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Agenda Item H.2.b 
Supplemental SSC Report 1 

March 2022 
 

 
SCIENTIFIC AND STATISTICAL COMMITTEE REPORT ON 2021-2022 CALIFORNIA 

CURRENT ECOSYSTEM STATUS REPORT AND SCIENCE REVIEW TOPICS 
 
The Scientific and Statistical Committee (SSC) met with representatives of the California Current 
Integrated Ecosystem Assessment (CCIEA) team, Drs. Toby Garfield (Southwest Fisheries 
Science Center) and Chris Harvey (Northwest Fisheries Science Center). The SSC’s discussion 
with the CCIEA team encompassed three topics, which are reported upon below in turn: 1) the 
2022 California Current Ecosystem Status Report (CCIEA Team Report 1), 2) the report of the 
August 31 - September 1 2021 SSC Ecosystem Subcommittee (SSCES) meeting (appended to the 
end of this statement), and 3) ecosystem science review topics proposed for 2022 (CCIEA Team 
Supplemental Report 2). 
 
Review of the 2022 CCIEA Ecosystem Status Report 
 
The Ecosystem Status Report provides important information on environmental, biological, social, 
and economic indicators and provides an ecosystem perspective on West Coast fish stocks, 
fisheries, and coastal communities for the Council process. The SSC commends the CCIEA team’s 
openness and responsiveness to Council and SSC questions and recommendations, and their 
continuing efforts to improve the Status Report each year. Significant additions to the report this 
year include an indicator of krill biomass off northern California potentially relevant to Klamath 
River Fall Chinook, quantitative marine survival projections in association with some salmon 
indicators, information from acoustic trawl surveys for Coastal Pelagic Species, albacore diet 
information, analyses of overlap between wind energy areas and non-confidential limited-entry 
groundfish bottom trawl fishing activity, expansion of the fishery participation network analyses, 
and a climate change appendix.  
 
Recent changes in distribution and abundance of species and in fisheries have been accompanied 
by rare combinations of extremes that make it difficult to identify drivers of observed changes, a 
challenge that is likely to be further intensified by ongoing climate change. Further development 
of the climate change appendix would be an important step in attempting to address this challenge.    
 
An overarching theme in this year’s Ecosystem Status Report is that oceanic indicators largely 
returned to states similar to generally favorable pre-2013 conditions, aside from a marine heatwave 
that largely remained far offshore, while conditions in freshwater were characterized by drought, 
record heat, and reduced snowpack and flows.  
 
The SSC discussed several issues that could affect the interpretation of the indicators in the report 
including: 
  

1. Natural-area Sacramento River Fall Chinook (SRFC) escapement in 2019 (giving rise to 
the dominant age-3 age class for 2022 fisheries) is described as “relatively favorable” for 
natural-area Central Valley Fall Chinook and noted as having “met goal” in Table 3.3.2. 
However, while natural-area escapement in 2019 was higher than other years under 
consideration, there is currently no natural-area escapement goal established for SRFC, and 

https://www.pcouncil.org/documents/2022/02/h-2-a-cciea-team-report-1-2021-2022-california-current-ecosystem-status-report-and-appendices.pdf/
https://www.pcouncil.org/documents/2022/03/h-2-a-supplemental-cciea-team-report-2.pdf/
https://www.pcouncil.org/documents/2022/03/h-2-a-supplemental-cciea-team-report-2.pdf/
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multiple studies indicate that natural production would be maximized at substantially 
higher escapements than the typical natural-origin fraction of the current combined goal. 

2. The boundaries between colors in stoplight charts are based on ranks and are sensitive to 
the time period used for reference, and subject to change over time. 

3. Increased incorporation of predator-prey considerations into salmon indicators could be 
warranted. 

4. A “sawtooth” pattern of strong upwelling followed by relaxation events is apparent in 
2021, which is thought to be characteristic of good conditions for productivity. Further 
quantifying this pattern through the development of indicators that capture the variation in 
upwelling over relevant timescales and link to productivity could strengthen the biological 
relevance of upwelling indicators to managed species.  

 
Ecosystem Science Review Report from 2021 
 
The SSC reviewed the SSC Ecosystem Subcommittee (SSCES) report from its meeting held via 
webinar on August 31 and September 1, 2021 and discussed the report with SSCES Chair Dr. 
Kristin Marshall (NWFSC). The SSC agrees with the SSCES recommendations that: 

1. Future CCIEA reports should identify times when environmental conditions are beyond 
thresholds associated with poor salmon forecast performance in the past;   

2. A size-based krill indicator would be a useful addition to the Klamath River Fall Chinook 
stoplight table and a biomass indicator would be a helpful addition (these were included in 
the 2022 report);  

3. It would be useful to include port-level network analyses in future CCIEA reports (some 
analyses were added to the 2022 report); and  

4. It would be helpful to see more cross references between the CCIEA report and other 
Council materials, for example mention of the CCIEA report in salmon reports and vice 
versa.  

5. The SSC also agreed with the SSCES recommendations to develop robust juvenile 
groundfish abundance indices based on spatially-explicit information on size and 
abundance from the West Coast Bottom Trawl Survey to inform management between 
assessments, such as through assessment prioritization scoring or scientific uncertainty 
buffers. These analyses should focus on species that are well-sampled by the survey and 
not associated with rocky habitats. 

 
The  SSCES reviewed six documents, five of which were journal articles that are cited in the 
SSCES report and publicly available (but in some cases behind paywalls) and one unpublished 
addendum to an earlier article produced specifically for the SSCES meeting. The addendum is 
attached at the end of the SSCES report. In the future, the SSC recommends establishing a process 
for posting items (or at least links for copyrighted material) provided for SSCES review to the 
briefing book under an appropriate agenda item to facilitate transparency and public access to 
materials reviewed by the SSC. A single, easily found repository of all previous SSC Ecosystem 
Subcommittee reports and a consistent process for distributing the Subcommittee reports would 
also be useful and increase transparency. 
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Proposed Ecosystem Science Review Topics for 2022 
 
The CCIEA team has proposed three potential topics for review in September 2022 (Supplemental 
IEA Team Report 2): 1) strategic review of the salmon indicator portfolio, 2) reference periods for 
plotting recent means and trends in fishery landings and revenues, and 3) development of the 
climate change appendix.  
 
The SSC and CCIEA team agreed that point 2 could be addressed without the need for a meeting, 
with input from relevant advisory subpanels, and then the end product could be reviewed during 
the March meeting review of the first Ecosystem Status Report to incorporate it. The SSC 
recommends scheduling a half day for each of the two remaining topics in a September 2022 
meeting of the SSCES, noting that both are complicated and ambitious topics that will likely 
require multiple meetings with additional advisory bodies to fully address. The salmon review 
could focus on identifying stocks where ecosystem information would be most useful, and how it 
could be used to better inform management, which could include data-poor stocks and/or stocks 
whose life histories are not amenable to conventional forecasting techniques.  The climate change 
review could initially focus on technical discussions between the SSCES and the CCIEA team as 
well as identifying potential processes for involving additional advisory bodies. Given the focus 
on salmon, the SSC Salmon Subcommittee, Salmon Technical Team, and Salmon Advisory 
Subpanel should be invited to attend the SSCES meeting in September. 
 
 
PFMC 
03/10/22 
  

https://www.pcouncil.org/documents/2022/03/h-2-a-supplemental-cciea-team-report-2.pdf/
https://www.pcouncil.org/documents/2022/03/h-2-a-supplemental-cciea-team-report-2.pdf/
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SCIENTIFIC AND STATISTICAL COMMITTEE’S  
ECOSYSTEM SUBCOMMITTEE REPORT 

Pacific Fishery Management Council  
Via Webinar 

 
August 31 and September 1, 2021 

  

The Scientific and Statistical Committee’s Ecosystem Subcommittee (SSCES) met via webinar 
August 31 and September 1, 2021 to review new analyses conducted by the NMFS California 
Current Integrated Ecosystem Assessment (CCIEA) team that may potentially inform future 
annual Ecosystem Status Reports (hereafter CCIEA report) to the Pacific Council on the state of 
the California Current Ecosystem.  The SSCES reviewed four topics: A) Threshold Relationships 
Between Environmental Drivers and Performance of Salmon Preseason Abundance Forecasts, B) 
Krill-based Indicators, C) Year Class Strength and Distribution of Small Groundfish, and D) Port-
level Linkages Between Fisheries using Network Analysis.  Dr. Kristin Marshall chaired the 
meeting.  Meeting participants are listed in Appendix A. 

A. Threshold Relationships Between Environmental Drivers and Performance of Salmon 
Preseason Abundance Forecasts 

Dr. William Satterthwaite (NOAA, Southwest Fisheries Science Center) presented his paper 
“Ecological thresholds in forecast performance for key United States West Coast Chinook salmon 
stocks” (Satterthwaite et al. 2020) and an addendum he prepared for the SSCES, “Ecological 
thresholds in forecast performance for key United States West Coast Chinook salmon stocks – 
Addendum”. This research evaluated whether the performance of Chinook salmon abundance 
forecasts are related to environmental conditions, focusing on non-linear threshold relationships. 
Non-linear  relationships have potential to disrupt fisheries management and are not incorporated 
in current forecast models. Satterthwaite et al. (2020) focused on stocks of high priority for US 
west coast fisheries management and of predicted importance as prey for Southern Resident Killer 
Whales. The authors tested 2688 stock-driver-time lag combinations and found 65 non-linear 
relationships. Of these, 60 demonstrated threshold relationships, determined to exist when the 95% 
confidence interval of the second derivative of the nonlinear function excluded zero.  Among 
indices capable of explaining at least 33% of variance in forecast performance, oceanic 
environmental indices were much more common than freshwater or local environmental indices.  
This may be because forecasts already make use of some measure of cohort strength (e.g., jack 
returns) that takes place after freshwater and ocean-entry conditions have had their immediate 
effects. There were mechanistic explanations for many of the observed relationships. When many 
of the relationships were re-examined with updated datasets (see Addendum), in almost all cases 
where non-linear relationships had been previously selected, they were re-selected. This work 
could help fisheries managers identify environmental thresholds past which increased precaution 
may be warranted. For example, as suggested in the Addendum, NPI could be added to the annual 
CCIEA report as extreme values of it appear to predict poor Sacramento River Fall Chinook 
forecast performance and it may be relevant for interpreting some Puget Sound abundance 
forecasts.  Dr. Satterthwaite also demonstrated a straw-person method by which fisheries managers 
could quantify uncertainty in forecasts and increase precaution when a threshold is exceeded, using 
similar logic to how groundfish are managed.  
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While this was the first presentation on forecast thresholds to the SSCES, Dr. Satterthwaite 
addressed many comments the SSC and SSCES made in previous discussions of threshold 
approaches. The SSCES appreciated that feedback had been incorporated in many instances, and 
that acknowledgment was made where previous SSC recommendations were applicable but not 
yet incorporated.  For example, a null model randomization procedure approach was used to look 
at the chance for false positives and Bonferroni corrections were used for p-values, as previously 
suggested by the SSC and others when large numbers of tests were conducted in screening for 
relationships. In the Addendum, Dr. Satterthwaite also examined how robust the identified 
relationships were to new data, as suggested by previous SSC reviews of threshold work. The 
relationships tended to remain non-linear, and R2 tended to decrease with small increases in new 
data. When examining thresholds, one expects little change when “average” new data is added but 
more substantial changes when more extreme observations are added; this pattern was, in most 
cases, observed. Non-stationarity in the threshold relationships is not addressed in this work but is 
worth consideration in further work.  

The SSCES discussed several other technical aspects of the work and makes the following 
suggestions: 

● The SSCES agreed that R2 is a useful metric, but should not be the sole metric to evaluate 
the utility of models because the performance variable is truncated and thus non-normal, 
but R2 is from a normal model  

● Multi-variable responses or multidimensional indices. Multi-variable responses are 
certainly possibilities, but difficult. More localized indicators with clear mechanistic 
hypotheses would be a good place to start such an investigation. Multi-dimensional indices 
could be useful, but only if the components are related to forecast performance with the 
same lag  

● Another potential approach to explore is using a logit response; if a forecast breaks down 
with extreme values in either direction (a u-shaped rather than sigmoidal response) then 
logit might not capture that  

● Results showing strong linear relationships should be investigated for inclusion in forecast 
models  

● Consider exploring additional ways to quantify errors in forecasting because this approach 
is less likely to capture under-forecasts than over-forecasts and multiple metrics may be 
needed to fully capture the magnitude of error, proportion of error, and the consequences 
of errors to management.  

The SSCES appreciated this innovative work and supports using the approach in the CCIEA report 
to characterize conditions when salmon forecasts may perform poorly. In previous reviews of 
threshold research, the SSC recommended that the CCIEA report include a small set of pressure 
variables where a threshold is indicated. The report currently includes recent PDO, and it may be 
useful to add a “now-cast” or a forecast, as well as include the NPI.  These indices could aid in 
categorizing the risk associated with Sacramento River Fall Chinook and certain Puget Sound 
Chinook salmon forecasts. If an indicator is in a range that is a threshold for any fish stock, the 
SSCES  notes that it is worth mentioning in the CCIEA report. At the same time, the SSCES 
recognizes that nuance is needed in describing errors in forecasting. An indicator being above a 
threshold does not imply that a forecast will be wrong, but it does mean that more caution might 
be warranted if the consequences of forecast error are undesirable and forecast error is more likely 
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due to environmental conditions. In general, it would be helpful to see more cross references 
between the CCIEA report and other Council materials, for example mention of the CCIEA report 
in salmon statements and vice versa. 

B. Krill-based Indicators 

Dr. Eric Bjorkstedt and Ms. Roxanne Robertson (Humboldt State University) presented an 
overview of data and methods behind krill-based indicators entitled “Size of adult Euphausia 
pacifica along the Trinidad Head Line: an ecosystem indicator for the California Current.”  The 
review was suggested by the SSC in March of 2021 to better understand how the mean krill size 
data presented in the CCIEA report could be interpreted in the absence of relative abundance data, 
given the nuanced nature of interpreting size data alone with respect to population trends and 
abundance.  

Dr. Bjorkstedt described the indicator as representing density-weighted mean body length of adult 
Euphausia pacifica captured in standard bongo net sampling along the Trinidad Head Line (THL), 
just north of Cape Mendocino, based on biweekly to bimonthly sampling of five standard stations 
that run along the continental shelf and slope (35 to 780m depth).  The region is characterized as 
having considerable mesoscale variability in ocean conditions and advection patterns, and a key 
motivation for the location of this survey line was the hope that the resulting data could help inform 
regional productivity of Klamath river salmon stocks.  The survey began in 2007 and is ongoing, 
details on survey methods and a great many additional survey results are reported in a publication 
(Robertson and Bjorkstedt 2020) that was also made available to the subcommittee. Data collected 
in this survey include hydrographic sampling (temperature, salinity), water sampling (nutrients, 
chlorophyll) and zooplankton sampling (krill, other zooplankton, ichthyoplankton). 

Importantly, in this survey adult krill are identified by maturity factors rather than size thresholds, 
and the results of their analysis indicate that there would be considerable misclassification of adults 
and juveniles during warm periods if based on size alone.  Adult krill are more abundant over the 
outer shelf and upper slope, although they are often found inshore, though at lower densities, 
during the upwelling season (and are often larger on such occasions).  There are clear indications 
of shifts in the size distribution over time, for example, in 2008 krill catches were of generally 
larger individuals, while in 2015 (during the large marine heatwave) adult krill tended to be 
considerably smaller.  While the authors estimate and have reported biomass indices in the 
literature, they also noted that numerical abundance (the number of individuals) does not change 
substantially over time, such that a considerable fraction of the change in total biomass is driven 
by changes in size.  This suggests that changes in adult size represent an integrative index of krill 
in this region and reflect insights into both available biomass and how it is “packaged and 
distributed.”  The authors also note that they have not yet attempted to develop population models, 
or relate spawning biomass to recruitment, in order to better evaluate the consequences of smaller 
females to potential spawning output and productivity.  

Considerable effort has focused on relating shifts in size distributions from this dataset to 
environmental conditions. Among the findings are that low frequency shifts in size distributions 
appear to reflect changes in upper water column ocean conditions, particularly temperature, with 
convergence towards median adult sizes at warm temperatures.  Seasonal increases in average size 
of mature adults are reduced under warm conditions, and size increases with colder years and with 
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higher chlorophyll levels.  Conversely, early furcilia stages are larger during warm years.  There 
is some suggestion that dynamics are preconditioned at some level, with population and size 
trajectories for spring and summer reflecting observed patterns during the winter.  However, there 
is uncertainty regarding the extent to which shifts in size structure might result from advection 
rather than local dynamics, as there is evidence for advective drivers of some observations, such 
as a rapid and steep drop in mean size coincident with the arrival of “warm blob” waters at the 
coast in late 2014, which happened too fast to reflect localized population dynamics.  

For Klamath salmon, it was noted that early ocean survival rates appear to have some general 
relationship to krill size, such that juvenile salmon rarely have high survivorship when krill are 
small as adults.  The dataset also includes potential assemblage indicators, through the relative 
abundance of species with warm or cool water affinities. 

In discussion, the SSCES asked about the spatial representativeness of the index, and the extent to 
which this indicator is localized or reflects larger scale trends.  The proponents suggest that the 
index is likely to represent the region between Cape Blanco and Cape Mendocino, and thus could 
be a useful indicator for Klamath River salmon, but differences in oceanography make it uncertain 
whether the THL index  to be a robust indicator of krill demographic or abundance trends reliably 
beyond this region.  However, Dr. Bjorkstedt noted that earlier investigations found that the THL 
copepod time series (which is behind several years on data processing) correlated well with the 
Newport Hydrographic Line (NHL), several hundred km to the North, though with important 
differences in composition and within-season timing.  The SSCES suggested that more 
comparisons among krill surveys could be helpful to get a sense of the scale of variability in krill 
across the California Current Ecosystem, and some surveys that occur less frequently over broader 
spatial areas could also inform this scale.  

The subcommittee also discussed the extent to which mean adult size is the most appropriate 
indicator, or whether the addition of or shift to a biomass based indicator could be more appropriate 
or informative.  The potential benefits of combining or adding biomass to length, or adding 
assemblage-based indicators was discussed, recognizing that the precise mix of indicators to report 
would depend on how the indicators would be used or intended to represent. The SSCES suggested 
greater development of both biomass and size indicators for future CCIEA reports. The potential 
for “growth products” (e.g., indicators of individual growth rates) was discussed, as were 
indicators related to shifts in the distribution of mass.  

The subcommittee recognized all of these products as helpful indicators of key ecosystem 
processes in this region but was uncertain regarding just how to integrate the results into informing 
management in a useful manner.  The potential for helping to inform early marine survival 
indicators for Klamath salmon was discussed, although it was noted that the current assessment 
model for salmon fisheries is based on sibling regressions, which reflect information obtained after 
fish have gone through the presumably more variable initial marine survival phase.  However, it 
could be that an indicator could provide an extra year or more of lead time, which could be helpful 
given that Klamath River Fall Chinook are currently under a rebuilding plan.  Additionally, forage 
indicators also reflect the conditions that 2, 3, and 4 year old fish are facing in the ocean, and thus 
krill (or krill predators) could still be affecting later maturation and mortality rates in Klamath 
salmon.  Moreover, as river returns are observed with error, modeling approaches (such as state-
space models) that forecast based on  multiple indicators of cohort strength could be more robust 
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than univariate approaches that ignore uncertainty.  Finally, the SSCES suggested that the size-
based indicator or other indicators could be useful in the Klamath River stoplight table.  

C. Year Class Strength and Distribution of Small Groundfish 
 

Dr. Nick Tolimieri (NOAA, Northwest Fisheries Science Center) presented an analysis of juvenile 
groundfish habitat and abundance proposed for inclusion in a future CCIEA report.  A recent 
publication was the basis of the presentation (Tolimieri et al., 2021). The motivation for the work 
is to inform Essential Fish Habitat for juvenile groundfish and identify important nursery areas. 
This research could also potentially lead to an index of recruitment for some species. 
  
The analysis used lengths and abundance for 13 species from the West Coast Bottom Trawl 
Survey.  The survey ages a subsample of fish. To estimate age for the measured but unaged fish, 
length was converted to age using a fixed age-length key for each species. For some species, there 
were not enough individuals in the smallest age-class (age-0 or age-1), age classes were combined 
(grouped) for the analysis. In discussion, the SSCES suggested that for species with sufficient data, 
a year-specific age-length key would better account for variability in growth. 
  
Abundance was standardized using the Vector Autoregressive Spatio-temporal (VAST) package, 
assuming a common intercept across years and spatial variation was explained by spatial and 
spatiotemporal autocorrelation. The SSCES suggests further investigation of the variance surfaces 
(in addition to abundance) to better understand how the assumption of a common intercept might 
be affecting the results. For example, a comparison could be done by fitting a temporal model 
without the spatial field. The SSCES caution against extrapolating into areas that have particularly 
high variance.  Investigating alternative approaches to VAST (e.g., sdmTMB) may also allow for 
more flexibility in the fixed spatial field. 
  
The resulting juvenile spatial distributions were qualitatively categorized as: distinct hotspots 
(dover sole, shortspine thornyhead, splitnose), distinct hotspots that were temporally variable 
(hake, darkblotched rockfish), large distinct areas of high juvenile abundance (arrowtooth 
flounder, English sole, sablefish), and limited latitudinal distributions but no obvious hotspots 
(Pacific grenadier, lingcod, longspine thornyhead, petrale sole).  The SSCES agreed that these 
spatial distributions are a useful starting point for defining juvenile habitat groundfish habitat.  Due 
to multiple distinct patterns, the SSCES recommends continuing to focus on species-specific 
distributions and cautions against combining species into a single juvenile groundfish distribution 
map. 
  
Validation of the juvenile abundance indices was explored by comparing against the recruitment 
deviations from the stock assessment model for sablefish, arrowtooth flounder, lingcod, and hake. 
Only sablefish appeared to have strong agreement.  However, the SSCES noted in discussion that 
there are many reasons the two indices may not align, including the structure and assumptions of 
the assessment model. Therefore, it should not be assumed that the assessment recruitment 
deviations represent a “true” recruitment index. 
  
The SSCES was asked to provide guidance on additional species that could be investigated with 
this approach and offers the following suggestions: 

● Choose species that are well-sampled by the survey.  Flatfish are likely good candidates   
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● Consider using survey selectivity estimated in the assessment models to guide size cut-
offs.  Assessments typically do not use length at age at very small sizes because they are 
not well sampled by the trawl 

● Avoid applying this method to species that are rock-associated, particularly with the VAST 
approach.  These likely include widow rockfish, darkblotched rockfish, shortbelly rockfish, 
and possibly chilipepper rockfish. 

● Prioritize species that are important to fisheries 
  
The SSCES discussed with the CCIEA team how to include this analysis into future CCIEA 
reports. The SSCES suggests the analysts consider developing indices representing temporal 
and/or spatial stability.  This would condense the distribution maps into annual anomalies in 
hotpots or area and distribution of juvenile habitat, for example. The SSCES suggests that a future 
application of this work could be to use robust juvenile abundance indices to inform management 
between assessments, such as through assessment prioritization scoring, scientific uncertainty 
buffers, or other approaches. 
 
D. Port-level Linkages Between Fisheries using Network Analysis 

Dr. Jameal Samhouri (NOAA, Northwest Fisheries Science Center) provided an overview of the 
network analysis approach that has been developed to describe West Coast port groups. An initial 
set of network diagrams was included in the 2021 CCIEA report. The methods have since been 
revised and additional work was done in response to feedback following a presentation to the 
SSCES in January 2021 and the SSC in March. In addition to a PowerPoint provided at the SSCES 
meeting, Dr. Samhouri provided the SSCES with two publications (Fuller et al. 2017; Fisher et al. 
2021) that use similar methods. 

Dr. Samhouri presented a number of different networks that were responsive to suggestions made 
by the SSCES in January including: 

(1) vessel-level networks with scaling of nodes based on the median proportion of revenue a 
fishery contributes to vessels in that fishery, alternative minimum revenue thresholds for 
determining which vessels to include, and different methods of determining edge weights based 
on the amount and evenness of revenue, or the number of vessels, associated with each fishery 
pair; 

(2) aggregate port-level and state-level networks with fisheries node inclusion determined by a 
minimum proportion of port or state revenue and node scaling based on relative total revenue; and 

(3) time series of vessel-level network diagrams for two ports showing how networks have 
changed between 2004 and 2019. 

Dr. Samhouri discussed work published in Fisher et al. 2021, illustrating how network 
characteristics of edge density, centrality and modularity influence the response of participants in 
a network to a shock. The example focused on HAB-related crab closures in California and 
suggests that fishers in denser networks are more likely to move to other fisheries while those in 
less dense networks are more likely to cease fishing. The analysis also shows that for centralized 
networks impacts vary depending on the centrality of the fishery subject to a shock. 



10 
 

The SSCES appreciates the responsiveness of the analysts to its comments and suggestions and 
finds the new analyses and network diagrams useful. The networks provide a visual description of 
the fisheries/species groups of importance to particular port groups and the degree to which they 
are connected by cross-participation and movement of fishers between them. Fisheries are defined 
by the same species groupings used in the diversification indices in the annual CCIEA report 
(rather than by métier as was done in the earlier work by Fuller et al. 2017). The network diagrams 
complement the diversification indices by providing information about the characteristics of 
fishery diversification strategies and how they vary across ports. 

The network analysis has the potential to contribute to our understanding of how shocks to fisheries 
may impact particular communities (defined by port group) and potentially reverberate across 
fisheries. This may be apparent to some degree from simply viewing the network diagram, but 
quantitative network metrics may provide additional insight into overall stability of networks, and 
potentially resilience or vulnerability of fishers in a port to shocks to fisheries. These metrics 
include edge density, centrality, and modularity. Of these, edge density appears to have the clearest 
relationship to resilience. Networks with high edge density suggest that fishers have greater ability 
to move effort between fisheries and thus substitute for lost revenue from a fishery that is closed 
or has a poor year. The effects of centrality and modularity of networks appears to be very context 
dependent. For example, if the central fishery is closed in a network with high centrality, the impact 
would be great while it would be small if a non-central fishery was closed. Networks with high 
modularity would have increased impacts within a module but less outside it. More analysis will 
be needed to get a better general sense of how and when centrality and modularity mediate impacts 
of fishery shocks and affect the resilience of fishing communities. 

There was some confusion about the scaling of the nodes in the network diagrams that was clarified 
after the meeting. The scaling of nodes for the vessel level network is based on the median percent 
of individual vessels’ revenue that the fishery contributed to the fishers that participated in it. The 
node is large if the fishery provides a large proportion of individuals' revenue to at least half of the 
fishers involved in that fishery. Even a fishery that contributes a relatively small share of revenue 
at the port level might be shown as a large node. For example, in the 2019 crab year (Nov 2019-
Oct 2020) tuna in Astoria only contributed about 2% of total revenue as compared to 15% for non-
DTS groundfish but it had a node similar in size to crab which contributed 33% while non-DTS 
groundfish had a small node. This approach to node scaling has the advantage of showing relative 
importance of each fishery to those who fish in it, but it does not necessarily reflect the overall 
importance of the fishery to the port. If this approach to scaling nodes is used, it needs to be clearly 
explained, or it may lead to confusion. It would be useful to provide some supplementary 
information about port level revenue such as a pie chart showing the proportion each fishery 
contributes to port revenue. In contrast, for the aggregate port or state networks, both fishery 
inclusion and node scaling are based on the proportion of revenue the fishery contributes to the 
port or state’s total revenue. This approach highlights fisheries that contribute a large proportion 
of total revenue yet it may exclude fisheries that are very important to a subset of fishers. Both 
approaches have strengths and weaknesses and the SSCES sees merit in both. Whichever approach 
is used, the methods used for fishery inclusion, scaling of nodes, and defining edge weights should 
be clearly explained. 
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The SSCES is supportive of including port-level network analyses in future CCIEA reports. The 
following observations and comments arose in discussion and may be helpful to the analysts in 
preparing future network analyses: 

● It should be made clear in any publications and presentations that the analysis reflects 
revenue by “crab years” (Nov-Oct)  as opposed to calendar years for all fisheries. 

● Node size and edge weights are comparable within ports but not across ports. While Dr. 
Samhouri noted that this could be changed to allow comparison across ports, it could be 
problematic to do so given large differences in absolute revenue and fleet sizes for different 
fisheries in different ports. 

● In contrast to edge weights based only on the number of vessels in fishery pairs, revenue 
connectivity edges have edge weights that are higher when revenue is higher but also more 
evenly distributed between the nodes. This may provide more insight into what will happen 
when a shock happens to one or the other (e.g., more impacts are likely if revenue is more 
evenly distributed than if one node dominates). While more complex than edges based on 
the number of vessels, this may be more useful for understanding impacts of shocks. The 
analysis of network metrics (modularity and centrality) has been based on the revenue 
connectivity definition and may be less applicable when edges are based on vessel numbers 
only. 

● For the aggregate port level diagrams Dr. Samhouri showed on slide 19, the scaling of 
nodes was based on the ratio of port revenue for that fishery relative to the revenue from 
the fishery with the highest revenue for that port. It was discovered after the meeting that 
there was an error in the diagram for Fort Bragg caused by one tuna fish ticket that had a 
misplaced decimal point. Tuna should not have had a large node in that diagram and other 
fisheries should have been included. 

● For aggregate level networks, the 10% of total port revenue cut-off results in very few 
fisheries for some ports. An alternative might be a cut-off based on absolute revenue (e.g., 
over $100K) or a smaller percent of revenue. Supplementary diagrams at the end of the 
PowerPoint showed aggregate networks including fisheries that includes at least 5% of 
revenue which substantially increased the numbers of fisheries included. This lower cut-
off might be preferable for aggregate networks. 

● For Washington fish tickets reported Port may mean different things for groundfish, salmon 
and shellfish and this should be checked. 

● It was suggested that it would be worth considering the vulnerability of the species 
themselves and tying that to the vulnerability of the networks (e.g., in a network with 
mostly species impacted by upwelling will be more vulnerable than one that has species 
that are not impacted by upwelling. 

● It was suggested that it might be useful to go back before 2004 for time series analysis and 
to combine groups of years and look at changes over longer time periods or networks. 

● Most of the SSCES members that commented found vessel level analysis more useful than 
the aggregate port-level analysis. The aggregate networks did not provide substantial 
information that could not be provided with a simple bar chart of share of revenue by 
fishery for each port. However, the SSCES assumed at the time that node scaling for vessel 
level networks already reflected the relative proportion of port revenue, which it did not. 

● It was suggested that a network analysis could provide insight on community impacts when 
developing a groundfish rebuilding plan that largely affects a portion of the fishery. Doing 
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so might require different exclusion criteria to focus the network on the groundfish fishery 
similar to the approach used by Fisher et al. (2021) for crab.  
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Ecological thresholds in forecast performance for key United States West Coast Chinook 
salmon stocks – Addendum 
 
Will Satterthwaite (NMFS/SWFSC) – will.satterthwaite@noaa.gov 
 
This document, prepared to assist review of nonlinear relationships between environmental 
indicators and Chinook salmon forecast performance by the PFMC’s SSC Ecosystem 
Subcommittee (SSCES), extends Satterthwaite et al. (2020) by: 
 

1) Discussing expectations for model responses to additional data under different scenarios 
for how environmental conditions relate to forecast performance, 

2) Re-evaluating select environmental driver – forecast performance relationships identified 
in Satterthwaite et al. (2020) upon the addition of more recently available data, and 

3) Presenting a more detailed stepwise analysis of the highlighted relationships for 
Sacramento River Fall Chinook (SRFC, an indicator stock of high relevance to PFMC-
managed ocean fisheries and one requiring ABC specification from the SSC) and 
discussing potential further uses of this approach or elements thereof for this stock. 

 
I. Expected effects of adding new data 
 
 As acknowledged in Satterthwaite et al. (2020), a large number of environmental driver – 
location – lag – stock combinations were investigated, creating the risk of identifying spurious 
relationships. Satterthwaite et al. (2020) attempted to address this, at least in part, through 
randomization tests as well as considering the biological plausibility of the highlighted 
relationships. An additional test, suggested in the SSCES’ earlier review of environmental driver 
-  biological response threshold analysis (SSCES 2021), involves evaluation of model performance 
as new data are added. 
 The expected consequences of data addition depend on the nature of the indicator-response 
relationship (in this case, the response is forecast performance rather than a biological process per 
se). A strong, nonlinear relationship with high explanatory power over the full range of indicator 
values should be able to predict responses based on indicator values in novel years, as well as 
retaining support via the model selection procedure for nonlinear models, retaining R2 at similar 
levels as more data are added, and creating new point estimates for threshold locations generally 
within the intervals calculated previously1. However, another type of “threshold” relationship, 
where extreme (and thus potentially rarely encountered) values of indicators elicit a response but 
“typical” values do not, may yield a more complicated pattern. It is possible that in a threshold 
scenario, the indicator will have little predictive power (especially on top of factors already 
informing the forecast) when environmental conditions are close to “normal”. As a result, while 
model selection should continue to favor a nonlinear model as new data are added, the model may 
have poor predictive power for new data from “typical” years and adding data from “typical” years 
may decrease R2 while additional data from “extreme” years should increase R2. 
 These considerations should be kept in mind when evaluating these and other threshold 
relationships. When it comes to forecasting, if an indicator has high predictive power for forecast 

 
1 Perhaps counterintuitively, the interval describing the possible location for the threshold might not shrink as data 
are added, and might even widen, since with increased data we might be confident that the second derivative is 
not zero over a broader range. 
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performance across the full range of indicator values, it should be considered for direct 
incorporation into the forecast. Conversely, if an indicator only has predictive power at 
environmental extremes, there may be little utility in incorporating it into routine forecasting, but 
it may provide qualitative guidance on when environmental conditions are such that forecast 
performance may be poorer than usual, and managers might be advised to consider the 
consequences of increased uncertainty in forecasts under those conditions. 
 
II. Re-evaluating select environmental indicator – forecast performance relationships from 
Satterthwaite et al. 2020 based on the latest available data 
 
 I first compiled updated data on forecast performance. Satterthwaite et al. (2020) used data 
on forecast performance from 1995-2016 for Puget Sound summer-fall Chinook stocks and 1995-
2017 for SRFC (no strong nonlinear relationships were found for Klamath River Fall Chinook, so 
that stock is not considered further in this update2). Data for 2017-2019 (Puget Sound) and 2018-
2020 (SRFC) were extracted from the 2021 Preseason Report 13 (PFMC 2021). Although some 
values for earlier years reported in the most recent version of Preseason Report 1 (PFMC 2021) 
differed from the values reported earlier and used by Satterthwaite et al. (2020), I judged these 
differences to be minor and did not update the old data in Satterthwaite et al. (2020). 
 Next, I updated the timeseries for select environmental indicators, using the same source 
documents/websites as the CCIEA report (CCIEA 2021a) when possible. Due to the workload 
associated with updating some indicators that are not routinely reported, I only updated a subset 
of environmental indicators. I updated environmental indicators if they were included in the 
nonlinear relationships documented for SRFC, if they were included in any relationships with 
R2≥0.60 for Puget Sound stocks, and for the single strongest relationship with a freshwater 
indicator. 
 In updating the indicator data sets (see Appendix A1 for two updates to sources), I 
discovered that due to a miscommunication among coauthors, the seasonal indexing of different 
indicators was not always consistent – i.e., “winter” corresponded to December-February for some 
indicators and January-March for others. Thus, seasonal indicators in this document are 
subscripted by a range of months. In addition, the selected freshwater indicator used in 
Satterthwaite et al. (2020) was a composite indicator for the Salish Sea and Washington coast 
ecoregion. Since the writing of that paper, a Puget Sound specific freshwater indicator has been 
developed (Stuart Munsch, NWFSC, pers. comm.), and its performance was compared to the 
original coarser indicator. 
 Having updated the datasets for forecast performance and these selected indicators, I refit 
each relationship from Satterthwaite et al. (2020)’s Table 2 for which new data were obtained – 
thus I re-evaluated all relationships for SRFC, all relationships for Puget Sound stocks with R2≥0.6 
and select other relationships that involved indicators that had been updated based on their 
explanatory power for other stocks.  
 For each indicator-response relationship, Table 1 compares the selected model form and 
R2 estimated from the dataset used in Satterthwaite et al. 2020 to the updated dataset. In all cases 

 
2 Though for completeness, I verified that no promising new relationships with the previously explored indicators 
emerged when adding new data for KRFC. 
3 SRFC forecast performance is reported in figure but not tabular form, so I obtained numeric values from Michael 
O’Farrell (SWFSC). Robin Ehlke provided an Excel version of the Puget Sound tables, which in some cases reports to 
a higher precision than the rounded values (nearest 100 fish) in the published document. 
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but one, a GAM was still selected as the best model form. The one exception was the relationship 
between South Puget Sound natural forecast performance and 1-day maximum river flow the 
previous year in the Salish Sea / Washington Coast ecoregion, which appeared best described by 
a linear model with autocorrelation (LMAC) in the updated dataset. Replacing this flow indicator 
with one specific to Puget Sound resulted in a GAM being selected as the best model, with a slight 
increase in R2. R2 often declined modestly with additional data, although it increased slightly in 
four cases (highlighted in bold) and decreased markedly in one case (highlighted in red, South 
Puget Sound hatchery versus autumn [October-December] sea level height off Alaska the previous 
year). The reason for this decrease in R2 seems apparent based on the 2018 and 2019 datapoints in 
Figure 1 and raises concern that this apparent relationship is likely to be spurious or at least 
transient. The location of the apparent threshold near mean environmental conditions (i.e., near 
z=0) is also unexpected, although the modeled response does not deviate much from the mean 
response until well beyond the threshold. 
 Table 2 compares point estimates and intervals estimated for potential threshold locations 
between the previously-used and extended datasets. In all cases where a new threshold location 
was estimable, it was within the previous interval (but note that for the relationship between South 
Puget Sound natural and NPGO in December-February, a GAM was still the best-supported model 
but no threshold value could be identified). In all cases where estimates were made, point estimates 
were similar between datasets. Intervals were generally comparable as well, with the exception of 
a narrower interval for the South Puget Sound Natural – lagged spring SST off the WA coast 
relationship in the updated dataset. 

The consistently high R2 for the relationship between Tulalip hatchery forecast 
performance and NPI in December-February three years ago suggests there may be merit in 
considering NPI as a factor in that stock’s forecast, especially if a reason for the large forecast 
error (not predicted by the fitted GAM) in 2013 can be identified and addressed in the future. It 
may also be useful to explore more proximate ecological processes for which NPI might be a 
proxy. However, given the shallow slope of the relationship over much of the range of the 
indicator, it may be more useful as a “threshold” warning of potential poor performance in extreme 
conditions (Figure 2, see also Satterthwaite et al. 2020 Figure 3b).  

The modest decreases in R2 for many other relationships cautions against premature 
adoption of these indicators into the respective forecasts, although small decreases in R2 are not 
unexpected if these indicators simply warn of the potential for poor forecast performance in 
extreme environmental conditions. On the other hand, decreasing R2 over time is consistent with 
non-stationary relationships (Litzow et al. 2020) or other cases where relationships between stock 
productivity and environmental indicators tend to break down over time (Myers 1998, Winship et 
al. 2015). More data from “extreme” years would be needed to better test potential “threshold” 
relationships that are mainly apparent during extreme conditions.
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Table 1. Selected model form and adjusted R2 for original (Satterthwaite et al. 2020) versus updated datasets for select indicator-forecast 
performance relationships. Rows in italics use new indicators compared to those used in Satterthwaite et al. 2020. Increases in R2 are 
highlighted with bold text, and a large decrease in R2 is highlighted with red text. NA = not fit to original dataset. 
Sacramento River Fall Chinook Model Performance    
 1995-2017 1995-2020 
 Best Model adj. R2 Best Model adj.R2 
SRFC / PDO.mar-may.lag0 GAM 0.44 GAM 0.45 
SRFC / NPI.dec-feb.lag0 GAM 0.41 GAM 0.35 
Puget Sound summer-fall Chinook Model Performance   
 1993-2016 1993-2019 

                                                  R2≥0.6 Best Model adj.R2 
Best 
Model adj.R2 

South Puget Sound natural / satSST.apr-jun.WA.lag1 GAM 0.75 GAM 0.57 
South Puget Sound natural / NPGO.dec-feb.lag0 GAM 0.66 GAM 0.42 
South Puget Sound natural / NPI.sep-nov.lag3 GAM 0.64 GAM 0.54 
Tulalip hatchery / NPI.dec-feb.lag3 GAM 0.69 GAM 0.70 
Hood Canal combined / SLH.jan-mar.AK.lag1 GAM 0.67 GAM 0.43 
Stillaguamish natural / SLH.oct-dec.AK.lag1 GAM 0.62 GAM 0.55 
Stillaguamish natural / SLH.apr-jun.AK.lag1 GAM 0.60 GAM 0.41 
                                                  strongest freshwater relationship     
South Puget Sound natural / RivFlow.1daymax.SW.lag2 GAM 0.49 LMAC 0.48 
South Puget Sound natural / RivFlow.1daymax.PS.lag2 NA NA GAM 0.54 
                                                  0.33≤R2<0.6, already extracted index for above     
South Puget Sound natural / satSST.apr-jun.WA.lag2 GAM 0.45 GAM 0.38 
South Puget sound hatchery / SLH.oct-dec.AK.lag1 GAM 0.43 GAM 0.25 
Hood Canal combined / SLH.oct-dec.AK.lag1 GAM 0.58 GAM 0.47 
Hood Canal combined / SLH.apr-jun.AK.lag1 GAM 0.54 GAM 0.44 
Snohomish hatchery / NPGO.dec-feb.lag0 GAM 0.49 GAM 0.50 
Strait of Juan de Fuca / SLH.apr-jun.AK.lag1 GAM 0.47 GAM 0.49 
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Figure 1. Relationship between forecast performance (proportional error relative to mean absolute proportional error, with positive 
values indicating overforecasting) for South Puget Sound hatchery and autumn (October-December) sea level height off Alaska the 
previous year. Dotted line is fitted relationship, overlain grey thick line is potential location of threshold, red arrow is point estimate of 
threshold location. Environmental indices are z-scored. 
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Table 2. Estimated threshold locations and intervals of potential threshold locations for original (Satterthwaite et al. 2020) versus 
updated datasets for select indicator-forecast performance relationships. Rows in italics use new indicators compared to those used in 
Satterthwaite et al. 2020. NA = not applicable (not fit to original dataset), NT = no threshold estimated (either because linear model 
selected, or GAM was selected but no threshold identified based on second derivative). 
Sacramento River Fall Chinook        
 1995-2017 1995-2020 
 Threshold (interval) Threshold (interval) 
SRFC / PDO.mar-may.lag0 -0.65 -1.79 0.25 -0.54 -1.83 0.28 
SRFC / NPI.dec-feb.lag0 0.64 0.15 0.64 0.58 0.14 0.58 
Puget Sound summer-fall Chinook       
 1993-2016 1993-2019 
R2≥0.6 Threshold (interval) Threshold (interval) 
So. Puget Sound natural / satSST.apr-jun.WA.lag1 -0.14 -1.76 0.53 -0.17 -0.58 0.38 
South Puget Sound natural / NPGO.dec-feb.lag0 -0.57 -1.67 0.11 NT NT NT 
South Puget Sound natural / NPI.sep-nov.lag3 0.64 -0.30 2.08 0.64 -0.29 2.07 
Tulalip hatchery / NPI.dec-feb.lag3 0.60 -0.28 2.35 0.63 -0.27 2.41 
Hood Canal combined / SLH.jan-mar.AK.lag1 -0.81 -2.03 0.01 -0.68 -1.77 0.06 
Stillaguamish natural / SLH.oct-dec.AK.lag1* -1.10 -3.16 -0.11 -0.94 -2.78 -0.08 
Stillaguamish natural / SLH.apr-jun.AK.lag1 -1.01 -2.31 -0.22 -0.93 -2.17 -0.19 
strongest freshwater relationship       
South Puget Sound natural / RivFlow.1daymax.SW 0.76 -0.05 2.05 NT NT NT 
South Puget Sound natural / RivFlow.1daymax.PS NA NA NA 0.95 0.09 2.34 
0.33≤R2<0.6, already extracted index for above       
So. Puget Sound natural / satSST.apr-jun.WA.lag2 -0.49 -2.24 0.17 -0.50 -2.29 0.14 
South Puget sound hatchery / SLH.oct-dec.AK.lag1 -0.06 -0.41 0.11 -0.16 -0.16 0.02 
Hood Canal combined / SLH.oct-dec.AK.lag1 -1.10 -3.16 -0.14 -0.94 -2.78 -0.13 
Hood Canal combined / SLH.apr-jun.AK.lag1 -0.78 -2.30 0.32 -0.65 -2.16 0.32 
Snohomish hatchery / NPGO.dec-feb.lag0 0.48 0.06 0.48 0.52 -0.01 0.52 
Strait of Juan de Fuca / SLH.apr-jun.AK.lag1 0.55 -0.24 0.62 0.60 -0.21 1.04 



(unpublished material reviewed by SSC Ecosystem Subcommittee 31 August 2021) 

7 
 

 
*This relationship has two separate threshold locations identified. I reported the lower one as it seems to have the stronger response. 
 
Figure 2. Relationship between forecast performance (proportional error relative to mean absolute proportional error, with positive 
values indicating overforecasting) for Tulalip hatchery forecast performance and NPI in December-February three years ago. Dotted 
line is fitted relationship, overlain grey thick line is potential location of threshold, red arrow is point estimate of threshold location. 
Environmental indices are z-scored. 
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III. Detailed analysis of indicators of SRFC forecast performance 
 

I selected SRFC for a more detailed analysis of the potential indicator-forecast performance 
relationships identified because it is a major contributor to Council-area ocean fisheries and 
because I know a consistent forecast methodology was used throughout4 the dataset. Because this 
analysis was restricted to a single stock, to make the response variable more directly interpretable 
I looked at proportional error �𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑓𝑓𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑓𝑓𝑜𝑜

𝑓𝑓𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑓𝑓𝑜𝑜
�. I dropped the denominator from equation 1 of 

Satterthwaite et al. 2020 since it served to put forecasts for different stocks, varying in their overall 
performance, on a similar scale; but this is not needed when only looking at performance for a 
single stock. Thus, for the plots that follow (but not the plots in Satterthwaite et al. 2020), a forecast 
performance score of 0 corresponds to an accurate forecast (this is also true for Satterthwaite et al. 
2020), while scores of -0.5, +0.5, and +1.5 correspond to a forecast 50% lower than the postseason 
estimate, 50% higher than the postseason estimate, and 150% higher than the postseason estimate, 
respectively. Note that proportional error is bounded below at -1 (provided forecasts cannot be 
negative) but there is no hard upper bound.  
 Considering 10 years as a minimum sufficient dataset, I repeated the model fitting and 
model selection process for SRFC datasets corresponding to 1995-2004 and subsequent datasets 
with one more year added each iteration.  

For relationships with PDO in March-May the year of return, for datasets prior to 2008 the 
best-supported model was linear and R2 was very low (Table 3). Adding data from 2008 (the first 
year of very low spring PDO and severe overforecasting) still led to a linear model being selected, 
with very low R2, but for that year a GAM offered a substantially higher R2 of 0.36. For 2009 
(another year of low PDO and overforecasting), a GAM was selected and R2 increased to 0.67. 
GAMs were selected every subsequent year except 2015, which corresponded to a poorly predicted 
year (Figure 3), followed by slightly lower R2 and wider intervals on the threshold location for 
every year thereafter. 

For relationships with NPI in December-February the year of return, linear models were 
selected, with low R2 values, for 2004-2008. In 2009, a linear model was still selected, but R2 
increased to 0.35. Starting in 2012, a GAM was selected, with R2 initially increasing to 0.56 and 
then slowly decreasing, with a notable drop in 2015 (Table 4, Figure 4). The drop in R2 from the 
1995-2018 value reported in Satterthwaite et al. 2020 to the 1995-2020 value reported here appears 
attributable to underforecasting in 2019 despite moderately high NPI (Figure 4).

 
4 In fact, a new forecasting methodology was adopted for SRFC in 2014, but I was able to work with Michael 
O’Farrell (SWFSC) to obtain retrospective estimates of what the forecasts would have been if using the current 
approach for earlier years, based on data available at the time. 
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Table 3. Selected model, adjusted R2, and point estimates and intervals of threshold locations for 
the relationship between SRFC forecast performance and PDO in March-May the year of return, 
for datasets of varying lengths.  
 
Dataset Best Model adjusted R2 Threshold Location (interval) 
1995-2004 Linear 0.22 - - - 
1995-2005 Linear 0.30 - - - 
1995-2006 Linear 0.29 - - - 
1995-2007 Linear 0.03 (GAM similar) - - - 
1995-2008 Linear -0.06 (GAM 0.36) - - - 
1995-2009 GAM 0.67 -0.52 -0.80 -0.02 
1995-2010 GAM 0.68 -0.47 -0.73 0.08 
1995-2011 GAM 0.67 -0.11 -0.69 0.20 
1995-2012 GAM 0.52 -0.49 -0.69 0.00 
1995-2013 GAM 0.53 -0.66 -0.77 0.05 
1995-2014 GAM 0.54 -0.66 -0.81 -0.06 
1995-2015 Linear 0.00 (GAM 0.51) - - - 
1995-2016 GAM 0.47 -0.54 -1.83 0.34 
1995-2017 GAM 0.44 -0.64 -1.83 0.30 
1995-2018 GAM 0.44 -0.52 -1.83 0.30 
1995-2019 GAM 0.45 -0.52 -1.83 0.30 
1995-2020 GAM 0.45 -0.54 -1.83 0.30 
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Figure 3. Relationship between forecast performance (proportional error, with positive values 
indicating overforecasting) for SRFC forecast performance and PDO in March-May the year of 
return. Dotted line is fitted relationship, overlain grey thick line is potential location of threshold, 
red arrow is point estimate of threshold location. Environmental indices are z-scored. (Note the 
grey thick line at the very far right suggesting a potential additional threshold at high PDO values.) 
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Table 4. Selected model, adjusted R2, and point estimates and intervals of threshold locations for 
the relationship between SRFC forecast performance and NPI in December-February the year of 
return, for datasets of varying lengths.  
 
Dataset Best Model adjusted R2 Threshold Location (interval) 
1995-2004 Linear 0.06 - - - 
1995-2005 Linear -0.08 - - - 
1995-2006 Linear -0.07 - - - 
1995-2007 Linear -0.09 - - - 
1995-2008 Linear -0.04 - - - 
1995-2009 Linear 0.35 - - - 
1995-2010 Linear 0.39 - - - 
1995-2011 Linear 0.40 - - - 
1995-2012 GAM 0.56 0.34 0.01 0.34 
1995-2013 GAM 0.53 0.40 0.05 0.40 
1995-2014 GAM 0.53 0.44 0.03 0.44 
1995-2015 GAM 0.42 0.49 0.12 0.49 
1995-2016 GAM 0.39 0.41 0.03 0.41 
1995-2017 GAM 0.41 0.48 0.09 0.48 
1995-2018 GAM 0.41 0.59 0.05 0.59 
1995-2019 GAM 0.36 0.54 0.16 0.54 
1995-2020 GAM 0.35 0.67 0.14 0.69 
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Figure 4. Relationship between forecast performance (proportional error, with positive values 
indicating overforecasting) for SRFC forecast performance and NPI in December-February the 
year of return. Dotted line is fitted relationship, overlain grey thick line is potential location of 
threshold, red arrow is point estimate of threshold location. Environmental indices are z-scored. 

 
  
 I considered evaluating some formal metric of out-of-sample prediction like the summed 
log-likelihood of each new year’s prediction under the model fitted through data up to the prior 
year, or plotting how often out-of-sample predictions fell in various quantiles of predictive 
uncertainties, but since all the model confidence intervals are based on bootstrapping it was not 
immediately clear how to do this in a computationally efficient way and I ran out of time when 
faced with conflicting demands.  

As noted by Satterthwaite et al. (2020), both nonlinear relationships identified for SRFC 
forecast performance have modest explanatory power when evaluated over the full range of 
indicator values, and the explanatory power of winter NPI appears to have decreased with the 
addition of more recent data. As further noted by Satterthwaite et al. (2020), the relationships fitted 
here are sensitive to a small number of datapoints with high leverage, and randomization tests 
suggest a substantial probability of spuriously detecting relationships with R2 at least as high as 
those found here based on the number of relationships tested. On the other hand, the probability 
of obtaining spurious results calculated under the null mode is sensitive to distributional 
assumptions, the identified relationships are at a plausible lag given the nature of the forecast 
(specifically the information on early cohort strength provided by jack returns) and likely would 
have been identified as more promising candidates than most others a priori, and poor forecast 
performance at rarely encountered environmental extremes seems mechanistically plausible. 

While increasing the number of indicators tested increases the risk of spurious results, 
hypothesis-driven inspection of local indicators motivated by mechanistic hypotheses and/or 
demonstrated relationships to stock productivity could be warranted and might increase 
explanatory power. The Habitat Committee (HC, CCIEA 2021b) has identified a number of 
indicators thought to be informative with respect to SRFC productivity, and some of these factors 
may affect forecast performance, potentially in a nonlinear way. NMFS SWFSC (2021) suggested 
that thiamine deficiency, potentially linked to local anchovy abundance, could be linked to errors 
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in the SRFC forecast. More localized indicators of ocean conditions than the PDO, for example 
the Central and/or Northern California MOCI (García-Reyes and Sydeman 2017), might also be 
informative (Julie Thayer, Farallon Institute, pers. comm.).  
 Inspection of Figure 3 suggests that the performance of the SRFC forecast is sensitive to 
environmental conditions and breaks down at low (and possibly high) spring PDO values but does 
well (or possibly tends to underforecast) when spring PDO is near its mean. Although more work 
is needed both narrowly to establish the robustness of this relationship and more broadly on how 
to incorporate forecast error and uncertainty into salmon management, as a thought experiment I 
considered the implications of a “threshold” value of -0.545 for z-scored springtime PDO 
(assuming it was known or could be reliably forecasted in time to inform preseason management), 
contrasting the implications of threshold-dependent interpretations of forecasts versus 
interpretations of forecasts without considering environmental state. 
 Figure 5a shows the distribution of annual ratios of the SRFC preseason forecast to the 
postseason abundance estimate for all years 1995-2020, while Figure 5b is restricted to years above 
the potential PDO threshold and Figure 5c is restricted to years below the threshold. I also fitted 
lognormal distributions to each set of ratios. 
 
Figure 5. Histograms and fitted lognormal distributions of SRFC forecast performance (preseason 
: postseason abundance estimate ratio) for all years 1995-2020 combined (a), just years above a z-
score of -0.54 in springtime PDO (b), or just years below a z-score of -0.54 in springtime PDO.  
 

 
 
 Forecast performance (pre:post) for all years combined, with no consideration of 
environmental state, was best described by a lognormal distribution with median 1.146 and log-
scale SD 0.49. This implies that, if a median-unbiased forecast was desired and environmental 
indicators were not considered, the preseason forecast of abundance should be multiplied by 0.88 
(the inverse of 1.14). By rough analogy with the P*/sigma approach used in groundfish (PFMC 

 
5 Note that this is on the scale of z-scores for 1995-2014 springtime PDOs rather than a numeric value of -0.54 for 
the PDO index itself. Any potential thresholds ultimately considered for management use should probably be 
defined on the index scale rather than z-scores sensitive to the range of years included. 
6 Note however that this estimate is accompanied by high uncertainty, with a 95% confidence interval on the 
median (based on a normal approximation to the 95% confidence interval on the mean of the log ratio) spans from 
0.95-1.38. With 26 years’ of data and a log-SD of 0.49, the smallest ratio with a 95% confidence interval excluding 
1.0 is 1.21, highlighting the challenges of precisely characterizing forecast bias given realistic variability and sample 
sizes. 
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2020) and CPS, it might be appropriate to consider using the 0.55 or 0.60 quantile7 of this 
distribution rather than the median, implying a multiplier of 0.83 or 0.78. 
 Forecast performance in years with springtime PDO above the threshold was described by 
a lognormal distribution with median 1.10 and log-scale SD 0.42. This would imply multipliers of 
0.91, 0.86, or 0.82 for median-unbiased forecasts or for levels of risk tolerance analogous to P* of 
0.45 or 0.40, respectively. This results in only slightly smaller buffers than the all-years case, due 
to multiple instances of overforecasting even when above the threshold but does reflect somewhat 
less uncertainty when avoiding extreme conditions (and excluding high PDO years like 2015 might 
shrink the buffer further). Conversely, forecast performance when springtime PDO was below the 
threshold was described by a lognormal distribution with median 1.24 and log-scale SD 0.63. This 
would imply multipliers of 0.81, 0.75, or 0.69 for median-unbiased forecasts or for levels of risk 
tolerance analogous to P* of 0.45 or 0.40, respectively; resulting in more substantial buffering in 
years of extreme environmental conditions. 

The proposal to use two different distributions for the forecast buffer, with each distribution 
corresponding to one side of the threshold, is simpler than an approach which applies a correction 
factor based on the fitted relationship between forecast error and environmental indicator at the 
specific value of the indicator for the year in question, and is likely to be more robust than the 
fitted relationship when making projections for data-sparse regions of parameter space (i.e., we 
have little confidence in the exact value of the fitted curve when at extreme environmental values). 
However, this neglects any accounting for how far away from the threshold the current 
environmental state is, whereas nonlinear relationships often imply substantially worse forecast 
performance far away from the fitted thresholds but only modest deterioration in performance 
slightly past the threshold. If the interest is in identifying the “threshold” as corresponding to most 
rapid response in performance, basing the threshold location on maximizing the first derivative 
rather than second derivative may be more appropriate (Large et al. 2013). Or the “threshold” 
might be crossed when confidence intervals on the modeled response beyond the threshold exclude 
the modeled response under average conditions. 
 Of course, there is currently no mechanism for applying multipliers to salmon abundance 
forecasts to account for either bias or uncertainty, nor is it obvious that median-unbiased forecasts 
are risk neutral8 when considering the consequences of varying magnitudes and directions of 
forecast error, especially when factoring mixed-stock constraints on ocean fisheries. It is also 
unclear whether the correction should be based on estimates of pre-fishing or post-fishing 
abundance. Nevertheless, the results presented here suggest that simply accepting point estimates 
is likely not risk-neutral, both because of potential biases and because of potential increases in 
both bias and uncertainty under certain environmental conditions. 
 
Recommendations 
 

 
7 Here, I present preseason:postseason ratios for consistency with the metrics presented in Satterthwaite et al. 
(2020) and the ratios typically reported in Preseason Report 1. This contrasts with the P*/sigma approach where 
the distribution being modeled is of true biomass (or more recently, the true OFL) relative to the assessment 
output, analogous to the postseason:preseason ratio. Thus, using the 0.55 or 0.60 quantile of the pre:postseason 
ratio is roughly analogous to using a P* of 0.45 or 0.40. 
8 Indeed, the mode of all three distributions is near a pre:post ratio of 1.0. On the other hand, the arithmetic mean 
ratio (loosely speaking, the expected error) is even further above 1.0 than the median. 
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• Any of the apparent relationships documented here should be viewed with caution due to the 
caveats raised in Satterthwaite et al. (2020), along with decreasing R2 for many relationships in 
the face of new data. At the same time, we should realize that characterizing responses to rarely 
encountered environmental conditions is inherently challenging, and so is forecasting under such 
conditions.  
 
• Continue evaluation of promising relationships between environmental indicators and salmon 
forecast performance, noting that data from “extreme” conditions is what would be most useful in 
further testing these relationships. This approach is probably most appropriately applied as a 
screening tool to identify potential relationships and provide focus for future finer-scale research. 
Indeed, the improved performance of the Puget Sound-specific freshwater indicator over the 
regional freshwater indicator in describing South Puget Sound natural forecast performance 
suggests promise of more finely resolved indicators. 
 
• Consider incorporating winter NPI at a lag of three years in the Tulalip hatchery forecast (and/or 
attempt to identify ecological mechanisms for which this is a proxy) and look into potential causes 
of that forecast’s poor performance in 2013. 
 
• Consider adding NPI to the CCIEA report. NPI in the wintertime has the advantage of being 
available sooner than springtime PDO for potentially informing the interpretation of SRFC 
forecasts, and also may be relevant (and available sufficiently far in advance given the lagged 
relationships) for interpreting forecasts of South Puget Sound natural and Tulalip hatchery 
abundances. 
 
• Judiciously apply this approach, including randomization tests and attempts at out-of-sample 
validation, to potential new indicators tailored for SRFC and KRFC, leveraging indicators being 
developed by the HC in association with the rebuilding plans as well as other potentially relevant 
local indicators. 
 
• Consider a precautionary approach to using SRFC forecasts in years of extreme (forecasted) 
springtime PDO or wintertime NPI. Ideally, this would be done via a formal process for 
incorporating scientific uncertainty and risk tolerance into ABC specifications, as is done for CPS 
and groundfish. 
 
• Elements of the approach outlined here may serve as methods for quantifying forecast uncertainty 
– either overall uncertainty regardless of conditions or indicator-dependent metrics of uncertainty. 
Although uncertainty buffers typically reduce fishing opportunity compared to reliance on point 
estimates, an indicator-driven bias correction could potentially increase fishing opportunity in 
some years. 
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Appendix A1 updated sources of environmental indicator data 
 
For the most part, environmental indicators were obtained from the sources cited in Satterthwaite 
et al. (2020). Two of the indicators are reported in CCIEA reports, using different source citations. 
For those indicators, I obtained new values from the sources cited in CCIEA reports, while 
verifying that values for previous years were identical. 
 
PDO 
ICES paper cited http://research.jisao.washington.edu/pdo/  
For extended analysis and consistency with CCIEA report, used 
http://oceanview.pfeg.noaa.gov/erddap/tabledap/cciea_OC_PDO.csvp?time%2CPDO 
 
NPGO 
ICES paper cites http://www.o3d.org/npgo/npgo.php  
For extended analysis and consistency with CCIEA report, used 
http://oceanview.pfeg.noaa.gov/erddap/tabledap/cciea_OC_NPGO.csvp?time%2CNPGO  
 
 

http://research.jisao.washington.edu/pdo/
http://oceanview.pfeg.noaa.gov/erddap/tabledap/cciea_OC_PDO.csvp?time%2CPDO
http://www.o3d.org/npgo/npgo.php
http://oceanview.pfeg.noaa.gov/erddap/tabledap/cciea_OC_NPGO.csvp?time%2CNPGO

