Table of Scientific Uncertainty Buffers for Pacific Sardine ${ }^{1}$ given a natural mortality rate of $M=0.59$ (the rounded value from both the 2020 benchmark $(M=0.585)$ and 2022 update $(M=0.591)$). Based upon the natural-mortality based approach suggested in Wetzel and Hamel (2023; last paragraph of Results section, bottom of page 8), one can calculate r (the annual linear increase in σ) to be:

$$
r=0.52^{*} M^{*} \sigma_{\text {baseline }}=0.31^{*} \sigma_{\text {baseline }}
$$

such that:

$$
\sigma_{y}=\sigma_{\text {baseline }} *\left(1+0.31^{*}\left(y_{\text {management }}-y_{\text {assessment }}\right)\right),
$$

where $y_{\text {management }}$ is the year being considered for management decisions and $y_{\text {assessment }}$ is the year in which the assessment was conducted and adopted for management. Italics indicate values that exceed category 3 values for the same P^{*}. Bold indicates applicable row for 2023.

		Category 1 (baseline $\sigma=0.5$)							Category 2 (baseline $\sigma=1.0$)				
Year	P^{*}	0.45	0.40	0.35	0.30	0.25	Year	P*	0.45	0.40	0.35	0.30	0.25
1		6.1\%	11.9\%	17.5\%	23.1\%	28.6\%	1		11.8\%	22.4\%	32.0\%	40.8\%	49.1\%
2		7.9\%	15.3\%	22.3\%	29.1\%	35.7\%	2		15.2\%	28.2\%	39.6\%	49.7\%	58.7\%
3		9.7\%	18.6\%	26.8\%	34.6\%	42.1\%	3		18.4\%	33.7\%	46.4\%	57.2\%	66.5\%
4		11.4\%	21.7\%	31.1\%	39.7\%	47.8\%	4		21.5\%	38.7\%	52.5\%	63.7\%	72.8\%
5		13.1\%	24.7\%	35.1\%	44.4\%	53.0\%	5		24.5\%	43.3\%	57.8\%	69.1\%	77.9\%
6		14.8\%	27.6\%	38.8\%	48.8\%	57.7\%	6		27.4\%	47.6\%	62.6\%	73.7\%	82.1\%
7		16.4\%	30.4\%	42.4\%	52.8\%	61.9\%	7		30.2\%	51.5\%	66.8\%	77.7\%	85.5\%
8		18.1\%	33.1\%	45.7\%	56.4\%	65.7\%	8		32.9\%	55.2\%	70.5\%	81.0\%	88.2\%
9		19.6\%	35.6\%	48.9\%	59.8\%	69.1\%	9		35.4\%	58.6\%	73.8\%	83.9\%	90.4\%
10		21.2\%	38.1\%	51.8\%	63.0\%	72.1\%	10		37.9\%	61.7\%	76.8\%	86.3\%	92.2\%
11		22.7\%	40.5\%	54.6\%	65.9\%	74.9\%	11		40.3\%	64.6\%	79.4\%	88.4\%	93.7\%
Category 3 (constant $\sigma=2.0$)													
P*		0.45	0.40	0.35	0.30	0.25							
		22.2\%	39.8\%	53.7\%	65.0\%	74.0\%							

${ }^{1}$ Developed by Owen Hamel, Northwest Fisheries Science Center
Wetzel, C.R., and Hamel, O.S. 2023. Applying a probability harvest control rule to account for increased uncertainty in setting precautionary harvest limits from past stock assessments. Fisheries Research 262, 106659.

