Agenda Item H.3
Coastal Pelagic Species Management Team Report
on Management Framework for the Central
Subpopulation of Northern Anchovy

Presented by Gregory Krutzikowsky
June 28, 2021
Outline

• Background Information

• Flowchart – A prescriptive management framework
 • Revisions, simplification, & parameter recommendations
 • Potential ways to implement

• Other approaches
• Report highlights 3 background documents
 • Workshop report on CPS assessments
 • September 2016
 • SSC report on Northern Anchovy Assessments and Management Measures
 • November 2016
 • Joint SSC/CPSMT report on CSNA OFL process
 • April 2017
Flowchart

• October 2019 joint meeting
• Presented in November 2019
• Received support
 • Needed minor revisions
 • Needed specific parameter recommendations
Start each year with existing OFL, ABC_d=Q*OFL. Consider ecosystem indicators and trends in survey indices when setting ACLs.

Has it been Y years since last assessment, or was "do an assessment" triggered last year?

Has it been Z years since last update to LONG-TERM average biomass, \(\bar{B}_{LT} \)?

Has it been X years since last update to SHORT-TERM average biomass, \(\bar{B}_{ST} \)?

Has catch been \(>x_3 ABC \)?

Calculate new \(\bar{B}_{LT} \). Is \(E_{MSY} \bar{B}_{LT} \) different from OFL by a proportion of at least \(x_1 \), up or down?

Calculate new \(\bar{B}_{ST} \). Is \(QE_{MSY} \bar{B}_{ST} \) less than ABC_d by a proportion of at least \(x_2 \)?

Conduct/use a model-based assessment. Update \(E_{MSY} \) and \(\bar{B}_{LT} \), and hence update OFL and ABC_d. New OFL = EMSY \(\bar{B}_{LT} \) and new ABC_d=QOFL

New OFL = \(E_{MSY} \bar{B}_{LT} \) and new ABC_d=QOFL

This year's ABC = \(QE_{MSY} \bar{B}_{ST} \)

Evaluate need for assessment next year.

\(Y = \) interval for full assessments regardless of trigger (could be infinity)
\(Z = \) interval for updating long-tem biomass (from survey)
\(X = \) interval for updating short-tem biomass (from survey), \(X \leq Z \leq Y \).

\(Q = \) ABC buffer. Now 0.25, might be larger with more frequent updates.
\(x_1 = \) threshold for changes in OFL due to changes in \(B_{LT} \)
\(x_2 = \) threshold for reducing ABC in response to low \(B_{ST} \)
\(x_3 = \) threshold for attainment
Start each year with existing (i.e., prior year) OFL & ABC, and potentially update values for OFL and/or ABC based on flowchart results.

Consider ecosystem indicators and trends in survey indices if setting ACL.

Has catch been \(\geq (x_3 = 0.9) \times \text{ABC} \)?

- yes: Conduct/use a model-based assessment
- no: Has it been \(X = 2 \) years since last update to SHORT-TERM average biomass, \(\bar{B}_{ST} \)?

- yes: Calculate new \(\bar{B}_{ST} \)
- no: Evaluate need for assessment next year

\(\text{ABC} = \text{ABC}_d \)

\(\text{Is } Q \times \text{EMS} \times \bar{B}_{ST} \text{ less than } \text{ABC}_d \text{ by a proportion of at least } x_2 = 0.4? \)

- yes: \(\text{ABC} = Q \times \text{EMS} \times \bar{B}_{ST} \)
- no: Conduct/use a model-based assessment

- Update \(E_{MSY} \) and \(\bar{B}_{LT} \) and thus update OFL and \(\text{ABC}_d \)
- New OFL = \(E_{MSY} \times \bar{B}_{LT} \) and new \(\text{ABC}_d = Q \times \text{OFL} \)

Evaluate need for assessment next year

\(\text{Y} = \) interval for full assessments regardless of trigger

\(\text{X} = \) interval for examining short-term biomass from survey

\(\text{ABC}_d = \) ABC calculated from assessment

\(Q = \) ABC buffer = 0.25

\(x_2 = \) threshold for reducing ABC in response to low \(\bar{B}_{ST} \)

\(x_3 = \) threshold for ABC attainment that triggers evaluation of need for new assessment

\(\bar{B}_{LT} = \) 10 year average (arithmetic mean) stock biomass from assessment

\(\bar{B}_{ST} = \) 3 year average (arithmetic mean) stock biomass from surveys
• Y = Z = 8 years: interval for full assessments and OFL regardless of trigger
• X = 2 years: interval for examining short-term biomass from survey
• Q = 0.25: ABC buffer
• $x_2 \geq 40\%$ reduction from ABC_d: threshold for reducing ABC in response to low \overline{B}_{ST}
• $x_3 \geq 90\%$: threshold for ABC attainment that triggers evaluation of need for new assessment
• $\overline{B}_{LT} = 10$ year average (arithmetic mean) stock biomass from assessment
• $\overline{B}_{ST} = 3$ year average (arithmetic mean) stock biomass from surveys
Basics of the process

• Every 8 years conduct a model-based assessment of CSNA
 • Determine the OFL based on the average LONG-TERM biomass over the last 10 years
 • \(\text{ABC}_d = Q \times \text{OFL} = 0.25 \times \text{OFL} \) (the default ABC is a 75% reduction from the OFL)
 • These are the default management values for the next 8 years

• Every 2 years determine if the SHORT-TERM biomass estimate from surveys triggers an ABC reduction from the \(\text{ABC}_d \) or not
 • Also examine if catch attainment has been \(\geq 90\% \)
 • If yes, evaluate if a new assessment should be done the next year
Hypothetical ABC values vs. Short-Term Biomass values
Based on Long-Term Biomass of 500,000 mt and OFL = 119,500 mt

ABC = 29,875 mt

40% reduction trigger point
Ways to Implement the Flowchart

• SAFE document
 • Prepared and reviewed annually
 • Provides best available science on stocks and fisheries

• Modify COP 9, schedule 3
 • Add assessment schedule for CSNA
 • Add short-term biomass review for potential ABC changes

• FMP Amendment
Additional Implementation Considerations

- Consider changing fishing year to July 1 to June 30
 - Current fishing year is calendar year
 - Summer survey results available in February
 - ABC trigger examined in April
 - Changes implemented for July 1 – June 30 fishing year?
Additional Implementation Considerations

• Flexibility
 • Ship breakdown
 • Government shuts down
 • Worldwide pandemics
 • Who knows what else?
Additional CSNA Management Approaches

• Set an assessment schedule to periodically update long-term OFL (similar to the Y row of flowchart where CPSMT recommended 8 year assessment interval)

• Set a trigger for ABC reduction (similar to the X row in the flowchart, but could set at single year or multi-year threshold levels)

• Consider something like what is done for Pacific mackerel – full assessment every 4 years and catch only projection assessments at interim 2 year periods
Questions?