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2023 Petrale Sole Stock Assessment
Pre-assessment Workshop

These materials do not constitute a formal
publication and are for information only. They are
in a pre-review, pre-decisional state and should
not be formally cited or reproduced. They are to
be considered provisional and do not represent
any determination or policy of NOAA or the
Department of Commerce
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Background
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. Photo: anonymous NWFSC staff on WCGBT Survey
Pho

to: lan Taylor at Town & Country Market Shoreline
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Background: assessment history

e Stock was declared overfished in 2009
e Declared rebuiltin 2015 (reference points also changed)
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Figure e. Time series of depletion level as estimated in the base case model (round
points) with approximate asymptotic 95% confidence interval (dashed lines) and alternate Figure 107. Time series of depletion level as estimated in the base case madel (round points) with
states of nature (light lines). approximate asymptotic 95% confidence interval (dashed lines).
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Background: assessment history

e Stock was declared overfished in 2009

e Declared rebuiltin 2015 (reference points also changed)
e Frequent assessments during rebuilding period

e Assessment last updated in 2019

e Full assessmentin 2023 will be the first since 2013
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History of stock exploitation
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Started in California in the late 1800s;
Extended north, to Oregon and Washington starting in the 1930s;

Early concerns about stock depletion in the 1950s;

Targeting of winter spawning aggregations developed through the 1950s and 1960s.
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Data sources used in 2019 assessment
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Landings by state: California

g
o

2023 assessment « 1916-1930: CDFG Fish Bulletins;

1931-1968: Ralston et al (2010);
plus OR-WA catches landed in CA;
1969-1980: CalCOM,;

1981-2022: PacFIN.
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Landings by state: Oregon

o . 1896-1986: Karnowski et al (2014);
2000 - « 1987-2022: PacFIN.
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Landings by state: Washington

3000

1500 | e - 1930-1947: linear interpolation;

2000 - « 1948-1979: WDFW,

WA petrale sole landings (mt)

1500 1 .y « 1981-2022: PacFIN.
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Sources for previous landings
history not fully understood.
WDFW has double-checked the
updated time series.
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Coastwide landings
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Discard fraction is low
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Fishery-independent data

Included in the assessment:
WCGBTS (2003-present)
AFSC triennial shelf survey (1980-2004)
Evaluated but not included, due to limited amount of data:
NWFSC slope survey (1999-2002)
AFSC slope survey (1997, 1999-2001)

Page 15 U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service



WCGBT Survey index
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WCGBTS lengths
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AFSC triennial shelf survey

2013 and 2019 assessments: treated as two separate indices
- to account for change in survey timing and depth coverage in 1995.
2023 assessment: plan to use as a single index,

- with offset on catchability and selectivity for >1995.
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Biological parameters

Natural mortality

Hamel prior to be slightly revised based on Hamel and
Cope (2022) (will use max age for females=32 years and
for males=29 years )

Female and male M expected to be independently
estimated in the model

Growth - fully estimated in the model
Fecundity - updated
Maturity -updated
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Biological parameters: maturity
e Previous assessment used Hannah et al. (2002) maturity estimates.

e “Due to limited data, new studies on the maturity at length or age for petrale
sole would be beneficial.” (2019 petrale update)

e New maturity ogive from Melissa Head based on 583 samples collected in
2015-2021 by ODFW, WDFW and NMFS

e Length at 50% maturity

Petrale functional maturity

estimated at 35.5 cm
e Similarto 33.1 cm estimated Sample size
by (Hannah et al. 2002)

(based on samples from a

Proportion mature
00 02 04 06 08 10

narrower geographic range)
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Biological parameters: fecundity

e Estimate of fecundity at size used in 2019 update as a

sensitivity analysis

e Expected to be included in the 2023 assessment

©
—— Combined 2
- = California
w - - Northwest

-—-- Current Assumed Fecundity

Fecundity (millions of eggs)
3

Length (cm)

Figure 41: Estimated fecundity-at-length for petrale sole based on Lefebvrd

et al. (in press).

National Marine
Fisheries Service

NOAA

Spencer F. Baird
Fishery Bulletin First U.S. Commissioner

g of Fisheries and founder
2= established in 1881~ of Fishery Bulletin

Abstract—The petrale sole (Eopsetta
Jjordani) is a commercially and ecologi-
cally important flatfish found through-
out the continental shelf from California
through British Columbia, Canada.
Although stock assessments are rou-
tinely conducted along the West Coast
of the United States for this population,
these assessments have depended on
limited data for estimating reproductive
output. In this analysis, the reproductive
strategy for this species was revisited,
fecundity estimates were updated, and
irad feciindity velationshi
were established from fish collected off
California and the Pacific Northwest.
Results of histological analysis indicate
that petrale sole exhibit a determinate
batch spawning strategy, with potential
annual fecundity (PAF) set prior to the
release of eggs over the course of sev-
eral spawning events. Both PAF and
relative PAF (weight-specific fecundity)
increased significantly with maternal
length and weight. Regional differences
in the strength of the relationship
between relative PAF and size indicate
that the maternal effect is stronger in
the Pacific Northwest; however, more
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Reproductive ecology and size-dependent
fecundity in the petrale sole (Eopsetta jordani)
in waters of California, Oregon, and Washington

Lyndsey S. Lefebvre (contact author)"?
Cherisa L. Friedlander?
John C. Field?

Email address for contact author: lyndsey.lefebvre@noaa.gov

" Institute of Marine Sciences

University of California Santa Cruz

1156 High Street

Santa Cruz, California 95064

Present address for contact author: Integrated Statistics Inc.
Population and Ecosystems Monitoring and Analysis Division
Northeast Fisheries Science Center
National Marine Fisheries Service, NOAA
166 Water Street
Woods Hole, Massachusetts 02543

2 Fisheries Ecology Division
Southpest Fisheries Science Center
National Marine Fisheries Service, NOAA
110 McAllister Way
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Modeling
considerations




Exploring impact of changes to model structure

e Too many parameters can result in less robust estimates
(304 estimated parameters in 2019 update)

e Including conflicting data in an assessment model typically
reduces uncertainty rather than increases it

e More parsimonious models are easier to keep up to date

e Model run time is about 30 minutes to estimate all the
parameters and their uncertainty—faster runs allow more
models to be explored
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Modeling issue 1: fishery catch-per-unit-effort

CPUE index for years starting in 1987 first used for petrale in
1999 assessment

Index later updated and extended to cover period 1987-2009
(overfishing declaration impacted CPUE)

CPUE increased significantly in 2004 at the same time as the
vessel buyback

CPUE is modeled as non-linearly related to abundance due to
concerns about hyperstability when fishing on spawning
aggregations
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Modeling issue 1: fishery catch-per-unit-effort

Harley et al.

Fig. 1. Relationship between CPUE and abundance based on dif-
ferent values of the shape parameter [.
VN
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Page 25

Index

Index

South

00 05 1.0 15 20 25 3.0 35

T T T T
1990 1995 2000 2005

Year

South (1987-2003)

1.4 —{ © Observed
® Expected

0.2 4

0.0 T T T T
0 1000 2000 3000 4000 5000

Vulnerable biomass

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service

Index

Index

0.0 05 1.0 15 2.0 25 3.0 35

00 02 04 06 08 10 12 14

North

T T T T
1990 1995 2000 2005

Year

North (1987-2003)

T T T T
1000 2000 3000 4000

Vulnerable biomass

5000



Modeling issue 1: fishery catch per unit effort

e Almost zero influence on
2019 update assessment

— 2019 base model
40 — —— without commercial CPUE
D
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Modeling issue 1: fishery catch per unit effort

e Lack of influence of fishery CPUE
is good news

e Indicates survey data provides the

60000 80000
L |
—o———

information we need to monitor %

Index
40000
1

changes in abundance:
o long enough, including a period of

20000
|

increasing abundance §
o changes in survey index are consistent
with signals from length and age data ° 2005 2010 sors
e Proposal: CPUE can be removed voar

Figure 61: Fit to the NWFSC West Coast Groundfish Bottom Trawl Survey time series for

from the assessment ey

From 2019 update assessment

e (Can be included in sensitivity
analysis
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Modeling issue 2: seasonal structure

Figure 3. Examples of seasonal changes in age and size composition in market samples of petrale sole.

“Because of the marked seasonality in the landings of petrale
sole, and because biological samples from the commercial
fishery indicate considerable seasonal changes in the size and
age composition (e.g., Fig. 3), with larger and older fish taken on
the spawning grounds, in the assessment model the landings
data were separated into two time periods, a winter season
(November-February) and a summer season (March-October).”
-1999 petrale assessment

Figure 2a. Monthly landings of petrale sole by state, 1991-98.
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Oregon market samples from the northern stock, 1981-83 average compositions.
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Modeling issue 2: seasonal structure

e CPUE trends were different in

Unstandardized CPUE and Regulatory Impacts

winter vs summer

e Only winter CPUE included in
assessment models é ) /\ 2 /

e CPUE for fishing on spawning § : i ﬁ 3 / =
aggregations presumed to be =, \ \ 3 \ /,A/\/ \ | | | &
more representative of the 8 e / P ] |t / |
population size E I S R

e [fCPUE index no longer 'fé ) /'\ i i
included in the model, it = AN / A 2
doesn’t impact choice of ?z ., \ /\/ \ \ //\ \ \ / 3
seasonal structure E 1 Sl A et / /

5 ) N B B : ;%ear B B i ) N i

Slide from Haltuch et al. “Reconciling uncertain and conflicting trends in
petrale sole abundance” (presentation at 2010 NMFS NSAW meeting)
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Modeling issue 2: seasonal structure

Patterns of winter having more landings from deeper water
has continued in recent years

Season Season
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Seasonal structure investigation:
impact of separate selectivity

e Separate selectivity

parameters for Summer and
Winter fisheries in North

and South

e Mirroring selectivity
requires 22 fewer
parameters

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service
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Seasonal structure investigation 2:
impact of separate selectivity

e Separate selectivity

parameters for Summer and G L
Winter fisheries in North -
and South z
e Mirroring selectivity 3
requires 22 fewer ;, i
parameters ;
i
e Mirroring selectivity has
negligible impact
e P S ML,
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Plan for seasonal structure in 2023 assessment

e We are planning to develop seasonal and annual model in
parallel to compare the impact of aggregating all samples to
the annual level and adding more recent data to both
models

e Ifresults are similar, we are likely to propose the annual
model as the basis for management with the seasonal
model as a sensitivity analysis

e If results differ significantly (seasonal vs annual), that will
be useful information to explore more deeply

e Model thatisn’t chosen will be sensitivity analysis
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Modeling issue 3: sex-specific selectivity

e More males than females in small age and size bins
e Sex-specific selectivity required to get
reasonable fit to length comps

NWFSC WCGBT Survey NWFSC WCGBT Survey
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Modeling issue 3: sex-specific selectivity

e Many other flatfish have environmental sex determination

e Stock Synthesis includes option to estimate sex ratio of recruits

e Sex-specific selectivity may still be appropriate-we will investigate

Seminars in Cell & Developmental Biology 20 (2009) 256-263

Contents lists available at ScienceDirect

Seminars in Cell & Developmental Biology

journal homepage: www.elsevier.com/locate/semcdb

Review

Sex determination in flatfishes: Mechanisms and environmental influences

J. Adam Luckenbach*, Russell J. Borski, Harry V. Daniels, John Godwin
Department of Biology, North Carolina State University, Raleigh, NC 27695, USA

ARTI

CLE INFO ABSTRACT

Article history: Flounder of the genus Paralichthys exhibit a unique mode of sex determination where both low and high

Available online 11 December 2008

induce le-ske d sex ratios, while intermediate temperatures produce a 1:1 sex ratio.
Male differentiation is thus easily induced in genetic females creating a combination of genetic (GSD) and

Keywords:

Environmental sex determination
Temperature-dependent sex determination

TSD

Sex differentiation

environmental sex determination (ESD). Since male flounder become reproductively fit at substantially
smaller body sizes than females, ure or other i variables that elicit lower growth
rates may also influence sex differentiation toward male development. This review covers our current
knowledge of sex determination and differentiation in flatfishes including possible adaptive significance

Aromatase of ESD and involvement of factors such as aromatase (cyp19).

© 2008 Elsevier Ltd. All rights reserved.
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Warmer waters masculinize
wild populations of a fish with
temperature-dependent sex
determination

J. L. Honeycutt?, C. A. Deck®, S. C. Miller?, M. E. Severance?, E. B. Atkins?, J. A. Luckenbach?,
J. A.Buckel?, H. V. Daniels?, J. A. Rice?, R. J. Borski® & J. Godwin®

h 1l der (| it i exhibit i Isexd ination (ESD), where

i | factors can infll h ic sex during early juvenile development but only in
the presumed XX female genotype. Warm and cold p inize fish with mid-rang
conditions producing at most 50% females. Due to Ily di hic growth, fl,
fisheries are dependent upon larger females. Wild populations could be at risk of masculinization
from ESD due to globally i ing water P We d the effects of habitat and

p on wild lati of juvenile 1l der in North Carolina, USA. While northern

i ged P near 23°C and produced the g proportion of , more
southerly habitats exhibited warmer temperatures (>>27°C) and i ly produced male-biased sex
ratios (up to 94% male). Rearing fl lab y under regimes mimicking those
of natural i recapitulated s b: d across the wild populations, providing
strong evid that P! s a key factor infl ing sex ratios in nursery habitats. These studies

provide evidence of habitat conditions interacting with ESD to affect a key demographic parameter in
an economically important fishery. The temperature ranges that yield male-biased sex ratios are within
the scope of predicted increases in ocean temperature under climate change.
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Environmental driver of recruitment
estimated from oceanographic data
covering the period 1981-2010

“Four oceanographic variables explained
73% of the variation in recruitment not
accounted for by estimates based
exclusively on the spawning stock size.”
Nick Tolimieri is in the process of
extending index to recent years

We are hoping to include this in the 2023
assessment
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Modeling issue 4: environmental recruitment index
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Abstract

This paper investigates environmental drivers of U.S. West Coast petrale sole
(Eopsetta jordani) recruitment as an initial step toward developing an environmental
recruitment index that can inform the stock assessment in the absence of survey ob-
servations of age-0 and age-1 fish. First, a conceptual life history approach is used to
generate life-stage-specific and spati lly specific hanistic hypotheses

regarding oceanographic variables that likely influence survival at each life stage.
Seven life history stages are considered, from female spawner condition through
benthic recruitment as observed in the Northwest Fisheries Science Center West
Coast Groundfish Bottom Trawl| Survey (age-2 fish). The study area encompasses the
region from 40 to 48°N in the California Current Ecosystem. Hypotheses are tested
using output from a regional ocean reanalysis model outputs and model selection
hi iabl lained 73% of the variation in recruit-

ment not accounted for by estimates based exclusively on the spawning stock size.

techniques. Four oc

Recruitment deviations were (a) positively correlated with degree days during the fe-
male precondition period, (b) positively correlated with mixed-layer depth during the
egg stage, (c) negatively correlated with cross-shelf transport during the larval stage,
and (d) negatively correlated with cross-shelf transport during the benthic juvenile
stage. While multiple mechanisms likely affect petrale sole recruitment at different
points during their life history, the strength of the relationship is promising for stock
assessment and integrated ecosystem assessment applications.




Additional activities




Collaboration with Canadian scientists

e An assessment is being conducted for Petrale Sole in

Canadian waters in 2023

o Firstsince 2009
o Led by Mackenzie Mazur and Kendra Holt at DFO

e Planned collaborations in 2023 include:

o Comparison of index trends on both sides of the border

o Comparison of length comps, especially from the Triennial in years that
include BC waters

o Comparison of estimated recruitment time-series

o  Sensitivity analysis to including catch and possibly comps and/or index
from Canada as an additional fleet in the U.S. assessment and maybe the
opposite in the Canadian assessment

e Petrale is a transboundary stock

o The most recent STAR panel (2013) recommended including more
information about the petrale fishery in Canada in future assessment
reports
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Questions, comments, concerns?

A\
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