC  Columbia River  Bonneville Dam  
ODFW  Columbia River  Bonneville Hatchery  
PGE  Columbia River  Clackamas Dam  
ODFW  Columbia River  Clatsop County Fisheries 
WDFW  Columbia River  Cowlitz Salmon Hatchery  
USFWS  Columbia River  Eagle Creek National Fish Hatchery  
WDFW  Columbia River  Fallert Creek Fish Hatchery   
WDFW  Columbia River  Foster Road Trap (Elochoman River)  
WDFW  Columbia River  Grays River Hatchery  
WDFW  Columbia River  Kalama Falls Hatchery  
ODFW  Columbia River  Klaskanine Hatchery  
WDFW  Columbia River  Lewis River Hatchery  
ODFW  Columbia River  Marmot Dam  
WDFW  Columbia River  Merwin Dam (Lewis River)  
WDFW  Columbia River  Modrow Trap (Kalama River)  
WDFW  Columbia River  North Toutle Hatchery  
ODFW  Columbia River  Sandy Hatchery  
WDFW  Columbia River  Washougal Hatchery  
WDFW  Columbia River  Washougal River Fish Weir  
FPC  Columbia River  Willamette Falls   
ODFW  OR/CA Coast  Bandon Hatchery  
ODFW  OR/CA Coast  Cedar Creek Hatchery  
ODFW  OR/CA Coast  Cole Rivers Hatchery  
ODFW  OR/CA Coast  Eel Lake Hatchery  
ODFW  OR/CA Coast  Elk River Hatchery  
ODFW  OR/CA Coast  Fall Creek Hatchery  
CDFW  OR/CA Coast  Iron Gate Fish Hatchery  
ODFW  OR/CA Coast  Nehalem Hatchery  
ODFW  OR/CA Coast  Newport Hatchery  
ODFW  OR/CA Coast  Salmon River Hatchery  
ODFW  OR/CA Coast  Trask Hatchery  
CDFW  OR/CA Coast  Trinity River Hatchery 

a/ CDFW, California Department of Fish and Wildlife; FPC, Fish Passage Center; ODFW, Oregon 

Department of Fish and Wildlife; PGE, Portland General Electric Company; USFWS, United States 

Fish and Wildlife Service; WDFW, Washington Department of Fish and Wildlife 
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Table A3. List of hatchery facilities that produce smolts whose release values are used in the smolt 

release covariate. Smolt release sites are not listed as they vary by year.  

Reporting Agency a/  Area  Hatchery Rearing Facility 
WDFW Columbia River Beaver Creek Hatchery 
ODFW Columbia River Big Creek Hatchery 
ODFW Columbia River Bonneville Hatchery 
YAKA Columbia River Cascade Hatchery 
ODFW Columbia River Clatsop County Fisheries 
WDFW Columbia River Cowlitz Salmon Hatchery 
WDFW Columbia River Deep River Net Pens 
USFWS Columbia River Dworshak National Hatchery 
USFWS Columbia River Eagle Creek National Fish Hatchery 
WDFW Columbia River Grays River Hatchery 
WDFW Columbia River Kalama Falls Hatchery 
ODFW Columbia River Klaskanine Hatchery 
YAKA Columbia River Klickitat Hatchery 
USFWS Columbia River Leavenworth Hatchery 
WDFW Columbia River Lewis River Hatchery 
WDFW Columbia River North Toutle Hatchery 
YAKA Columbia River Prosser Hatchery 
ODFW Columbia River Sandy Hatchery 
WDFW Columbia River Washougal Hatchery 
DPUD Columbia River Wells Fish Hatchery 
YAKA Columbia River Willard National Fish Hatchery 
YAKA Columbia River Winthrop National Fish Hatchery 
ODFW OR/CA Coast Cole Rivers Hatchery 
CDFW OR/CA Coast Iron Gate Fish Hatchery 
ODFW OR/CA Coast Nehalem Hatchery 
ODFW OR/CA Coast Rock Creek Hatchery 
ODFW OR/CA Coast Trask Hatchery 
CDFW OR/CA Coast Trinity River Hatchery 

a/ CDFW, California Department of Fish and Wildlife; DPUD, Douglas County Public Utility District; 

ODFW, Oregon Department of Fish and Wildlife; USFWS, United States Fish and Wildlife Service; 

WDFW, Washington Department of Fish and Wildlife; YAKA, Yakama Nation  
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Table A4. OPI-H Coho postseason MSM abundance estimate (thousands; “abundance”) and 

covariates used in models.
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