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1 A proposed forecast methodology for 
2 natural-origin Willapa Bay Coho (O. kisutch) 
3 
4 Dan Auerbach, Thomas Buehrens, Neala Kendall 
5 Fish Program 
6 Washington Department of Fish and Wildlife 
7 Olympia, Washington 

8 Introduction 
9 

10 Preseason forecasts of expected salmon returns provide a basis for planning and adaptively 
11 managing harvest. Natural-origin Willapa Bay (WB) coho salmon (Oncorhynchus kisutch) are 
12 subject to the annual catch limit (ACL) requirements of the Magnuson Stevens Act (MSA), as 
13 administered within the Pacific Fishery Management Council (PFMC) planning processes1. The 
14 Scientific and Statistical Committee (SSC) of PFMC is charged with reviewing the forecast 
15 methodology that is used to develop estimates of returning WB natural-origin coho salmon, as 
16 these estimates inform annual fisheries. 
17 
18 In support of the SSC review, this document describes a forecast framework proposed for use by 
19 the Washington Department of Fish and Wildlife (WDFW). The approach offers several 
20 advantages: 

21 • A rigorous characterization of uncertainty in observations and represented biological
22 processes through implementation of multiple hierarchical state-space forecast models,
23 including a state-of-the-science multi-stock spatio-temporal Integrated Population Model
24 (IPM) and basic (AR1) time-series model based onDeFilippo et. al (2021) Improving short-
25 term recruitment forecasts for coho salmon using a spatiotemporal integrated population
26 model

27 • A framework to compare multiple candidate models by evaluating model performance
28 measures calculated from one-step-ahead forecasts, with scope to add additional
29 candidate models and develop model-averaged ensemble forecasts as appropriate in
30 the future

31 • A structure that includes direct observations of Willapa coho salmon while drawing
32 inference from multiple stocks and leveraging existing processes of dataset compilation:
33 Escapement and harvest estimates of natural-origin fish; marine survival estimates of
34 Willapa hatchery-origin fish; return, survival, and smolt data from neighboring Bingham
35 Creek and other WA Coast coho salmon stocks

36 • A transparent, readily reproducible implementation suited to ongoing refinement via a
37 public GitHub repository of the proposed approach (https://github.com/daauerbach/ST-
38 IPM), developed from archived the public GitHub repository of code and data used in
39 DeFilippo et. al (2021)
40 

1See for example: https://www.pcouncil.org/documents/2021/02/e-3-situation-summary-review-of-2020-fisheries-
and-summary-of-2021-stock-forecasts.pdf/ 
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https://github.com/daauerbach/ST-IPM
https://github.com/daauerbach/ST-IPM
https://www.pcouncil.org/documents/2021/02/e-3-situation-summary-review-of-2020-fisheries-and-summary-of-2021-stock-forecasts.pdf/
https://www.pcouncil.org/documents/2021/02/e-3-situation-summary-review-of-2020-fisheries-and-summary-of-2021-stock-forecasts.pdf/


 
 

  

  

  
      

       
      
      

        
      

     
    

       
  

    

  
        

      
   

   
      

   
   

  
      

         
     
     

     
        

        
      
       

      
     

  
     

        
     

     
    

       
     
    

    

 
  

  

   

41 Proposed Method 
42 Current Method 
43 
44 The current approach to developing preseason forecasts of returning natural-origin WB coho 
45 salmon combines estimates of smolt outmigration with estimates of marine survival. Smolt estimates 
46 are generated by scaling presumed Willapa basin smolt production to the observed smolt 
47 production in the Chehalis River based on relative habitat quantity, with the Chehalis basin 
48 abundance derived by regressing past abundances against flow characteristics (abundances in 
49 previous years are directly estimated by expanding a count of tagged smolts by the proportion 
50 of tagged fish in terminal catch). Marine survival estimates are generated by relating the coded 
51 wire tagged (CWT) natural-origin Bingham Creek smolt to adult survival estimates to 
52 environmental covariates in multiple linear regressions. 
53 

54 Proposed new method: overview and data sources 
55 
56 The proposed new approach applies the forecast models and the model evaluation approach 
57 developed by DeFilippo et. al (2021) (attached). The models include both a multi-population 
58 spatio-temporal integrated population model (STIPM) and naïve timeseries models, which are then 
59 compared in their performance, thereby facilitating model selection or model averaging to attain 
60 a final forecast. To operationalize this research, we updated source datasets, reviewed and 
61 translated the original analysis script into a streamlined workflow, and re-evaluated model fit 
62 and performance. 
63 
64 In the current implementation, predictions are calculated for natural-origin Willapa Bay coho 
65 salmon alongside 33 other natural-origin Washington coho salmon stocks tracked within the coho 
66 version of the Fishery Regulation Assessment Model (FRAM2). The annually-updated FRAM 
67 database provides estimated spawning escapement and harvest-related mortality, including both 
68 terminal and pre-terminal catches, the sum of which constitute pre-fishery run size, which is the 
69 target for forecasts. While the naïve time-series models only utilize pre-terminal run size, the 
70 STIPM also make use of estimates of released and recovered coded wire tagged natural- and 
71 hatchery-origin coho smolts, which are indexed to the FRAM stock units and extracted from the 
72 Regional Mark Information System (RMIS) database to inform marine survival parameters. Finally, 
73 WDFW and Tribal Co-manager staff provide estimates of smolt outmigration from several long-
74 term monitoring stations that are also indexed to FRAM stock units. 
75 
76 The latest available versions of these data form a full dataset, from which progressive subsets of 
77 years are used in a “one-ahead” evaluation of forecast skill. In contrast to leave-one-out or other 
78 cross validation on the full span of years, this more closely mimics the data that would be 
79 available to generate future predictions in a given year. The resulting performance measures then 
80 assess the relative accuracy and precision of candidate models and quantitatively characterize 
81 their behavior (e.g., the absolute magnitude of forecast error as well as the tendency to under- or 
82 over-forecast). As a result of implementation in a Bayesian framework, full posterior distributions 
83 are produced for each forecast, enabling robust quantification of uncertainty and facilitating risk-
84 based management. 

2Coho FRAM is used by the PFMC Salmon Technical Team (STT) to plan annual fisheries and by the Pacific Salmon 
Commission Coho Technical Committee to perform post-season review. It includes a coast-wide set of unmarked and 
marked units of natural and hatchery stocks, accounting for landed and non-landed mortality to age 3 fish through 5 
calendar year time steps. See https://framverse.github.io/fram_doc/ for additional information. 
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85 

86 

87 Figure 1: Washington natural-origin coho populations included in the full dataset, showing Coho FRAM StockID 

88 

89 Model description 
90 
91 The proposed approach involves fitting candidate models to a training dataset and comparing 
92 their one-year-ahead forecast performance over the most recent 11 years relative to 
93 observations. This approach then allows selection of a best model according to one-ahead 
94 performance measures or facilitates model-averaging of forecasts weighted by prior 
95 performance. 
96 
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97 While future work may add ensemble members (see Discussion), the current implementation 
98 includes the STIPM (Figure 2-3) along with a multi-population naïve time-series model (state-space 
99 lag-1 auto-regressive AR1; Figure 3). For the state-space AR1, parameters are estimated 
100 independently for each population based on the run-size in past years (through the most recent 
101 year of available data, which is typically 2-3 years prior to the year of interest). 
102 
103 The STIPM is fundamentally a population dynamics model. For each population, adult escapement 
104 in one generation is used to estimate smolt recruitment via a Beverton-Holt function, pre-fishery 
105 run size is estimated by multiplying smolt abundance and year- and population-specific estimates 
106 of marine survival, and escapement is estimated by subtracting estimated harvest from run size. 
107 The model parameters are informed jointly by multiple likelihood contributions, within a Bayesian 
108 model fitting framework, that compares state estimates with observations at multiple points in the 
109 coho life cycle: 
110 
111 1) Adult escapement estimates (states) from the model are fitted to FRAM escapement 
112 estimates that are treated as observations, 
113 2) Smolt abundance estimates (states) from the model are fitted to smolt abundance 
114 estimates that are treated as observations (when available for a particular population 
115 and year), 
116 3) Marine survival estimates (states) from the model are fitted to CWT releases and 
117 expanded recoveries (when CWT data for wild coho are available for a particular 
118 population and year). For other populations, estimates of marine survival are fitted to 
119 CWT releases and expanded recoveries from a spatially paired hatchery population 
120 after adjustment for a hatchery-specific deviation from estimated natural-origin survival 
121 (with this deviation itself estimated), and 
122 4) Harvest estimates (states) from the model are fitted to FRAM harvest estimates that are 
123 treated as observations. 
124 
125 Population-specific parameters are estimated hierarchically, allowing populations to share 
126 information and for data-poor populations to benefit from more data-rich populations. 
127 Marine survival estimates are estimated using a spatio-temporal Gaussian process, in which 
128 spatial correlation in the temporal evolution of marine survival is estimated and facilitates 
129 sharing of information across space and time to inform marine survival estimates for all 
130 populations and years, regardless of whether smolt data or CWT data are available. Priors 
131 for most parameters (and hyperparameters) were vague, uninformative, and/or designed to 
132 avoid biologically improbable or impossible parameter space. Notable exceptions included 
133 the productivity and capacity among-population hyper-means and hyper-variances, which 
134 were given priors based on the results reported in Barrowman et al. (2003) but were 
135 widened to account for the possibility that populations in our dataset differed in their central 
136 tendencies from those in Barrowman. Regardless, all prior-posterior pairs were compared to 
137 ensure that priors were not driving posteriors at the expense of information contained in 
138 likelihoods. 
139 
140 Full descriptions of the models above, their equations, priors, and extensive model 
141 convergence and model fit diagnostics are described in DeFillipo et al. (2021) and its 
142 supplementary materials. 
143 
144 A final model developed for this SSC review, which was not included in the DeFillipo et al. 
145 (2021) paper, is the use of a simple tailing mean of abundance, which involved taking the 3-
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146 year arithmetic mean of available FRAM run-size observations at various year lags prior to 
147 the forecast year. No estimates of uncertainty are available for this method, and it is not a 
148 formal statistical model, but is provided for comparison since it has been a common method 
149 used by state fishery managers to develop salmon forecasts. It also illustrates the scope to 

add alternative models that may be of interest. 150 

151 

152 Figure 2 Conceptual overview of STIPM model 

153 

154 Performance evaluation 
155 Theoretical considerations 
156 
157 There are numerous methods available to evaluate model performance, and these differing 
158 options may produce different results when applied to a particular set of models. Consequently, it 
159 is important to consider a model’s desired application in order to select the appropriate model 
160 evaluation method. Many model evaluation methods involve calculating the fit of the model to an 
161 entire dataset. However, these methods can over-estimate model skill for out-of-sample prediction 
162 tasks because model skill evaluations using the whole dataset involve comparing model 
163 predictions with observations that were used in fitting the model; a situation that is unrealistic for 
164 out of sample prediction tasks. 
165 
166 To avoid overestimates of model performance for out-of-sample prediction tasks, performance 
167 evaluation in these cases should involve dividing a dataset into two random subsets, fitting a 
168 model to the first random “training” dataset and evaluating its predictive performance on second 
169 random “validation” dataset that has been held out of the original model fitting routine. 
170 Alternatively, a model may be iteratively fitted to different random subsets of an entire dataset 
171 and performance calculated on based on predictions of the left-out subset of observations during 
172 each iteration (e.g., k-fold or leave-one-out cross validation).While such methods provide robust 
173 estimates of out-of-sample prediction skill for applications where the data points we hope to 
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174 predict are randomly distributed with respect to the training set (e.g., results from a randomized 
175 field experiment), these methods are ill-suited to future predictions using time-series models where 
176 the data points to be predicted are inherently non-random (i.e., they occur later in time than the 
177 observations). As a result, k-fold and leave-one-out cross validation methods will also tend to 
178 over-estimate model skill for future prediction tasks (Burkner et al. 2020). 
179 
180 To determine a model’s skill at predicting the future, performance evaluation methods should 
181 directly measure model performance in predicting future data points. To accomplish this, an 
182 evaluation of future prediction skill can be made by iteratively refitting models to progressively 
183 larger subsets of a full timeseries in which future datapoints have been left out, and then 
184 evaluating model performance in predicting the future datapoint(s) of interest. Since the desired 
185 application for all models discussed herein is prediction of future run-sizes, all evaluations of 
186 model performance are based on iterative leave-future-out model fits to a progressively 
187 expanded training set (adding years to a shared initial portion of the series). See Figure 3 for a 
188 schematic of this process. 
189 

190 Performance evaluation approach 
191 
192 DeFilipo et al. (2021) compared one-step-ahead performance of the STIPM and three naïve 
193 time-series models (random walk, AR1, MA1) against a compilation of the historical preseason 
194 forecasts of record supplied by managers for the selected stocks. They calculated model 
195 performance scores, including Mean Absolute Scaled Error (MASE), Root Mean Squared Error 
196 (RMSE), and Median Symmetric Accuracy (MSA) and found that the STIPM and naïve timeseries 
197 models generally provided modest but consistent improvements in forecast skill relative to 
198 historical forecasts of record. In addition, the STIPM generally performed the best of the models 
199 developed by DeFilippo et al. (2021); however, the best model varied among populations and 
200 differences between the models were often minor. 
201 
202 Theoretically, the ability to incorporate more recent data into forecast model fitting should 
203 substantially improve forecast skill. Therefore, in addition to comparing among candidate models, 
204 we were interested in determining how both absolute and relative (among model) performance 
205 were affected by the number of years between the forecast year of interest and the data used in 
206 forecasting that year. To evaluate the influence of data lag on forecast skill we assessed model 
207 performance against observed returns subject to alternative temporal lags in the available data 
208 used in model fitting. One-ahead forecasts were developed for the years 2009 to 2019, based 
209 on data subsets spanning 1998 to one, two or three years prior to the predicted year. For 
210 example, a 2009 prediction was generated from spawning escapement and harvest estimates 
211 from 2008, 2007, and 2006 for the lag-1, lag-2 and lag-3 alternatives. For the purposes of 
212 forecasting a given year, preliminary escapement and harvest estimates from the prior year (i.e., 
213 lag-1) may be available for some stocks, but the lag-1 represents more of a “hypothetical best 
214 case” than a practically likely alternative. The lag-2 (e.g., with 2007 data available to forecast 
215 2009) constitutes a plausible best case under current data management timelines (i.e., these data 
216 are typically being compiled for reporting and evaluation concurrently with the timing of 
217 preseason forecasts), while the lag-3 serves as a realistic worst case of which data are available, 
218 with the PSC CoTC having completed post-season FRAM runs for this year. 
219 
220 Before conducting the one-ahead exercise, we modified the original dataset by removing two 
221 FRAM units known to lack a biological basis (Port Gamble Bay Wild and Area 7/7A Independent 
222 Wild); we limited the years evaluated to those from 1998 onward that are known to be reliable 
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223 in the FRAM post-season database; and we added observations made after 2015. We also 
224 made minor revisions to the AR1 Stan code (reparameterization) to facilitate improved 
225 convergence. Data manipulation revisions followed a line-by-line cross-check process against the 
226 original to ensure the fidelity and appropriateness of assigned objects. Finally, we followed 
227 DeFilippo et al. (2021) in assessing convergence for the one-ahead model fitting. 
228 

229 Performance evaluation results 
230 
231 Under the lag-3 scenario of data availability (which we consider the most conservative/worst 
232 case scenario), the AR1 and STIPM models exhibited similar performance, which was better than 
233 the performance of the trailing mean or historical forecasts. Median symmetric accuracy was 
234 used to assess model performance (MSA—a model skill measure that is based on the log 
235 accuracy ratio, is interpretable as a percentage, is robust to outliers, and equally penalizes over-
236 and under-forecasts; Morley et al. 2018). The lag-3 AR1 and STIPM posterior medians had MSA 
237 values of 94% and 117% respectively, which was an improvement over the lagged trailing mean 
238 and previously submitted forecasts (166% and 147%, respectively; Table 1). The two models 
239 produced a mixture of under- and over-forecasts related to large year-to-year reversals in the 
240 time series, as well as longer-term variation in population abundance (Figures 3 and 4). For 
241 example, both models underpredicted the large 2014 run while overpredicting the low 2015 
242 return, and the smaller returns of 2006-2008 influenced the accuracy of predicting the relatively 
243 large returns at the beginning of the one-ahead series (2009 and 2010). The observed returns in 
244 2018 and 2019 fell within the 95% credible interval of both models but were below the 25th 

245 percentiles of the posterior distributions (Figure 4). More broadly, all four models (AR1, STIPM, 
246 trailing 3-year mean, and actual historical forecast) under-forecasted early in the time-period, 
247 oscillated between under- and over-forecasts in the middle of the time period, and over-
248 forecasted in the most recent years (Figures 4 and 5), which were some of the lowest run-sizes in 
249 the record for Willapa coho. 
250 
251 In addition to evaluating the performance of the new models under the worst-case scenario for 
252 data availability, we were interested in determining what the utility of more recent data would 
253 be for improving coho forecasts. Comparing among models and among all data lags, the lag-1 
254 ST-IPM showed the best overall median symmetric accuracy (65%), and all models generally 
255 performed better than at progressively larger time lags (Figure 6, Table 1). Interestingly, model 
256 error for the lag-2 forecasts was generally greater than lag-3, which is an unexpected result and 
257 likely an artifact of the short set of one-step-ahead years evaluated rather than a result that can 
258 be expected to persist in the future. Although the lag-1 alternative is not currently realistic, these 
259 results suggest that a faster data management cycle might yield appreciable gains in preseason 
260 forecast accuracy. 
261 
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262 
263 Figure 3 Schematic of one-ahead forecasts used in model performance assessment. One-ahead lag-3 posterior median 
264 forecasts (filled circles, with 95% credible intervals) for AR1 (purple) and STIPM (gold) are shown alongside the 
265 observed return in the forecast year (black triangles), the previously submitted preseason FRAM forecast (pink), and the 
266 lagged 3-year trailing mean (cyan). In each panel, the darker shaded line shows the years of observations used in model-
267 fitting to generate the single year forecast, and the lighter shading (separated by the vertical dashed line) indicates the 
268 years of observations that were not used in model-fitting (under the lag-3 scenario, they would not have been available 
269 at the time of forecast preparation. Note varied Y-axis scale across panels to accommodate 95% CI. 

270 
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271 
272 Figure 4 Observed Willapa Bay run-size (bars) and one-ahead lag-3 posterior median forecasts (heavy line) with 50% 
273 and 95% credible intervals (darker and lighter shaded ribbons, respectively) for AR1 (purple) and STIPM (gold) models. 
274 Also shown are the previously submitted preseason FRAM forecast (pink), and the lagged 3-year trailing mean (cyan). 
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275 
276 Figure 5 One-ahead Willapa Bay coho run size forecast error of posterior median (AR1, purple, and STIPM, gold), the 
277 point estimate of the lagged 3-year trailing mean (cyan), and the previously submitted preseason FRAM forecast (pink). 
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278 

279 Figure 6 Posterior medians of one-ahead forecasts generated with the AR1 model (top panel) and STIPM model (bottom 
280 panel) with observed run-sizes (bars) for comparison. Line colors show different lags between the forecast year, and the 
281 most recent year of data used in fitting the model. 
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282 

283 
284 Table 1 Summary forecast accuracy measures of 2009-2019 one-ahead predictions. Shown are median symmetric 
285 accuracy (MSA), mean error (ME), median percent error (MPE), and root mean square error (RMSE). 

286 

287 Discussion 
288 
289 We propose to implement a systematic forecasting approach that leverages available data while 
290 rigorously presenting uncertainty. Within that framework, we propose to use multiple peer-
291 reviewed models including both a biologically driven IPM and a naïve timeseries model, both of 
292 which are aligned with existing management units and well-integrated with real-world workflows 
293 and timelines for data compilation. 
294 
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295 In its current form the proposed forecast method addresses several concerns that have been 
296 raised with respect to past approaches. Perhaps most significant is the explicit incorporation of 
297 escapement and harvest observations specific to the WB natural-origin population. In addition, 
298 marine survival estimates based on CWTs from the WB hatchery coho stock are included 
299 alongside the previously considered Bingham Creek natural-origin CWT and smolt migrant 
300 records (as well as those for other WA coastal stocks, e.g., Humptulips, Hoh, Quillayute, etc.). 
301 
302 Beyond the direct inclusion of WB data, a core advantage of the proposed framework is the 
303 ability to examine and compare forecast options readily and reproducibly. The scripted one-
304 ahead performance evaluation provides a nuanced view of how and when alternative forecast 
305 methods produce inaccurate predictions and facilitates a robust means of either selecting a best 
306 model or performing weighted model-averaging to develop a best model. 
307 
308 In addition to incorporating WB data and facilitating robust model evaluation, the hierarchical 
309 state-space models quantify forecast uncertainty and thereby facilitate a more rigorous discussion 
310 of risk and tradeoffs in policy processes. By generating full posterior distributions for forecasts, 
311 managers can identify the probability that the observed run size will be smaller (or greater) than 
312 any value of interest, thereby facilitating season setting that contains risks within levels deemed 
313 acceptable. 
314 

315 Future work and additional STIPM applications 

316 

317 Beyond short term forecasting, the development of the biologically-based STIPM creates a host of 
318 other opportunities to better understand the status of natural origin Washington Coho stocks. For 
319 example, the spatio-temporal model of marine survival could be used to generate marine survival 
320 spatially continuous “heat maps” over past decades, which could be used to examine factors 
321 influencing marine survival and its evolution over time. The estimates of productivity and capacity 
322 (i.e., posterior distributions of BH parameters) provide valuable empirically generated 
323 information to relate to or update existing population reference points. Finally, the ability to 
324 forecast forward with the model readily enables population viability analyses and even future 
325 management strategy evaluation (i.e., the model can provide alternative realizations of the stock 
326 in 10, 50 or 100 years, in which alternative harvest scenarios may be simulated). 

327 Outside of these non-forecast benefits, and despite the forecast improvements of the current 
328 proposed approach, several opportunities exist for subsequent refinement to address remaining 
329 limitations. These can be divided into changes that apply more generally and those strictly 
330 related to the STIPM. 

331 
332 Improvements for all models & approach 

333 • Use of covariates 
334 Neither the naïve timeseries models nor the STIPM include covariates to predict interannual 
335 changes in survival or abundance. Candidate models of each type could be developed 
336 that include environmental or other covariates thought to influence coho productivity, such 
337 as ocean indicators, and these models could be competed against the current set of 
338 models 

339 • Ensembles 
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340 Currently our proposed approach involves fitting multiple models and calculating model 
341 performance, which facilitates either selecting a best model or using performance statistics 
342 to construct model-averaged forecasts. However, we have not yet performed a one-
343 ahead evaluation using different weighting methods to determine what weights provide 
344 optimal model-averaged ensemble forecasts. 

345 • Columbia River and other FRAM stocks 
346 The current forecast approach covers all populations in Washington State except the 
347 Columbia River. The current approach could easily be extended to include the two 
348 Washington State Columbia River stocks, or even stocks outside Washington. 
349 
350 Additional STIPM Improvements 

351 • Include additional smolt trapping data 
352 Time series of smolt trap observations that could not be readily reconciled with Coho 
353 FRAM stocks were not included. However, future work could examine how best to 
354 integrate these valuable data. 

355 • Hatcheries 
356 A current limitation of the STIPM identified by DeFillipo et al. is its inability to quantify the 
357 contributions of hatchery spawners to natural origin recruitment. As a result, productivity 
358 parameters are likely artificially inflated due to the presence of recruits produced by 
359 hatchery spawners in some populations. Incorporating hatchery spawner contributions, 
360 including the potential to estimate any differences in their per-capita productivity, is 
361 simple enough to accomplish within the STIPM given data that quantify the number of 
362 hatchery fish escaping to spawn naturally in each of the FRAM units. Unfortunately, we are 
363 unaware of a comprehensive, consistently compiled dataset of this type, despite various 
364 population monitoring programs that estimate the proportions of hatchery and natural 
365 origin spawners annually. Future efforts to translate monitoring program results into 
366 comparable FRAM unit estimates could facilitate better accounting for the contributions of 
367 hatchery spawners, likely both improving forecasts and aiding estimation of more accurate 
368 biological reference points. 

369 • Spatial Kernel 
370 Currently, a squared exponential kernel utilizing Euclidean distance is used to model the 
371 spatio-temporal evolution of marine survival. However, Euclidean distance is likely a less 
372 relevant measure of spatial relatedness than distance by water. Distance by water was 
373 not used because a squared exponential covariance matrix constructed with non-Euclidean 
374 distances is not guaranteed to be positive definite. However, alternative spatial 
375 covariance constructions such as Gaussian Markov Random Fields or Conditional 
376 Autoregressive Models facilitate development of non-Euclidean covariance matrices in a 
377 manner that ensures they are positive definite. Therefore, efforts should be made in the 
378 future to explore non-Euclidean covariance structures that better reflect the biology of 
379 spatially correlated changes in survival. 

380 • Habitat Quantity 
381 Currently, a static measure (not year-specific) of the length of linear stream habitat used 
382 by coho salmon in each stock is used as an offset in the capacity parameter estimation. 
383 However, available habitat is not static, and capacity is likely to change, particularly 
384 after restoration (e.g., dam removal) or altered watershed management (e.g., forest 
385 conversion or altered timber harvest) that result in large changes to available habitat. 
386 These changes could be better accommodated by incorporating non-static estimates of 
387 available habitat. 
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388 • Observation error in CWT datasets 
389 Currently, CWT data used to estimate marine survival are assumed to be beta-binomially 
390 distributed, where the (rounded) expanded number of CWT recovered are assumed to be 
391 “successes” resulting from a series of binomial “trials” (CWT-tagged smolt releases), where 
392 the probability of success is the estimated marine survival. As opposed to a standard 
393 binomial, the observed probability of survival for each population and year can differ 
394 from the underlying “true” survival probability due to an additional latent variance 
395 generating process (such as the sampling-based expansion of raw coded wire tags to 
396 expanded). While the beta-binomial is one approach to account for this latent variance in 
397 CWT-based marine survival estimates, several methods have been developed by others 
398 and could be compared (e.g., Satterthwaite et al. 2013, Allen et al. 2017, Shelton et al. 
399 2018, Shelton et al. 2020). 

400 
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A B S T R A C T   

Fishery managers often rely on forecasts of future population abundance to set allowable harvest quotas or 
exploitation rates. While there has been substantial research devoted to identifying environmental factors that 
can predict recruitment for individual populations, such correlations often degrade over time, thereby limiting 
their utility for management. Conversely, examining multiple populations at once to detect shared, spatially 
structured patterns can offer insights into their recruitment dynamics that are advantageous for forecasting. 
Here, we develop a population dynamics model for natural origin coho salmon (Oncorhynchus kisutch) stocks in 
Washington State that leverages spatial and temporal autocorrelation in marine survival to improve one-year- 
ahead forecasts of adult returns. Executed in a Bayesian hierarchical integrated modelling framework, our 
spatiotemporal approach incorporates multiple data types and shares information among stocks to estimate key 
biological parameters that are informative for forecasting. Retrospective evaluation of one-year-ahead forecast 
skill indicated that the spatiotemporal integrated population model (ST-IPM) outperformed existing forecasts of 
Washington State coho salmon returns by 25–38 % on average. Moreover, the ST-IPM estimates parameters that 
were previously non-identifiable for many stocks, and propagates uncertainty from multiple contributing data 
sources into model forecasts. Our results add to a growing body of work demonstrating the utility of spatio-
temporal and integrated approaches for modelling population dynamics, and the framework developed here has 
broad applications to the assessment and management of coho salmon in Washington State and elsewhere
throughout their range.   

1. Introduction non-stationarity, and the confounding effect of multiple latent pro-
cesses acting on fish stocks simultaneously (Kilduff et al., 2014; Litzow 

A central challenge to forecasting fish population dynamics lies in et al., 2019; Mueter et al., 2002b; Wells et al., 2017). Alternatively, 
anticipating environmentally-driven variation in recruitment (Cushing, recruitment may be better understood by examining multiple stocks at 
1982; Walters and Martell, 2004). While retrospective analyses can once to detect shared, spatially structured patterns (Myers and Mertz, 
often detect relationships between environmental conditions and fish 1998; Peterman et al., 1998; Pyper et al., 2001). Not only does a 
production for individual populations, such correlations are often weak multi-population approach reduce the risk of spurious correlations, but 
and diminish over time, thereby limiting their utility for tactical man- spatial coherence in stock dynamics integrates across the many 
agement (Drinkwater and Myers, 1987; Myers, 1998; Walters and Collie, ecosystem processes that may be jointly influencing recruitment (Wal-
1988, but see Hare et al., 2010; Scheuerell and Williams, 2005; Tommasi ters and Martell, 2004). 
et al., 2017). Among the main reasons why such relationships may be While recruitment patterns can be detected from spawner-recruit 
unreliable are spurious correlations among autocorrelated time-series, residuals or survival estimates, such data are often noisy and of 
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limited availability and scope (Myers et al., 1995). Inferences from short 
time-series with large measurement errors can be misleading (Clark and 
Bjørnstad, 2004; De Valpine and Hastings, 2002; Walters and Ludwig, 
1981), and reliance on a single data type can exclude complementary 
information available from other sources. This is particularly disad-
vantageous in a multi-population context where biological quantities of 
interest may be informed by different types of data across stocks. 
Conversely, ‘integrated’ approaches to population modelling can use all 
available information to estimate parameters through a joint likelihood 
that captures and propagates the uncertainties in each contributing data 
source (Deriso et al., 1985; Fournier and Archibald, 1982; Maunder and 
Punt, 2013). Similar to state-space models (Valpine and Hilborn, 2005), 
integrated population models (IPMs) describe the data as noisy re-
alizations of underlying biological processes which are represented as 
latent, unobserved states (Scheuerell et al., 2020). When structured hi-
erarchically, IPMs can facilitate sharing information among data rich 
and data poor populations (Jiao et al., 2011; Punt et al., 2011) and are 
increasingly being used to estimate spatially structured biological dy-
namics (Cao et al., 2019; Grüss et al., 2019; Kristensen et al., 2014; Punt, 
2019) and forecast population trajectories (Buhle et al., 2018). 

In anadromous Pacific salmon (Oncorhynchus spp.), recruitment is 
typically defined as the number of mature adults that return from a 
given year-class (Ricker, 1954), which depends heavily on cohort sur-
vival during marine residency. Considered a critical period in the life 
cycle, conditions experienced during early marine residency are 
particularly influential in determining year-class strength (Beamish and 
Mahnken, 2001; Beamish et al., 2004; but see Ruggerone and Connors, 
2015). Consequently, identifying drivers of salmonid early marine sur-
vival is a subject of substantial research interest (reviewed in Beamish, 
2018; Chittenden et al., 2009; Pearcy, 1992). Such investigations have 
identified relationships between marine survival and environmental 
conditions expressed at basin (e.g. Pacific Decadal Oscillation (PDO), 
North Pacific Gyre Oscillation (NPGO); Di Lorenzo et al., 2008; Kilduff 
et al., 2015; Mantua et al., 1997), regional (e.g. coastal upwelling, sea 
surface temperature; Kilduff et al., 2014; Koslow et al., 2002), and local 
(e.g. estuaries; Mahnken et al., 1998; Teo et al., 2009) scales. As a result, 
recruitment can be correlated among populations at spatial scales that 
match those of the dominant oceanic features affecting survival (Mueter 
et al., 2002b, 2002a). 

Here, we develop an integrated population model that leverages 
spatial correlations in marine survival to improve state-wide forecasts 
for Washington natural origin coho salmon (O. kisutch) returns. Pre-
season forecasts for these stocks are used to determine allowable harvest 
rates each year such that under-forecasting can lead to foregone harvest 
opportunities, while over-forecasting may risk overfishing (Pacific 
Fishery Management Council, 2016). Most Washington coho salmon 
spend their first eighteen months in freshwater, after which they migrate 
to the ocean where the majority will spend another eighteen months 
before returning to spawn at age three. Historically, preseason forecasts 
for many of these stocks were based on sibling regressions (Peterman, 
1982) which used observed returns of jacks —precocious males that 
mature after only six months at sea — to predict returns of ‘adult’ (age 
three) males and females originating from the same cohort. The ratio-
nale behind this approach is that if early marine survival is a key 
determinant of year-class strength, then returns of jacks that matured 
early but still experienced this critical period can inform the survivor-
ship of the entire cohort. However, lack of reliable jack abundance data 
and weakening of the jack-to-adult relationship now limits the perfor-
mance of sibling regressions for natural origin coho salmon in Wash-
ington. Consequently, many forecast methods currently in use rely 
instead on environmental indicators to predict marine survival (e.g. 
Rupp et al., 2012b; Zimmerman, 2018). Unfortunately, environmentally 
based forecasts have failed to predict large fluctuations in abundance in 
some years (e.g. Wainwright, 2021). In this study, we explore an alter-
native forecasting approach that relies on spatial and temporal auto-
correlation in marine survival rather than sibling or environmental 

relationships. Executed in a Bayesian hierarchical integrated modelling 
framework, our approach incorporates multiple data types as well as 
prior information, and facilitates sharing information among pop-
ulations. Retrospective evaluation of one-year-ahead forecast accuracy 
from 2002 to 2017 indicated that the spatiotemporal IPM (ST-IPM) 
outperformed existing adult return forecasts by 25–38 % on average. 
Our results emphasize the utility of integrated and spatiotemporal ap-
proaches for modelling population dynamics, and the framework 
developed here has broad applications to the assessment and manage-
ment of coho salmon in Washington State and elsewhere throughout 
their range. 

2. Methods 

2.1. Coho salmon life history 

Mature coho salmon in Washington typically migrate upriver in late 
summer and fall to spawn between October and December in small 
streams and mainstem channels of larger rivers (Ohlberger et al., 2019). 
The year that a cohort is spawned is referred to as its ‘brood year’. 
Embryos produced in brood year y overwinter in the gravel and emerge 
as fry in the spring of year y + 1. Most juveniles then spend ~ 1 year 
rearing in freshwater before outmigrating to the ocean as smolts in 
spring of the following year (y + 2) from early April to early June. Most 
coho salmon spend roughly eighteen months at sea before returning to 
spawn in their natal habitats in the fall of year y + 3 (Bradford et al., 
2000). However, some males mature and return to spawn as ‘jacks’ after 
only six months at sea. Because jack abundance data are generally of 
lower quality for many natural origin coho salmon stocks in Washington 
State and jacks comprise only a small portion of total cohort recruitment 
(Quinn, 2005), only age three individuals are considered in the present 
study. 

2.2. Populations and data 

Our analysis includes data from thirty-six coho salmon management 
units (henceforth ‘stocks’) throughout the Salish Sea (Puget Sound, 
southern Strait of Georgia, and Strait of Juan de Fuca) and Washington 
coast (Fig. 1, Table S1) which are currently forecasted for management 
purposes. These management units are defined in the Coho Fisheries 
Regulation Assessment Model (FRAM; Pacific Fishery Management 
Council Model Evaluation Workgroup, 2008), and may represent single 
spawning populations, or aggregations of multiple spawning pop-
ulations. While all of these stocks are of natural origin (henceforth 
‘wild’), unknown numbers of hatchery origin fish may also be present on 
the spawning grounds and counted towards the escapement. 

The data types included in our integrated model are (1) quantity of 
habitat occupied by each population (stream length), (2) adult escape-
ment counts, (3) harvest abundance, (4) smolt outmigration counts, and 
(5) coded wire tag (CWT) marine survival estimates (Table S1). The 
quantity of occupied habitat was obtained from SalmonScape, a Wash-
ington Department of Fish and Wildlife interactive web map of species 
distributions (https://apps.wdfw.wa.gov/salmonscape/) and included 
all habitat known or presumed to be used by coho salmon for spawning 
and/or rearing. Adult escapement and harvest numbers were generated 
by FRAM (Pacific Fishery Management Council Model Evaluation 
Workgroup, 2008), which obtains its escapement data from the Wash-
ington Department of Fish and Wildlife (WDFW) Salmon Conservation 
and Reporting Engine (SCoRE; (https://fortress.wa.gov/dfw/score/sco 
re/species/coho.jsp?species=Coho) before aggregating it at the man-
agement unit spatial scale at which FRAM operates. These escapement 
data were generally derived from redd counts or area-under-the-curve 
estimates of live spawners expanded to account for un-surveyed areas 
and times. Smolt outmigration estimates were based on smolt trapping 
from WDFW and tribal comanagers (e.g., Anderson et al., 2019). Finally, 
CWT marine survival estimates were collated as part of the Salish Sea 
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Fig. 1. Map of the Salish Sea and Washington coast with the marine entry 
points of all coho salmon stocks included in this study indicated by 
black circles. 

Marine Survival Project (https://marinesurvivalproject.com/) as 
described in Zimmerman et al. (2015). The abundances of the stocks 
included in this study were highly variable, with arithmetic mean (± 
standard deviation) annual returns ranging from 264 ± 227 fish for 
Port Gamble Bay, up to 166, 630 ± 87, 520 fish for the Snohomish 
River, and a median average return of 9705 fish across all stocks 
(Table S2). 

2.3. Model design 

The ST-IPM specifies returns of adult (age three) coho salmon as the 
product of smolt production and marine survival. For stocks and years 
where smolt outmigration data are collected, these observations are 
available to inform predictions of adult returns. When these data are 
absent, smolt outmigration is predicted as a density-dependent function 
of spawner abundance (escapement) (Barrowman et al., 2003). While 
spawner-recruit relationships have limited utility for short-term fore-
casting (Walters, 1989) and watersheds become fully saturated at rela-
tively low coho salmon spawner abundance (Bradford et al., 2000), 
escapement-based estimates of smolt production may provide a useful 
baseline for predicting variation in adult returns that is not explained by 
ocean mortality. Moreover, propagating uncertainty from the 
adult-to-smolt production relationships and data into model forecasts 
could be advantageous for managers wishing to consider forecast un-
certainty in harvest control decisions. 

Marine survival can be estimated using CWT data when available or 
inferred from the difference between smolt outmigration counts and 
adult returns for a given cohort. However, such information does not 
become available until after the fishing season, and thus cannot be 
directly used in forecasting. While CWT and smolt outmigration data can 
be used to estimate properties of marine survival time-series such as 
historical averages, autocorrelation, and recent trends that may be 
useful for forecasting (Winship et al., 2015), these data are only 
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available for a handful of stocks. For stocks that lack both CWT and 
smolt abundance data, the influences of juvenile production versus 
marine survival on adult returns cannot be distinguished. 

The rationale behind the modelling approach presented here is to 
leverage the spatially correlated marine survival patterns of coho 
salmon (Coronado and Hilborn, 1998; Zimmerman et al., 2015) to share 
information among stocks. By assuming that nearby populations expe-
rience similar patterns of ocean mortality, retrospective estimates of 
marine survival time-series can be reconstructed even for stocks that 
lack informative data. Furthermore, by introducing prior information 
from previous studies (Barrowman et al., 2003; Thorson et al., 2015a) 
and adopting a hierarchical model design (Jiao et al., 2011; Punt et al., 
2011), we can further refine estimates of marine survival and smolt 
production, allowing improved inference on statistical properties of 
these time-series that may be useful for forecasting. 

2.3.1. Smolt production 
For each coho salmon stock (i), the number of smolts (Ri,y) migrating 

to the ocean in a given calendar year (y) was assumed to depend on the 
number of spawners (escapement) two calendar years earlier (Si,y�2) 
according to a Beverton-Holt function (Beverton and Holt, 1957): 

εi,y 
� ) Si,y�2 Ri,y = Si,y�2 

e , εi,y ∼ Normal 0, σRi   + (1)  ai Rma i
di 

where Si,y�2 and Ri,y represent state estimates (i.e. model predictions) of 
the true spawner and smolt abundance respectively, ai is a stock-specific 
productivity term describing the slope (in smolts produced per spawner) 
of the function at the origin, Rmaxi is the maximum asymptotic smolt 
production, expressed as the number of smolts produced per kilometer 
of habitat, and di is the kilometers of stream habitat for each stock 
(Barrowman et al., 2003). While the Ricker function is also commonly 
used for some Pacific salmon species, overcompensation is unlikely to 
occur in coho salmon (Barrowman et al., 2003; Bradford et al., 2000). 
Deviations from the Beverton-Holt adult-to-smolt relationship (εi,y) were 
assumed to follow a lognormal distribution (Peterman, 1981) with a 
mean of zero and a variance of σ2Ri . To facilitate sharing information and 
allow for correlation between α and Rmax, these parameters were 
modelled hierarchically as random variables arising from a common 
bivariate lognormal distribution that was shared among stocks (Buhle 
et al., 2018): 

( ) 
log(ai) 

θi = � ) ∼ MVN(log(μ ), Σθ) (2)  
log Rma i 

θ

where log(μθ) is the vector of lognormal hypermeans for the Beverton- 
Holt parameters (log(μθ) = log(μa), log(μRmax 

)) and Σθ is the variance- 
covariance matrix. To improve posterior sampling efficiency and miti-
gate the bias that can result from estimating hierarchical models using 
Monte Carlo methods (Betancourt, 2016; Monnahan et al., 2017), we 
implemented a multivariate extension of the non-centered parameteri-
zation, with the variance-covariance matrix Σθ decomposed into the 
Cholesky factor (L θ ) of the correlation matrix  θ and a vector of error 

√̅̅̅̅̅̅̅̅  √̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ terms σθ (where σa = Σa,a , σRmax = ΣRmax ,Rmax ): 
θi = log μθ + diag(σθ)L θzθi (3)  

where: 
⊤  θ = L θL θ (4) 

and: 
Σθ = diag(σθ)  θ diag(σθ) (5) 

In a non-centered parameterization, zθi is a vector of standard scaling 
factors for each parameter and stock (zai , zRmaxi ) that follows a normal 
distribution with a mean of zero and a standard deviation of one 
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(Betancourt, 2016; Monnahan et al., 2017). Of the thirty-six manage-
ment units included in this study, smolt outmigration data of any kind 
were available for only nine, and among these, the data were typically 
available for only a subset of years (Table S1). Consequently, we chose to 
use informative priors based on the posterior distributions reported by a 
previous hierarchical analysis of coho salmon adult-to-smolt production 
(Barrowman et al., 2003). Note that that Barrowman et al. (2003) as-
sume a 1:1 sex ratio and report the posterior mean of Rmax in units of 
female smolts/km, which is doubled here to represent Rmax in total 
smolts/km: 
Log(μ ) ∼ Normal(4.27, 0.75) (6)  a

Log(μRma  
) ∼ Normal(7.27, 2) (7)  

σa ∼ Normal(0.43, 0.25) (8)  

σRma  
∼ Normal(0.64, 0.25) (9)  

To explore prior sensitivity, we compared the resulting posteriors to 
those from model fits that used vague prior distributions (Fig. S1). 

The Cholesky factor of the correlation matrix was drawn from an LKJ 
prior distribution (Lewandowski et al., 2009): 
L θ ∼ LKJCorr(η) (10)  

where η is a shape parameter that specifies the expected degree of cor-
relation between α and Rmax, which we fixed at 2, representing a weakly 
informative prior expectation of weaker correlation between parameters 
(Stan Development Team, 2020). Stock-specific standard deviations of 
Beverton-Holt adult-to-smolt errors (σRi ) were also modelled hierar-
chically among management units using a non-centered approach: 

log σRi 
= log μσR 

+ σσR zσRi 
(11)  

2.3.2. Marine survival 
Marine survival was assumed to be density-independent (but see 

Emlen et al., 1990) and unrelated to variation in freshwater production 
(but see Chasco et al., 2021; Haeseker et al., 2012; McCormick et al., 
2009). While there is evidence of density-dependence in the marine 
phase (e.g. Ruggerone and Connors, 2015), this is generally observed in 
more abundant species such as sockeye (O. nerka) and pink 
(O. gorbuscha) salmon, and operates based on the aggregate density of 
salmon in ocean foraging areas rather than the abundance of any one 
stock (Ohlberger et al., 2019; Pyper and Peterman, 1999; Ruggerone and 
Nielsen, 2004). 

Information on a population’s marine survival can come from CWT 
data or be inferred from the difference between smolt outmigration and 
adult returns. Of the thirty-six stocks included in our analysis, CWT data 
were available for only fifteen, and smolt outmigration data were 
available for an additional two (excluding the seven stocks for which 
both data exist) (Table S1). Because marine survival of southern coho 
salmon populations can be spatially correlated at relatively fine spatial 
scales (Zimmerman et al., 2015), we specified marine survival anomalies 
as a spatial Gaussian field (a Gaussian process in two or more di-
mensions, e.g. Ward et al., 2015; Webster et al., 2020) to facilitate 
sharing information among stocks. For each stock i, marine survival over 
time was expressed as a mean-reverting lag-1 autoregressive (AR-1) 
process of the form: 

{ 
ψi = μψ + σψzψ , y = 1 

Logit λi,y = μλi 
+ ϕi Logit λi,y�1 � μλi 

+ ξi,y, y > 1 (12)  
ξi ∼ MVN(0, Σξ) 

where λi,y is the marine survival in year y for stock i and μλi is the mean of 
the logit marine survival time series for stock i, which followed a hier-
archical normal distribution among stocks with hyperparameters μμλ 

and 
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σμλ 
. In model year-one, there is no previous state estimate to inform that 

year’s marine survival so the time-series for each stock was initialized at 
ψ i, which was hierarchically normally distributed among stocks with a 
mean of μψ and a variance of σψ 

2. The autocorrelation terms for each 
stock (ϕi) were drawn from uniform prior distributions bounded be-
tween -1 and 1. The marine survival deviations for each stock (ξi,y) were 
multivariate normally distributed with a mean of zero and variance- 
covariance matrix of Σξ. The covariance between stocks i and j was 
expressed as a function of Euclidean distance between their marine entry 
locations according to a squared exponential kernel of the form: 

(

� )2 )
{ 

 i �  j  , i � j = 0 
Σξi,j 

= γ2exp � + δi,jσd, δi,j = 
2ρ2 0, i � j ∕ (13)  = 0 

where, xi and xj are the coordinates of the marine entry point for stocks i 
2 and j in eastings and northings, γ is the marginal variance of the 

function, ρ is the length scale, and σd is the error standard deviation, 
which is applied only when i = j according to the Kronecker delta 
function δi,j. 

2.3.3. Harvest and escapement 
Of the individuals that survive natural marine mortality (Ri,yλi,y), a 

portion are harvested in fisheries: 
Ci,y = Ri,y� λi,y� ui,y (14)  

where Ci,y is the number of individuals from stock i harvested in year y 
according to the exploitation rate ui,y, which was specified as a multi-
variate random walk: 

{ 
ϑi = μ + σϑ zϑ, y =   

� ) � ϑ ) 
Logit ui,y = Logit ui,y� + εi,y, y >   (15) 

εi ∼ MVN(0, Σε) 

The logit harvest rates for model year-one (ϑi) were initialized hi-
erarchically as in eq. 12 with hyper-parameters μϑ and σϑ. Harvest 
process errors (εi,y) were multivariate normally distributed with a mean 
of 0 and variance-covariance matrix Σε, which was parameterized with 
a single variance term (σ2) on the diagonal, and covariance (ρεσ

2) on the ε ε

off-diagonal elements (e.g. Holmes et al., 2012). The number of in-
dividuals returning to spawn in a given year (Si,y) was then calculated as 
the difference between the total number of smolts that survived natural 
ocean mortality in the previous year (Ri,y�1λi,y�1) minus those that were 
harvested (Ci,y). 
Si,y = Ri,y� λi,y�  � Ci,y (16) 

State estimates of spawning abundance were then used recursively in 
the subsequent estimation of smolt production (eq. 1). 

2.3.4. Likelihoods 
The observed smolt (Ji,y), escapement (Ei,y), and harvest (Hi,y) 

abundance data were assumed to follow lognormal likelihoods: 
Ji,y ∼ Lognormal Log Ri,y , σJ (17)  

Ei,y ∼ Lognormal Log Si,y , σE (18)  

Hi,y ∼ Lognormal Log Ci,y , σH (19)  

where σJ, σE and σH represent the observation error terms for the smolt, 
escapement and harvest data respectively, and Ri,y, Si,y, and Ci,y are the 
model-generated state estimates of smolt, escapement, and harvest 
abundance. The escapement observation error term (σE) could not be 
reliably estimated, and so was fixed at 0.2 and subject to testing with 
alternative values (e.g. Fleischman et al., 2013). 

For the CWT data, the estimated number of tagged fish that were 
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recovered (ni,y ) was assumed to follow a beta-binomial likelihood with a 
number of trials (Ni,y) equal to the total number of tagged fish that were 
released, and a probability of recovery (pi ,y). 
ni,y ∼ Binomial(pi ,y, Ni,y) (20) 

To allow for extra-binomial variance in tag recoveries (for instance, 
due to incomplete sampling of the harvest and escapement), the prob-
ability of recovery was assumed to follow a beta distribution, imple-
mented as a conjugate prior to the binomial: 
pi,y ∼ Beta αi,y, βi,y (21) 

The shape parameters of the beta distribution (αi,y,βi,y) were specified 
in terms of mode 

(λ’) and concentration (κ): 
( )

λ’ αi,y = i,y (κ � 2) +   (22)  
( )

’ βi,y =   � λi,y (κ � 2) +   (23)  

where λ’ i,y corresponds to the adjusted state estimate of marine survival. 
For ten of the stocks in our study, available CWT data were collected 
from an adjacent hatchery rather than the wild stock itself. Hatchery and 
wild coho salmon populations have been shown to exhibit similar trends 
and interannual patterns in marine survival, but average mortality is 
typically lower for wild stocks (Coronado and Hilborn, 1998). As such, a 
hierarchically distributed offset term (e.g. Ohlberger et al., 2019) was 
applied to the likelihood to account for hatchery-specific deviations in 
survival from associated wild populations: 

Logit λi,y , hi = 0 
Logit λ’ = � ) (24) i,y Logit λi,y + τi , hi =   

Here, τi is the marine survival offset term for stock i which is applied 
if the marine survival data for that stock is based on a hatchery ( hi = 1). 
For stocks with marine survival data based on CWT recoveries of wild 
fish ( hi = 0) no adjustment is required. The hatchery offset terms 
themselves were hierarchically distributed: 
τi = μτ + στzτi (25)  

where μτ is the average offset term among stocks and στ is the standard 
deviation. 

2.4. Model estimation and validation 

Posterior sampling was performed via Hamiltonian Monte Carlo 
(HMC) No-U-turn sampling (NUTS) through the Stan model building 
software (Stan Development Team, 2020), implemented in R (R Core 
team, 2015) via the Rstan package (Gelman, 2014). Sampling occurred 
using five HMC chains with lengths of 2000 iterations (for simulated 
forecast trials) to 20,000 iterations (for fits to the complete data set). The 
first half of samples was discarded as a “warmup” and each subsequent 
sample was saved to build the posterior distribution. Convergence was 
assessed using the Gelman-Rubin diagnostic (Gelman & Rubin, 1992) 
and effective number of samples, as well as trace-plots and autocorre-
lation plots of HMC chains. Posterior sampling was monitored for 
divergent transitions and low Bayesian Fraction of Missing Information 
(BFMI), neither of which were present in fits to the complete data set. 
Model goodness of fit was assessed by examining model fits to the 
observed data (Fig. S2) and comparing the model’s predictive distribu-
tions to observed data (posterior predictive check, Fig. S3). Model per-
formance was assessed by simulating data with known parameter values 
and evaluating the model’s ability to recover them (Fig. S4-S6). Prior 
influence was examined by comparing prior and posterior distributions 
for model parameters (Fig. S7). A complete glossary of all model terms 
and prior distributions can be found in Table S3. 
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2.5. Forecast evaluation 

The ST-IPM generates one-year-ahead adult return forecasts for a 
given calendar year y by multiplying the preceding year’s marine sur-
vival (λi,y–1) and smolt outmigration estimates (Ri,y–1) for each stock. In 
simulated forecast trials, we assume that model fits are informed only by 
data that would realistically be available to biologists and managers at 
the time of forecast development. According to the current management 
cycle, preseason forecasts of adult returns for the fall of year y are pre-
pared in January of year y, when the most recent smolt outmigration 
data available are from year y–1. However, while harvest data from fall 
of year y–1 will have been collected by January of year y, these data are 
seldom formalized and entered into widely accessible databases at this 
point in time. As such, we assume that only harvest data up to year y–2 
are available for conditioning model forecasts of year y. Similarly, only 
CWT recoveries from outmigrating smolts tagged in year y–3 are 
assumed to be available for forecasts of year y due to the constraints of 
collecting and processing these data. The time at which the escapement 
data become available is variable among management units, but we 
assume that at least preliminary escapement estimates for year y–1 
would be available in January of year y to inform forecast development. 

To provide both sufficient training data to condition the model and 
enough simulated forecasts to reliably calculate performance metrics, 
we produced one-year-ahead forecasts of adult returns for 2002�2017. 
Forecast accuracy was calculated using the arithmetic mean absolute 
scaled error (MASE): 

⃒ ⃒ 
⃒ ⃒Pi,y � Ai,y 

ASEi,y = (26)  
n 
⃒ ⃒ 

∑ 
  

⃒Ai,t � Ai,t�  
⃒ 

n�  
  

Where Pi,y is the forecasted adult return (sum of model-estimated har-
vest (Ci,y) and escapement (Ei,y)) for stock i in year y, Ai,y is the observed 
return (the sum of the observed harvest and escapement), and 

⃒ 
∑n 1 

⃒Ai,t � Ai,t�1| measures the degree of interannual variability be-n�1 1 

tween training years (t) in the observed adult returns during the training 
period of length n years. MASE has a number of advantages over alter-
native accuracy metrics (e.g. Mean absolute predictive error (MAPE), 
Root mean square error (RMSE)), including scale independence, sym-
metry, insensitivity to outliers, and interpretability (Hyndman and 
Koehler, 2006; Ward et al., 2014). We also compared forecast accuracy 
using RMSE, and Median Symmetric Accuracy (MSA) of the Log Accu-
racy Ratio (LAR) (Morley et al., 2018), which did not qualitatively alter 
our findings (Table S4). For all metrics, forecast skill was evaluated with 
respect to both the observed adult abundance data, as well as state es-
timates produced by the ST-IPM conditioned on all years’ data 
(Table S4, Fig. S9-S10). We compared the forecast skill of the ST-IPM to 
published records of past forecasts for these stocks that were agreed 
upon by the state and tribal co-managers. The methods used to generate 
these forecasts vary among management units and over time, and the 
specific details of each approach are not necessarily publicly docu-
mented. In addition to the published forecasts, we also compared the 
performance of the ST-IPM to state-space implementations of several 
common univariate time-series models fitted to the adult return data, 
including a random walk and lag -1 autoregressive (AR-1) and moving 
average (MA-1) models. 

3. Results 

3.1. Smolt production 

There was substantial variability among coho salmon stocks in both 
smolt productivity (α) and capacity (Rmax) (Figs. 2 and 3). Median smolt 
capacity among stocks (μRmax 

) was estimated to have a median value of 
687 smolts/km (95% credible interval = 487 to 960 smolts/km), with a 
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Fig. 2. Posterior distributions of Beverton-Holt adult-to-smolt parameters. 
Circles represent the posterior medians, and thick and thin lines represent 50 % 
and 95 % credible intervals respectively. Left-hand panels (A, B, C) depict 
posterior distributions for the error terms (σR) of the adult-to-smolt relation-
ship, middle panels (D, E, F) show posteriors for asymptotic smolt production 
(Rmax), and right-hand panels (H, I, J) show posteriors for productivity pa-
rameters (α). Parameters for individual stocks are shown in panels A, D, and H, 
and exponentiated lognormal means and lognormal standard deviations are 
indicated by μ and σ symbols respectively (panels B, C, E, F, I, J). 

lognormal standard deviation (σRmax ) of 0.76 (95% credible inter-
val = 0.57 to 1.0). Note that we do not apply a bias correction factor to 
lognormal hypermean parameters (i.e. log(μRmax 

) log(μa), log(μσR 
)) such 

that their exponentiated values (μRmax 
, μa and μσR 

) are interpretable as 
medians of the among-stock distributions. Our μRmax values differ from 
those reported by Barrowman et al. (2003) (μRmax 

= 1437 smolts/km, 
σRmax = 0.64), indicating lower median asymptotic smolt capacity per 
km, and greater variability among the stocks in our study. Area 12�12B, 
the Puyallup and Samish Rivers, Area 12C-12D, and the Snohomish 
River exhibited the largest Rmax estimates, while Port Gamble Bay, Area 
7�7A, Grays Harbor, and the Dungeness and Green Rivers had the 
lowest (Figs. 2,3). Median smolt productivity among stocks (μa) was 
estimated to be 342 smolts/spawner (95% credible interval = 246 to 764 
smolts/spawner) with an among-stock standard deviation (σa) of 0.84 
(95% credible interval = 0.6 to 1.15). Despite the use of informative 
priors, these values differ substantially from those reported by Bar-
rowman et al. (2003) (μa = 71.52 smolts/spawner , σa = 0.43), indi-
cating greater median smolt productivity, and greater variability among 
the stocks in our study. Area 12A, the Nooksack, Humptulips, and 
Dungeness Rivers, and Port Gamble Bay exhibited some of the largest 
estimates of smolt productivity, while the Baker and Samish Rivers, East 
Juan de Fuca, Puyallup and Deschutes stocks had the lowest (Figs. 2,3). 
The among-population median of the Beverton-Holt adult-to-smolt error 
terms (μσR 

) was 0.36 (95% credible interval = 0.25 to 0.47), with a 
lognormal standard deviation (σσR ) of 0.78 (95 % credible inter-
val = 0.54 to 1.15). Areas 12A and 13A, Lake Washington, the Sko-
komish River, and Area 13B were estimated to have the greatest 
variation about the adult-to-smolt relationship, while the Queets, Skagit, 
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Quillayute, Snohomish, and Hoh Rivers showed the least (Figs. 2,3) 
(Fig. 4). 

3.2. Marine survival 

Average marine survival across all stocks and years (Logit�1(μμλ 
)) 

was estimated to be 0.051 (95% credible interval = 0.033 to 0.076), 
with an among-stock standard deviation of 0.55 (95% credible inter-
val = 0.3 to 0.84). Most stocks exhibited strong lag-1 temporal auto-
correlation in marine survival (ϕi) with only 3 stocks exhibiting a 
median estimate of ϕi below 0.25, and 27 stocks with estimates greater 
than 0.5. Estimation of the Gaussian field indicated spatial autocorre-
lation in marine survival anomalies with a length scale (ρ) of 78.5 km 
(95 % credible interval = 63.4 to 98.1 km) (Fig. 4). This value of ρ im-
plies a median correlation of 0.5 at a Euclidean distance of ~ 93 km, and 
a correlation of less than 0.1 between stocks whose marine entry points 
were ~168 km or more apart (Fig. 4). Clusters of stocks with highly 
correlated marine survival corresponded geographically to the Strait of 
Juan de Fuca, northern Puget Sound and the Strait of Georgia, central 
and southern Puget Sound, and the Washington coast (Figs. 1,5 ). 

3.3. Forecast performance 

Evaluation of one-year-ahead forecast skill from 2002 to 2017 
averaged across the thirty-six stocks considered in this study indicated 
that the MASE for the existing published forecasts was 0.93 while that of 
the ST-IPM was 0.70, a difference of 25 % (Figs. 6,7). The random walk, 
AR-1, and MA-1 models exhibited MASE values of 0.74, 0.72 0.76, and 
respectively (Table S4, Fig. S8). Importantly, the ST-IPM did not always 
outperform the published forecasts, exhibiting slightly greater MASE 
values for the Stillaguamish, Skokomish, Hoh, Elwha River, East Juan de 
Fuca, Area 12C-12D, Area 11, Area 10E, and Area 10 stocks. The ST-IPM 
and published forecasts also differed somewhat in their tendency to 
produce large (>|50|%) biases. The existing forecast methods over- 
forecasted by 50% or more in 187 instances (stock-year combinations) 
and under-forecasted by 50% or more in 139. Conversely, the ST-IPM 
over-forecasted by 50% or more in 205 instances and under-forecasted 
by 50 % in 86 instances. The published forecasts have been developed 
using different approaches over time, and it is possible that aggregating 
over sixteen years could mask recent improvements in methodology. 
However, restricting our comparison of forecast skill to only the last five 
years in our study (2013–2017) did not qualitatively alter the relative 
performance of each method, resulting in a MASE of 0.83 for the pub-
lished forecasts versus 0.61 for ST-IPM. Using alternative metrics of 
forecast skill had little qualitative effect on the overall assessment of 
forecast performance (Table S4). Similarly, evaluation of forecast ac-
curacy with respect to the state estimates of adult returns instead of 
observed data did not qualitatively alter our findings (Table S4, Fig. S9- 
S10). MASE for the published forecasts with respect to state estimates of 
adult returns was 1.1, compared to 0.79 for the ST-IPM, and 0.83, 0.81, 
and 0.86 for the random walk, AR-1, and MA-1 models respectively 
(Table S4, Fig. S9-S10). 

4. Discussion 

We developed a spatiotemporal integrated population model (ST- 
IPM) to forecast adult returns of wild Washington State coho salmon. In 
retrospective evaluations of one-year-ahead forecast skill with respect to 
both state estimates and observed data, the ST-IPM outperformed the 
existing published forecasts for these stocks by ~25–38% on average, 
depending on the specific metrics used. There are several features of the 
ST-IPM that likely contribute to its forecast skill. A hierarchical and 
integrated design allows the ST-IPM to incorporate multiple data types 
and share information among stocks (Buhle et al., 2018; Jiao et al., 
2011) while stage-specific modelling of the life cycle disentangles the 
effects of juvenile production from ocean mortality (Rose, 2000; 
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Fig. 3. Estimated adult-to-smolt production relationships for coho salmon stocks. In each panel, the median deterministic portion of the Berverton-Holt adult-to- 
smolt function is shown as a solid blue line, with the 50% and 95% credible intervals shown as dark and light shaded blue boundaries respectively. Where available, 
observed adult-to-smolt data are plotted as dark grey circles. Individual adult-to-smolt state estimates are shown in all panels as blue circles. 

Scheuerell et al., 2020). Additionally, leveraging spatial correlations 
among populations can improve estimation of shared, 
environmentally-driven processes, particularly for those that lack 
informative data (Thorson et al., 2013). Collectively, these character-
istics of the ST-IPM facilitate estimation of key biological quantities such 
as marine survival and temporal autocorrelation therein, which we 
found to be substantial (>0.5) for most stocks in our analysis. 

Temporal autocorrelation can be a particularly useful property for 
predicting future states (Johnson et al., 2016; Punt, 2011; Winship et al., 
2015). By assuming that conditions in the near future will be similar to 
recent observations, forecasting via autocorrelation represents an im-
plicit treatment of environmental effects on population dynamics (Hal-
tuch et al., 2018). Implicit approaches to environment-recruitment 
modelling avoid the challenges of identifying explicit functional re-
lationships between environmental variables and stock dynamics, and 
are generally less prone to prediction error (Johnson et al., 2016; Punt, 
2011; Winship et al., 2015). For Pacific salmon in particular, ecosystem 
impacts on ocean survival can be the result of many interacting factors 

that have indirect, nonlinear, or cascading effects on cohorts during 
early marine residency (Emmett et al., 2006; Schroeder et al., 2014; 
Tucker et al., 2016; Wells et al., 2017, 2016). Such complex environ-
mental dynamics will be difficult to predict using explicit mechanistic 
models, but may manifest as spatiotemporal autocorrelation in affected 
biological processes such as growth and survival (Mueter et al., 2002a; 
Mueter et al., 2002b; Peterman and Dorner, 2012; Pyper et al., 2005). 

While our analysis indicates that the ST-IPM outperforms the existing 
published forecasts on average, there are some stocks for which other 
forecast approaches appear better suited. The degree to which any 
alternative method outperformed the ST-IPM for a given stock was 
generally minor, but nonetheless it may be beneficial for managers to 
compare among models for each stock, or consider an ensemble 
approach (Jardim et al., 2020; Stewart and Hicks, 2018). Although we 
found that the ST-IPM generally outperformed the random walk, moving 
average (MA-1), and autoregressive (AR-1) models (Fig. S8, S10), the 
improvements were often minor and simpler models offer advantages in 
ease of implementation and transparency to stakeholders that may offset 
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Fig. 4. Marine survival correlation as a function of Euclidean distance between 
stocks’ marine entry locations. Panel A shows the frequency distribution of 
pairwise Euclidean distances between the thirty-six coho salmon stocks 
included in this study. Panel B shows the specified correlation in marine sur-
vival anomalies as a function of distance according to the squared exponential 
kernel (eq. 13). The median estimate (based on the length scale parameter ρ) is 
shown as a solid blue line, and 50 % and 95 % credible intervals are shown as 
dark and light shaded boundaries respectively. Panels C-E show the posterior 
distributions for the parameters of the squared exponential kernel: the marginal 
standard deviation (γ, panel C), error standard deviation (σd, panel D) and the 
length scale (ρ, panel E). Medians are shown as circles and 50 % and 95 % 
credible intervals are shown as thick and thin lines respectively. 

Fig. 5. Estimated pairwise marine survival correlations between stocks. The 
size and color intensity of squares in each cell represents the strength of marine 
survival correlations between any two stocks as a function of Euclidean distance 
as determined by the squared exponential kernel. Stocks are ordered on each 
axis by hierarchical clustering of their marine survival correlations. 

a small loss of forecast skill. Previous research has shown that simple 
autoregressive forecasts outperform more complex models (Ward et al., 
2014), so it is not necessarily surprising that the AR-1 exhibited com-
parable forecast skill to the ST-IPM despite the greater complexity of the 
latter. Given the large uncertainty in the adult-to-smolt relationships for 
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many stocks, this component of the ST-IPM may contribute little to, or 
possibly detract from forecast accuracy. However, for managers inter-
ested in considering uncertainty in harvest control decisions (e.g. Priv-
itera-Johnson and Punt, 2020), propagating uncertainty from the 
adult-to-smolt production relationships into estimates of forecast un-
certainty may nonetheless be desirable. Furthermore, the integrated life 
cycle design of the ST-IPM offers additional functionality (described 
below) that may be valuable to managers beyond its use as a forecast 
model. 

It is important to note that even in cases where the ST-IPM does 
improve forecast skill, it may not necessarily lead to better management 
outcomes. Closed loop simulation analysis of sockeye salmon (O. nerka) 
stocks has demonstrated that implementation error can negate the po-
tential benefits of improved preseason forecasts (Dorner et al., 2009). 
However, Walters (1989) found that the value of preseason forecasts for 
Pacific salmon populations can be substantial when opportunities for 
in-season fisheries management are limited, as is the case for Wash-
ington coho stocks. Understanding the relative importance of preseason 
forecast accuracy versus other factors (e.g. harvest control rules, envi-
ronmental conditions) to achieving management objectives should be an 
important consideration in identifying research and management pri-
orities (Rupp et al., 2012a). It is worth noting that forecast error for 
several stocks remained substantial under every modelling approach 
considered here, and management outcomes for these stocks may be 
more tractably improved by developing in-season management capac-
ity, or adopting harvest control rules that explicitly account for uncer-
tainty (Privitera-Johnson and Punt, 2020). We recommend that future 
studies evaluate management outcomes across a suite of harvest control 
rules, forecast methods, and environmental scenarios using closed-loop 
simulation analysis. 

There are several next steps that could be taken to continue devel-
opment of the ST-IPM. The design of the spatial Gaussian field could be 
improved by specifying covariance as a function of marine ‘over-water’ 
rather than Euclidean distance (e.g. Hocking et al., 2018) and allowing 
for anisotropic covariance, such that decorrelation distance varies 
depending on direction (Thorson et al., 2015b). The ST-IPM’s current 
treatment of observation error is also incomplete, as there are errors in 
the stock assignments of harvested fish that we did not explicitly 
consider. Greater transparency in the data inputs and assumptions used 
to generate FRAM harvest estimates will be necessary to appropriately 
propagate these uncertainties. Furthermore, the stocks included in our 
analysis likely differ substantially in the precision and bias of their smolt 
outmigration and adult escapement counts, which the ST-IPM does not 
account for. The ST-IPM’s estimates of adult-to-smolt production may 
also be biased by unknown levels of hatchery-origin spawners present in 
the wild escapement (Falcy and Suring, 2018). Future model de-
velopments could be made to estimate the prevalence of hatchery-origin 
fish within the spawning population (e.g. Buhle et al., 2018), although 
the data available to do so may be limited for many of the stocks 
included in this study. 

The presence of hatchery-origin spawners, errors in FRAM stock 
assignments, and variable data quality may have contributed to our 
estimates of smolt productivity and capacity differing substantially from 
those of Barrowman et al. (2003). Given that Barrowman et al. (2003) 
focused on populations with little or no hatchery-origin spawners and 
high quality smolt and adult enumeration data, we recommend that our 
estimates (i.e. μRmax 

, μα) be interpreted more cautiously against theirs 
from a biological standpoint. The presence of hatchery-origin spawners 
misattributed as recruits would tend to positively bias estimates of 
productivity by inflating recruitment resulting from low parental 
spawner abundances. Systematic misattribution of harvest among pop-
ulations due to errors in FRAM fishery stock assignments could have 
similar effects. Furthermore, our estimates of Beverton-Holt parameters 
and hyperparameters were often highly uncertain (Fig. 2) and sensitive 
to the priors that were assumed (compare Fig. 2 to Fig. S1). Future ef-
forts to address data quality issues and differentiate hatchery and wild 
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Fig. 6. One-year-ahead forecasts of total adult returns from the spatiotemporal integrated population model (ST-IPM). In each panel, model fits to the minimum 
extent of historical adult return data available for conditioning the model prior to forecasting are shown in blue, and one-year ahead forecasts are shown in gold. 
Median estimates are shown as colored circles connected by solid lines, while 50 % and 95 % credible intervals are shown as dark and light shaded boundaries 
respectively. Observed adult return data are shown as black dots. 

spawners could potentially resolve some of the differences between our 
estimates of productivity and capacity and those reported by Barrow-
man et al. (2003). However, there are also plausible biological reasons 
for the discrepancies, such as the fact that Barrowman et al. (2003) 
generally included smaller streams with high quality rearing habitat, 
potentially explaining the generally lower values of smolt capacity 
estimated in our study. 

While the ST-IPM does not currently incorporate environmental in-
formation (other than freshwater habitat size) the model structure can 
readily accommodate covariates in both the adult-to-smolt and marine 
survival components (Maunder and Thorson, 2019; Maunder and Wat-
ters, 2003; Miller et al., 2016; Schirripa et al., 2009; Subbey et al., 2014). 
Freshwater covariates such as river discharge (Lawson et al., 2004; 
Mathews and Olson, 1980; Ohlberger et al., 2018) and habitat quality 
(Sharma and Hilborn, 2001) may explain some variation in 

adult-to-smolt production and offer predictive power for stocks that lack 
smolt outmigration observations. Similarly, ocean indicators could be 
evaluated for their ability to ‘soak up’ autocorrelation in marine mor-
tality or explain independent residual variation. Failing to account for 
temporal and spatial autocorrelation can impede detection of robust 
correlations between environmental conditions and biological processes 
(Dormann, 2007; Walters and Martell, 2004) such that the ST-IPM may 
serve as a useful framework for identifying and evaluating such re-
lationships. While beyond the scope of the present study, future work 
could use the ST-IPM to evaluate plausible environmental variables and 
functional forms (e.g. linear, nonlinear, non-stationary etc.). Inclusion of 
marine covariates could improve forecast performance (Logerwell et al., 
2003), or may simply be informative towards process-level under-
standing of salmonid marine survival (Beamish et al., 2000; Quinn et al., 
2005; Sharma et al., 2013; Zimmerman et al., 2015). 

9 



                                                                                                                                             L.B. DeFilippo et al.                                                                               

Fig. 7. Comparison of one-year ahead forecast skill of the spatiotemporal in-
tegrated population model (ST-IPM) to existing published forecasts from 2002- 
2017. Blue bars for each stock represent the forecast error based on mean ab-
solute scaled error (MASE) for one-year-ahead forecasts from the ST-IPM, while 
black bars show the MASE of the published forecasts. 

While the ST-IPM was used for short-term forecasting here, there are 
several other applications in which it may also be well-suited. As a life 
cycle model, the ST-IPM generates estimates of stage-specific produc-
tivity and capacity, as well as the spawner abundance that produces 
maximum sustained yield (SMSY) (Moussalli and Hilborn, 1986; Ohl-
berger et al., 2019). As such, the ST-IPM – particularly if coupled with 
FRAM – could lead to an improved stock assessment framework for coho 
salmon that uses all available data, shares information among stocks, 
and propagates uncertainties into estimates of stock status and man-
agement reference points. The ST-IPM also produces state estimates of 
marine survival (adjusted for hatchery and sampling biases) for many 
wild coho salmon stocks throughout Washington State that lack coded 
wire tag data. Such estimates are not only useful for understanding and 
projecting the dynamics of these stocks (Buhle et al., 2018), but may also 
be instructive in continuing investigations of Salish Sea marine survival. 
Finally, by providing a cohesive structural model of coho salmon pop-
ulation dynamics with parameter estimates and associated un-
certainties, the ST-IPM can readily serve as an operating model for 
management strategy evaluation (MSE, Punt et al., 2016). Such analyses 
could investigate the performance of alternative harvest control policies 
under a range of environmental scenarios, consider the impacts of data 
quality and availability on management performance, or explore effects 
of habitat alterations and interventions at various stages of the life cycle. 
It would be useful for future studies to pursue these applications of the 
ST-IPM while continuing its development and operationalization as a 
forecasting tool. 
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Table S1. Data availability and habitat area by management unit. 

Stock name Smolt 

abundance 

Escapement 

data 

Harvest 

data 

Coded wire tag Habitat 

area 

(km) 

Area 10 32 years 32 years 39.9 

Area 10E 32 years 32 years 130.8 

Area 11 32 years 32 years 44.8 

Area 12-12B 32 years 32 years 30 years (wild) 95.4 

Area 12A 32 years 32 years 25 years (hatchery) 76.3 

Area 12C-12D 32 years 32 years 202.7 

Area 13 32 years 32 years 5 years (wild) 64.8 

Area 13A 31 years 31 years 46.7 

Area 13B 32 years 32 years 360.9 

Area 7-7A 31 years 31 years 115.1 

Baker River 32 years 32 years 22 years (wild) 102.1 

Chehalis River 32 years 32 years 32 years 30 years (wild) 2514.2 

Deschutes River 33 years 32 years 32 years 18 years (wild) 132.3 

Dungeness River 13 years 32 years 32 years 10 years (hatchery) 129.7 

East Juan de Fuca 32 years 32 years 301.3 

Elwha River 32 years 32 years 13.7 

Grays Harbor 30 years 30 years 211.0 

Green River 19 years 32 years 32 years 28 years (hatchery) 339.3 

Hoh River 32 years 32 years 263.1 

Humptulips River 32 years 32 years 268.6 

Lake Washington 32 years 32 years 513.3 

Nisqually River 10 years 32 years 32 years 23 years (hatchery) 317.6 

Nooksack River 14 years 32 years 32 years 29 years (hatchery) 692.5 

Port Gamble River 25 years 25 years 12.8 

Puyallup River 32 years 32 years 30 years (hatchery) 580.1 

Queets River (Fall) 33 years 32 years 32 years 381.2 

Quillayute River 

(Fall) 

32 years 30 years 761.6 

Quillayute River 

(Summer) 

32 years 30 years 19.3 

Quinault River (Fall) 32 years 32 years 29 years (hatchery) 234.3 

Samish River 32 years 32 years 188.2 

Skagit River 29 years 32 years 32 years 21 years (hatchery) 1050.6 

Skokomish River 32 years 32 years 29 years (hatchery) 106.1 

Snohomish River 15 years 32 years 32 years 1358.8 

Stillaguamish River 32 years 32 years 694.2 

West Juan de Fuca 32 years 32 years 242.2 

Willapa Bay 32 years 32 years 23 years (hatchery) 2028.2 



           

  

  

   

   

   

   

   

   

   

   

  

   

    

    

    

    

     

   

    

    

    

    

    

    

    

    

    

     

  

 

  

  

 

  

   

    

   

    

    

    

     

   

Table S2. Arithmetic mean return size and standard deviation by management unit 

Stock name Average 

return 

Standard 

deviation 

Area 10 1199 877 

Area 10E 7114 6518 

Area 11 1079 841 

Area 12-12B 31152 26064 

Area 12A 5730 7615 

Area 12C-12D 40211 25809 

Area 13 1591 1893 

Area 13A 1041 1259 

Area 13B 21920 38695 

Area 7-7A 1165 606 

Baker River 5078 3140 

Chehalis River 69046 34464 

Deschutes River 8607 14776 

Dungeness River 2919 2351 

East Juan de Fuca 3446 2274 

Elwha River 884 868 

Grays Harbor 2016 1135 

Green River 13564 11962 

Hoh River 8901 4591 

Humptulips River 7030 8732 

Lake Washington 10509 21002 

Nisqually River 14221 15145 

Nooksack River 8729 13996 

Port Gamble River 264 227 

Puyallup River 31843 24207 

Queets River (Fall) 13989 8090 

Quillayute River 

(Fall) 

15513 6381 

Quillayute River 

(Summer) 

1510 693 

Quinault River (Fall) 20674 19071 

Samish River 25119 20863 

Skagit River 92845 67527 

Skokomish River 17810 20629 

Snohomish River 166630 87520 

Stillaguamish River 39573 22825 

West Juan de Fuca 12341 6998 

Willapa Bay 45428 28341 



 

         

   

  

 

  

     

    

 

  

   	  

      

	       

   

 

 

     

     

  

 

     

  

 

    

   

 

     

        

      

     

  

 

    

   

 

 

   

 

 

   

  

 

     

 

 

     

 

 

      

     

  

 

  	

 

Table S3. Glossary of model terms and prior distributions. 

Parameter Description Prior 

!! Smolt productivity 

(smolts/spawner) 

Hierarchical (eq.2) 

" "#$! Smolt capacity (smolts/km) Hierarchical (eq.2) 

#%! Standard deviation of Beverton-

Holt errors 

Hierarchical (eq.11) 

$# Mean smolt productivity $#~ Logormal(4.27, 0.75) 
$%!"# Mean smolt capacity 

~ Lognormal(7.27,2) $%!"# 

## Smolt productivity standard 

deviation 

8#~Normal(0.43, 0.25) 

#%!"# Smolt capacity standard deviation ~Normal(0.64, 0.25) 8%!"# 

<&$ Cholesky factor of !, ""#$ 

correlation matrix 

<&$ 
~LKJCorr(η) 

$' % 
Mean standard deviation of 

Beverton-Holt errors 

$' % 
~ABCD!E(0,5) 

#' % 
standard deviation of Beverton-

Holt error standard deviations 

# ~ABCD!E(0,5) ' % 

F!,)*+,, Unobserved spawning events F!,)*+,,~GBHIBCD!E(0,10) 
K! Initial marine survival Hierarchical (eq. 12) 

$- Mean initial logit marine survival $ ~ABCD!E(0,10) -

#- Standard deviation of initial logit 

marine survival 

# ~ABCD!E(0,5) -

$ .& Population-specific average logit 

marine survival 

Hierarchical 

$ ~ABCD!E($/' & 
, #/' & 

) .& 

$/' & 
Average logit marine survival 

hyper-mean 

~ABCD!E(0,10) $/' & 

#/' & 
Average logit marine survival 

standard deviation 

~ABCD!E(0,5) #/' & 

L! Marine survival lag-1 temporal 

autocorrelation 

L!~MINOBCD(−1,1) 

Q Marginal standard deviation of 

Gaussian field 

Q~ABCD!E(0,5) 

R Length scale of Gaussian field R~S!DD!(1, 0.1) 
#0 Error standard deviation of 

Gaussian field 

#0~ABCD!E(0,5) 

T! Initial logit harvest rate Hierarchical 

T!~ABCD!E($1 , #1) 



     

   

 

 

    

    

 

 

    

    

    

      

 

 

    

     

      

 

$1 Mean initial logit harvest rate $1~ABCD!E(0,10) 
#1 Initial logit harvest rate standard 

deviation 

#1~ABCD!E(0,5) 

R2 Harvest rate correlation R2~MINOBCD(−1,1) 
#2 Harvest rate marginal standard 

deviation 

#2~ABCD!E(0,5) 

#3 Smolt observation error #3~ABCD!E(0,5) 
#4 Escapement observation error Fixed (0.2) 

#5 Harvest observation error #5~ABCD!E(0,5) 
U Coded wire tag effective sample 

size 

U~MINOBCD(2, 500) 

V! Hatchery offsets Hierarchical (eq.25) 

$6 Mean hatchery offset $6~ABCD!E(0,5) 
#6 Standard deviation of hatchery 

offsets 

#6~ABCD!E(0,5) 



          

         

            

            

           

 

           

       

       

 

 

      

       

       

 

Table S4. Forecast performance of the spatiotemporal integrated population model (ST-IPM), 

existing published forecasts, random walk, lag-1 autoregressive (AR-1) and lag-1 moving 

average (MA-1) models by a suite of metrics: Mean absolute scaled error (MASE), root mean 

squared error (RMSE), and median symmetric accuracy (MSA) with respect to both the 

observed data (obs) and state estimates (state) from the ST-IPM conditioned all data presently 

available. 

Method MASE (obs) RMSE (obs) MSA (obs) MASE (state) RMSE (state) MSA (state) 

ST-IPM 0.70 19004 0.68 0.79 18087 0.61 

Published 0.93 29064 1.0 1.1 28520 0.98 

Random 

Walk 

0.74 20540 0.78 0.83 19571 0.71 

AR-1 0.72 19788 0.73 0.81 18681 0.66 

MA-1 0.76 21218 0.74 0.86 20188 0.71 
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Figure S2. Model fits of the spatiotemporal integrated population model (ST-IPM) to observed 

smolt, escapement, harvest, and coded wire tag (CWT) data. In all panels, median state estimates 

are shown as red dots and lines, while 50% and 95% credible intervals are shown as dark and 

light shaded boundaries respectively. Where available, observed data points are shown as black 

open circles. Adjusted marine survival refers to the marine survival estimate including hatchery 

offset terms (eq. 24) where specified. 
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Figure S3. Posterior predictive checks for smolt, escapement, harvest and coded wire tag (CWT) 

data. For the smolt, escapement, and harvest abundance data, red dots and lines represent the 

median of the predictive distribution for each quantity, and dark and light shading represent the 

50% and 95% predictive intervals respectively. For the CWT data, the median of the predictive 

distribution is shown as a red dot, and thick and thin lines represent the 50% and 95% predictive 

intervals respectively. Observed data are shown as open black circles 
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Figure S4. Model estimation of simulated adult-to-smolt Beverton-Holt parameters. Solid black 

dots represent the true underlying parameter values from which the simulated data were 

generated and the colored dots, colored thick lines, and colored thin lines represent the median 

estimate, 50% credible interval, and 95% credible interval of the model’s estimate of each 

parameter respectively. 
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Figure S5. Model estimation of simulated marine survival Gaussian field. In the three right hand 

panels, the solid black dots represent the underlying true parameter values for the length scale, 

marginal standard deviation, and error standard deviation of the squared exponential kernel. Red 

dots, thick, and thin lines represent the median, 50% and 95% credible interval of the model’s 

estimates when fitted to data generated using these parameters. In the left hand panel, the black 

line represents the true curve implied by the given length scale relative to the model fit in red. 
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Figure S6. Model estimation of simulated ‘true’ smolt, escapement, harvest, and marine survival. 

In all panels, solid black dots represent the ‘true’ values of the smolt, escapement, and harvest 

abundance, and ‘true’ marine survival proportions from which the simulated data were 

generated. These represent the underlying quantities from which data were simulated (with 

errors) that the model was then fitted to. The model’s median state estimates of these quantities 

are shown as red dots and lines, while the 50% and 95% credible intervals are depicted as dark 

and light shaded boundaries respectively. 
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Figure S7. Prior and posterior comparison. In each panel, the prior distribution for the parameter 

is shown as a transparent red histogram, and the posterior is shown as a green histogram. 
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Figure S8. One-year ahead forecast skill of alternative forecast approaches from 2002-2017. Blue 

bars for each population show the mean absolute scaled error (MASE) for one-year-ahead 

forecasts under the spatiotemporal integrated population model (ST-IPM) (all panels). Panel A 

compares the MASE of the ST-IPM to that of the existing published forecast methods, while 

panels B-D compare the MASE of the ST-IPM to that of a state-space random walk (B), lag-1  

autoregressive model (C), and lag-1 moving average model (D). 
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Figure S9. One-year-ahead forecasts of total adult returns from the spatiotemporal integrated  

population model (ST-IPM) with respect to state estimates of adult returns. The details of this  

figure are identical to figure 6 except that the forecasts are being compared to state estimates of  

adult abundance (blue) rather than observed data. 
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Figure S10. One-year ahead forecast skill of alternative forecast approaches from 2002-2017  

with respect to state estimates of adult abundance. The details of this figure are identical to those 

of figure S8 except that MASE is calculated by comparing forecasts to state estimates of total 

adult returns from model fits of the ST-IPM to all years’ data rather than the observed adult 

return data. 
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