

FISHERIES

Northwest Fisheries Science Center

SHORTSPINE THORNATEAD (Sebastolobus alascanus)

2023 Pre-Assessment Workshop

Madison Heller-Shipley, Joshua Zahner Haley Oleynik, Jane Sullivan

March 20, 2023

Team Members

Sabrina Beyer

Adam Hayes

Madison **Heller-Shipley**

Pierre-Yves Hernvann

Andrea Odell

Haley Oleynik

Jane Sullivan

Matthieu Veron

Joshua Zahner

Shortspine Thornyhead (Sebastolobus alascanus)

- West Coast of US (Baja to Bering Sea); 20-1500 m depth range
- Tend to settle 100-400 m \rightarrow ontogenetic movement to greater depths
- Long lived species (max age ~100 years)
- Historically caught alongside Dover Sole and Sablefish
- · Last assessed in 2013; original benchmark in 2005

2013 Research and Data Needs

- Additional research into ageing methods and maturity
- A comprehensive catch reconstruction pre-1981
- Exploration of simpler assessment methods

Data Overview

Fisheries Dependent Data

Fishery Dependent Data

Туре	Source	Abbrev.
Landings	Pacific Fisheries Information Network State Reconstructions	PacFIN
Discards	West Coast Groundfish Observer Program Enhanced Data Collection Project Pikitch et al., 1988 Groundfish Expanded Mortality Multiyear	WCGOP EDCP Pikitch GEMM
Lengths	PacFIN for landings, WCGOP and Pikitch for discards	
Ages	None Available	State AMOSPHERE

FISHERIES

Landings Data Overview

Landings Data

- Historical data from California, Oregon, and Washington (1900 1981)
- Recent data from PacFIN (1981 2023)

2013 assessment fleet structure:

- 1. **'NTrawl'** = OR/WA trawl
- 2. **'NOther'** = OR/WA non-trawl
- 3. **'STrawl' = CA trawl**
- 4. **'SOther'** = CA non-trawl

Catch comparison with 2013 assessment

Large agreement between 2013 and 2023 catch estimates *except:*

- Additional early catches
 in North
- Reduced early catches in South

Full catch time series

Estimating unidentified thornyhead catch

Proportion Shortspine in Identified Thornyhead Catch

Proportion_Shortspine = Shortspine / (Shortspine + Longspine)

2013 assessment used coastwide proportion

We recommend using state and gear-specific proportions

Estimating unidentified thornyhead catch

Estimated_Shortspine = Proportion_Shortspine * Unidentified_thornhead

Very little catch is unidentified

Transitioning from coastwide to state/ gear-specific proportion is a minor change

Page 12 U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service

Fishery Length Compositions

Vertical lines represent the median length for each fleet across all years

Discards

Discard rates (%) + Length distributions (L)

	2005	2013	2023
Pikitch	1980s-1990s	1985-1987	New estimates (J. Wallace)
(N)	%	<mark>%</mark> + L	% + L
EDCP	1995-1999	1995-1999	New estimates
(N)	%	%	%
WCGOP	2002-2003	2002-2011	2002-2021
(N+S)	%	% + L	% + L

Discards Rates

Discard Weights and Lengths

Page 16 U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service

Total Discards

Aggregated Landing and Discard Lengths

MAA

Fisheries Independent Data

Fisheries Independent Surveys

- . AFSC Triennial Shelf Survey
- . AFSC Slope Survey
- . NWFSC Slope Survey
- . NWFSC Combo Survey

(1980-2004, 1977 removed) (1997-2001) (1998-2002) (2003-2022, no 2020)

Survey Strata

Survey	Strata Definitions			
AFSC Slope	2 strata: 32.0-49.0°N: 150-500 m, 500-1280 m			
NWFSC Combo	7 strata			
(West Coast	32.0-34.5°N: 183-550 m, 550-1280 m			
Groundfish Bottom	34.5-40.5°N: 183-550 m, 550-1280 m			
Trawi Surveyj	40.5-49.0°N: 100-183 m, 183-550 m, 550-1280 m			
	The depth breaks at 183 m and 550 m are associated with changes in sampling intensity of the survey and are recommended to be used.			
NWFSC Slope	6 strata			
	32.0-40.5°N: 55-500m, 550-1280m			
	40.5-43.0°N: 55-550m, 550-1280m			
	43.0-49.0 N: 55-550m, 550-1280m			
AFSC Triennial 1	1 stratum: <=366 m			
AFSC Triennial 2	1 stratum: 366-500 m			

2013 and 2023 strata definitions are identical

Investigate strata definitions for the AFSC Triennial survey:

- Single index
- Removed all together

Survey Indices

Point + error bars = design-based index

Line + ribbon = sdmTMB model index

Combine Triennial 1/2 surveys for model-based indices

Geostatistical Survey Indices

Two possible error structures

Explore as a sensitivity analysis alongside design-based indices

Page 23 U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service

Shortspine Thornyhead Survey Length Compositions

Unsexed fish <16cm in length assumed to be immature? Apply a 50:50 sex ratio?

All surveys have roughly the same length compositions, and similar to fishery comps

Biological Information

Growth uncertainty

No validated ageing method for thornyheads

Relying on research data sets from the 1990s

Kline fish appear to grow faster and to larger sizes:

- Growing faster in central CA?
- Ageing error/bias?

	Source	Region	Years	Details		
	Butler et al. 1995	OR and northern CA	1978-87, 1988, 1990	N=1,023; Sexed; Fork length; Two age readers		
	Kline 1996	Central CA	1991	N=319; Unsexed; Total length; One age reader		

New growth curves for 2023 assessment

Unable to reproduce 2005/2013 assessment growth curves (based on Kline 1996)

Propose using Butler data for 2023

• Sex-specific data, higher N, two age readers

2023 analysis: Sex-specific Schnute growth curves with lognormal error distribution fit to Butler data

Growth sensitivities

Sensitivity analysis (shaded areas):

- +25% and -10% on lengths at age-2 and age-100
- Upper bound of sensitivity accounts for Kline data
- 2005 and 2013 assessments used +/-10% on length-at-age 100

Maturity

2005/2013 assessment used Pearson and Gunderson (2003)

2013 sensitivity based on observed proportions mature (samples collected during 2011/2012 surveys)

New maturity data may be available later in March (M. Head, NOAA)

Figure from 2013 assessment, sample sizes reported in the blue circles

Maturity

- Base model in 2005/2013 assessments used Pearson and Gunderson (2003)
- 2013 sensitivity based on observed proportions mature (samples collected during 2011/2012 surveys)

Figures from 2013 assessment:

Maturity

 New histological maturity data from WCGBTS (M. Head, NOAA) to be analyzed for 2023 assessment

Fecundity

2013 assessment assumed spawning biomass equivalent to spawning output (i.e., spawning output proportional to body weight)

2023: Use fecundity-at- length information

- Cooper et al. 2005
- Alaska and West Coast (no regional difference)
- 56 samples
- accounts for greater relative fecundity of large females

Shortspine thornyhead fecundity-at-length Source: Cooper et al. 2005

Natural Mortality

2005: *M* fixed at 0.05 2013: *M* fixed at 0.0505

2023: *M* fixed at 0.054 (Hamel and Cope 2022)

- Age_{max} = 100
- $M = 0.054 = 5.40 / \text{Age}_{\text{max}}$
- Explore estimating *M* in the model

Model Information

Model Information

$2013: SS v3.24.0 \rightarrow 2023: SS v3.30.21$

Summary of 2023 Data Changes

- Historical state-level catch reconstructions
- Gear/state specific SST:LST proportions
- Geostatistical model-based abundance indices
 Single Triennial Survey index

• New growth and maturity curves

2013 Research and Data Needs

- Additional research into ageing and maturity
 - New maturity data, update growth
- A comprehensive catch reconstruction pre-1981
 - Historical state data rather than based on sablefish catch
- Exploration of simpler assessment methods
 - Explore simplified fleet structure
 - Explore removal of older survey data
 - Explore utility of design-based indices

Thank you

- · Julia Coates
- · Melissa Head
- · Kelli Johnson
- Donna Kline
- Andi Stephens
- · Ian Taylor
- Theresa Tsou
- · John Wallace
- Chantel Wetzel
- . Ali Whitman

Instructors

- Vladlena Gertseva
- · Melissa Haltuch
- Owen Hamel
- · Kiva Oken

Team Members

Sabrina Beyer

Adam Hayes

Madison Heller-Shipley

Pierre-Yves Hernvann

Andrea Odell

Haley Oleynik

Jane Sullivan

Matthieu Veron

Joshua Zahner

