## The Status of Black Rockfish (Sebastes melanops) in U.S. Waters off California in 2023

These materials do not constitute a formal publication and are for information only. They are in a prereview, pre-decisional state and should not be formally cited or reproduced. They are to be considered provisional and do not represent any determination or policy of NOAA or the Department of Commerce.


June 26, 2023

Prepared by
E.J. Dick ${ }^{1, *}$, Cheryl Barnes ${ }^{2}$, Julia Coates ${ }^{3}$, Nicholas Grunloh ${ }^{4,1}$, Melissa Monk ${ }^{1}$, and Tanya Rogers ${ }^{1}$.

* Corresponding author: edward.dick@noaa.gov
${ }^{1}$ Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, 110 McAllister Way, Santa Cruz, CA 95060.
${ }^{2}$ Coastal Oregon Marine Experiment Station and Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365
${ }^{3}$ California Department of Fish and Wildlife, 20 Lower Ragsdale Drive, Suite 100, Monterey, CA 93940
${ }^{4}$ University of California, Santa Cruz, Cooperative Institute for Marine, Earth, and Atmospheric Systems, 1156 High Street, Santa Cruz, CA 95064, USA.


## This report may be cited as:

Dick, E.J., C. Barnes, J. Coates, N. Grunloh, M. Monk, and T. Rogers. 2023. The Status of Black Rockfish in U.S. Waters off California in 2023. Pacific Fishery Management Council, Portland, OR. Available from http://www.pcouncil.org/groundfish/stock-assessments/

## Cover photo credit:

Photo of Black Rockfish was downloaded from the RecFIN website and taken by Vicky Okimura (WDFW).

Acronym Definitions:<br>ABC: Acceptable Biological Catch<br>ACL: Annual Catch Limit<br>CAAL: Conditional age-at-length<br>CalCOFI: California Cooperative Oceanic Fisheries Investigations<br>CALCOM: California Cooperative Groundfish Survey Database<br>CCFRP: California Collaborative Fisheries Research Program<br>CDFW (formerly CDFG): California Department of Fish and Wildlife (formerly Fish and Game)<br>CPAH: Catch-per-angler-hour<br>CPFV: Commercial Passenger Fishing Vessel (aka "party" or "charter" boats, or "PC mode")<br>CPUE: Catch-per-unit-effort<br>CRFS: California Recreational Fisheries Survey<br>GMT: Groundfish Management Team of the PFMC<br>MRFSS: Marine Recreational Fisheries Statistics Survey<br>MSY: Maximum Sustainable Yield<br>NMFS: National Marine Fisheries Service<br>NWFSC: Northwest Fisheries Science Center<br>ODFW: Oregon Department of Fish and Wildlife<br>OFL: Overfishing Limit<br>PacFIN: Pacific Fisheries Information Network<br>PFMC: Pacific Fishery Management Council<br>PISCO: Partnership for the Interdisciplinary Study of Coastal Oceans<br>PSMFC: Pacific States Marine Fisheries Commission<br>RecFIN: Recreational Fisheries Information Network<br>RREAS: The NMFS SWFSC's Rockfish Recruitment and Ecosystem Assessment Survey<br>SPR: Spawning Potential Ratio<br>SSC: Scientific and Statistical Committee of the PFMC<br>STAR: Stock Assessment Review (Panel)<br>STAT: Stock Assessment Team<br>SWFSC: Southwest Fisheries Science Center<br>WCGOP: West Coast Groundfish Observer Program<br>WDFW: Washington Department of Fish and Wildlife<br>YOY: Young-of-the-year

## Table of Contents

Executive Summary ..... VStockv
Catches ..... v
Data and assessment ..... v
Stock biomass ..... v
Recruitment ..... v
Exploitation status ..... v
Ecosystem considerations ..... v
Reference points ..... v
Management performance ..... v
Unresolved problems and major uncertainties ..... v
Decision table and forecasts ..... v
Research and data needs ..... v
1 Introduction ..... 6
1.1 Basic Information. ..... 6
1.2 Map ..... 8
1.3 Life History ..... 8
1.4 Ecosystem Considerations ..... 9
1.5 Fishery Information ..... 9
1.6 Summary of Management History and Performance. ..... 10
1.7 Fisheries off Canada, Alaska, and/or Mexico ..... 12
2 Data ..... 12
2.1 Commercial Fisheries Data ..... 12
2.1.1 Commercial Landings and Discard ..... 12
2.1.2 Commercial Length and Age Compositions ..... 14
2.2 Recreational Fisheries Data ..... 15
2.2.1 Recreational Landings and Discard ..... 15
2.2.2 Recreational Length and Age Compositions ..... 16
2.2.3 Recreational Abundance Indices (Catch per Unit Effort) ..... 17
2.3 Fishery-Independent Data ..... 21
2.3.1 California Collaborative Fisheries Research Program (CCFRP) ..... 21
2.3.2 Abrams Thesis ..... 23
2.3.3 Lea et al. 1999 Nearshore Life History Study ..... 24
2.4 Biological Data ..... 24
2.4.1 Natural Mortality ..... 24
2.4.2 Growth ..... 25
2.4.3 Maturity and Fecundity ..... 26
2.5 Data sources evaluated, but not used in the California assessment ..... 26
3 Model ..... 27
3.1 History of Modeling Approaches Used for this Stock ..... 27
3.2 Response to STAR Panel Recommendations from Previous Assessment ..... 27
3.3 Transition to the Current Stock Assessment ..... 28
3.4 Northern California Base Model Selection and Evaluation ..... 30
3.4.1 Model Specifications ..... 30
3.4.2 Model Parameters ..... 31
3.4.3 Key Assumptions and Structural Choices ..... 32
3.4.4 Evaluation of Model Parameters ..... 32
3.4.5 Residual Analysis ..... 33
3.4.6 Convergence ..... 35
3.4.7 Response to STAR Panel Recommendations ..... 35
3.4.8 Northern California Base-Model Results ..... 35
3.4.9 Evaluation of Uncertainty ..... 37
3.5 Central California Base Model Selection and Evaluation ..... 39
3.5.1 Model Specifications ..... 39
3.5.2 Model Parameters ..... 41
3.5.3 Key Assumptions and Structural Choices ..... 42
3.5.4 Evaluation of Model Parameters ..... 42
3.5.5 Residual Analysis ..... 42
3.5.6 Convergence ..... 44
3.5.7 Response to STAR Panel Recommendations ..... 44
3.5.8 Central California Base-Model Results ..... 44
3.5.9 Evaluation of Uncertainty ..... 46
3.6 Historical Analysis ..... 47
4 Reference Points ..... 47
5 Harvest Projections and Decision Tables ..... 48
6 Regional Management Considerations ..... 48
7 Research and Data Needs ..... 48
8 Acknowledgments ..... 49
9 Literature Cited ..... 50
10 Auxiliary Files ..... 53
11 Tables ..... 54
12 Figures ..... 110
Appendix A. Notes on black rockfish habitat associations and fishing behavior, attributed to Kenyon Hensel ..... 270
Appendix B. Data sources evaluated, but not used in the California assessment ..... 273
12.1.1 MRFSS Dockside CPFV Index, 1980-1999 ..... 273
12.1.2 Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO) ..... 275
12.1.3 NMFS Fishery-Independent Trawl Surveys ..... 277
12.1.4 NWFSC Southern California Shelf Rockfish Hook and Line Survey ..... 277
12.1.5 SWFSC Rockfish Recruitment and Ecosystem Assessment Survey (RREAS) ..... 277
12.1.6 SWFSC SCUBA survey ..... 279
12.1.7 California Remotely Operated Vehicle Survey Data ..... 280

## Executive Summary

The executive summary will be completed after the STAR panel review.
Stock

## Catches

Data and assessment
Stock biomass
Recruitment

## Exploitation status

Ecosystem considerations
Reference points
Management performance
Unresolved problems and major uncertainties
Decision table and forecasts
Research and data needs

## 1 Introduction

### 1.1 Basic Information

Black rockfish (Sebastes melanops; subgenus Sebastosomus) are found from the southern Bering Sea and Aleutian Islands to northern Baja California. A few individuals have also been observed in the western North Pacific Ocean (Kai et al. 2013); however, black rockfish are most abundant from Kodiak, AK to northern California. They are common to occasional in central California, and rare south of Point Conception (Love et al. 2002, Field et al. 2021). Black rockfish can occupy depths to $366 \mathrm{~m}(1,200 \mathrm{ft})$ but typically form aggregations near high relief habitats shallower than $73 \mathrm{~m}(240 \mathrm{ft})$ (Love 2011).

The previous black rockfish stock assessment was spatially stratified at the California-Oregon and Oregon-Washington borders (Cope et al. 2016). Given different management histories and a lack of evidence to support a single stock along the West Coast, state-specific stocks were proposed for black rockfish (PFMC 2022a, 2022b, 2023). Data on genetic differentiation, adult movement, larval dispersal, and some life history traits remains limited, especially for fish in California waters. The current assessment models the California stock using two sub-area models (north and south of Point Arena), given observed differences in the exploitation history, size and age compositions, and trends in relative abundance, as described in the Data and Model sections.

## Genetic Differentiation

A study that analyzed microsatellite DNA found no evidence of population structure and weak evidence for isolation by distance for juvenile black rockfish off Washington and Oregon (Miller et al. 2005; Miller and Shanks 2007). The same study found support for genetic divergence among adult black rockfish collected 340 to 460 km apart, thereby distinguishing black rockfish off Washington from those found off southern Oregon. Approximately $35 \%$ of genetic samples in the Miller et al. (2005) study were misclassified, suggesting limitations in the methods or representation of samples, recent movement, and/or the existence of genetically distinct groups at a relatively fine spatial scale. Interestingly, microsatellite DNA have illustrated similar fine scale population structure within the Gulf of Alaska but promoted the categorization of black rockfish from Southeast Alaska and Washington into a single group (Seeb 2007).

Another fine scale study that compared black rockfish from Monterey Bay, CA and Garibaldi, OR found a small degree of genetic differentiation (Sivasundar and Palumbi 2010). This differentiation was observed, however, in only one of the six microsatellite loci tested. A more spatially-expansive study found a genetic break at Cape Blanco, OR (Lotterhos et al 2014). Although Cape Blanco may serve as a barrier to gene flow, Lotterhos et al. (2014) note that regular genetic exchange may still take place because of a few long-distance migrants.

Most recently, a study found microsatellite divergence between Alaska and the continental United States as well as a mitochondrial cline near Cape Mendocino (Hess et al. 2023). Based on six microsatellite loci and mitochondrial DNA, the authors found localized genetic discontinuities, which may have resulted from range expansion, isolation by distance, extinction-recolonization events, or the combination of a bethedging reproductive strategy (e.g., age-based shifts in the timing of parturition; Sogard et al. 2008) and sweepstakes-like recruitment (Lotterhos and Markel 2012) in black rockfish (Hess et al. 2023). Disparate haplotype frequencies north and south of Point Arena may provide a genetic basis for separately modeling black rockfish population dynamics in northern and central California. However, Hess et al. describe Black Rockfish as "highly resident as adults," based on wok by Parker (2007) and previous studies. More recent studies have found long-distance movements across the reported genetic breaks in a significant
fraction of tagged fish (see Adult Movement section, below). These observations, combined with the availability of methods to examine stock structure using whole genomes, suggest that further validation of the reported barriers to gene flow within California waters is warranted (see Research Recommendations).

## Adult Movement

There are numerous reports that most black rockfish display small home ranges. A sizeable percentage (approximately 10 to $30 \%$, depending on the study), however, have moved considerable distances. A small number of black rockfish have also been documented as having undergone considerable migrations (e.g., up to 400 km southward from Puget Sound [Mathews and Barker 1983], approximately 600 km northward from central Oregon [Coombs 1979], and over 900 km northward from central California [Starr et al. 2015]).

The largest data set with relevant movement information comes from a tagging study conducted by the Washington Department of Fish and Wildlife (WDFW) between 1981 and 2014. This WDFW study documented net movements from 5,445 T-bar anchor, coded wire, or PIT tagged black rockfish (Wallace et al. 2010). From these recaptured fish, approximately $75 \%$ remained within 10 km of their initial release site. Distance traveled, however, increased with time at liberty and most fish were caught within two years of being tagged (Wallace et al. 2010). Fish that moved greater than 10 km tended to move in the direction opposite their relative release site. For example, fish tagged near Cape Falcon in Oregon generally moved northward whereas fish tagged off northern Washington (i.e., near Cape Elizabeth, La Push, and Neah Bay) generally moved southward. The latter corroborates findings from a study based in Puget Sound, which observed southward movements of 360 to 400 km for three out of eight recaptured fish (Mathews and Barker 1983). Notably, the direction of movements from fish tagged near Grays Harbor off central Washington were split between north or south (Wallace et al. 2010). Size and sex data were not reported, though reported age compositions suggest that these were primarily subadult or adult black rockfish.

The California Collaborative Fisheries Research Program (CCFRP) represents another long-term study that has tagged and recaptured black rockfish (Starr et al. 2015). Of the 65 fish recaptured between 2007 to 2022 , the maximum Euclidean distance traveled was 918 km . This considerable northward movement was made by a 35 cm fish that spent 192 days at liberty. The overall mean distance traveled was $180 \pm$ 316 km , with $26.2 \%$ of recaptured fish $(\mathrm{n}=16)$ moving greater than 250 km (CCFRP unpublished data). Long-distance travelers were subadults ( $30.9 \pm 4.5 \mathrm{~cm}$ fork length) and tended to migrate northward into Oregon waters (Figure 1).

Apart from mark-recapture, a number of acoustic telemetry studies have focused on subadult black rockfish. Two such studies posited an intermediate degree of site fidelity in high relief rocky reefs off Oregon - with some individuals remaining in a single location throughout the study period and others (up to $43 \%$ ) periodically relocating to other sites (Parker et al. 2007; Hannah and Rankin 2011). Most of the tagged fish showed extensive vertical ranges that are uncommon to nearshore rockfishes (Parker et al. 2008; Hannah and Rankin 2011). An earlier study with nine recaptures found that black rockfish generally remained close to release sites, though one individual moved over 600 km northward, from central Oregon to Puget Sound (Coombs 1979). Another Oregon-based study found northward movements of up to 178 km (DeMott 1983). Telemetry research on black rockfish has been more limited in California. One study in Carmel Bay, however, found regular diel movements offshore (Green and Starr 2011). Like the Oregon- and Washington-based studies, Green and Starr (2011) estimated small home ranges with a fraction of fish ( $>1 / 3$ ) moving considerable distances (in this case, to the north).

## Larval Dispersal

The ability to accurately classify juvenile fish to sample locations using otolith microchemistry suggests limited alongshore movement for approximately 60 to $80 \%$ of early-stage black rockfish (dispersal distances < 120 km ; Miller and Shanks 2004). High classification accuracy may also result from early life stages of black rockfish generally not mixing and/or following similar dispersal pathways off Oregon and Washington. The authors note that limited alongshore movement and a lack of larval mixing among locations may represent the dominant dispersal pattern for black rockfish. However, a sufficient proportion of new recruits may have been supplied by external sources, thereby maintaining genetic diversity (Miller and Shanks 2004).

Lotterhos et al. (2014) estimated dispersal distances of 6 to 184 km per generation, with fish along the Oregon and Washington coasts experiencing lower dispersal capacity relative to those in British Columbia. Potential mechanisms for limited larval dispersal of black rockfish include: large areas of unsuitable habitat (e.g., sand), reproductively unfavorable upwelling conditions (i.e., strong upwelling that advects larvae offshore), and geographic headlands (e.g., Cape Blanco) that act as retention zones (Lotterhos et al. 2014). Although a few long-distance dispersals are not considered ecological relevant, a few migrants per generation can increase gene flow and decrease genetic differentiation (Kinlan and Gaines 2003; Palumbi 2003; Lotterhos et al. 2014). California-specific information about larval dispersal is unavailable for black rockfish.

### 1.2 Map

A map of the assessment area with selected coastal features is provided as Figure 2.

### 1.3 Life History

Black rockfish are generally considered nearshore, semi-pelagic rockfish. They are sexually dimorphic, with females growing to larger sizes than males (Echeverria 1986; Bobko and Berkeley 2004). Black rockfish can reach $69 \mathrm{~cm}, 6 \mathrm{~kg}$, and 56 yr (Love 2011). Growth (length-at-age) estimates for California were reported in the previous stock assessment (Cope et al. 2015), but age and length composition data were updated to estimate von Bertalanffy growth parameters within the current assessment model. In central and northern California, $50 \%$ of males reach sexual maturity at $35 \mathrm{~cm}(6 \mathrm{yr})$ and $50 \%$ of females reach sexual maturity at $41 \mathrm{~cm}(7 \mathrm{yr})$ (Echeverria 1987). Some males may mature as small as $25 \mathrm{~cm}(3 \mathrm{yr})$ whereas some females may mature as small as $30 \mathrm{~cm}(5 \mathrm{yr})$ (Echeverria 1987). Based on estimates of length-at-maturity from the literature, a significant fraction of black rockfish sampled off central California are classified as juveniles or subadults whereas those sampled off northern California represent a more even mix of mature and immature fish (O'Farrell and Botsford 2006; Hamilton et al. 2021).

Black rockfish are viviparous, undergo internal fertilization in early winter, and produce planktonic larvae in late winter and early spring (Boehlert and Yoklavich 1983; Echeverria 1987). The pelagic larval duration is 2 to 4 months, with recruitment to nursery habitats taking place in the late spring and early summer (Wilson et al. 2008). Laboratory experiments suggest that older females tend to undergo parturition earlier in the spawning season (Bobko and Berkeley 2004). Age-based shifts in the timing of parturition has been identified as a bet-hedging strategy (e.g., Sogard et al. 2008) to safeguard against sweepstakes-like recruitment that results from changes in the timing and strength of upwelling events (Lotterhos and Markel 2012; Markel et al 2017). In addition to releasing larvae during more favorable conditions, older black rockfish tend to produce larvae with larger oil globules that promote increased larval growth and decreased mortality due to starvation (Bobko and Berkeley 2004; Berkeley et al. 2004).

Black rockfish are highly fecund for live-bearers, with a 6 yr female producing approximately 300,000 embryos per year and a 16 yr female producing nearly 950,000 embryos per year (Bobko and Berkeley 2004).

Recruitment is highly variable, though increases are associated with stronger upwelling, cooler waters, slower larval growth, and longer pelagic phases that promote the onshore transport of later stage pelagic juveniles (Laidig et al. 2007; Wilson et al. 2008; Markel and Shurin 2020). Relatively large post settlement body sizes ( $\geq 35 \mathrm{~mm}$ ) likely decrease predation mortality in the nearshore (Markel and Shurin 2020). In California, anomalously warm water has been identified as an indicator of poor recruitment (e.g., Laidig et al. 2007; Wilson et al. 2008). Evidence of strong recruitment along the US West Coast was observed in 1999, 2006, and 2010 (Laidig et al. 2007; Starr et al. 2015; Markel and Shurin 2020). Young-of-the-year (YOY) can be found in nearshore rocky reefs, kelp beds, estuaries (specifically eelgrass habitats), and the intertidal from late spring to early fall (Boehlert and Yoklavich 1983; Studebaker and Mulligan 2008; Dauble et al. 2012).

YOY and juvenile black rockfish in northern California feed primarily on amphipods, copepods, and mysids (Studebaker and Mulligan 2008; Bizzarro et al. 2017). Juveniles and adults predate on jellies, polychaetes, cephalopods, euphausiids, crustaceans, and forage fishes (Bizzarro et al. 2017). Black rockfish become increasingly piscivorous throughout their ontogeny (Bizzarro et al. 2017) and are a prominent predator of YOY rockfishes off northern California (Hobson et al. 2000). As pelagic larvae, black rockfish are subject to predation by siphonophores and chaetognaths. Newly settled individuals are common in the diets of juvenile rockfishes (Reilly et al. 1992) and adults are consumed by lingcod, larger rockfishes, and marine mammals (Steiner 1979; Stein and Hassler 1989).

Although estimates of mortality from the WDFW mark-recapture study have been used to inform the Washington assessment, similar estimates do not exist for black rockfish off California.

### 1.4 Ecosystem Considerations

Ecological information was not explicitly represented in the stock assessment model. This is due to a complicated mechanistic relationship between black rockfish population dynamics and the California Current ecosystem. Some data on predators and prey are available but lack sufficient coverage to inform spatiotemporal dynamics of black rockfish (e.g., natural mortality). A number of studies have investigated potential environmental drivers of black rockfish recruitment (e.g., Caselle et al. 2010; Ralston et al. 2013; Schroeder et al. 2019; Field et al. 2021), and recruitment indices were explored in the current assessment. Black rockfish have also been identified as a candidate for multispecies indicators of recruitment (along with blue, deacon, darkblotched, widow, and yellowtail rockfishes; Field et al. 2021), which were also explored in the current assessment (see Data section).

### 1.5 Fishery Information

Black rockfish are taken by recreational and commercial fleets in California, but recreational fisheries north of Point Arena (the area referred to as "northern California" in this assessment) have accounted for the majority of statewide removals in recent decades (Figure 3). Within the recreational sector, landings are dominated by the "boat modes" (i.e., private/rental boats and party/charter boats), with relatively minor contributions from shore-based fishing modes. Party/charter boats in California often are referred to as Commercial Passenger Fishing Vessels (CPFVs), and the terms "party boat," "charter," "PC mode" and "CPFV" are used interchangeably in this assessment. Private and rental boats are often abbreviated as "PR" or "PR mode" and occasionally called the "skiff" fleet.

In terms of regional landings, development of the fisheries south of Point Arena ("central California" in this assessment) preceded the northern area by almost 50 years, likely due to a combination of historical trends and events, e.g. population growth, World War II, road construction, employment opportunities, and market demand (Figure 6). Rockfish were landed commercially as early as 1875 (Phillips 1957). Until 1943, when the balloon trawl was introduced (Phillips 1949), the great majority of rockfish landings in California ( $\sim 95 \%$ ) were taken by longline (Phillips 1958; Lenarz 1986). Black rockfish became a component of the commercial live-fish fishery that developed in the early 1990s (Reilly 2001; Pearson et al. 2008). In recent years, black rockfish landed alive have accounted for about $50 \%$ of the commercial catch in weight (PacFIN 2023).

After WWII, there was a marked expansion in the CPFV fishing industry throughout the state, including a substantial increase in landings in northern California (Young 1969). Salmon were the primary target in the northern part of the state, with shifts in effort to rockfish when salmon were scarce. From 1947-1967, reported landings of rockfish by partyboats were a small component of the catch north of Bodega Bay, but a primary target in Bodega, Bay Area, and central coast ports. Rockfish were a primary target of post-war central California recreational fleets, with $74 \%$ of statewide rockfish catch being landed in central and northern ports in 1947, dropping to $34 \%$ by 1954 with the rest taken south of Point Conception where black rockfish are scarce (Young 1969). Since the early 1980s, the earliest years for which we have recreational catch surveys in California, black rockfish landed north of Point Arena have averaged about $75 \%$ of statewide landings per year (RecFIN 2023).

### 1.6 Summary of Management History and Performance

Prior to the adoption of the Pacific Coast Groundfish Fishery Management Plan (FMP) in 1982, Black Rockfish were managed through the California state regulatory and legislative processes. With implementation of the FMP, Black Rockfish came under the management authority of the Pacific Fishery Management Council (PFMC) and were managed as part of the Sebastes complex. At the time Black Rockfish had not undergone rigorous stock assessment and did not compose a large fraction of the landings so was classified and managed as part of the "Minor Nearshore Rockfish" group (PFMC 2008).

Since the early 1980s, a number of federal regulatory measures have been used to manage the commercial rockfish fishery including cumulative trip limits (generally for two-month periods) and seasons. Starting in 1994 the commercial groundfish fishery sector was divided into two components: limited entry and open access with specific regulations designed for each component. Limited entry programs were designed in part to limit bottom contact gears and the open access sector includes gears not making bottom contact, e.g. hook and line. Other regulatory actions for the general rockfish categories included area closures and gear restrictions set for the four different commercial sectors - limited entry fixed gear, limited entry trawl, open access trawl, and open access non-trawl (which includes the nearshore fishery).

In 2000, the PFMC's rockfish management structure changed significantly with the replacement of the Sebastes complex -north and -south areas with Minor Rockfish North (Vancouver, Columbia, and Eureka, International North Pacific Fisheries Commission (INPFC) areas) and Minor Rockfish South (Monterey and Conception INPFC areas only). The OY for these two groups was further divided (between north and south of $40^{\circ} 10^{\prime} \mathrm{N}$. lat., Cape Mendocino, California) into nearshore, shelf, and slope rockfish categories with allocations set for Limited Entry and Open Access fisheries within each of these three categories (January 4, 2000, 65 FR 221; PFMC 2002, Tables 54-55). Species were parceled into these new categories depending on primary catch depths and geographical distribution. Black Rockfish was included with the minor nearshore rockfish complex. Currently, Black Rockfish is assigned its own California-specific harvest limits (OFL, ABC, ACL, and Fishery HG). The fishery HG is shared between the non-trawl commercial and recreational fleet.

Both commercial and recreational fleets are subject to marine protected areas (MPAs). An initial set of MPAs around the Channel Islands in southern California became effective in 2003. The MPAs were later expanded under authority of the Marine Life Protection Act (MLPA) enacted in 1999, creating a network of MPAs which went into place in phases beginning with the central coast in 2007, north central coast in 2010, and the south and north coasts in 2012.

The state of California routinely adopts state regulations for groundfish, including Black Rockfish, for consistency with federal regulations developed through the PFMC process. Authority to craft these regulations was granted by the California Legislature to the California Fish and Game Commission (FGC) through passage of the Marine Life Management Act (MLMA) in 1998. As required by this legislation, the FGC adopted the Nearshore FMP and a commercial restricted access permit program in 2002 which established the Deeper Nearshore Species Fishery Permit, to be effective starting in the 2003 fishing year. A Deeper Nearshore Species Fishery Permit is required to retain commercially caught Black Rockfish. In addition to the requirement for a permit, the commercial regulations for Black Rockfish include gear limitations, area-specific bimonthly trip limits and rockfish conservation areas (RCAs). RCAs are seasonally adjusted depth limits impacting trawl and non-trawl gears that were initially established in 2002 to reduce impacts to overfished species. The commercial RCAs restricted fishing from occurring between 20 to 30 fm and 75 to 150 fm along the California coast, with specific depth limitations varying by area and time of year. In the area north of $40^{\circ} 10^{\prime} \mathrm{N}$. lat., Black Rockfish receives its own species-specific trip limit separate from the other nearshore species. South of $40^{\circ} 10^{\prime} \mathrm{N}$. lat., Black Rockfish are included in an overall deeper nearshore species bimonthly trip limit.

Similar to the commercial fishery, depth restrictions in the recreational fishery were implemented in the early 2000 's to reduce impacts to rebuilding shelf rockfish species. This action shifted recreational groundfish effort into the nearshore waters, generally shallower than 30 fm between 2008 and 2016 in the areas where Black Rockfish are most abundant off California (Figure 7). As shelf rockfish stocks recovered during the 2010s, recreational season and depth regulations relaxed, and longer seasons with deeper depth limits were implemented. In response to results from the 2021 assessments for copper and quillback rockfishes, numerous changes were made to recreational fishery regulations for the 2023 season. These changes include extended closed seasons in all management areas. The open season in most management areas is broken into an all-depth fishery where no depth restrictions apply and an offshore fishery where anglers are required to fish seaward of the 50 fm RCA line. During an offshore fishery, take and possession of nearshore rockfish, cabezon and greenling is prohibited in all waters. These changes in depth restrictions are expected to reduce catch of all nearshore rockfish, including Black Rockfish.

A daily bag and possession limit for the Rockfish Cabezon Greenling (RCG) complex, which includes Black Rockfish, was at 15 -fish in prior to 2000, then was reduced to 10 -fish and has remained 10 -fish since. Within the 10 -fish daily bag and possession RCG limit, a sub-bag limit for Black Rockfish of 5 fish was implemented in 2015 to keep catch within harvest limits. Also in 2015, three stock assessments were performed for Black Rockfish in areas separated by the Washington, Oregon, and California state boundaries. The California stock was found to be at a depletion level of 33 percent with an increasing biomass trend. Because this is below the management target and recent catches had been higher than harvest limits, the sub-bag limit was further reduced to three fish within the ten daily RCG limit beginning with the 2017 management cycle. Lower than projected Black Rockfish mortality in the recreational fishery after 2017 resulted in increasing the bag limit in-season from three to four fish in 2019 and ultimately elimination of the sub-bag limit in 2021.

A history of recent Black Rockfish harvest limits and estimated impacts are detailed in Table 1. Limits specific to California started in 2017, whereas previous years' limits included waters off of Oregon. Harvest levels for Black Rockfish have not exceeded the ACL.

### 1.7 Fisheries off Canada, Alaska, and/or Mexico

Black rockfish are rare south of Point Conception, with possible intermittent dispersal to a few offshore islands. Although sometimes reported as ranging as far south as northern Baja California, they are not common enough in that region to be classified as a significant component of Mexican fisheries. Fisheries north of California, including Canada and Alaska, are detailed in the assessments for Oregon and Washington.

## 2 Data

The STAT presented an online overview of available data sources for the California black rockfish assessment during the PFMC Data Workshop held February 1, 2023. The STAT also met with industry stakeholders to solicit information relevant to the assessment, and has included a perspective from commercial fisherman Kenyon Hensel (Appendix A). Graphical summaries of data sources used in the northern and central base models are provided as Figure 4 and Figure 5.

### 2.1 Commercial Fisheries Data

Commercial data sources used in the California assessment span the period 1916-2022, with an assumed linear ramp in catch from 1875 to the first year of available data (Figure 3). This is consistent with reports of a developed rockfish fishery in California in 1875, going back as far as 1860 , however there is considerable uncertainty in estimates of historical catch (Phillips, 1957).

### 2.1.1 Commercial Landings and Discard

## Landings

Estimates of commercial landings in California are derived from two primary data sources: a cooperative port sampling program (California Cooperative Groundfish Survey, CCGS) that collects information including species composition data (i.e. the proportion of species landed in a sampling stratum), and landing receipts (sometimes called "fish tickets") that are a record of pounds landed in a given stratum. A map of CCGS port complexes is provided as Figure 8. Strata in California are defined by market category, year, quarter, gear group, port complex, and disposition (live or dead). Although many market categories are named after actual species, catch in a given market category can consist of several species. For example, about 5\% of fish landed in the "black rockfish" market category (252) were blue rockfish over the period 1981-2022 (PacFIN 2023). Another 1\% of fish landed in market category 252 were a mixture of yellowtail, china, and widow rockfish over the same period. Species composition samples collected by CCGS port biologists are used to partition catch recorded in market categories to individual species. These "expanded" catch estimates are used in stock assessments and available from PacFIN.

PacFIN is the repository for commercial landings data since 1981, and estimated catches from the database (queried $4 / 3 / 2023$ ) indicate that more than $95 \%$ of black rockfish commercial catches (all gears combined) have been landed in northern California counties over the past decade (Figure 9).

Prior to 1981, a variety of sources were available to reconstruct black rockfish catches. Working backwards in time from 1980, these are:

- 1978-1980. CALCOM; the database containing CCGS port sample data (species compositions and biological data such as lengths and ages). Species composition sampling began in 1978 and has been applied to landing receipt data for this time period to estimate catches.
- 1969-1977. Species composition estimates from the earliest available samples (1978-1982, depending on available data in each region) were applied to landing receipts over this time period. We refer to these data as the "ratio estimates."
- 1916-1968. Ralston et al. (2010) created a catch reconstruction for California, applying available species composition data to time series of total rockfish landings. These estimates are stratified by region (region 2 corresponding to the northern area in this assessment), with all others assigned to the central area. Reconstructed catches are also partitioned into course gear groups, trawl and non-trawl.
- 1875-1916. A linear ramp was used to represent catches leading up to the first year of the Ralston et al. reconstruction.

As noted in the 2015 stock assessment, a few years of commercial catch estimates were considered inaccurate for various reasons, and these were revised by CDFW staff for that assessment. Specifically, these include 1983-1985 for the commercial non-trawl sector, and 1981-1982 for the commercial trawl sector. Details of these changes are provided by Cope et al. (2016), and were adopted without modification in this analysis.

The STAT revisited estimation of landings by sector from the ratio estimator period due to a strange pattern in the allocation of catch among sectors. A large fraction of total landings was assigned to the trawl fleet over this period, with a similarly small allocation to the non-trawl sector. This is inconsistent with estimates prior to and after these years, so we applied species compositions from 1978-1982 in market category 250, by year and gear, and port complex, to total landings to by gear and port complex over the period 1969-1977. We feel that the revised estimates for 1969-1977 (red and blue lines in Figure 10) are much more consistent with the trends before/after from other sources.

Commercial landings in the northern area (Point Arena to the OR/CA border) were trivial prior to about 1920, picking up slowly until wartime demand for fish caused a rapid spike in harvest by trawl and nontrawl gears (Figure 11, upper panel; Table 2). After the war, commercial catch steadily declined until the mid-1960s, rose again through the 1990s with a shift away from trawl landings into non-trawl gears, then declined again to relatively consistent levels over the past two decades.

By comparison, commercial landings in the central area (south of Point Arena) are estimated at slightly above 50 mt per year from 1916-1920, although estimated catches during this early time period are highly uncertain (Figure 11, lower panel; Table 3). By the mid-1950s, commercial catches were on a similar scale to recreational landings, decreasing to only a small fraction of total central area removals by the early 1980s. Commercial harvest increased briefly in the 1990s, but has remained a minor component of total landings since roughly the turn of the century.

## Discard

The West Coast Groundfish Observer Program (WCGOP) provides observer data on discarding practices across sectors since 2003. An examination of discard ratios (dead discard / retained catch) did not show any trend over time, with annual estimated discard rates varying from $<0.5 \%$ to nearly $4.5 \%$ (Figure 12).

The STAT also examined estimates of discard mortality ratios based on WCGOP's Groundfish Expanded Mortality Multiyear (GEMM) report. A catch-weighted average discard ratio estimated from the GEMM report produced an estimate of 1.9\% for the period 2002-2021 (non-trawl gears). Data from the trawl sector, which is a minor component of recent black rockfish commercial catches, were highly variable and not considered. Due to high levels of inter-annual variability in discard rates, and the low overall percentage of discarded catch in the commercial fishery data, dead commercial discard was estimated as a fixed $1.9 \%$ of landings for all years in the assessment.

### 2.1.2 Commercial Length and Age Compositions

Commercial length data are largely unchanged since the last assessment, with the exception of additional years' data and the use of discard length composition data from WCGOP (Table 12, Table 13). We aggregated catch-weighted length compositions into $2-\mathrm{cm}$ bins (fork length) by year, gear group (trawl, non-trawl dead, and non-trawl alive), and region (north/south of Point Arena). Length sample sizes south of Point Arena (the central area) were insufficient to warrant separate live/dead fleets for the non-trawl gear group, so conditions were aggregated. No trawl length samples were available from the central area, and trawl sample sizes in the north declined after the 1980s. Commercial lengths in the north are consistently larger on average than in the central area, although sample sizes from the central commercial fleet are small (Figure 13).

Commercial age data were updated and amended with recent years' data for this assessment (Table 9, Table 10). No commercial ages are available from the central area. In the northern area, the past three years (2020-2022) have seen significant increases in sample sizes. This is largely due to the implementation of mandatory port sampling for groundfish landings, and the tireless efforts of welltrained, efficient CCGS port samplers stationed in that region. Lastly, we corrected an error in the assignment of age compositions to years in the 2015 assessment, although this had little effect on the outcome (a slightly less depleted stock, and changes to patterns in early rec devs). The corrected age compositions are used in the current assessment.

## Northern area commercial lengths

Catches landed dead by non-trawl gear types in the northern area have the largest sample sizes and longest time series among the commercial fleets (Figure 14). Catches landed alive by the same fleet have a smaller proportion of fish larger than 40 cm , possibly reflecting a preference for "plate-size" fish in the live-fish market (Figure 15). Trawl landings, on the other hand, appear to have contained the largest fish, on average, with means consistently above 40 cm (Figure 16). However, this fleet has not contributed significant landings in recent years. Distributions of length from commercial discards are generally stable over time, with mean lengths consistently smaller than 30 cm (Figure 17).

## Central area commercial lengths

Due to the small amount of live landings in the central area, commercial non-trawl catches were represented as a single fleet. Even after aggregating across condition types (live/dead), the amount of length data for this fleet was minimal, with only five years included in the model (Figure 18). Due to these small sample sizes, length comps for the commercial discards were assumed to be the same as for the northern area (Figure 17).

## Northern area commercial ages

No female ages were available in from 1982 in the commercial trawl fleet, so males were entered as maleonly to avoid skewing estimated sex ratios. Males in 1984 also appear to be anomalously old for their size, which we revisit in our discussion of fits to the data. Data from a 2019 commercial pilot program conducted by CDFW were included in the base model and CAAL residuals do not appear to be significantly different from other sources. However, the size distribution of fish sampled by that program is quite different from data collected by CCGS, and the STAT understands that the program purchased fish (Figure 21). It's not clear if that is the cause of the shift in size distribution, but there could be an incentive for fishers to sell smaller fish, on average, in that situation. Samples from the pilot program came from northern ports (Crescent City and Eureka). Samples from Morro Bay were also taken, but these were not included due to small sample size.

### 2.2 Recreational Fisheries Data

### 2.2.1 Recreational Landings and Discard

Estimates of recreational landings and discard in this assessment span the period 1928-2022 (Figure 3) and are derived from three primary sources, described below, and summarized by year, boat mode, and region in Table 14.

Historical recreational landings and discard, 1928-1980
Ralston et al. (2010) reconstructed estimates of recreational rockfish catch and discard in California, 1928-1980. Reported landings of total rockfish were allocated to species based on several sources of species composition data. For this assessment, historical recreational catch was stratified by year, area (north and south of Point Arena), and boat mode (Table 14).

## Marine Recreational Fisheries Statistics Survey (MRFSS), 1980-2003

From 1980-2003, the Marine Recreational Fisheries Statistics Survey (MRFSS) executed a dockside (angler intercept) sampling program in Washington, Oregon, and California. Data from this survey are available from the Recreational Fisheries Information Network (RecFIN). RecFIN serves as a repository for recreational fishery data for California, Oregon, and Washington (www.recfin.org).

MRFSS-era recreational removals for California were originally estimated for two regions: north and south of Point Conception from 1993-2003, and prior to that north and south of the San Luis Obispo / Monterey county line. Data from Albin et al. (1993) have been used in recent assessments to partition catches consistently around Point Conception. For this assessment, we use a similar approach to partition catches north and south of Point Arena.

Partitioning of the catch began with statewide estimates of statewide black rockfish catch in numbers from Ralston et al. (2010) and MRFSS, stratified into party/charter ("PC" mode, aka CPFVs) and private/rental (PR) boat modes (Figure 22). Minor catches in shore modes were aggregated with the PR mode and are labeled here as "PRplus." To partition the catch in numbers north and south of Point Arena, we relied on estimates of catch by coastal county district, 1981-1986, as reported by Albin et al. (1993). The percentage of catch landed from Del Norte through Sonoma counties was used in each of the reported years in Albin et al., and the average fraction of catch from 1984-1986 was used as a starting point for a linear interpolation to the CRFS-era catches. Specifically, the interpolation ended with the average fraction of catches in CRFS districts 5 \& 6 from 2005-2007 (Figure 23). For years prior to 1981, we estimated the fraction of catch north of Point Arena using the percentage of boat mode effort by area during the period 1958-1961, roughly $20 \%$, as reported by Miller and Gotshall (1965, their Figure 14). We interpolated between this estimate in 1960 and the average percentage of catch north of Point Arena,

1981-1983, based on Albin et al. Years prior to 1960 were assumed to have the same fraction of catch north of Point Arena (Figure 23).

Once the proportion of catch in each area was estimated, we applied it to the statewide catch in numbers to produce estimates of catch in number by year, area, and mode (Figure 24). Estimates of average fish weight $[\mathrm{kg}]$ are available from MRFSS and CRFS at the county and CRFS district level, respectively, by year, area, and mode (Figure 25). We multiplied average weight times estimates of catch in numbers to produce estimates of catch in weight $[\mathrm{kg}]$ by year and mode, north and south of Point Arena (Figure 26). Average weights by mode prior to the MRFSS era were taken from Miller and Gotshall (1965) for the central area. For the northern area, average weight was taken from Karpov et al. (1995), assuming the same value for both PC and PR modes (Figure 25).

## California Recreational Fisheries Survey (CRFS), 2004-2016

MRFSS was replaced with the California Recreational Fisheries Survey (CRFS) beginning January 1, 2004. Among other improvements to MRFSS, CRFS provides higher sampling intensity, finer spatial resolution ( 6 districts vs. 2 regions), and onboard CPFV sampling. Estimates of catch from 2005-2022 were downloaded from the RecFIN database, and CRFS estimates from 2004 were retrieved from historical records pending updates to historical data in RecFIN. We assign catch estimates and length data from districts $5 \& 6$ to the northern area, and all other districts (effectively districts $3 \& 4$ ) to the central area (Figure 27).

## Recreational Discard

Methods used to determine recreational discard mortality have changed significantly over time. Under MRFSS, catch estimates were stratified into sampler-examined retained catch (Type A), angler-reported dead discard and otherwise unavailable retained catch (Type B1), and angler-reported fish that were discarded live (Type B2). The reliability of angler-reported catch and disposition (live/dead) is unknown for this data set. Under CRFS, catch estimates since 2005 are adjusted to account for estimates of depthdependent discard mortality. These methods have changed over time, as well.

Dead discards are reported by CRFS, and we use those estimates as provided (2005-2022). Patterns in the average weight of discarded fish are consistent with changes to sub-bag limits (e.g. 2015-2020) that would result in a greater fraction of large fish being discarded (Figure 28). Prior to 2005, we approximate total recreational dead discard using a fixed percentage, as this can be easily varied to understand the sensitivity of the model to alternative levels of assumed total discard mortality. Miller and Gotshall (1965, their Table 8) reported the number of black rockfish discarded at sea in 1960 based on observer data from six ports between Bodega Bay and Avila, California. Of the 496 black rockfish caught, 15 (3\%) were discarded, and we assume this discard rate for catches prior to 2005.

### 2.2.2 Recreational Length and Age Compositions

Recreational length composition samples for California were obtained from several sources, depending on the time period and boat mode. Input sample sizes for recreational length composition data were based on the number of observed trips, when available. Other proxies that were used to estimate the number of trips are described below. Input sample sizes and the number of fish measured are provided as Table 12 and Table 13. All lengths obtained in units of total length (TL) were converted to fork length (FL) using the equation $\mathrm{FL}=-1.421+0.983(\mathrm{TL})($ Echeverria and Lenarz, 1984).

CPFV length composition data, 1959-1966

The earliest available length data for this assessment were described by Miller and Gotshall (1965), who assembled length samples from CPFV $(1959-61,1966)$ and private boats $(1959,1966)$ in the "central" area of this assessment.

## California Cooperative Groundfish Survey CPFV Sampling, 1978-1984

Commercial port samplers with the California Cooperative Groundfish Survey sampled landings from CPFVs operating north of Point Conception in the late 1970s and early 1980s. This data set contains sexspecific length information, and along with the Miller and Gotshall data is one of the earliest, high-quality sources of length data available from recreational fleets in central California.

MRFSS Recreational Length Data, 1980-1989 and 1993-2003; also CRFS data from 2004

Unsexed length data of retained fish were collected by MRFSS dockside samplers and downloaded from the RecFIN website. Using county and interview site information, we assigned MRFSS-era length data to CRFS districts and assigned "districts" $5 \& 6$ to the northern area. For MRFSS length data (1980-2003) the number of trips was approximated based on unique combinations of the variables ID_CODE, INTSITE, and MODE in the Type 3 (sampler-examined catch) data.

Prior to the development of the current RecFIN website, MRFSS and CRFS data were combined into standardized tables. The CRFS data from 2004 are not currently posted on the "main" RecFIN website, but data from this year was available from "MRFSS" databases that also included CRFS data.

CDFW Onboard CPFV Observer ("DWV") Survey, 1988-1998

Lengths from CPFVs operating primarily out of central California were measured by CDFW onboard observers as part of a recreational survey led by Deb Wilson-Vandenberg and Paul Reilly. This survey is often referred to as the "DWV" survey, and a relational database for this project was developed and documented by Monk et al. 2016.

CRFS Recreational Length Data, 2005-2022
Length data from the CRFS were downloaded from the RecFIN website and used without modification. These include lengths of retained fish by year, mode, and district. Lengths of discarded fish are also available, recorded by onboard CPFV observers (Table 12 and Table 13).

Length compositions from each of these sources were organized into catch fleets (PC, PR + shore, rec discard), survey fleets (DWV) and areas (north, central) for inclusion in the stock assessment model (Figure 29, Figure 30, Figure 31, Figure 32, Figure 33, Figure 34).

## Recreational ages

New age data from recreational sources include CDFW samples from 2021 and 2022. This assessment also uses recreational ages from the 2015 assessment (1980-1984), allocated to match the revised fleet and area structure. We tabulated samples sizes for recreational age data by year and source for reference (Table 9, Table 10), and provide bubble plots of the data to visualize the conditional-age-at-length format by fleet and year (Figure 35, Figure 36, Figure 37, Figure 38).

### 2.2.3 Recreational Abundance Indices (Catch per Unit Effort)

This assessment makes extensive use of time series of relative abundance derived from recreational fishery catch-per-unit-effort (CPUE). These data were often limited in terms of their temporal and/or spatial coverage, and/or required standardization to account for regulatory actions affecting catch rates. Most sources were based on boat modes (private and rental boats, or party and charter boats), as these are the recreational modes that most frequently encounter black rockfish.

### 2.2.3.1 CRFS Dockside Private Boat Index, 2004-2022

Catch and effort data from CRFS dockside sampling of private boats, 2004-2022, were provided by CDFW for use in this assessment. The data include catch (number of fish) by species, number of anglers (i.e. effort units are angler trips), county, port, interview site, year, month, and CRFS district. We created a 2-month "wave" variable to model seasonal changes in CPUE. The sample size of the unfiltered private boat CPUE data is much larger than the MRFSS CPFV data set, with sampling of all counties in the assessed area, which makes it a promising candidate for a CPUE index of black rockfish.

## CRFS Private Boat Index: Data Preparation, Filtering, and Sample Sizes

The impact of bag limits introduced from 2015 to 2020 was unknown, so we examined the proportion of bags with 5 or more black rockfish as well as 10 or more black rockfish. Since individual bag information was not available, we looked at fish per angler trip as a proxy, plotting the proportion of bags with 5 or more black rockfish over time (the largest sub-bag limit). There is a clear pattern of bag size being reduced in 2015, particularly in the northern districts (Figure 39). Given the potential for bias in CPUE, we excluded data from 2015-2020.

Other data filters applied to the PR index data set are listed in Table 15. And the distribution of samples by year and area is provided as Table 16

## CRFS Private Boat Index: Model Selection, Fits, and Diagnostics

The counts of black rockfish per trip in the dataset were heavily skewed with a large proportion of zeros. To model the counts, we used a Bayesian zero inflated negative binomial (ZINB) regression model implemented with the 'brms' package in R (Burkner, 2017), which is built upon the Stan (Stan Development Team, 2017) No-U-Turn Sampler (NUTS) (Hoffman and Gelman, 2014). Model selection was based upon the Widely Applicable Information Criterion (WAIC; Watanabe, 2010).

Model development began by considering the simple negative binomial regression model; modeling a single linear predictor with a log link function on the mean of the negative binomial. Main effects of year, district, a 2 month "wave" variable, and target species (prim1Common) were considered. Additionally, the inclusion of year:district and district:wave two-way interaction terms were considered. All variables were found to be highly significant under the simple negative binomial model. However, upon further comparison of the resulting model's predictive distribution for the proportion of zeros, the simple negative binomial model was determined to insufficiently capture the observed proportion of zeros in the data.

Model development continued assuming the ZINB likelihood, which introduces a zero-inflation parameter that is modeled with an additional linear predictor and a logit link function. Model selection for the zero-inflation linear predictor considered main effects for year, district, "wave", and target species (prim1Common), as well as an intercept only model. The WAIC criterion supported inclusion of all main effects as well as a year:district and district:wave interaction terms (Table 17).

The index was created for the July_Aug wave for all sampled years, aggregating posterior distributions in the northern and central districts respectively (Figure 40).

### 2.2.3.2 Central California Onboard CPFV Observer Index, 1988-1998

In addition to the dockside index described above, this assessment makes use of two indices derived from onboard CPFV observer data and collected during different time periods of the fishery. The primary advantage of onboard observer data is that catch and effort data are based on individual fishing stops (or "drifts"), rather than aggregated at the trip level, and information about actual fishing locations is available, rather than port of landing or interview site. This location information, when combined with recent maps of rocky reef habitat, allows us to associate catch rates (which we assume are proportional to density rather than abundance) with reefs of known area and produce habitat area-weighted CPUE indices.

The CDFW (formerly CDFG) Central California Marine Sport Fish Project sampled the Northern and Central California CPFV fleet using onboard observers from 1987-1998. Observers recorded the total catch (kept and released fish) of a subset of anglers during each fishing drift. Catches from drifts occurring at a single CDFW fishing site were aggregated into a "fishing stop." Each stop in the database is associated with the closest reef structure. Retained fish were measured at the end of the fishing day. Additional details about the survey design, data collected, spatial associations between fishing stops and reef habitat, and the structure of the relational database are described by Monk et al. (2016). This index is often referred to as the "Deb-Wilson Vandenberg" or simply "DWV" index.

## Central CA Onboard CPFV Index: Data Preparation, Filtering, and Sample Sizes

Catch is the number of black rockfish caught at a fishing stop, but only retained fish were included in this index because associated length compositions were derived from retained catch at the end of the day. Effort is in units of angler-hours, based on the subset of observed anglers at each fishing stop.

As noted by Monk et al. (2016), samples in 1987 were only collected in Santa Cruz and Monterey counties, so we excluded 1987 from the index. The relational database contains information on over 100 individual reefs, and catch is associated with the nearest reef structure. The data are too sparse at the level of individual reefs to estimated changes in catch rate over time, so we aggregated reefs by CRFS district. In addition to removing data from 1987, we examined the distribution of fishing time and removed drifts shorter than 5 minutes. Trips with at least $90 \%$ groundfish catch were retained, and the small number of trips in districts $5 \& 6$ were removed (i.e. this index is only used for the central area). Last, we removed drifts in depths greater than 40 fm as catch rates decline in deeper waters (Table 18, Table 19).

## Central CA Onboard CPFV Index: Model Selection, Fits, and Diagnostics

Due to the highly skewed count data and large proportion of zeros ( $86 \%$ ), a negative binomial regression was evaluated with year, disctrict, 2-month 'wave', and depth bin (0-20 and 20-40 fm) effects. An offset term equal to the $\log$ of angler hours was used to model catch rates. Model selection considering all 2way interactions was attempted, but convergence issues limited the number of candidate models. We were able to evaluate all combinations of main effects models and interactions between year and disctrict and between year and depth bin. The BIC-best model included main effects for depth bin, CRFS district, 2month wave, and year (Table 20) The negative binomial model was able to capture the proportion of zeros in the data set, by year, but predictive distributions of the annual means were imprecise prior to 1993 (Figure 41, Figure 42).

The final DWV index shows a declining trend (Figure 43) with increasing precision over time (Table 21).

### 2.2.3.3 CDFW Onboard CPFV Observer Index, 1999-2022

## Data preparation, filtering, and sample sizes

We queried a database of California onboard CPFV observer data spanning the years 1999-2022. The database structure and contents were described by Monk et al. (2014). Each observation included a unique trip and drift identifier, and a subset of anglers was observed at each drift. Drift-level information included catch of black rockfish in numbers (kept and discarded) including zeros, number of observed anglers, time fished (in minutes), location where drift began (latitude and longitude), year, month, county, CRFS district, depth (in feet), distance from nearest reef habitat (in meters), and unique reef identifier.

Over 65,000 observed drifts from CRFS districts 1 and 2 (southern California) were discarded, as only 49 black rockfish (kept + discarded) were observed over the entire time period. This left 30,595 observed drifts in central and northern California for consideration in the index. The northern region (districts 5 \& 6 ) is sampled to a lesser extent than the central region (districts $3 \& 4$ ). The north contains samples ranging from 2008-2022, representing months May-September. By contrast, the central region contains samples ranging from 2001-2022 representing months April-December. In the central region data from 1999-2000 were dropped due to changes in the bag limit and number of hooks per line. Other filters included removal of drifts with effort recorded as zero, removal of missing depths and imputation based on available bathymetry, excluding drifts $>5$ hours and drifts in bays or unknown locations, and depths $<300 \mathrm{ft}$ in districts 3-4 and $<150 \mathrm{ft}$ in districts 5-6 based on analysis of catch by depth. Drifts with fewer than 2 or greater than 15 anglers observed were excluded, as well as drifts occurring greater than 100 meters from reef habitat (Table 22).

In the description of the private/rental boat index, we noted a reduction in the fraction of "bags" containing 5 or more black rockfish when bag limits were in effect. The onboard observer data is not affected by this, as observers record both retained and discarded catch and catch rates are based on both kept and discarded fish. Using the onboard observer data, we see that the proportion of discards increased in district 6 during the sub-bag limit, although other districts were not as affected (Figure 44).

## Model development, selection, and diagnostics

The counts of black rockfish per trip in the dataset were heavily skewed with a large proportion of zeros. To model the counts, we used a Bayesian zero inflated negative binomial (ZINB) regression model implemented with the 'brms' package in R (Burkner, 2017), which is built upon the Stan (Stan Development Team, 2017) No-U-Turn Sampler (NUTS) (Hoffman and Gelman, 2014). Due to the sparsity of samples, and the potential use of a hierarchical model structure, model selection was based upon the Widely Applicable Information Criterion (WAIC; Watanabe, 2010).

Model development began by considering the simple negative binomial regression model (without zeroinflation); modeling a single linear predictor with a $\log$ link function on the mean of the negative binomial. Main effects of year, month, district, and binned depth (i.e. $(0,50](50,100](100,150]$ $(150,300])$ were considered. Additionally, the inclusion of year:district and district:wave two-way interaction terms were also considered. All variables were found to be highly significant under the simple negative binomial model, however the simple negative binomial model was determined to insufficiently capture the observed proportion of zeros in the data. Model exploration was continued under the ZINB likelihood, which introduces a zero-inflation parameter that is modeled with an additional linear predictor
and a logit link function. While overly simplistic zero inflation models were not supported by WAIC, ultimately the zero inflation parameter was found to mimic the structure of the NB model (Table 23).

Due to the disparity of samples in the north as compared with samples in the central region (Table 24) a Bayesian hierarchical prior model structure was considered for interaction terms that mirror classical random effects. A'priori interaction terms are assumed to be distributed $\mathrm{N}(0, \sigma)$ and $\sigma \sim \operatorname{Half}-\mathrm{Cauchy}(0,1)$. This allows for the inclusion of interaction terms in the zero inflation parameter that would otherwise not be supported due to the lack of samples in some months and/or years in the north. The ZINB model was able to reproduce the observed proportion of zeros in the data, the mean catch, and represented a significant improvement over the model without zero inflation with repect to estimates of the standard deviation of catch relative to the observe values (Figure 45, Figure 46, Figure 47).

The index was created in the month of July for all sampled years, aggregating posterior distributions in the northern and central districts respectively (Figure 48, Figure 49).

### 2.3 Fishery-Independent Data

### 2.3.1 California Collaborative Fisheries Research Program (CCFRP)

The California Collaborative Fisheries Research Program (CCFRP) is a standardized hook-and-line survey that monitors species compositions, lengths (nearest cm ), catch rates (number of fishes caught per angler hour), and movements (km) of nearshore fish species. Assessments of sex are not routine onboard CCFRP sampling trips. The survey relies on a stratified random design using grid cells that are 500 m by 500 m in size as the sample unit to collect and compare information inside and outside of California's marine protected areas (MPAs; Starr et al. 2015). CCFRP was established in central California in 2007 and expanded to a state-wide spatial extent in 2017. The original sampling areas off central California were Año Nuevo, Point Lobos, Piedras Blancas, and Point Buchon (Figure 2). Areas added north of Point Conception as part of the statewide expansion included Bodega Head, Stewart's Point, Ten Mile, and Cape Mendocino. Sampling trips took place from July to October in all areas and years except for Cape Mendocino and Ten Mile, which were also sampled in June. The mode for the sampling period was August. CCFRP employs catch and release methods and is not subject to recreational bag limits or other (e.g., size- or season-based) fishery regulations. Additional information can be found at https://www.ccfrp.org/.

At present, CCFRP is the only spatially-expansive fishery-independent survey that samples nearshore, rocky reef habitat along the coast of California. The 2023 black rockfish stock assessment uses a regionspecific index of relative abundance derived from CCFRP data to quantify changes through time. Point Arena was used to separate northern (CRFS districts 5 and 6) and central (CRFS districts 3 and 4) California. Given that black rockfish can travel considerable distances (Figure 1, Figure 50), and that black rockfish density varies greatly with latitude along the California coast, we pooled MPA and associated reference sites for all analyses.

## Data preparation, filtering, and sample sizes

Drift-level information was identified as most appropriate for CCFRP indices of abundance (PFMC SSC, 2023). We obtained drift-level data from CCFRP on March 28, 2023. Each drift contained information about sampling date, geographic location (longitude and latitude; decimal degrees), depth (ft), and the duration of fishing (hr). The database also included the species and lengths of each fish caught (2007 to 2022). A separate tag recapture database includes species-specific information for fishes that were tagged
and released as part of CCFRP sampling and either recaptured on CCFRP trips or caught and reported by commercial or recreational fishers.

The unfiltered CCFRP data set included information from 767 trips, 10,571 drifts, and 212,660 fishes (Table 25). We excluded drifts that took place outside of pre-defined grid cell locations, in areas deeper than 120 ft , or had a duration less than $2 \mathrm{~min}(\mathrm{n}=1,342)$. We also excluded drifts south of Point Conception ( $\mathrm{n}=1,440$ ) because they were located beyond the geographic extent of the stock. A small number of drifts $(\mathrm{n}=14)$ were missing specific geographic locations and were also eliminated from analyses. This filtering process resulted in a total of 7,775 drifts from CCFRP areas in central and northern California, with the greatest sampling effort in CRFS district 3 (Table 26).

To estimate drift-level effort (number of angler hours), we multiplied the number of anglers participating in each drift by the duration of fishing. The number of black rockfish sampled per drift was weighted according by normalized proportions of rocky reef habitat in each CRFS district (Table 27) to account for area- and region-specific trends in relative abundance resulting from differences in the amount of suitable habitat. The normalized area weights were derived following methods developed by R. Miller (UCSC/SWFSC) and described in previous assessments (e.g. Dick et al. 2017). CRFS districts were assigned based on county, with Point Buchon, Piedras Blancas, and Point Lobos assigned to district 3, Año Nuevo, Bodega Head, and Stewart's Point were assigned to district 4, Ten Mile assigned to district 5, and Cape Mendocino assigned to district 6 . We divided district-weighted catch by drift-level effort to estimate catch per unit effort (CPUE; number of fish per angler hour). We explicitly represented zeros in the data by including drifts that sampled other species but no black rockfish and by including drifts did not catch any fish. Proportional sampling of black rockfish was greatest in district 4, followed by districts 6, 5, and 3 (Table 28). Design-based indices of CPUE were estimated at regional and statewide scales.

We were specifically interested in modeling the effects of depth on black rockfish distributions and densities because of known diel and seasonal vertical migrations (Green and Starr 2011). Additionally, previous research shows that including depth as a covariate in spatiotemporal models of abundance when mechanistic relationships are weak or non-significant is less problematic than omitting depth when the opposite is true (Johnson et al. 2019). Depth (ft) data, however, were not available for all drifts. This was primarily due to a lack of record keeping at Cape Mendocino and Ten Mile. We used available 2 m resolution bathymetric data (R. Miller, UCSC/SWFSC, pers. comm.) to impute missing depths ( $\mathrm{n}=580$ ), thereby enabling the use of all possible drifts during model fitting.

Finally, we estimated CCFRP length compositions for each region and year. Total length (nearest cm ) was measured at Cape Mendocino, Ten Mile, Stewart's Point, Año Nuevo, and Point Lobos. To standardize measurements of length for this assessment, we converted all total lengths (TL) to fork lengths (FL) using the equation: $\mathrm{FL}=\mathrm{TL}-0.39437 / 1.01102$ (CCFRP, unpublished data). We then estimated length frequencies using 2 cm bins. Length frequencies were roughly consistent inside and outside MPAs, with slightly larger fish observed inside MPAs (Figure 51). We pooled site-level information for length frequencies. Black rockfish were generally larger in northern California compared to central California (Figure 52).

## Model development, selection, and diagnostics

We used a generalized additive model (GAM) to reflect our expectation that spatiotemporal and environmental covariates have nonlinear effects on black rockfish catch (mgcv package in R; Wood 2011, Wood 2017, Wood et al. 2016). Model covariates included region as a factor, a cubic regression spline for year, a tensor product smooth for location (longitude, latitude; decimal degrees), a tensor product interaction of year and location, and a thin plate regression spline for depth ( ft ). Depth was restricted to
six effective degrees of freedom to minimize overfitting. Log-transformed angler effort (hr) was included as an offset and smoothing parameters were selected using restricted maximum likelihood (REML).

We explored both negative binomial and Tweedie GAMs, which jointly estimate probability of occurrence and numerical density for zero-inflated data sets. We used a log link function for both models and did not pre-specify theta for the negative binomial (defining the shape of the distribution) or p for the Tweedie (relating variance to the mean), thereby allowing these parameters to be estimated as part of the fitting process. When modeling unweighted catch, the Tweedie GAM generated higher adjusted R2, higher deviance explained, lower REML, and lower AIC than the negative binomial GAM (Table 29). For these reasons, we used the Tweedie GAM to model districted-weighted catch of black rockfish. Indices generated from Tweedie models also better match the scales of design-based indices and tend to perform well even when the underlying distribution is misspecified (Thorson et al. 2021).

We modeled district-weighted catch (Figure 53) to account for spatial differences in available rocky reef habitat and address slightly different trends in CPUE between northern and central California. We explored separate GAMs for each region, but there were insufficient data with which to model northern California (i.e., Cape Mendocino and Ten Mile) alone. We used data spanning the stock assessment area and the dredge function (MuMIn package in R ) to generate the full range of alternative models (Table 30). From these, the full model and the alternative model without region exhibited the lowest negative log likelihood, lowest delta AIC, and highest model weight (Figure 54). There were negligible differences in the performance of these top two models, so we selected the more parsimonious model without region
(Table 31). Partial covariate effects illustrated a general decrease in catch rates with year and depth, an increase in catch rates from south to north, and considerable variation in spatial patterns through time (Figure 55).

Input data for model predictions consisted of year, area-specific means for geographic location (longitude, latitude) and depth ( ft ), and an effort of 1 hr (making predictions of catch equivalent to CPUE). We predicted catch on the response scale and standard error on the log scale at the statewide and regional scale (Figure 56). We did not predict catch for northern California areas prior to 2017, thereby avoiding the pitfalls associated with predicting outside the spatiotemporal extent of the data. We summed areaspecific CPUE in each year to obtain regional indices of abundance. Additionally, we standardized each index by dividing year-specific CPUE by the overall mean (Table 6; Fig. 5).

Ages from CCFRP sampling are also included in this assessment (Table 10). Otoliths have been collected since 2017, and represent an important source of age data for the central area.

### 2.3.2 Abrams Thesis

Jeff Abrams (2014) conducted a research study aboard recreational charter boats from Crescent City Harbor, Trinidad Bay and the Noyo River Harbor. Rocky habitat was identified from high resolution bathymetric data and gridded into 500 m by 500 m cells (California Seafloor Mapping Project, data available from: http://seafloor.otterlabs.org/index.html). During a sampling event, cells were randomly selected to fish. Fish were captured via hook-and-line by researchers, students, or recreational fishers. The charter boat captain was not allowed to search and target fish within the cell. Fishing drifts started at the upcurrent/wind side of the cell and drifted to the opposite edge of the cell, then stopped the clock and reset for another drift (Jeff Abrams, pers. comm.) If it was certain that fishing was occurring over sand, the captain would generally reset. However, because cells were selected with a minimum area of rocky habitat, this was rare.

The NWFSC CAPS laboratory aged several hundred structures from this study that were not aged for the previous assessment. These are used as Conditional Age-at-Length (CAAL) data in the California model (Table 9).

### 2.3.3 Lea et al. 1999 Nearshore Life History Study

This study was primarily carried out in the 1980s (Lea et al 1999) in central California, and collected life history information for many nearshore species. Data were collected via research cruises, project vessels, as well as the Central California Council of Diving Clubs (Cen-Cal). Data sheets and otoliths discovered by California Department of Fish and Wildlife staff and samples (Table 10) were aged for the 2015 stock assessment and used again in the central area model.

### 2.4 Biological Data

### 2.4.1 Natural Mortality

Hamel (2015) developed a method for combining meta-analytic approaches to relating the natural mortality rate $M$ to other life-history parameters such as longevity, size, growth rate and reproductive effort, to provide a prior on $M$. In that same issue of ICESJMS, Then et al. (2015), provided an updated data set of estimates of $M$ and related life history parameters across a large number of fish species, from which to develop an $M$ estimator for fish species in general. They concluded by recommending $M$ estimates be based on maximum age ( $A_{\max }$ ) alone, based on an updated Hoenig non-linear least squares (nls) estimator $M=4.899 A_{\max }{ }^{-0.916}$. The approach of basing $M$ priors on maximum age alone was one that was already being used for west coast rockfish assessments. However, in fitting the alternative model forms relating $M$ to $A_{\max }$, Then et al. did not consistently apply their transformation. In particular, in real space, one would expect substantial heteroscedasticity in both the observation and process error associated with the observed relationship of $M$ to $A_{\max }$. Therefore, it would be reasonable to fit all models under a $\log$ transformation. This was not done.

Revaluating the data used in Then et al. (2015) by fitting the one-parameter $\mathrm{A}_{\text {max }}$ model under a $\log -\log$ transformation (such that the slope is forced to be -1 in the transformed space (as in Hamel 2015)), the point estimate for $M$ is:

$$
M=5.4 / A_{\max }
$$

Hamel and Cope (2022) further refined estimation of $M$ by appropriately accounting for sources and of error in both Amax and M . They recommend a prior defined as a lognormal distribution with median 5.4/Amax, as above, and log-scale standard deviation of 0.31 .

The oldest fish from California aged to date was a 514 mm (fork length), 35 -year-old female landed June 1984 in Bodega (the "central" area in this assessment). That particular fish is not included in the assessment due to a small number of samples taken in that year $(\mathrm{n}=12)$ by the sampling program. The oldest male was a 474 mm FL, 33 -year-old black rockfish landed in Eureka (the "northern" area in this assessment), also in 1984.

The prior for black rockfish in California is defined as a lognormal with mean $\ln \left(5.4 / A_{\max }\right)$ and $\mathrm{SE}=0.31$. Using a female maximum age of 35 the point estimate and median of the prior is 0.154 (with a log-space value of -1.869 ). Natural mortality of males was modeled as an exponential offset with no explicit prior.

### 2.4.2 Growth

### 2.4.2.1 Length at age

For this assessment, age and length data were initially fit external to the population dynamics model using the von Bertalanffy growth equation (von Bertalanffy 1957),

$$
\mathrm{L}_{\mathrm{t}}=\mathrm{L}_{\infty}\left(1-\mathrm{e}^{-\mathrm{k}\left(\mathrm{t}-\mathrm{t}_{0}\right)}\right) ;
$$

where $L_{t}=$ fork length $(\mathrm{mm})$ of fish at a given age $t$ (years), $L_{\infty}=$ theoretical average maximum length $(\mathrm{mm}), \mathrm{k}=$ growth constant (per year), and $\mathrm{t}_{0}=$ theoretical age at size zero. The parameters $\mathrm{L}_{\infty}, \mathrm{k}$, and $\mathrm{t}_{0}$ were estimated using the nonlinear least squares function in R ( R Core Team 2023).

To assess potential sources of variability in age and growth parameters, the STAT examined differences in sex, area, and time. Consistent patterns across our analyses include females growing larger than males, but also representing a smaller fraction of old individuals. These patterns are consistent across areas although there are fewer samples from the central area (south of Point Arena) relative to the northern part of the state (Figure 57). Looking at differences in female and male growth by area, the external fits to the data suggest that maximum size for both sexes may be greater in the central region, however the STAT recommends that more data from older individuals should be collected prior to using these external estimates directly in a stock assessment (Figure 58). Further subdividing the data by sex, area, and time period (1979-1984 and 2001-2022), suggests a possible change in growth over time (Figure 59). Fish in the northern area appear to have been larger at a given age during the earlier time period, although there was insufficient time to explore reasons for this during the current assessment. Data from the central area do not cover a sufficient range of ages in the more recent time period to draw conclusions about differences in maximum size.

### 2.4.2.2 Weight at length

The weight-length relationship used in the current assessment was estimated from private/rental boat samples of black rockfish, sexes combined ( $\mathrm{n}=22,046$; Source: CDFW). We estimated the parameters of the weight-length relationship ( $\mathrm{W}=\mathrm{aL}^{\mathrm{b}}$ ) using a log-log regression, and plotted the mean response using the back-transformed and bias corrected value for the ' $a$ ' parameter ( $a=1.707 \mathrm{e}-05, \mathrm{~b}=3.012$ ). We compared this relationship to the values used in the 2015 assessment, as well as values currently used in RecFIN (Figure 60). Following the 2015 assessment, it was determined that the source of the relationship used for the assessment (CDFW onboard CPFV survey, 1988-1998) is unknown, as noted by the lead investigators for that survey (c.f. Monk et al. 2016). Therefore, the current assessment uses parameter values estimated from the private/rental boat data.

### 2.4.2.3 Analysis of ageing precision and bias

Uncertainty in ageing error was estimated using a collection of 665 black rockfish otoliths with two age reads performed in 2023 by the NWFSC. Of these, 83 otoliths were double read by reader 1 (P. McDonald ) and reader 2 (L. Ortiz), and the remainder were double read by reader 2 and reader 3 (J. Hale) (Figure 61). Readers 2 and 3 aged otoliths for the majority of new age composition data used in this assessment, and double reads came from the same sources (CA Commercial, Recreational Biological Groundfish Sampling, CCFRP, Abrams research dataset, and the Commercial Pilot Project).

A separate model was fit for double reads of 781 otoliths performed in 2015-2017 by reader 4 (T. Johnson) and reader 5 (N. Atkins) (Figure 62). Of these, 62 were read twice by reader 5, and 17 were read once by reader 4 and twice by reader 5. This dataset included the double read data ( 318 otoliths) used
in the 2015 black rockfish assessment. This ageing error model applies to all age composition data collected prior to 2015, with the exception of the Abrams research dataset.

Ageing error was estimated using publicly available software (Punt 2008; Thorson et al. 2012). Reader 1, who was more experienced, was assumed to be unbiased. Reader 4 was assumed unbiased in the model for 2015-2017 reads. Several model configurations were explored for bias of the other readers (unbiased, linear, or curvilinear) and precisions of all readers (constant CV, curvilinear standard deviation, or curvilinear CV). The best model was selected using AICc. For the 2023 reads, the best fitting model had no bias among readers and curvilinear CV for all readers (Figure 64, Table 11). A model with curvilinear bias performed similarly ( $\triangle \mathrm{AICc}=1.9$ ). For the 2015-2017 reads, removing the oldest aged fish (aged 35 by reader 4 and 17 by reader 5) led to more reasonable parameter estimates, so this was done. The best fitting model had curvilinear bias for reader 5 and curvilinear CV for all readers (Figure 64, Table 11). A model with curvilinear standard deviation performed similarly ( $\triangle \mathrm{AICc}=0.3$ ).

The resulting estimates of ageing error indicated a standard deviation in age readings increasing from 0.04 years at age 0 to 6.2 years at age 40 (for 2023 reads), and from 0.06 years at age 0 to 3.6 years at age 40 (for 2015-2017 reads). Ages beyond 40 were assumed to have the same CV (SD/mean) as age 40 fish.

### 2.4.3 Maturity and Fecundity

Wyllie Echeverria (1987) reported estimates of female black rockfish maturity from California, finding that $50 \%$ of females were mature at 40 cm fork length and 7 years of age. Sample sizes were ambiguously reported in that study ( $\mathrm{n}>=160$ for the regression of female proportion mature vs. length). Maturity definitions were based on external gonad morphology, and histological methods were used to examine seasonality of spawning.

The 2015 black rockfish assessment defined maturity at length based on "functional maturity" estimates, which accounts for the effects of abortive maturation, skipped spawning, and follicular atresia. This is in contrast to "biological maturity" which only takes into account physiological development. Claire Rosemond (NOAA NMFS Sea Grant Fellow at Oregon State University) and Melissa Head (NWFSC) kindly shared the results of their recent research on female black rockfish maturity at length and age for use in this assessment, which also focuses on samples taken during the spawning season ( $\mathrm{n}=623$ ). Data were collected primarily off Oregon, and estimates of maturity at size and age reported for both biological and functional maturity. The base models for California both use the logistic, functional maturity at length relationship from their study (intercept $=-15.36163$ and slope $=0.38061$ ), resulting in a length at $50 \%$ maturity of 40.36 cm (Figure 65).

This assessment makes the assumption that fecundity is a power function of female body length, $\mathrm{F}=a \mathrm{~L}^{b}$. Values for $b(4.6851)$ and $a\left(1.407 \mathrm{e}^{-08}\right)$ were taken from Dick et al. (2017). Since the exponent of the fecundity-length relationship is greater than the exponent of the fecundity-weight relationship, weightspecific fecundity (eggs or larvae per gram female body weight) also increases with size.

### 2.5 Data sources evaluated, but not used in the California assessment

This section has been moved to Appendix B, due to the large number of data sources that were evaluated while preparing the final assessment. While these explorations were an important step in the development of base models, the STAT felt that moving this large section to an appendix would make for a more efficient review of the retained data sources.

## 3 Model

### 3.1 History of Modeling Approaches Used for this Stock

The first stock assessment of the California-only stock of black rockfish was conducted in 2015 (Cope et al. 2016). This assessment combined all recreational modes into a single, statewide fleet, and partitioned commercial fleets into two non-trawl (dead/alive) and one trawl. The assessment concluded that the stock was recovering from an overfished state and was in the precautionary zone as of 2015. Previous assessments covering the California coast defined a single stock south of Cape Falcon, Oregon (Ralston and Dick, 2003; Sampson 2007). Each of these assessments used a "fleets as areas" approach, with data from each state kept separate.

### 3.2 Response to STAR Panel Recommendations from Previous Assessment

The STAR Panel report from the 2015 black rockfish assessment identified unresolved problems and major uncertainties, noting that they applied to both the Washington and California stock. We list these below, and provide updated information on the status of relevant research.

## Unresolved problems:

The complexity of SS3 input files makes it difficult to detect errors that may still reside in the input files. None were specifically suggested or thought to occur in the Washington and California models, but this remains unknown.

Considerable efforts were made to ensure that the input files for Stock Synthesis were properly formatted, but the STAT cannot be $100 \%$ certain that they are without error.

Standard practices for data preparation need further improvement. The CPUE indices may contain spatial trends that require re-weighting using habitat based weights. The composition data may require post stratification and scaling and the removal of data in years when sampling was inadequate.

We explored habitat-weighted indices of abundance, both during development of the initial fleets-as-areas model, and for the sub-area models (i.e. weighting by the estimated proportion of reef habitat by CRFS district). Our decision to use two sub-area models rather than a fleets-as-areas model was informed by spatial differences in size compositions and abundance trends.

## Major uncertainties:

The level of cryptic biomass is unknown. The base model has assumed that there is none but this is unlikely to be absolutely true, although there has been considerable fishing at most depths and habitat types coastwide that has not apparently located a concentration of old female fish. It is unlikely that the alternative hide 'em model represents reality either, but some level of domedness in selection is to be expected in some of the fisheries (especially trawl where large fish may be unavailable due to habitat preference, or able to escape).

We explore both domed ("hide 'em") and asymptotic ("kill 'em") selectivity functions in each model, and acknowledge that further research is needed to understand the relative contribution of each hypothesis.

Historical catch history is very uncertain. Sensitivity to this was explored only for plus/minus $50 \%$ on the trawl catches. The results were not sensitive in that case but could be sensitive to different trends in the historical catch.

Historical recreational catch reconstructions based on alternative assumptions about the spatial distribution of catch are explored to partially address this uncertainty.

Natural mortality may be poorly determined, especially for California.
Due largely to the efforts of the NWFSC Cooperative Ageing Project, this assessment now includes over 4,000 age estimates, a $100 \%$ increase relative to the previous assessment. However, estimation of natural mortality (M) remains a challenge for this assessment as it is influenced by multiple data sources, each of which may be better fit by a different value for M. Also, the majority of ages available for this assessment come from the northern part of the state, which is part of the reason why the estimate of natural mortality in the central area sub-model was fixed at the estimated value from the north.

## The stock recruitment relationship is unknown.

The STAT agrees and believes that this relationship is likely to remain unknown for some time. The current assessment models assume that the relationship between stock and recruitment follows a Beverton-Holt functional form, with steepness fixed at 0.72 , per the PFMC's accepted practices for groundfish stock assessment. The STAT recommends evaluation of alternative forms of the stockrecruitment curve (e.g. 2- and 3-parameter Ricker alternatives) to better understand how uncertainty in the relationship might affect management advice.

### 3.3 Transition to the Current Stock Assessment

Dr. Chantel Wetzel (NWFSC) kindly reproduced the results of Cope et al. (2015) using recent versions of Stock Synthesis (V3.30.20.00). Likelihood components and spawning output trajectories were very similar (Table 33, Figure 66), with differences in end-year depletion smaller than $0.1 \%$.

The first alterations to the 2015 model applied to methods for estimating fishing mortality, data weighting, and catches (Figure 67, Table 34). A change from the use of Pope's approximation for annual fishing mortality, as in the 2015 model, to the "hybrid" F estimation method had little effect on spawning output or recruitment. In the 2015 base model, weights were applied only to length composition data, so we applied Francis weights to all composition data sources (lengths and ages) according to the Accepted Practices Guidelines for Groundfish Stock Assessments in 2023 and 2024 (PFMC, 2023). This change increased the estimate of unfished spawning output, decreased relative spawning output in the terminal year (from $33 \%$ to $28 \%$ ), and slightly shifted recruitment deviations in most years, with some deviations in the late 1970s changing sign. The application of Francis weights also had an effect on estimates of natural mortality, and a subset of growth and selectivity parameters (Table 34).

Replacing the catches estimated for the 2015 assessment with catches from the 2023 assessment (aggregated to match the 2015 fleet structure) had little effect on the scale of unfished spawning output or relative stock size in 2015 . However, the scale of recruitments increased slightly, likely offsetting a small increase in the estimated natural mortality rate relative to the Francis-weighted 2015 model (Table 34, Figure 67).

Starting from the 2015 model with Francis weights applied to all composition data and revised catches (but still using the 2015 statewide fleet structure), we updated biological parameters related to weight at length, length at maturity, and fecundity at length. Since there was no change to the data or catch time series, models in this comparison were not re-weighted. Relative to the 2015 assessment conditioned on 2023 catches, updates to these quantities rescaled estimates of spawning output and recruitment (Figure 68). Revision of the maturity at length relationship resulted in a slightly less depleted stock in 2015, relative to unfished biomass. Subsequent revision to the fecundity at length relationship had little further influence on model parameters, likelihoods, or derived quantities, likely due to the fact that the 2015 assessment already accounted for sizedependent changes in relative fecundity using a different parameterization (Table 35).

At the data workshop held in February 2023, the STAT noted that mean lengths of black rockfish decrease with latitude, and the pattern is persistant over time, spanning the CRFS and MRFSS data sets (1980-present, Figure 70). For this reason, the STAT began development of a fleets-as-areas (FAA) model, with recreational catches divided by area (north and south of Pt. Arena) and mode (PC and PR + shore), commercial catches in divided by gear (but not area, since $>90 \%$ of commercial catch is in the north).

As is described in the Data section, several fishery-dependent data sets have limited sample sizes in the north relative to the central area. The primary fishery-independent survey, CCFRP, expanded to statewide coverage in 2017, but the resulting statewide time series are too short to adequately inform trends in abundance by themselves at this time. Despite attempts to use area-weighted indices, this resulted in "statewide" fishery-dependent indices producing patterns that largely reflect the trends in central California, the "tail" of the stock's spatial distribution. Similarly, the spatial expansion of fishery-independent indices introduces issues with analysis of the complete time series due to missing data in years prior to the expansion.

Using the FAA model in development at the time, the STAT ran a sensitivity analysis in which the model was fit to all available data, and compared to models fit only to data (i.e. trend and composition data) from either the northern or central area. Catches were kept the same in all runs, i.e., statewide, for consistency. Results showed that the FAA model, conditioned on statewide catches, produced very different outcomes depending on where the data originated throughout the state (Figure 71).

The STAT found that indices of abundance, developed by region, display similarities in the central region that are not apparent in the northern indices (Figure 72, Figure 73). These differences could be driven by a number factors, e.g., spatial differences in recruitment, and/or differences in regional exploitation histories, as already noted (Figure 6). The spatial differences in size composition already mentioned (Figure 70) are discussed in greater detail in the model results section below, noting differences among areas in temporal trends in mean length.

Given the regional differences in size, trend, and exploitation history within California, the STAT decided that separate assessment models for the central and northern regions would be a better approximation of total stock dynamics, compared to a single, fleets-as-areas model for the entire state.

### 3.4 Northern California Base Model Selection and Evaluation

### 3.4.1 Model Specifications

The assessment is structured as a single, sex-disaggregated population, spanning U.S. waters from Point Arena to the California-Oregon border. The assessment model operates on an annual time step covering the period 1875 to 2022 (not including forecast years) and assumes an unfished equilibrium population prior to 1875 . Population dynamics are modeled for ages 0 through 50 , with age- 50 being the accumulator age. The maximum observed age was 33 for males and 35 for females. Population bins were set every 1 cm from 5 to 70 cm , and data bins were set every 2 cm from 8 to 60 cm . The model is conditioned on catch from two sectors (commercial and recreational) divided among seven fleets, and is informed by three time series of relative abundance (one fishery-independent survey, one CPUE index from a shorebased recreational sampling program, and one CPUE index from an onboard CPFV observer program). Size and age composition data include lengths from 1978-2022 and ages from 1980-2022, with intermittent gaps in each data type. Recruitment is assumed to be related to spawning output via the Beverton-Holt stock recruitment relationship with log-normally distributed, bias corrected process error. Growth was modeled across a range of ages from 0 through 50. All catch was assumed to be known with high precision (log-scale standard error of 0.05 ).

Fleets were specified for recreational and commercial sectors. While the previous assessment combined all recreational fishing modes and catch types (retained or discarded) into a single fleet, we split the recreational sector into two main fleets according to fishing type (CPFV or private boat) and catch type (retained or discarded). All recreational shore modes were combined with the private boat fleet due to their small contribution to overall catch. Discarded catch (CPFV and private boats combined) was modeled as separate fleet due to differences in size composition relative to retained catch, and a lack of sufficient data in an appropriate format to explicitly model retention. The commercial sector was represented by four fleets. Two "non-trawl" fleets representing primarily hook-and-line and longline gear types, but including other minor gears, were differentiated by the condition of landed fish (landed dead or alive), as fish in each group often have different size compositions. Other commercial fleets include a trawl fleet, and a fleet for discarded catch which represents the aggregated, dead discards from all commercial fleets. Fleet selectivity was assumed to be asymptotic for all retained commercial fleets, and dome-shaped for the recreational and commercial discard fleets. Sensitivity to these selectivity assumptions were explored during model development and relative to the base model.

The time-series of data used in the Northern California model are summarized in Figure 4. Sample sizes for age and length compositions used in the model are also summarized (Table 9, Table 12). For yearly, marginal composition data, initial sample sizes for recreational fleets were set at the number of sampled trips, or a proxy based on unique record identifiers in the data set. For the commercial fleets, the initial sample size was set to the number of cluster samples taken by port samplers (two 50 -lb clusters per sample, typically). Age-at-length composition sample sizes were set at the number of aged fish in each 2cm length data bin. Age and length composition sample sizes were then tuned in the base assessment model using the Francis weighting method (Francis 2011). Weights were applied iteratively for each method until absolute changes in the multiplier were $<0.01$ for all fleets, and variance adjustments were capped at a value of 1 for each iteration. The Francis method resulted in down-weighting of all fleet sample sizes, except for the commercial non-trawl live and trawl fleets (Table 36).

Data source weights (or emphasis factors) can also be specified in Stock Synthesis (i.e., "lambdas"). In this assessment, there was no clear reason to down-weight (or up-weight) particular data sources relative to each other (apart from the application of Francis weights to the composition data and additive variances to some indices), so all likelihood components were assumed to have equal emphasis $(\lambda=1)$ in the base case model. Some data sources that were considered during model explorations, but ultimately rejected,
were retained in the Stock Synthesis input data file and excluded from the likelihood by setting $\lambda=0$ in the control file. This allows the STAT to observe the implied fit to the data source without having it affect the estimation process.

A prior distribution was specified for male and female natural mortality following a meta-analytic approach (see section 2.4.1 for more details). A lognormal prior for natural mortality was applied when estimating female natural mortality (mean $=-1.86895$, standard deviation $=0.31$ ), and male natural mortality was modeled as an exponential offset with no explicit prior. A beta prior (mean=0.72, $\mathrm{SD}=0.16$ ) was applied when estimating steepness of the Beverton-Holt stock recruitment curve. The steepness prior was originally developed from a west coast groundfish meta-analysis (Dorn 2002), has been periodically updated, and is provided by the PFMC SSC in each management cycle. In the northern area base model, natural mortality parameters are estimated for both females and males (exponential offset from females), and steepness is fixed at the prior mean of 0.72 .

Likelihood components that were minimized in the overall fitting procedure include fleet-specific catch, length composition, and conditional age-at-length composition and also survey, recruitment deviate, parameter prior, and parameter soft-bound components.

This assessment used a recent version of Stock Synthesis 3 (version 3.30.21.00, optimized), which is available via GitHub (https://github.com/nmfs-stock-synthesis/stock-synthesis/releases). The basic population dynamic equations used in Stock Synthesis 3 can be found in Methot and Wetzel (2013). The relevant input files necessary to run the stock assessment are available on the Pacific Fisheries Management council website (https://www.pcouncil.org/stock-assessments-star-reports-stat-reports-rebuilding-analyses-terms-of-reference/groundfish-stock-assessment-documents/). The R package "r4ss" (Taylor et al. 2021) was used to visualize model output and greatly assisted with model development and evaluation.

### 3.4.2 Model Parameters

The population dynamics model has many parameters, some estimated using the available data and some fixed at values from external analyses and/or the available literature. A summary of all estimated and fixed parameter values in the base model, including associated properties, are listed in Table 37 and Table 38. A total of 98 parameters were estimated in the base model, including 60 recruitment deviations from 1963-2022 and two forecast deviations (both equal to 0 ).

Natural mortality was estimated for females and informed by a prior distribution, and estimated for males as an exponential offset with no prior (see section 2.4.1). The pre-STAR base model fixes the BevertonHolt steepness parameter at 0.72 , the mean of the prior distribution. Initial (equilibrium) recruitment was also estimated. Recruitment deviations from the stock-recruitment relationship were estimated in the base model from 1963 - 2022. Recruitment variation about the stock recruitment curve was fixed at 0.6 , a value tuned to the estimated recruitment deviation RMSE plus a slight adjustment upward to account for unmeasured process error.

Time-invariant growth parameters (Brody growth coefficient ( $k$ ), lengths at age 20, and the CV of length at age 20) using the Schnute parameterization (Schnute 1981) of the von Bertalanffy growth function were estimated for each gender, where males were estimated as an exponential offset of female parameters. When all growth parameters for both sexes were estimated, the length at age zero for males would hit the lower bound ( -1 in offset space) and the CV of that length was unrealistically small ( $\sim 0.01$ ). Estimated female size at age zero was roughly 5 cm with a CV of 0.1 . This is consistent with the typical size of YOY black rockfish in July, i.e. size at settlement in May-June is roughly $4-5 \mathrm{~cm}$ (T. Laidig, NMFS, pers. comm.), and also with the $95^{\text {th }}$ percentile of size for pelagic juveniles observed in the

SWFSC RREAS survey. Fixing the male offset at zero would average across the two sexes' data (reducing the female estimate), so it seemed reasonable to fix length at age zero at 5 cm for both sexes, and the $\mathrm{CV}(\mathrm{L}(0))$ at 0.1 . The CV of the distribution of length-at-age, $\mathrm{CV}(\mathrm{L}(\mathrm{a}))$, in the base model is defined by a linear interpolation between the lower and upper ages specified in the Schnute parameterization of von Bertalanffy growth. This choice was based on inspection of the relationship between $\operatorname{CV}(\mathrm{L}(\mathrm{a})$ ) and age, by sex, (Figure 69), and we note that the $\mathrm{CV}(\mathrm{L}(\mathrm{a}=0))$ is roughly 0.1 near age zero and declines with age. Weight at length parameters were fixed at values externally estimated from private/rental boat observations.

Selectivity was assumed to be asymptotic and related to length by a logistic function for both commercial dead catch fleets, and domed for the commercial live fish and discard fleets assuming a double-normal functional form (see Methot and Wetzel 2013 for details). All selectivity parameters were assumed to be time-invariant, except a time block was used to capture changes in selectivity associated with depth restrictions around 2004 (the timing and spatial extent varied slightly by management region over time). Extra standard deviation parameters were estimated for the PR dockside abundance index, as the large sample sizes result in small input variances relative to other indices based on higher resolution catch and effort data, e.g. observed total catch by drift with location information in the onboard CPFV index vs. observed retained catch by trip with port of landing information in the PR index.

Parameters for fecundity at length were fixed at estimates following methods in Dick et al. (2017), and female maturity at length parameters were fixed at logistic "functional maturity" values provided by C. Rosemond and M. Head.

### 3.4.3 Key Assumptions and Structural Choices

Many of the key assumptions and structural choices made in this assessment were evaluated through sensitivity analysis (section 3.4.9). For consistency, model structural choices were made that were likely to result in the most parsimonious treatment of the available data, either a priori determined or through the evaluation of model goodness of fit. The major structural choices in this assessment were the use of two, independent population models to account for differences in exploitation history, size and age composition, and abundance trends.

Major structural assumptions included fixing the steepness stock recruitment parameter and estimating gender-specific natural mortality parameters, but assuming gender invariant selectivity parameters. This favors the hypothesis that higher natural mortality for females explains the skewed sex ratio at older ages in the catch. An alternative hypothesis is that females become less available to the fishing gear, but continue to contribute to spawning output of the population. The California model estimates male natural mortality as an offset to female natural mortality with no prior, as joint priors for female and male natural mortality parameters are not currently available (either directly estimated or as an offset). Due to the use of discard "fleets" rather than estimated retention curves, it was not possible to model the interaction between discarded catch and retained catch as a result of bag limit changes or time blocks on discard size compositions. However, discards make up a relatively small fraction of total removals for this species, and the discard length composition data seems to provide good information about the long-term average size of discarded catch, at least over the past 1-2 decades, and may contain information about recruitment.

### 3.4.4 Evaluation of Model Parameters

Model parameters were evaluated for stability and precision along likelihood profile gradients (section 3.4.9), and against the main assumptions in the base case model (section 3.4.1). Stability was examined by ensuring that model parameters were not up against a lower or upper bound and had sufficiently low
gradients (Table 37, Table 38). Parameter precision was also monitored by looking at estimated standard deviations to assess the variability associated with point estimates.

### 3.4.5 Residual Analysis

Residuals to length composition and age composition fits to the model were explored during model development. The identification of residual patterns helped to sort out which set of a priori selectivity blocks were the most appropriate given the data. Alternative model configurations were also explored during model development in an attempt to minimize residual trends.

## Fits to length composition data

Fits from the northern base model to time-aggregated length compositions, by fleet, show that the recreational boat modes (PC and PR), commercial non-trawl (live landings), commercial non-trawl (unsexed dead landings), and CCFRP research lengths are best fit by the model (Figure 74). Predicted length distributions deviated more strongly from the sex-specific commercial composition data and the discard fleets, and the female component of the Abrams research data.

Examination of Pearson residuals for length composition data from commercial fleets shows that the largest deviations in the non-trawl fleet were for females in 1992 and 2002, as well as for recent years ( $\sim 2018$-present) where fits to the sex-specific data were generally poor relative to earlier years (Figure 75). Mean lengths in catches by this fleet have fluctuated from $35-40 \mathrm{~cm}$ in the combined-sex data, with slightly larger but less precise mean lengths in the early 1990s for the sex-specific data. Fits to the livefish component of the non-trawl length composition data are generally good, with the model predicting mean lengths that track an initial increase in mean length over the period 1999-2003 (Figure 76). Fits to lengths from the trawl catch, while capturing the pattern of larger females in most years, tend to be biased high for mean length in the late 1970s and early 1980s, and biased low for years since 1995 (Figure 77). A small number of large, discarded fish appear as large residuals in the commercial discard length compositions, due to the lower mean size of discarded fish overall, relative to the retained catch (Figure 78).

Fits to length compositions for the recreational fleets (PC and PR) are consistent with each other, tracking a general decline in mean length from the 1980s to the late 1990s (Figure 79, Figure 80). Despite this, the base model still under predicts the observed mean sizes for PC catch in the early and mid-1980s, as well as a broad range of observed lengths in the late-1980s PR data. Mean sizes of discarded fish in the northern recreational fishery appear to have increased in 2015, which may reflect discarding practices due to introduction of sub-bag limits for black rockfish (Figure 81). However, these limits were removed in 2021, and mean size in 2022 remained similar to the 2015-2018 values.

Fits to length composition from the survey fleets in the northern base model are best for the CCFRP data, with few large residuals and a slight declining trend in mean length from 2017-2022 (Figure 82). The base model under predicts the number of small females observed by the Abrams study in 2010, and while model predictions are within the range of variability observed in mean length, the predicted trend is declining while observed means show a slight increase over the two-year study period.

## Fits to age composition data

All age data in the model were entered using the conditional-age-at-length (CAAL) format. For each fleet, year, and sex, the proportion of observed ages in each length data bin are entered, improving estimation of growth and reducing correlations associated with fitting to both marginal lengths and marginal ages from the same fish. Marginal age compositions were entered into the model as observations without a
likelihood component, having no effect on the model fit, but allowing for comparison of predicted marginal distributions to the data.

We first compared observed mean lengths summarized from the CAAL data to predicted mean lengths in the commercial fleets. Model predictions for the non-trawl fleet (dead landings) were very close to the observed mean lengths and mean ages in all but one year (1984), where observed mean lengths were roughly 5 cm larger than the model prediction (Figure 84). Age data from commercial live-fish fisheries are typically not available due to the effect that otolith removal has on "live-fish" status and associated market price. The base model was able to predict mean lengths and ages very similar to the observed values in the trawl fleet, with the exception of mean age in 1980 (Figure 85). However, see the description of Pearson residuals for the trawl fleet (below).

Age data from recreational fleets in the northern model were limited to just two years, 1982 and 2002, for the PC fleet and one year (2002) for the PR fleet (Figure 86, Figure 87). Predictions of mean length-atage and mean age were consistent with the data, showing an increase in mean age from roughly 8-10 years in 1982 to 10-12 years in 2002 based on the CPFV fleet data.

Observed ages from the CCFRP survey (only one year in the northern area, 2022) tended to be slightly older at length relative to model predictions, particularly above 30 cm (Figure 88). Fits to the large number of ages from the Abrams study in 2010-2011 were similar in terms of mean length in age, and mean age varied little across the two years. Interestingly, while the observed mean lengths and ages from the Abrams study are both increasing, the model predicts a decline in mean length and a very slight increase in mean age (Figure 83, Figure 89). The STAT is investigating this pattern and hopes to have additional information available during the review.

Pearson residuals for the non-trawl fleet (dead landings) were generally without pattern, except for 1984, as previously mentioned (Figure 90). A number of years (2007, 2011, 2019, 2020, and 2022) show a similar but less pronounced pattern of positive residuals for males in the $40+\mathrm{cm}$ range and $15+$ year range, i.e. males in this size range are older than the model predicts. Fits to the trawl fleet data are less consistent across years, with larger residuals overall (Figure 91).

The limited amount of recreational age data did not have large residual values in the base model, but the number of large females in the 2022 PC data exceeded the model predictions, and males were more widely distributed across lengths and ages than expected (Figure 92). The single year of PR mode ages in the northern model showed positive residuals for older individuals within each length, suggesting that growth in the model predicts more rapid growth than expected given these data (Figure 93).

Although based on sparse data, residuals from the CCFRP survey in the northern model tended to be positive for older ages within a length bin and negative for younger ages in a bin (Figure 94). These data seem to prefer a smaller size at age, similar to the recreational age data. However, this pattern is not apparent in the Abrams data (much larger sample sizes), suggesting that information about growth varies among data sets given the current base model structure (Figure 95).

## Fits to indices of abundance

Recreational indices of abundance for the northern model do not show any evidence of strong increasing or decreasing trends, although historically these parts of the state have been sampled much less than the central and southern parts of California. As discussed in Section 3.3, these indices do not display the consistent patterns observed in the central area indices. Neither rec index shows strong patterns in the residuals, but also neither one is strongly correlated with the model predictions (Figure 96, Figure 97).

The CCFRP index only begins in 2017, and future assessments will benefit more from the expanded survey than the current assessment. However, as it represents the only fishery-independent index that is expected to encounter black rockfish throughout the water column, the STAT chose to retain the index, and conducted sensitivity analyses to evaluate its influence in the assessment. The residuals for this index are negative for the first three years (2017-2019) and positive for the last three (2020-2022), with model predictions not matching the rate of increase observed by the survey (Figure 98).

### 3.4.6 Convergence

Model convergence was checked during development of a base model by ensuring that

- The final gradient of the likelihood surface was less than 0.0001
- Parameters were checked to ensure that they were not hitting a minimum or maximum bound
- A search for a better minimum was conducted using jittered starting values ("jitter fraction" in r4ss function "jitter" set $=0.2$ ). A total of 100 jittered runs were performed for the base model.
- A model run using the "-hess_step" option was compared to the base model

No parameters were hit the bounds (min or max), and the gradient of the base model was $5.93525 \mathrm{e}-05$. Across all 100 jittered runs, the model found no minima lower than the base case likelihood (1106.27). The -hess_step run reported the following:

```
The 2 Hessian step(s) reduced maxgrad from 5.94479e-05 to 0 and NLL by -6.82121e-13.
All output files should be updated, but confirm as this is experimental still.
The fact this was successful gives strong evidence of convergence to a mode
with quadratic log-likelihood surface.
Iterations: 792
```

A comparison of likelihoods, parameter estimates, and derived quantities showed that results based on the -hess_step run were indistinguishable from the base.

### 3.4.7 Response to STAR Panel Recommendations

(to be completed after STAR panel)

1. Request

Rationale:

## Response:

### 3.4.8 Northern California Base-Model Results

Estimates of natural mortality for female and male black rockfish were 0.21 and 0.20 , respectively, in waters off California and north of Point Arena. These values are greater than the prior median of 0.154 based on an assumed maximum age of 35 , but within the range of uncertainty implied by the prior (Figure 100).

The northern California base model estimated reasonable growth parameters (k, length at age 20, and CV of length at age 20 for females and males; Table 37, Figure 99). Length at age 20 was estimated to be 54.5 cm for females and 47.0 cm for males, with CVs of length at age 20 equal to 0.08 and 0.06 , respectively.

Fits to abundance indices in the northern model are generally poor, showing little correlation between model predictions and annual estimates of relative abundance (Figure 96, Figure 97, Figure 98). The rate of increase in abundance implied by the CCFRP index, although of limited duration, was not matched by the model, given the fixed value of steepness. Collection of additional years of data from this ongoing, statewide, fishery-independent survey will be key to inform future trends for black rockfish and other nearshore species.

The model's interpretation of a decline in abundance from the 1980s until the late 1990s with a subsequent increase is consistent with patterns in mean length seen in the recreational composition data (Figure 79, Figure 80). The same pattern is present, but less pronounced, in the commercial non-trawl fishery data (Figure 75).

Estimates of year-class strength in the northern model are largest, in absolute terms, in 1973-74, 1976-77, and 1995 (Figure 101). Viewed as log-scale deviations from the stock-recruitment curve, 1995 is the largest positive deviation and 2006 is the largest negative deviation (Figure 102). In total, the years with log-scale deviations larger than 0.5 include the years mentioned above, as well as 1999 and 1994 (both positive) and 1971, 1978, and 2006 (negative deviations) (Figure 103).

Length-based selectivity curves were estimated for eight of the 10 fleets (Figure 104). The PR model selectivity was assumed equal ('mirrored') to the PC mode after independent estimates showed little difference. The PC Onboard index was also mirrored to the combined PC/PR selectivity. Logistic curves estimated for the commercial trawl and non-trawl (landed dead) fleets had inflection points at roughly 45 cm and 36 cm , respectively. The non-trawl (landed live) fleet had a dome-shaped selectivity curve with a greater fraction of small fish vulnerable to the fleet relative to either non-trawl (landed dead) or trawl. Although the non-trawl (live) fleet final selectivity parameter was estimated at a small value (large negative logit value), the standard error was large when estimated so it was fixed at -10 in logit space. Peak selectivity for the commercial discard fleet was around 27 cm , and domed such that discarded dead catch includes fish ranging primarily from about $18-40 \mathrm{~cm}$. The recreational PC and PR fleets (again, sharing the same selectivity parameters) had an estimated peak selectivity of 40 cm , with a heavily domed shape that remained slightly above zero through the maximum size in the model. This shape for the recreational fishery represented the recent time period (2004-2022), before which the data were best fit by an asymptotic selectivity curve with a peak at 34 cm (Figure 105). CCFRP survey selectivity was allowed a flexible, double-normal parameterization, and the length data were best fit by a highly domed curve with a peak at 42 cm , similar to the recreational fleets that use similar gear. After initially mirroring the Abrams selectivity curve to the recreational fleets, a double-normal, dome-shaped selectivity function was estimated allowing for a slightly smaller average fish size being selected relative to the recreational fleets and improving the fit to the length composition data for that fleet. Similar to the non-trawl (live) fleet, the ending selectivity parameter was imprecisely estimated and fixed at -5 in logit space, the most likely value when estimated.

Black rockfish spawning output in northern California was estimated to be 438 billion eggs in 2023 ( $\sim 95 \%$ asymptotic intervals: 187-689; Table 39), which equates to a "depletion" level of $36 \%$ ( $\sim 95 \%$ asymptotic intervals: 16\%-57\%; Table 39, Figure 106, Figure 107) in 2023. Depletion is a ratio of the estimated spawning output in a particular year relative to estimated unfished, equilibrium spawning output. Spawning output in California (north of Point Arena) declined rapidly with wartime and post-war demand, recovered briefly, then declined to its lowest level in the late 1990s (Table 40, Figure 106). Reductions in catch since then, coupled with reasonably strong recruitments in the 1990s, result in increasing estimates of spawning output over the following two decades, slowing only in the past few years (Figure 107). Recruitments in the northern California model may be poorly estimated due to limited spatial and temporal coverage of age data, but the model picks up a reasonably strong 1999 year class, known to be a strong year-class for other Sebastes species (Figure 108). Relative exploitation rates [(1-

SPR) / (1-SPR50\%)] increased through time, peaking first with wartime catches, declining briefly, then peaking again in the late 1990s before falling to fluctuate around the $50 \%$ SPR harvest rate over the last two decades (Figure 109). The equilibrium yield curve is shifted left, as expected from the assumed Beverton-Holt steepness value ( $\mathrm{h}=0.72$ ) (Figure 110).

### 3.4.9 Evaluation of Uncertainty

### 3.4.9.1 Sensitivity to Assumptions, Data, and Weighting

We evaluated sensitivity of the northern California model to specific data sources using a 'drop-one' approach to identify the impact of various sets of information on model outputs. Data were removed by fleet (i.e. all composition and trend data associated with a particular fleet), after which parameter estimates and derived quantities were compared to the base model. Other sensitivity tests included:

- Comparison of model outputs using alternative weighting methods (Francis and McAllisterIanelli); weights were capped at 1 for both methods (i.e. no up weighting of data)
- Assuming natural mortality was the same for both sexes
- Allowing all selectivity curves to assume a domed shape
- Estimation of all growth parameters
- Estimation of steepness and natural mortality (male and female)

The northern base model was stable with respect to population scale across most "drop-one" scenarios, with the exception of removing data associated with the trawl or non-trawl (dead landings) fleets (Table 41, Table 42, Figure 111). Removal of the non-trawl (dead landings) fleet resulted in spawning output trends that were just within the $95 \%$ confidence interval of the base model, whereas estimated unfished spawning output increased from 1205 billion eggs in the base model to 1756 billion eggs when trawl fleet ages and lengths were removed. In terms of relative spawning output (B/B_unfished), only removal of the trawl data resulted in a major change relative to the base model (Figure 112). Removal of the trawl fleet data caused the model to estimate lower recruitment over the modeled time period, and also changed patterns in early recruitment deviations (Figure 113, Figure 114).

The base model is weighted using method of Francis (2011), applied iteratively to all composition data sources (lengths and ages). Iterative application of McAllister-Ianelli weights (Table 36) to the base model gave less weight to the trawl fleet age data ( 0.33 with M-I weights, vs. 0.91 using Francis), the same weight to the trawl lengths (capped at 1 ) and resulted in a more depleted population, similar to what was seen in the drop-one analysis when trawl data were removed (Table 43, Figure 115, Figure 116). Recruitment was similarly lower with the M-I weights, and deviations were less variable in the early part of the time series (Figure 117, Figure 118).

A model run with natural mortality estimated using the same value for both sexes differed very little from the base model, apart from scaling up spawning output due to a slight decrease in female M. The minor effect is not surprising given the small value of the male offset in the base model (Table 43, Figure 115, Figure 116).

Assuming dome-shaped selectivity for fleets with asymptotic selectivity in the base model, resulted in a scaling up of spawning output, with little effect on relative spawning output. This rescaling is likely due to a decrease in the estimated value of $M$ from 0.211 in the base model to 0.197 in the model with domeshaped selectivity curves for all fleets model (Table 43, Figure 115, Figure 116).

When all growth parameters for both sexes were estimated, the length at age zero for males would hit the lower bound ( -1 in offset space) and the CV of that length was unrealistically small ( $\sim 0.01$ ). Estimated female size at age zero was roughly 5 cm with a CV of 0.1 (Table 43, Figure 115, Figure 116). This is consistent with the typical size of YOY black rockfish in July, i.e. size at settlement in May-June is roughly $4-5 \mathrm{~cm}$ (T. Laidig, NMFS, pers. comm.), and also with the $95^{\text {th }}$ percentile of size for pelagic juveniles observed in the SWFSC RREAS survey. Fixing the male offset at zero would average across the two sexes' data (reducing the female estimate), so it seemed reasonable to fix length at age zero at 5 cm for both sexes, and the $\mathrm{CV}(\mathrm{L}(0))$ at 0.1 . The CV of the distribution of length-at-age, $\mathrm{CV}(\mathrm{L}(\mathrm{a}))$, in the base model is defined by a linear interpolation between the lower and upper ages specified in the Schnute parameterization of von Bertalanffy growth. This choice was based on inspection of the relationship between $\operatorname{CV}(\mathrm{L}(\mathrm{a}))$ and age, by sex, (Figure 69), and we note that the $\mathrm{CV}(\mathrm{L}(\mathrm{a}=0))$ is roughly 0.1 near age zero and declines with age.

A model that estimates steepness ( $\mathrm{h}=0.9$ ) as well as natural mortality for both sexes reduces the total likelihood by over 40 points, with female natural mortality estimated closer to the prior median at 0.19 and male natural mortality slightly lower (Table 43). The stock is slightly less depleted relative to unfished spawning output in 2023, compared to the base model (Figure 115, Figure 116). Until longer time series of informative abundance indices become available, the STAT considers estimation of steepness to be asking too much of the available data, and chose to fix steepness at the prior mean of 0.72 in the base model.

### 3.4.9.2 Parameter Uncertainty

Likelihood profiles were performed across three major sources of uncertainty: natural mortality (M), initial recruitment (R0), and steepness (h). An individual profile was completed for each data type (e.g. lengths, ages, indices) and parameter combination to derive the relative importance of each data set to parameter estimation. In addition, profiles for each data set within a data type (i.e. a "Piner" plot) were produced for each of the three parameters listed above.

Most data types in the model are best fit by higher steepness values (Figure 119). This is true for individual length data sources, with the exception of the commercial trawl lengths that seem to slightly favor lower steepness values, but the magnitude of the change in likelihood is small (Figure 120). Age compositions also favored high steepness values in the northern model (Figure 121). However, indices were inconsistent, with the PR index preferring lower steepness values, and the CCFRP and PC onboard indices preferring higher values (Figure 122). The absolute change in negative log likelihood across values of steepness was small for all indices. Profiling over steepness primarily affected the scale of spawning output, with little change in relative spawning output (Figure 123, Figure 124). Recruitment deviations across all values of steepness in the profile were within the range of uncertainty estimated by the base model (Figure 125). Steepness was negatively correlated with estimates of natural mortality and unfished recruitment (Table 44, Table 45).

A profile across $\log (\mathrm{R} 0)$ values from 6.5 to 8.5 in increments of 0.2 shows that both recruitment and age data favor values of R0 larger than about 7.3 (Figure 126). Length data sources, however, are fit by a variety of different R0 values, depending on the source (Figure 127). Commercial trawl, discard, and rec PR north seem to be better fit by lower values, while commercial non-trawl (dead landings), rec discard, and CCFRP seem to favor larger values. Age composition data are generally better fit by larger R0 values, but the Rec PR ages are best fit with values less than about 7.3 (Figure 128). The CCFRP and PC onboard indices are once again in agreement, with better fits associated with intermediate values from the range of profiled $\log (\mathrm{R} 0)$ values, unlike the PR index, which slightly favors large values at or beyond
the range considered in this profile analysis (Figure 129). R0 has a large effect on the ending year spawning output (Figure 130), and similarly for relative spawning output (Figure 131).

The profile over female natural mortality (M) was conducted across a range of values slightly wider than the $2.5 \%$ and $97.5 \%$ percentiles of the lognormal prior on female $\mathrm{M}\left(0.08-0.30 \mathrm{yr}^{-1}\right)$ while estimating male natural mortality as an exponential offset to female natural mortality (Table 46). Age and length data sources, overall, were fit poorly by low values of female natural mortality in the northern model
(Figure 132). Length composition data had better fits using different values of $M$, depending on the data source, with the commercial trawl and non-trawl fleets strongly favoring values above $\sim 0.16$, and both rec fleets (PC and PR) favoring relatively lower values of M (Figure 133). Age data from the commercial trawl fleet appear to be least consistent with low female M values, whereas the other data sets are either uninformative or better fit by low M values (e.g. PR mode ages) (Figure 134). Index likelihoods once again had little information about M, based on the total change in negative log-likelihood (Figure 135), with CCFRP and the PC onboard index minima around 0.17 and the PR index minimum at the upper limit of the profile $(M=0.3)$.

### 3.4.9.3 Retrospective Analysis

A retrospective analysis was conducted by sequentially removing 1 through 5 years of data from the northern base model starting with 2022. Sequential removal of the data did not produce strong retrospective patterns, but all retro runs estimated slightly lower unfished spawning output and a slightly lower ending status, relative to the base model (Figure 136, Figure 137). Values of Mohn's rho as reported by the r4ss package were $\mathrm{SSB}=-0.94$, $\mathrm{Rec}=0.428$, Bratio $=-0.710$, and $\mathrm{F}=1.228$.

### 3.5 Central California Base Model Selection and Evaluation

### 3.5.1 Model Specifications

The assessment is structured as a single, sex-disaggregated population, spanning U.S. waters from the US/Mexico border to Point Arena. Black rockfish are rare south of Point Conception, so the central California model focuses on the region between Point Conception and Point Arena. The assessment model operates on an annual time step covering the period 1875 to 2022 (not including forecast years) and assumes an unfished equilibrium population prior to 1875. Population dynamics are modeled for ages 0 through 50, with age- 50 being the accumulator age. The maximum observed age was 33 for males and 35 for females. Population bins were set every 1 cm from 5 to 70 cm , and data bins were set every 2 cm from 8 to 60 cm . The model is conditioned on catch from two sectors (commercial and recreational) divided among six fleets, and is informed by four time series of relative abundance (one fisheryindependent survey, one CPUE index from a shore-based recreational sampling program, and two CPUE indices from onboard CPFV observer programs operating over different time periods). Size and age composition data include lengths from 1959-2022 and ages from 1980-2022, with intermittent gaps in each data type. Recruitment is assumed to be related to spawning output via the Beverton-Holt stock recruitment relationship with log-normally distributed, bias corrected process error. Growth was modeled across a range of ages from 0 through 50. All catch was assumed to be known with high precision (logscale standard error of 0.05 ).

Fleets were specified for recreational and commercial sectors. While the previous assessment combined all recreational fishing modes and catch types (retained or discarded) into a single fleet, we split the recreational sector into two main fleets according to fishing type (CPFV or private boat) and catch type
(retained or discarded). All recreational shore modes were combined with the private boat fleet due to their small contribution to overall catch. Discarded catch (CPFV and private boats combined) was modeled as separate fleet due to differences in size composition relative to retained catch, and a lack of sufficient data in an appropriate format to explicitly model retention. The commercial sector was represented by three fleets. A single "non-trawl" fleets representing primarily hook-and-line and longline gear types, but including other minor gears, included both 'live' and 'dead' conditions, as samples of live fish were too small to warrant a separate fleet. Other commercial fleets include a trawl fleet, and a fleet for discarded catch which represented discarded dead catch from both non-trawl and trawl fleets. Fleet selectivity was allowed to be domed for all commercial fleets. Sensitivity to these selectivity assumptions were explored during model development and relative to the base model.

The time-series of data used in the central California model are summarized in Figure 5. Sample sizes for age and length compositions used in the model are also summarized (Table 10, Table 13). For yearly, marginal composition data, initial sample sizes for recreational fleets were set at the number of sampled trips, or a proxy based on unique record identifiers in the data set. For the commercial fleets, the initial sample size was set to the number of cluster samples taken by port samplers (two $50-1 \mathrm{l}$ clusters per sample, typically). Age-at-length composition sample sizes were set at the number of aged fish in each 2cm length data bin. Age and length composition sample sizes were then tuned in the base assessment model using the Francis weighting method (Francis 2011). Weights were applied iteratively for each method until absolute changes in the multiplier were $<0.01$ for all fleets, and variance adjustments were capped at a value of 1 for each iteration. The Francis method resulted in down-weighting of all fleet sample sizes, except for the commercial non-trawl fleet (Table 47).

Data source weights (or emphasis factors) can also be specified in Stock Synthesis (i.e., "lambdas"). In this assessment, there was no clear reason to down-weight (or up-weight) particular data sources relative to each other (apart from the application of Francis weights to the composition data and additive variances to some indices), so all likelihood components were assumed to have equal emphasis $(\lambda=1)$ in the base case model. Some data sources that were considered during model explorations, but ultimately rejected, were retained in the Stock Synthesis input data file and excluded from the likelihood by setting $\lambda=0$ in the control file. This allows the STAT to observe the implied fit to the data source without having it affect the estimation process.

A prior distribution was specified for male and female natural mortality following a meta-analytic approach (see section 2.4.1 for more details). A lognormal prior for natural mortality was applied when estimating female natural mortality (mean $=-1.86895$, standard deviation $=0.31$ ), and male natural mortality was modeled as an exponential offset with no explicit prior. A beta prior (mean=0.72, $\mathrm{SD}=0.16$ ) was applied when estimating steepness of the Beverton-Holt stock recruitment curve. The steepness prior was originally developed from a west coast groundfish meta-analysis (Dorn 2002), has been periodically updated, and is provided by the PFMC SSC in each management cycle. Since most available age data is from north of Point Arena, natural mortality parameters in the central area base model are fixed at the values estimated in the northern area for both females and males (exponential offset from females). Beverton-Holt steepness is fixed at the prior mean of 0.72.

Likelihood components that were minimized in the overall fitting procedure include fleet-specific catch, length composition, and conditional age-at-length composition and also survey, recruitment deviate, parameter prior, and parameter soft-bound components.

This assessment used a recent version of Stock Synthesis 3 (version 3.30.21.00, optimized), which is available via GitHub (https://github.com/nmfs-stock-synthesis/stock-synthesis/releases). The basic population dynamic equations used in Stock Synthesis 3 can be found in Methot and Wetzel (2013). The relevant input files necessary to run the stock assessment are available on the Pacific Fisheries

Management council website (https://www.pcouncil.org/stock-assessments-star-reports-stat-reports-rebuilding-analyses-terms-of-reference/groundfish-stock-assessment-documents/). The R package "r4ss" (Taylor et al. 2021) was used to visualize model output and greatly assisted with model development and evaluation.

### 3.5.2 Model Parameters

The population dynamics model has many parameters, some estimated using the available data and some fixed at values from external analyses and/or the available literature. A summary of all estimated and fixed parameter values in the central area base model, including associated properties, are listed in Table 48 and Table 49. A total of 118 parameters were estimated in the base model, including 68 recruitment deviations from 1955-2022, 20 'early' recruitment deviation parameters from 1935-1954, and two forecast deviations (both equal to 0 ).

Natural mortality was fixed for females and for males at the values estimated in the northern model. The pre-STAR base model fixes the Beverton-Holt steepness parameter at 0.72 , the mean of the prior distribution. Initial (equilibrium) recruitment was also estimated. Recruitment deviations from the stockrecruitment relationship were estimated in the base model from 1955-2022 (the 'main' period) and 1935-1954 (the 'early' period). Recruitment variation about the stock recruitment curve was fixed at 0.6, a value tuned to the estimated recruitment deviation RMSE plus a slight adjustment upward to account for unmeasured process error.

Time-invariant growth parameters (Brody growth coefficient $(k)$ and lengths at age 20,) were estimated using the Schnute parameterization (Schnute 1981) of the von Bertalanffy growth function for each gender, where males were estimated as an exponential offset of female parameters. The CV of length at age 20 was fixed at values estimated in the northern base model for both males and females. Estimated female size at age zero was roughly 5 cm with a CV of 0.1 in the northern model. This is consistent with the typical size of YOY black rockfish in July, i.e. size at settlement in May-June is roughly 4-5 cm (T. Laidig, NMFS, pers. comm.), and also with the $95^{\text {th }}$ percentile of size for pelagic juveniles observed in the SWFSC RREAS survey. Following the methods used in the northern model, we fix length at age zero at 5 cm for both sexes, and the $\mathrm{CV}(\mathrm{L}(0))$ at 0.1 . The CV of the distribution of length-at-age, $\mathrm{CV}(\mathrm{L}(\mathrm{a}))$, in the base model is defined by a linear interpolation between the lower and upper ages specified in the Schnute parameterization of von Bertalanffy growth. This choice was based on inspection of the relationship between $\mathrm{CV}(\mathrm{L}(\mathrm{a}))$ and age, by sex, (Figure 69), and we note that the $\mathrm{CV}(\mathrm{L}(\mathrm{a}=0)$ ) is roughly 0.1 near age zero and declines with age. Weight at length parameters were fixed at values externally estimated from private/rental boat observations.

Selectivity in the central area was allowed to be domed for all commercial fleets, using a double-normal functional form (see Methot and Wetzel 2013 for details). All selectivity parameters were assumed to be time-invariant in the central model. A time block was explored for the recreational fishery, similar to the northern model, but no significant changes in parameter estimates were observed and the time block was removed. Extra standard deviation parameters were estimated for the PR dockside abundance index, as the large sample sizes result in small input variances relative to other indices based on higher resolution catch and effort data, e.g. observed total catch by drift with location information in the onboard CPFV index vs. observed retained catch by trip with port of landing information in the PR index.

Parameters for fecundity at length were fixed at estimates following methods in Dick et al. (2017), and female maturity at length parameters were fixed at logistic "functional maturity" values provided by C. Rosemond and M. Head.

### 3.5.3 Key Assumptions and Structural Choices

Many of the key assumptions and structural choices made in the central area assessment were evaluated through sensitivity analysis (section 3.5.9). For consistency, model structural choices were made that were likely to result in the most parsimonious treatment of the available data, either a priori determined or through the evaluation of model goodness of fit. The major structural choices in this assessment were the use of two, independent population models to account for differences in exploitation history, size and age composition, and abundance trends.

Major structural assumptions included fixing the steepness stock recruitment parameter and fixing gender-specific natural mortality parameters at values estimated in the northern area model. As with the northern model, the central model assumes gender-invariant selectivity parameters. This favors the hypothesis that higher natural mortality for females explains the skewed sex ratio at older ages in the catch. An alternative hypothesis is that females become less available to the fishing gear, but continue to contribute to spawning output of the population. Due to the use of discard "fleets" rather than estimated retention curves, it was not possible to model the interaction between discarded catch and retained catch as a result of bag limit changes or time blocks on discard size compositions. However, discards make up a relatively small fraction of total removals for this species, and the discard length composition data seems to provide good information about the long-term average size of discarded catch, at least over the past 1-2 decades, and may contain information about recruitment.

### 3.5.4 Evaluation of Model Parameters

Model parameters were evaluated for stability and precision along likelihood profile gradients (section 3.5.9), and against the main assumptions in the base case model (section 3.5.1). Stability was examined by ensuring that model parameters were not up against a lower or upper bound and had sufficiently low gradients (Table 48, Table 49). Parameter precision was also monitored by looking at estimated standard deviations to assess the variability associated with point estimates.

### 3.5.5 Residual Analysis

Residuals to length composition and age composition fits to the model were explored during model development. The identification of residual patterns helped to sort out which set of a priori selectivity blocks were the most appropriate given the data. Alternative model configurations were also explored during model development in an attempt to minimize residual trends.

## Fits to length composition data

Fits from the central base model to time-aggregated length compositions, by fleet, show that the recreational boat modes (PC and PR), commercial non-trawl (live landings), commercial non-trawl (unsexed dead landings), and CCFRP research lengths are best fit by the model (Figure 138). Predicted length distributions deviated more strongly from the sex-specific commercial composition data and the discard fleets, and the female component of the Abrams research data.

Pearson residuals for length composition data from commercial non-trawl fleet showed no obvious patterns and residuals were all $<2$. Since so few years of data are available from commercial fleet in the central area, it is difficult to draw any conclusions about trends in mean length over time (Figure 139), but the data appear to be sufficient to estimate selectivity for the commercial removals. The commercial
discard fleet in the central model uses the same length composition data as the northern model's discard fleet, as too few observations were available to develop area-specific discard compositions. No clear patterns were visible in the discard residuals, but a few large residuals were present when very large ( $\sim 50$ $\mathrm{cm})$ or very small ( $\sim 10 \mathrm{~cm}$ ) fish were observed (Figure 140).

Fits to length compositions for the recreational fleets ( PC and PR ) are able to capture the decline in mean length in 2010, but do not match the rate of decline in mean length observed in the 1980s PC data, which is not as apparent in the PR data (Figure 141, Figure 142). The earliest available length data for black rockfish in California (1959-60 \& 1966) come from recreational boat modes in this area, and show similar mean lengths to what is observed in the recent fishery. Lengths of discarded fish are fit reasonably well, and do not show the shift to larger sizes observed in the northern area's recreational discard length data (Figure 143, compare to Figure 81).

Fits to length composition from the CCFRP survey in the central base model also show a decline in mean length around 2010, but the model predictions do not quite decrease as much as the means in the observed lengths and Pearson residuals did not show any strong patterns or contain any large values (Figure 144). The DWV onboard CPFV survey length data contained a larger proportion of fish above roughly 35 cm compared to the model predictions, but later years had few patterns and small residual values (Figure 145). Mean lengths from the DWV survey have a slightly declining trend while the model predicted lengths are flat if not slightly increasing over the same time period.

Fits to the length data from the Lea et al. research fleet are not good. These data are included in the model to inform growth, and following the recommendations of the accepted practices document, the STAT used constant selectivity for all ages and lengths in this 'fleet.' It is therefore not surprising to find residual patterns for this fleet (Figure 146).

## Fits to age composition data

All age data in the model were entered using the conditional-age-at-length (CAAL) format. For each fleet, year, and sex, the proportion of observed ages in each length data bin are entered, improving estimation of growth and reducing correlations associated with fitting to both marginal lengths and marginal ages from the same fish. Marginal age compositions were entered into the model as observations without a likelihood component, having no effect on the model fit, but allowing for comparison of predicted marginal distributions to the data.

Age data from recreational fleets in the central model were limited to just five years, 1980-1982 for the PC fleet and 2021-2022 for the PR fleet (Figure 147, Figure 148). Predictions of mean length-at-age and mean age were consistent with the data, showing increases in mean age in both time periods.

Mean ages at lengths from the CCFRP survey were well-matched by the model (Figure 149). Mean age by year fluctuated between 4-5 years in the data, indicating that the survey is catching predominately immature fish. Mean ages in the Lea et al. research data were even younger in the first few years of available data, averaging between 3-4 years (Figure 150).

## Fits to indices of abundance

Similar to other indices in the central area assessment, the recreational PR index of abundance shows an increase in 2013 that is reproduced by the model (Figure 151). Relative to the PR and CCFRP indices, this time series does not show as much of a decline in 2010, and the model's predicted abundance trend does not decline enough to match the observations in 2021 and 2022.

Fits to the CCFRP index for the central area are quite good, with the model tracking the low in 2010, but seeming to predict the high about a year earlier than the 2013 peak in the data (Figure 152). However, the more recent patterns in the index are followed fairly well, and the correlation between the observed index and model predictions is quite high.

The fit to the DWV onboard CPFV index is consistent with the direction of the data (declining), but the model cannot match the rate of decline, with positive residuals for the first five years (Figure 153). The CRFS PC onboard index shares characteristics of the previously described time series, in that it shows an increase in 2013, which is also consistent with the model trend, but it also declines faster than the model, similar to the PR index (Figure 154). The fit to this index ends with five years of negative residuals, after several years of relatively good fit.

### 3.5.6 Convergence

Model convergence was checked during development of a base model by ensuring that

- The final gradient of the likelihood surface was less than 0.0001
- Parameters were checked to ensure that they were not hitting a minimum or maximum bound
- A search for a better minimum was conducted using jittered starting values ("jitter fraction" in r4ss function "jitter" set = 0.6). A total of 100 jittered runs were performed for the base model.
- A model run using the "-hess_step" option was compared to the base model

No parameters were hit the bounds (min or max), and the gradient of the central area base model was $<0.0001$. Across all jittered runs, the model found no minima lower than the base case likelihood (523.39). One run out of the 100 sets of starting values stopped at 1529 , and one run stopped at 9687 .

Results of the -hess_step run reported the following:

```
The 2 Hessian step(s) reduced maxgrad from 5.23125e-06 to 0 and NLL by 1.13687e-13.
All output files should be updated, but confirm as this is experimental still.
The fact this was successful gives strong evidence of convergence to a mode
with quadratic log-likelihood surface.
Iterations: 952
```

A comparison of likelihoods, parameter estimates, and derived quantities showed that results based on the -hess_step run were indistinguishable from the base.

### 3.5.7 Response to STAR Panel Recommendations

1. Request

Rationale:
Response:

### 3.5.8 Central California Base-Model Results

The central California base model produced reasonable values for the subset of growth parameters that were estimated ( $k$ and length at age 20 for females and males; Table 48, Figure 155). Male growth was faster than females and females grew larger, consistent with the northern model. Length at age 20 was
estimated to be 54.7 cm for females (versus 54.5 cm in the north) and 49.4 for males (versus 47.0 cm in the north.

Fits to abundance indices in the central model are, on the whole, significantly better than fits to indices in the northern model. The three indices that span the period 2010-2015, namely rec PR, CCFRP, and PC onboard, all show a similar pattern of a spike in 2013 abundance (Figure 151, Figure 152, Figure 154). This increase is also observed in the catch, however two of the indices are not independent from the catch estimates (PC and PR, as catch rates from the boat mode surveys are used to estimate catch). However, the CCFRP index is a fishery-independent validation of the pattern in 2013, and, the PISCO SCUBA survey observed a similar peak in black rockfish abundance in 2013 (see "UCSC index" in section 12.1.2). The synchrony among recreational dockside and onboard surveys and two fishery-independent surveys is noteworthy in the central area, particularly because it is not apparent in any of the northern area indices.

Another shared pattern among central area data sources is a decline in mean length in 2010. This is likely the reason for the model's estimated large recruitment in 2008 (Figure 158). The 'dip' in mean length is present in the length compositions for the recreational PC, PR, and discard fleets, and the CCFRP survey (Figure 140, Figure 141, Figure 142, Figure 143, Figure 144) but not in the two largest fleets in the northern area (Figure 79, Figure 80). This recruitment could also be the source of the increased central area abundances observed in 2013, as the cohort becomes increasingly available to the fishery.

Prior to 2000, the onboard CPFV observer index (the "DWV" index) shows a declining trend that the model fits reasonably well, (Figure 153). In recent years, there is a negative residual pattern shared by the PC and PR indices, i.e. both indices show declines in recent abundance that the model does not fit (Figure 151, Figure 154). The CCFRP index does not show this decline, and in fact has positive residuals in the past three year (Figure 152).

Estimates of year-class strength in the central model are largest, in absolute terms, in 2008, 2010, and 1976 (Figure 156). The data likely informing the 2008 year class have already been discussed, and it along with 2010 were also the two highest years of black rockfish and yellowtail rockfish YOY abundances observed during SCUBA surveys around Monterey bay (T. Laidig, pers. comm.). Black and yellowtail rockfishes are difficult to distinguish from each other using visual SCUBA surveys.

All selectivity curves in the central area model were double-normal and dome-shaped. The one exception was the Lea et al. research 'fleet' that assumed flat selectivity across lengths and ages, as per the accepted practices guide for data included only for purposes of estimating growth. Preliminary investigations of time blocks for recreational fleets showed little response to depth restrictions in this area, as opposed to the northern area data that were better fit by asymptotic shapes prior to 2004 and domed shapes in later years.

Black rockfish spawning output in central California was estimated to be 145 billion eggs at the start of 2023 ( $\sim 95 \%$ asymptotic intervals: 36-253 billion eggs; Table 50), which equates to a "depletion" level of $42 \%$ ( $\sim 95 \%$ asymptotic intervals: $14 \%-70 \%$; Table 50, Figure 160, Figure 161) in 2023. Depletion is a ratio of the estimated spawning output in a particular year relative to estimated unfished, equilibrium spawning output. Spawning output in California (south of Point Arena) declined slowly prior to WWII, reaching about 70\% of unfished biomass by the early 1920s (Table 51). Spawning output remained relatively stable until the 1960s, after which increases in recreational catch and a period of below-average recruitment in the 1980s and 1990s led to declines in spawning output through the early 2000s (Figure 157, Figure 11, Figure 160). Recent large recruitments were estimated to occur in 2008 and 2010, with average to below-average recruitment estimated over the past few years, but recent recruitments are typically not well estimated (Figure 162). Relative exploitation rates [(1-SPR) / (1-SPR50\%)] increased
to a stable period of low exploitation prior to WWII, then climbed after 1950 and remained high until the 2000s (Figure 163). The equilibrium yield curve for the central area is shifted left, as expected from the assumed Beverton-Holt steepness value ( $\mathrm{h}=0.72$ ) (Figure 164).

### 3.5.9 Evaluation of Uncertainty

### 3.5.9.1 Sensitivity to Assumptions, Data, and Weighting

We evaluated sensitivity of the central California model to specific data sources using a 'drop-one' approach to identify the impact of various sets of information on model outputs. Data were removed by fleet (i.e. all composition and trend data associated with a particular fleet), after which parameter estimates and derived quantities were compared to the base model. Other sensitivity tests included:

- Comparison of model outputs using alternative weighting methods (Francis and McAllisterIanelli); weights were capped at 1 for both methods (i.e. no up weighting of data)
- Assuming natural mortality was the same for both sexes
- Forcing commercial fleets to have asymptotic selectivity
- Estimation of all growth parameters
- Estimation of natural mortality (male and female); steepness fixed at 0.72

The central base model was stable with respect to population scale across most "drop-one" scenarios, with the exception of removing data associated with the CCFRP survey, and to a lesser extent, the DWV onboard survey (Figure 165, Figure 166, Figure 167, Figure 168). The change associated with removing the CCFRP index can be explained by improved fits to the PR and PC onboard indices, which previously had larger negative residuals in recent years (Figure 169, Figure 170). The improvement in fit is also illustrated by a smaller "extraSD" paramamter value for the PR index when CCFRP is removed (Table 52, Table 53).

Changes associated with other sensitivity analyses only slight deviations in M when it was estimated as the same for both sexes or sex-specific (Table 54). Forcing commercial selectivity to be asymptotic had little effect on the result, but note that M was fixed as in the base model for this run. Estimation of all growth parameters had little effect on the outcome (Figure 171), but estimated length at age 0 for females hit the lower bound and CVs of length at age 20 seemed small ( 0.05 for females and 0.03 for males), so the values estimated from the northern model were fixed in the central model. The use of McAllisterIanelli weights had the largest effect among this set of sensitivities on ending relative stock size, but even that was well within the uncertainty estimated by the base model (Figure 172, Figure 173, Figure 174).

### 3.5.9.2 Parameter Uncertainty

Likelihood profiles were performed across three major sources of uncertainty: natural mortality (M), initial recruitment (R0), and steepness (h). An individual profile was completed for each data type (e.g. lengths, ages, indices) and parameter combination to derive the relative importance of each data set to parameter estimation. In addition, profiles for each data set within a data type (i.e. a "Piner" plot) were produced for each of the three parameters listed above.

Most data types in the model are best fit by higher steepness values with the exception of the index data (Figure 175). Among individual length data sources, only the PR data have enough contrast in the likelihood across steepness values to provide information, and that only excludes very small values (Figure 176). Age compositions also favored high steepness values in the central model (Figure 177),
while the improved fit of indices for small steepness values was limited to the PR and PC length comps (Figure 178). Profiling over steepness primarily affected the scale of spawning output, with little change in relative spawning output other than to 'smooth out' the trends when steepness was small (Figure 179, Figure 180). Recruitment deviations varied little across all values of steepness in the profile (Figure 125). Steepness was negatively correlated with estimates of unfished recruitment (Table 55, Table 56).

Profiling over R0 in the central model is less informative than other profiles because steepness and natural mortality are already fixed. For any fixed value of R0, the only parameters left to adjust are those related to recruitment deviations, growth, selectivity, and nuisance parameters (e.g. additive variances). A profile across $\log (\mathrm{R} 0)$ values from 5.8 to 7.2 in increments of 0.2 shows that as unfished recruitment declines, recruitment deviations must compensate by growing large relative to the assumed log-scale variance of 0.6, resulting in large negative log-likelihood values (Figure 182, Figure 183, Figure 184, Figure 185, Figure 186, Figure 187).

The profile over female natural mortality (M) was conducted across a range of values slightly wider than the $2.5 \%$ and $97.5 \%$ percentiles of the lognormal prior on female $\mathrm{M}(0.08-0.30 \mathrm{yr}-1)$ while estimating male natural mortality as an exponential offset to female natural mortality (Table 59, Table 60). Age, length, and index data sources, overall, were fit poorly by low values of female natural mortality in the central model (Figure 188). Length composition data sources were mainly consistent in this respect, with the exception of the Lea et al. data, which was better fit by lower female M values (Figure 189). Age data from the recreational PC fleet seemed most influential, and were best fit by M values between 0.15 and 0.27 , based on this univariate likelihood profile (Figure 190). Index likelihoods were either multi-modal, favoring the extremes of the profile over M, or minimized at high parameter values (Figure 191), with CCFRP and the PC onboard index minima around 0.17 and the PR index minimum at the upper limit of the profile $(M=0.3)$.

### 3.5.9.3 Retrospective Analysis

A retrospective analysis was conducted by sequentially removing 1 through 5 years of data from the central base model starting with 2022. Sequential removal of the data did not produce strong retrospective patterns (Figure 192, Figure 193). Values of Mohn's rho as reported by the r4ss package were SSB $=-0.180$, Rec $=1.555$, Bratio $=-0.384$, and $\mathrm{F}=0.309$.

### 3.6 Historical Analysis

Comparisons of spawning output and relative spawning output from the 2015 assessment and the combined spawning output from the northern and central area models are shown in Figure 194 and Figure 195. Spawning output in the 2023 model is scaled higher than the 2015 assessment, but relative spawning output (combined, as described below) is very similar, particularly towards the end of the time series for the 2015 model.

## 4 Reference Points

Reference points for the area-specific models are discussed in the results section for each model. The STAT combined a subset of the model outputs to estimate statewide spawning output and other quantities
of interest to management. (Table 61, Figure 196, Figure 197). The combined status of the stock in California is estimated to be at $37.6 \%$ of unfished biomass, when calculated this way.

## 5 Harvest Projections and Decision Tables

To be completed after STAR panel.

## 6 Regional Management Considerations

Given the differences in exploitation history, average size, and abundance trends, it seems reasonable to use the area specific models as a guideline for harvest allocation, whether formal or informal. In order to fully understand the implications of regional management decisions for this stock, further research is needed with respect to movement patterns, differences in life history, and genetic differentiation within U.S. waters off California.

## 7 Research and Data Needs

There is conflicting evidence or limited information with which to evaluate black rockfish stock structure, especially off California. Future research on larval dispersal, life history traits, adult movement, and genetics south of the California-Oregon border would improve inputs for stock assessments and provide support for the spatiotemporal scale that is most appropriate for modeling black rockfish. Specifically, information about growth, maturity, and mortality north and south of Point Arena would further justify the separation of black rockfish at this location. Further genetic evaluation regarding the extent to which Point Arena may serve as a barrier to gene flow would also be valuable for this stock. Much of what we know about black rockfish life history in California also comes from research that was conducted in the 1980s (e.g., Echeverria 1987). Updating these estimates would be a worthwhile area of future study, given observed changes for other species over similar time scales (e.g., blue rockfish; Schmidt 2014). California-specific estimates of larval dispersal and movement rates at various life stages would further our understanding about connectivity among the three West Coast stocks of black rockfish. Although most black rockfish show moderate to high site fidelity and some degree of homing, a notable proportion of fish appear to cross stock boundaries. Additional research on the directions and distances that black rockfish move in northern California and southern Oregon would help elucidate the degree of intergenerational exchange across this particular stock boundary. Finally, much of what we know about the habitat associations and ecological role of black rockfish come from Oregon, Washington, and Alaska. Research that is specific to central and northern California is needed to fully understand variation in black rockfish life history, population structure, and trophic positioning.

Exploration of multiple-area models for the stock is recommended when sufficient data are available to parameterize movement within the model. Directional movement between areas (south to north, as observed in the CCFRP movement data) may partially explain sustained differences in size and age composition throughout the state.

Attempts to investigate recruitment indices (RREAS, SWFSC SCUBA) for the fleets-as-areas model configuration were not successful, and there was not enough time to evaluate area-specific indices prior to the STAR panel document deadline (although they have been developed). Future assessments may benefit from an analysis of these recruitment indices representing sub-areas defined in this assessment.

Further research is also needed to explain skewed sex ratios among older individuals in the population. This assessment assumes that size-dependent selectivity is equal for both sexes, and does not consider alternative hypotheses such as sex- or age-specific selectivity or age-dependent natural mortality, both of which could also explain, in whole or in part, the reduced fraction of older females in the data.

## 8 Acknowledgments

[to be completed after the STAR panel review]

## 9 Literature Cited

Abrams, J. 2014. The effect of local fishing pressure on the size and age structure of fishes associated with rocky habitats along California's north coast. Master's thesis, Humboldt State University. 148 p.

Adams, G.D., Kapur, M.S., McQuaw, K., Thurner, S., Hamel, O.S., Stephens, A. and Wetzel, C., 2019. Stock assessment update: status of widow rockfish (Sebastes entomelas) along the US West Coast in 2019. Pacific Fishery Management Council, Portland, OR.

Anderson, S.C., E.J. Ward, P.A. English, L.A.K. Barnett. 2022. sdmTMB: an R package for fast, flexible, and userfriendly generalized linear mixed effects models with spatial and spatiotemporal random fields. bioRxiv
2022.03.24.485545; doi: https://doi.org/10.1101/2022.03.24.485545

Anderson, T.W. 1983. Identification and development of nearshore juvenile rockfishes (genus Sebastes) in central California kelp forests. M.S. Thesis. California State University, Fresno.

Boehlert, G.W. and Yoklavich, M. 1983. Effects of temperature, ration, and fish size on growth of juvenile black rockfish, Sebastes melanops. Environmental biology of fishes, 8(1): 17-28.

Bürkner P (2017). "brms: An R Package for Bayesian Multilevel Models Using Stan." Journal of Statistical Software, 80(1), 1-28. doi:10.18637/jss.v080.i01.

Burnham, K.P. and Anderson, D.R. 2002. Model Selection and Inference: A Practical Information-Theoretic Approach. 2nd Edition, Springer-Verlag, New York.

Cope, J.M. D. Sampson, A. Stephens, M. Key, P. Mirick, M. Stachura, T. Tsou, P. Weyland, A. Berger, T. Buell, E. Councill, E. Dick, K. Fenske, M. Monk, B. Rodomsky. 2016. Assessments of California, Oregon and Washington Stocks of Black Rockfish (Sebastes melanops) in 2015. Pacific Fishery Management Council, Portland, Oregon.

Dick, E.J., Berger, A., Bizzarro, J., Bosley, K., Cope, J., Field, J., Glibert-Horvath, L., Grunloh, N., Ivens-Duran, M., Miller, R., Privitera-Johnson, K., and Rodomsky, B.T. 2018. The combined status of blue and deacon rockfishes in U.S. Waters off California and Oregon in 2017. Pacific Fishery Management Council, Portland, OR.

Dick, E.J., S. Beyer, M. Mangel, and S. Ralston. 2017. A meta-analysis of fecundity in rockfishes (genus Sebastes). Fish. Res. 187: 73-85.

Dorn, M. 2002. Advice on West Coast Rockfish Harvest Rates from Bayesian Meta-Analysis of Stock-Recruitment Relationships. North American Journal of Fisheries Management 22:280-300.

Echeverria, T. and W.H. Lenarz. 1984. Conversions between total, fork, and standard lengths in 35 species of Sebastes from California. Fish. Bull., U.S. 82:249-251.

Field, J.C., R.R. Miller, J.A. Santora, N. Tolimieri, M.A. Haltuch, R.D. Brodeur, T.D. Auth, E.J. Dick, M.H. Monk, K.M. Sakuma and B.K. Wells. 2021. Spatiotemporal patterns of variability in the abundance and distribution of winter-spawned pelagic juvenile rockfish in the California Current. PloS one 16(5):e0251638. $\mathrm{https}: / /$ doi.org/10.1371/journal.pone. 0251638.

Field, J.C., S. Beyer and X. He. 2015. Status of the Chilipepper Rockfish, Sebastes goodei, in the California Current for 2015. Pacific Fishery Management Council, Portland, OR.

Field, J.C., E.J. Dick, M. Key, M. Lowry, Y. Lucero, A. MacCall, D. Pearson, S. Ralston, W. Sydeman, and J. Thayer. 2007. Population dynamics of an unexploited rockfish, Sebastes jordani, in the California Current. pp 451472 in J. Heifetz, J. Dicosimo, A.J. Gharrett, M.S. Love, V. M. O'connell and R.D. Stanley (editors) Proceedings of the Lowell-Wakefield Symposium on the Biology, Assessment and Management of North Pacific Rockfish. University of Alaska Sea Grant: Anchorage, Alaska.

Francis, R. 2011. Data weighting in statistical fisheries stock assessment models. Canadian 2487 Journal of Fisheries and Aquatic Sciences 68: 1124-1138.

Gillett, D. J., Pondella, D. J. II, Freiwald, J., Schiff, K. C., Caselle, J. E., Shuman, C., \& Weisberg, S. B. 2012. Comparing volunteer and professionally collected monitoring data from the rocky subtidal reefs of Southern California, USA. Environmental Monitoring and Assessment, 184(5), 3239-3257.

Goodrich B, Gabry J, Ali I, Brilleman S. 2023. "rstanarm: Bayesian applied regression modeling via Stan." R package version 2.21.4, https://mc-stan.org/rstanarm/.

Hamel, O. S. 2015. A method for calculating a meta-analytical prior for the natural mortality rate using multiple life-history correlates. ICES Journal of Marine Science 72(1): 62-69.

Hamel, O. and Cope, J. 2022. Development and considerations for application of a longevity-based prior for the natural mortality rate. Fisheries Research 256: 106477. https://doi.org/10.1016/j.fishres.2022.106477.

He, X., J.C. Field, D.E. Pearson, L. Lefebvre and S. Lindley. 2015. Status of Bocaccio, Sebastes paucispinis, in the Conception, Monterey and Eureka INPFC areas for 2015. Pacific Fishery Management Council, Portland, OR.

Hoffman MD, Gelman A (2014). "The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo." Journal of Machine Learning Research, 15(1), 1593-1623.

Karpov, K.A., Albin, D.P., and Van Buskirk, W.H. 1995. The marine recreational fishery in northern California and central California: a historical comparison (1958-86), status of stocks (1980-1986), and effects of changes in the California Current. Calif. Dep. Fish Game Fish Bull. 176.

Key, M., MacCall, A.D., Field, J.C., Aseltine-Neilson, D., and Lynn, K. 2008. The 2007 assessment of blue rockfish (Sebastes mystinus) in California. Pacific Fishery Management Council.

Laidig, T.E., Chess, J.R., and Howard, D.F. 2007. Relationship between abundance of juvenile rockfishes (Sebastes spp.) and environmental variables documented off northern California and potential mechanisms for the covariation. Fishery Bulletin 105(1):39-48.

Lo, N., Jacobson, L.D., and Squire, J.L. 1992. Indices of relative abundance from fish spotter data based on deltalognormal models. Canadian Journal of Fisheries and Aquatic Sciences 49: 2515-2526.

Love, M.S., Yoklavich, M.M., and Thorseinson, L. 2002. The rockfishes of the Northeast Pacific. University of California Press. Berkeley, CA.

Love, M.S. 2011. Certainly more than you want to know about the fishes of the Pacific Coast (a postmodern experience). Really Big Press. Santa Barbara, CA.

Methot, R.D., and C.R. Wetzel. 2013. Stock synthesis: A biological and statistical framework for fish stock assessment and fishery management. Fish. Res. 142:86-99.

Miller, D.J., and Gotshall, D. 1965. Ocean sportfish catch from Oregon to Point Arguello, California. Calif. Dept. Fish Game. Fish Bulletin 130.

Monk, M., Dick, E., and Pearson, D. 2014. Documentation of a relational database for the California Recreational Fisheries Survey Onboard Observer Sampling Program, 1999-2011. NOAA Technical Memorandum NOAA-TM-NMFS-SWFSC-529. 107 p.

Monk, M.H., Miller, R.R., Field, J., Dick, E.J., Wilson-Vandenberg, D., and Reilly, P. 2016. Documentation for California Department of Fish and Wildlife's Onboard Sampling of the Rockfish and Lingcod Commercial

Passenger Fishing Vessel Industry in Northern and Central California (1987-1998) as a relational database. NOAA-TM-NMFS-SWFSC-558.

Parker SJ, Rankin PS, Olson JM, Hannah RW. 2007 Movement patterns of black rockfish (Sebastes melanops) in Oregon coastal waters. In: Heifetz J, DiCosimo J, Gharrett AJ, Love MS, O’Connell VM, Stanley RD (eds) Biology, assessment, and management of North Pacific rockfishes. University of Alaska Fairbanks, Alaska Sea Grant, pp 3957

PFMC (Pacific Fishery Management Council). 2002. Status of the Pacific Coast Groundfish Fishery Through 2001 and Acceptable Biological Catches for 2002: Stock Assessment and Fishery Evaluation. (Document prepared for the Council and its advisory entities.) Pacific Fishery Management Council 7700 NE Ambassador Place, Suite 200, Portland, Oregon 97220-1384.

PFMC (Pacific Fishery Management Council). 2008. Pacific Coast Groundfish Fishery Stock Assessment and Fishery Evaluation, Volume 1. Pacific Fishery Management Council, Portland, OR. March 2008.

PFMC. 2013. Scientific and Statistical Committee Draft Summary Minutes, April, 2017. Pacific Fishery Management Council, Portland, Oregon. 22 p.

Punt, A.E., Smith, D.C., KrusicGolub, K., and Robertson, S. 2008. Quantifying age-reading error for use in fisheries stock assessments, with application to species in Australia's southern and eastern scalefish and shark fishery. Can. J. Fish. Aquat. Sci. 65: 1991-2005.

R Core Team (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Ralston S. and E.J. Dick. 2003. The status of black rockfish (Sebastes melanops) off Oregon and northern California in 2003. Pacific Fisheries Management Council, Portland Oregon.

Ralston, S., D.E. Pearson, J. Field, and M. Key. 2010. Documentation of the California Catch Reconstruction. NOAA Technical Memorandum NMFS-SWFSC 461.

Ralston, S., Sakuma, K.M., and Field, J.C. 2013. Interannual variation in pelagic juvenile rockfish (Sebastes spp.) abundance - going with the flow. Fisheries Oceanography 22: 288-308.

Ralston, S. and Stewart, I.J., 2013. Anomalous distributions of pelagic juvenile rockfish on the US west coast in 2005 and 2006. California Cooper. Ocean. Fish. Invest. Rep, 54, pp.155-166.

Sakuma, K.M., Field, J.C., Mantua, N.J., Ralston, S., Marinovic, B.B. and C.N. Carrion. 2016. Anomalous epipelagic micronekton assemblage patterns in the neritic waters of the California Current in spring 2015 during a period of extreme ocean conditions. CalCOFI Reports 57:163-183.

Sampson, D.B. 2007. The Status of Black Rockfish off Oregon and California in 2007. Pacific Fishery Management Council, Portland, OR.

Schnute, J. 1981. A versatile growth model with statistically stable parameters. Canadian Journal of Fisheries and Aquatic Sciences 38:1128-1140.

Steele, M. A., J. C. Malone, A. M. Findlay, M. H. Carr, and G. E. Forrester. 2002. A simple method for estimating larval supply in reef fishes and a preliminary test of limitation of population size by larval supply in the kelp bass, Paralabrax clathratus. Mar. Ecol. Prog. Ser. 235:195-203.

Stefánsson, G. 1996. Analysis of ground fish survey abundance data: combining the GLM and delta approaches. ICES Journal of Marine Science 53:577-596.

Stephens, A. and A. MacCall. 2004. A multispecies approach to subsetting logbook data for purposes of estimating CPUE. Fisheries Research 70(2-3):299-310.

Taylor, Ian G., Kathryn L. Doering, Kelli F. Johnson, Chantel R. Wetzel, and Ian J. Stewart. 2021. Beyond visualizing catch-at-age models: Lessons learned from the r4ss package about software to support stock assessments, Fisheries Research, 239:105924. https://doi.org/10.1016/j.fishres.2021.105924.

Then, A.Y., J.M. Hoenig, N.G. Hall, and D.A. Hewitt. 2015. Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species. ICES J. of Mar. Sci. 72, 82-92.

Thorson, James T, Stewart, Ian J, and Punt, Andre E. 2012. nwfscAgeingError: a user interface in R for the Punt et al. (2008) method for calculating ageing error and imprecision. Available from: http://github.com/nwfsc-assess/nwfscAgeingError/.
von Bertalanffy, L. 1957. Quantitative laws in metabolism and growth. Quarterly Review Biology 32: 217-231.
Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely application information criterion in singular learning theory. Journal of Machine Learning Research 11, 3571-3594.

Wyllie-Echeverria, T. 1987. Thirty-four species of California rockfishes: maturity and seasonality of reproduction. Fishery Bulletin 85: 229-250.

## 10 Auxiliary Files

## Files archived with the California assessment, northern area model

Files archived with the California assessment, central area model

## 11 Tables

Table 1: Evaluation of Management Performance for Black Rockfish. Total Mortality estimates are based on the Groundfish Expanded Mortality Multiyear (GEMM) report. Catch values prior to 2017 are not reported because black rockfish catch limits were defined across state lines and are not comparable to California-only estimates used in this assessment. The GEMM report estimate for 2022 was not yet released when this assessment was prepared.

|  | Area | Overfishing Limit | Acceptable Bio. <br> Catch | Annual Catch <br> Limit | Calif. Statewide Catch <br> from 2023 Assessment | GEMM Report |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2013 | OR - CA | 1159 | 1108 | 1000 | -- | - |
| 2014 | OR - CA | 1166 | 1115 | 1000 | -- | - |
| 2015 | OR - CA | 1176 | 1124 | 1000 | - | - |
| 2016 | OR - CA | 1183 | 1131 | 1000 | - | - |
| 2017 | CA | 349 | 334 | 334 | 171 |  |
| 2018 | CA | 347 | 332 | 332 | 142 | 142 |
| 2019 | CA | 344 | 329 | 329 | 160 | 159 |
| 2020 | CA | 341 | 326 | 326 | 145 | 117 |
| 2021 | CA | 379 | 348 | 348 | 239 | 236 |
| 2022 | CA | 373 | 341 | 341 | 269 | -- |

Table 2: Commercial catches for the northern area by fleet and year

| Year | Comm. Non-Trawl Dead | Comm. Non-Trawl Alive | Comm. Trawl | Comm. Discard | Grand Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1875 | 0.048 |  |  | 0.001 | 0.049 |
| 1876 | 0.095 |  |  | 0.002 | 0.097 |
| 1877 | 0.143 |  |  | 0.003 | 0.146 |
| 1878 | 0.19 |  |  | 0.004 | 0.194 |
| 1879 | 0.238 |  |  | 0.005 | 0.243 |
| 1880 | 0.285 |  |  | 0.005 | 0.29 |
| 1881 | 0.333 |  |  | 0.006 | 0.339 |
| 1882 | 0.38 |  |  | 0.007 | 0.387 |
| 1883 | 0.428 |  |  | 0.008 | 0.436 |
| 1884 | 0.476 |  |  | 0.009 | 0.485 |
| 1885 | 0.523 |  |  | 0.01 | 0.533 |
| 1886 | 0.571 |  |  | 0.011 | 0.582 |
| 1887 | 0.618 |  |  | 0.012 | 0.63 |
| 1888 | 0.666 |  |  | 0.013 | 0.679 |
| 1889 | 0.713 |  |  | 0.014 | 0.727 |
| 1890 | 0.761 |  |  | 0.014 | 0.775 |
| 1891 | 0.808 |  |  | 0.015 | 0.823 |
| 1892 | 0.856 |  |  | 0.016 | 0.872 |
| 1893 | 0.903 |  |  | 0.017 | 0.92 |
| 1894 | 0.951 |  |  | 0.018 | 0.969 |
| 1895 | 0.999 |  |  | 0.019 | 1.018 |
| 1896 | 1.046 |  |  | 0.02 | 1.066 |
| 1897 | 1.094 |  |  | 0.021 | 1.115 |
| 1898 | 1.141 |  |  | 0.022 | 1.163 |
| 1899 | 1.189 |  |  | 0.023 | 1.212 |
| 1900 | 1.236 |  |  | 0.023 | 1.259 |
| 1901 | 1.284 |  |  | 0.024 | 1.308 |
| 1902 | 1.331 |  |  | 0.025 | 1.356 |
| 1903 | 1.379 |  |  | 0.026 | 1.405 |
| 1904 | 1.427 |  |  | 0.027 | 1.454 |
| 1905 | 1.474 |  |  | 0.028 | 1.502 |
| 1906 | 1.522 |  |  | 0.029 | 1.551 |
| 1907 | 1.569 |  |  | 0.03 | 1.599 |
| 1908 | 1.617 |  |  | 0.031 | 1.648 |
| 1909 | 1.664 |  |  | 0.032 | 1.696 |
| 1910 | 1.712 |  |  | 0.033 | 1.745 |
| 1911 | 1.759 |  |  | 0.033 | 1.792 |
| 1912 | 1.807 |  |  | 0.034 | 1.841 |
| 1913 | 1.855 |  |  | 0.035 | 1.89 |
| 1914 | 1.902 |  |  | 0.036 | 1.938 |
| 1915 | 1.95 |  |  | 0.037 | 1.987 |
| 1916 | 1.997 |  |  | 0.038 | 2.035 |
| 1917 | 3.93 |  |  | 0.075 | 4.005 |
| 1918 | 9.175 |  |  | 0.174 | 9.349 |
| 1919 | 2.109 |  |  | 0.04 | 2.149 |
| 1920 | 2.864 |  |  | 0.054 | 2.918 |
| 1921 | 4.295 |  |  | 0.082 | 4.377 |
| 1922 | 3.201 |  |  | 0.061 | 3.262 |
| 1923 | 1.049 |  |  | 0.02 | 1.069 |
| 1924 | 2.869 |  |  | 0.055 | 2.924 |
| 1925 | 9.301 |  |  | 0.177 | 9.478 |
| 1926 | 9.175 |  |  | 0.174 | 9.349 |


| Year | Comm. Non-Trawl Dead | Comm. Non-Trawl Alive | Comm. <br> Trawl | Comm. <br> Discard | Grand Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1927 | 17.412 |  |  | 0.331 | 17.743 |
| 1928 | 15.02 |  |  | 0.285 | 15.305 |
| 1929 | 14.602 |  | 3.521 | 0.344 | 18.467 |
| 1930 | 22.486 |  | 2.356 | 0.472 | 25.314 |
| 1931 | 31.527 |  | 6.803 | 0.728 | 39.058 |
| 1932 | 22.212 |  | 4.96 | 0.516 | 27.688 |
| 1933 | 16.663 |  | 8.943 | 0.487 | 26.093 |
| 1934 | 17.805 |  | 6.294 | 0.458 | 24.557 |
| 1935 | 28.87 |  | 6.207 | 0.666 | 35.743 |
| 1936 | 27.794 |  | 2.913 | 0.583 | 31.29 |
| 1937 | 20.745 |  | 7.579 | 0.538 | 28.862 |
| 1938 | 31.869 |  | 7.951 | 0.757 | 40.577 |
| 1939 | 32.346 |  | 15.874 | 0.916 | 49.136 |
| 1940 | 21.864 |  | 8.512 | 0.577 | 30.953 |
| 1941 | 24.704 |  | 7.888 | 0.619 | 33.211 |
| 1942 | 30.793 |  | 10.403 | 0.783 | 41.979 |
| 1943 | 37.166 |  | 12.599 | 0.946 | 50.711 |
| 1944 | 115.374 |  | 64.704 | 3.421 | 183.499 |
| 1945 | 273.435 |  | 120.257 | 7.48 | 401.172 |
| 1946 | 322.788 |  | 264.276 | 11.154 | 598.218 |
| 1947 | 156.059 |  | 397.61 | 10.52 | 564.189 |
| 1948 | 133.002 |  | 58.596 | 3.64 | 195.238 |
| 1949 | 52.071 |  | 66.462 | 2.252 | 120.785 |
| 1950 | 51.813 |  | 349.186 | 7.619 | 408.618 |
| 1951 | 51.743 |  | 185.75 | 4.512 | 242.005 |
| 1952 | 30.243 |  | 41.844 | 1.37 | 73.457 |
| 1953 | 26.527 |  | 135.62 | 3.081 | 165.228 |
| 1954 | 65.129 |  | 235.749 | 5.717 | 306.595 |
| 1955 | 2.659 |  | 160.781 | 3.105 | 166.545 |
| 1956 | 12 |  | 37.92 | 0.948 | 50.868 |
| 1957 | 19.079 |  | 76.4 | 1.814 | 97.293 |
| 1958 | 14.61 |  | 57.314 | 1.367 | 73.291 |
| 1959 | 6.385 |  | 37.058 | 0.825 | 44.268 |
| 1960 | 3.52 |  | 66.612 | 1.333 | 71.465 |
| 1961 | 4.489 |  | 64.556 | 1.312 | 70.357 |
| 1962 | 5.139 |  | 58.532 | 1.21 | 64.881 |
| 1963 | 11.592 |  | 75.825 | 1.661 | 89.078 |
| 1964 | 7.369 |  | 45.179 | 0.998 | 53.546 |
| 1965 | 12.29 |  | 24.653 | 0.702 | 37.645 |
| 1966 | 9.574 |  | 17.482 | 0.514 | 27.57 |
| 1967 | 9.406 |  | 15.906 | 0.481 | 25.793 |
| 1968 | 10.276 |  | 17.592 | 0.529 | 28.397 |
| 1969 | 27.997 |  | 11.43 | 0.749 | 40.176 |
| 1970 | 5.734 |  | 15.823 | 0.41 | 21.967 |
| 1971 | 3.943 |  | 23.934 | 0.53 | 28.407 |
| 1972 | 7.136 |  | 39.132 | 0.879 | 47.147 |
| 1973 | 8.229 |  | 46.702 | 1.044 | 55.975 |
| 1974 | 16.213 |  | 82.702 | 1.879 | 100.794 |
| 1975 | 12.783 |  | 41.154 | 1.025 | 54.962 |
| 1976 | 35.764 |  | 52.405 | 1.675 | 89.844 |
| 1977 | 16.986 |  | 52.417 | 1.319 | 70.722 |
| 1978 | 6.486 |  | 105.387 | 2.126 | 113.999 |
| 1979 | 2.868 |  | 0.088 | 0.056 | 3.012 |
| 1980 | 2.785 |  | 48.955 | 0.983 | 52.723 |


| Year | Comm. Non-Trawl Dead | Comm. Non-Trawl Alive | Comm. Trawl | Comm. Discard | Grand Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1981 | 19.076 |  | 50.385 | 1.32 | 70.781 |
| 1982 | 85.998 |  | 62.455 | 2.821 | 151.274 |
| 1983 | 143.038 |  | 99.039 | 4.599 | 246.676 |
| 1984 | 162.233 |  | 35.016 | 3.748 | 200.997 |
| 1985 | 124.145 |  | 80.961 | 3.897 | 209.003 |
| 1986 | 9.258 |  | 0.745 | 0.19 | 10.193 |
| 1987 | 14.435 |  | 65.604 | 1.521 | 81.56 |
| 1988 | 25.385 |  | 48.972 | 1.413 | 75.77 |
| 1989 | 103.236 |  | 25.372 | 2.444 | 131.052 |
| 1990 | 132.417 |  | 0.149 | 2.519 | 135.085 |
| 1991 | 117.68 |  | 21.117 | 2.637 | 141.434 |
| 1992 | 195.355 |  | 49.684 | 4.656 | 249.695 |
| 1993 | 115.363 |  | 2.082 | 2.231 | 119.676 |
| 1994 | 115.09 | 0.684 | 0.272 | 2.205 | 118.251 |
| 1995 | 160.017 | 0.054 | 2.063 | 3.081 | 165.215 |
| 1996 | 77.588 | 0.624 | 10.369 | 1.683 | 90.264 |
| 1997 | 95.325 | 2.129 | 11.63 | 2.073 | 111.157 |
| 1998 | 58.315 | 1.799 | 5.216 | 1.241 | 66.571 |
| 1999 | 48.563 | 3.753 | 0.231 | 0.998 | 53.545 |
| 2000 | 28.726 | 12.893 | 0.318 | 0.797 | 42.734 |
| 2001 | 64.161 | 27.702 | 0.981 | 1.764 | 94.608 |
| 2002 | 41.698 | 48.462 | 0.571 | 1.724 | 92.455 |
| 2003 | 16.456 | 39.096 | 0.093 | 1.057 | 56.702 |
| 2004 | 17.771 | 46.046 | 1.126 | 1.234 | 66.177 |
| 2005 | 17.91 | 53.322 | 0.005 | 1.354 | 72.591 |
| 2006 | 13.244 | 46.517 |  | 1.135 | 60.896 |
| 2007 | 23.528 | 58.018 |  | 1.549 | 83.095 |
| 2008 | 9.371 | 73.311 |  | 1.571 | 84.253 |
| 2009 | 24.115 | 65.425 | 0.056 | 1.702 | 91.298 |
| 2010 | 10.617 | 39.773 |  | 0.957 | 51.347 |
| 2011 | 7.612 | 16.814 |  | 0.464 | 24.89 |
| 2012 | 7.766 | 11.095 |  | 0.358 | 19.219 |
| 2013 | 10.582 | 19.563 | 0.003 | 0.573 | 30.721 |
| 2014 | 14.972 | 21.823 |  | 0.699 | 37.494 |
| 2015 | 35.405 | 62.838 | 0.025 | 1.867 | 100.135 |
| 2016 | 29.425 | 31.909 | 0.274 | 1.171 | 62.779 |
| 2017 | 20.423 | 33.99 |  | 1.034 | 55.447 |
| 2018 | 17.555 | 26.616 | 0.012 | 0.839 | 45.022 |
| 2019 | 19.274 | 29.12 | 0.015 | 0.92 | 49.329 |
| 2020 | 19.958 | 20.282 | 0.216 | 0.769 | 41.225 |
| 2021 | 20.482 | 16.879 |  | 0.71 | 38.071 |
| 2022 | 25.017 | 29.915 | 0.052 | 1.045 | 56.029 |
| Grand Total | 4356.87 | 840.45 | 3883.91 | 172.54 | 9253.768 |

Table 3: Commercial catches for the central area by fleet and year

| Year | Comm. Non-Trawl | Comm. Trawl | Comm. Discard |
| :---: | :---: | :---: | :---: | Grand Total 9.


| Year | Comm. Non-Trawl | Comm. Trawl | Comm. Discard | Grand Total |
| :---: | :---: | :---: | :---: | :---: |
| 1927 | 41.583 |  | 0.79 | 42.373 |
| 1928 | 50.041 |  | 0.951 | 50.992 |
| 1929 | 41.501 |  | 0.789 | 42.29 |
| 1930 | 57.942 | 0.669 | 1.114 | 59.725 |
| 1931 | 51.048 |  | 0.97 | 52.018 |
| 1932 | 37.877 |  | 0.72 | 38.597 |
| 1933 | 24.875 |  | 0.473 | 25.348 |
| 1934 | 24.947 |  | 0.474 | 25.421 |
| 1935 | 38.539 |  | 0.732 | 39.271 |
| 1936 | 37.596 |  | 0.714 | 38.31 |
| 1937 | 44.687 | 0.136 | 0.852 | 45.675 |
| 1938 | 30.426 | 0.102 | 0.58 | 31.108 |
| 1939 | 14.402 |  | 0.274 | 14.676 |
| 1940 | 24.303 |  | 0.462 | 24.765 |
| 1941 | 31.498 |  | 0.598 | 32.096 |
| 1942 | 8.24 | 0.176 | 0.16 | 8.576 |
| 1943 | 19.187 | 1.063 | 0.385 | 20.635 |
| 1944 | 4.164 | 0.382 | 0.086 | 4.632 |
| 1945 | 8.831 | 0.899 | 0.185 | 9.915 |
| 1946 | 10.395 | 0.869 | 0.214 | 11.478 |
| 1947 | 14.942 | 1.547 | 0.313 | 16.802 |
| 1948 | 13.211 | 0.854 | 0.267 | 14.332 |
| 1949 | 19.66 | 2.337 | 0.418 | 22.415 |
| 1950 | 16.002 | 3.524 | 0.371 | 19.897 |
| 1951 | 23.655 | 8.075 | 0.603 | 32.333 |
| 1952 | 20.357 | 31.303 | 0.982 | 52.642 |
| 1953 | 14.538 | 22.899 | 0.711 | 38.148 |
| 1954 | 20.547 | 8.896 | 0.559 | 30.002 |
| 1955 | 24.899 | 13.378 | 0.727 | 39.004 |
| 1956 | 19.502 | 1.779 | 0.404 | 21.685 |
| 1957 | 22.164 | 0.674 | 0.434 | 23.272 |
| 1958 | 55.981 | 1.046 | 1.084 | 58.111 |
| 1959 | 75.761 | 1.217 | 1.463 | 78.441 |
| 1960 | 27.01 | 0.183 | 0.517 | 27.71 |
| 1961 | 22.929 | 1.227 | 0.459 | 24.615 |
| 1962 | 30.918 | 3.399 | 0.652 | 34.969 |
| 1963 | 20.204 | 4.169 | 0.463 | 24.836 |
| 1964 | 13.516 | 3.005 | 0.314 | 16.835 |
| 1965 | 17.22 | 3.489 | 0.393 | 21.102 |
| 1966 | 12.711 | 0.903 | 0.259 | 13.873 |
| 1967 | 31.509 | 0.283 | 0.604 | 32.396 |
| 1968 | 37.416 | 0.085 | 0.713 | 38.214 |
| 1969 | 32.239 | 0.037 | 0.613 | 32.889 |
| 1970 | 32.294 | 3.557 | 0.681 | 36.532 |
| 1971 | 29.329 | 0.002 | 0.557 | 29.888 |
| 1972 | 73.64 | 3.282 | 1.462 | 78.384 |
| 1973 | 16.488 | 3.875 | 0.387 | 20.75 |
| 1974 | 49.324 | 0.137 | 0.94 | 50.401 |
| 1975 | 33.261 | 0.213 | 0.636 | 34.11 |
| 1976 | 20.9 | 0.217 | 0.401 | 21.518 |
| 1977 | 38.338 | 0.103 | 0.73 | 39.171 |
| 1978 | 22.789 | 0.081 | 0.435 | 23.305 |
| 1979 | 41.594 | 21.849 | 1.205 | 64.648 |
| 1980 | 2.893 | 10.738 | 0.259 | 13.89 |
| 1981 | 5.325 | 2.115 | 0.141 | 7.581 |


| Year | Comm. Non-Trawl | Comm. Trawl | Comm. Discard | Grand Total |
| :---: | :---: | :---: | :---: | :---: |
| 1982 | 6.968 | 0.145 | 0.135 | 7.248 |
| 1983 | 3.962 | 0.428 | 0.083 | 4.473 |
| 1984 | 6.267 | 0.882 | 0.136 | 7.285 |
| 1985 | 21.755 |  | 0.413 | 22.168 |
| 1986 | 13.793 |  | 0.262 | 14.055 |
| 1987 | 6.527 |  | 0.124 | 6.651 |
| 1988 | 6.362 |  | 0.121 | 6.483 |
| 1989 | 3.77 |  | 0.072 | 3.842 |
| 1990 | 1.983 | 0.181 | 0.041 | 2.205 |
| 1991 | 7.792 |  | 0.148 | 7.94 |
| 1992 | 16.711 | 0.003 | 0.318 | 17.032 |
| 1993 | 23.942 | 0.909 | 0.472 | 25.323 |
| 1994 | 19.776 | 0.045 | 0.377 | 20.198 |
| 1995 | 6.891 | 0.211 | 0.135 | 7.237 |
| 1996 | 29.269 | 0.002 | 0.556 | 29.827 |
| 1997 | 16.671 | 0.039 | 0.317 | 17.027 |
| 1998 | 21.427 | 0.16 | 0.41 | 21.997 |
| 1999 | 6.161 | 0.347 | 0.124 | 6.632 |
| 2000 | 3.576 | 0.983 | 0.087 | 4.646 |
| 2001 | 6.667 | 0.239 | 0.131 | 7.037 |
| 2002 | 2.26 | 1.463 | 0.071 | 3.794 |
| 2003 | 1.662 | 0.416 | 0.039 | 2.117 |
| 2004 | 3.149 | 0.018 | 0.06 | 3.227 |
| 2005 | 2.512 |  | 0.048 | 2.56 |
| 2006 | 1.864 |  | 0.035 | 1.899 |
| 2007 | 2.064 | 0.034 | 0.04 | 2.138 |
| 2008 | 1.15 |  | 0.022 | 1.172 |
| 2009 | 1.597 |  | 0.03 | 1.627 |
| 2010 | 0.9 |  | 0.017 | 0.917 |
| 2011 | 2.004 |  | 0.038 | 2.042 |
| 2012 | 2.755 | 0.001 | 0.052 | 2.808 |
| 2013 | 4.975 |  | 0.095 | 5.07 |
| 2014 | 3.803 | 0.002 | 0.072 | 3.877 |
| 2015 | 4.395 |  | 0.084 | 4.479 |
| 2016 | 1.919 | 0.01 | 0.037 | 1.966 |
| 2017 | 0.983 | 0.002 | 0.019 | 1.004 |
| 2018 | 1.082 |  | 0.021 | 1.103 |
| 2019 | 0.638 |  | 0.012 | 0.65 |
| 2020 | 1.185 |  | 0.023 | 1.208 |
| 2021 | 1.311 |  | 0.025 | 1.336 |
| 2022 | 1.198 |  | 0.023 | 1.221 |
| Grand Total | 3213.387 | 171.294 | 64.31 | 3448.991 |

Table 4: Data filters applied to the California MRFSS dockside CPFV index. See Section 12.1.1 for details regarding specific filter steps.

| Filter | Description | Samples | Percent_Positive |
| :--- | :--- | :---: | :---: |
| All data | California data north of Point Conception | 2923 | $15.4 \%$ |
| Remove suspect years | Only sampled SLO County in 1993-94; Effort issue in 1997 | 2695 | $14.9 \%$ |
| Extreme counter-indicators | Remove trips encountering sablefish and albacore | 2553 | $15.7 \%$ |
| Stephens-MacCall | Remove predicted false negatives | 764 | $52.6 \%$ |
| Remove 2000-2003 | Change in bag limit after 1999; remove 1 extreme catch rate | 558 | $47.3 \%$ |

Table 5: Sample size (number of trips) by year and CRFS district for the California MRFSS dockside CPFV index. Data were assigned to CRFS District by county.

|  | CRFS District |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Year | 3 | 4 | 5 | 6 | Subtotal |
| 1980 | 14 | 14 | 7 | 0 | 35 |
| 1981 | 5 | 17 | 5 | 1 | 28 |
| 1982 | 2 | 7 | 10 | 1 | 20 |
| 1983 | 7 | 9 | 5 | 0 | 21 |
| 1984 | 20 | 13 | 2 | 0 | 35 |
| 1985 | 22 | 41 | 8 | 2 | 73 |
| 1986 | 12 | 16 | 5 | 0 | 33 |
| 1987 | 11 | 32 | 2 | 1 | 46 |
| 1988 | 22 | 16 | 1 | 2 | 41 |
| 1989 | 7 | 12 | 3 | 1 | 23 |
| 1995 | 7 | 8 | 6 | 6 | 27 |
| 1996 | 24 | 28 | 6 | 10 | 68 |
| 1998 | 33 | 27 | 1 | 2 | 63 |
| 1999 | 18 | 21 | 5 | 1 | 45 |
| Subtotal | 204 | 261 | 66 | 27 | 558 |

Table 6: Proportion of trips that caught black rockfish by year and CRFS district for the California MRFSS dockside CPFV index. Data were assigned to CRFS District by county.

|  | CRFS District |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Year | 3 | 4 | 5 | 6 | Marginal |
| 1980 | 0.214 | 0.429 | 0.143 |  | 0.286 |
| 1981 | 0.600 | 0.294 | 0.6 | 1 | 0.429 |
| 1982 | 0.500 | 0.286 | 0.8 | 1 | 0.600 |
| 1983 | 0.143 | 0.667 | 0.2 |  | 0.381 |
| 1984 | 0.150 | 0.692 | 0 |  | 0.343 |
| 1985 | 0.318 | 0.659 | 0.5 | 1 | 0.548 |
| 1986 | 0.250 | 0.500 | 0.8 |  | 0.455 |
| 1987 | 0.182 | 0.531 | 0 | 1 | 0.435 |
| 1988 | 0.182 | 0.563 | 0 | 0.5 | 0.341 |
| 1989 | 0.143 | 0.333 | 1 | 0 | 0.348 |
| 1995 | 0.143 | 0.375 | 0.833 | 1 | 0.556 |
| 1996 | 0.333 | 0.571 | 0.833 | 0.9 | 0.559 |
| 1998 | 0.455 | 0.630 | 1 | 1 | 0.556 |
| 1999 | 0.500 | 0.571 | 0.6 | 1 | 0.556 |
| Marginal | 0.299 | 0.540 | 0.576 | 0.889 | 0.473 |

Table 7: Akaike Information Criteria for alternative negative binomial regression models of catch-per-unit-effort based on California MRFSS dockside CPFV data. All candidate models include an intercept, effort offset term (log of angler hours), and an additive year effect.

Covariates (" + " = included)

| year | area | wave | water_area | area:year | df | logLik | AICc | delta |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| + | + | + | NA | NA | 21 | -1215.74 | 2475.2 | 0.0 |
| + | + | + | + | NA | 22 | -1215.66 | 2477.2 | 2.0 |
| + | + | + | $N A$ | + | 34 | -1205.53 | 2483.6 | 8.4 |
| + | $N A$ | + | $N A$ | $N A$ | 20 | -1221.25 | 2484.1 | 8.9 |
| + | + | + | + | + | 35 | -1205.29 | 2485.4 | 10.2 |
| + | $N A$ | + | + | $N A$ | 21 | -1221.15 | 2486.0 | 10.8 |
| + | + | $N A$ | $N A$ | $N A$ | 16 | -1228.21 | 2489.4 | 14.2 |
| + | + | $N A$ | + | $N A$ | 17 | -1228.20 | 2491.5 | 16.3 |
| + | + | $N A$ | $N A$ | + | 29 | -1217.81 | 2496.9 | 21.7 |
| + | + | $N A$ | + | + | 30 | -1217.81 | 2499.2 | 23.9 |
| + | $N A$ | $N A$ | $N A$ | $N A$ | 15 | -1237.83 | 2506.5 | 31.3 |
| + | $N A$ | $N A$ | + | $N A$ | 16 | -1236.94 | 2506.9 | 31.7 |

Table 8: California MRFSS dockside CPFV Index, with log-scale standard errors and 95\% highest posterior density (HPD) intervals.

| year | index | lower HPD interval | upper HPD interval | log.SE |
| :---: | :---: | :---: | :---: | :---: |
| 1980 | 0.141 | 0.057 | 0.292 | 0.401 |
| 1981 | 0.094 | 0.032 | 0.223 | 0.479 |
| 1982 | 0.235 | 0.054 | 0.650 | 0.578 |
| 1983 | 0.125 | 0.033 | 0.336 | 0.545 |
| 1984 | 0.441 | 0.161 | 0.994 | 0.451 |
| 1985 | 0.427 | 0.211 | 0.766 | 0.320 |
| 1986 | 0.180 | 0.060 | 0.396 | 0.438 |
| 1987 | 0.411 | 0.154 | 0.820 | 0.402 |
| 1988 | 0.218 | 0.079 | 0.447 | 0.417 |
| 1989 | 0.150 | 0.045 | 0.384 | 0.512 |
| 1995 | 0.184 | 0.057 | 0.446 | 0.495 |
| 1996 | 0.387 | 0.171 | 0.705 | 0.346 |
| 1998 | 0.476 | 0.243 | 0.822 | 0.295 |
| 1999 | 0.419 | 0.170 | 0.842 | 0.389 |

Table 9: Number of ages by data source, year, and sex in the northern area model ( $\mathrm{n}=3,963$ total).

| Source | Year | Female | Male | Unsexed |
| :---: | :---: | :---: | :---: | :---: |
| Commercial (California Cooperative Groundfish Survey) | 1980 | 13 | 15 |  |
|  | 1981 | 75 | 54 |  |
|  | 1982 | 0 | 16 |  |
|  | 1984 | 100 | 126 |  |
|  | 1985 | 66 | 78 |  |
|  | 2001 | 22 | 10 |  |
|  | 2002 | 12 | 1 |  |
|  | 2003 | 15 | 4 |  |
|  | 2004 | 5 | 4 |  |
|  | 2007 | 10 | 17 |  |
|  | 2009 | 58 | 38 |  |
|  | 2011 | 22 | 18 |  |
|  | 2012 | 28 | 16 |  |
|  | 2020 | 266 | 200 |  |
|  | 2021 | 219 | 248 |  |
|  | 2022 | 111 | 130 |  |
| Commercial (CDFW Pilot) | 2019 | 144 | 160 |  |
| Recreational (Pearson) | 1982 | 8 | 8 |  |
| Recreational (CDFW) | 2022 | 214 | 185 | 64 |
| Abrams research | 2010 | 296 | 242 | 10 |
| Abrams research | 2011 | 304 | 294 | 6 |
| CCFRP | 2022 | 16 | 10 | 5 |

Table 10: Number of ages by data source, year, and sex in the central area model ( $\mathrm{n}=755$ total).

| Source | Year | Female | Male | Unsexed |
| :---: | :---: | :---: | :---: | :---: |
| Recreational | 1980 | 34 | 30 | 3 |
|  | 1981 | 19 | 34 | 11 |
|  | 1982 | 65 | 55 | 27 |
|  | 2021 | 5 | 2 | 1 |
|  | 2022 | 59 | 39 | 8 |
|  | 1979 | 22 | 45 | 0 |
| Research | 1980 | 27 | 12 | 3 |
|  | 1981 | 12 | 8 | 10 |
|  | 1982 | 16 | 11 | 12 |
|  | 2017 | 33 | 27 | 9 |
|  | 2018 | 6 | 5 | 12 |
|  | 2019 | 16 | 15 | 1 |
|  | 2020 | 16 | 11 | 0 |
|  | 2021 | 5 | 5 | 2 |
|  | 2022 | 8 | 13 | 1 |

Table 11: Model selection tables for ageing error models.

| Read year | Bias | Precision | AIC | AICc | dAIC | dAICc |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2023 | None | Constant CV | 5331.9 | 5340.1 | 34.8 | 31 |
|  | None | Curvilinear SD | 5510.9 | 5520.3 | 213.9 | 211.2 |
|  | None | Curvilinear CV | 5299.7 | 5309.1 | 2.7 | 0 |
|  | Linear | Constant CV | 5335.4 | 5344.7 | 38.3 | 35.6 |
|  | Linear | Curvilinear SD | 5514.3 | 5525.0 | 217.3 | 215.8 |
|  | Linear | Curvilinear CV | 5303.7 | 5314.3 | 6.6 | 5.2 |
|  | Curvilinear | Constant CV | 5323.9 | 5335.9 | 26.8 | 26.8 |
|  | Curvilinear | Curvilinear SD | 5303.5 | 5317.1 | 6.5 | 8 |
|  | Curvilinear | Curvilinear CV | 5297.0 | 5310.6 | 0 | 1.5 |
| $2015-2017$ | None | Constant CV | 7510.3 | 7516.2 | 53.1 | 50.9 |
|  | None | Curvilinear SD | 7503.3 | 7510.1 | 46.1 | 44.7 |
|  | None | Curvilinear CV | 7513.3 | 7520.2 | 56.2 | 54.8 |
|  | Linear | Constant CV | 7498.6 | 7505.0 | 41.5 | 39.6 |
|  | Linear | Curvilinear SD | 7486.0 | 7493.3 | 28.9 | 28 |
|  | Linear | Curvilinear CV | 7502.5 | 7509.8 | 45.3 | 44.4 |
|  | Curvilinear | Constant CV | 7462.2 | 7469.5 | 5.1 | 4.1 |
|  | Curvilinear | Curvilinear SD | 7457.5 | 7465.7 | 0.3 | 0.3 |
|  | Curvilinear | Curvilinear CV | 7457.1 | 7465.4 | 0 | 0 |

Table 12: Length composition sample sizes available for the northern model.

| Year | Commercial Non-Trawl Dead |  | Commercial Non-Trawl Live |  | Commercial Trawl |  | WCGOP Discard |  | Rec CPFV MRFSS/CRFS |  | Rec Private MRFSS/CRFS |  | Rec CPFV Obs. Discard |  | CCFRP <br> Research |  | Abrams Research |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Samp | Lengths | Samp | Lengths | Samp | Lengths | Hauls | Lengths | Trips | Lengths | Trips | Lengths | Trips | Lengths | Drifts | Lengths | Drifts | Lengths |
| 1978 | - | - | - | - | 2 | 36 | - | - | - | - | - | - | - | - | - | - | - | - |
| 1979 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1980 | - | - | - | - | 8 | 93 | - | - | 2 | 2 | 131 | 462 | - | - | - | - | - | - |
| 1981 | - | - | - | - | 8 | 103 | - | - | 8 | 33 | 141 | 549 | - | - | - | - | - | - |
| 1982 | 3 | 75 | - | - | 13 | 252 | - | - | 16 | 55 | 165 | 610 | - | - | - | - | - | - |
| 1983 | 3 | 71 | - | - | 11 | 195 | - | - | 1 | 1 | 102 | 408 | - | - | - | - | - | - |
| 1984 | 2 | 57 | - | - | 6 | 156 | - | - | 12 | 40 | 143 | 540 | - | - | - | - | - | - |
| 1985 | 1 | 31 | - | - | 6 | 151 | - | - | 6 | 38 | 205 | 836 | - | - | - | - | - | - |
| 1986 | - | , | - | - | 1 | 22 | - | - | 1 | 3 | 204 | 887 | - | - | - | - | - | - |
| 1987 | - | - | - | - | 7 | 178 | - | - | 1 | 10 | 50 | 140 | - | - | - | - | - | - |
| 1988 | - | - | - | - | 3 | 63 | - | - | 4 | 49 | 48 | 126 | - | - | - | - | - | - |
| 1989 | - | - | - | - | 3 | 65 | - | - | - | - | 62 | 480 | - | - | - | - | - | - |
| 1990 | - | - | - | - | - | - | - | - | - | - |  | - | - | - | - | - | - | - |
| 1991 | - | - | - | - | 1 | 32 | - | - | - | - | - | - | - | - | - | - | - | - |
| 1992 | 24 | 700 | - | - | 2 | 64 | - | - | - | - | - | - | - | - | - | - | - | - |
| 1993 | 68 | 2119 | - | - | - |  | - | - | - | - | 219 | 700 | - | - | - | - | - | - |
| 1994 | 67 | 2494 | - | - | - | - | - | - | - | - | 188 | 808 | - | - | - | - | - | - |
| 1995 | 56 | 2096 | - | - | - | - | - | - | 35 | 162 | 104 | 372 | - | - | - | - | - | - |
| 1996 | 52 | 1851 | - | - | 1 | 25 | - | - | 59 | 379 | 159 | 815 | - | - | - | - | - | - |
| 1997 | 31 | 903 | - | - | 3 | 82 | - | - | - | - | 29 | 173 | - | - | - | - | - | - |
| 1998 | 8 | 256 | - | - |  | - | - | - | 7 | 535 | 148 | 594 | - | - | - | - | - | - |
| 1999 | 57 | 2166 | 3 | 120 | 1 | 25 | - | - | 15 | 36 | 232 | 830 | - | - | - | - | - | - |
| 2000 | 19 | 480 | 5 | 67 | 1 | 25 | - | - |  | - | 182 | 517 | - | - | - | - | - | - |
| 2001 | 21 | 634 | 10 | 230 | 4 | 47 | - | - | 10 | 52 | 52 | 175 | - | - | - | - | - | - |
| 2002 | 10 | 253 | 12 | 295 | - | - | - | - | 1 | 1 | 39 | 224 | - | - | - | - | - | - |
| 2003 | 1 | 48 | 3 | 70 | 1 | 19 | - | - | 45 | 210 | 153 | 637 | - | - | - | - | - | - |
| 2004 | 2 | 50 | 5 | 177 | . |  | 47 | 185 | 22 | 97 | 178 | 518 | - | - | - | - | - | - |
| 2005 | 4 | 88 | 5 | 123 | - | - | 38 | 197 | 22 | 179 | 240 | 2381 | - | - | - | - | - | - |
| 2006 | 1 | 41 | 24 | 583 | - | - | 35 | 171 | 28 | 270 | 226 | 1705 | - | - | - | - | - | - |
| 2007 | 3 | 87 | 18 | 422 | - | - | 31 | 94 | 63 | 834 | 233 | 3308 | - | - | - | - | - | - |
| 2008 | 2 | 54 | 10 | 207 | - | - | 26 | 85 | 86 | 1225 | 248 | 4195 | 8 | 25 | - | - | - | - |
| 2009 | 14 | 312 | 11 | 245 | 1 | 33 | 31 | 181 | 125 | 2243 | 284 | 5844 | 9 | 65 | - | - | - | - |
| 2010 | 2 | 36 | 4 | 107 | - | - | 26 | 105 | 96 | 1428 | 178 | 2580 | 10 | 60 | - | - | 145 | 1134 |
| 2011 | 9 | 274 | 2 | 36 | - | - | 60 | 185 | 49 | 597 | 244 | 2244 | 3 | 20 | - | - | 142 | 1218 |
| 2012 | 21 | 626 | , | . | - | - | 49 | 177 | 80 | 1486 | 291 | 1980 | 10 | 29 | - | - | - | - |
| 2013 | 15 | 495 | 1 | 12 | - | - | 42 | 157 | 119 | 1836 | 356 | 3436 | 8 | 17 | - | - | - | - |
| 2014 | 27 | 1157 | 2 | 20 | - | - | 39 | 195 | 129 | 2009 | 308 | 2869 | 10 | 60 | - | - | - | - |
| 2015 | 41 | 1665 | - | - | 1 | 12 | 89 | 351 | 113 | 1239 | 398 | 4989 | 6 | 21 | - | - | - | - |
| 2016 | 21 | 808 | - | - | 1 | 27 | 37 | 113 | 72 | 484 | 336 | 4333 | 11 | 111 | - | - | - | - |
| 2017 | 12 | 462 | 1 | 12 | - | - | 29 | 92 | 66 | 390 | 380 | 4126 | 3 | 101 | 44 | 203 | - | - |
| 2018 | 14 | 545 | 1 | 12 |  | - | 36 | 119 | 76 | 474 | 429 | 3658 | 7 | 262 | 52 | 174 | - | - |
| 2019 | 3 | 75 | 2 | 103 | - | - | 18 | 44 | 43 | 197 | 342 | 2741 | - | - | 47 | 167 | - | - |
| 2020 | 18 | 489 | - | - | - | - | 18 | 53 | - | - | 3 | 12 | - | - | 57 | 282 | - | - |
| 2021 | 21 | 592 | - | - | - | - | 17 | 44 | 36 | 307 | 214 | 1744 | 2 | 5 | 74 | 399 | - | - |
| 2022 | 10 | 293 | - | - | 1 | 24 | - | - | 50 | 792 | 322 | 2111 | 8 | 154 | 68 | 340 | - | - |

Table 13: Length composition sample sizes available for the central model.

| Year | Commercial Non-Trawl* |  | $\begin{aligned} & \text { WCGOP } \\ & \text { Discard** } \end{aligned}$ |  | Rec CPFVMRFSS/CRFS^ |  | Rec PrivateMRFSS/CRFS^ |  | Rec CPFV Obs. Discard |  | CCFRP <br> Research |  | CPFV Onboard CDFW (DWV) |  | $\begin{gathered} \hline \text { CDFW (Lea) } \\ \text { Research } \\ \hline \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Samp | Lengths | Hauls | Lengths | Trips | Lengths | Trips | Lengths | Trips | Lengths | Drifts | Lengths | Trips | Lengths | Trips | Lengths |
| 1959 | - | - | - | - | 4 | 86 | 24 | 860 | - | - | - | - | - | - | - | - |
| 1960 | - | - | - | - | 19 | 366 | 13 | 201 | - | - | - | - | - | - | - | - |
| 1961 | - | - | - | - | 2 | 27 | - | - | - | - | - | - | - | - | - | - |
| 1966 | - | - | - | - | 5 | 111 | - | - | - | - | - | - | - | - | - | - |
| 1979 | - | - | - | - |  | , | - | - | - | - | - | - | - | - | - | 67 |
| 1980 | - | - | - | - | 23 | 92 | 64 | 166 | - | - | - | - | - | - | - | 42 |
| 1981 | - | - | - | - | 15 | 24 | 25 | 64 | - | - | - | - | - | - | - | 30 |
| 1982 | - | - | - | - | 3 | 7 | 18 | 32 | - | - | - | - | - | - | - | 39 |
| 1983 | - | - | - | - | 12 | 27 | 6 | 25 | - | - | - | - | - | - | - | - |
| 1984 | - | - | - | - | 34 | 119 | 78 | 256 | - | - | - | - | - | - | - | - |
| 1985 | - | - | - | - | 100 | 365 | 112 | 388 | - | - | - | - | - | - | - | - |
| 1986 | - | - | - | - | 40 | 86 | 58 | 142 | - | - | - | - | - | - | - | - |
| 1987 | - | - | - | - | 37 | 151 | 63 | 240 | - | - | - | - | - | 888 | - | - |
| 1988 | 2 | 62 | - | - | 21 | 56 | 50 | 196 | - | - | - | - | 21 | 888 | - | - |
| 1989 | - |  | - | - | 24 | 148 | 33 | 352 | - | - | - | - | 22 | 948 | - | - |
| 1990 | - | - | - | - | - | - | - | - | - | - | - | - | 7 | 261 | - | - |
| 1991 | - | 仡 | - | - | - | - | - | - | - | - | - | - | 17 | 521 | - | - |
| 1992 | 6 | 150 | - | - | - | - | - | - | - | - | - | - | 24 | 384 | - | - |
| 1993 | 7 | 100 | - | - | 10 | 21 | 176 | 570 | - | - | - | - | 32 | 698 | - | - |
| 1994 | 11 | 176 | - | - | 1 | 2 | 56 | 140 | - | - | - | - | 38 | 1024 | - | - |
| 1995 | , |  | - | - | 5 | 12 | 72 | 172 | - | - | - | - | 25 | 773 | - | - |
| 1996 | 1 | 23 | - | - | 85 | 232 | 64 | 143 | - | - | - | - | 36 | 1086 | - | - |
| 1997 | 2 | 23 | - | - | (47) | (1647) | 53 | 130 | - | - | - | - | 54 | 1794 | - | - |
| 1998 | - | - | - | - | (22) | (705) | 29 | 71 | - | - | - | - | 34 | 450 | - | - |
| 1999 | - | - | - | - | 95 | 436 | 116 | 371 | - | - | - | - | - | - | - | - |
| 2000 | 1 | 24 | - | - | 76 | 304 | 66 | 228 | - | - | - | - | - | - | - | - |
| 2001 | - | - | - | - | 147 | 628 | 65 | 232 | - | - | - | - | - | - | - | - |
| 2002 | 2 | 23 | - | - | 192 | 706 | 114 | 350 | - | - | - | - | - | - | - | - |
| 2003 | - | - | - | - | 330 | 1134 | 153 | 435 | - | - | - | - | - | - | - | - |
| 2004 | - | - | 47 | 185 | 263 | 1094 | 563 | 1754 | - | - | - | - | - | - | - | - |
| 2005 | - | - | 38 | 197 | 44 | 538 | 249 | 2311 | 2 | 13 | - | - | - | - | - | - |
| 2006 | - | - | 35 | 171 | 74 | 717 | 342 | 2646 | - | - | - | - | - | - | - | - |
| 2007 | - | - | 31 | 94 | 37 | 517 | 303 | 2239 | - | - | 223 | 754 | - | - | - | - |
| 2008 | - | - | 26 | 85 | 55 | 800 | 290 | 2117 | - | - | 237 | 899 | - | - | - | - |
| 2009 | 1 | 31 | 31 | 181 | 55 | 728 | 309 | 2567 | - | - | 132 | 615 | - | - | - | - |
| 2010 | 1 | 17 | 26 | 105 | 40 | 486 | 198 | 1216 | 2 | 9 | 102 | 614 | - | - | - | - |
| 2011 | 1 | 15 | 60 | 185 | 115 | 2129 | 286 | 2785 | 21 | 150 | 137 | 812 | - | - | - | - |
| 2012 | - |  | 49 | 177 | 89 | 2255 | 430 | 4126 | 4 | 18 | 182 | 1466 | - | - | - | - |
| 2013 | 2 | 43 | 42 | 157 | 118 | 4428 | 560 | 7868 | 6 | 16 | 220 | 2674 | - | - | - | - |
| 2014 | 1 | 10 | 39 | 195 | 111 | 2423 | 526 | 4710 | 3 | 6 | 234 | 2182 | - | - | - | - |
| 2015 | - | - | 89 | 351 | 73 | 663 | 604 | 4544 | 3 | 7 | 129 | 1089 |  | - | - | - |
| 2016 | - | - | 37 | 113 | 93 | 1131 | 481 | 2864 | 5 | 23 | 194 | 1368 | - | - | - | - |
| 2017 | - | - | 29 | 92 | 43 | 295 | 296 | 784 | 4 | 9 | 142 | 604 | - | - | - | - |
| 2018 | - | - | 36 | 119 | 26 | 187 | 278 | 743 | 7 | 18 | 158 | 747 | - | - | - | - |
| 2019 | - | - | 18 | 44 | 26 | 271 | 185 | 371 | 3 | 17 | 154 | 812 | - | - | - | - |
| 2020 | - | - | 18 | 53 |  |  |  |  | - |  | 153 | 599 | - | - | - | - |
| 2021 | 1 | 22 | 17 | 44 | 28 | 295 | 189 | 611 | 5 | 15 | 163 | 1070 | - | - | - | - |
| 2022 | - | 兂 | , |  | 38 | 370 | 236 | 712 | 4 | 13 | 91 | 655 | - | - | - | - |

* combines live and dead landings; ** commercial discard lengths assumed same as north; ^ includes Miller and Gotshall (1965), 1959-1966

Table 14: Recreational catches (mt) by area, mode, disposition, and year.

| Year | North |  |  |  | Central |  |  |  | Grand Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PC |  | PRplus |  | PC |  | PRplus |  |  |
|  | Retained | $\begin{gathered} \text { Discarded } \\ \text { Dead } \\ \hline \end{gathered}$ | Retained | $\begin{gathered} \hline \text { Discarded } \\ \text { Dead } \\ \hline \end{gathered}$ | Retained | $\begin{gathered} \hline \text { Discarded } \\ \text { Dead } \\ \hline \end{gathered}$ | Retained | $\begin{gathered} \hline \text { Discarded } \\ \text { Dead } \\ \hline \end{gathered}$ |  |
| 1928 | 0.190 | 0.002 | 0.308 | 0.003 | 0.437 | 0.006 | 0.527 | 0.010 | 1.482 |
| 1929 | 0.381 | 0.003 | 0.616 | 0.005 | 0.874 | 0.012 | 1.054 | 0.019 | 2.964 |
| 1930 | 0.437 | 0.004 | 0.709 | 0.006 | 1.004 | 0.014 | 1.212 | 0.022 | 3.408 |
| 1931 | 0.583 | 0.005 | 0.945 | 0.008 | 1.339 | 0.018 | 1.616 | 0.030 | 4.544 |
| 1932 | 0.729 | 0.006 | 1.181 | 0.010 | 1.674 | 0.023 | 2.020 | 0.037 | 5.681 |
| 1933 | 0.875 | 0.007 | 1.417 | 0.012 | 2.009 | 0.028 | 2.424 | 0.045 | 6.817 |
| 1934 | 1.020 | 0.009 | 1.654 | 0.014 | 2.343 | 0.032 | 2.828 | 0.052 | 7.953 |
| 1935 | 1.166 | 0.010 | 1.890 | 0.016 | 2.678 | 0.037 | 3.232 | 0.060 | 9.089 |
| 1936 | 1.312 | 0.011 | 2.125 | 0.018 | 3.013 | 0.041 | 3.635 | 0.067 | 10.223 |
| 1937 | 1.555 | 0.013 | 2.521 | 0.022 | 3.571 | 0.049 | 4.312 | 0.080 | 12.123 |
| 1938 | 1.530 | 0.013 | 2.479 | 0.021 | 3.513 | 0.048 | 4.240 | 0.078 | 11.922 |
| 1939 | 1.338 | 0.011 | 2.168 | 0.019 | 3.072 | 0.042 | 3.707 | 0.069 | 10.425 |
| 1940 | 1.926 | 0.017 | 3.118 | 0.027 | 4.424 | 0.061 | 5.331 | 0.099 | 15.002 |
| 1941 | 1.780 | 0.015 | 2.881 | 0.025 | 4.089 | 0.056 | 4.927 | 0.091 | 13.865 |
| 1942 | 0.946 | 0.008 | 1.530 | 0.013 | 2.172 | 0.030 | 2.617 | 0.048 | 7.365 |
| 1943 | 0.904 | 0.008 | 1.464 | 0.013 | 2.077 | 0.029 | 2.503 | 0.046 | 7.044 |
| 1944 | 0.743 | 0.006 | 1.202 | 0.010 | 1.705 | 0.023 | 2.055 | 0.038 | 5.783 |
| 1945 | 0.990 | 0.008 | 1.602 | 0.014 | 2.274 | 0.031 | 2.740 | 0.051 | 7.711 |
| 1946 | 1.704 | 0.015 | 2.758 | 0.024 | 3.914 | 0.054 | 4.717 | 0.087 | 13.272 |
| 1947 | 1.348 | 0.012 | 2.194 | 0.019 | 3.096 | 0.043 | 3.752 | 0.069 | 10.533 |
| 1948 | 2.691 | 0.023 | 4.385 | 0.038 | 6.180 | 0.085 | 7.498 | 0.139 | 21.039 |
| 1949 | 3.488 | 0.030 | 5.681 | 0.049 | 8.010 | 0.110 | 9.715 | 0.180 | 27.262 |
| 1950 | 4.251 | 0.036 | 6.923 | 0.059 | 9.762 | 0.134 | 11.839 | 0.219 | 33.222 |
| 1951 | 4.854 | 0.042 | 10.284 | 0.088 | 11.147 | 0.153 | 17.587 | 0.325 | 44.480 |
| 1952 | 4.224 | 0.036 | 8.967 | 0.077 | 9.701 | 0.134 | 15.334 | 0.283 | 38.757 |
| 1953 | 3.598 | 0.031 | 7.656 | 0.066 | 8.262 | 0.114 | 13.093 | 0.242 | 33.061 |
| 1954 | 4.473 | 0.038 | 9.590 | 0.082 | 10.274 | 0.141 | 16.401 | 0.303 | 41.303 |
| 1955 | 5.339 | 0.046 | 11.525 | 0.099 | 12.262 | 0.169 | 19.710 | 0.364 | 49.515 |
| 1956 | 5.959 | 0.051 | 12.883 | 0.110 | 13.685 | 0.188 | 22.032 | 0.407 | 55.316 |
| 1957 | 5.510 | 0.047 | 12.438 | 0.107 | 12.655 | 0.174 | 21.271 | 0.393 | 52.596 |
| 1958 | 10.489 | 0.090 | 20.233 | 0.173 | 24.089 | 0.332 | 34.601 | 0.640 | 90.647 |
| 1959 | 7.476 | 0.064 | 16.880 | 0.145 | 17.170 | 0.236 | 28.867 | 0.534 | 71.371 |
| 1960 | 6.669 | 0.057 | 13.090 | 0.112 | 15.316 | 0.211 | 22.386 | 0.414 | 58.256 |
| 1961 | 5.248 | 0.045 | 11.362 | 0.097 | 10.145 | 0.140 | 16.356 | 0.302 | 43.697 |
| 1962 | 5.721 | 0.049 | 20.073 | 0.172 | 9.448 | 0.130 | 24.684 | 0.456 | 60.733 |
| 1963 | 9.456 | 0.081 | 28.857 | 0.247 | 13.491 | 0.186 | 30.658 | 0.567 | 83.543 |
| 1964 | 6.461 | 0.055 | 34.074 | 0.292 | 8.032 | 0.111 | 31.546 | 0.583 | 81.155 |
| 1965 | 12.860 | 0.110 | 53.289 | 0.457 | 14.026 | 0.193 | 43.281 | 0.800 | 125.015 |
| 1966 | 14.584 | 0.125 | 68.173 | 0.584 | 14.027 | 0.193 | 48.824 | 0.902 | 147.412 |
| 1967 | 16.257 | 0.139 | 82.201 | 0.705 | 13.841 | 0.190 | 52.116 | 0.963 | 166.413 |
| 1968 | 14.977 | 0.128 | 99.424 | 0.852 | 11.321 | 0.156 | 55.964 | 1.034 | 183.857 |
| 1969 | 16.346 | 0.140 | 117.699 | 1.009 | 10.991 | 0.151 | 58.932 | 1.089 | 206.357 |
| 1970 | 27.294 | 0.234 | 146.570 | 1.256 | 16.343 | 0.225 | 65.354 | 1.208 | 258.484 |
| 1971 | 21.080 | 0.181 | 154.099 | 1.321 | 11.244 | 0.155 | 61.208 | 1.131 | 250.419 |
| 1972 | 35.750 | 0.306 | 191.600 | 1.642 | 16.979 | 0.234 | 67.762 | 1.252 | 315.526 |
| 1973 | 35.983 | 0.308 | 231.945 | 1.988 | 15.198 | 0.209 | 72.949 | 1.348 | 359.930 |
| 1974 | 41.298 | 0.354 | 263.215 | 2.256 | 15.479 | 0.213 | 73.464 | 1.358 | 397.637 |
| 1975 | 38.668 | 0.331 | 285.323 | 2.446 | 12.823 | 0.176 | 70.456 | 1.302 | 411.525 |
| 1976 | 44.902 | 0.385 | 321.596 | 2.757 | 13.120 | 0.181 | 69.970 | 1.293 | 454.203 |
| 1977 | 49.697 | 0.426 | 336.630 | 2.885 | 12.725 | 0.175 | 64.185 | 1.186 | 467.911 |
| 1978 | 41.687 | 0.357 | 352.815 | 3.024 | 9.289 | 0.128 | 58.542 | 1.082 | 466.924 |
| 1979 | 41.957 | 0.360 | 397.042 | 3.403 | 8.063 | 0.111 | 56.817 | 1.050 | 508.802 |
| 1980 | 58.005 | 0.420 | 312.481 | 3.668 | 16.316 | 0.110 | 77.554 | 0.965 | 469.519 |
| 1981 | 28.665 | 0.207 | 465.991 | 4.594 | 1.437 | 0.018 | 26.188 | 0.409 | 527.509 |
| 1982 | 61.824 | 0.486 | 411.705 | 3.630 | 4.566 | 0.040 | 22.496 | 0.297 | 505.043 |
| 1983 | 13.607 | 0.119 | 135.077 | 1.234 | 8.575 | 0.075 | 83.897 | 0.779 | 243.364 |
| 1984 | 17.176 | 0.176 | 430.451 | 4.406 | 4.123 | 0.043 | 44.042 | 1.078 | 501.495 |
| 1985 | 47.161 | 0.433 | 423.706 | 4.269 | 13.339 | 0.192 | 105.210 | 1.890 | 596.198 |
| 1986 | 16.199 | 0.148 | 423.939 | 4.281 | 1.693 | 0.021 | 44.723 | 0.595 | 491.598 |
| 1987 | 45.281 | 0.473 | 154.839 | 2.037 | 8.451 | 0.124 | 48.253 | 0.535 | 259.993 |
| 1988 | 64.971 | 0.872 | 191.065 | 2.352 | 19.849 | 0.244 | 45.856 | 0.658 | 325.865 |
| 1989 | 13.406 | 0.286 | 214.475 | 2.586 | 4.282 | 0.085 | 46.847 | 0.769 | 282.735 |
| 1990 | 46.281 | 0.527 | 198.483 | 2.260 | 9.134 | 0.166 | 39.172 | 0.713 | 296.736 |


| Year | North |  |  |  | Central |  |  |  | Grand Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PC |  | PRplus |  | PC |  | PRplus |  |  |
|  | Retained | $\begin{gathered} \hline \text { Discarded } \\ \text { Dead } \\ \hline \end{gathered}$ | Retained | $\begin{gathered} \hline \text { Discarded } \\ \text { Dead } \\ \hline \end{gathered}$ | Retained | $\begin{gathered} \text { Discarded } \\ \text { Dead } \end{gathered}$ | Retained | Discarded Dead |  |
| 1991 | 40.646 | 0.457 | 208.396 | 2.345 | 8.013 | 0.153 | 41.084 | 0.783 | 301.879 |
| 1992 | 36.509 | 0.390 | 227.341 | 2.427 | 10.662 | 0.138 | 66.394 | 0.857 | 344.718 |
| 1993 | 28.587 | 0.324 | 278.976 | 3.161 | 5.825 | 0.121 | 56.841 | 1.179 | 375.014 |
| 1994 | 19.821 | 0.260 | 172.878 | 2.267 | 5.736 | 0.102 | 50.024 | 0.892 | 251.981 |
| 1995 | 16.727 | 0.198 | 139.648 | 1.652 | 4.416 | 0.082 | 36.864 | 0.685 | 200.271 |
| 1996 | 27.513 | 0.280 | 104.070 | 1.159 | 7.881 | 0.122 | 29.377 | 0.506 | 170.909 |
| 1997 | 22.779 | 0.270 | 69.880 | 0.829 | 6.233 | 0.124 | 17.886 | 0.381 | 118.382 |
| 1998 | 1.578 | 0.028 | 82.670 | 1.117 | 0.778 | 0.014 | 27.705 | 0.539 | 114.428 |
| 1999 | 15.742 | 0.237 | 89.729 | 1.732 | 6.101 | 0.120 | 54.063 | 0.877 | 168.600 |
| 2000 | 26.225 | 0.491 | 57.897 | 1.083 | 14.241 | 0.261 | 37.646 | 0.576 | 138.419 |
| 2001 | 96.239 | 0.844 | 138.487 | 1.481 | 28.527 | 0.471 | 51.708 | 0.826 | 318.583 |
| 2002 | 20.586 | 0.296 | 95.809 | 0.941 | 9.843 | 0.173 | 36.380 | 0.550 | 164.578 |
| 2003 | 59.588 | 0.581 | 159.967 | 1.506 | 17.967 | 0.355 | 50.707 | 0.922 | 291.593 |
| 2004 | 33.207 | 0.353 | 65.087 | 0.702 | 11.637 | 0.227 | 27.629 | 0.450 | 139.292 |
| 2005 | 31.397 | 0.635 | 92.212 | 1.527 | 18.618 | 0.102 | 28.260 | 0.362 | 173.113 |
| 2006 | 26.632 | 0.807 | 80.533 | 1.304 | 31.518 | 0.331 | 31.564 | 0.553 | 173.243 |
| 2007 | 26.926 | 0.346 | 80.794 | 1.473 | 7.502 | 0.028 | 26.018 | 0.208 | 143.296 |
| 2008 | 14.178 | 0.126 | 98.953 | 1.584 | 19.673 | 0.166 | 19.945 | 0.234 | 154.859 |
| 2009 | 36.054 | 0.619 | 154.619 | 3.309 | 19.235 | 0.109 | 29.328 | 0.345 | 243.618 |
| 2010 | 51.004 | 0.631 | 91.473 | 1.211 | 24.185 | 0.307 | 31.784 | 0.158 | 200.754 |
| 2011 | 18.286 | 0.333 | 101.623 | 0.734 | 26.880 | 0.622 | 25.637 | 0.195 | 174.310 |
| 2012 | 33.560 | 0.188 | 86.801 | 0.514 | 50.748 | 0.511 | 37.829 | 0.185 | 210.337 |
| 2013 | 46.648 | 0.405 | 94.976 | 0.541 | 114.118 | 1.428 | 103.802 | 0.956 | 362.874 |
| 2014 | 45.212 | 0.366 | 133.602 | 1.355 | 48.531 | 0.676 | 51.113 | 1.444 | 282.299 |
| 2015 | 35.258 | 1.194 | 119.113 | 3.941 | 26.061 | 0.247 | 37.719 | 1.729 | 225.262 |
| 2016 | 23.900 | 1.086 | 76.039 | 2.541 | 35.026 | 0.564 | 24.841 | 1.048 | 165.044 |
| 2017 | 11.458 | 1.185 | 57.511 | 4.171 | 12.600 | 0.569 | 9.392 | 0.997 | 97.883 |
| 2018 | 14.719 | 1.447 | 55.674 | 3.492 | 9.826 | 0.767 | 8.908 | 0.850 | 95.682 |
| 2019 | 21.516 | 1.263 | 64.707 | 3.853 | 12.302 | 0.405 | 5.490 | 0.702 | 110.239 |
| 2020 | 19.747 | 0.238 | 53.550 | 0.820 | 12.500 | 0.247 | 15.092 | 0.729 | 102.925 |
| 2021 | 63.564 | 0.389 | 93.939 | 4.219 | 18.823 | 0.374 | 16.909 | 0.955 | 199.173 |
| 2022 | 53.263 | 2.034 | 120.896 | 4.293 | 10.539 | 0.088 | 20.425 | 0.602 | 212.141 |
| Grand Total | 2002.35 | 27.34 | 10281.35 | 127.50 | 1172.69 | 17.24 | 3015.46 | 55.41 | 16699.3 |

Table 15: Filters applied to the PR dockside index data

| Filter | Description | Samples | Prop_Positive_Samples |
| :--- | :--- | :---: | :---: |
| All data | All data | 169911 | 0.272 |
| Year | Remove 2015-2020 due to bag limits and COVID | 123259 | 0.266 |
| Areas fished | Retain nearshore trips only | 110836 | 0.285 |
| Gear | Retain trips with primary gear of hook-and-line | 60977 | 0.426 |
| Months fished | Remove Nov-Apr; seasonal closures and small sample sizes | 55443 | 0.439 |
| Target species | Retain trips based primary and secondary targets; see text | 38922 | 0.542 |

Table 16: Sample sizes by year and area for the PR dockside index

| Year | Region | n | Year | Region | n |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2004 | C | 1271 | 2004 | N | 998 |
| 2005 | C | 1686 | 2005 | N | 1498 |
| 2006 | C | 2412 | 2006 | N | 1869 |
| 2007 | C | 1651 | 2007 | N | 1445 |
| 2008 | C | 1910 | 2008 | N | 1157 |
| 2009 | C | 2079 | 2009 | N | 1438 |
| 2010 | C | 1364 | 2010 | N | 849 |
| 2011 | C | 1478 | 2011 | N | 965 |
| 2012 | C | 1559 | 2012 | N | 1099 |
| 2013 | C | 2213 | 2013 | N | 986 |
| 2014 | C | 2581 | 2014 | N | 1479 |
| 2021 | C | 1586 | 2021 | N | 782 |
| 2022 | C | 1483 | 2022 | N | 1084 |

Table 17: Model selection for the PR dockside index

| Model (all catch models include a $\log$ (effort) offset) | WAIC | $\Delta$ WAIC |
| :---: | :---: | :---: |
| catch $\sim$ year + district + wave + prim1Common | 172306.7 | 7946.4 |
| catch $\sim$ year + district + wave + prim1Common + year:district | 170767.2 | 6406.9 |
| catch $\sim$ year + district + wave + prim1Common + year:district + district:wave | 170527.1 | 6166.8 |
| $\begin{aligned} & \text { catch } \sim \text { year }+ \text { district }+ \text { wave }+ \text { prim1Common }+ \text { year:district }+ \text { district:wave } \\ & \text { zi } \sim 1 \end{aligned}$ | 170267.6 | 5907.3 |
| $\begin{aligned} & \text { catch } \sim \text { year }+ \text { district }+ \text { wave }+ \text { prim1Common }+ \text { year:district }+ \text { district:wave } \\ & \text { zi } \sim \text { district } \end{aligned}$ | 165404.5 | 1044.2 |
| catch $\sim$ year + district + wave + prim1Common + year:district + district:wave zi $\sim$ year + district + wave + prim1Common | 165092.1 | 731.8 |
| catch $\sim$ year + district + wave + prim1Common + year:district + district:wave zi $\sim$ year + district + wave + prim1Common + year:district | 164396.6 | 36.3 |
| catch $\sim$ year + district + wave + prim1Common + year:district + district:wave zi $\sim$ year + district + wave + prim1Common + year:district + district:wave | 164360.3 | 0 |

Table 18: Data filters applied to the DWV CPFV onboard index

| Filter | Description | Samples | Proportion_Positive |
| :--- | :--- | ---: | ---: |
| All | None | 7569 | 0.0843 |
| Year | Remove 1987 (sampled Monterey only) | 7223 | 0.0881 |
| Effort | Remove fishing time $<5 \mathrm{~min}$ | 7128 | 0.0880 |
| Target | Retain trips with at least 90\% groundfish catch | 6465 | 0.0945 |
| Districts | Remove Districts 5-6 due to limited sampling | 6294 | 0.0895 |
| Depth | Remove depths $>=$ 40fm | 4084 | 0.1379 |

Table 19: Samples sizes for the DWV CPFV onboard index

|  | CRFS District 3 |  | CRFS District 4 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $0-20$ | $20-40$ | $0-20$ | $20-40$ |
| Year | fm | fm | fm | fm |
| 1988 | 14 | 117 | 37 | 37 |
| 1989 | 15 | 104 | 33 | 84 |
| 1990 | 1 | 24 | 11 | 21 |
| 1991 | 20 | 29 | 4 | 11 |
| 1992 | 42 | 52 | 15 | 43 |
| 1993 | 47 | 121 | 32 | 56 |
| 1994 | 66 | 141 | 43 | 73 |
| 1995 | 117 | 215 | 59 | 116 |
| 1996 | 186 | 255 | 136 | 131 |
| 1997 | 208 | 184 | 229 | 230 |
| 1998 | 181 | 152 | 212 | 180 |

Table 20: Model selection for the DWV CPFV onboard index. All models contained year and an offset term for effort.

| (Intercept) | DEPTH_BIN | DISTRICT | WAVE | DEPTH_BIN:YEAR | DISTRICT:YEAR | df | logLik | BIC | delta |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -2.218 | + | + | + | NA | NA | 19 | -2778 | 5713 | 0 |
| -3.464 | + | + | + | + | NA | 29 | -2746 | 5733 | 19 |
| -3.089 | $+$ | + | + | NA | + | 29 | -2754 | 5750 | 36 |
| -0.880 | $+$ | + | NA | NA | NA | 14 | -2823 | 5763 | 49 |
| -1.870 | $+$ | + | NA | + | NA | 24 | -2789 | 5777 | 63 |
| -3.122 | + | + | + | + | + | 39 | -2727 | 5778 | 64 |
| -1.399 | + | + | NA | NA | + | 24 | -2803 | 5806 | 93 |
| -2.537 | + | + | NA | + | + | 34 | -2774 | 5831 | 118 |

Table 21: Standardized DWV CPFV onboard index for central California

| year | index | lower95 | upper95 | log.se |
| :---: | :---: | :---: | :---: | :---: |
| 1988 | 5.6500 | 3.0362 | 9.3465 | 0.2804 |
| 1989 | 3.1962 | 1.6387 | 5.4576 | 0.2986 |
| 1990 | 3.2223 | 0.9250 | 7.7812 | 0.5004 |
| 1991 | 5.5411 | 1.9986 | 11.6985 | 0.4232 |
| 1992 | 3.5720 | 1.6193 | 6.4408 | 0.3391 |
| 1993 | 1.0974 | 0.5899 | 1.7904 | 0.2735 |
| 1994 | 3.7495 | 2.1390 | 5.8506 | 0.2473 |
| 1995 | 1.1396 | 0.7128 | 1.6429 | 0.2086 |
| 1996 | 1.0230 | 0.6930 | 1.4014 | 0.1763 |
| 1997 | 2.0335 | 1.4744 | 2.7043 | 0.1556 |
| 1998 | 0.5778 | 0.4081 | 0.7904 | 0.1685 |

Table 22: Data filters applied to the CRFS PC onboard index

| Filter | Description | Samples |
| :--- | :--- | ---: |
| Percent_positive |  |  |
| Zero effort | All data | 30595 |
| Depth | Remove drifts with effort=0 | 30303 |
| Errors, Missing Data, $>5$ hrs fished | Impute missing depths with GIS and remove NAs | Remove missing data, errors, and drifts 5+ hours |
| Area fished | Remove drifts in bays \& NAs from Bay Area | 30264 |
| Months fished | Remove Jan-March; recreational rockfish fishery closed | 29981 |
| Depth fished | Keep drifts $<300$ ft in districts 3-4, and $<150$ ft in districts 5-6 | 29422 |
| Observed anglers | Remove drifts $<2$ or $>15$ observed anglers | 28463 |
| Distance from reef | Remove drifts 100+ meters from reef | 27617 |
|  |  | 27196 |

Table 23: Model selection for the CRFS PC onboard index based on WAIC.

| Model (all catch models include a $\log$ (effort) offset) | WAIC | $\triangle$ WAIC |
| :---: | :---: | :---: |
| catch $\sim$ year + district + depth_bin + month | 22498.5 | 1997.3 |
| catch $\sim$ year + district + depth_bin + month + year:district | 21653.6 | 1152.4 |
| $\begin{aligned} & \text { catch } \sim \text { year }+ \text { district }+ \text { depth_bin }+ \text { month }+ \text { year:district } \\ & \text { zi } \sim 1 \end{aligned}$ | 21657.5 | 1156.3 |
| ```catch ~ year + district + depth_bin + month zi ~ district``` | 21396.7 | 895.5 |
| catch $\sim$ year + district + depth_bin + month + year:district zi $\sim$ year + district + depth_bin + month | 20677 | 175.8 |
| catch $\sim$ year + district + depth_bin + month + year:district zi $\sim$ year + district + depth_bin + month + year:district | 20686.8 | 185.6 |
| catch $\sim$ year + district + depth $\_$bin + month + (1\|year:district $)$ zi $\sim$ year + district + depth $\_$bin + month + (1\|year:district $)$ | 20636.7 | 135.5 |
| catch $\sim$ year + district + depth_bin + month + year:district + month:district zi $\sim$ year + district + depth_bin + month + year:district + month:district | 20563.3 | 62.1 |
| catch $\sim$ year + district + depth_bin + month + (1\|year:district) + (1|month:district) zi $\sim$ year + district + depth_bin + month + (1\|year:district) $+(\mathbf{1} \mid$ month:district $)$ | 20501.2 | 0 |

Table 24: Sample sizes by year and region for the CRFS PC onboard index.

| Year | Region | n | Year | Region | n |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2001 | C | 302 |  |  |  |
| 2002 | C | 317 |  |  |  |
| 2003 | C | 1043 |  |  |  |
| 2004 | C | 1475 |  |  |  |
| 2005 | C | 1006 |  |  |  |
| 2006 | C | 1357 |  |  |  |
| 2007 | C | 1405 |  |  |  |
| 2008 | C | 1005 | 2008 | N | 228 |
| 2009 | C | 922 | 2009 | N | 313 |
| 2010 | C | 1471 | 2010 | N | 226 |
| 2011 | C | 1541 | 2011 | N | 106 |
| 2012 | C | 1282 | 2012 | N | 130 |
| 2013 | C | 1347 | 2013 | N | 60 |
| 2014 | C | 1214 | 2014 | N | 138 |
| 2015 | C | 1134 | 2015 | N | 42 |
| 2016 | C | 1476 | 2016 | N | 111 |
| 2017 | C | 1042 | 2017 | N | 71 |
| 2018 | C | 799 | 2018 | N | 98 |
| 2019 | C | 1116 |  |  |  |
| 2021 | C | 594 | 2021 | N | 40 |
| 2022 | C | 827 | 2022 | N | 153 |

Table 25: Data filters applied to the California Collaborative Fisheries Research Program (CCFRP) index.

| Filter | Description | No. Drifts <br> Remaining | Percent <br> of total |
| :--- | :--- | :---: | :---: |
| All data | central California (2007 to 2022) | 10571 | 100.0 |
| Exclude grid cells | statewide (2017 to 2022) |  | 9229 |
| Southern California | All drifts sounds, of Poo deep, or $<2$ min duration | 87.3 |  |
| Missing data | No geographic location | 7789 | 73.7 |
|  |  | 7775 | 73.6 |

Table 26:. Sample size (number of drifts) by year and California Recreational Fisheries Survey (CRFS) district for the California Collaborative Fisheries Research Program (CCFRP) index. CFRS districts were assigned by county. Districts 5 and 6 were not sampled prior to 2017.

|  | CRFS District |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Year | 3 | 4 | 5 | 6 | Subtotal |
| 2007 | 303 | 254 |  |  | 557 |
| 2008 | 361 | 201 |  |  | 562 |
| 2009 | 244 | 126 |  |  | 370 |
| 2010 | 257 | 159 |  |  | 416 |
| 2011 | 258 | 117 |  |  | 375 |
| 2012 | 274 | 127 |  |  | 401 |
| 2013 | 294 | 132 |  |  | 426 |
| 2014 | 304 | 146 |  |  | 224 |
| 2015 | 149 | 75 |  |  | 428 |
| 2016 | 303 | 125 | 61 | 51 | 535 |
| 2017 | 253 | 170 | 71 | 67 | 607 |
| 2018 | 206 | 263 | 74 | 74 | 644 |
| 2019 | 218 | 278 | 74 | 71 | 70 |
| 2020 | 215 | 263 | 71 | 79 | 604 |
| 2021 | 220 | 233 | 72 | 79 |  |
| 2022 | 220 | 221 | 61 | 55 | 557 |
| Subtotal | 4079 | 2890 | 410 | 396 | 7775 |

Table 27: Normalized weights based on the proportion of rocky reef habitat in each California Recreational Fisheries Survey (CRFS) district, showing assignment of CCFRP Areas to CRFS Districts

| CCFRP Area | CRFS District | Weight |
| :---: | :---: | :---: |
| Cape Mendocino | 6 | 0.1943 |
| Ten Mile | 5 | 0.1620 |
| Stewart's Point | 4 | 0.3210 |
| Bodega Head | 4 | 0.3210 |
| Año Nuevo | 4 | 0.3210 |
| Point Lobos | 3 | 0.3227 |
| Piedras Blancas | 3 | 0.3227 |
| Point Buchon | 3 | 0.3227 |

Table 28: Proportion of drifts that caught black rockfish by year and California Recreational Fisheries Survey (CRFS) district for the California Collaborative Fisheries Research Program (CCFRP) index. CFRS districts were assigned by county. Districts 5 and 6 were not sampled prior to 2017.

|  | CRFS District |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Year | 3 | 4 | 5 | 6 | Marginal |
| 2007 | 0.290 | 0.531 |  |  | 0.400 |
| 2008 | 0.277 | 0.687 |  |  | 0.423 |
| 2009 | 0.152 | 0.754 |  |  | 0.357 |
| 2010 | 0.062 | 0.541 |  | 0.245 |  |
| 2011 | 0.209 | 0.709 |  | 0.365 |  |
| 2012 | 0.296 | 0.795 |  | 0.454 |  |
| 2013 | 0.347 | 0.894 |  | 0.516 |  |
| 2014 | 0.375 | 0.822 |  | 0.520 |  |
| 2015 | 0.430 | 0.867 |  |  | 0.576 |
| 2016 | 0.294 | 0.840 |  | 0.563 |  |
| 2017 | 0.158 | 0.600 | 0.246 | 0.569 | 0.348 |
| 2018 | 0.136 | 0.494 | 0.282 | 0.478 | 0.346 |
| 2019 | 0.041 | 0.522 | 0.230 | 0.405 | 0.312 |
| 2020 | 0.037 | 0.551 | 0.394 | 0.414 | 0.339 |
| 2021 | 0.041 | 0.661 | 0.431 | 0.544 | 0.392 |
| 2022 | 0.045 | 0.367 | 0.492 | 0.691 | 0.285 |
| Marginal | 0.208 | 0.624 | 0.344 | 0.508 | 0.385 |

Table 29: Results from Tweedie and negative binomial generalized additive models used to quantify covariate effects on unweighted black rockfish catch for the California Collaborative Fisheries Research Program (CCFRP) index.

|  | adj. R | Deviance Explained | REML | Scale est. | $\Delta$ AIC |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Tweedie | 0.542 | $58.5 \%$ | 11011 | 3.0021 | 0 |
| Negative Binomial | 0.516 | $55.3 \%$ | 11096 | 1.0000 | 174.84 |

Table 30: Alternative models (truncated to exclude models with extremely low AIC weights) for districtweighted black rockfish catch based on California Collaborative Fisheries Research Program (CCFRP) data. Model covariates and selection criteria are shown. Results are from generalized additive models using a Tweedie distribution and $\log$ link.

| Intercept | Region | Year | Lon, Lat | Lon, Lat, <br> Year | Depth <br> (ft) | offset <br> (log effort, hr) | df | $\operatorname{logLik}$ | $\Delta \mathrm{AIC}$ | wt |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -2.05 | NA | + | + | + | + | + | 51 | -7341.6 | 0.0 | 0.602 |
| -2.14 | + | + | + | + | + | + | 52 | -7341.2 | 0.8 | 0.398 |
| -2.04 | NA | $+$ | NA | $+$ | $+$ | $+$ | 50 | -7396.6 | 108.2 | 0.000 |
| -2.11 | $+$ | + | NA | $+$ | $+$ | $+$ | 51 | -7396.1 | 108.9 | 0.000 |
| -1.91 | NA | $+$ | $+$ | $+$ | NA | $+$ | 28 | -7537.1 | 346.3 | 0.000 |
| -2.04 | + | + | $+$ | + | NA | $+$ | 29 | -7536.4 | 346.6 | 0.000 |
| -1.96 | NA | NA | $+$ | + | $+$ | $+$ | 59 | -7541.9 | 416.8 | 0.000 |
| -4.72 | $+$ | NA | $+$ | $+$ | $+$ | $+$ | 58 | -7568.4 | 467.2 | 0.000 |
| -1.76 | NA | NA | NA | $+$ | $+$ | $+$ | 58 | -7594.9 | 521.3 | 0.000 |
| -4.47 | + | NA | NA | $+$ | + | $+$ | 57 | -7621.8 | 572.7 | 0.000 |

Table 31: Tweedie model results for California Collaborative Fisheries Research Program (CCFRP) index of district-weighted black rockfish catch.

|  | edf | Ref. df | F | p |
| :--- | :---: | :---: | :---: | :---: |
| Year | 8.46 | 8.74 | 19.09 | $<0.001$ |
| Long, Lat | 11.38 | 24.00 | 91.95 | $<0.001$ |
| Long, Lat, Year | 21.01 | 64.00 | 5.36 | $<0.001$ |
| Depth (m) | 4.73 | 5.00 | 163.06 | $<0.001$ |
|  |  |  |  |  |
|  | Est. | SE | t | p |
| Intercept | -2.05 | 0.07 | -29.23 | $<0.001$ |
|  |  |  |  |  |
| Dev. explained | adj-R |  | REML |  |
| $58.4 \%$ | 0.55 | 7477 | Scale est. |  |

Table 32: Relative abundance estimates for black rockfish using California Collaborative Fisheries Research Program (CCFRP) data. Mean predicted catch per unit effort (CPUE) and log-scale standard errors are shown by a) year (statewide) or by b) year and region. The index represents the sum of areaspecific CPUE in a given year (a) or year and region (b) and was standardized by dividing year-specific values by the mean for the time series.
a)

| Year | Mean <br> CPUE | log SE <br> CPUE | Index | Std. <br> Index |
| :--- | :--- | :--- | :--- | :--- |
| 2007 | 0.408 | 0.115 | 1.224 | 0.585 |
| 2008 | 0.299 | 0.169 | 1.197 | 0.572 |
| 2009 | 0.265 | 0.148 | 1.061 | 0.507 |
| 2010 | 0.218 | 0.151 | 0.870 | 0.416 |
| 2011 | 0.321 | 0.142 | 1.283 | 0.614 |
| 2012 | 0.644 | 0.118 | 2.578 | 1.233 |
| 2013 | 0.879 | 0.093 | 3.516 | 1.682 |
| 2014 | 0.838 | 0.097 | 3.353 | 1.603 |
| 2015 | 0.826 | 0.092 | 2.479 | 1.186 |
| 2016 | 0.427 | 0.112 | 1.708 | 0.817 |
| 2017 | 0.259 | 0.182 | 2.075 | 0.992 |
| 2018 | 0.200 | 0.154 | 1.597 | 0.764 |
| 2019 | 0.241 | 0.158 | 1.931 | 0.924 |
| 2020 | 0.392 | 0.153 | 3.139 | 1.501 |
| 2021 | 0.409 | 0.170 | 3.273 | 1.565 |
| 2022 | 0.271 | 0.215 | 2.171 | 1.038 |

b)

| Year | Central California |  |  |  |  | Northern California |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mean CPUE | $\begin{aligned} & \log \mathrm{SE} \\ & \text { CPUE } \\ & \hline \end{aligned}$ | Index | Std. Index | Mean CPUE | $\begin{aligned} & \log \mathrm{SE} \\ & \text { CPUE } \end{aligned}$ | Index | Std. Index |
| 2007 | 0.408 | 0.115 | 1.224 | 0.645 |  |  |  |  |
| 2008 | 0.299 | 0.169 | 1.197 | 0.631 |  |  |  |  |
| 2009 | 0.265 | 0.148 | 1.061 | 0.559 |  |  |  |  |
| 2010 | 0.218 | 0.151 | 0.870 | 0.459 |  |  |  |  |
| 2011 | 0.321 | 0.142 | 1.283 | 0.676 |  |  |  |  |
| 2012 | 0.644 | 0.118 | 2.578 | 1.358 |  |  |  |  |
| 2013 | 0.879 | 0.093 | 3.516 | 1.853 |  |  |  |  |
| 2014 | 0.838 | 0.097 | 3.353 | 1.766 |  |  |  |  |
| 2015 | 0.826 | 0.092 | 2.479 | 1.306 |  |  |  |  |
| 2016 | 0.427 | 0.112 | 1.708 | 0.900 |  |  |  |  |
| 2017 | 0.267 | 0.167 | 1.602 | 0.844 | 0.236 | 0.228 | 0.473 | 0.919 |
| 2018 | 0.215 | 0.150 | 1.291 | 0.680 | 0.153 | 0.164 | 0.306 | 0.594 |
| 2019 | 0.263 | 0.155 | 1.575 | 0.830 | 0.178 | 0.167 | 0.356 | 0.693 |
| 2020 | 0.418 | 0.157 | 2.506 | 1.320 | 0.317 | 0.141 | 0.633 | 1.231 |
| 2021 | 0.419 | 0.182 | 2.514 | 1.324 | 0.380 | 0.134 | 0.760 | 1.477 |
| 2022 | 0.269 | 0.228 | 1.613 | 0.850 | 0.174 | 0.242 | 0.559 | 1.086 |

Table 33: Likelihoods generated by successive versions of the Stock Synthesis model. The 2015 assessment used version 3.24. Results were nearly identical using version 3.30.20.

|  | Stock Synthesis Version |  |
| :---: | :---: | :---: |
| Likelihood Component | 3.24 | 3.30 .20 .00 |
| TOTAL | 1213.0 | 1213.1 |
| Equil_catch | 0 | 0 |
| Survey | -14.137 | -14.109 |
| Length_comp | 353.05 | 353.16 |
| Age_comp | 876.04 | 876.04 |
| Recruitment | -2.7368 | -2.7433 |
| InitEQ_Regime | NA | $6.21 \mathrm{E}-31$ |
| Forecast_Recruitment | 0 | 0 |
| Parm_priors | 0.72663 | 0.72590 |
| Parm_softbounds | 0.00469 | 0.00469 |

Table 34: Effects of changing F estimation method and weighting approach, and updating catch histories, on absolute (top panel) and relative (bottom panel) spawning output, starting from the 2015 assessment.

| Quantity | 2015 Assessment | Hybrid F method | 2015 Francis weights (FW) |
| :--- | :---: | :---: | :---: | 2015 fleets with 2023 catches (FW)

Table 35: Updates to the weight-length, maturity, and fecundity relationships, relative to the model with revised catches, weights, and F estimation method.

| Quantity | Model Run |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 2015 fleets with 2023 catches (FW) | Update W-L | Update maturity | Update fecundity |
| N.Parms | 88 | 88 | 88 | 88 |
| TOTAL | 822.6 | 822.6 | 821.6 | 821.8 |
| Survey | -13.4 | -13.5 | -13.3 | -13.3 |
| Length_comp | 363.6 | 363.6 | 362.8 | 362.9 |
| Age_comp | 476.3 | 476.3 | 476.6 | 476.6 |
| Recruitment | -4.5 | -4.5 | -5.1 | -5.0 |
| Parm_priors | 0.6 | 0.7 | 0.6 | 0.6 |
| NatM_uniform_Fem_GP_1 | 0.175 | 0.176 | 0.170 | 0.171 |
| L_at_Amin_Fem_GP_1 | 24.477 | 24.471 | 24.530 | 24.520 |
| L_at_Amax_Fem_GP_1 | 52.925 | 52.917 | 52.943 | 52.934 |
| VonBert_K_Fem_GP_1 | 0.150 | 0.150 | 0.149 | 0.150 |
| CV_young_Fem_GP_1 | 0.110 | 0.110 | 0.110 | 0.110 |
| CV_old_Fem_GP_1 | 0.074 | 0.074 | 0.073 | 0.073 |
| Wtlen_1_Fem_GP_1 | 0.000 | 0.000 | 0.000 | 0.000 |
| Wtlen_2_Fem_GP_1 | 2.942 | 3.012 | 3.012 | 3.012 |
| Mat50\%_Fem_GP_1 | 43.690 | 43.690 | 40.360 | 40.360 |
| Mat_slope_Fem_GP_1 | -0.660 | -0.660 | -0.381 | -0.381 |
| Eggs/kg_inter_Fem_GP_1 | 0.275 | 0.275 | 0.275 | NA |
| Eggs/kg_slope_wt_Fem_GP_1 | 0.094 | 0.094 | 0.094 | NA |
| NatM_uniform_Mal_GP_1 | -0.29 | -0.29 | -0.29 | -0.29 |
| L_at_Amin_Mal_GP_1 | 0.03 | 0.03 | 0.03 | 0.03 |
| L_at_Amax_Mal_GP_1 | -0.15 | -0.15 | -0.15 | -0.15 |
| VonBert_K_Mal_GP_1 | 0.33 | 0.33 | 0.34 | 0.34 |
| CV_young_Mal_GP_1 | -0.12 | -0.12 | -0.12 | -0.12 |
| CV_old_Mal_GP_1 | 0.00 | 0.00 | 0.01 | 0.01 |
| Wtlen_1_Mal_GP_1 | 0.00 | 0.00 | 0.00 | 0.00 |
| Wtlen_2_Mal_GP_1 | 2.96 | 3.01 | 3.01 | 3.01 |
| SR_LN(RO) | 7.70 | 7.63 | 7.55 | 7.56 |
| Size_DbIN_peak_Trawl(1) | 49.44 | 49.44 | 49.42 | 49.43 |
| Size_DbIN_top_logit_Trawl(1) | 0.25 | 0.25 | 0.22 | 0.23 |
| Size_DbIN_ascend_se_Trawl(1) | 3.56 | 3.56 | 3.56 | 3.56 |
| Size_DbIN_peak_nonTrawldead(2) | 42.07 | 42.07 | 42.13 | 42.12 |
| Size_DbIN_top_logit_nonTrawldead(2) | -1.85 | -1.85 | -1.81 | -1.82 |
| Size_DbIN_ascend_se_nonTrawldead(2) | 4.30 | 4.30 | 4.30 | 4.30 |
| Size_DbIN_peak_nonTrawllive(3) | 34.87 | 34.87 | 34.88 | 34.88 |
| Size_DbIN_top_logit_nonTrawllive(3) | -0.33 | -0.33 | -0.32 | -0.32 |
| Size_DbIN_ascend_se_nonTrawllive(3) | 2.86 | 2.86 | 2.86 | 2.86 |
| Size_DbIN_descend_se_nonTrawllive(3) | 2.03 | 2.03 | 1.99 | 1.99 |
| Size_DbIN_end_logit_nonTrawllive(3) | -0.75 | -0.75 | -0.72 | -0.73 |
| Size_DblN_peak_Rec(4) | 31.25 | 31.25 | 31.25 | 31.25 |
| Size_DbIN_top_logit_Rec(4) | -3.43 | -3.44 | -3.46 | -3.46 |
| Size_DblN_ascend_se_Rec(4) | 3.36 | 3.36 | 3.36 | 3.36 |
| Size_DbIN_peak_OnboardCPUE(5) | 26.72 | 26.73 | 26.72 | 26.73 |
| Size_DbIN_top_logit_OnboardCPUE(5) | -2.09 | -2.09 | -2.09 | -2.09 |
| Size_DbIN_ascend_se_OnboardCPUE(5) | 2.16 | 2.16 | 2.16 | 2.16 |
| Size_DbIN_peak_RecResearch(7) | 26.72 | 26.73 | 26.65 | 26.67 |
| Size_DbIN_top_logit_RecResearch(7) | -1.53 | -1.53 | -1.51 | -1.52 |
| Size_DbIN_ascend_se_RecResearch(7) | 3.05 | 3.05 | 3.03 | 3.04 |
| Eggs_scalar_Fem_GP_1 | NA | NA | NA | $1.41 \mathrm{E}-08$ |
| Eggs_exp_len_Fem_GP_1 | NA | NA | NA | 4.69 |
| Bratio_2015 | 0.33 | 0.33 | 0.39 | 0.38 |
| SSB_unfished | 1125.88 | 1235.19 | 1404.79 | 1634.76 |
| Totbio_unfished | 10314.3 | 10323.3 | 10064.5 | 10112 |
| Recr_unfished | 2215.61 | 2068.88 | 1898.47 | 1928.28 |
| MSY_proxy_F(SPR50) | 340.73 | 340.43 | 343.45 | 342.36 |
| OFLCatch_2015 | 360.51 | 359.26 | 374.44 | 370.11 |

Table 36: Data weights by fleet and data type in the northern base model and using an alternative data weighting method (McAllister-Ianelli).

| Fleet name | Data Type | Base (Francis Weights) | McAllister-Ianelli weights |
| :--- | :---: | :---: | :---: |
| Comm_nonTwl_dead | length | 0.694059 | 1 |
| Comm_nonTwl_live | length | 1 | 1 |
| Comm_Trawl | length | 1 | 1 |
| Comm_Discard | length | 0.290534 | 0.731417 |
| Rec_PC_North | length | 0.468295 | 0.574223 |
| Rec_PR_North | length | 0.171834 | 0.436339 |
| Rec_Disc_North | length | 0.359958 | 1 |
| CCFRP | length | 0.712134 | 1 |
| Abrams_Research | length | 0.372812 | 1 |
| Comm_nonTwl_dead | age | 0.04474 | 0.174288 |
| Comm_Trawl | age | 0.907791 | 0.332602 |
| Rec_PC_North | age | 0.478482 | 0.538038 |
| Rec_PR_North | age | 0.225143 | 0.23098 |
| CCFRP | age | 0.097806 | 0.10544 |
| Abrams_Research | age | 0.385793 | 0.06488 |

Table 37: Parameters used in the northern California base case assessment model. See separate table for selectivity parameters.

| Parameter | Number <br> Estimated | Bounds (low, high) | $\begin{gathered} \text { Prior } \\ \text { (Mean, SD) - Type } \\ \hline \end{gathered}$ | Value | Transformed Value | SE | gradient |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Biology |  |  |  |  |  |  |  |
| Natural mortality (M) - female | 1 | $(0.01,0.5)$ | (-1.869, 0.31)- Lognormal | 0.211 |  | 0.016 | -6E-05 |
| Nat. mortality (M) - male (offset) | 1 | (-0.5, 0.5) | - | -0.053 | 0.200 | 0.031 | -1E-05 |
| $\mathrm{Ln}\left(\mathrm{R}_{0}\right)$ | 1 | $(6,10)$ | - ${ }^{-}$ | 7.728 | 2271.7 | 0.173 | $6 \mathrm{E}-05$ |
| Steepness (h) | 0 | (0.201, 0.999) | (0.72, 0.16) - Full Beta | 0.720 |  | - | - |
| Growth |  |  |  |  |  |  |  |
| Length at age 0 - female | 0 | $(3,30)$ | - | 5.000 |  | - | - |
| Length at age $20-$ female | 1 | $(45,60)$ | - | 54.494 |  | 0.782 | 2E-05 |
| von Bertalnaffy $k$ - female | 1 | $(0.05,0.3)$ | - | 0.148 |  | 0.006 | 3E-05 |
| CV(L(age 0)) - female | 0 | $(0.01,0.4)$ | - | 0.100 |  | - | - |
| CV(L(age 20)) - female | 1 | (0.01, 0.2) | - | 0.082 |  | 0.008 | 3E-06 |
| Length at age $0-$ male (offset) | 0 | $(-1,1)$ | - | 0.000 | 5.000 | - | - |
| Length at age $20-$ male (offset) | 1 | $(-0.5,0.5)$ | - | -0.147 | 47.040 | 0.015 | 3E-05 |
| von Bertalnaffy k - male (offset) | 1 | $(-1,1)$ | - | 0.312 | 0.202 | 0.044 | 1E-05 |
| CV(L(age 0)) - male (offset) | 0 | $(-1,1)$ | - | 0.000 | 0.100 | - | - |
| CV(L(age 20)) - male (offset) | 1 | $(-2,2)$ | - | -0.319 | 0.059 | 0.140 | $9 \mathrm{E}-07$ |
| Indices |  |  |  |  |  |  |  |
| Extra SD - CRFS private dockside | 1 | $(0,0.4)$ | - | 0.088 |  | 0.027 | 7E-09 |
| Recruitment Deviations (sum=0) |  |  |  |  |  |  |  |
| SD of log-scale rec devs (sigma-R) | 0 | $(0,2)$ |  | 0.60 |  | - | - |
| Main Recruitment Deviation Parameters |  |  |  | Min | Max | maxSE | maxGrad |
| 1963-2022 | 60 | $(-5,5)$ | - | -0.744 | 1.279 | 0.564 | $1 \mathrm{E}-05$ |
| Summary of model parameters (see separate table for selectivity parameters) |  |  |  |  |  |  |  |
| Number of parameters in model | 144 |  |  |  |  |  |  |
| Estimated parameters | 98 | (including 2 fo | ast devs) |  |  |  |  |
| Number within $1 \%$ of bound | 0 |  |  |  |  |  |  |

Table 38: Selectivity parameters used in the northern California base case assessment model.

| Parameter | Number Estimated | Bounds (low, high) | Value | Transformed Value | SE | gradient |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Selectivity |  |  |  |  |  |  |
| Commercial Non-Trawl, landed dead |  |  |  |  |  |  |
| Logistic inflection point | 1 | $(25,45)$ | 35.928 |  | 0.550 | 7E-06 |
| Logistic width, 50th to 95th percentile | 1 | $(0,12)$ | 5.859 |  | 0.534 | -3E-06 |
| Commercial Non-Trawl, landed alive |  |  |  |  |  |  |
| Double-Normal Peak | 1 | $(25,50)$ | 36.232 |  | 1.424 | 2E-06 |
| Double-Normal Top (logit) | 0 | $(-10,10)$ | -6.000 | 0.002 |  |  |
| Double-Normal Ascending SE | 1 | $(0.5,6)$ | 3.093 |  | 0.456 | -6E-07 |
| Double-Normal Descending SE | 1 | $(1,10)$ | 5.684 |  | 0.991 | 7E-07 |
| Double-Normal Initial (logit) | 0 | (-11, -9) | -10.000 | 0.000 |  |  |
| Double-Normal Final (logit) | 0 | $(-12,12)$ | -10.000 | 0.000 |  |  |
| Commercial Trawl |  |  |  |  |  |  |
| Logistic inflection point | 1 | $(35,55)$ | 45.427 |  | 1.123 | -4E-07 |
| Logistic width, 50th to 95th percentile | 1 | $(0.1,10)$ | 5.688 |  | 0.887 | 1E-07 |
| Commercial Discard |  |  |  |  |  |  |
| Double-Normal Peak | 1 | $(20,35)$ | 27.109 |  | 0.715 | -3E-07 |
| Double-Normal Top (logit) | 0 | $(-10,10)$ | -6.000 | 0.002 |  |  |
| Double-Normal Ascending SE | 1 | $(1,6)$ | 3.422 |  | 0.231 | 1E-07 |
| Double-Normal Descending SE | 1 | $(1,6)$ | 3.909 |  | 0.232 | -1E-06 |
| Double-Normal Initial (logit) | 0 | (-11, -9) | -10.000 | 0.000 | - | _ |
| Double-Normal Final (logit) | 0 | (-11, -9) | -10.000 | 0.000 |  |  |
| Recreational CPFV, 2004-present |  |  |  |  |  |  |
| Double-Normal Peak | 1 | $(30,55)$ | 40.807 |  | 0.724 | -2E-06 |
| Double-Normal Top (logit) | 0 | $(-10,10)$ | -6.000 | 0.002 |  |  |
| Double-Normal Ascending SE | 1 | $(2,6)$ | 4.210 |  | 0.108 | -1E-06 |
| Double-Normal Descending SE | 1 | $(0.1,10)$ | 4.755 |  | 0.490 | -8E-07 |
| Double-Normal Initial (logit) | 0 | (-11, -9) | -10.000 | 0.000 |  |  |
| Double-Normal Final (logit) | 1 | $(-15,15)$ | -2.695 | 0.063 | 2.849 | 2E-07 |
| D-N Peak, 1875-2003 | 1 | $(25,45)$ | 34.214 |  | 0.937 | 3E-06 |
| D-N Ascending SE, 1875-2003 | 1 | $(1,7)$ | 3.863 |  | 0.195 | -5E-07 |
| D-N Descending SE, 1875-2003 | 0 | $(0.1,10)$ | 6.000 |  | - | - |
| D-N Final (logit), 1875-2003 | 0 | $(-15,15)$ | 10.000 | 1.000 | - |  |
| Recreational Private Boat (mirrors CPFV) |  |  |  |  |  |  |
| Recreational Discard |  |  |  |  |  |  |
| Double-Normal Peak | 1 | $(15,45)$ | 28.386 |  | 2.582 | 5E-07 |
| Double-Normal Top (logit) | 0 | $(-10,0)$ | -6.000 | 0.002 |  |  |
| Double-Normal Ascending SE | 1 | $(1,7)$ | 4.204 |  | 0.570 | -3E-07 |
| Double-Normal Descending SE | 1 | $(1,8)$ | 4.511 |  | 0.617 | 1E-07 |
| Double-Normal Initial (logit) | 0 | (-11, -9) | -10.000 | 0.000 | - | - |
| Double-Normal Final (logit) | 0 | (-11, -9) | -10.000 | 0.000 |  |  |
| CCFRP |  |  |  |  |  |  |
| Double-Normal Peak | 1 | $(30,55)$ | 42.166 |  | 1.099 | 2E-07 |
| Double-Normal Top (logit) | 0 | $(-10,10)$ | -6.000 | 0.002 |  |  |
| Double-Normal Ascending SE | 1 | $(2,7)$ | 4.595 |  | 0.169 | 3E-06 |
| Double-Normal Descending SE | 1 | $(0.05,8)$ | 2.805 |  | 0.691 | 8E-07 |
| Double-Normal Initial (logit) | 0 | (-11, -9) | -10.000 | 0.000 |  |  |
| Double-Normal Final (logit) | 1 | $(-15,15)$ | -3.178 | 0.040 | 1.591 | 2E-06 |
| CRFS CPFV Onboard (PCO; mirrors CPFV) |  |  |  |  |  |  |
| Abrams Thesis Research |  |  |  |  |  |  |
| Double-Normal Peak | 1 | $(20,60)$ | 39.881 |  | 2.311 | 2E-06 |
| Double-Normal Top (logit) | 0 | $(-10,10)$ | -6.000 | 0.002 |  |  |
| Double-Normal Ascending SE | 1 | $(2,7)$ | 4.529 |  | 0.325 | -4E-06 |
| Double-Normal Descending SE | 1 | $(0.1,10)$ | 4.552 |  | 0.826 | 3E-07 |
| Double-Normal Initial (logit) | 0 | (-11, -9) | -10.000 | 0.000 |  | - |
| Double-Normal Final (logit) | 0 | $(-15,10)$ | -5.000 | 0.007 |  |  |

Table 39: Reference points for the northern California base model.

| Reference Point | Estimate | Interval |
| :--- | :---: | :---: |
| Unfished Spawning Output (billions of eggs) | 1,205 | $987-1,424$ |
| Unfished Age 8+ Biomass (mt) | 4,214 | $3,643-4,786$ |
| Unfished Recruitment (R0, 1000s) | 2,272 | $1,503-3,040$ |
| Spawning Output (2023, billions of eggs) | 438 | $187-689$ |
| Fraction Unfished (2023) | 0.36 | $0.16-0.57$ |
| Reference Points Based SB40\% |  |  |
| Proxy Spawning Output SB40\% | 482 | $395-569$ |
| SPR Resulting in SB40\% |  | 0.458 |
| Exploitation Rate Resulting in SB40\% | $0.458-0.458$ |  |
| Yield with SPR Based On SB40\% (mt) |  | $0.130-0.190$ |
| Reference Points Based on SPR Proxy for MSY |  | $280-321$ |
| Proxy Spawning Output (SPR50) |  |  |
| SPR50 |  | 0.5 |
| Exploitation Rate Corresponding to SPR50 | 0.136 | $0.111-0.161$ |
| Yield with SPR50 at SB SPR (mt) | 265 | $226-304$ |
| Reference Points Based on Estimated MSY Values |  |  |
| Spawning Output at MSY (SB MSY) | 295 | $237-353$ |
| SPR MSY | 0.318 | $0.312-0.324$ |
| Exploitation Rate Corresponding to SPR MSY | 0.281 | $0.218-0.344$ |
| MSY (mt) | 307 | $260-354$ |

Table 40: Time series of biomass and mortality estimates (mt), spawning output (billions of eggs), recruits (1000s), and exploitation rate (catch / age 8+ biomass) for the northern California base model.

| Year | Total <br> Biomass | Spawning Output | Biomass age 8+ | Fraction Unfished | Age-0 <br> Recruits | Total Mortality | $\begin{gathered} (1-S P R) / \\ \left(1-S P R \_50 \%\right) \end{gathered}$ | Exploitation Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1875 | 6,573 | 1,205 | 4,214 | 100 | 2,272 | 0.05 | 0 | 0.000 |
| 1876 | 6,573 | 1,205 | 4,214 | 100 | 2,272 | 0.10 | 0 | 0.000 |
| 1877 | 6,573 | 1,205 | 4,214 | 100 | 2,272 | 0.15 | 0 | 0.000 |
| 1878 | 6,573 | 1,205 | 4,214 | 100 | 2,272 | 0.19 | 0.001 | 0.000 |
| 1879 | 6,573 | 1,205 | 4,214 | 100 | 2,272 | 0.24 | 0.001 | 0.000 |
| 1880 | 6,573 | 1,205 | 4,214 | 100 | 2,272 | 0.29 | 0.001 | 0.000 |
| 1881 | 6,572 | 1,205 | 4,214 | 100 | 2,272 | 0.34 | 0.001 | 0.000 |
| 1882 | 6,572 | 1,205 | 4,213 | 100 | 2,272 | 0.39 | 0.001 | 0.000 |
| 1883 | 6,572 | 1,205 | 4,213 | 100 | 2,272 | 0.44 | 0.001 | 0.000 |
| 1884 | 6,572 | 1,205 | 4,213 | 100 | 2,272 | 0.49 | 0.002 | 0.000 |
| 1885 | 6,572 | 1,205 | 4,213 | 100 | 2,272 | 0.53 | 0.002 | 0.000 |
| 1886 | 6,571 | 1,204 | 4,213 | 100 | 2,272 | 0.58 | 0.002 | 0.000 |
| 1887 | 6,571 | 1,204 | 4,212 | 99.9 | 2,272 | 0.63 | 0.002 | 0.000 |
| 1888 | 6,571 | 1,204 | 4,212 | 99.9 | 2,272 | 0.68 | 0.002 | 0.000 |
| 1889 | 6,570 | 1,204 | 4,212 | 99.9 | 2,272 | 0.73 | 0.002 | 0.000 |
| 1890 | 6,570 | 1,204 | 4,211 | 99.9 | 2,272 | 0.78 | 0.003 | 0.000 |
| 1891 | 6,570 | 1,204 | 4,211 | 99.9 | 2,272 | 0.82 | 0.003 | 0.000 |
| 1892 | 6,569 | 1,204 | 4,211 | 99.9 | 2,272 | 0.87 | 0.003 | 0.000 |
| 1893 | 6,569 | 1,204 | 4,211 | 99.9 | 2,272 | 0.92 | 0.003 | 0.000 |
| 1894 | 6,569 | 1,204 | 4,210 | 99.9 | 2,271 | 0.97 | 0.003 | 0.000 |
| 1895 | 6,568 | 1,204 | 4,210 | 99.9 | 2,271 | 1.02 | 0.003 | 0.000 |
| 1896 | 6,568 | 1,204 | 4,210 | 99.9 | 2,271 | 1.07 | 0.004 | 0.000 |
| 1897 | 6,568 | 1,203 | 4,209 | 99.9 | 2,271 | 1.12 | 0.004 | 0.000 |
| 1898 | 6,567 | 1,203 | 4,209 | 99.9 | 2,271 | 1.16 | 0.004 | 0.000 |
| 1899 | 6,567 | 1,203 | 4,209 | 99.8 | 2,271 | 1.21 | 0.004 | 0.000 |
| 1900 | 6,567 | 1,203 | 4,208 | 99.8 | 2,271 | 1.26 | 0.004 | 0.000 |
| 1901 | 6,566 | 1,203 | 4,208 | 99.8 | 2,271 | 1.31 | 0.004 | 0.000 |
| 1902 | 6,566 | 1,203 | 4,208 | 99.8 | 2,271 | 1.36 | 0.005 | 0.000 |
| 1903 | 6,566 | 1,203 | 4,207 | 99.8 | 2,271 | 1.41 | 0.005 | 0.000 |
| 1904 | 6,565 | 1,203 | 4,207 | 99.8 | 2,271 | 1.45 | 0.005 | 0.000 |
| 1905 | 6,565 | 1,203 | 4,207 | 99.8 | 2,271 | 1.50 | 0.005 | 0.000 |
| 1906 | 6,565 | 1,202 | 4,206 | 99.8 | 2,271 | 1.55 | 0.005 | 0.000 |
| 1907 | 6,564 | 1,202 | 4,206 | 99.8 | 2,271 | 1.60 | 0.005 | 0.000 |
| 1908 | 6,564 | 1,202 | 4,206 | 99.8 | 2,271 | 1.65 | 0.006 | 0.000 |
| 1909 | 6,564 | 1,202 | 4,205 | 99.8 | 2,271 | 1.70 | 0.006 | 0.000 |
| 1910 | 6,563 | 1,202 | 4,205 | 99.8 | 2,271 | 1.75 | 0.006 | 0.000 |
| 1911 | 6,563 | 1,202 | 4,205 | 99.7 | 2,271 | 1.79 | 0.006 | 0.000 |
| 1912 | 6,562 | 1,202 | 4,204 | 99.7 | 2,271 | 1.84 | 0.006 | 0.000 |
| 1913 | 6,562 | 1,202 | 4,204 | 99.7 | 2,271 | 1.89 | 0.006 | 0.000 |
| 1914 | 6,562 | 1,202 | 4,204 | 99.7 | 2,271 | 1.94 | 0.007 | 0.000 |
| 1915 | 6,561 | 1,202 | 4,203 | 99.7 | 2,271 | 1.99 | 0.007 | 0.000 |
| 1916 | 6,561 | 1,201 | 4,203 | 99.7 | 2,271 | 2.04 | 0.007 | 0.000 |
| 1917 | 6,561 | 1,201 | 4,203 | 99.7 | 2,271 | 4.01 | 0.013 | 0.001 |
| 1918 | 6,559 | 1,201 | 4,201 | 99.6 | 2,271 | 9.35 | 0.031 | 0.002 |
| 1919 | 6,552 | 1,199 | 4,195 | 99.5 | 2,271 | 2.15 | 0.007 | 0.001 |
| 1920 | 6,552 | 1,199 | 4,195 | 99.5 | 2,271 | 2.92 | 0.01 | 0.001 |
| 1921 | 6,552 | 1,199 | 4,195 | 99.5 | 2,271 | 4.38 | 0.015 | 0.001 |
| 1922 | 6,551 | 1,198 | 4,194 | 99.4 | 2,270 | 3.26 | 0.011 | 0.001 |
| 1923 | 6,551 | 1,198 | 4,193 | 99.4 | 2,270 | 1.07 | 0.004 | 0.000 |
| 1924 | 6,552 | 1,199 | 4,195 | 99.5 | 2,271 | 2.92 | 0.01 | 0.001 |
| 1925 | 6,552 | 1,199 | 4,195 | 99.5 | 2,271 | 9.48 | 0.032 | 0.002 |
| 1926 | 6,546 | 1,197 | 4,190 | 99.3 | 2,270 | 9.35 | 0.031 | 0.002 |
| 1927 | 6,541 | 1,196 | 4,185 | 99.2 | 2,270 | 17.74 | 0.059 | 0.004 |
| 1928 | 6,529 | 1,192 | 4,174 | 98.9 | 2,269 | 15.81 | 0.053 | 0.004 |
| 1929 | 6,520 | 1,190 | 4,165 | 98.7 | 2,269 | 19.47 | 0.066 | 0.005 |
| 1930 | 6,508 | 1,186 | 4,154 | 98.4 | 2,268 | 26.47 | 0.088 | 0.006 |
| 1931 | 6,492 | 1,181 | 4,139 | 98 | 2,267 | 40.60 | 0.135 | 0.010 |
| 1932 | 6,465 | 1,173 | 4,115 | 97.4 | 2,266 | 29.61 | 0.1 | 0.007 |
| 1933 | 6,452 | 1,169 | 4,101 | 97 | 2,265 | 28.41 | 0.098 | 0.007 |
| 1934 | 6,441 | 1,165 | 4,091 | 96.6 | 2,264 | 27.25 | 0.093 | 0.007 |
| 1935 | 6,433 | 1,162 | 4,083 | 96.4 | 2,264 | 38.83 | 0.13 | 0.010 |
| 1936 | 6,415 | 1,156 | 4,068 | 96 | 2,262 | 34.76 | 0.117 | 0.009 |
| 1937 | 6,403 | 1,153 | 4,057 | 95.7 | 2,262 | 32.97 | 0.113 | 0.008 |
| 1938 | 6,394 | 1,150 | 4,049 | 95.4 | 2,261 | 44.62 | 0.15 | 0.011 |


| Year | Total Biomass | Spawning <br> Output | Biomass age 8+ | Fraction Unfished | Age-0 <br> Recruits | Total <br> Mortality | $\begin{gathered} (1-\mathrm{SPR}) / \\ (1-\mathrm{SPR} 50 \%) \end{gathered}$ | Exploitation Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1939 | 6,376 | 1,144 | 4,033 | 95 | 2,260 | 52.67 | 0.178 | 0.013 |
| 1940 | 6,353 | 1,137 | 4,011 | 94.4 | 2,259 | 36.04 | 0.124 | 0.009 |
| 1941 | 6,347 | 1,135 | 4,006 | 94.2 | 2,258 | 37.91 | 0.13 | 0.009 |
| 1942 | 6,341 | 1,133 | 4,000 | 94 | 2,258 | 44.48 | 0.152 | 0.011 |
| 1943 | 6,329 | 1,129 | 3,990 | 93.7 | 2,257 | 53.10 | 0.18 | 0.013 |
| 1944 | 6,311 | 1,124 | 3,973 | 93.2 | 2,256 | 185.46 | 0.535 | 0.047 |
| 1945 | 6,179 | 1,084 | 3,852 | 89.9 | 2,247 | 403.79 | 0.938 | 0.105 |
| 1946 | 5,868 | 993 | 3,568 | 82.4 | 2,226 | 602.72 | 1.196 | 0.169 |
| 1947 | 5,423 | 856 | 3,151 | 71 | 2,185 | 567.76 | 1.201 | 0.180 |
| 1948 | 5,078 | 732 | 2,806 | 60.7 | 2,137 | 202.38 | 0.719 | 0.072 |
| 1949 | 5,083 | 728 | 2,808 | 60.4 | 2,136 | 130.03 | 0.531 | 0.046 |
| 1950 | 5,153 | 742 | 2,873 | 61.6 | 2,142 | 419.89 | 1.095 | 0.146 |
| 1951 | 4,973 | 679 | 2,711 | 56.3 | 2,113 | 257.27 | 0.883 | 0.095 |
| 1952 | 4,946 | 670 | 2,707 | 55.6 | 2,108 | 86.76 | 0.4 | 0.032 |
| 1953 | 5,061 | 708 | 2,840 | 58.7 | 2,127 | 176.58 | 0.684 | 0.062 |
| 1954 | 5,085 | 719 | 2,884 | 59.6 | 2,132 | 320.78 | 0.97 | 0.111 |
| 1955 | 4,980 | 693 | 2,800 | 57.5 | 2,119 | 183.55 | 0.715 | 0.066 |
| 1956 | 5,003 | 700 | 2,821 | 58 | 2,123 | 69.87 | 0.327 | 0.025 |
| 1957 | 5,114 | 737 | 2,932 | 61.2 | 2,140 | 115.40 | 0.485 | 0.039 |
| 1958 | 5,173 | 760 | 2,994 | 63 | 2,149 | 104.28 | 0.435 | 0.035 |
| 1959 | 5,232 | 783 | 3,051 | 65 | 2,159 | 68.83 | 0.301 | 0.023 |
| 1960 | 5,314 | 812 | 3,124 | 67.3 | 2,169 | 91.39 | 0.382 | 0.029 |
| 1961 | 5,368 | 830 | 3,172 | 68.9 | 2,176 | 87.11 | 0.362 | 0.027 |
| 1962 | 5,421 | 846 | 3,218 | 70.2 | 2,182 | 90.90 | 0.367 | 0.028 |
| 1963 | 5,465 | 861 | 3,253 | 71.4 | 2,173 | 127.72 | 0.477 | 0.039 |
| 1964 | 5,471 | 865 | 3,255 | 71.8 | 2,004 | 94.43 | 0.369 | 0.029 |
| 1965 | 5,502 | 877 | 3,284 | 72.8 | 1,660 | 104.36 | 0.39 | 0.032 |
| 1966 | 5,505 | 888 | 3,304 | 73.7 | 1,416 | 111.04 | 0.407 | 0.034 |
| 1967 | 5,468 | 896 | 3,315 | 74.4 | 1,378 | 125.10 | 0.448 | 0.038 |
| 1968 | 5,375 | 900 | 3,313 | 74.7 | 1,677 | 143.78 | 0.507 | 0.043 |
| 1969 | 5,230 | 899 | 3,293 | 74.6 | 2,601 | 175.37 | 0.602 | 0.053 |
| 1970 | 5,046 | 887 | 3,247 | 73.6 | 1,656 | 197.32 | 0.683 | 0.061 |
| 1971 | 4,870 | 866 | 3,180 | 71.9 | 1,152 | 205.09 | 0.729 | 0.064 |
| 1972 | 4,709 | 835 | 3,068 | 69.3 | 1,654 | 276.45 | 0.924 | 0.090 |
| 1973 | 4,488 | 780 | 2,838 | 64.8 | 4,085 | 326.20 | 1.053 | 0.115 |
| 1974 | 4,265 | 715 | 2,544 | 59.3 | 5,597 | 407.92 | 1.225 | 0.160 |
| 1975 | 4,102 | 636 | 2,216 | 52.8 | 1,856 | 381.73 | 1.25 | 0.172 |
| 1976 | 4,154 | 576 | 2,001 | 47.8 | 4,329 | 459.48 | 1.401 | 0.230 |
| 1977 | 4,241 | 507 | 1,911 | 42.1 | 3,077 | 460.36 | 1.404 | 0.241 |
| 1978 | 4,408 | 452 | 1,692 | 37.5 | 1,029 | 511.88 | 1.435 | 0.303 |
| 1979 | 4,530 | 408 | 1,416 | 33.9 | 1,118 | 445.77 | 1.301 | 0.315 |
| 1980 | 4,600 | 424 | 1,347 | 35.2 | 1,314 | 427.30 | 1.275 | 0.317 |
| 1981 | 4,548 | 454 | 1,665 | 37.7 | 1,198 | 570.24 | 1.426 | 0.343 |
| 1982 | 4,230 | 474 | 2,114 | 39.3 | 1,106 | 628.92 | 1.51 | 0.298 |
| 1983 | 3,769 | 473 | 1,857 | 39.2 | 1,338 | 396.71 | 1.294 | 0.214 |
| 1984 | 3,498 | 480 | 2,092 | 39.8 | 2,112 | 653.21 | 1.625 | 0.312 |
| 1985 | 2,969 | 426 | 1,912 | 35.3 | 2,041 | 684.57 | 1.728 | 0.358 |
| 1986 | 2,474 | 337 | 1,385 | 28 | 1,981 | 454.76 | 1.673 | 0.328 |
| 1987 | 2,264 | 285 | 1,095 | 23.6 | 1,129 | 284.19 | 1.459 | 0.260 |
| 1988 | 2,280 | 251 | 955 | 20.8 | 1,270 | 335.03 | 1.567 | 0.351 |
| 1989 | 2,255 | 217 | 815 | 18 | 1,392 | 361.81 | 1.617 | 0.444 |
| 1990 | 2,190 | 192 | 688 | 15.9 | 948 | 382.64 | 1.649 | 0.556 |
| 1991 | 2,084 | 180 | 624 | 14.9 | 1,151 | 393.28 | 1.679 | 0.631 |
| 1992 | 1,941 | 170 | 655 | 14.1 | 1,391 | 516.36 | 1.808 | 0.788 |
| 1993 | 1,673 | 140 | 581 | 11.6 | 944 | 430.72 | 1.811 | 0.741 |
| 1994 | 1,483 | 122 | 536 | 10.1 | 2,223 | 313.48 | 1.745 | 0.585 |
| 1995 | 1,422 | 111 | 447 | 9.2 | 3,694 | 323.44 | 1.785 | 0.723 |
| 1996 | 1,417 | 96 | 375 | 7.9 | 1,135 | 223.29 | 1.666 | 0.596 |
| 1997 | 1,602 | 94 | 382 | 7.8 | 773 | 204.92 | 1.615 | 0.537 |
| 1998 | 1,833 | 96 | 364 | 8 | 742 | 151.96 | 1.374 | 0.418 |
| 1999 | 2,072 | 111 | 424 | 9.2 | 2,026 | 160.98 | 1.226 | 0.380 |
| 2000 | 2,236 | 138 | 542 | 11.5 | 1,348 | 128.43 | 0.944 | 0.237 |
| 2001 | 2,391 | 185 | 613 | 15.3 | 1,950 | 331.66 | 1.484 | 0.541 |
| 2002 | 2,328 | 216 | 819 | 17.9 | 1,450 | 210.09 | 1.214 | 0.257 |
| 2003 | 2,386 | 248 | 1,254 | 20.6 | 1,857 | 278.34 | 1.405 | 0.222 |
| 2004 | 2,382 | 257 | 1,160 | 21.3 | 1,271 | 165.53 | 1.04 | 0.143 |
| 2005 | 2,497 | 269 | 1,065 | 22.4 | 1,463 | 198.36 | 1.132 | 0.186 |
| 2006 | 2,569 | 278 | 964 | 23.1 | 721 | 170.17 | 1 | 0.177 |


| Year | Total <br> Biomass | Spawning <br> Output | Biomass <br> age $8+$ | Fraction <br> Unfished | Age-0 <br> Recruits | Total <br> Mortality | (1-SPR)/ <br> (1-SPR_50\%) | Exploitation <br> Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2007 | 2,649 | 294 | 1,116 | 24.4 | 2,057 | 192.64 | 1.049 |  |
| 2008 | 2,676 | 310 | 1,138 | 25.8 | 2,510 | 199.09 | 1.039 |  |
| 2009 | 2,702 | 327 | 1,269 | 27.2 | 1,451 | 285.90 | 1.282 |  |
| 2010 | 2,681 | 328 | 1,232 | 27.2 | 1,967 | 195.67 | 1.051 | 0.173 |
| 2011 | 2,769 | 337 | 1,313 | 27.9 | 1,228 | 145.87 | 0.867 | 0.225 |
| 2012 | 2,913 | 348 | 1,315 | 28.9 | 1,326 | 140.28 | 0.817 | 0.159 |
| 2013 | 3,042 | 361 | 1,365 | 30 | 1,218 | 173.29 | 0.9 | 0.111 |
| 2014 | 3,103 | 376 | 1,258 | 31.2 | 1,427 | 218.03 | 1.011 | 0.127 |
| 2015 | 3,084 | 391 | 1,397 | 32.5 | 1,090 | 259.64 | 0.118 | 0.847 |
| 2016 | 2,998 | 400 | 1,573 | 33.2 | 2,023 | 166.35 | 0.173 |  |
| 2017 | 2,986 | 419 | 1,581 | 34.7 | 1,352 | 129.77 | 0.708 |  |
| 2018 | 3,015 | 437 | 1,711 | 36.3 | 1,076 | 120.35 | 0.67 | 0.106 |
| 2019 | 3,053 | 450 | 1,693 | 37.4 | 2,033 | 140.67 | 0.756 | 0.082 |
| 2020 | 3,067 | 455 | 1,679 | 37.7 | 1,775 | 115.58 | 0.653 | 0.070 |
| 2021 | 3,121 | 460 | 1,658 | 38.2 | 2,097 | 200.18 | 0.964 | 0.063 |
| 2022 | 3,118 | 451 | 1,621 | 37.5 | 1,851 | 236.52 | 1.085 | 0.121 |
|  |  |  |  |  |  | 0.146 |  |  |

Table 41: Comparison of northern base model outputs for 'drop-one' analyses (part 1)

| Label | Base | Drop NonTrawl Dead | Drop NonTrawl Live | Drop <br> Trawl | Drop Comm Discard | Drop Rec PC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N.Parms | 98 | 96 | 95 | 96 | 95 | 98 |
| TOTAL | 1106.27 | 962.91 | 1093.78 | 549.77 | 1058.70 | 997.34 |
| Survey | -29.97 | -32.36 | -30.07 | -31.77 | -30.16 | -30.13 |
| Length_comp | 366.71 | 277.30 | 354.37 | 321.59 | 320.34 | 306.06 |
| Age_comp | 773.60 | 721.63 | 773.54 | 269.62 | 772.33 | 725.75 |
| Recruitment | -4.58 | -4.10 | -4.58 | -9.69 | -4.32 | -4.88 |
| Parm_priors | 0.52 | 0.43 | 0.53 | 0.02 | 0.51 | 0.54 |
| NatM_uniform_Fem_GP_1 | 0.211 | 0.206 | 0.212 | 0.144 | 0.211 | 0.213 |
| L_at_Amax_Fem_GP_1 | 54.494 | 55.970 | 54.519 | 51.240 | 54.411 | 54.254 |
| VonBert_K_Fem_GP_1 | 0.148 | 0.139 | 0.147 | 0.168 | 0.149 | 0.149 |
| CV_old_Fem_GP_1 | 0.082 | 0.082 | 0.082 | 0.066 | 0.082 | 0.084 |
| NatM_uniform_Mal_GP_1 | -0.053 | -0.029 | -0.053 | 0.006 | -0.054 | -0.056 |
| L_at_Amax_Mal_GP ${ }_{\text {P }} 1$ | -0.147 | -0.164 | -0.148 | -0.116 | -0.146 | -0.143 |
| VonBert_K_Mal_GP_1 | 0.312 | 0.356 | 0.313 | 0.225 | 0.310 | 0.305 |
| CV_old_Mal_GP_1 | -0.319 | -0.313 | -0.317 | -0.270 | -0.321 | -0.330 |
| SR_LN(R0) | 7.728 | 7.735 | 7.741 | 7.334 | 7.716 | 7.733 |
| Q_extraSD_Rec_PR_North(6) | 0.088 | 0.083 | 0.086 | 0.091 | 0.086 | 0.087 |
| Size_inflection_Comm_nonTwl_dead(1) | 35.93 | 35.93 | 35.93 | 36.33 | 35.92 | 36.05 |
| Size_95\%width_Comm_nonTwl_dead(1) | 5.86 | 5.86 | 5.85 | 6.36 | 5.86 | 5.92 |
| Size_DblN_peak_Comm_nonTwl_live(2) | 36.23 | 36.20 | 36.23 | 35.92 | 36.22 | 36.37 |
| Size_DblN_ascend_se_Comm_nonTwl_live(2) | 3.09 | 3.10 | 3.09 | 3.05 | 3.09 | 3.12 |
| Size_DblN_descend_se_Comm_nonTwl_live(2) | 5.68 | 5.24 | 5.68 | 9.49 | 5.69 | 5.84 |
| Size_inflection_Comm_Trawl(3) | 45.43 | 44.53 | 45.42 | 45.43 | 45.47 | 45.59 |
| Size_95\%width_Comm_Trawl(3) | 5.69 | 5.41 | 5.68 | 5.69 | 5.71 | 5.70 |
| Size_DblN_peak_Comm_Discard(4) | 27.11 | 27.13 | 27.11 | 26.84 | 27.11 | 27.10 |
| Size_DblN_ascend_se_Comm_Discard(4) | 3.42 | 3.42 | 3.42 | 3.42 | 3.42 | 3.41 |
| Size_DblN_descend_se_Comm_Discard(4) | 3.91 | 3.89 | 3.91 | 3.91 | 3.91 | 3.92 |
| Size_DblN_peak_Rec_PC_North(5) | 40.81 | 40.21 | 40.78 | 41.21 | 40.79 | 40.77 |
| Size_DblN_ascend_se_Rec_PC_North(5) | 4.21 | 4.14 | 4.21 | 4.29 | 4.21 | 4.22 |
| Size_DblN_descend_se_Rec_PC_North(5) | 4.75 | 4.61 | 4.75 | 4.85 | 4.76 | 4.74 |
| Size_DbIN_end_logit_Rec_PC_North(5) | -2.70 | -3.52 | -2.71 | 0.84 | -2.65 | -2.08 |
| Size_DblN_peak_Rec_Disc_North(7) | 28.39 | 28.38 | 28.39 | 27.79 | 28.35 | 28.40 |
| Size_DblN_ascend_se_Rec_Disc_North(7) | 4.20 | 4.20 | 4.20 | 4.20 | 4.20 | 4.21 |
| Size_DblN_descend_se_Rec_Disc_North(7) | 4.51 | 4.46 | 4.51 | 4.56 | 4.51 | 4.53 |
| Size_DblN_peak_CCFRP(8) | 42.17 | 41.96 | 42.16 | 42.66 | 42.21 | 42.22 |
| Size_DblN_ascend_se_CCFRP(8) | 4.59 | 4.56 | 4.59 | 4.68 | 4.61 | 4.59 |
| Size_DblN_descend_se_CCFRP(8) | 2.81 | 2.83 | 2.81 | 2.63 | 2.79 | 2.80 |
| Size_DbIN_end_logit_CCFRP(8) | -3.18 | -3.64 | -3.19 | -2.20 | -3.15 | -3.10 |
| Size_DblN_peak_Abrams_Research(11) | 39.88 | 39.30 | 39.91 | 41.16 | 39.65 | 39.97 |
| Size_DblN_ascend_se_Abrams_Research(11) | 4.53 | 4.48 | 4.53 | 4.72 | 4.51 | 4.56 |
| Size_DblN_descend_se_Abrams_Research(11) | 4.55 | 4.41 | 4.54 | 4.97 | 4.61 | 4.63 |
| Size_DblN_peak_Rec_PC_North(5)_BLK1 repl_1875 | 34.21 | 33.59 | 34.26 | 33.26 | 34.21 | 34.73 |
| Size_DblN_ascend_se_Rec_PC_North(5)_BLK1 repl_1875 | 3.86 | 3.78 | 3.87 | 3.79 | 3.87 | 3.98 |
| Bratio_2023 | 0.364 | 0.440 | 0.371 | 0.121 | 0.367 | 0.342 |
| SSB_unfished | 1205.1 | 1445.8 | 1209.3 | 1755.8 | 1198.3 | 1160.5 |
| Totbio_unfished | 6573.2 | 7015.2 | 6605.6 | 8242.9 | 6546.1 | 6474.8 |
| Recr_unfished | 2271.7 | 2287.5 | 2301.5 | 1531.3 | 2244.3 | 2281.7 |
| Dead_Catch_SPR | 265.1 | 275.8 | 266.9 | 266.9 | 263.7 | 262.5 |
| OFLCatch_2023 | 203.2 | 251.1 | 207.4 | 90.0 | 201.9 | 193.5 |

Table 42: Comparison of northern base model outputs for 'drop-one' analyses (part 2)

| Label | Base | Drop <br> Rec PR | Drop Rec Discard | Drop CCFRP | Drop PC <br> Onboard | Drop <br> Abrams |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N.Parms | 98 | 97 | 95 | 94 | 98 | 95 |
| TOTAL | 1106.27 | 969.82 | 1087.05 | 1079.62 | 1118.61 | 972.18 |
| Survey | -29.97 | -12.03 | -30.22 | -31.27 | -16.59 | -29.11 |
| Length_comp | 366.71 | 270.54 | 347.52 | 349.77 | 366.41 | 357.21 |
| Age_comp | 773.60 | 717.43 | 773.81 | 764.80 | 772.79 | 648.21 |
| Recruitment | -4.58 | -6.90 | -4.57 | -4.26 | -4.53 | -4.70 |
| Parm_priors | 0.52 | 0.79 | 0.52 | 0.58 | 0.53 | 0.57 |
| NatM_uniform_Fem_GP_1 | 0.211 | 0.228 | 0.211 | 0.215 | 0.212 | 0.215 |
| L_at_Amax_Fem_GP_1 | 54.494 | 54.049 | 54.479 | 54.513 | 54.526 | 54.311 |
| VonBert_K_Fem_GP_1 | 0.148 | 0.151 | 0.148 | 0.148 | 0.147 | 0.151 |
| CV_old_Fem_GP_1 | 0.082 | 0.078 | 0.082 | 0.080 | 0.082 | 0.082 |
| NatM_uniform_Mal_GP_1 | -0.053 | -0.075 | -0.054 | -0.050 | -0.052 | -0.106 |
| L_at_Amax_Mal_GP_1 | -0.147 | -0.139 | -0.147 | -0.146 | -0.147 | -0.148 |
| VonBert_K_Mal_GP_1 | 0.312 | 0.297 | 0.312 | 0.308 | 0.312 | 0.326 |
| CV_old_Mal_GP_1 | -0.319 | -0.391 | -0.321 | -0.309 | -0.317 | -0.380 |
| SR_LN(R0) | 7.728 | 7.855 | 7.729 | 7.761 | 7.738 | 7.688 |
| Q_extraSD_Rec_PR_North(6) | 0.088 | NA | 0.088 | 0.090 | 0.090 | 0.092 |
| Size_inflection_Comm_nonTwl_dead(1) | 35.93 | 36.34 | 35.93 | 35.86 | 35.93 | 35.85 |
| Size_95\%width_Comm_nonTwl_dead(1) | 5.86 | 6.04 | 5.86 | 5.82 | 5.86 | 5.86 |
| Size_DblN_peak_Comm_nonTwl_live(2) | 36.23 | 36.32 | 36.23 | 36.22 | 36.24 | 36.06 |
| Size_DblN_ascend_se_Comm_nonTwl_live(2) | 3.09 | 3.10 | 3.09 | 3.09 | 3.09 | 3.07 |
| Size_DblN_descend_se_Comm_nonTwl_live(2) | 5.68 | 5.97 | 5.70 | 5.63 | 5.66 | 5.67 |
| Size_inflection_Comm_Trawl(3) | 45.43 | 46.19 | 45.44 | 45.43 | 45.41 | 45.72 |
| Size_95\%width_Comm_Trawl(3) | 5.69 | 5.82 | 5.69 | 5.70 | 5.68 | 5.85 |
| Size_DblN_peak_Comm_Discard(4) | 27.11 | 27.22 | 27.11 | 27.09 | 27.10 | 27.06 |
| Size_DblN_ascend_se_Comm_Discard(4) | 3.42 | 3.44 | 3.42 | 3.43 | 3.42 | 3.42 |
| Size_DblN_descend_se_Comm_Discard(4) | 3.91 | 3.94 | 3.91 | 3.91 | 3.91 | 3.89 |
| Size_DblN_peak_Rec_PC_North(5) | 40.81 | 41.50 | 40.81 | 40.70 | 40.81 | 40.50 |
| Size_DblN_ascend_se_Rec_PC_North(5) | 4.21 | 4.24 | 4.21 | 4.20 | 4.21 | 4.19 |
| Size_DblN_descend_se_Rec_PC_North(5) | 4.75 | 5.13 | 4.76 | 4.73 | 4.75 | 4.94 |
| Size_DbIN_end_logit_Rec_PC_North(5) | -2.70 | -7.81 | -2.70 | -2.55 | -2.70 | -2.93 |
| Size_DblN_peak_Rec_Disc_North(7) | 28.39 | 28.58 | 28.39 | 28.29 | 28.40 | 28.32 |
| Size_DblN_ascend_se_Rec_Disc_North(7) | 4.20 | 4.22 | 4.20 | 4.19 | 4.20 | 4.20 |
| Size_DblN_descend_se_Rec_Disc_North(7) | 4.51 | 4.54 | 4.51 | 4.51 | 4.51 | 4.50 |
| Size_DbIN_peak_CCFRP(8) | 42.17 | 42.60 | 42.18 | 42.17 | 42.08 | 41.98 |
| Size_DblN_ascend_se_CCFRP(8) | 4.59 | 4.58 | 4.59 | 4.59 | 4.60 | 4.60 |
| Size_DblN_descend_se_CCFRP(8) | 2.81 | 2.66 | 2.80 | 2.81 | 2.84 | 2.88 |
| Size_DbIN_end_logit_CCFRP(8) | -3.18 | -2.74 | -3.17 | -3.18 | -3.20 | -3.09 |
| Size_DblN_peak_Abrams_Research(11) | 39.88 | 39.96 | 39.85 | 39.76 | 39.95 | 39.88 |
| Size_DblN_ascend_se_Abrams_Research(11) | 4.53 | 4.53 | 4.52 | 4.51 | 4.53 | 4.53 |
| Size_DblN_descend_se_Abrams_Research(11) | 4.55 | 4.79 | 4.56 | 4.55 | 4.53 | 4.55 |
| Size_DblN_peak_Rec_PC_North(5)_BLK1 repl_1875 | 34.21 | 32.95 | 34.21 | 34.20 | 34.22 | 34.00 |
| Size_DblN_ascend_se_Rec_PC_North(5)_BLK1 repl_1875 | 3.86 | 3.35 | 3.86 | 3.86 | 3.86 | 3.84 |
| Bratio_2023 | 0.364 | 0.379 | 0.357 | 0.405 | 0.374 | 0.378 |
| SSB_unfished | 1205.1 | 1059.9 | 1206.9 | 1180.5 | 1205.6 | 1109.2 |
| Totbio_unfished | 6573.2 | 6501.5 | 6588.0 | 6523.7 | 6579.7 | 6501.8 |
| Recr_unfished | 2271.7 | 2577.6 | 2273.9 | 2347.3 | 2293.1 | 2182.6 |
| Dead_Catch_SPR | 265.1 | 275.4 | 265.7 | 265.9 | 265.8 | 266.3 |
| OFLCatch_2023 | 203.2 | 233.4 | 201.7 | 207.6 | 204.6 | 208.6 |

Table 43: Comparison of northern base model sensitivity analyses.

| Label | Base (Francis) | M-I weights | share M | All domed | Est. all growth | Est. steep |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N.Parms | 98 | 98 | 97 | 102 | 102 | 99 |
| TOTAL | 1106.27 | 1130.80 | 1078.45 | 1121.88 | 1101.32 | 1064.90 |
| Survey | -29.97 | -28.27 | -29.75 | -29.98 | -29.81 | -29.94 |
| Length_comp | 366.71 | 643.56 | 373.87 | 366.92 | 363.86 | 371.12 |
| Age_comp | 773.60 | 519.17 | 738.53 | 788.57 | 771.11 | 728.85 |
| Recruitment | -4.58 | -3.84 | -4.64 | -3.95 | -4.38 | -5.40 |
| Parm_priors | 0.52 | 0.18 | 0.43 | 0.31 | 0.53 | 0.27 |
| NatM_uniform_Fem_GP_1 | 0.211 | 0.186 | 0.206 | 0.197 | 0.212 | 0.191 |
| L_at_Amin_Fem_GP_1 | 5.000 | 5.000 | 5.000 | 5.000 | 5.160 | 5.000 |
| L_at_Amax_Fem_GP_1 | 54.494 | 53.189 | 54.522 | 56.597 | 54.565 | 54.513 |
| VonBert_K_Fem_GP_1 | 0.148 | 0.157 | 0.147 | 0.135 | 0.146 | 0.148 |
| CV_young_Fem_GP_1 | 0.100 | 0.100 | 0.100 | 0.100 | 0.109 | 0.100 |
| CV_old_Fem_ $\overline{\mathrm{GP}}$ _ $\overline{1}$ | 0.082 | 0.079 | 0.083 | 0.086 | 0.072 | 0.080 |
| NatM_uniform_Mal_GP_1 | -0.053 | -0.065 | 0.000 | -0.010 | -0.050 | -0.046 |
| L_at_Amin_Mal_GP_1 | 0.000 | 0.000 | 0.000 | 0.000 | -1.000 | 0.000 |
| L_at_Amax_Mal_GP_1 | -0.147 | -0.134 | -0.145 | -0.178 | -0.154 | -0.147 |
| VonBert_K_Mal_GP_1 | 0.312 | 0.257 | 0.312 | 0.391 | 0.396 | 0.312 |
| CV_young_Mal_GP_1 | 0.000 | 0.000 | 0.000 | 0.000 | 0.012 | 0.000 |
| CV_old_Mal_GP_-1 | -0.319 | -0.255 | -0.336 | -0.313 | -0.329 | -0.298 |
| SR_LN(R0) | 7.728 | 7.523 | 7.744 | 7.691 | 7.747 | 7.369 |
| SR_BH_steep | 0.720 | 0.720 | 0.720 | 0.720 | 0.720 | 0.896 |
| Q_extraSD_Rec_PR_North(6) | 0.088 | 0.097 | 0.088 | 0.086 | 0.089 | 0.091 |
| Size_inflection_Comm_nonTwl_dead(1) | 35.93 | 35.96 | 35.84 | NA | 35.78 | 35.89 |
| Size_95\%width_Comm_nonTwl_dead(1) | 5.86 | 5.96 | 5.80 | NA | 5.81 | 5.85 |
| Size_DblN_peak_Comm_nonTwl_live(2) | 36.23 | 36.01 | 36.22 | 36.21 | 36.11 | 36.17 |
| Size_DblN_ascend_se_Comm_nonTwl_live(2) | 3.09 | 3.05 | 3.09 | 3.10 | 3.07 | 3.09 |
| Size_DblN_descend_se_Comm_nonTwl_live(2) | 5.68 | 5.97 | 5.61 | 5.19 | 5.64 | 5.65 |
| - Size_inflection_Comm_Trawl(3) | 45.43 | 45.30 | 45.18 | NA | 45.64 | 45.42 |
| Size_95\%width_Comm_Trawl(3) | 5.69 | 5.97 | 5.62 | NA | 5.85 | 5.70 |
| Size_Dbln_peak_Comm_Discard(4) | 27.11 | 26.95 | 27.11 | 27.09 | 27.09 | 27.04 |
| Size_Dbln_ascend_se_Comm_Discard(4) | 3.42 | 3.41 | 3.42 | 3.42 | 3.42 | 3.42 |
| Size_DblN_descend_se_Comm_Discard(4) | 3.91 | 3.90 | 3.91 | 3.89 | 3.90 | 3.90 |
| Size_DblN_peak_Rec_PC_North(5) | 40.81 | 40.70 | 40.74 | 40.29 | 40.50 | 40.54 |
| Size_DblN_ascend_se_Rec_PC_North(5) | 4.21 | 4.23 | 4.20 | 4.16 | 4.18 | 4.19 |
| Size_DblN_descend_se_Rec_PC_North(5) | 4.75 | 4.78 | 4.67 | 4.57 | 4.78 | 4.71 |
| Size_ DblN_end_logit_Rec_PC_North(5) | -2.70 | -1.73 | -2.75 | -4.12 | -2.50 | -2.74 |
| Size_DblN_peak_Rec_Disc_North(7) | 28.39 | 28.12 | 28.40 | 28.32 | 28.34 | 28.21 |
| Size_DblN_ascend_se_Rec_Disc_North(7) | 4.20 | 4.22 | 4.20 | 4.20 | 4.20 | 4.20 |
| Size_DblN_descend_se_Rec_Disc_North(7) | 4.51 | 4.54 | 4.50 | 4.47 | 4.49 | 4.50 |
| Size_DblN_peak_CCFRP( $\overline{8})$ | 42.17 | 41.99 | 42.09 | 41.78 | 41.95 | 41.95 |
| Size_DblN_ascend_se_CCFRP(8) | 4.59 | 4.61 | 4.59 | 4.57 | 4.59 | 4.60 |
| Size_DblN_descend_-se_CCFRP(8) | 2.81 | 2.86 | 2.82 | 2.90 | 2.87 | 2.86 |
| Size_DblN_end_logit_CCFRP(8) | -3.18 | -3.03 | -3.31 | -3.87 | -3.18 | -3.33 |
| Size_DblN_peak_Abrams_Research(11) | 39.88 | 40.97 | 39.82 | 39.39 | 39.40 | 39.62 |
| Size_DblN_ascend_se_Abrams_Research(11) | 4.53 | 4.66 | 4.52 | 4.48 | 4.48 | 4.52 |
| Size_DblN_descend_se_Abrams_Research(11) | 4.55 | 4.40 | 4.49 | 4.37 | 4.62 | 4.54 |
|  | 34.21 | 33.89 | 34.20 | 33.85 | 34.04 | 34.19 |
| Size_Dbln_ascend_se_Rec_P'PC_North(5)_BLK1repl_ 1875 | 3.86 | 3.87 | 3.86 | 3.82 | 3.84 | 3.87 |
| Size_DblN_peak_Comm_nonTwl_dead(1) | NA | NA | NA | 42.49 | NA | NA |
|  | NA | NA | NA | -6.00 | NA | NA |
| Size_DblN_ascend_se_Comm_nonTwl_dead(1) | NA | NA | NA | 3.97 | NA | NA |
| Size_DblN_descend_se_Comm_nonTwl_dead(1) | NA | NA | NA | 4.31 | NA | NA |
| Size_DblN_start_logit_Comm_nonTwl_dead(1) | NA | NA | NA | -10.00 | NA | NA |
| Size_DblN_end_logit_Comm_nonTwl_dead(1) | NA | NA | NA | -10.28 | NA | NA |
| ${ }^{\text {S }}$ Size_DblN_peak_Comm_Trawl $\left.\overline{3}\right)$ | NA | NA | NA | 50.63 | NA | NA |
| Size_Dbln_top_logit_Comm_Trawl(3) | NA | NA | NA | -6.00 | NA | NA |
| Size_DblN_ascend_se_Comm_Trawl(3) | NA | NA | NA | 3.81 | NA | NA |
| Size_DblN_descend_se_Comm_Trawl(3) | NA | NA | NA | 3.55 | NA | NA |
| Size_DblN_start_logit_Comm_Trawl(3) | NA | NA | NA | -10.00 | NA | NA |
| Size_DblN_end_logit_Comm_Trawl(3) | NA | NA | NA | -8.88 | NA | NA |
| Bratio_2023 | 0.36 | 0.28 | 0.37 | 0.43 | 0.37 | 0.39 |
| SSB_unfished | 1205.1 | 1300.1 | 1325.5 | 1629.0 | 1207.4 | 1137.1 |
| Totbio_unfished | 6573.2 | 6829.6 | 6731.7 | 7236.6 | 6538.7 | 5638.1 |
| Recr_unfished | 2271.7 | 1850.8 | 2307.1 | 2187.9 | 2314.8 | 1586.2 |
| Dead_Catch_SPR | 265.1 | 255.8 | 267.4 | 276.3 | 267.6 | 231.7 |
| OFLCatch_2023 | 203.2 | 160.6 | 208.0 | 238.4 | 208.9 | 183.1 |

Table 44: Steepness profile for the northern California base model (part 1, values $0.25-0.6$ ). Note that steepness values of 0.25 and 0.3 are inconsistent with a proxy MSY harvest rate of $\mathrm{F}\left(\mathrm{SPR} \_50 \%\right.$ ).

| Beverton-Holt steepness | 0.25 | 0.3 | 0.35 | 0.4 | 0.45 | 0.5 | 0.55 | 0.6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TOTAL | 1134.6 | 1128.0 | 1123.0 | 1119.0 | 1115.9 | 1113.3 | 1111.2 | 1109.4 |
| Survey | -28.3 | -29.0 | -29.4 | -29.7 | -29.8 | -29.9 | -30.0 | -30.0 |
| Length_comp | 373.8 | 371.6 | 370.1 | 369.0 | 368.2 | 367.7 | 367.2 | 367.0 |
| Age_comp | 780.7 | 779.3 | 778.2 | 777.3 | 776.5 | 775.9 | 775.3 | 774.7 |
| Recruitment | 1.5 | 1.0 | 0.2 | -0.7 | -1.5 | -2.2 | -2.9 | -3.4 |
| Parm_priors | 6.9 | 5.1 | 3.9 | 3.1 | 2.4 | 1.9 | 1.5 | 1.1 |
| NatM_uniform_Fem_GP_1 | 0.320 | 0.299 | 0.283 | 0.269 | 0.257 | 0.246 | 0.237 | 0.229 |
| L_at_Amax_Fem_GP_1 | 54.10 | 54.12 | 54.16 | 54.20 | 54.25 | 54.29 | 54.34 | 54.39 |
| VonBert_K_Fem_GP_1 | 0.149 | 0.149 | 0.149 | 0.149 | 0.149 | 0.149 | 0.148 | 0.148 |
| CV_old_Fem_GP_1 | 0.085 | 0.084 | 0.084 | 0.084 | 0.083 | 0.083 | 0.083 | 0.082 |
| NatM_uniform_Mal_GP_1 | -0.050 | -0.052 | -0.053 | -0.054 | -0.054 | -0.054 | -0.054 | -0.054 |
| L_at_Amax_Mal_GP_1 | -0.141 | -0.142 | -0.142 | -0.143 | -0.144 | -0.144 | -0.145 | -0.146 |
| VonBert_K_Mal_GP_1 | 0.293 | 0.294 | 0.296 | 0.298 | 0.300 | 0.302 | 0.305 | 0.307 |
| CV_old_Mal_GP_1 | -0.345 | -0.341 | -0.338 | -0.335 | -0.332 | -0.330 | -0.327 | -0.325 |
| SR_LN(RO) | 9.90 | 9.39 | 9.04 | 8.77 | 8.54 | 8.35 | 8.18 | 8.03 |
| Q_extraSD_Rec_PR_North(6) | 0.087 | 0.084 | 0.083 | 0.083 | 0.083 | 0.084 | 0.085 | 0.085 |
| Size_inflection_Comm_nonTwl_dead(1) | 35.753 | 35.816 | 35.856 | 35.884 | 35.903 | 35.916 | 35.925 | 35.930 |
| Size_95\%width_Comm_nonTwl_dead(1) | 5.665 | 5.721 | 5.760 | 5.789 | 5.811 | 5.828 | 5.840 | 5.849 |
| Size_DbIN_peak_Comm_nonTwl_live(2) | 36.505 | 36.456 | 36.415 | 36.379 | 36.348 | 36.322 | 36.298 | 36.277 |
| Size_DblN_ascend_se_Comm_nonTwl_live(2) | 3.113 | 3.109 | 3.106 | 3.104 | 3.102 | 3.100 | 3.098 | 3.097 |
| Size_DbIN_descend_se_Comm_nonTwl_live(2) | 5.558 | 5.603 | 5.633 | 5.654 | 5.669 | 5.680 | 5.686 | 5.689 |
| Size_inflection_Comm_Trawl(3) | 45.235 | 45.308 | 45.353 | 45.382 | 45.401 | 45.414 | 45.422 | 45.426 |
| Size_95\%width_Comm_Trawl(3) | 5.605 | 5.635 | 5.653 | 5.665 | 5.674 | 5.679 | 5.683 | 5.685 |
| Size_DbIN_peak_Comm_Discard(4) | 27.495 | 27.418 | 27.358 | 27.310 | 27.268 | 27.232 | 27.199 | 27.170 |
| Size_DbIN_ascend_se_Comm_Discard(4) | 3.426 | 3.425 | 3.424 | 3.423 | 3.423 | 3.423 | 3.422 | 3.422 |
| Size_DbIN_descend_se_Comm_Discard(4) | 3.956 | 3.950 | 3.943 | 3.937 | 3.932 | 3.927 | 3.922 | 3.918 |
| Size_DbIN_peak_Rec_PC_North(5) | 41.612 | 41.522 | 41.421 | 41.326 | 41.237 | 41.152 | 41.071 | 40.992 |
| Size_DbIN_ascend_se_Rec_PC_North(5) | 4.230 | 4.232 | 4.232 | 4.230 | 4.228 | 4.225 | 4.222 | 4.219 |
| Size_DbIN_descend_se_Rec_PC_North(5) | 4.803 | 4.803 | 4.800 | 4.796 | 4.791 | 4.785 | 4.778 | 4.772 |
| Size_DbIN_end_logit_Rec_PC_North(5) | -2.246 | -2.274 | -2.318 | -2.366 | -2.418 | -2.470 | -2.522 | -2.574 |
| Size_DbIN_peak_Rec_Disc_North(7) | 29.184 | 29.043 | 28.928 | 28.830 | 28.745 | 28.671 | 28.604 | 28.543 |
| Size_DbIN_ascend_se_Rec_Disc_North(7) | 4.218 | 4.217 | 4.215 | 4.214 | 4.213 | 4.212 | 4.211 | 4.210 |
| Size_DbIN_descend_se_Rec_Disc_North(7) | 4.559 | 4.552 | 4.545 | 4.538 | 4.532 | 4.527 | 4.522 | 4.517 |
| Size_DbIN_peak_CCFRP(8) | 42.910 | 42.814 | 42.718 | 42.630 | 42.548 | 42.472 | 42.399 | 42.328 |
| Size_DbIN_ascend_se_CCFRP(8) | 4.565 | 4.573 | 4.578 | 4.582 | 4.585 | 4.587 | 4.590 | 4.591 |
| Size_DbIN_descend_se_CCFRP(8) | 2.543 | 2.581 | 2.618 | 2.651 | 2.681 | 2.707 | 2.731 | 2.755 |
| Size_DbIN_end_logit_CCFRP(8) | -2.681 | -2.737 | -2.796 | -2.853 | -2.908 | -2.960 | -3.011 | -3.062 |
| Size_DbIN_peak_Abrams_Research(11) | 40.689 | 40.585 | 40.479 | 40.381 | 40.293 | 40.212 | 40.135 | 40.059 |
| Size_DbIN_ascend_se_Abrams_Research(11) | 4.521 | 4.526 | 4.529 | 4.531 | 4.532 | 4.532 | 4.533 | 4.532 |
| Size_DbIN_descend_se_Abrams_Research(11) | 4.568 | 4.573 | 4.575 | 4.575 | 4.572 | 4.569 | 4.565 | 4.562 |
| Size_DbIN_peak_Rec_PC_North(5)_BLK1repl_1875 | 33.939 | 34.029 | 34.087 | 34.127 | 34.154 | 34.174 | 34.189 | 34.200 |
| Size_DbIN_ascend_se_Rec_PC_North(5)_BLK1repl_1875 | 3.784 | 3.806 | 3.820 | 3.831 | 3.839 | 3.846 | 3.851 | 3.856 |
| Bratio_2023 | 0.416 | 0.370 | 0.354 | 0.347 | 0.345 | 0.346 | 0.348 | 0.351 |
| SSB_unfished | 2590 | 1988 | 1719 | 1560 | 1455 | 1379 | 1323 | 1279 |
| Totbio_unfished | 22824 | 16038 | 12898 | 11017 | 9744 | 8819 | 8113 | 7552 |
| Recr_unfished | 19923 | 11968 | 8434 | 6422 | 5130 | 4235 | 3581 | 3084 |
| Equil. Yield at SPR50\% proxy for MSY | 0.0 | 0.0 | 91.1 | 227.9 | 275.7 | 290.6 | 291.5 | 286.3 |
| OFLCatch_2023 | 783.7 | 500.3 | 389.7 | 329.0 | 290.1 | 263.1 | 243.2 | 228.0 |

Table 45: Steepness profile for the northern California base model (part 2, values $0.65-0.95$ ), including the assumed value of 0.72 in the base model.

| Beverton-Holt steepness | 0.65 | 0.7 | 0.72 | 0.75 | 0.8 | 0.85 | 0.9 | 0.95 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TOTAL | 1107.9 | 1106.7 | 1106.3 | 1105.7 | 1105.0 | 1104.6 | 1104.4 | 1104.7 |
| Survey | -30.0 | -30.0 | -30.0 | -30.0 | -29.9 | -29.9 | -29.9 | -29.8 |
| Length_comp | 366.8 | 366.7 | 366.7 | 366.7 | 366.8 | 367.0 | 367.2 | 367.5 |
| Age_comp | 774.2 | 773.8 | 773.6 | 773.4 | 772.9 | 772.6 | 772.2 | 771.9 |
| Recruitment | -4.0 | -4.4 | -4.6 | -4.8 | -5.1 | -5.3 | -5.4 | -5.4 |
| Parm_priors | 0.8 | 0.6 | 0.5 | 0.4 | 0.3 | 0.2 | 0.3 | 0.6 |
| NatM_uniform_Fem_GP_1 | 0.221 | 0.214 | 0.211 | 0.208 | 0.202 | 0.197 | 0.192 | 0.189 |
| L_at_Amax_Fem_GP_1 | 54.43 | 54.48 | 54.49 | 54.52 | 54.56 | 54.60 | 54.63 | 54.64 |
| VonBert_K_Fem_GP_1 | 0.148 | 0.148 | 0.148 | 0.148 | 0.147 | 0.147 | 0.147 | 0.147 |
| CV_old_Fem_GP_1 | 0.082 | 0.082 | 0.082 | 0.082 | 0.081 | 0.081 | 0.081 | 0.081 |
| NatM_uniform_Mal_GP_1 | -0.054 | -0.054 | -0.053 | -0.053 | -0.053 | -0.052 | -0.051 | -0.051 |
| L_at_Amax_Mal_GP_1 | -0.146 | -0.147 | -0.147 | -0.147 | -0.148 | -0.149 | -0.149 | -0.149 |
| VonBert_K_Mal_GP_1 | 0.309 | 0.311 | 0.312 | 0.313 | 0.315 | 0.316 | 0.318 | 0.318 |
| CV_old_Mal_GP_1 | -0.322 | -0.320 | -0.319 | -0.318 | -0.316 | -0.313 | -0.312 | -0.310 |
| SR_LN(RO) | 7.90 | 7.78 | 7.73 | 7.66 | 7.56 | 7.46 | 7.37 | 7.30 |
| Q_extraSD_Rec_PR_North(6) | 0.086 | 0.087 | 0.088 | 0.088 | 0.089 | 0.090 | 0.091 | 0.091 |
| Size_inflection_Comm_nonTwl_dead(1) | 35.931 | 35.929 | 35.928 | 35.925 | 35.917 | 35.905 | 35.887 | 35.859 |
| Size_95\%width_Comm_nonTwl_dead(1) | 5.855 | 5.858 | 5.859 | 5.859 | 5.857 | 5.852 | 5.844 | 5.830 |
| Size_DbIN_peak_Comm_nonTwl_live(2) | 36.257 | 36.239 | 36.232 | 36.223 | 36.207 | 36.191 | 36.176 | 36.160 |
| Size_DblN_ascend_se_Comm_nonTwl_live(2) | 3.095 | 3.094 | 3.093 | 3.093 | 3.092 | 3.090 | 3.089 | 3.087 |
| Size_DbIN_descend_se_Comm_nonTwl_live(2) | 5.689 | 5.686 | 5.684 | 5.680 | 5.671 | 5.659 | 5.643 | 5.622 |
| Size_inflection_Comm_Trawl(3) | 45.427 | 45.427 | 45.427 | 45.426 | 45.425 | 45.425 | 45.428 | 45.437 |
| Size_95\%width_Comm_Trawl(3) | 5.687 | 5.687 | 5.688 | 5.688 | 5.688 | 5.690 | 5.693 | 5.699 |
| Size_DblN_peak_Comm_Discard(4) | 27.143 | 27.118 | 27.109 | 27.095 | 27.074 | 27.055 | 27.038 | 27.025 |
| Size_DbIN_ascend_se_Comm_Discard(4) | 3.422 | 3.422 | 3.422 | 3.422 | 3.422 | 3.422 | 3.422 | 3.422 |
| Size_DbIN_descend_se_Comm_Discard(4) | 3.914 | 3.910 | 3.909 | 3.906 | 3.903 | 3.899 | 3.895 | 3.891 |
| Size_DbIN_peak_Rec_PC_North(5) | 40.914 | 40.837 | 40.807 | 40.761 | 40.684 | 40.607 | 40.527 | 40.438 |
| Size_DbIN_ascend_se_Rec_PC_North(5) | 4.215 | 4.211 | 4.210 | 4.207 | 4.203 | 4.198 | 4.193 | 4.186 |
| Size_DbIN_descend_se_Rec_PC_North(5) | 4.765 | 4.758 | 4.755 | 4.750 | 4.743 | 4.735 | 4.727 | 4.722 |
| Size_DbIN_end_logit_Rec_PC_North(5) | -2.625 | -2.675 | -2.695 | -2.724 | -2.770 | -2.812 | -2.846 | -2.872 |
| Size_DbIN_peak_Rec_Disc_North(7) | 28.480 | 28.411 | 28.386 | 28.353 | 28.303 | 28.257 | 28.214 | 28.179 |
| Size_DbIN_ascend_se_Rec_Disc_North(7) | 4.209 | 4.205 | 4.204 | 4.203 | 4.202 | 4.202 | 4.201 | 4.200 |
| Size_DbIN_descend_se_Rec_Disc_North(7) | 4.513 | 4.512 | 4.511 | 4.509 | 4.505 | 4.501 | 4.498 | 4.494 |
| Size_DbIN_peak_CCFRP(8) | 42.259 | 42.192 | 42.166 | 42.126 | 42.062 | 41.999 | 41.937 | 41.875 |
| Size_DbIN_ascend_se_CCFRP(8) | 4.593 | 4.594 | 4.595 | 4.596 | 4.597 | 4.598 | 4.599 | 4.599 |
| Size_DbIN_descend_se_CCFRP(8) | 2.777 | 2.797 | 2.805 | 2.817 | 2.835 | 2.852 | 2.869 | 2.884 |
| Size_DbIN_end_logit_CCFRP(8) | -3.111 | -3.159 | -3.178 | -3.207 | -3.253 | -3.299 | -3.341 | -3.380 |
| Size_DbIN_peak_Abrams_Research(11) | 39.985 | 39.910 | 39.881 | 39.836 | 39.760 | 39.683 | 39.601 | 39.511 |
| Size_DbIN_ascend_se_Abrams_Research(11) | 4.531 | 4.530 | 4.529 | 4.528 | 4.526 | 4.523 | 4.520 | 4.515 |
| Size_DbIN_descend_se_Abrams_Research(11) | 4.557 | 4.553 | 4.552 | 4.549 | 4.545 | 4.541 | 4.539 | 4.537 |
| Size_DblN_peak_Rec_PC_North(5)_BLK1repl_1875 | 34.208 | 34.213 | 34.214 | 34.216 | 34.215 | 34.211 | 34.201 | 34.182 |
| Size_DbIN_ascend_se_Rec_PC_North(5)_BLK1repl_1875 | 3.859 | 3.862 | 3.863 | 3.864 | 3.866 | 3.867 | 3.867 | 3.865 |
| Bratio_2023 | 0.356 | 0.361 | 0.364 | 0.368 | 0.375 | 0.385 | 0.398 | 0.417 |
| SSB_unfished | 1244 | 1215 | 1205 | 1191 | 1169 | 1149 | 1128 | 1104 |
| Totbio_unfished | 7094 | 6710 | 6573 | 6382 | 6096 | 5844 | 5618 | 5421 |
| Recr_unfished | 2694 | 2380 | 2272 | 2123 | 1910 | 1733 | 1590 | 1483 |
| Equil. Yield at SPR50\% proxy for MSY | 278.2 | 269.0 | 265.1 | 259.3 | 249.7 | 240.5 | 231.9 | 224.8 |
| OFLCatch_2023 | 216.1 | 206.5 | 203.2 | 198.7 | 192.4 | 187.6 | 184.6 | 184.5 |

Table 46: Female natural mortality profile for the northern California base model.

| Quantity | 0.08 | 0.1 | 0.12 | 0.14 | 0.16 | 0.18 | 0.2 | 0.22 | 0.24 | 0.26 | 0.28 | 0.3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N.Parms | 97 | 97 | 97 | 97 | 97 | 97 | 97 | 97 | 97 | 97 | 97 | 97 |
| TOTAL | 1237 | 1184 | 1150 | 1128 | 1115 | 1109 | 1107 | 1106 | 1108 | 1110 | 1113 | 1116 |
| Survey | -28.1 | -29.0 | -29.8 | -30.2 | -30.4 | -30.3 | -30.1 | -29.9 | -29.7 | -29.5 | -29.4 | -29.3 |
| Length_comp | 386 | 379 | 372 | 368 | 367 | 366 | 366 | 367 | 367 | 368 | 369 | 370 |
| Age_comp | 828 | 808 | 794 | 785 | 779 | 775 | 774 | 774 | 774 | 775 | 776 | 777 |
| Recruitment | 49.0 | 25.5 | 12.4 | 5.0 | 0.4 | -2.4 | -4.0 | -4.8 | -5.1 | -4.9 | -4.5 | -3.9 |
| Parm_priors | 2.2 | 1.0 | 0.3 | 0.0 | 0.0 | 0.1 | 0.4 | 0.7 | 1.0 | 1.4 | 1.8 | 2.3 |
| L_at_Amax_Fem_GP_1 | 52.5 | 53.4 | 53.8 | 54.1 | 54.3 | 54.4 | 54.5 | 54.5 | 54.5 | 54.5 | 54.4 | 54.4 |
| VonBert_K_Fem_GP_1 | 0.17 | 0.16 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 |
| CV_old_Fem_GP_1 | 0.10 | 0.09 | 0.09 | 0.09 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 |
| NatM_uniform_Mal_GP_1 | 0.19 | 0.12 | 0.05 | 0.01 | -0.02 | -0.04 | -0.05 | -0.05 | -0.06 | -0.06 | -0.06 | -0.06 |
| L_at_Amax_Mal_GP ${ }_{\text {- }} 1$ | -0.11 | -0.13 | -0.14 | -0.14 | -0.14 | -0.15 | -0.15 | -0.15 | -0.15 | -0.15 | -0.15 | -0.14 |
| VonBert_K_Mal_GP_1 | 0.24 | 0.28 | 0.29 | 0.30 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.30 | 0.30 | 0.30 |
| CV_old_Mal_GP_1 | -0.46 | -0.39 | -0.37 | -0.36 | -0.35 | -0.33 | -0.32 | -0.32 | -0.31 | -0.31 | -0.31 | -0.30 |
| SR_LN(R0) | 6.34 | 6.65 | 6.89 | 7.09 | 7.26 | 7.43 | 7.62 | 7.82 | 8.03 | 8.26 | 8.50 | 8.76 |
| Q_extraSD_Rec_PR_North(6) | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.08 | 0.08 |
| Size_inflection_Comm_nonTwl_dead(1) | 34.6 | 34.8 | 35.1 | 35.4 | 35.6 | 35.8 | 35.9 | 36.0 | 36.0 | 36.1 | 36.2 | 36.3 |
| Size_95\%width_Comm_nonTwl_dead(1) | 5.35 | 5.45 | 5.58 | 5.71 | 5.81 | 5.85 | 5.86 | 5.85 | 5.85 | 5.86 | 5.87 | 5.89 |
| Size_DblN_peak_Comm_nonTwl_live(2) | 35.6 | 35.7 | 35.9 | 36.0 | 36.1 | 36.1 | 36.2 | 36.3 | 36.3 | 36.4 | 36.5 | 36.5 |
| Size_DblN_ascend_se_Comm_nonTwl_live(2) | 3.01 | 3.03 | 3.05 | 3.06 | 3.08 | 3.08 | 3.09 | 3.10 | 3.10 | 3.10 | 3.11 | 3.12 |
| Size_DblN_descend_se_Comm_nonTw]_live(2) | 5.79 | 5.70 | 5.72 | 5.76 | 5.77 | 5.75 | 5.71 | 5.67 | 5.66 | 5.69 | 5.74 | 5.81 |
| Size_inflection_Comm_Trawl(3) | 43.7 | 43.8 | 44.2 | 44.6 | 45.0 | 45.2 | 45.4 | 45.5 | 45.5 | 45.6 | 45.6 | 45.7 |
| Size_95\%width_Comm_Trawl(3) | 5.29 | 5.29 | 5.39 | 5.51 | 5.59 | 5.65 | 5.68 | 5.69 | 5.69 | 5.69 | 5.68 | 5.67 |
| Size_Dbln_peak_Comm_Discard(4) | 26.6 | 26.7 | 26.8 | 26.9 | 26.9 | 27.0 | 27.1 | 27.1 | 27.2 | 27.3 | 27.3 | 27.4 |
| Size_DblN_ascend_se_Comm_Discard(4) | 3.45 | 3.44 | 3.44 | 3.43 | 3.43 | 3.43 | 3.42 | 3.42 | 3.42 | 3.42 | 3.42 | 3.42 |
| Size_DblN_descend_se_Comm_Discard(4) | 3.85 | 3.86 | 3.88 | 3.89 | 3.90 | 3.90 | 3.91 | 3.91 | 3.92 | 3.92 | 3.94 | 3.95 |
| Size_DblN_peak_Rec_PC_North(5) | 39.6 | 40.0 | 40.3 | 40.6 | 40.7 | 40.8 | 40.8 | 40.8 | 40.9 | 41.0 | 41.3 | 41.5 |
| Size_DblN_ascend_se_Rec_PC_North(5) | 4.16 | 4.19 | 4.21 | 4.22 | 4.23 | 4.23 | 4.22 | 4.21 | 4.20 | 4.21 | 4.22 | 4.23 |
|  | 4.63 | 4.60 | 4.64 | 4.68 | 4.72 | 4.75 | 4.75 | 4.76 | 4.76 | 4.77 | 4.79 | 4.82 |
| Size_DblN_end_logit_Rec_PC_North(5) | -2.86 | -2.99 | -2.97 | -2.93 | -2.89 | -2.84 | -2.75 | -2.65 | -2.53 | -2.41 | -2.29 | -2.17 |
| Size_DblN_peak_Rec_Disc_Nöth(7) | 27.2 | 27.4 | 27.6 | 27.8 | 28.0 | 28.2 | 28.3 | 28.5 | 28.6 | 28.7 | 28.9 | 29.1 |
| Size_DblN_ascend_se_Rec_Disc_North(7) | 4.20 | 4.20 | 4.20 | 4.21 | 4.21 | 4.21 | 4.20 | 4.21 | 4.21 | 4.21 | 4.21 | 4.22 |
| Size_DblN_descend_se_Rec_Disc_North(7) | 4.57 | 4.56 | 4.55 | 4.54 | 4.53 | 4.52 | 4.51 | 4.51 | 4.51 | 4.52 | 4.53 | 4.55 |
| Size_DblN_peak_CCFRP(8) | 41.1 | 41.4 | 41.7 | 41.9 | 42.0 | 42.1 | 42.1 | 42.2 | 42.3 | 42.4 | 42.6 | 42.8 |
| Size_Dbln_ascend_se_CCFRP(8) | 4.71 | 4.69 | 4.67 | 4.65 | 4.63 | 4.62 | 4.60 | 4.59 | 4.58 | 4.58 | 4.57 | 4.57 |
| Size_DblN_descend_se_CCFRP(8) | 3.06 | 2.98 | 2.93 | 2.89 | 2.85 | 2.83 | 2.81 | 2.80 | 2.77 | 2.72 | 2.66 | 2.59 |
| Size_DblN_end_logit_CCFRP(8) | -3.86 | -3.79 | -3.63 | -3.47 | -3.34 | -3.26 | -3.21 | -3.15 | -3.08 | -2.98 | -2.87 | -2.74 |
| Size_DblN_peak_Abrams_Research(11) | 38.53 | 38.93 | 39.27 | 39.56 | 39.77 | 39.88 | 39.89 | 39.88 | 39.94 | 40.09 | 40.30 | 40.57 |
| Size_Dbln_ascend_se_Abrams_Research(11) | 4.51 | 4.52 | 4.54 | 4.55 | 4.55 | 4.55 | 4.54 | 4.52 | 4.52 | 4.51 | 4.52 | 4.52 |
| Size_- $\mathrm{DbIN}^{-}$descend_se_se_Abrams_Research(11) | 4.48 | 4.45 | 4.47 | 4.50 | 4.52 | 4.53 | 4.55 | 4.56 | 4.57 | 4.57 | 4.58 | 4.59 |
| Size_DblN_peak_Rec_- $\overline{\mathrm{P}}$ _ $\operatorname{North}(5)$ _BLK 1 repl_1875 | 33.2 | 33.3 | 33.5 | 33.7 | 33.9 | 34.0 | 34.2 | 34.3 | 34.4 | 34.5 | 34.6 | 34.8 |
| Size_DblN_ascend_se_Rec_PC_North(5)_BLK1 repl_1875 | 3.86 | 3.86 | 3.86 | 3.87 | 3.87 | 3.87 | 3.87 | 3.86 | 3.86 | 3.86 | 3.87 | 3.88 |
| Bratio_2023 | 0.12 | 0.13 | 0.14 | 0.16 | 0.20 | 0.24 | 0.31 | 0.40 | 0.50 | 0.59 | 0.68 | 0.75 |
| SSB_unfished | 2705 | 2539 | 2227 | 1909 | 1638 | 1424 | 1269 | 1167 | 1103 | 1066 | 1050 | 1057 |
| Totbio_unfished | 8039 | 8096 | 7838 | 7450 | 7064 | 6753 | 6584 | 6608 | 6821 | 7206 | 7773 | 8579 |
| Recr_unfished | 568 | 775 | 985 | 1197 | 1427 | 1694 | 2031 | 2480 | 3081 | 3875 | 4928 | 6360 |
| Dead_Catch_SPR | 166 | 196 | 216 | 229 | 238 | 246 | 257 | 273 | 296 | 326 | 365 | 415 |
| OFLC $\overline{a r a t c h}_{2} \mathbf{2 0 2 3}$ | 58.9 | 71.9 | 84.0 | 97.6 | 115.5 | 140.6 | 176.6 | 225.8 | 287.3 | 359.6 | 444.1 | 546.5 |

Table 47: Data weights by fleet and data type in the central base model and using an alternative data weighting method (McAllister-Ianelli).

| Fleet name | Data Type | Base (Francis Weights) | McAllister-Ianelli weights |
| :--- | :---: | :---: | :---: |
| Comm_nonTwl | length | 1 | 1 |
| Comm_Discard | length | 0.234979 | 0.553307 |
| Rec_PC_Central | length | 0.163105 | 0.276469 |
| Rec_PR_Central | length | 0.209161 | 0.180067 |
| Rec_Disc_Central | length | 0.406678 | 1 |
| CCFRP_ | length | 0.083533 | 0.422884 |
| DWV_Onboard_CPFV | length | 0.160869 | 1 |
| CDFG_Lea_Research | length | 0.20309 | 0.166601 |
| Rec_PC_Central | age | 0.439739 | 0.411451 |
| Rec_PR_Central | age | 0.283349 | 0.187136 |
| CCFRP | age | 0.174282 | 0.435953 |
| CDFG_Lea_Research | age | 0.130598 | 0.343527 |

Table 48: Parameters used in the central California base case assessment model. See separate table for selectivity parameters.

| Parameter | Number <br> Estimated | $\begin{gathered} \text { Bounds } \\ \text { (low, high) } \end{gathered}$ | $\begin{gathered} \text { Prior } \\ \text { (Mean, SD) - Type } \end{gathered}$ | Value | Transformed Value | SE | gradient |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Biology |  |  |  |  |  |  |  |
| Natural mortality ( $M$ - -female | 0 | $(0.01,0.6)$ | (-1.869, 0.31) - Lognormal | 0.211 |  | - | - |
| Nat. mortality ( $M$ - male (offset) | 0 | $(-1,1)$ | ) | -0.053 | 0.200 |  |  |
| $\operatorname{Ln}\left(R_{0}\right)$ | 1 | $(4,9)$ | - | 6.479 | 651.0 | 0.050 | 5E-06 |
| Steepness ( $h$ ) | 0 | (0.201, 0.999) | (0.72, 0.16) - Full Beta | 0.720 |  | - | - |
| Growth |  |  |  |  |  |  |  |
| Length at age 0 -female | 0 | $(3,30)$ | - | 5.000 |  | - | - |
| Length at age $20-$ female | 1 | $(45,65)$ | - | 54.651 |  | 2.001 | $9 \mathrm{E}-07$ |
| von Bertalnaffy k - female | 1 | (0.05, 0.25) | - | 0.145 |  | 0.012 | 1E-06 |
| $\mathrm{CV}(\mathrm{L}$ (age 0)) - female | 0 | (0.01, 0.2) | - | 0.100 |  | - | - |
| CV(L(age 20)) - female | 0 | (0.01, 0.2) | - | 0.082 |  | - | - |
| Length at age 0 - male (offset) | 0 | $(-1,1)$ | - | 0.000 | 5.000 | - | - |
| Length at age $20-$ male (offset) | 1 | $(-1,1)$ | - | -0.100 | 49.438 | 0.042 | 1E-06 |
| von Bertalnaffy k - male (offset) | 1 | $(-1,1)$ | - | 0.246 | 0.185 | 0.101 | 7E-07 |
| $\mathrm{CV}(\mathrm{L}($ age 0)) - male (offset) | 0 | $(-1,1)$ | - | 0.000 | 0.100 | - | - |
| CV(L(age 20)) - male (offset) | 0 | $(-1,1)$ | - | -0.319 | 0.060 | - | - |
| Indices |  |  |  |  |  |  |  |
| Extra SD - CRFS private dockside | 1 | $(-5,5)$ | - | -0.471 |  | 0.380 | -4E-07 |
| Recruitment Deviations (sum=0) |  |  |  |  |  |  |  |
| SD of log-scale rec devs (sigma-R) | 0 | $(0,1)$ |  | 0.60 |  |  |  |
| Early Recruitment Deviation Parameters |  |  |  | Min | Max | maxSE | maxGrad |
| 1935-1954 | 20 | $(-5,5)$ | - | 0.004 | 0.055 | 0.604 | 4E-07 |
| Main Recruitment Deviation Parameters |  |  |  | Min | Max | maxSE | maxGrad |
| 1955-2022 | 68 | $(-5,5)$ | - | -1.068 | 1.689 | 0.618 | 3E-06 |
| Selectivity (see separate table) |  |  |  |  |  |  |  |
| Summary of model parameters (see separate table for selectivity parameters) |  |  |  |  |  |  |  |
| Number of parameters in model | 166 |  |  |  |  |  |  |
| Estimated parameters | 118 | (including 2 fo | ast devs) |  |  |  |  |
| Number within 1\% of bound | 0 |  |  |  |  |  |  |

Table 49: Selectivity parameters used in the central California base case assessment model.

| Parameter | Number Estimated | Bounds ( low, high) | Prior (Mean, SD) - Type | Value | Transformed Value | SE | gradient |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Selectivity |  |  |  |  |  |  |  |
| Commercial Non-Trawl |  |  |  |  |  |  |  |
| Double-Normal Peak | 1 | $(15,45)$ | - | 29.956 |  | 3.142 | 4E-07 |
| Double-Normal Top (logit) | 0 | $(-10,10)$ | - | -6.000 | 0.002 |  |  |
| Double-Normal Ascending SE | 1 | $(0.5,7)$ | - | 2.815 |  | 1.1117 | -2E-07 |
| Double-Normal Descending SE | 1 | $(0.5,10)$ | - | 4.502 |  | 1.651 | -1E-07 |
| Double-Normal Initial (logit) | 0 | (-11, -9) | - | -10.000 | 0.000 |  |  |
| Double-Normal Final (logit) | 1 | $(-15,15)$ | - | -1.320 | 0.211 | $1 . \overline{6} 34$ | -1E-07 |
| Commercial Trawl (mirrors Non-Trawl) |  |  |  |  |  |  |  |
| Commercial Discard |  |  |  |  |  |  |  |
| Double-Normal Peak | 1 | $(15,40)$ | - | 27.498 |  | 0.848 | 4E-07 |
| Double-Normal Top (logit) | 0 | $(-10,10)$ | - | -6.000 | 0.002 |  |  |
| Double-Normal Ascending SE | 1 | $(1,7)$ | - | 3.432 |  | 0.255 | -2E-07 |
| Double-Normal Descending SE | 1 | $(1,7)$ | - | 3.975 |  | 0.278 | 2E-07 |
| Double-Normal Initial (logit) | 0 | (-11, -9) | - | -10.000 | 0.000 | - | - |
| Double-Normal Final (logit) | 0 | (-11, -9) | - | -10.000 | 0.000 | - | _ |
| Recreational CPFV, 2004-present |  |  |  |  |  |  |  |
| Double-Normal Peak | 1 | $(28,38)$ | - | 32.994 |  | 0.309 | 1E-06 |
| Double-Normal Top (logit) | 0 | $(-10,10)$ | - | -6.000 | 0.002 |  |  |
| Double-Normal Ascending SE | 1 | $(2,5)$ | - | 3.516 |  | 0.066 | -1E-06 |
| Double-Normal Descending SE | 1 | $(0.1,5)$ | - | 2.057 |  | 0.245 | -3E-07 |
| Double-Normal Initial (logit) | 0 | (-11, -9) | - | -10.000 | 0.000 |  |  |
| Double-Normal Final (logit) | 1 | $(-5,5)$ | - | -2.046 | 0.114 | 0.206 | 2E-06 |
| Recreational Private Boat (mirrors CPFV) |  |  |  |  |  |  |  |
| Recreational Discard |  |  |  |  |  |  |  |
| Double-Normal Peak | 1 | $(10,40)$ | - | 24.278 |  | 2.408 | 5E-08 |
| Double-Normal Top (logit) | 0 | $(-10,0)$ | - | -6.000 | 0.002 |  |  |
| Double-Normal Ascending SE | 1 | $(1,8)$ | - | 3.588 |  | 0.676 | 2E-08 |
| Double-Normal Descending SE | 1 | $(1,8)$ | - | 4.234 |  | 0.679 | $1 \mathrm{E}-07$ |
| Double-Normal Initial (logit) | 0 | (-11, -9) | - | -10.000 | 0.000 | - | _ |
| Double-Normal Final (logit) | 0 | (-11, -9) | - | -10.000 | 0.000 | _ | _ |
| CCFRP |  |  |  |  |  |  |  |
| Double-Normal Peak | 1 | $(15,45)$ | - | 32.809 |  | 0.742 | 2E-06 |
| Double-Normal Top (logit) | 0 | $(-10,10)$ | - | -6.000 | 0.002 |  |  |
| Double-Normal Ascending SE | , | $(0.05,8)$ | - | 4.005 |  | 0.149 | 3E-07 |
| Double-Normal Descending SE | 1 | $(0.05,10)$ | - | 2.169 |  | 0.492 | 1E-06 |
| Double-Normal Initial (logit) | 0 | (-11, -9) | - | -10.000 |  |  |  |
| Double-Normal Final (logit) | 1 | $(-20,20)$ | - | -4.667 | 0.009 | $1 . \overline{232}$ | 1E-07 |
| CRFS CPFV Onboard (PCO; mirrors CPFV) |  |  |  |  |  |  |  |
| DWV CPFV Onboard |  |  |  |  |  |  |  |
| Double-Normal Peak | , | $(20,40)$ | - | 29.382 |  | 1.676 | -6E-07 |
| Double-Normal Top (logit) | 0 | $(-10,10)$ | - | -6.000 | 0.002 |  |  |
| Double-Normal Ascending SE | 1 | $(0.1,7)$ | - | 2.720 |  | 0.552 | 7E-08 |
| Double-Normal Descending SE | , | $(0.1,8)$ | - | 3.081 |  | 1.189 | -2E-07 |
| Double-Normal Initial (logit) | 0 | (-11, -9) | - | -10.000 | 0.000 |  |  |
| Double-Normal Final (logit) | 1 | $(-6,6)$ | - | -1.249 | 0.223 | 0.666 | -4E-08 |

Table 50: Reference points for the central California base model.

| Reference Point | Estimate | Interval |  |
| :--- | :---: | :---: | :---: |
| Unfished Spawning Output (billions of eggs) | 345 | $311-379$ |  |
| Unfished Age 8+ Biomass (mt) | 1,272 | $1,125-1,419$ |  |
| Unfished Recruitment (R0, 1000s) | 651 | $587-715$ |  |
| Spawning Output (2023, billions of eggs) | 145 | $36-253$ |  |
| Fraction Unfished (2023) | 0.42 | $0.14-0.70$ |  |
| Reference Points Based SB40\% |  |  |  |
| Proxy Spawning Output SB40\% |  | 138 | $124-151$ |
| SPR Resulting in SB40\% | 0.458 | $0.458-0.458$ |  |
| Exploitation Rate Resulting in SB40\% |  | 0.135 | $0.128-0.142$ |
| Yield with SPR Based On SB40\% (mt) | 68 | $62-75$ |  |
| Reference Points Based on SPR Proxy for MSY |  |  |  |
| Proxy Spawning Output (SPR50) |  | 154 | $139-169$ |
| SPR50 | 0.5 | -115 | $0.109-0.121$ |
| Exploitation Rate Corresponding to SPR50 | 65 | $59-71$ |  |
| Yield with SPR50 at SB SPR (mt) |  |  |  |
| Reference Points Based on Estimated MSY Values | 85 | $77-93$ |  |
| Spawning Output at MSY (SB MSY) | 0.32 | $0.316-0.324$ |  |
| SPR MSY | 0.241 | $0.227-0.256$ |  |
| Exploitation Rate Corresponding to SPR MSY | 75 | $68-82$ |  |

Table 51: Time series of biomass and mortality estimates (mt), spawning output (billions of eggs), recruits (1000s), and exploitation rate (catch / age $8+$ biomass) for the central California base model.

| Year | Total <br> Biomass | Spawning Output | Biomass age 8+ | Fraction <br> Unfished | Age-0 <br> Recruits | Total Mortality | $\begin{gathered} (1-\mathrm{SPR}) / \\ \text { (1-SPR_50\%) } \end{gathered}$ | Exploitation Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1875 | 1,952 | 345 | 1,272 | 100 | 651 | 1.02 | 0.013 | 0.001 |
| 1876 | 1,951 | 344 | 1,272 | 100 | 651 | 2.05 | 0.026 | 0.002 |
| 1877 | 1,949 | 344 | 1,271 | 99.9 | 651 | 3.07 | 0.039 | 0.002 |
| 1878 | 1,946 | 344 | 1,269 | 99.7 | 651 | 4.09 | 0.051 | 0.003 |
| 1879 | 1,942 | 343 | 1,266 | 99.6 | 651 | 5.11 | 0.064 | 0.004 |
| 1880 | 1,937 | 342 | 1,262 | 99.3 | 651 | 6.14 | 0.077 | 0.005 |
| 1881 | 1,932 | 341 | 1,258 | 99 | 650 | 7.16 | 0.09 | 0.006 |
| 1882 | 1,926 | 340 | 1,253 | 98.7 | 650 | 8.18 | 0.103 | 0.007 |
| 1883 | 1,919 | 339 | 1,248 | 98.3 | 650 | 9.21 | 0.115 | 0.007 |
| 1884 | 1,912 | 337 | 1,242 | 97.9 | 650 | 10.23 | 0.128 | 0.008 |
| 1885 | 1,904 | 336 | 1,235 | 97.4 | 649 | 11.25 | 0.141 | 0.009 |
| 1886 | 1,896 | 334 | 1,229 | 96.9 | 649 | 12.27 | 0.154 | 0.010 |
| 1887 | 1,888 | 332 | 1,222 | 96.4 | 649 | 13.30 | 0.167 | 0.011 |
| 1888 | 1,879 | 330 | 1,215 | 95.8 | 648 | 14.32 | 0.18 | 0.012 |
| 1889 | 1,870 | 328 | 1,207 | 95.3 | 648 | 15.34 | 0.192 | 0.013 |
| 1890 | 1,861 | 326 | 1,200 | 94.7 | 648 | 16.36 | 0.205 | 0.014 |
| 1891 | 1,852 | 324 | 1,192 | 94.1 | 647 | 17.39 | 0.218 | 0.015 |
| 1892 | 1,842 | 322 | 1,184 | 93.5 | 647 | 18.41 | 0.231 | 0.016 |
| 1893 | 1,833 | 320 | 1,176 | 92.9 | 646 | 19.43 | 0.244 | 0.017 |
| 1894 | 1,823 | 318 | 1,167 | 92.2 | 646 | 20.46 | 0.257 | 0.018 |
| 1895 | 1,813 | 315 | 1,159 | 91.6 | 645 | 21.48 | 0.27 | 0.019 |
| 1896 | 1,802 | 313 | 1,151 | 90.9 | 645 | 22.50 | 0.284 | 0.020 |
| 1897 | 1,792 | 311 | 1,142 | 90.2 | 644 | 23.52 | 0.297 | 0.021 |
| 1898 | 1,782 | 309 | 1,133 | 89.6 | 644 | 24.55 | 0.31 | 0.022 |
| 1899 | 1,771 | 306 | 1,125 | 88.9 | 643 | 25.57 | 0.323 | 0.023 |
| 1900 | 1,761 | 304 | 1,116 | 88.2 | 643 | 26.59 | 0.336 | 0.024 |
| 1901 | 1,750 | 301 | 1,107 | 87.5 | 642 | 27.61 | 0.35 | 0.025 |
| 1902 | 1,740 | 299 | 1,098 | 86.8 | 642 | 28.64 | 0.363 | 0.026 |
| 1903 | 1,729 | 297 | 1,089 | 86.1 | 641 | 29.66 | 0.376 | 0.027 |
| 1904 | 1,718 | 294 | 1,080 | 85.4 | 640 | 30.68 | 0.39 | 0.028 |
| 1905 | 1,707 | 292 | 1,071 | 84.7 | 640 | 31.71 | 0.403 | 0.030 |
| 1906 | 1,696 | 289 | 1,062 | 84 | 639 | 32.73 | 0.417 | 0.031 |
| 1907 | 1,685 | 287 | 1,053 | 83.3 | 639 | 33.75 | 0.43 | 0.032 |
| 1908 | 1,674 | 284 | 1,044 | 82.5 | 638 | 34.77 | 0.444 | 0.033 |
| 1909 | 1,663 | 282 | 1,035 | 81.8 | 637 | 35.80 | 0.457 | 0.035 |
| 1910 | 1,652 | 279 | 1,025 | 81.1 | 637 | 36.82 | 0.471 | 0.036 |
| 1911 | 1,640 | 277 | 1,016 | 80.4 | 636 | 37.84 | 0.484 | 0.037 |
| 1912 | 1,629 | 274 | 1,007 | 79.6 | 635 | 38.87 | 0.498 | 0.039 |
| 1913 | 1,617 | 272 | 997 | 78.9 | 635 | 39.89 | 0.512 | 0.040 |
| 1914 | 1,606 | 269 | 988 | 78.2 | 634 | 40.91 | 0.526 | 0.041 |
| 1915 | 1,595 | 267 | 979 | 77.4 | 633 | 41.93 | 0.54 | 0.043 |
| 1916 | 1,583 | 264 | 969 | 76.7 | 632 | 42.96 | 0.553 | 0.044 |
| 1917 | 1,571 | 262 | 960 | 75.9 | 632 | 66.76 | 0.796 | 0.070 |
| 1918 | 1,536 | 256 | 938 | 74.3 | 630 | 77.92 | 0.911 | 0.083 |
| 1919 | 1,491 | 249 | 910 | 72.2 | 628 | 54.14 | 0.705 | 0.060 |
| 1920 | 1,473 | 244 | 891 | 70.9 | 626 | 55.23 | 0.72 | 0.062 |
| 1921 | 1,456 | 240 | 871 | 69.6 | 624 | 45.62 | 0.619 | 0.052 |
| 1922 | 1,451 | 237 | 859 | 68.7 | 623 | 39.28 | 0.544 | 0.046 |
| 1923 | 1,454 | 235 | 855 | 68.2 | 623 | 42.55 | 0.578 | 0.050 |
| 1924 | 1,454 | 234 | 854 | 67.9 | 622 | 24.90 | 0.36 | 0.029 |
| 1925 | 1,474 | 235 | 864 | 68.3 | 623 | 31.02 | 0.433 | 0.036 |
| 1926 | 1,486 | 237 | 875 | 68.8 | 624 | 49.90 | 0.646 | 0.057 |
| 1927 | 1,479 | 237 | 876 | 68.7 | 623 | 42.37 | 0.568 | 0.048 |
| 1928 | 1,479 | 237 | 880 | 68.8 | 624 | 51.97 | 0.675 | 0.059 |
| 1929 | 1,468 | 236 | 877 | 68.6 | 623 | 44.25 | 0.596 | 0.050 |
| 1930 | 1,465 | 236 | 874 | 68.5 | 623 | 61.98 | 0.784 | 0.071 |
| 1931 | 1,444 | 233 | 861 | 67.7 | 622 | 55.02 | 0.723 | 0.064 |
| 1932 | 1,431 | 231 | 851 | 67.1 | 621 | 42.35 | 0.588 | 0.050 |
| 1933 | 1,432 | 230 | 847 | 66.8 | 621 | 29.85 | 0.433 | 0.035 |
| 1934 | 1,447 | 231 | 850 | 67.1 | 621 | 30.68 | 0.438 | 0.036 |
| 1935 | 1,461 | 233 | 856 | 67.5 | 624 | 45.28 | 0.606 | 0.053 |
| 1936 | 1,459 | 233 | 859 | 67.5 | 625 | 45.07 | 0.606 | 0.052 |


| Year | Total <br> Biomass | Spawning Output | Biomass age 8+ | Fraction Unfished | Age-0 <br> Recruits | Total <br> Mortality | $\begin{gathered} (1-\mathrm{SPR}) / \\ (1-\mathrm{SPR} 50 \%) \end{gathered}$ | Exploitation Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1937 | 1,458 | 233 | 863 | 67.6 | 625 | 53.69 | 0.702 | 0.062 |
| 1938 | 1,447 | 232 | 860 | 67.3 | 625 | 38.99 | 0.544 | 0.045 |
| 1939 | 1,451 | 232 | 861 | 67.5 | 625 | 21.57 | 0.32 | 0.025 |
| 1940 | 1,474 | 235 | 870 | 68.2 | 627 | 34.68 | 0.482 | 0.040 |
| 1941 | 1,483 | 237 | 875 | 68.7 | 627 | 41.26 | 0.557 | 0.047 |
| 1942 | 1,484 | 237 | 880 | 68.9 | 628 | 13.44 | 0.202 | 0.015 |
| 1943 | 1,514 | 241 | 898 | 70.1 | 630 | 25.29 | 0.355 | 0.028 |
| 1944 | 1,530 | 244 | 910 | 71 | 631 | 8.45 | 0.126 | 0.009 |
| 1945 | 1,563 | 250 | 932 | 72.5 | 634 | 15.01 | 0.213 | 0.016 |
| 1946 | 1,588 | 255 | 952 | 73.9 | 636 | 20.25 | 0.281 | 0.021 |
| 1947 | 1,605 | 259 | 971 | 75.1 | 638 | 23.76 | 0.323 | 0.024 |
| 1948 | 1,616 | 262 | 985 | 76.2 | 641 | 28.23 | 0.38 | 0.029 |
| 1949 | 1,621 | 265 | 995 | 77 | 645 | 40.43 | 0.522 | 0.041 |
| 1950 | 1,613 | 266 | 995 | 77.2 | 648 | 41.85 | 0.544 | 0.042 |
| 1951 | 1,602 | 266 | 990 | 77.1 | 651 | 61.55 | 0.753 | 0.062 |
| 1952 | 1,571 | 262 | 972 | 76.1 | 648 | 78.09 | 0.914 | 0.080 |
| 1953 | 1,525 | 256 | 941 | 74.2 | 641 | 59.86 | 0.764 | 0.064 |
| 1954 | 1,500 | 250 | 916 | 72.7 | 663 | 57.12 | 0.744 | 0.062 |
| 1955 | 1,481 | 246 | 892 | 71.3 | 736 | 71.51 | 0.886 | 0.080 |
| 1956 | 1,451 | 239 | 865 | 69.4 | 744 | 58.00 | 0.767 | 0.067 |
| 1957 | 1,441 | 235 | 849 | 68.1 | 729 | 57.77 | 0.766 | 0.068 |
| 1958 | 1,440 | 231 | 835 | 66.9 | 705 | 117.77 | 1.256 | 0.141 |
| 1959 | 1,382 | 220 | 797 | 63.9 | 680 | 125.25 | 1.324 | 0.157 |
| 1960 | 1,321 | 208 | 751 | 60.5 | 660 | 66.04 | 0.882 | 0.088 |
| 1961 | 1,324 | 203 | 727 | 59 | 658 | 51.56 | 0.708 | 0.071 |
| 1962 | 1,342 | 201 | 714 | 58.5 | 638 | 69.69 | 0.875 | 0.098 |
| 1963 | 1,341 | 200 | 714 | 58 | 592 | 69.74 | 0.88 | 0.098 |
| 1964 | 1,337 | 199 | 727 | 57.9 | 594 | 57.11 | 0.764 | 0.079 |
| 1965 | 1,340 | 201 | 745 | 58.4 | 585 | 79.40 | 0.985 | 0.107 |
| 1966 | 1,315 | 201 | 749 | 58.3 | 577 | 77.82 | 0.997 | 0.104 |
| 1967 | 1,287 | 200 | 746 | 58.1 | 580 | 99.51 | 1.204 | 0.133 |
| 1968 | 1,234 | 196 | 725 | 56.8 | 624 | 106.69 | 1.301 | 0.147 |
| 1969 | 1,172 | 189 | 694 | 54.7 | 759 | 104.05 | 1.328 | 0.150 |
| 1970 | 1,119 | 180 | 656 | 52.3 | 751 | 119.66 | 1.47 | 0.182 |
| 1971 | 1,060 | 169 | 606 | 49.1 | 513 | 103.63 | 1.403 | 0.171 |
| 1972 | 1,028 | 159 | 561 | 46.1 | 406 | 164.61 | 1.715 | 0.293 |
| 1973 | 936 | 142 | 495 | 41.3 | 422 | 110.45 | 1.476 | 0.223 |
| 1974 | 892 | 132 | 454 | 38.4 | 504 | 140.92 | 1.634 | 0.311 |
| 1975 | 809 | 121 | 408 | 35 | 563 | 118.87 | 1.598 | 0.292 |
| 1976 | 744 | 112 | 373 | 32.4 | 1,175 | 106.08 | 1.622 | 0.284 |
| 1977 | 702 | 103 | 355 | 30 | 478 | 117.44 | 1.748 | 0.331 |
| 1978 | 676 | 93 | 329 | 27 | 342 | 92.35 | 1.632 | 0.281 |
| 1979 | 688 | 85 | 297 | 24.7 | 151 | 130.69 | 1.756 | 0.439 |
| 1980 | 655 | 76 | 255 | 22 | 393 | 108.84 | 1.534 | 0.426 |
| 1981 | 622 | 72 | 234 | 20.8 | 469 | 35.63 | 0.742 | 0.153 |
| 1982 | 643 | 75 | 235 | 21.6 | 223 | 34.65 | 0.765 | 0.147 |
| 1983 | 660 | 81 | 254 | 23.4 | 232 | 97.80 | 1.628 | 0.386 |
| 1984 | 601 | 81 | 336 | 23.6 | 667 | 56.57 | 1.358 | 0.168 |
| 1985 | 583 | 83 | 341 | 24 | 614 | 142.80 | 1.902 | 0.419 |
| 1986 | 487 | 74 | 288 | 21.4 | 371 | 61.09 | 1.624 | 0.212 |
| 1987 | 488 | 69 | 244 | 20.1 | 316 | 64.01 | 1.654 | 0.262 |
| 1988 | 497 | 64 | 219 | 18.5 | 275 | 73.09 | 1.577 | 0.334 |
| 1989 | 496 | 59 | 203 | 17.2 | 339 | 55.82 | 1.248 | 0.275 |
| 1990 | 502 | 58 | 185 | 16.7 | 490 | 51.39 | 1.167 | 0.278 |
| 1991 | 507 | 58 | 174 | 16.9 | 264 | 57.97 | 1.332 | 0.333 |
| 1992 | 504 | 60 | 209 | 17.3 | 207 | 95.08 | 1.755 | 0.455 |
| 1993 | 458 | 57 | 224 | 16.6 | 268 | 89.29 | 1.785 | 0.398 |
| 1994 | 412 | 53 | 205 | 15.5 | 201 | 76.95 | 1.721 | 0.375 |
| 1995 | 374 | 50 | 184 | 14.5 | 160 | 49.28 | 1.487 | 0.268 |
| 1996 | 357 | 49 | 167 | 14.1 | 745 | 67.71 | 1.755 | 0.405 |
| 1997 | 323 | 45 | 150 | 12.9 | 278 | 41.65 | 1.531 | 0.278 |
| 1998 | 330 | 42 | 152 | 12.3 | 210 | 51.03 | 1.697 | 0.335 |
| 1999 | 339 | 39 | 138 | 11.4 | 699 | 67.79 | 1.819 | 0.491 |
| 2000 | 338 | 35 | 121 | 10.3 | 446 | 57.37 | 1.566 | 0.474 |
| 2001 | 357 | 34 | 115 | 9.7 | 504 | 88.57 | 1.805 | 0.773 |
| 2002 | 352 | 31 | 100 | 9 | 523 | 50.74 | 1.539 | 0.505 |
| 2003 | 392 | 31 | 91 | 8.9 | 318 | 72.07 | 1.607 | 0.796 |
| 2004 | 416 | 31 | 116 | 9 | 352 | 43.17 | 1.132 | 0.374 |


| Year | Total <br> Biomass | Spawning Output | Biomass age $8+$ | Fraction <br> Unfished | Age-0 <br> Recruits | Total Mortality | $\begin{gathered} (1-\mathrm{SPR}) / \\ \text { (1-SPR_50\%) } \end{gathered}$ | Exploitation Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | 462 | 34 | 117 | 9.8 | 156 | 49.90 | 1.143 | 0.425 |
| 2006 | 492 | 38 | 118 | 11.1 | 165 | 65.86 | 1.316 | 0.558 |
| 2007 | 488 | 44 | 170 | 12.6 | 428 | 35.89 | 0.925 | 0.211 |
| 2008 | 503 | 51 | 201 | 14.8 | 1,980 | 41.19 | 1.073 | 0.205 |
| 2009 | 524 | 58 | 237 | 16.9 | 636 | 50.64 | 1.355 | 0.213 |
| 2010 | 590 | 63 | 268 | 18.2 | 1,117 | 57.35 | 1.552 | 0.214 |
| 2011 | 692 | 64 | 261 | 18.6 | 568 | 55.38 | 1.25 | 0.212 |
| 2012 | 826 | 65 | 260 | 18.9 | 403 | 92.08 | 1.171 | 0.355 |
| 2013 | 918 | 67 | 238 | 19.5 | 418 | 225.37 | 1.696 | 0.948 |
| 2014 | 838 | 68 | 209 | 19.7 | 258 | 105.64 | 1.25 | 0.506 |
| 2015 | 835 | 75 | 216 | 21.8 | 264 | 70.24 | 1.005 | 0.326 |
| 2016 | 838 | 87 | 371 | 25.1 | 810 | 63.44 | 1.025 | 0.171 |
| 2017 | 828 | 99 | 390 | 28.7 | 393 | 24.56 | 0.551 | 0.063 |
| 2018 | 858 | 113 | 491 | 32.8 | 243 | 21.45 | 0.529 | 0.044 |
| 2019 | 891 | 125 | 525 | 36.2 | 301 | 19.55 | 0.489 | 0.037 |
| 2020 | 917 | 133 | 535 | 38.7 | 578 | 29.78 | 0.614 | 0.056 |
| 2021 | 924 | 138 | 547 | 40.2 | 562 | 38.40 | 0.725 | 0.070 |
| 2022 | 921 | 142 | 524 | 41.1 | 572 | 32.88 | 0.697 | 0.063 |

Table 52: Comparison of central area base model outputs for 'drop-one' analyses (part 1).

| Quantity | Base | Drop NonTrawl | Drop Comm Discard | Drop Rec PC | Drop Rec PR | Drop Rec Discard |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N.Parms | 118 | 114 | 115 | 118 | 118 | 112 |
| TOTAL | 523.4 | 517.1 | 480.4 | 352.7 | 382.8 | 505.2 |
| Survey | 20.6 | 20.6 | 20.7 | 18.0 | 9.9 | 20.2 |
| Length_comp | 319.3 | 313.1 | 275.7 | 249.5 | 213.6 | 301.5 |
| Age_comp | 180.8 | 180.7 | 180.2 | 82.7 | 158.2 | 180.8 |
| Recruitment | 2.1 | 2.1 | 3.2 | 2.0 | 0.7 | 2.3 |
| Parm_priors | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
| L_at_Amax_Fem_GP_1 | 54.65 | 54.71 | 54.42 | 52.46 | 57.82 | 54.60 |
| VonBert_K_Fem_GP_1 | 0.14 | 0.14 | 0.15 | 0.16 | 0.13 | 0.15 |
| L_at_Amax_Mal_GP_1 | -0.10 | -0.10 | -0.10 | -0.05 | -0.15 | -0.10 |
| VonBert_K_Mal_GP_1 | 0.25 | 0.25 | 0.24 | 0.16 | 0.35 | 0.24 |
| SR_LN(R0) | 6.48 | 6.48 | 6.47 | 6.51 | 6.48 | 6.48 |
| Q_extraSD_Rec_PR_Central(5) | 0.38 | 0.38 | 0.38 | 0.36 | 0.38 | 0.38 |
| Size_DblN_peak_Comm_nonTwl(1) | 29.96 | 29.96 | 29.96 | 29.56 | 28.88 | 29.93 |
| Size_DblN_ascend_se_Comm_nonTwl(1) | 2.81 | 2.81 | 2.82 | 2.71 | 2.51 | 2.81 |
| Size_DblN_descend_se_Comm_nonTwl(1) | 4.50 | 4.50 | 4.50 | 4.67 | 4.75 | 4.51 |
| Size_DblN_end_logit_Comm_nonTwl(1) | -1.32 | -1.32 | -1.29 | -1.71 | -1.74 | -1.33 |
| Size_DblN_peak_Comm_Discard(3) | 27.50 | 27.52 | 27.50 | 27.40 | 27.64 | 27.50 |
| Size_DblN_ascend_se_Comm_Discard(3) | 3.43 | 3.43 | 3.43 | 3.42 | 3.44 | 3.43 |
| Size_DblN_descend_se_Comm_Discard(3) | 3.97 | 3.98 | 3.97 | 3.95 | 3.97 | 3.97 |
| Size_DblN_peak_Rec_PC_Central(4) | 32.99 | 33.02 | 32.98 | 32.87 | 32.83 | 32.98 |
| Size_DblN_ascend_se_Rec_PC_Central(4) | 3.52 | 3.52 | 3.51 | 3.49 | 3.52 | 3.52 |
| Size_DblN_descend_se_Rec_PC_Central(4) | 2.06 | 2.04 | 2.06 | 2.15 | 1.96 | 2.06 |
| Size_DblN_end_logit_Rec_PC_Central(4) | -2.05 | -2.02 | -2.04 | -2.23 | -1.95 | -2.06 |
| Size_DblN_peak_Rec_Disc_Central(6) | 24.28 | 24.30 | 24.35 | 24.20 | 24.75 | 24.28 |
| Size_DblN_ascend_se_Rec_Disc_Central(6) | 3.59 | 3.59 | 3.60 | 3.58 | 3.63 | 3.59 |
| Size_DblN_descend_se_Rec_Disc_Central(6) | 4.23 | 4.24 | 4.22 | 4.21 | 4.16 | 4.23 |
| Size_DblN_peak_CCFRP(7) | 32.81 | 32.84 | 32.81 | 32.66 | 32.73 | 32.79 |
| Size_DblN_ascend_se_CCFRP(7) | 4.01 | 4.01 | 4.01 | 4.00 | 3.98 | 4.01 |
| Size_DblN_descend_se_CCFRP(7) | 2.17 | 2.16 | 2.17 | 2.21 | 2.23 | 2.18 |
| Size_DblN_end_logit_CCFRP(7) | -4.67 | -4.65 | -4.65 | -4.74 | -4.65 | -4.68 |
| Size_DbIN_peak_DWV_Onboard_CPFV(8) | 29.38 | 29.38 | 29.38 | 29.39 | 29.41 | 29.37 |
| Size_DblN_ascend_se_DWV_Onboard_CPFV(8) | 2.72 | 2.71 | 2.72 | 2.71 | 2.73 | 2.72 |
| Size_DblN_descend_se_DWV_Onboard_CPFV(8) | 3.08 | 3.03 | 3.08 | 3.12 | 3.10 | 3.09 |
| Size_DblN_end_logit_DWV_Onboard_CPFV(8) | -1.25 | -1.21 | -1.24 | -1.43 | -1.65 | -1.27 |
| Bratio_2023 | 0.420 | 0.403 | 0.425 | 0.508 | 0.404 | 0.432 |
| SSB_unfished | 344.5 | 345.8 | 337.5 | 300.1 | 421.2 | 343.2 |
| Totbio_unfished | 1952.2 | 1953.5 | 1932.8 | 1966.3 | 2021.5 | 1949.5 |
| Recr_unfished | 651.0 | 651.6 | 646.4 | 672.4 | 654.4 | 650.0 |
| Dead_Catch_SPR | 64.8 | 64.9 | 64.3 | 64.8 | 65.7 | 64.6 |
| OFLCatch_2023 | 48.5 | 47.2 | 47.6 | 53.9 | 55.0 | 48.6 |

Table 53: Comparison of central area base model outputs for 'drop-one' analyses (part 2).

| Quantity | Base | Drop CCFRP | Drop DWV Onboard | Drop PC <br> Onboard | Drop Lea Research |
| :---: | :---: | :---: | :---: | :---: | :---: |
| N.Parms | 118 | 118 | 114 | 118 | 118 |
| TOTAL | 523.4 | 453.3 | 492.8 | 496.2 | 455.9 |
| Survey | 20.6 | 18.9 | 4.1 | -1.1 | 20.8 |
| Length_comp | 319.3 | 291.0 | 306.9 | 314.3 | 275.5 |
| Age_comp | 180.8 | 138.1 | 180.7 | 180.6 | 158.4 |
| Recruitment | 2.1 | 4.9 | 0.6 | 1.9 | 0.6 |
| Parm_priors | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
| L_at_Amax_Fem_GP_1 | 54.65 | 53.90 | 54.78 | 54.54 | 56.34 |
| VonBert_K_Fem_GP_1 | 0.14 | 0.15 | 0.14 | 0.15 | 0.13 |
| L_at_Amax_Mal_GP_1 | -0.10 | -0.09 | -0.10 | -0.10 | -0.12 |
| VonBert_K_Mal_GP_1 | 0.25 | 0.24 | 0.25 | 0.24 | 0.27 |
| SR_LN(R0) | 6.48 | 6.43 | 6.55 | 6.50 | 6.51 |
| Q_extraSD_Rec_PR_Central(5) | 0.38 | 0.18 | 0.36 | 0.43 | 0.39 |
| Size_DblN_peak_Comm_nonTwl(1) | 29.96 | 30.55 | 30.66 | 30.18 | 30.07 |
| Size_DblN_ascend_se_Comm_nonTwl(1) | 2.81 | 2.96 | 2.97 | 2.87 | 2.83 |
| Size_DblN_descend_se_Comm_nonTwl(1) | 4.50 | 4.45 | 5.08 | 4.48 | 4.62 |
| Size_DblN_end_logit_Comm_nonTwl(1) | -1.32 | -1.25 | -1.15 | -1.28 | -1.52 |
| Size_DblN_peak_Comm_Discard(3) | 27.50 | 27.96 | 27.34 | 27.61 | 27.65 |
| Size_DblN_ascend_se_Comm_Discard(3) | 3.43 | 3.52 | 3.41 | 3.44 | 3.45 |
| Size_DblN_descend_se_Comm_Discard(3) | 3.97 | 4.15 | 3.93 | 4.01 | 4.00 |
| Size_DblN_peak_Rec_PC_Central(4) | 32.99 | 33.66 | 32.76 | 33.16 | 33.14 |
| Size_DblN_ascend_se_Rec_PC_Central(4) | 3.52 | 3.58 | 3.51 | 3.53 | 3.52 |
| Size_DblN_descend_se_Rec_PC_Central(4) | 2.06 | 1.64 | 2.17 | 1.96 | 2.00 |
| Size_DblN_end_logit_Rec_PC_Central(4) | -2.05 | -1.59 | -2.23 | -1.89 | -1.95 |
| Size_DblN_peak_Rec_Disc_Central(6) | 24.28 | 24.22 | 24.14 | 24.32 | 24.47 |
| Size_DblN_ascend_se_Rec_Disc_Central(6) | 3.59 | 3.60 | 3.57 | 3.59 | 3.62 |
| Size_DblN_descend_se_Rec_Disc_Central(6) | 4.23 | 4.50 | 4.20 | 4.29 | 4.25 |
| Size_DblN_peak_CCFRP(7) | 32.81 | 30.00 | 32.55 | 32.81 | 32.98 |
| Size_DblN_ascend_se_CCFRP(7) | 4.01 | 4.03 | 4.00 | 4.01 | 4.00 |
| Size_DblN_descend_se_CCFRP(7) | 2.17 | 5.02 | 2.25 | 2.17 | 2.12 |
| Size_DblN_end_logit_CCFRP(7) | -4.67 | 0.00 | -4.89 | -4.61 | -4.59 |
| Size_DblN_peak_DWV_Onboard_CPFV(8) | 29.38 | 29.57 | 29.38 | 29.49 | 29.57 |
| Size_DbIN_ascend_se_DWV_Onboard_CPFV(8) | 2.72 | 2.76 | 2.72 | 2.74 | 2.76 |
| Size_DblN_descend_se_DWV_Onboard_CPFV(8) | 3.08 | 2.92 | 3.08 | 3.01 | 3.04 |
| Size_DblN_end_logit_DWV_Onboard_CPFV(8) | -1.25 | -0.76 | -1.25 | -1.08 | -1.11 |
| Bratio_2023 | 0.420 | 0.065 | 0.597 | 0.366 | 0.339 |
| SSB_unfished | 344.5 | 320.3 | 373.7 | 348.6 | 386.1 |
| Totbio_unfished | 1952.2 | 1872.6 | 2102.3 | 1986.2 | 2018.1 |
| Recr_unfished | 651.0 | 621.8 | 698.8 | 665.6 | 670.2 |
| Dead_Catch_SPR | 64.8 | 65.0 | 68.9 | 66.6 | 66.2 |
| OFLCatch_2023 | 48.5 | 10.6 | 64.4 | 50.3 | 43.7 |

Table 54: Comparison of central base model sensitivity analyses.

| Quantity | Base (Francis) | M-I weights | share M | Logistic Commercial | Est. all growth | Est. M ( $\mathrm{f}+\mathrm{m}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N.Parms | 118 | 118 | 118 | 116 | 124 | 120 |
| TOTAL | 523.4 | 814.1 | 519.2 | 501.1 | 520.0 | 523.2 |
| Survey | 20.6 | 34.8 | 20.6 | 21.2 | 19.7 | 20.3 |
| Length_comp | 319.3 | 518.5 | 319.7 | 314.3 | 318.7 | 319.0 |
| Age_comp | 180.8 | 258.6 | 176.3 | 162.9 | 178.7 | 181.0 |
| Recruitment | 2.1 | 1.6 | 2.1 | 2.2 | 2.4 | 2.2 |
| Parm_priors | 0.5 | 0.5 | 0.4 | 0.5 | 0.5 | 0.7 |
| NatM_uniform_Fem_GP_1 | 0.211 | 0.211 | 0.206 | 0.211 | 0.211 | 0.224 |
| L_at_Amin_Fem_GP_1 | 5 | 5 | 5 | 5 | 3 | 5 |
| L_at_Amax_Fem_GP_1 | 54.7 | 53.9 | 54.3 | 54.3 | 55.0 | 55.0 |
| VonBert_K_Fem_GP_1 | 0.145 | 0.145 | 0.147 | 0.147 | 0.154 | 0.143 |
| CV_young_Fem_GP_1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.110 | 0.1 |
| CV_old_Fem_GP_1 | 0.082 | 0.082 | 0.082 | 0.082 | 0.048 | 0.082 |
| NatM_uniform_Mal_GP_1 | -0.053 | -0.053 | 0.000 | -0.053 | -0.053 | -0.086 |
| L_at_Amin_Mal_GP_1 | 0 | 0 | 0 | 0 | 0.544 | 0 |
| L_at_Amax_Mal_GP_1 | -0.100 | -0.097 | -0.091 | -0.096 | -0.107 | -0.106 |
| VonBert_K_Mal_GP_1 | 0.246 | 0.241 | 0.226 | 0.237 | 0.184 | 0.259 |
| CV_young_Mal_GP_1 | 0 | 0 | 0 | 0 | 0.0230264 | 0 |
| CV_old_Mal_GP_1 | -0.319 | -0.319 | -0.319 | -0.319 | -0.368 | -0.319 |
| SR_LN(R0) ${ }^{-}$ | 6.479 | 6.520 | 6.484 | 6.474 | 6.458 | 6.525 |
| Q_extraSD_Rec_PR_Central(5) | 0.378 | 0.390 | 0.377 | 0.379 | 0.379 | 0.377 |
| Size_DblN_peak_Comm_nonTwl(1) | 29.956 | 29.886 | 29.964 | NA | 29.872 | 29.975 |
| Size_DblN_top_logit_Comm_nonTwl(1) | -6 | -6 | -6 | NA | -6 | -6 |
| Size_DblN_ascend_se_Comm_nonTwl(1) | 2.815 | 2.742 | 2.818 | NA | 2.792 | 2.816 |
| Size_DblN_descend_se_Comm_nonTwl(1) | 4.502 | 4.526 | 4.489 | NA | 4.505 | 4.544 |
| Size_DblN_start_logit_Comm_nonTwl(1) | -10 | -10 | -10 | NA | -10 | -10 |
| Size_DblN_end_logit_Comm_nonTwl(1) | -1.32 | -1.20 | -1.29 | NA | -1.28 | -1.35 |
| Size_DblN_peak_Comm_Discard(3) | 27.50 | 27.62 | 27.50 | 27.52 | 27.49 | 27.53 |
| Size_DblN_ascend_se_Comm_Discard(3) | 3.43 | 3.45 | 3.43 | 3.44 | 3.43 | 3.43 |
| Size_DblN_descend_se_Comm_Discard(3) | 3.97 | 4.02 | 3.98 | 3.98 | 3.96 | 3.98 |
| Size_DblN_peak_Rec_PC_Central(4) | 32.99 | 33.21 | 33.00 | 33.02 | 32.95 | 33.02 |
| Size_DblN_ascend_se_Rec_PC_Central(4) | 3.52 | 3.55 | 3.52 | 3.52 | 3.51 | 3.52 |
|  | 2.06 | 1.85 | 2.06 | 2.02 | 2.10 | 2.03 |
| Size_DblN_end_logit_Rec_PC_Central(4) | -2.05 | -1.76 | -2.04 | -1.99 | -2.11 | -2.01 |
| Size_DblN_peak_Rec_Disc_Central(6) | 24.28 | 24.31 | 24.27 | 24.30 | 24.31 | 24.32 |
| Size_DblN_ascend_se_Rec_Disc_Central(6) | 3.59 | 3.63 | 3.59 | 3.59 | 3.60 | 3.59 |
| Size_DblN_descend_se_Rec_Disc_Central(6) | 4.23 | 4.30 | 4.24 | 4.24 | 4.21 | 4.24 |
| Size_DblN_peak_CCFRP(7) | 32.81 | 32.39 | 32.81 | 32.85 | 32.79 | 32.84 |
| Size_Dbln_ascend_se_CCFRP(7) | 4.01 | 4.05 | 4.01 | 4.01 | 4.01 | 4.00 |
| Size_DblN_descend_se_CCFRP(7) | 2.17 | 2.41 | 2.17 | 2.15 | 2.18 | 2.16 |
| Size_DblN_end_logit_CCFRP(7) | -4.67 | -4.55 | -4.67 | -4.61 | -4.73 | -4.62 |
| Size_DblN_peak_DWV_Onboard_CPFV(8) | 29.38 | 30.37 | 29.38 | 29.27 | 29.41 | 29.42 |
| Size_DblN_ascend_se_DWV_Onboard_CPFV(8) | 2.72 | 3.08 | 2.72 | 2.69 | 2.72 | 2.73 |
| Size_DblN_descend_se_DWV_Onboard_CPFV(8) | 3.08 | 2.86 | 3.08 | 2.93 | 3.08 | 3.05 |
| Size_DblN_end_logit_DWV_O-Obboard_CPFV(8) | -1.25 | -0.75 | -1.25 | -1.16 | -1.32 | -1.19 |
| Size_inflection_Comm_nonTwl(1) | NA | NA | NA | 25.41 | NA | NA |
| Size_95\%width_Comm_nonTwl(1) | NA | NA | NA | 2.57 | NA | NA |
| Bratio_2023 - - | 0.420 | 0.329 | 0.415 | 0.394 | 0.439 | 0.436 |
| SSB_unfished | 344.5 | 331.1 | 364.6 | 333.0 | 349.2 | 309.7 |
| Totbio_unfished | 1952 | 1964 | 1959 | 1925 | 1918 | 1881 |
| Recr_unfished | 651.0 | 678.5 | 654.3 | 647.8 | 638.0 | 681.7 |
| Dead_Catch_SPR | 64.8 | 66.5 | 64.7 | 64.4 | 65.1 | 65.0 |
| OFLCatch_2023 | 48.5 | 44.3 | 48.1 | 46.3 | 49.8 | 49.4 |

Table 55: Steepness profile for the central California base model (part 1, values $0.25-0.6$ ). Note that steepness values of 0.25 and 0.3 are inconsistent with a proxy MSY harvest rate of F(SPR_50\%).

| Quantity | Beverton-Holt Steepness |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.25 | 0.3 | 0.35 | 0.4 | 0.45 | 0.5 | 0.55 | 0.6 |
| N.Parms | 118 | 118 | 118 | 118 | 118 | 118 | 118 | 118 |
| TOTAL | 537.2 | 533.8 | 531.3 | 529.3 | 527.7 | 526.4 | 525.3 | 524.5 |
| Survey | 16.7 | 17.1 | 17.5 | 17.9 | 18.3 | 18.8 | 19.2 | 19.6 |
| Length_comp | 326.9 | 325.2 | 323.7 | 322.6 | 321.6 | 320.9 | 320.4 | 319.9 |
| Age_comp | 183.9 | 183.3 | 182.8 | 182.4 | 182.0 | 181.7 | 181.5 | 181.2 |
| Recruitment | 5.0 | 5.0 | 4.8 | 4.5 | 4.1 | 3.7 | 3.3 | 2.9 |
| Parm_priors | 4.7 | 3.3 | 2.5 | 2.0 | 1.6 | 1.3 | 1.0 | 0.8 |
| L_at_Amax_Fem_GP_1 | 54.4 | 54.4 | 54.4 | 54.4 | 54.5 | 54.5 | 54.5 | 54.5 |
| VonBert_K_Fem_GP_1 | 0.149 | 0.149 | 0.148 | 0.148 | 0.147 | 0.147 | 0.147 | 0.146 |
| L_at_Amax_Mal_GP_1 | -0.106 | -0.106 | -0.105 | -0.104 | -0.103 | -0.102 | -0.101 | -0.101 |
| VonBert_K_Mal_GP_1 | 0.259 | 0.257 | 0.255 | 0.253 | 0.251 | 0.249 | 0.248 | 0.247 |
| SR_LN(R0) | 7.881 | 7.515 | 7.282 | 7.111 | 6.975 | 6.860 | 6.760 | 6.670 |
| Q_extraSD_Rec_PR_Central(5) | 0.316 | 0.324 | 0.331 | 0.339 | 0.346 | 0.352 | 0.359 | 0.364 |
| Size_DblN_peak_Comm_nonTwl(1) | 28.24 | 28.44 | 28.63 | 28.83 | 29.01 | 29.17 | 29.33 | 29.48 |
| Size_DblN_ascend_se_Comm_nonTwl(1) | 2.36 | 2.41 | 2.46 | 2.52 | 2.57 | 2.61 | 2.65 | 2.69 |
| Size_DblN_descend_se_Comm_nonTwl(1) | 4.46 | 4.48 | 4.49 | 4.50 | 4.51 | 4.52 | 4.52 | 4.53 |
| Size_DblN_end_logit_Comm_nonTwl(1) | -2.14 | -2.12 | -2.06 | -1.98 | -1.89 | -1.78 | -1.68 | -1.57 |
| Size_DblN_peak_Comm_Discard(3) | 27.02 | 27.09 | 27.16 | 27.22 | 27.27 | 27.31 | 27.36 | 27.40 |
| Size_DblN_ascend_se_Comm_Discard(3) | 3.38 | 3.39 | 3.39 | 3.40 | 3.40 | 3.41 | 3.41 | 3.42 |
| Size_DblN_descend_se_Comm_Discard(3) | 3.83 | 3.85 | 3.87 | 3.89 | 3.91 | 3.92 | 3.93 | 3.95 |
| Size_DblN_peak_Rec_PC_Central(4) | 32.20 | 32.33 | 32.43 | 32.53 | 32.62 | 32.69 | 32.77 | 32.84 |
| Size_DblN_ascend_se_Rec_PC_Central(4) | 3.48 | 3.48 | 3.48 | 3.49 | 3.49 | 3.50 | 3.50 | 3.51 |
| Size_DblN_descend_se_Reç_PC _ $_{\text {- }}$ Central(4) | 2.42 | 2.38 | 2.34 | 2.30 | 2.26 | 2.22 | 2.18 | 2.15 |
|  | -2.76 | -2.66 | -2.56 | -2.47 | -2.39 | -2.32 | -2.25 | -2.19 |
| Size_DblN_peak_Rec_Disc_Central(6) | 23.80 | 23.89 | 23.96 | 24.02 | 24.07 | 24.11 | 24.16 | 24.20 |
| Size_DblN_ascend_se_Rec_Disc_Central(6) | 3.51 | 3.53 | 3.54 | 3.55 | 3.56 | 3.56 | 3.57 | 3.57 |
| Size_DblN_descend_se_Rec_Disc_Central(6) | 4.14 | 4.15 | 4.17 | 4.18 | 4.19 | 4.20 | 4.21 | 4.22 |
| Size_DblN_peak_CC̄FRP(7) - | 32.10 | 32.22 | 32.32 | 32.40 | 32.48 | 32.55 | 32.61 | 32.67 |
| Size_DblN_ascend_se_CCFRP(7) | 3.99 | 3.99 | 3.99 | 3.99 | 4.00 | 4.00 | 4.00 | 4.00 |
| Size_DblN_descend_se_CCFRP(7) | 2.37 | 2.34 | 2.31 | 2.29 | 2.27 | 2.25 | 2.23 | 2.21 |
| Size_DblN_end_logit_CCFRP(7) | -5.32 | -5.21 | -5.12 | -5.04 | -4.97 | -4.90 | -4.84 | -4.79 |
| Size_DblN_peak_DWV_Onboard_CPFV(8) | 28.40 | 28.53 | 28.64 | 28.75 | 28.86 | 28.96 | 29.06 | 29.15 |
|  | 2.56 | 2.58 | 2.59 | 2.61 | 2.63 | 2.64 | 2.66 | 2.68 |
| Size_DblN_descend_se_DWV_Onboard_CPFV(8) | 3.29 | 3.28 | 3.27 | 3.26 | 3.24 | 3.22 | 3.19 | 3.17 |
| Size_DblN_end_logit_DWV_Onboard_CPFV(8) | -2.45 | -2.30 | -2.17 | -2.04 | -1.91 | -1.79 | -1.66 | -1.54 |
| Bratio_2023 | 0.55 | 0.50 | 0.47 | 0.46 | 0.45 | 0.44 | 0.43 | 0.43 |
| SSB_unfished | 1404 | 972 | 769 | 647 | 564 | 502 | 454 | 415 |
| Totbio_unfished | 7976 | 5521 | 4370 | 3680 | 3209 | 2860 | 2587 | 2364 |
| Recr_unfished | 2648 | 1835 | 1454 | 1225 | 1069 | 954 | 863 | 789 |
| Dead_Catch_SPR | 0 | 0 | 21 | 54 | 66 | 70 | 71 | 70 |
| OFLCatch_2023 | 168 | 113 | 91 | 78 | 69 | 63 | 59 | 55 |

Table 56: Steepness profile for the central California base model (part 2, values $0.65-0.95$ ). Note that steepness values of 0.25 and 0.3 are inconsistent with a proxy MSY harvest rate of F(SPR_50\%).

| Quantity | Beverton-Holt Steepness |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.65 | 0.7 | 0.75 | 0.8 | 0.85 | 0.9 | 0.95 |
| N.Parms | 118 | 118 | 118 | 118 | 118 | 118 | 118 |
| TOTAL | 523.9 | 523.5 | 523.3 | 523.4 | 523.7 | 524.305 | 525.2 |
| Survey | 20.0 | 20.4 | 20.8 | 21.1 | 21.2 | 21.0655 | 20.6 |
| Length_comp | 319.6 | 319.4 | 319.3 | 319.2 | 319.3 | 319.431 | 319.8 |
| Age_comp | 181.0 | 180.9 | 180.7 | 180.7 | 180.7 | 180.725 | 180.9 |
| Recruitment | 2.5 | 2.2 | 2.0 | 2.0 | 2.1 | 2.52053 | 3.1 |
| Parm_priors | 0.7 | 0.6 | 0.5 | 0.4 | 0.5 | 0.56246 | 0.9 |
| L_at_Amax_Fem_GP_1 | 54.6 | 54.6 | 54.7 | 54.8 | 54.8 | 54.7951 | 54.7 |
| VonBert_K_Fem_GP_1 | 0.146 | 0.145 | 0.145 | 0.144 | 0.144 | 0.143931 | 0.145 |
| L_at_Amax_Mal_GP_1 | -0.100 | -0.100 | -0.100 | -0.101 | -0.101 | -0.100728 | -0.100 |
| VonBert_K_Mal_GP_1 | 0.246 | 0.246 | 0.246 | 0.247 | 0.248 | 0.247427 | 0.246 |
| SR_LN( R 0 ) | 6.587 | 6.509 | 6.434 | 6.363 | 6.299 | 6.25022 | 6.231 |
| Q_extraSD_Rec_PR_Central(5) | 0.370 | 0.376 | 0.381 | 0.385 | 0.387 | 0.386193 | 0.381 |
| Size_DblN_peak_Comm_nonTwl(1) | 29.69 | 29.89 | 30.05 | 30.19 | 30.28 | 30.26 | 30.10 |
| Size_DblN_ascend_se_Comm_nonTwl(1) | 2.75 | 2.80 | 2.84 | 2.87 | 2.89 | 2.88667 | 2.85 |
| Size_DblN_descend_se_Comm_nonTwl(1) | 4.51 | 4.50 | 4.50 | 4.51 | 4.52 | 4.53655 | 4.55 |
| Size_DblN_end_logit_Comm_nonTwl(1) | -1.46 | -1.36 | -1.27 | -1.19 | -1.16 | -1.19975 | -1.35 |
| Size_DblN_peak_Comm_Discard(3) | 27.44 | 27.48 | 27.52 | 27.54 | 27.55 | 27.531 | 27.48 |
| Size_DblN_ascend_se_Comm_Discard(3) | 3.43 | 3.43 | 3.44 | 3.44 | 3.44 | 3.43728 | 3.43 |
| Size_DblN_descend_se_Comm_Discard(3) | 3.96 | 3.97 | 3.98 | 3.99 | 3.99 | 3.9851 | 3.97 |
| Size_DblN_peak_Rec_- ${ }_{\text {- }}$ C_Central(4) | 32.91 | 32.97 | 33.03 | 33.07 | 33.09 | 33.0642 | 32.99 |
| Size_DblN_ascend_se_Rec_PC_Central(4) | 3.51 | 3.51 | 3.52 | 3.52 | 3.52 | 3.52205 | 3.52 |
| Size_DblN_descend_se_Rec_PC_Central(4) | 2.11 | 2.07 | 2.04 | 2.01 | 1.99 | 2.01092 | 2.06 |
| Size_DblN_end_logit_Rec_PC_Central(4) | -2.13 | -2.07 | -2.02 | -1.98 | -1.96 | -1.97943 | -2.04 |
| Size_DblN_peak_Rec_Disc_Central(6) | 24.23 | 24.27 | 24.29 | 24.31 | 24.32 | 24.2897 | 24.24 |
| Size_DblN_ascend_se_Rec_Disc_Central(6) | 3.58 | 3.59 | 3.59 | 3.59 | 3.59 | 3.59218 | 3.59 |
| Size_DblN_descend_se_Rec_Disc_Central(6) | 4.22 | 4.23 | 4.24 | 4.24 | 4.24 | 4.23701 | 4.22 |
|  | 32.73 | 32.79 | 32.84 | 32.87 | 32.88 | 32.8389 | 32.76 |
| Size_DblN_ascend_se_CCFRP(7) | 4.00 | 4.00 | 4.01 | 4.01 | 4.01 | 4.00647 | 4.00 |
| Size_DblN_descend_se_CCFRP(7) | 2.19 | 2.18 | 2.16 | 2.15 | 2.15 | 2.15994 | 2.19 |
| Size_DblN_end_logit_CCFRP(7) | -4.73 | -4.69 | -4.64 | -4.61 | -4.60 | -4.62538 | -4.69 |
| Size_DblN_peak_DWV_Onboard_CPFV(8) | 29.25 | 29.34 | 29.44 | 29.52 | 29.58 | 29.586 | 29.51 |
| Size_DblN_ascend_se_DWV_Onboard_CPFV(8) | 2.70 | 2.71 | 2.73 | 2.75 | 2.76 | 2.75706 | 2.74 |
| Size_DblN_descend_se_DWV_Onboard_CPFV(8) | 3.13 | 3.10 | 3.06 | 3.02 | 3.00 | 3.01757 | 3.07 |
| Size_DblN_end_logit_DWV_Ōnboard_CPFV(8) | -1.42 | -1.30 | -1.18 | -1.08 | -1.01 | -1.03032 | -1.16 |
| Bratio_2023 | 0.42 | 0.42 | 0.42 | 0.43 | 0.46 | 0.51 | 0.58 |
| SSB_unfished | 383 | 355 | 330 | 309 | 290 | 276 | 270 |
| Totbio_unfished | 2175 | 2012 | 1868 | 1742 | 1634 | 1557 | 1526 |
| Recr_unfished | 726 | 671 | 623 | 580 | 544 | 518 | 508 |
| Dead_Catch_SPR | 68 | 66 | 63 | 61 | 58 | 56 | 56 |
| OFLCTatch_2023 | 52 | 49 | 47 | 46 | 46 | 47 | 50 |

Table 57: Profile over unfished recruitment $(\log (\mathrm{R} 0))$ for the central California base model (part 1).

| Quantity | $\log (\mathrm{R} 0)$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5.8 | 5.9 | 6 | 6.1 | 6.2 | 6.3 | 6.4 | 6.5 |
| N.Parms | 117 | 117 | 117 | 117 | 117 | 117 | 117 | 117 |
| TOTAL | 586.7 | 573.6 | 561.7 | 550.8 | 540.0 | 530.4 | 524.7 | 523.5 |
| Survey | 19.2 | 19.2 | 19.2 | 19.2 | 19.2 | 19.4 | 20.0 | 20.7 |
| Length_comp | 331.5 | 328.7 | 326.2 | 323.7 | 321.5 | 320.1 | 319.2 | 319.6 |
| Age_comp | 183.6 | 182.9 | 182.5 | 183.3 | 183.4 | 181.3 | 181.0 | 180.8 |
| Recruitment | 52.0 | 42.3 | 33.3 | 24.1 | 15.5 | 9.1 | 4.1 | 1.9 |
| Parm_priors | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
| L_at_Amax_Fem_GP_1 | 59.5 | 58.5 | 57.8 | 57.3 | 56.9 | 56.0 | 55.2 | 54.5 |
| VonBert_K_Fem_GP_1 | 0.123 | 0.127 | 0.131 | 0.133 | 0.135 | 0.139 | 0.143 | 0.146 |
| L_at_Amax_Mal_GP_1 | -0.200 | -0.181 | -0.167 | -0.158 | -0.149 | -0.130 | -0.113 | -0.097 |
| VonBert_K_Mal_GP_1 | 0.465 | 0.423 | 0.390 | 0.368 | 0.349 | 0.307 | 0.272 | 0.240 |
| Q_extraSD_Rec_PR_Central(5) | 0.329 | 0.333 | 0.337 | 0.340 | 0.343 | 0.351 | 0.365 | 0.380 |
| Size_DblN_peak_Comm_nonTwl(1) | 30.532 | 30.466 | 30.423 | 30.388 | 30.362 | 30.339 | 30.179 | 29.856 |
| Size_DblN_ascend_se_Comm_nonTwl(1) | 2.95 | 2.93 | 2.92 | 2.91 | 2.91 | 2.90 | 2.87 | 2.79 |
| Size_DblN_descend_se_Comm_nonTwl(1) | 4.77 | 4.75 | 4.77 | 4.92 | 4.96 | 4.73 | 4.56 | 4.50 |
| Size_DblN_end_logit_Comm_nonTwl(1) | -0.54 | -0.68 | -0.85 | -1.16 | -1.30 | -1.22 | -1.21 | -1.37 |
| Size_DblN_peak_Comm_Discard(3) | 27.72 | 27.69 | 27.67 | 27.65 | 27.63 | 27.60 | 27.56 | 27.47 |
| Size_DblN_ascend_se_Comm_Discard(3) | 3.45 | 3.45 | 3.45 | 3.45 | 3.45 | 3.44 | 3.44 | 3.43 |
| Size_DblN_descend_se_Comm_Discard(3) | 4.04 | 4.03 | 4.03 | 4.02 | 4.01 | 4.00 | 3.99 | 3.97 |
| Size_DblN_peak_Rec_PC_Central(4) | 33.21 | 33.19 | 33.16 | 33.14 | 33.12 | 33.09 | 33.06 | 32.96 |
| Size_DblN_ascend_se_Rec_PC_Central(4) | 3.52 | 3.52 | 3.52 | 3.52 | 3.52 | 3.52 | 3.52 | 3.51 |
| Size_DblN_descend_se_Rec_PC_Central(4) | 2.01 | 2.01 | 2.01 | 2.02 | 2.03 | 2.03 | 2.04 | 2.07 |
| Size_DblN_end_logit_Rec_PC_Central(4) | -1.96 | -1.96 | -1.97 | -1.99 | -2.01 | -2.02 | -2.02 | -2.07 |
| Size_DblN_peak_Rec_Disc_Central(6) | 24.45 | 24.44 | 24.43 | 24.42 | 24.42 | 24.39 | 24.34 | 24.25 |
| Size_DblN_ascend_se_Rec_Disc_Central(6) | 3.62 | 3.62 | 3.62 | 3.62 | 3.62 | 3.61 | 3.60 | 3.58 |
| Size_DblN_descend_se_Rec_Disc_Central(6) | 4.41 | 4.38 | 4.36 | 4.34 | 4.32 | 4.30 | 4.26 | 4.22 |
| Size_DblN_peak_CCFRP(7) | 33.49 | 33.42 | 33.35 | 33.28 | 33.21 | 33.11 | 32.97 | 32.75 |
| Size_DblN_ascend_se_CCFRP(7) | 4.04 | 4.04 | 4.04 | 4.03 | 4.03 | 4.02 | 4.01 | 4.00 |
| Size_DblN_descend_se_CCFRP(7) | 1.91 | 1.94 | 1.97 | 2.00 | 2.02 | 2.06 | 2.11 | 2.19 |
| Size_DblN_end_logit_CCFRP(7) | -4.40 | -4.42 | -4.45 | -4.48 | -4.51 | -4.54 | -4.59 | -4.70 |
| Size_DblN_peak_DWV_Onboard_CPFV(8) | 28.90 | 28.98 | 29.04 | 29.07 | 29.09 | 29.17 | 29.30 | 29.38 |
| Size_DblN_ascend_se_DWV_Onboard_CPFV(8) | 2.58 | 2.60 | 2.62 | 2.63 | 2.64 | 2.66 | 2.70 | 2.72 |
| Size_DblN_descend_se_DWV_Onboard_CPFV(8) | 3.28 | 3.24 | 3.21 | 3.20 | 3.20 | 3.16 | 3.11 | 3.08 |
| Size_DblN_end_logit_DWV_Onboard_CPFV(8) | -1.33 | -1.34 | -1.34 | -1.35 | -1.36 | -1.33 | -1.28 | -1.27 |
| Bratio_2023 | 0.38 | 0.37 | 0.36 | 0.35 | 0.33 | 0.34 | 0.36 | 0.45 |
| SSB_unfished | 240.48 | 251.37 | 265.68 | 285.69 | 308.37 | 320.40 | 333.59 | 348.23 |
| Totbio_unfished | 1055 | 1153 | 1263 | 1390 | 1531 | 1672 | 1823 | 1990 |
| Recr_unfished | 330 | 365 | 403 | 446 | 493 | 545 | 602 | 665 |
| Dead_Catch_SPR | 35 | 38 | 42 | 46 | 51 | 56 | 61 | 66 |
| OFLCatch_2023 | 24 | 25 | 27 | 28 | 30 | 33 | 40 | 52 |

Table 58: Profile over unfished recruitment $(\log (\mathrm{R} 0))$ for the central California base model (part 2 ).

| Quantity | $\log (\mathrm{R} 0)$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 6.6 | 6.7 | 6.8 | 6.9 | 7 | 7.1 | 7.2 |
| N.Parms | 117 | 117 | 117 | 117 | 117 | 117 | 117 |
| TOTAL | 525.0 | 526.3 | 527.4 | 528.2 | 528.9 | 529.5 | 529.9 |
| Survey | 19.5 | 18.6 | 18.0 | 17.5 | 17.2 | 17.0 | 16.8 |
| Length_comp | 321.1 | 322.5 | 323.6 | 324.4 | 325.1 | 325.7 | 326.2 |
| Age_comp | 181.3 | 181.9 | 182.3 | 182.6 | 182.8 | 183.0 | 183.2 |
| Recruitment | 2.5 | 2.9 | 3.1 | 3.2 | 3.2 | 3.2 | 3.3 |
| Parm_priors | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
| L_at_Amax_Fem_GP_1 | 54.3 | 54.3 | 54.3 | 54.3 | 54.3 | 54.3 | 54.3 |
| VonBert_K_Fem_GP_1 | 0.147 | 0.148 | 0.148 | 0.149 | 0.149 | 0.149 | 0.149 |
| L_at_Amax_Mal_GP_1 | -0.095 | -0.097 | -0.099 | -0.100 | -0.101 | -0.102 | -0.102 |
| VonBert_K_Mal_GP_1 | 0.236 | 0.241 | 0.244 | 0.246 | 0.248 | 0.249 | 0.250 |
| Q_extraSD_Rec_PR_Central(5) | 0.365 | 0.352 | 0.344 | 0.338 | 0.334 | 0.331 | 0.328 |
| Size_DblN_peak_Comm_nonTwl(1) | 29.180 | 28.876 | 28.691 | 28.557 | 28.464 | 28.398 | 28.341 |
| Size_DblN_ascend_se_Comm_nonTwl(1) | 2.61 | 2.53 | 2.48 | 2.44 | 2.42 | 2.40 | 2.38 |
| Size_DblN_descend_se_Comm_nonTwl(1) | 4.50 | 4.48 | 4.47 | 4.46 | 4.45 | 4.45 | 4.44 |
| Size_DblN_end_logit_Comm_nonTwl(1) | -1.78 | -1.95 | -2.02 | -2.07 | -2.09 | -2.11 | -2.12 |
| Size_DblN_peak_Comm_Discard(3) | 27.28 | 27.20 | 27.15 | 27.12 | 27.09 | 27.06 | 27.04 |
| Size_DblN_ascend_se_Comm_Discard(3) | 3.41 | 3.40 | 3.39 | 3.39 | 3.39 | 3.39 | 3.38 |
| Size_DblN_descend_se_Comm_Discard(3) | 3.91 | 3.89 | 3.87 | 3.86 | 3.85 | 3.85 | 3.84 |
| Size_DblN_peak_Rec_PC_Central(4) | 32.68 | 32.54 | 32.45 | 32.39 | 32.34 | 32.30 | 32.27 |
| Size_DblN_ascend_se_Rec_PC_Central(4) | 3.50 | 3.49 | 3.49 | 3.49 | 3.48 | 3.48 | 3.48 |
|  | 2.21 | 2.28 | 2.32 | 2.34 | 2.36 | 2.38 | 2.39 |
| Size_DblN_end_logit_Rec_PC_Central(4) | -2.30 | -2.43 | -2.51 | -2.57 | -2.61 | -2.65 | -2.68 |
| Size_DblN_peak_Rec_Disc_Central(6) | 24.06 | 23.98 | 23.93 | 23.89 | 23.86 | 23.84 | 23.82 |
| Size_DblN_ascend_se_Rec_Disc_Central(6) | 3.56 | 3.55 | 3.54 | 3.53 | 3.53 | 3.52 | 3.52 |
| Size_DblN_descend_se_Rec_Disc_Central(6) | 4.18 | 4.16 | 4.15 | 4.15 | 4.14 | 4.14 | 4.13 |
| Size_DblN_peak_CCFRP(7) | 32.44 | 32.33 | 32.27 | 32.22 | 32.18 | 32.14 | 32.11 |
| Size_DblN_ascend_se_CCFRP(7) | 3.99 | 3.99 | 3.99 | 3.99 | 3.99 | 3.99 | 3.99 |
| Size_DblN_descend_se_CCFRP(7) | 2.28 | 2.31 | 2.33 | 2.34 | 2.35 | 2.36 | 2.37 |
| Size_DblN_end_logit_CCFRP(7) | -4.93 | -5.04 | -5.11 | -5.16 | -5.20 | -5.23 | -5.26 |
| Size_DblN_peak_DWV_Onboard_CPFV(8) | 29.08 | 28.87 | 28.75 | 28.67 | 28.61 | 28.56 | 28.52 |
| Size_DblN_ascend_se_DWV_Onboard_CPFV(8) | 2.67 | 2.63 | 2.61 | 2.60 | 2.59 | 2.58 | 2.58 |
| Size_DblN_descend_se_DWV_Onboard_CPFV(8) | 3.19 | 3.23 | 3.25 | 3.26 | 3.27 | 3.27 | 3.28 |
| Size_DblN_end_logit_DWV_Onboard_CPFV(8) | -1.70 | -1.96 | -2.10 | -2.20 | -2.27 | -2.33 | -2.37 |
| Bratio_2023 | 0.70 | 0.84 | 0.92 | 0.97 | 1.02 | 1.06 | 1.09 |
| SSB_unfished | 380.58 | 423.10 | 469.42 | 520.21 | 576.09 | 637.70 | 705.71 |
| Totbio_unfished | 2198 | 2435 | 2695 | 2981 | 3297 | 3646 | 4031 |
| Recr_unfished | 735 | 812 | 898 | 992 | 1097 | 1212 | 1339 |
| Dead_Catch_SPR | 72 | 79 | 87 | 96 | 106 | 117 | 130 |
| OFLCTatch_2023 | 76 | 92 | 106 | 120 | 135 | 152 | 169 |

Table 59: Female natural mortality profile for the central California base model (part 1).

| Quantity | Female Natural Mortality (M, 1/yr) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.08 | 0.1 | 0.12 | 0.14 | 0.16 | 0.18 |
| N.Parms | 118 | 118 | 118 | 118 | 118 | 118 |
| TOTAL | 564.5 | 549.3 | 539.1 | 532.3 | 527.9 | 525.2 |
| Survey | 22.9 | 22.7 | 22.5 | 22.2 | 21.8 | 21.4 |
| Length_comp | 336.2 | 330.1 | 326.2 | 323.5 | 321.6 | 320.4 |
| Age comp | 195.2 | 189.2 | 185.3 | 182.9 | 181.5 | 180.9 |
| Recruitment | 8.0 | 6.3 | 4.8 | 3.7 | 2.9 | 2.4 |
| Parm_priors | 2.2 | 1.0 | 0.3 | 0.0 | 0.0 | 0.1 |
| L_at_Amax_Fem_GP_1 | 52.0 | 52.4 | 52.8 | 53.3 | 53.7 | 54.1 |
| Von $\overline{\text { Brat_K_Fem_GP_1 }}$ | 0.164 | 0.160 | 0.157 | 0.154 | 0.151 | 0.149 |
| L_at_Amax_Mal_GP_1 | -0.085 | -0.084 | -0.085 | -0.087 | -0.091 | -0.094 |
| VonBert_K_Mal_GP_1 | 0.222 | 0.216 | 0.217 | 0.221 | 0.227 | 0.234 |
| SR_LN(R0) | 5.685 | 5.817 | 5.946 | 6.069 | 6.187 | 6.302 |
| Q_extraSD_Rec_PR_Central(5) | 0.354 | 0.365 | 0.372 | 0.376 | 0.378 | 0.379 |
| Size_DblN_peak_Comm_nonTwl(1) | 28.80 | 29.08 | 29.31 | 29.47 | 29.65 | 29.79 |
| Size_DblN_ascend_se_Comm_nonTwl(1) | 2.51 | 2.60 | 2.66 | 2.70 | 2.75 | 2.78 |
| Size_DblN_descend_se_Comm_nonTwl(1) | 4.51 | 4.44 | 4.36 | 4.34 | 4.35 | 4.39 |
| Size_Dbln_end_logit_Comm_nonTwl(1) | -2.97 | -2.15 | -1.69 | -1.45 | -1.33 | -1.28 |
| Size_DblN_peak_Comm_Discard(3) | 26.87 | 26.99 | 27.10 | 27.20 | 27.29 | 27.37 |
| Size_DblN_ascend_se_Comm_Discard(3) | 3.42 | 3.42 | 3.43 | 3.43 | 3.43 | 3.43 |
| Size_DblN_descend__se_Comm_Discard(3) | 3.80 | 3.84 | 3.87 | 3.90 | 3.93 | 3.95 |
| Size_DblN_peak_Rec_- ${ }^{\text {PC_Central(4) }}$ | 32.17 | 32.36 | 32.52 | 32.66 | 32.77 | 32.87 |
| Size_Dbln_ascend_se_Rec_PC_Central(4) | 3.48 | 3.49 | 3.50 | 3.50 | 3.51 | 3.51 |
| Size_DblN_descend_se_Rec_PC_Central(4) | 2.56 | 2.46 | 2.37 | 2.29 | 2.22 | 2.15 |
| Size_DblN_end_logit_- Rec _PC_Central(4) | -3.25 | -2.93 | -2.69 | -2.51 | -2.35 | -2.22 |
| Size_DblN_peak_Rec_Disc_Central(6) | 23.38 | 23.56 | 23.71 | 23.85 | 23.98 | 24.11 |
| Size_DblN_ascend_se_Rec_Disc_Central(6) | 3.52 | 3.54 | 3.55 | 3.56 | 3.57 | 3.58 |
| Size_DblN_descend_see_Rec_Disc_Central(6) | 4.13 | 4.15 | 4.17 | 4.18 | 4.20 | 4.21 |
| Size_Dbln_peak_C $\overline{\text { CrRPP }}$ (7) | 32.07 | 32.22 | 32.36 | 32.48 | 32.59 | 32.68 |
| Size_Dbln_ascend_se_CCFRP(7) | 4.02 | 4.02 | 4.01 | 4.01 | 4.01 | 4.01 |
| Size_Dbln_descend_se_CCFRP(7) | 2.36 | 2.32 | 2.29 | 2.26 | 2.23 | 2.21 |
| Size_Dbln_end_logit_C CFRP(7) | -5.84 | -5.55 | -5.33 | -5.14 | -4.98 | -4.85 |
| Size_Dbln_peak_DWV_Onboard_CPFV(8) | 27.95 | 28.36 | 28.67 | 28.90 | 29.07 | 29.21 |
| Size_DblN_ascend_se_DWV_Onboard_CPFV(8) | 2.32 | 2.45 | 2.54 | 2.60 | 2.65 | 2.68 |
| Size_DblN_descend_se_DWV_Onboard_CPFV(8) | 4.03 | 3.80 | 3.60 | 3.44 | 3.32 | 3.22 |
| Size_DblN_end_logit_DWV_Ōnboard_CPFV(8) | -3.27 | -2.66 | -2.25 | -1.95 | -1.71 | -1.51 |
| Bratio_2023 - - - | 0.353 | 0.348 | 0.349 | 0.355 | 0.367 | 0.383 |
| SSB_unfished | 1303 | 987 | 782 | 636 | 527 | 442 |
| Totbio_unfished | 4852 | 3928 | 3312 | 2865 | 2525 | 2260 |
| Recr_unfished | 294 | 336 | 382 | 432 | 486 | 545 |
| Dead_Catch_SPR | 60 | 61 | 63 | 64 | 64 | 64 |
| OFLCatch_2023 | 47 | 47 | 46 | 46 | 46 | 47 |

Table 60: Female natural mortality profile for the central California base model (part 2).

|  | Female |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
|  | 0.2 | 0.22 | 0.24 |  |  |
|  | 0.24 | 0.26 | 0.28 | 0.3 |  |
| Quantity | 118 | 118 | 118 | 118 | 118 |
| N.Parms | 523.8 | 523.3 | 523.6 | 524.5 | 525.9 |

Table 61: Select reference points for the combined northern and central area models (point estimates only). Each is calculated as the sum of values in the area-specific models, with the exception of Fraction Unfished (2023), which is the ratio of Spawning Output (2023) to Unfished Spawning Output.

| Reference Point | Estimate |
| :---: | :---: |
| Unfished Spawning Output (billions of eggs) | 1,550 |
| Unfished Age 8+ Biomass (mt) | 5,486 |
| Unfished Recruitment (R0, 1000s) | 2,923 |
| Spawning Output (2023, billions of eggs) | 583 |
| Fraction Unfished (2023) | 0.376 |
| Reference Points Based SB40\% |  |
| Proxy Spawning Output SB40\% | 620 |
| Yield with SPR Based On SB40\% (mt) | 348 |
| Reference Points Based on SPR Proxy for MSY |  |
| Proxy Spawning Output (SPR50) | 692 |
| Yield with SPR50 at SB SPR (mt) | 330 |
| Reference Points Based on Estimated MSY Values |  |
| Spawning Output at MSY (SB MSY) | 380 |
| MSY (mt) | 382 |

## 12 Figures



Figure 1: Map of recaptured black rockfish $(\mathrm{n}=65)$ tagged as part of the California Collaborative Fisheries Research Program (CCFRP, 2007 to 2022). Colors represent different release locations and arrows denote recapture locations. Euclidean distances (km) were estimated for net movements (see text for further details). Arrows were jittered for visualization.


Figure 2: Map of selected coastal features in the 2023 California stock assessment for black rockfish. The assessed area covers U.S. waters between the California/Oregon border ( $42^{\circ} \mathrm{N}$. latitude) and Point Conception ( $34^{\circ} 27^{\prime} \mathrm{N}$. lat.). Features are color-coded by California Recreational Fisheries Survey (CRFS) district (red $=$ district 6, purple $=$ district 5 , green $=$ district 4 , blue $=$ district 3 , orange $=\operatorname{district} 2$ ).


Figure 3: Summary of black rockfish total removals (catch + discard) in California by area and sector, 1875-2022. The northern area includes U.S. waters from the CA/OR border to Point Arena. The central area includes U.S. waters off California south of Point Arena.


Figure 4: Summary of data sources in the northern base model.


Figure 5: Summary of data sources in the central base model.


Figure 6: Cumulative fraction of black rockfish total removals (catch + discard) in California by area, 1875-2022. The northern area includes U.S. waters from the CA/OR border to Point Arena. The central area includes U.S. waters off California south of Point Arena.


Figure 7: The CDFW recreational season length and depth restriction for nearshore rockfish by month from 2000 to 2023. A triangle indicates a regulation change mid-month. The regions defined base on the following latitudes: Northern ( $42^{\circ} 00^{\prime} \mathrm{N}$. lat. to $40^{\circ} 10^{\prime} \mathrm{N}$. lat.), Mendocino ( $40^{\circ} 10^{\prime} \mathrm{N}$. lat. to $38^{\circ} 57^{\prime} \mathrm{N}$. lat.), San Francisco ( $38^{\circ} 57^{\prime} \mathrm{N}$. lat. to $37^{\circ} 11^{\prime} \mathrm{N}$. lat.), Central ( $37^{\circ} 11^{\prime} \mathrm{N}$. lat. to $34^{\circ} 27^{\prime} \mathrm{N}$. lat.), Southern ( $34^{\circ} 27^{\prime} \mathrm{N}$. lat. to the U.S./Mexico border). Not all management areas have been consistently defined over time. The northern and southern management areas have remained the same. From 2001-2003 the Central management area was defined as $40^{\circ} 10^{\prime} \mathrm{N}$. lat. to $34^{\circ} 27^{\prime} \mathrm{N}$. lat. In 2004, the Central area was split into a North-Central and South-Central areas at $36^{\circ} 00^{\prime} \mathrm{N}$. lat. In 2005, the regions from $40^{\circ} 10^{\prime} \mathrm{N}$. lat. to $34^{\circ} 27^{\prime} \mathrm{N}$. lat. were redefined. The North-Central encompasses $40^{\circ} 10^{\prime} \mathrm{N}$. lat. to $37^{\circ} 11^{\prime}$ N. lat., Monterey South-Central from $37^{\circ} 11^{\prime} \mathrm{N}$. lat. to $36^{\circ} 00^{\prime}$ N. lat., and Morro Bay South-Central from $36^{\circ} 00^{\prime} \mathrm{N}$. lat. to $34^{\circ} 27^{\prime} \mathrm{N}$. lat.


Figure 8: California commercial fishing ports and port complexes sampled by the CCGS.


Figure 9: Recent commercial landings of black rockfish in California, . 2013-2022 by coastal county and arranged north to south (left to right). Source: PacFIN.


Figure 10: Revision to commercial landings estimates (red and blue lines) for the years 1969-1977, relative to estimates provided for the 2015 assessment (yellow and gray).


Figure 11: Landings by fleet and year in the northern assessment area (upper panel) and central assessment area (lower panel).


Figure 12: Ratio of dead discard to retained catch for commercially caught black rockfish, 2002-2021. Source: WCGOP.


Figure 13: Mean fork lengths from commercial sources by port complex and year. Northern area ports (CRS, ERK, BRG) have consistently higher average length than areas south of Point Arena.


Figure 14: Length composition data (upper panel) and mean lengths for combined sex data (middle panel) and sex-specific data (lower panel) from the northern, non-trawl commercial fleet (dead landings).


Figure 15: Length composition data (upper panel) and mean lengths for combined sex data (lower panel) from the northern, non-trawl commercial fleet (live landings).


Figure 16: Length composition data (upper panel) and mean lengths for combined sex data (middle panel) and sex-specific data (lower panel) from the northern trawl commercial fleet.


Figure 17: Length composition data (upper panel) and mean lengths for combined sex data (lower panel) from the northern commercial discard fleet (and assumed to be the same for the central area).


Figure 18: Length composition data (upper panel) and mean lengths for combined sex data (lower panel) from the central commercial non-trawl fleet


Figure 19: Conditional age-at-length data, northern commercial non-trawl fleet. Red panels are female, blue panels are male.


Length (cm)

Figure 20: Conditional age-at-length data, northern commercial trawl fleet. Red panels are female, blue panels are male.


Figure 21: Comparison of length distributions between fish sampled by CCGS (blue, "CALCOM") and a commercial pilot sampling project conducted in 2019 by CDFW (orange, "pilot").


Figure 22: Estimates of statewide recreational catch in numbers by year and mode.


Figure 23: Proportion of statewide catch allocated to the area north of Point Arena. Information from 1981-1986 from Albin et al. (1993). Estimates from CRFS, 2005-2022 are shown for reference.


Figure 24: Result of allocating statewide catch in numbers to areas north and south of Point Arena.


Figure 25: Estimates of average fish weight by year, area, and mode. Source: MRFSS and CRFS. Estimates of average weight prior to 1980 are taken from Karpov et al. in the northern area and fleetspecific estimates from Miller and Gotshall (1965) data in the central area.


Figure 26: Estimated catch in metric tons by year, area, and mode. This was calculated as the product of average weight per fish and catch in numbers.


Figure 27: Map of CRFS districts in California. Source: CDFW website.


Figure 28: Average weights of discarded fish by year, area, and mode. The increase in average weight of discarded fish in the northern area is consistent with bag limits put in place in 2015. Source: CRFS.


Figure 29: Length composition data (upper panel) and mean lengths for combined sex data (lower panel) from the northern recreational PC fleet


Figure 30: Length composition data (upper panel) and mean lengths for combined sex data (lower panel) from the northern recreational PR fleet


Figure 31: Length composition data (upper panel) and mean lengths for combined sex data (lower panel) from the northern recreational discard fleet


Figure 32: Length composition data (upper panel) and mean lengths for combined sex data (lower panel) from the central recreational PC fleet


Figure 33: Length composition data (upper panel) and mean lengths for combined sex data (lower panel) from the central recreational PR fleet


Figure 34: Length composition data (upper panel) and mean lengths for combined sex data (lower panel) from the central recreational discard fleet


Figure 35: Conditional age-at-length composition data from the northern recreational PC fleet


Age (yr)
Figure 36: Conditional age-at-length composition data from the northern recreational PR fleet


Figure 37: Conditional age-at-length composition data from the central recreational PC fleet


Figure 38: Conditional age-at-length composition data from the northern recreational PR fleet


Figure 39: Effect of sub-bag limits, 2015-2020, on the proportion of "bags" (fish per angler trip) with 5+ black rockfish, by CRFS district.


Figure 40: PR dockside indices for the northern and central areas with $95 \%$ highest posterior density intervals.


Figure 41: Posterior predictive distributions of the proportion of zero observations, by year, in the DWV CPFV onboard observer index for central California.


Figure 42: Posterior predictive distributions of the mean catch (number of fish), by year, in the DWV CPFV onboard observer index for central California.


Figure 43: DWV CPFV onboard observer index for central California with $95 \%$ highest posterior density intervals.


Figure 44: The proportion of black rockfish discarded by observed CPFV anglers, by year and district. Sub-bag limits for black rockfish were introduced in 2015 and continued until 2020.


Figure 45: Posterior predictive distributions of the proportion of zero observations, by year, in the CRFS PC onboard observer index












Figure 46: Posterior predictive distributions of the mean catch, by year, in the CRFS PC onboard observer index.


Figure 47: Posterior predictive distributions of the standard deviation of catch, by year, in the CRFS PC onboard observer index.


Figure 48: Posterior medians with $95 \%$ highest posterior density intervals of the northern region abundance trend from CRFS PC onboard observer index.


Figure 49: Posterior medians with $95 \%$ highest posterior density intervals of the central region abundance trend from CRFS PC onboard observer index.


Figure 50: Length-based (cm) distances moved (km) by black rockfish that were tagged and recaptured as part of the California Collaborative Fisheries Research Program (CCFRP). Boxes represent the first and third quartiles (i.e., $25^{\text {th }}$ and $75^{\text {th }}$ percentiles), dark lines denote the median, whiskers illustrate values that fall within 1.5 times the interquartile range (i.e., distance between first and third quartiles) of the hinge, and points represent outliers.


Figure 51: Kernel densities for fork lengths (cm) of black rockfish measured during California Collaborative Fisheries Research Program (CCFRP) sampling trips. Fish caught inside marine protected areas (MPS; red) and associated reference sites exposed to fishing (REF; orange) are shown by region and year.


Figure 52: Kernel densities for fork lengths (cm) of black rockfish measured during California Collaborative Fisheries Research Program (CCFRP) sampling trips. Fish caught in northern (blue) and central (green) California are shown by year


Figure 53: Mean catch per unit effort (CPUE; number of black rockfish per angler hr) by year and region. Thin lines represent unweighted catch. Thick lines denote district-weighted catch. Errors were excluded for illustrative purposes. Data source: California Collaborative Fisheries Research Program (CCFRP).


Figure 54: Tweedie model diagnostics for California Collaborative Fisheries Research Program (CCFRP) index of district-weighted black rockfish catch



$$
\mathrm{s}(\text { depth.ft })
$$



Figure 55: Partial covariate effects on district-weighted black rockfish catch for the California Collaborative Fisheries Research Program (CCFRP) index


Figure 56: Model-based estimates of black rockfish abundance by region (black: statewide; blue: northern California; green: central California) and year. Mean predicted catch per unit effort (CPUE; no. fish per angler hr ) is shown above. Standardized indices of abundance are shown below. Data source: California Collaborative Fisheries Research Program (CCFRP).


Figure 57: External von Bertallanfy growth curve fits to length-at-age data, by sex ( $M=$ male, $F=$ female, $U=$ unknown sex), and area ( $\mathrm{N}=$ north of Point Arena; $\mathrm{C}=$ central, i.e. south of Point Arena).


Figure 58: External von Bertallanfy growth curve fits to length-at-age data, by area ( $\mathrm{N}=$ north of Point Arena; $\mathrm{C}=$ central, i.e. south of Point Arena) and sex ( $\mathrm{M}=$ male, $\mathrm{F}=$ female).


Figure 59: External von Bertallanfy growth curve fits to length-at-age data, by area ( $\mathrm{N}=$ north of Point Arena; $C=$ central, i.e. south of Point Arena), sex ( $M=$ male, $F=$ female), and time period (1979-1984 and 2001-2022).


Figure 60: Weight at length (sexes combined) data for black rockfish from private/rental boat sampling (Source: CDFW). Scales used to weigh fish less than 1 kg have an accuracy of 10 grams, and scales for fish less than 5 kg have an accuracy of 100 grams. The fitted mean relationship from a back-transformed and bias corrected log-log regression (black) is compared to reported weight-length relationships from RecFIN (red) and the 2015 stock assessment (blue; females = solid line, males = dashed line).


Figure 61: Comparison of age estimates produced by reader 1 (P. McDonald) and reader 2 (L. Ortiz), and the reader 2 and reader 3 (J. Hale).


Figure 62: Comparison of age estimates produced by T. Johnson (reader 1 in figure, reader 4 in text) and N. Atkins (reader 2 in figure, reader 5 in text) for the 2015 assessment.

Reads(dot), Sd(blue), expected_read(red solid line), and $95 \% \mathrm{Cl}$ for expected_read(red dotted line)


Figure 63: Fits to ageing error model based on readers 1-3 based on the AICc best-fit model (unbiased across all readers with a curvilinear CV ).

Reads(dot), Sd(blue), expected_read(red solid line), and $95 \% \mathrm{Cl}$ for expected_read(red dotted line)


Figure 64: Fits to ageing error model (Reader $1=$ Reader 4 in text, Reader $2=$ Reader 5 in text, Reader $3=$ duplicate reads by Reader 5 in text) from the AICc best-fit model.


Figure 65: Functional maturity of female black rockfish. Logistic regression model is the dashed line, spline model is the solid line. Sample size is denoted by the size of the bubbles. Source: Claire Rosemond and Melissa Head.


Figure 66: Update from Stock Synthesis v3.24 (used in the 2015 assessment) to version 3.30 .20 produced nearly identical results.


Figure 67: Effects of changing F estimation method and weighting approach, and updating catch histories, on absolute (top panel) and relative (bottom panel) spawning output, starting from the 2015 assessment.


Figure 68: Updates to the weight-length, maturity, and fecundity relationships, relative to the model with revised catches, weights, and F estimation method.


Figure 69: Coefficient of variation (CV) of length at age. Sample sizes are noted along the x-axis, and a fitted linear regression with $95 \%$ confidence intervals (shaded area) is shown for reference.


Figure 70: Mean length by CRFS district and year. Inset is from Karpov et al. 1995, comparing aggregated length comps (1980-1986) in their central (south of Sonoma Cty.) and northern areas.


Figure 71: Spawning output by year estimated by an exploratory fleets-as-areas model for black rockfish. Catches represented statewide removals in all models, which were fit to trend and composition data from all areas (blue), data from the central region only (green), and data from the northern area only (red).


Figure 72: Indices from central California (south of Point Arena) scaled to have means of 1 for comparison. The PISCO SCUBA index was ultimately exluded from the pre-STAR base model.


Figure 73: Indices from northern California (north of Point Arena) scaled to have means of 1 for comparison.


Figure 74: Northern base model fit to time-aggregated length composition, by fleet.


Figure 75: Length composition Pearson residuals (top panel) and fits to mean lengths (combined sex data, middle panel; separate sex data, bottom panel) for the northern commercial non-trawl fleet (dead landings).


Figure 76: Length composition Pearson residuals (top panel) and fits to mean lengths (bottom panel) for the northern commercial non-trawl fleet (live landings).


Figure 77: Length composition Pearson residuals (top panel) and fits to mean lengths (combined sex data, middle panel; separate sex data, bottom panel) for the northern commercial trawl fleet.


Figure 78: Length composition Pearson residuals (top panel) and fits to mean lengths (bottom panel) for the northern commercial discard fleet.


Figure 79: Length composition Pearson residuals (top panel) and fits to mean lengths (bottom panel) for the northern recreational CPFV fleet.


Figure 80: Length composition Pearson residuals (top panel) and fits to mean lengths (bottom panel) for the northern recreational private/rental boat fleet.


Figure 81: Length composition Pearson residuals (top panel) and fits to mean lengths (bottom panel) for the northern recreational discard fleet.


Figure 82: Length composition Pearson residuals (top panel) and fits to mean lengths (bottom panel) for the CCFRP survey.


Figure 83: Length composition Pearson residuals (top panel) and fits to mean lengths (bottom panel) for the Abrams Research survey.


Figure 84: Northern base model fits to conditional age-at-length data and mean age data from the commercial nontrawl fleet (dead landings)


Figure 85: Northern base model fits to conditional age-at-length data and mean age data from the commercial trawl fleet.



Figure 86: Northern base model fits to conditional age-at-length data and mean age data from the recreational CPFV fleet.


Length (cm)

Figure 87: Northern base model fits to conditional age-at-length data from the recreational PR fleet. There were too few points (only 1 year of observations) to calculate adjustments for the Francis data weighting method (TA1.8) in this fleet.


Length (cm)

Figure 88: Northern base model fits to conditional age-at-length data from the CCFRP survey. There were too few points (only 1 year of observations) to calculate adjustments for the Francis data weighting method (TA1.8) in this fleet.



Figure 89: Northern base model fits to conditional age-at-length data and mean age data from the Abrams Research fleet.


Figure 90: Northern model Pearson residuals for conditional age-at-length data in the commercial non-trawl (landed dead) fleet.


Length (cm)

Age (yr)

Figure 91: Northern model Pearson residuals for conditional age-at-length data in the commercial trawl fleet.


Figure 92: Northern model Pearson residuals for conditional age-at-length data in the recreational CPFV fleet.


Age (yr)

Figure 93: Northern model Pearson residuals for conditional age-at-length data in the recreational PR fleet.


Age (yr)

Figure 94: Northern model Pearson residuals for conditional age-at-length data in the CCFRP survey.


Figure 95: Northern model Pearson residuals for conditional age-at-length data in the Abrams Research survey.


Figure 96: Northern model fit to the recreational PR index. Top row: arithmetic scale fit and 1:1 plot. Bottom Row: log-scale fit and log-scale standardized residual plot.


Figure 97: Northern model fit to the Recreational CPFV Onboard Index. Top row: arithmetic scale fit and 1:1 plot. Bottom Row: log-scale fit and log-scale standardized residual plot.


Figure 98: Northern model fit to the CCFRP index. Top row: arithmetic scale fit and 1:1 plot. Bottom Row: log-scale fit and log-scale standardized residual plot.


Figure 99: Length at age estimated by the northern base model. Shaded area indicates $95 \%$ distribution of length at age around the estimated growth curve.


Figure 100: Female natural mortality prior distribution (black) and estimated value ( 0.21 ; blue, with assumed normal distribution based on estimated asymptotic standard error) from the northern California base model. Male natural mortality was estimated at 0.20 .


Figure 101: Number of age-0 recruits (1000s) in the northern base model.


Figure 102: Estimated log-scale recruitment deviations in the northern base model.


Figure 103: Stock-recruit curve for the northern base model with labels on first, last, and years with (log) deviations $>0.5$. Point colors indicate year, with warmer colors indicating earlier years and cooler colors in showing later years. Steepness was fixed at the prior mean of 0.72 .


Figure 104: Length-based selectivity curves estimated for the northern California model. Fleets retained in the model file for implied fits, but not included in the likelihood: PISCO SCUBA, RREAS SWFSC, and SWFSC YOY SCUBA.


Figure 105: Time-varying selectivity for the recreational PC and PR modes, reflecting a change in depth restrictions from 2004-present that constrained fishing to shallow waters.


Figure 106: Northern California spawning output (billions of eggs) with $\sim 95 \%$ asymptotic intervals.


Figure 107: Relative spawning output in northern California: B/B_0 with $\sim 95 \%$ asymptotic intervals


Figure 108: Deviations around the stock-recruit curve for the northern California model. Labels are on first, last, and years with $(\log )$ deviations $>0.5$. Point colors indicate year, with warmer colors indicating earlier years and cooler colors in showing later years.


Figure 109: Equilibrium estimates of relative fishing intensity, (1-SPR) / (1-SPR50\%) for the northern California base model.


Figure 110: Yield curve for the northern California base model.


Figure 111: Changes in spawning output (billions of eggs) resulting from removal of individual fleets' data sources in the northern California model.


Figure 112: Changes in relative spawning output ( $\mathrm{B} / \mathrm{B}$ _unfished) resulting from removal of individual fleets' data sources in the northern California model.


Figure 113: Changes in estimated recruitment of age-zero fish resulting from removal of individual fleets' data sources in the northern California model.


Figure 114: Changes in estimated log-scale recruitment deviations resulting from removal of individual fleets' data sources in the northern California model.


Figure 115: Trends in spawning output (billions of eggs) associated with sensitivity analyses for the northern California base model.


Figure 116: Trends in relative spawning output ( $\mathrm{B} / \mathrm{B}$ _unfished) associated with sensitivity analyses for the northern California base model.


Figure 117: Trends in recruitment of age-0 fish (1000s) associated with sensitivity analyses for the northern California base model.


Figure 118: Trends in log-scale deviations from the stock-recruitment relationship associated with sensitivity analyses for the northern California base model.


Figure 119: Likelihood profile over steepness for the northern California model, by data type.

Changes in length-composition likelihoods by fleet


Figure 120: Likelihood profile over steepness for the northern California model, by length data source.

## Changes in age-composition likelihoods by fleet



Figure 121: Likelihood profile over steepness for the northern California model, by age data source.


Figure 122: Likelihood profile over steepness for the northern California model, by index data source..


Figure 123: Spawning output time series from a steepness profile for the northern California base model ( $\mathrm{h}=0.72$ ).


Figure 124: Relative spawning output time series from a steepness profile for the northern California base model ( $\mathrm{h}=0.72$ ).


Figure 125: Log-scale recruitment deviations from a steepness profile for the northern California base model ( $\mathrm{h}=0.72$ ). Vertical bars are $95 \%$ asymptotic confidence intervals from the base model.


Figure 126: Likelihood profile over the $\log$ of unfished recruitment for the northern California model, by data type.

## Changes in length-composition likelihoods by fleet



Figure 127: Likelihood profile over the log of unfished recruitment for the northern California model, by length data source.

Changes in age-composition likelihoods by fleet


Figure 128: Likelihood profile over the log of unfished recruitment for the northern California model, by age data source.


Figure 129: Likelihood profile over the log of unfished recruitment for the northern California model, by index data source.


Figure 130: Spawning output time series from a $\log (\mathrm{R} 0)$ profile for the northern California base model.


Figure 131: Relative spawning output time series from a $\log (\mathrm{R} 0)$ profile for the northern California base model.


Figure 132: Likelihood profile over the female natural mortality rate for the northern California model, by data type.

## Changes in length-composition likelihoods by fleet



Figure 133: Likelihood profile over the female natural mortality rate for the northern California model, by length data source.


Figure 134: Likelihood profile over the female natural mortality rate for the northern California model, by age data source.

## Changes in index likelihoods by fleet



Figure 135: Likelihood profile over the female natural mortality rate for the northern California model, by index data source.


Figure 136: Retrospective analysis, showing the effect of removing individual years' data on estimated times series of spawning output (billions of eggs) from the northern model.


Figure 137: Retrospective analysis, showing the effect of removing individual years' data on estimated times series of relative spawning output ( $\mathrm{B} / \mathrm{Bunfished}$ ) from the northern model.


Figure 138: Central base model fit to time-aggregated length composition, by fleet.


Figure 139: Length composition Pearson residuals (top panel) and fits to mean lengths (bottom panel) for the central commercial non-trawl fleet.


Figure 140: Length composition Pearson residuals (top panel) and fits to mean lengths (bottom panel) for the central commercial discard fleet.


Figure 141: Length composition Pearson residuals (top panel) and fits to mean lengths (bottom panel) for the central recreational PC fleet.


Figure 142: Length composition Pearson residuals (top panel) and fits to mean lengths (bottom panel) for the central recreational PR fleet.


Figure 143 Length composition Pearson residuals (top panel) and fits to mean lengths (bottom panel) for the central recreational discard fleet.


Figure 144: Length composition Pearson residuals (top panel) and fits to mean lengths (bottom panel) for the CCRFP survey


Figure 145: Length composition Pearson residuals (top panel) and fits to mean lengths (bottom panel) for the DWV onboard CPFV survey.


Figure 146: Length composition Pearson residuals (top panel) and fits to mean lengths (combined sex data, middle panel; separate sex data, bottom panel) for the Lea et al. research fleet.


Figure 147: Central base model fits to conditional age-at-length data and mean age data from the rec PC central.



Figure 148: Central base model fits to conditional age-at-length data and mean age data from the rec PR central fleet.


Figure 149: Central base model fits to conditional age-at-length data and mean age data from the CCFRP survey.


Figure 150: Central base model fits to conditional age-at-length data and mean age data from the Lea et al. research fleet.


Figure 151: Central model fit to the recreational PR index. Top row: arithmetic scale fit and 1:1 plot. Bottom Row: log-scale fit and log-scale standardized residual plot.


Figure 152: Central model fit to the CCFRP index. Top row: arithmetic scale fit and 1:1 plot. Bottom Row: log-scale fit and log-scale standardized residual plot.


Figure 153: Central model fit to the DWV onboard CPFV index. Top row: arithmetic scale fit and 1:1 plot. Bottom Row: log-scale fit and log-scale standardized residual plot.


Figure 154: Central model fit to the CRFS PC onboard index. Top row: arithmetic scale fit and 1:1 plot. Bottom Row: log-scale fit and log-scale standardized residual plot.


Figure 155: Length at age in the central area model. Shaded area indicates $95 \%$ distribution of length at age around estimated growth curve.


Figure 156: Number of age-0 recruits (1000s) in the central base model.


Figure 157: Estimated log-scale recruitment deviations in the central base model.


Figure 158: Stock-recruit curve for the central base model with labels on first, last, and years with (log) deviations > 0.5 . Point colors indicate year, with warmer colors indicating earlier years and cooler colors in showing later years. Steepness was fixed at the prior mean of 0.72 .


Figure 159: Length-based selectivity curves estimated for the central California model. Fleets retained in the model file for implied fits, but not included in the likelihood: PISCO SCUBA, RREAS SWFSC, and SWFSC YOY SCUBA.


Figure 160: Central California spawning output (billions of eggs) with $\sim 95 \%$ asymptotic intervals.


Figure 161: Relative spawning output in central California: B/B_0 with $\sim 95 \%$ asymptotic intervals


Figure 162: Deviations around the stock-recruit curve for the central California model. Labels are on first, last, and years with $(\log )$ deviations $>0.5$. Point colors indicate year, with warmer colors indicating earlier years and cooler colors in showing later years.


Figure 163: Equilibrium estimates of relative fishing intensity, (1-SPR) / (1-SPR50\%) for the central California base model.


Figure 164: Yield curve for the central California base model.


Figure 165: Changes in spawning output (billions of eggs) resulting from removal of individual fleets' data sources in the central California model.


Figure 166: Changes in relative spawning output (B/B_unfished) resulting from removal of individual fleets' data sources in the central California model.


Figure 167: Changes in estimated recruitment of age-zero fish resulting from removal of individual fleets' data sources in the central California model.


Figure 168: Changes in estimated log-scale recruitment deviations resulting from removal of individual fleets' data sources in the central California model.


Figure 169: Fits to the central area recreational PR index when removing data one fleet at a time.


Figure 170: Fits to the central area CRFS PC onboard index when removing data one fleet at a time.


Figure 171: Trends in spawning output (billions of eggs) associated with sensitivity analyses for the central California base model.


Figure 172: Trends in relative spawning output (B / B_unfished) associated with sensitivity analyses for the central California base model.


Figure 173: Trends in recruitment of age-0 fish (1000s) associated with sensitivity analyses for the central California base model.


Figure 174: Trends in log-scale deviations from the stock-recruitment relationship associated with sensitivity analyses for the central California base model.


Figure 175: Likelihood profile over steepness for the central California model, by data type.

## Changes in length-composition likelihoods by fleet



Figure 176: Likelihood profile over steepness for the central California model, by length data source.

## Changes in age-composition likelihoods by fleet



Figure 177: Likelihood profile over steepness for the central California model, by age data source.

## Changes in index likelihoods by fleet



Figure 178: Likelihood profile over steepness for the central California model, by index data source.


Figure 179: Spawning output time series from a steepness profile for the central California base model ( $\mathrm{h}=0.72$ ).


Figure 180: Relative spawning output time series from a steepness profile for the central California base model ( $\mathrm{h}=0.72$ ).


Figure 181: Log-scale recruitment deviations from a steepness profile for the central California base model ( $\mathrm{h}=0.72$ ). Vertical bars are $95 \%$ asymptotic confidence intervals from the base model.


Figure 182: Likelihood profile over the log of unfished recruitment for the central California model, by data type.

## Changes in length-composition likelihoods by fleet



Figure 183: Likelihood profile over the log of unfished recruitment for the central California model, by length data source.

## Changes in age-composition likelihoods by fleet



Figure 184: Likelihood profile over the log of unfished recruitment for the central California model, by age data source.

## Changes in index likelihoods by fleet



Figure 185: Likelihood profile over the log of unfished recruitment for the central California model, by index data source.


Figure 186: Spawning output time series from a $\log (\mathrm{R} 0)$ profile for the central California base model.


Figure 187: Relative spawning output time series from a $\log (\mathrm{R} 0)$ profile for the central California base model.


Figure 188: Likelihood profile over the female natural mortality rate for the central California model, by data type.

## Changes in length-composition likelihoods by fleet



Figure 189: Likelihood profile over the female natural mortality rate for the central California model, by length data source.

## Changes in age-composition likelihoods by fleet



Figure 190: Likelihood profile over the female natural mortality rate for the central California model, by age data source.

## Changes in index likelihoods by fleet



Figure 191: Likelihood profile over the female natural mortality rate for the central California model, by index data source.


Figure 192: Retrospective analysis, showing the effect of removing individual years' data on estimated times series of spawning output (billions of eggs) from the central model.


Figure 193: Retrospective analysis, showing the effect of removing individual years' data on estimated times series of relative spawning output ( $\mathrm{B} / \mathrm{Bunfished}$ ) from the central model.


Figure 194: Comparison of spawning output (summed across areas) from the 2023 assessment and the 2015 assessment.


Figure 195: Comparison of relative spawning output (summed across areas) from the 2023 assessment and the 2015 assessment.


Figure 196: Time series of combined spawning output (billions of eggs) for the combined northern and central base models.


Figure 197: Time series of relative spawning output (B/B_unfished) for the northern and central base models.

# Appendix A. Notes on black rockfish habitat associations and fishing behavior, attributed to Kenyon Hensel 

## Kenyon's background

I have been a commercial fishermen, fishing with rod and reel and focusing on black rockfish, out of the Crescent City Harbor, since 1982. I have primarily fished in the nearshore waters from the Lake Earl estuary to the Klamath rivermouth, from the nearshore to about 6 miles offshore. I have typically landed around 30,000 pounds per year, and I still fish many of the same rocks and rocky structures that I fished in my early years.

I have also spent time from the 1990s through the 2000s representing Northern California open access fixed gear fishermen to the Pacific Fishery Management Council. At 64 years of age I have slowed my fishing efforts, but did manage to land over twenty thousand pounds of fish last year. I now fish in deeper waters, mostly for rockfish other than black rockfish. However, I often but run through the same reefs where I previously fished for black rockfish, and often enjoy seeing the schools working the surface around the shallow rocks.

Over the years I have seen reductions in effort lead to increase in the stock sizes, from a period low of abundance in the 1990s to robust and rebuilt populations currently. In my view, there is currently not enough fishing pressure to have any more than a minimal effect on stock sizes. Forty years ago there were over 1500 boats fishing in any given August day, but now the boats number in the hundreds on the busiest holidays. A lot has changed as I have fished across the decades.

## Perspective on black rockfish habitat associations

Along this part of the Northern California coastline, there is little kelp in rough open waters. The coastline is rocky, but open to strong currents and winter swells that can exceed 25 feet at times during the winter. Bull Kelp can and does grow here, but not in large, thick light cutting mats that I have observed in Southern California waters. There are years in which the kelp will be thicker and more noticeable, these are mostly warm water years.

It seems that the limited availability of kelp habitat leads young black rockfish to grow out over benthic habitats very close to shore. Humboldt State University (HSU) has done juvenile studies and found Young-of-the-Year (YOY) black rockfish living out their first summers in tide pools and rock jetties. The black rockfish component of these YOY in tide pools can be very high, and my personal experience with YOY black rockfish is consistent with recruitment into shallow water.

I wondered for many years why our catches of older fish consisted primarily of adult fish over 3 pounds, with few or no subadults. The schools of fish found locally were huge, but did not include younger, smaller individuals. By contrast, schools of blue rockfish that coexisted in close proximity to black rockfish did include many smaller individuals, including fish only a few inches in length. Many of the blue rockfish schools could not be fished due to the bycatch of unmarketable juveniles. By contrast, it seems to me that when the black rockfish reach about 12 inches they begin to integrate into the larger offshore schools, where fish aggregate in areas that have enough food is available to support them.

After years of fishing, I was able to find midsize fish in the substrates off the sides of rock structures, usually out of the way and under the schools of larger adults. Apparently they find ways to minimize competition with adults during this stage of their growth. During the 1990s this seemed to happen more
frequently, when back to back warm water seasons resulted in lower forage availability and smaller fish were more frequently found in the offshore schools. This was really the first time that I saw and caught many fish in the 1.5 to 2 lb range (approximately twelve to fourteen inches). Since the warm water events came to an end around 2000, the schools have grown and reestablished themselves as primarily composed of 3 to 5 pound adults again.

There was high abundance of YOY black rockfish shortly after cool conditions returned around 2000. During that time, I often observed 2 inch black rockfish being regurgitated by adults in my live tank, only to be eaten again by other adults. In my view, these fish are indiscriminately eating juveniles of their own species, and those of any other species, whenever possible. Over my decades of fishing experiences, the philosophy of rockfish survival to me is that if it fits in your mouth, eat it. In the race to get big, and thus reduce the predators who can eat you, rapid growth is essential.

## Movement patterns

The available food supplies play a strong role in growth potential. I constantly see areas where water bourn forage is supporting huge, dispersed populations of large black rockfish that seem to hold, at least during periods of abundant food, in large open areas. These fish are prone to aggregate around fishing activities as if they were chasing bait. I have had them follow my boat while biting for as far as a half mile. Some conditions will promote movement as the fish compete for food, at such times there can be schools of black rockfish near the surface, in a show of synchronized swimming, picking off bait fish as the baitfish form dense balls in trying to escape. Other times, the fish seem stuck to a rock and will not follow our boat very far over flat bottom, although they may pick up any lures that get close to them. You can even anchor over them and pick off one fish at a time for hours, until they get tired of biting, or you get tired of catching.

So, at times adult fish are ready to leave rocky habitat and chase bait, other times they are much less prone to travel. Some of the fish seem to be homebodies, who stay associated with structure, and are often available to us trip after trip. Other groups of active feeders will split off of the structure to chase large bait schools as they pass through. These chasing schools will redistribute themselves after feeding, and might not necessarily end up at the same habitat that they started on. I have definitely seen fish be scattered after heavy periods of abundant bait, and not regather in the same area, after days of strong weather and currents, particularly at depths of 20 fathoms and greater. I have even left good bites due to time constraints, only to have to relocate the fish in different areas the next day.

Year after year, I have fished the same rocks and caught hundreds of fish each day, and have yet to see any of these rocks become fishless. That in itself lends to the dynamic of these fish both traveling afar, as well as moving back and forth among the structures of our reefs, where local abundance can be actively replenished. Most of the major changes or movements of black rockfish schools comes during winter weather events and during the spawning season. Some of the best fishing weather comes to California during the fall. As we move into November, the storms begin to line up and move across the North Pacific, bringing large swells and stronger currents. I have always fished throughout the year for rockfish, and found that to be successful I had to adapt to these winter conditions.

## Spawning and fish condition

As I have always cut and cleaned my fish to increase the value, I have observed the seasonal changes inside of the fish, and noted many interesting patterns in feed and spawning behavior. For example, in the fall of a good feed year, in which bait is plentiful throughout the summer, I will see fish fully fattened out, with large amounts of interstitial fat lining their body cavities. During such times, female fish of smaller sizes will have bright yellow egg masses already highly visible when cut. This show of eggs is prominent
in 12 to 14 inch long fish, and these fish were mixed in with the general population, although it may be false spawning activity as I have otherwise never seen any gravid fish under 4 lbs .

Larger spawning females are typically observed later in December, when I have to fish the sides of the rocks because fish are no longer gathering on top of them. There I catch a few much larger black rockfish that seem to be stationary breeders, as these $4+$ pound fish will would be full of larvae ready to drop. These fish are spread out to the point that I would only be able to catch a few at each rock, since they would not follow or gather as they do during summer months. At this time of year, Dungeness Crab fishing would open, and crabbers would often report finding these large fish heavy with eggs in their traps on the river delta, in habitats surrounded by miles of sand and no rocky structure.

This scattering of black rockfish would usually lead me to concentrate on the nearby schools of blue rockfish at this time of year, as those schools seem to feed heavily all year long. By mid January, the black rockfish breeding activity tapers off and black rockfish body cavities are empty as the fish began to gather again for the monumental spring bite.

To the question of what happens to the breeding females, I would often see a few spent females returning back into the spring schools, but I would also see some spent females scattered throughout the year. I would even catch a few spring females with unspent larvae, so it is not clear whether all of them drop their young every year. I think it is entirely possible that some of these large females do not return back into the mixed schools. They may be large enough to be past their most productive ages, or the physical requirements of spawning forced them into a slow recovery, or state of weakness that might leave them easy prey. Perhaps all of their energy is best used in producing a large batch of eggs, and the females may die after birth (parturition).

The amount of young produced by a single female is incredible. I have heard testimony by University of Oregon scientists that based on genetic analysis, a single female black rockfish can repopulates an entire reef. This would support the idea that you don't need many spawners surviving each year to have a viable population. What I am sure of is that gravid females do not, or cannot compete for feed as well as the other black rockfish do. We never see them high up in the bite chasing bait as we do younger and smaller fish. They go off to have their young and may not all return, or they may live a life free of the schooling dynamic, in order to fully focus their energy to produce young. From my years of cutting rockfish, I have found that for the midwater species that I have encountered, the immature females and males seem to outnumber the gravid females.

# Appendix B. Data sources evaluated, but not used in the California assessment 

### 12.1.1 MRFSS Dockside CPFV Index, 1980-1999

Trip-level catch rate data ("Type 3 data") from MRFSS dockside sampling of CPFVs were downloaded from the NMFS SWFSC on $5 / 22 / 2023$. These data are derived from fish sampled in angler bags following completion of a trip, and were aggregated to the trip level using an algorithm developed by Braden Soper (University of California, Santa Cruz). The methodology for aggregating the data to the trip level was reviewed and approved by the PFMC Scientific and Statistical Committee in March of 2013 (PFMC, 2013). The database contains information on catch by species (number of retained fish), effort (angler hours), sample location (county and interview site), date, and distance from shore (inside/outside of 3 nm from shore).

## MRFSS CPUE Index: Data Preparation, Filtering, and Sample Sizes

In order to define effective fishing effort (i.e. identify trips that were likely to catch black rockfish), we used the method of Stephens and MacCall (2004) to predict the probability of catching a black rockfish given the occurrence of other species in the catch. The unfiltered data set contained 2923 trips. Species that are rarely encountered will provide little information about the likelihood of catching a black rockfish, so we identified "indicator" species that were caught in at least 30 trips. One of these was "rockfish genus," a catch-all category for rockfish that was excluded from the set of indicator species because the species composition of this category changes by area within the state. Catch of these commonly-encountered species in a given trip was coded as presence/absence ( $1 / 0$ ) and treated as a categorical variable in the Stephens-MacCall logistic regression analysis. Next, we flagged commonlycaught species that never co-occurred with black rockfish ("extreme counter-indicators"). In the MRFSS data set, sablefish and albacore tuna were the only species that were caught in at least 30 trips and never co-occurred with black rockfish. This would produce an undefined ( $-\infty$ ) coefficient in the binomial GLM, i.e. a predicted probability of exactly zero, so we removed 142 trips that caught sablefish or albacore tuna from the data set.

The Stephens-MacCall logistic regression was fit to the remaining set of 39 indicator species (Figure 198). The top five species with high probability of co-occurrence with black rockfish include three other rockfishes (black-and-yellow, brown, and china), as well as kelp greenling and cabezon. The co-occuring species identified by the analysis are likely skewed towards the species composition of catch in central California, simply because a greater number of samples were taken in that area. The species with the lowest probability of co-occurrence were albacore tuna and sablefish (which never co-occurred but appeared in $>30$ trips, as noted above), chilipepper rockfish, rock sole, and chinook salmon. These species are not commonly caught during the same trip as black rockfish, presumably due to different habitat associations and fishing techniques. Other species had large negative coefficients (squarespot rockfish and Pacific whiting), but the estimates were highly imprecise. The Area Under the Characteristic curve (AUC) for this model is 0.89 , a significant improvement over a random classifier ( $\mathrm{AUC}=0.5$ ). AUC represents the probability that a randomly chosen positive trip would be assigned a higher ranked prediction by the GLM than a randomly chosen trip that did not catch a black rockfish (Figure 199).

Stephens and MacCall (2004) proposed ignoring trips below a threshold probability, based on a criterion of balancing the number of false positives and false negatives. False positives (FP) are trips that are predicted to catch a black rockfish based on the species composition of the catch, but did not. False negatives (FN) are trips that were not predicted to catch a black rockfish, given the catch composition, but
caught at least one. For the MRFSS data set, the threshold probability (0.319) that balances FP and FN excluded almost 2,000 trips that did not catch a black rockfish, and 155 trips that caught a black rockfish. Given the low prevalence of black rockfish in the original data (16\%), we chose the same threshold for excluding trips, which removed slightly fewer (1789) trips. We also retained the false negative trips, assuming that catching a black rockfish indicates that a non-negligible fraction of the fishing effort occurred in appropriate habitat. Only "true negatives" based on the baseline threshold (the 1789 trips that neither caught black rockfish, nor were predicted to catch them by the model) were excluded from the index standardization.

No MRFSS CPUE data are available for the years 1990-1992, due to a hiatus in sampling related to funding issues. When the program resumed, sampling of California CPFVs north of Point Conception was further delayed, and CPFV samples in 1993 and 1994 are limited to San Luis Obispo County. These years were removed from the index due to insufficient spatial coverage. We also removed 1997 due to an apparent anomaly in effort calculations, as first noted by Key et al. (2008). A plot of catch per angler vs. catch per angler hour by year shows that the average reported hours fished is generally consistent over time, with the exception of data in 1997 (Figure 200). The exact reason for the difference remains unknown, but similar to Key et al., we excluded data from 1997. Unlike Key et al.'s observations for blue rockfish, there was no apparent difference in 1998 for black rockfish, and data for that year were retained in our analysis.

Finally, although MRFSS CPUE data are available through 2003, years after 1999 were excluded from the black rockfish index due to regulatory changes that may affect catch rates. In 2000, anglers targeting rockfish were limited to one line with three hooks and the bag limit for the rockfish/cabezon/greenling group was reduced from 15 to 10 fish. The number of hooks per line was further reduced in 2001, to two hooks per line. Depth restrictions were introduced in 2001 (Figure 7), potentially changing catch rates relative to data from 1980-1999, when there were no gear or depth restrictions in place. The bag limit remained unchanged ( 15 fish) from 1980-1999. The final, filtered data set consisted of 558 trips (Table 4).

## MRFSS CPUE Index: Model Development, Selection, and Diagnostics

Data at the county level were sparse, so we assigned trips to equivalent CRFS districts based on county (Table 5). The number of CPFV samples from northern counties has consistently been smaller than in central and southern California, which is problematic when assessing trends for species like black rockfish that have a more northerly distribution. This is due in part to the statewide distribution of recreational effort and fleet size, particularly during the years when the MRFSS dockside sampling program was operating. Even in recent years, the CRFS program has lower CPFV sample sizes, as smaller vessel sizes (" 6 -packs") in the northern counties are less likely to have room for an onboard observer. We combined districts 3-4 and 5-6 into 'central' and 'north' areas, respectively, for index standardization. The proportion of positive trips varied by year and district, with $47 \%$ of all trips encountering a black rockfish (Table 6). Apart from differences in catch rate among district and year, we also considered changes associated with season (2-month "waves") and a course measure of distance from shore ("Area_X" in the MRFSS data, labeled "water_area" in our results). This distance variable is a categorical variable indicating whether most of the fishing took place inside or outside 3 nautical miles from shore, as reported by anglers during each interview. Estimates of mean catch rates (catch per angler hour) by year and area are highly variable in the north, likely due to small sample sizes (Figure 201).

The counts of black rockfish per trip in the filtered data set were heavily skewed with a large proportion of zeros (Figure 202). To model the counts, we used a Bayesian negative binomial regression model implemented with the 'rstanarm' package in R (Goodrich et al. 2023). Due to small sample size relative to the potential number of model parameters, we based model selection on the Akaike Information Criterion
with small-sample bias correction (AICc; Burnham and Anderson, 2002). The "glm.nb" function (from the "MASS" library) was used for model selection to reduce run times, and final inference and diagnostics were based on the 'best-AICc' model fit using rstanarm. We included a model with an interaction between year and area in the set of candidate models, but AICc was minimized by a simpler model with main effects for year, area, and wave (Table 7). Adding the variable describing distance from shore increased the AICc score by $\sim 2$, so it was left out, but the 2-month "wave" was retained because removing it increased the AICc score by more than 14 points. Predictive distributions, by year, from the best-AIC model were consistent with the observed annual means (Figure 203) and standard deviations (Figure 204).

To further evaluate the model, we compared the predicted distributions of the proportion of zeros by year in replicate data sets from the model to the observed proportion of zeros. The negative binomial model is able to reproduce the observed proportion of zeros in the data (although the predictive distributions cover a wide range of values; Figure 205), similar to the delta-GLM approach (Lo et al., 1992; Stefánsson 1996) but requires fewer parameters. Strata with all positive observations are easily handled by the NB model, whereas the binomial portion of a delta-GLM model will produce an undefined coefficient (estimate goes to infinity). In this data set, some strata have all positive observations (Table 6), which would complicate the estimation of uncertainty using the delta-GLM approach.

Catch rates in the north are estimated by the standardization model to be larger than the central area, with peak catch rates occurring in the summer months, i.e. waves 3-4, or May-August (Figure 206).The final standardized time series of relative abundance is provided as Table 8 and illustrated in Figure 207.

## MRFSS CPUE Index: Summary of changes relative to the 2015 assessment

The index presented in this assessment is derived from the same data set used in the 2015 assessment (Cope et al. 2015). Similar to the previous index, we removed data from 1993-94 due to limited sampling. We decided to remove data from 1997 after repeating the analysis of Key et al. (2008) and identifying years with anomalous effort patterns. The previous assessment included MRFSS data after 1999, but broke the time series into two separate indices to account for regulatory changes. In this assessment, trends in abundance after 1999 are informed by the ongoing onboard CPFV sampling program (Section 2.2.3.3) and a new dockside private boat index (Section 2.2.3.1). The 2015 assessment also used a deltaGLM model to standardize the index. To illustrate how each of these changes affected the index, we first fit the same data set used in 2015 with a negative binomial model. This produced a very similar result to the 2015 index fit using the delta-GLM (Figure 208). Then, we dropped data from 1997 and 2000-2003, which removed the large spike in 1997 and increased the index in most years. Finally, we compared the best-fit model described above, which had little effect relative to dropping the years. We feel that the reasons given above for removing the years 1997 and 2000-2003 justify the changes, and that changes in the index are largely driven by these decisions rather than the specific choice of statistical model.

### 12.1.2 Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO)

## Subtidal SCUBA Survey

The Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO) is an academic consortium conducting monitoring of coastal ecosystems in California as well as research to support marine protected area design. Their work includes SCUBA surveys within rocky reef habitats at a suite of sites across the state using standardized protocols so that multiple participating universities collect compatible data.

These protocols are described in great detail by Gillett et al. (2012). We examined fish transect data collected by participating PISCO researchers at the University of California Santa Cruz (UCSC), University of California Santa Barbara (UCSB), and Humboldt State University (HSU) where sites align with the black rockfish stock. Below we outline the structure of PISCO fish transect data, the procedure we used to filter the data to include black rockfish habitat, and methods for development of a fisheryindependent abundance index.

Each fish transect location is surveyed by divers who count fish within a $30 \times 2 \times 2-\mathrm{m}$ volume on the bottom, mid-way up the water column, and near the surface just below the kelp canopy. Three replicate transects are performed within inner, inner-mid, outer-mid, and deep zones of the reef corresponding to depths between 5 and 20 m . This results in 12 transect locations per reef site and 36 transect swims incorporating the three levels. Divers count fish by species and estimate sizes. Survey sites are typically grouped within a geographic area, i.e., there are three sites on Naples reef near Santa Barbara (Naples Central, Naples East, and Naples West). We grouped these sites such that they represent one survey location with up to three times as many replicate transects.

The full dataset was filtered for quality and habitat appropriate for black rockfish (Table 62, Table 63). We eliminated sites that were sampled in less than $80 \%$ of the survey years for each campus. Black rockfish were observed on bottom and mid-water but not canopy transects. Canopy transects were removed, and bottom and mid-water were combined to represent a single unit of effort. Transects within the "mid" and "deep" zone categories were removed due to infrequent use at sites where black rockfish were observed. Divers noted approximate water visibility and transects with visibility less than 3 m were removed. We also retained only fish greater than or equal to 16 cm in length to construct an adult index. The months of May, June and November were removed due to infrequent detection of black rockfish. Following these filters, only one site monitored by the UCSB campus in the northern Channel Islands remained. Therefore, all UCSB campus monitored sites were removed due to general unrepresentativeness of the region. Five out of seven UCSC sites are within MPAs while two out of four HSU sites are within MPAs. We did not filter sites based on MPA status. Remaining UCSC sites were concentrated on the Monterey peninsula and HSU sites in the Mendocino region. We separated the UCSC and HSU data to produce separate indices representative of central and northern California. The UCSC time series extends from 1999 to 2021 while HSU monitoring occurred from 2014 to 2021.

The index was modeled as a negative binomial regression. Models incorporating temporal (year, month) and geographic (site, zone) factors were evaluated. Based on AIC values from maximum likelihood fits (Table 64), a main effects model including all factors (year, month, site and zone) was fit in the "rstanarm" R package (version 2.21.3) for both campuses. The proportion of samples with zero observations of black rockfish observed in the data were consistent with replicate data sets generated by the model (Figure 209).

The final index for the UCSC campus peaks in 2003 then declines before increasing again to a secondary peak in 2013 and ends with low values for the final five years. The peak in 2013 is consistent with other abundance indices in the assessment (i.e. CCFRP, PR dockside, and CPFV onboard). The peak in 2003 was not observed in the CPFV onboard index (which includes both retained and discarded fish), which is the only other index that includes 2003. The model was also unable to match the declines in abundance implied by the index after 2016, a pattern also seen in the CPFV onboard index. The final index for the HSU campus is relatively flat with high uncertainty but peaks in 2020. (Figure 210).

The PISCO dive survey was excluded from the final base model because the estimated additive (logscale) standard deviation parameter (i.e. variance added to the input variances) for this index was large (0.74), suggesting that the index was not consistent with structural assumptions of the model and/or other data sources.

## Recruitment Survey

The PISCO program monitors young-of-the-year fish recruitment by sampling artificial settlement substrates called Standard Monitoring Units for Recruitment of Fishes (SMURFs). Similar to the SCUBA surveys, SMURF surveys are conducted by multiple universities using standardized protocols. Methods are described by Steele et al. (2002). We examined data collected by the UCSC campus and ultimately determined that the data were not sufficiently representative of Black Rockfish recruitment to be used as an index in the assessment. Surveys by UCSC were conducted between 1999 and 2016. Only two sites regularly observed Black Rockfish. These were Hopkins and Stillwater Cove on the Monterey Peninsula. Juvenile Black Rockfish are difficult to distinguish from juvenile Olive (Sebastes serranoides) and Yellowtail Rockfish (S. flavidus). We examined the frequency of detections of Black, Olive and Yellowtail rockfish combined and found that several years of the time series had zero detections of the species combination. Resulting negative binomial model explorations produced imprecise estimates.

### 12.1.3 NMFS Fishery-Independent Trawl Surveys

Black rockfish are poorly sampled by fishery-independent bottom trawl surveys, with a reported catch of 21 individuals from 13 hauls over the period 2001-2022 from the West Coast Groundfish Bottom Trawl Survey. An additional 264 individuals were collected by the Triennial Survey over a period spanning the early 1980 s to the early 2000 s, occurring in $<0.25 \%$ of hauls conducted.

### 12.1.4 NWFSC Southern California Shelf Rockfish Hook and Line Survey

According to the FRAM Data Warehouse, Black Rockfish were not encountered by this survey, which has operated exclusively in the Southern California Bight.

### 12.1.5 SWFSC Rockfish Recruitment and Ecosystem Assessment Survey (RREAS)

## Data

The Fishery Ecology Division of the Southwest Fishery Science Center has conducted a standardized pelagic juvenile trawl survey (the Rockfish Recruitment and Ecosystem Assessment Survey) during MayJune every year since 1983 (Ralston et al. 2013; Sakuma et al. 2016; Field et al. 2021). A primary purpose of the survey is to estimate the abundance of pelagic juvenile rockfishes (Sebastes spp.) and to develop indices of year-class strength for use in groundfish stock assessments on the U. S. West Coast. This is possible because the survey samples young-of-the-year rockfish when they are $\sim 100$ days old, an ontogenetic stage that occurs after year-class strength is established, but well before cohorts recruit to commercial and recreational fisheries. This survey has encountered tremendous interannual variability in the abundance of the species that are routinely indexed, as well as high apparent synchrony in abundance among the ten most frequently encountered species (Ralston et al. 2013). Past assessments have used data from this survey to provide indices of year-class strength (as relative age 0 abundance), including assessments for Blue/Deacon Rockfish (Dick et al. 2017), Widow Rockfish (Adams et al. 2019), Bocaccio (He et al. 2015), Shortbelly Rockfish (Field et al. 2007) and Chilipepper Rockfish (Field 2015).

Historically, the survey was conducted between $36^{\circ} 30^{\prime}$ and $38^{\circ} 20^{\prime} \mathrm{N}$ latitude (the 'core area' from approximately Carmel to just north of Point Reyes, CA), but starting in 2004 the spatial coverage expanded to cover from the U.S./Mexico border to Cape Mendocino. Additionally, since 2001 data are
available from comparable surveys conducted by the Pacific Whiting Conservation Cooperative (20012009) and the Northwest Fisheries Science Center "Pre-recruit" survey (2011-2022) for waters off of Oregon and Washington (Field et al. 2021). Coastwide data have revealed both spatial differences in species composition (e.g. north and south of Point Conception) and interannual shifts in the distribution of most pelagic juvenile rockfishes: The near absence of fish in the core survey area during the 2005-2007 period, which saw two of the lowest abundance levels of juvenile rockfish ever observed in the core area time series, was associated with an apparent redistribution of fish, both to the north and the south (Ralston and Stewart, 2013). As the core area index seems to have failed to capture the magnitude of the 1999 year class for most stocks, the recommendations from the juvenile rockfish survey workshop held in 2005 were to use only the coastwide data (since 2001) for juvenile indices rather than the longer-term 'core area' indices unless a convincing case could be made otherwise. We used data from 2001 to 2022, the period for which we have coastwide coverage. On account of the COVID-19 pandemic, sampling in 2020 was very limited and restricted to the historical core area, so this year is excluded. In the years 2010, 2012, and 2022, sampling did not span the entire coastwide spatial domain, with data lacking from northern CA and OR (Figure 211). These years were included in the model, but sensitivity of the stock assessment to exclusion of the index for these years could be explored.

As pelagic juveniles, black rockfish can be identified to species (Figure 212); however, black and yellowtail rockfish are difficult to differentiate: the distinction is primarily based on pectoral fin ray counts (yellowtail: 17-18, black: 19), however the meristics are variable (yellowtail can occasionally have 19 , and black can occasionally have 18), so some misclassification undoubtedly occurs. Yellowtail rockfish are closely related to black rockfish, have similar life histories, and are more abundant and frequently encountered in the survey than black rockfish (Figure 213). Thoughout the survey, approximately 6 x more yellowtail have been caught than black rockfish. Yellowtail tend to co-occur with black rockfish (and also blue and widow rockfish), such that their CPUE co-varies (Figure 214). As previously mentioned, high synchrony has been observed among many rockfishes in the survey. For all of these reasons, we produced one index with black rockfish alone, and another with pooled black and yellowtail rockfish.

Catch per tow was adjusted to a common age of 100 days to account for interannual differences in age structure, as has been done for prior assessment indices using this dataset.

## Model

For the index model, we used data from $35-43^{\circ} \mathrm{N}$ latitude (just north of Point Conception to southern OR). Black and yellowtail rockfish were rarely caught south of $35^{\circ} \mathrm{N}$, and samples from southern OR were included in the model training data to improve estimation of spatial fields near the CA-OR border. Model predictions upon which the index was based were restricted to $35-42^{\circ} \mathrm{N}$ (just north of Point Conception to the CA-OR border). In years 2006, 2012, 2017, and 2021, no black rockfish were caught. At least one yellowtail was caught every year.

Since catch (and sampling) varied over space and time, we modeled catch using a spatial GLM with the package sdmTMB (Anderson et al. 2022). The 100-day standardized catch per tow was modeled as a function of year along with Julian date (GAM smoother with $\mathrm{k}=4$ ) to account for seasonality, a spatial random field, and IID spatiotemporal random fields.

In sdmTMB index models, year effects are typically modeled as fixed factors, however this approach is unable to estimate an index and associated uncertainty for years in which there are no positive catches. For black rockfish only, there were several years with extensive sampling but where no black rockfish were caught. In order to not have to exclude these years, which are informative about abundance being relatively low, year effects were instead modeled using time-varying (random walk) intercepts. In years
with positive catches (all years for black+yellowtail, and most years for black only), the resulting indices and uncertainties were nearly identical to those using fixed year effects, and in years with no positive catches, the model appropriately produced an index with a low value and relatively high (but not infinite) uncertainty, which is usable in the assessment. For consistency, we used this time-varying intercept structure for both black+yellowtail and black only.

We fit the model using 3 different error structures: tweedie, delta-lognormal, and delta-gamma. Dharma quantile residuals from model simulations suggested that tweedie distribution was the best (Figure 215), so this is the model we proceeded with. The tweedie model also best reproduced the observed proportion of zeros in the data based on simulations from the fitted model (black+yellowtail: observed: 0.83 , tweedie: 0.84 , delta-lognormal: 0.72 , delta-gamma: 0.72 . CA black: observed: 0.94 , tweedie: 0.95 ). As expected, the Julian date effect showed a decline in catch towards the end of the sampling season, as juveniles begin to settle out of the water column (Figure 216).

Predictions from the model were made for all active sample stations from $35-42^{\circ} \mathrm{N}$ (just north of Point Conception to the CA-OR border), for the mean Julian date (143.7), for each year. Predictions were added together for each year to produce the index. Active stations are those regularly and consistently sampled, and are located on a semi-regular grid spanning the sampling region. Interpolating to a finer spatial grid had little impact on the resulting index.

If the spatio-temporal field is excluded from the model, the indices show the same general trend, with some differences in the relative magnitude of values, mostly in years with high abundance. Since areas of high recruitment are variable over both space and time, we suspect the spatio-temporal model is better able to capture this variation from year to year, and is thus more accurate.

The indices for black only and black+yellowtail were highly correlated (log index: 0.77 , index: 0.92 ) (Figure 217), even with yellowtail accounting for the majority of fish caught. The two indices deviated mainly in the years 2021 and 2022: black alone rockfish were low, but yellowtail were relatively abundant. Sensitivity of the stock assessment to the use of each index should be explored.

### 12.1.6 SWFSC SCUBA survey

## Data

The Fishery Ecology Division of the Southwest Fishery Science Center has conducted standardized surveys for settled juvenile young-of-the-year (age-0) rockfishes in California kelp beds, which is the habitat to which black rockfish recruit. These surveys are conducted annually between 1 July and 30 September. Several nearby sites were surveyed in the vicinity of Albino, CA (Mendocino County), for the years 1983-2007, and in the vicinity of Monterey for the years 1984, 1996, 1997, and 2001-2022. Kelp beds consisted of high-relief bedrock interspersed with low-relief cobble and sand areas. Researchers surveyed strip transects using SCUBA. Researchers swam 2 m above the seafloor at Mendocino sites and 1 m above the seafloor at Monterey sites because of differing topographies (Mendocino has more pinnacles and required swimming farther off the seafloor; Monterey is flatter and researchers could be consistently closer to the seafloor). Researchers swam in one direction and counted all juvenile rockfishes within 3 m in any direction for 1 minute (with the exception of years 1983-1984, where transect duration ranged from 1-30 minutes). At the end of each one minute survey, the numbers of each species were recorded. The researcher would then haphazardly choose another direction to swim and conduct rockfish counts for another minute. Surveys were made throughout the kelp bed from the surface to 20 m depth. Young-of-the-year rockfishes were distinguished from older conspecifics by their size (less than 80 mm
standard length in August) and from other rockfish species by body shape and pigment patterns (Anderson, 1983; Love et al., 2002). To standardize survey conditions, surveys were only conducted between the hours of 0900 and 1700, when underwater visibility was greater than 4 m , and when swell height was less than 2 m .

For consistency with the analysis of the RREAS pelagic juvenile data, and because (as with the RREAS data) yellowtail rockfish were observed more frequently than black rockfish, we produced one index with black rockfish alone, and another with pooled black and yellowtail rockfish.

## Model

For the index model, we used a negative binomial GLM with the number of fish observed as the response variable, and the log number of minutes surveyed as an offset. Poisson GLM models were also tried, but the residuals were strongly overdispersed; the negative binomial model produced acceptable diagnostic plots. For pooled black+yellowtail, fixed effects were included for year and area (Mendocino, Monterey). For just black rockfish, there were some years with no fish observed, so time-varying (random walk) intercepts were used rather than fixed effects in order to obtain estimates for those years. The area effect had to be dropped for this model because the time-varying intercept approach does not work with categorical covariates that are not sampled in all years. We reasoned that not accounting for area effects (which were relatively weak) would be less undesirable than having to exclude years with no fish caught that are indicative of low recruitment. Models were fit with the package sdmTMB with spatial fields turned off (Anderson et al. 2022).

Correlations between the log indices for the pelagic juvenile survey and the SCUBA (settled juvenile) survey were 0.58 for black rockfish and 0.73 for black+yellowtail rockfish (Figure 218, Figure 219).

### 12.1.7 California Remotely Operated Vehicle Survey Data

The California Department of Fish and Wildlife (CDFW) in collaboration with Marine Applied Research and Exploration (MARE) have been conducting remotely operated vehicle (ROV) surveys along the California coast in Marine Protected Areas (MPAs) and reference sites adjacent to them since 2007 for the purposed of long-term monitoring of changes in size, density (fish/sq meter) and length of fish and invertebrate species along the California coast. Surveys of the entire coast have been undertaken twice, taking three years to complete each resulting in super years of 2015 (2014-2016) and 2020 (2019-2021) available for analysis. The 500 m strip survey transects in each rocky reef sample site were selected by first randomly selecting the deepest transect at a given site, then selecting transects on a constant interval into shallower depths. Transects were designed to be oriented parallel to general depth contours, though they were carried out using a fixed bearing that crossed depths in some cases. Species encountered by the ROV along the transect were identified to species or lowest taxonomic grouping possible and stereo cameras along with analytical software were used to determine the length of individuals in a suitable orientation for estimation. Seafloor was characterized along the course of the transect in 1 second micro blocks assembled into classifications of rock, mixed and soft bottom habitat. The transects were then broken into 10 m segments to allow evaluation of density of fish with variables such as depth, habitat type and terrain attributes derived from the California Seafloor mapping project. The terrain attributes were only available for a subset of the ROV transects due to limitations on the availability of $2 \times 2 \mathrm{~m}$ resolution depth data from which the terrain attributes calculated across $3 \times 3$ or $5 \times 5$ grids such as slope, depth range and rugosity that were georeferenced to the centroid of each segment. While the habitat type is available from ROV observations, the terrain attributes provide a measure of relief in the seafloor, though only for a subset of transects. A larger number of segments are available for analysis without the limitations on terrain attributed derivation. Length data from the stereo-camera estimates provide composition data representing the observed fish sampled among MPAs and reference sites that can be paired with the
indices or abundance estimates as a research fleet. In addition, they provide the basis for average weight expansions for estimates of abundance.

The use of this data in stock assessments was approved by the SSC for use in stock assessments after a methodology review conducted in 2019 for use as an index of abundance or absolute abundance estimate using seafloor mapping as the basis for expansion to rocky reef habitat. Additional details on sampling methods, data processing, index derivation and absolute abundance estimation principles and method can be found in the report from the methodology review.

The ROV survey reported observations of 902 black rockfish in northern and central California from 2014-2016 and 2019-2021. Documentation provided to the STAT states, "Schooling rockfish species such as blue, black or yellowtail rockfish were unavailable to the ROV in mid-water making the ROV based methods poorly suited to estimating their abundance without supplemental acoustic data and potential changes to the sampling methodology." The report from the methodological review stated, "Black, blue/deacon and canary rockfish may be candidates for developing indices if ROV data is coupled with other observational data given the tendency of these species to be found in midwater or off-bottom schools." (PFMC, 2020) Data from the survey were not included in the current assessment, but may provide useful information to future assessments with additional analysis and/or coupling with other data sets.

## Appendix B Tables

Table 62: Data filtering steps for the PISCO SCUBA survey

| Process | Transects | \# Black Rockfish | \% Positive |
| :---: | :---: | :---: | :---: |
| Original | 61322 | 13855 | $7 \%$ |
| Group Sites | 44918 | 13855 | $9 \%$ |
| Regularly sampled sites, saw black rockfish >= once | 10721 | 4979 | $13 \%$ |
| Remove low visibility transects \& canopy transects | 10089 | 4842 | $14 \%$ |
| Group mid and bottom transects | 5296 | 4842 | $20 \%$ |
| Filter to age 1+ fish (<=16cm) | 5296 | 3711 | $18 \%$ |
| Remove mid \& deep zones, May, June \& Nov, <br> UCSB sites with few detections | 2948 | 3596 | $31 \%$ |

Table 63: Number of transects remaining in the filtered data set by campus and year

| Campus | Year | \# Transects |
| :---: | :---: | :---: |
| HSU | 2014 | 113 |
| HSU | 2015 | 107 |
| HSU | 2017 | 59 |
| HSU | 2018 | 111 |
| HSU | 2019 | 110 |
| HSU | 2020 | 78 |
| HSU | 2021 | 54 |
| UCSC | 1999 | 40 |
| UCSC | 2000 | 40 |
| UCSC | 2001 | 48 |
| UCSC | 2002 | 72 |
| UCSC | 2003 | 72 |
| UCSC | 2004 | 84 |
| UCSC | 2005 | 85 |
| UCSC | 2006 | 84 |
| UCSC | 2007 | 84 |
| UCSC | 2008 | 84 |
| UCSC | 2009 | 84 |
| UCSC | 2010 | 114 |
| UCSC | 2011 | 132 |
| UCSC | 2012 | 108 |
| UCSC | 2013 | 148 |
| UCSC | 2014 | 120 |
| UCSC | 2015 | 111 |
| UCSC | 2016 | 108 |
| UCSC | 2017 | 132 |
| UCSC | 2018 | 153 |
| UCSC | 2019 | 138 |
| UCSC | 2020 | 155 |
| UCSC | 2021 | 120 |
|  |  |  |

Table 64: Model selection for the PISCO SCUBA survey data by campus

|  | UCSC |  | HSU |  |
| :---: | :---: | :---: | :---: | :---: |
| Model | AIC | df | AIC | df |
| Year | 2863.994 | 24 | 1123.802 | 8 |
| Year, Month | 2856.65 | 27 | 1127.235 | 11 |
| Year, Month, Site | 2757.558 | 33 | 1131.597 | 14 |
| Year, Month, Site, <br> Zone | 2661.45 | 36 | 1111.957 | 17 |

## Appendix B Figures



Figure 198: Species coefficients (blue bars) from the binomial GLM for presence/absence of black rockfish in the MRFSS data for California north of $\mathbf{3 4}{ }^{\circ} \mathbf{2 7}{ }^{\prime}$ N. latitude. Horizontal black bars are $\mathbf{9 5 \%}$ confidence intervals.


Figure 199: MRFSS Receiver Operating Characteristic (ROC) curve for Stephens-MacCall logistic regression model. AUC is the probability that a randomly chosen observation of presence would be assigned a higher ranked prediction than a randomly chosen observation of absence.


Figure 200: Average catch per angler hour (filtered data) by year and area for the MRFSS dockside CPFV data.


Figure 201: MRFSS Northern California CPFV effort anomaly in 1997, as noted by Key et al. 2008.


Figure 202: Distributions of the count of black rockfish ("Target"), the product of reported anglers and hours fished (ANGLERxHRS), and catch rates (fish per angler hour), by trip, in the MRFSS dockside CPFV data.


Figure 203: Posterior predictive distributions of the mean catch by year from the negative binomial model (histograms), compared to the observed mean number of black rockfish in the MRFSS CPFV data.


Figure 204: Posterior predictive distributions of the standard deviation of catch by year from the negative binomial model (histograms), compared to the observed standard deviation of black rockfish in the MRFSS CPFV data.









$T=$ prop_zero
$T\left(y_{\text {rep }}\right)$


Figure 205: Posterior predictive distribution of the proportion of zero observations in replicate data sets, by year, generated by the negative binomial model for MRFSS CPFV data.


Figure 206: Relative area and wave effects estimated from the MRFSS CPFV data.


Figure 207: Standardized index of abundance for black rockfish based on the MRFSS CPFV data. Medians (points) of the back-transformed posterior distributions are shown with $\mathbf{9 5 \%}$ highest posterior density intervals (line segments).


Figure 208: Comparison of the 2015 MRFSS CPFV index and the 2023 index, illustrating incremental changes as described in Section 12.1.1.


Figure 209: Posterior predictive distribution of the proportion of zero observations in replicate data sets generated by the negative binomial model for the PISCO kelp forest fish survey. A) UCSC, B) HSU.


Figure 210: PISCO SCUBA survey indices of relative abundance developed from data collected by Humboldt State University (HSU, top panel) and the University of California, Santa Cruz (UCSC, bottom panel).


Figure 211: Location of samples by year and survey for CA and OR.


Figure 212: Pelagic juvenile black rockfish, approx. 40 mm standard length.


Figure 213: Proportion positive catches of black, yellowtail, and black+yellowtail at each station across all years. Red points are zeros (species never caught at this station).


Figure 214: Correlation between black and yellowtail rockfish raw CPUE.


Figure 215: QQ plots using simulation-based quantile residuals for models with three different error distributions. These are for the CA black+yellowtail model. Delta models were fit using fixed year effects since the delta models had difficulty converging with time-varying intercepts. Tweedie models were fit using both year effect structures and had similar fit diagnostics.


Figure 216: Conditional effect of Julian date (centered on the mean, 143.7) on log CPUE. Points are partial randomized quantile residuals..


Figure 217: Comparison of $\log$ indices for black+yellowtail and black rockfish alone.


Figure 218: Comparison of indices for black+yellowtail rockfish and black rockfish alone.


Figure 219: Comparison of RREAS and SWFSC SCUBA recruitment indices

