

Northwest Fisheries Science Center

Joshua A. Zahner, Madison Heller-Shipley Haley A. Oleynik, Sabrina G. Beyer, Pierre-Yves Hernvann, Matthieu Véron, Andrea N. Odell, Jane Y. Sullivan, Adam L. Hayes, Kiva L. Oken, Vladlena Gertseva, Owen S. Hamel, Melissa A. Haltuch August 14, 2023

Team Members

Sabrina Beyer

Adam Hayes

Madison Heller-Shipley

Pierre-Yves Hernvann

Andrea Odell

Haley Oleynik

Jane Sullivan

Matthieu Véron

Joshua Zahner

These materials do not constitute a formal publication and are for information only. They are pre-review, pre-decisional state, and should not be formally cited or reproduced. They are to be considered provisional and do not represent any determination or policy of NOAA or the Department of Commerce.

Data Overview

Data Overview

Fisheries fleet structure:

- **'NTrawl'** = OR/WA
- **'STrawl'** = CA
- 'Non-Trawl' = Coastwide

Survey fleet structure:

'Triennial Survey' 'WCGBTS'

Year

Full catch time series

Survey Indices

Geostatistical model-based index

Single index for Triennial Survey

AFSC and NWFSC Slope Surveys dropped

Growth

No validated aging methods

2023 analysis: Sexspecific Schnute growth curves with lognormal error distribution fit

Sensitivity: +25% and -10% on lengths at age-2 and age-100

Other Biological Parameters

	2023	Source
Maturity-at-length	L ₅₀ = 31.42 cm	WCGBTS [updated]
Fecundity-at-length	$F = 0.0544L^{3.978}$	Cooper et al. 2005 [used in 2013 assessment]
Weight-at-length	Females: 4.86*10 ⁻⁶ L ^{3.26} Males: 4.69*10 ⁻⁶ L ^{3.25}	WCGBTS [updated]
Natural mortality	<i>M</i> = 0.04	Highly uncertain due to difficulty in age determination resulting in uncertainty in Amax; assumes longevity ~ 135 years based on Hamel and Cope 2022; wide likelihood profiles minimized at $M = 0.045$; between values used in AK, BC and previous West Coast assessments

Natural Mortality

2005: *M* fixed at 0.05 2013: *M* fixed at 0.0505 2023: M fixed at 0.04

~135 year maximum age per Hamel and Cope (2022)

Large range in literature

- 0.013-0.07
- AK and BC use 0.03
- 2013 used 0.0505

Wide likelihood profiles

Natural mortality estimates suggest *M* is < 0.05 https://connect.fisheries.noaa.gov/natural-mortality-tool/

2023 Proposed Base Model

2013-2023 Bridging Process

2013: SS v3.24.0 \rightarrow 2023: SS v3.30.21

2023 Model - Overview of Changes

- 1. Simplified fleet/survey structure
- 2. Length-based fecundity relationship
- 3. Modified maturity and growth curves
- 4. Lower value of natural mortality
- 5. Model-based indices of abundance
- 6. Historical state-level catch reconstructions

2023 Model Overview

- Start Year: 1901
- Condensed fleet structure (3 fisheries; 2 surveys)
 - 2013 fleet structure: 4 fisheries; 5 surveys
- Dome-shaped selectivity, asymptotic retention
- B-H stock recruit relationship h=0.72 (2013: h=0.60)
- · Sex-specific growth
- · Fecundity-at-length relationship
- Fixed natural mortality M=0.04 (2013: M=0.0505)

Model Results

Spawning Output Timeseries

Recruitment Timeseries

Relative spawning output: B/B_0

Summary of reference points and management quantities

Variable of Interest	Estimate	95% CI
Unfished Spawning Output	22,145	18,166-26,124
Unfished Age 1+ Biomass (mt)	$216,\!864$	$177,\!897-\!255,\!831$
Unfished Recruitment (R0)	12,580	10,320-14,841
Spawning Output (2023)	8,717	5,545 - 11,889
Fraction Unfished (2023)	0.39	0.32 - 0.47
Reference Points Based SB40%		
Proxy Spawning Output SB40%	8,858	7,266-10,450
SPR Resulting in SB40%	0.458	0.458 - 0.458
Exploitation Rate Resulting in SB40%	0.012	0.011 – 0.012
Yield with SPR Based On SB40% (mt)	1,160	971 - 1,348
Reference Points Based on SPR Proxy for MSY		
Proxy Spawning Output (SPR50)	9,880	8,105-11,656
SPR50	0.500	-
Exploitation Rate Corresponding to SPR50	0.010	0.010 - 0.011
Yield with SPR50 at SB SPR (mt)	1,108	929 - 1,288
Reference Points Based on Estimated MSY Values		
Spawning Output at MSY (SB MSY)	6,155	$5,\!057\!-\!7,\!253$
SPR MSY	0.348	0.345 – 0.351
Exploitation Rate Corresponding to SPR MSY	0.017	0.016 - 0.017
MSY (mt)	1,227	$1,\!027\!-\!1,\!426$

Page 22 U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service

Summary of reference points and management quantities

Variable of Interest	Estimate	95% CI
Unfished Spawning Output	22,145	18,166-26,124
Unfished Age 1+ Biomass (mt)	216,864	$177,\!897-\!255,\!831$
Unfished Recruitment (R0)	12,580	10,320-14,841
Spawning Output (2023)	8,717	5,545 - 11,889
Fraction Unfished (2023)	0.39	0.32 - 0.47
Reference Points Based SB40%		
Proxy Spawning Output SB40%	8,858	7,266-10,450
SPR Resulting in SB40%	0.458	0.458 - 0.458
Exploitation Rate Resulting in SB40%	0.012	0.011 – 0.012
Yield with SPR Based On SB40% (mt)	1,160	971 - 1,348
Reference Points Based on SPR Proxy for MSY		
Proxy Spawning Output (SPR50)	9,880	8,105-11,656
SPR50	0.500	-
Exploitation Rate Corresponding to SPR50	0.010	0.010 - 0.011
Yield with SPR50 at SB SPR (mt)	1,108	929 - 1,288
Reference Points Based on Estimated MSY Values		
Spawning Output at MSY (SB MSY)	6,155	5,057-7,253
SPR MSY	0.348	0.345 - 0.351
Exploitation Rate Corresponding to SPR MSY	0.017	0.016 - 0.017
MSY (mt)	1,227	1,027 - 1,426

Page 23 U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service

Catch projections under high/low states of nature

		Low: $M = 0.03$		Base: 0.04		High: $M = 0.05$	
Year	Catch	SO	Dep	SO	Dep	SO	Dep
ACL P*	$^{*} = 0.4$						
2023	756	13485	0.427	8717	0.394	9907	0.494
2024	756	13334	0.422	8687	0.392	9965	0.497
2025	711	13194	0.418	8666	0.391	10032	0.500
2026	713	13067	0.414	8659	0.391	10113	0.504
2027	716	12949	0.410	8660	0.391	10202	0.509
2028	718	12841	0.406	8670	0.392	10298	0.513
2029	720	12742	0.403	8688	0.392	10400	0.519
2030	721	12652	0.401	8712	0.393	10509	0.524
2031	722	12570	0.398	8744	0.395	10621	0.530
2032	721	12496	0.396	8782	0.397	10738	0.535
2033	720	12431	0.394	8826	0.399	10857	0.541
2034	719	12372	0.392	8874	0.401	10978	0.547
ACL P*	$^{*} = 0.45$						
2023	756	13485	0.427	8717	0.394	9907	0.494
2024	756	13334	0.422	8687	0.392	9965	0.497
2025	815	13194	0.418	8666	0.391	10032	0.500
2026	825	13060	0.413	8652	0.391	10106	0.504
2027	834	12934	0.409	8645	0.390	10187	0.508
2028	843	12817	0.406	8647	0.390	10275	0.512
2029	851	12708	0.402	8655	0.391	10368	0.517
2030	859	12607	0.399	8670	0.392	10467	0.522
2031	866	12513	0.396	8691	0.392	10569	0.527
2032	872	12427	0.393	8717	0.394	10674	0.532
2033	877	12348	0.391	8747	0.395	10781	0.538
2034	883	12275	0.389	8782	0.397	10889	0.543

• States of nature considered for Natural Mortality

• Projections starting in 2025

Page 25

Nati

2023 Key Diagnostics

Diagnostic Summary

Retrospective Analysis: no strong retrospective patterns Likelihood Profiles:

R₀ : moderately sensitive
h : insensitive
M : moderately sensitive

Retrospective Analysis

Likelihood Profile over R0

Likelihood Profile over Natural Mortality (M)

Changes in total likelihood

Change in -log-likelihood

Changes in total likelihood

Page 29 U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service

Sensitivities Summary

	Scenarios	Outcomes
Growth	High Growth Low Growth	Stock scale and status sensitive
Maturity	2013 Maturity Curve Intermediate Maturity Curve	Results largely insensitive
Fecundity	Spawning biomass = spawning output (No Fecundity-Length Relationship)	Stock scale sensitive; status insensitive
Landings	Imputed Historical Landings 2013 Historical Landings 4 Fleet Structure (2013)	Results largely insensitive
Surveys	Log-normal model-based error structure Design-based Indices Including Slope Surveys (2013)	Results largely insensitive

Model Sensitivity to Growth (length-at-age)

- Scenarios
 - High growth: +25%
 - Low growth: -10%
- Spawning output (scale) sensitive to assumptions of growth
- Spawning depletion less sensitive, but some variation in final year
- Recruitment sensitive to growth
- High growth scenario slightly better overall fit to the data

Voor

Prominent Axes of Uncertainty

Growth

- High uncertainty in age estimation; no validated ageing method for species
- No apparent asymptote with available data

Year

Natural Mortality

- Large range in literature
 - 0.013-0.07
 - AK and BC use 0.03
 - 2013 used 0.0505
- Large range supported by profiles
 - M=0.045 (95% CI: 0.035-0.051)
- Related to fish max age
 - Higher M, lower depletion

Year

		Low: $M = 0.03$		Base: 0.04		High: M = 0.05	
Year	Catch	SO	Dep	SO	Dep	SO	Dep
ACL P*	$^{*} = 0.4$						
2023	756	13485	0.427	8717	0.394	9907	0.494
2024	756	13334	0.422	8687	0.392	9965	0.497
2025	711	13194	0.418	8666	0.391	10032	0.500
2026	713	13067	0.414	8659	0.391	10113	0.504
2027	716	12949	0.410	8660	0.391	10202	0.509
2028	718	12841	0.406	8670	0.392	10298	0.513
2029	720	12742	0.403	8688	0.392	10400	0.519
2030	721	12652	0.401	8712	0.393	10509	0.524
2031	722	12570	0.398	8744	0.395	10621	0.530
2032	721	12496	0.396	8782	0.397	10738	0.535
2033	720	12431	0.394	8826	0.399	10857	0.541
2034	719	12372	0.392	8874	0.401	10978	0.547
ACL P*	$^{*} = 0.45$						
2023	756	13485	0.427	8717	0.394	9907	0.494
2024	756	13334	0.422	8687	0.392	9965	0.497
2025	866	13194	0.418	8666	0.391	10032	0.500
2026	874	13056	0.413	8648	0.391	10103	0.504
2027	883	12927	0.409	8639	0.390	10180	0.508
2028	891	12806	0.405	8636	0.390	10264	0.512
2029	897	12693	0.402	8641	0.390	10354	0.516
2030	903	12588	0.398	8652	0.391	10449	0.521
2031	909	12491	0.395	8669	0.391	10548	0.526
2032	913	12401	0.393	8692	0.392	10650	0.531
2033	916	12317	0.390	8719	0.394	10753	0.536
2034	919	12240	0.387	8750	0.395	10858	0.541

Research and data needs

BIOLOGY

- Research into ageing methods / reliable age data
- Better understanding patterns observed in
 - Growth
 - Maturity
- Effect of bottom type on shortspine distribution \rightarrow refine abundance indices
- - Spatial population structure:
 Possible effect of migration on stock dynamics
 Need of a spatially-explicit population model?

METHODOLOGY

Research into the Dirichlet-Multinomial data-weighting method for length-composition data

Concluding Comments

- Consistent and continued biomass decline starting in the 1970s
- Growth, mortality and our understanding of ageing are limited, which impact our understanding of biomass levels

Page 37 U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service

Thank you

- Julia Coates
- E.J. Dick
- Melissa Head
- Kelli Johnson
- Donna Kline
- Andi Stephens
- · Ian Taylor
- Theresa Tsou
- John Wallace
- Chantel Wetzel
- Ali Whitman

Instructors

- · Vladlena Gertseva
- · Melissa Haltuch
- Owen Hamel
- · Kiva Oken

Additional Figures

Maturity

Updated length-at-maturity from WCGBTS

 $L_{50\%}$ = 31.42 cm

2023 model largely insensitive to the updated maturity curve due to slow, continued growth and higher fecundity of larger females

Fecundity

Updated fecundity-at-length from Cooper et al. 2005

Previous assessments assumed SSB=spawning output

2023 model largely insensitive to updated fecundity information

Indices of Abundance

Selectivity and Retention

Selectivity and Retention

Length Compositions

- Sex-specific selectivity for surveys
- Many years with very low sample sizes
- Some recent patterns imply possible selectivity change

Discard Fractions

Discard fraction for Trawl_N

- Lots of alternative time-blocks tested as part of sensitivity analyses
- Extra time-blocks provide significant improvements to model fit, but very little change in management quantities

Model Sensitivity to Selectivity and Retention

Retention

Selectivity and Retention Blocks

TIME BLOCKS DEFINITION

 Page 48
 U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service

Retention Time Blocks

Retention for Trawl_S

Retention for Non-trawl in 2022

Selectivity Time Blocks

SELECTIVITY CURVES

Likelihood Profile over Steepness (h)

Changes in total likelihood

Change in -log-likelihood

