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Executive Summary

Stock

This update assessment reports the status of sablefish (Anoplopoma fimbria) off the US
West coast using data through 2020. The resource is modeled as a single stock; however,
sablefish disperse to and from offshore seamounts, along the coastal waters of the US West
Coast, Canada, and Alaska, and across the Aleutian Islands to the western Pacific. Their
movement is not explicitly accounted for in this analysis.

Catches

For the 2019 benchmark assessment, a variety of sources were used to reconstruct state-
specific historical sablefish landings (i.e., fish brought to market), creating a series of landings
from 1890 to present. In general, these reconstructions are more reliable than those for many
other groundfish species because of the consistent identification of sablefish to the species
level. Historical-landings reconstructions for sablefish have been completed for California,
Oregon, and Washington, extending landings to the beginning of the US West Coast sablefish
fishery (Figures 1 and 2). Fishery discard rates and weights were fit within the assessment
model, i.e., simultaneous estimation of total catches and other model parameters. This
internal estimation can result in model estimates of total mortality that differ between
stock assessments, even when the input landings remain unchanged, due to changes in fixed
and estimated parameter values, priors, or parameterizations. Model estimates of fishery
discards in this update assessment resulted in model estimated total dead catches that were
an average of 1.84% larger than the landings input into the stock assessment model over the
last decade.

Historically, sablefish landings were just below recent landings (<4,000 mt) until the end
of the 1960s and were primarily harvested by fixed gear (Figure 1). Large catches (24,395
mt) by foreign vessels fishing pot gear in 1976 resulted in the largest landings reported in
a single year. A rapid rise in domestic pot and trawl landings followed this peak removal,
such that, on average, nearly 8,400 mt of sablefish were landed per year between 1976 and
1990. Subsequently, annual landings have remained below 9,000 mt and, during the most
recent decade, have been divided approximately 67%/33% between fixed and trawl gears,
respectively. An Individual Fishing Quota (IFQ) program, referred to as “catch shares”,
was implemented for the U.S. West Coast trawl fleet beginning in 2011. Gear switching is
allowed within the program such that fixed gear can be used to catch sablefish under trawl
IFQ. This has resulted in changes in fleet behavior, the distribution of fishing effort, and
discarding rates for both fisheries. Complete observer coverage on all vessels fishing IFQ
quota became mandatory at the start of the program, while coverage in the other sectors
remained stratified by port. The lack of historical observer coverage, and consequently
information on total catch and age and length compositions, contributes to uncertainty
regarding selectivity and retention during the historical period.



Table i: Recent landings by fleet, total landings summed across fleets, and the total mor-
tality including discards.

Year  Fixed-gear Trawl Total Model-
Landings Estimated
Total Dead
Catch
2011 4,420.85 1,728.40 6,149.25 6,253.97
2012 3,670.22 1,514.58 5,184.80 5,283.60
2013 2,585.07 1,402.13 3,987.20 4,050.48
2014 2,924.26 1,292.20 4,216.46 4,294.90
2015 3,554.94 1,470.29 5,025.23 5,105.52
2016 3,829.86 1,475.95 5,305.81 5,401.39
2017 3,680.67 1,669.97 5,350.64 5,465.76
2018 3,648.68 1,478.26 5,126.94 5,220.22
2019 3,568.27 1,625.44 5,193.71 5,372.81
2020 2,660.03 1,102.72 3,762.75 3,882.69
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Figure i: Sablefish landings from 1890-2020 summarized by the gear types included in
the base model, fixed-gear and trawl. Landings include those from foreign fleets, which are
largely responsible for the peaks in 1976 and 1979.

ii



Data and Assessment

The last benchmark stock assessment for sablefish took place during 2019 (Haltuch et al.
(2019)), preceded by an update assessment during 2015 (Johnson et al. (2016)). The present
(2021) update assessment used the most recent version of the Stock Synthesis modeling plat-
form (3.30), and bridged between the sub-version used in the benchmark (v3.30.09, released
2019-03-09) and the latest release (v3.30.16, released 2020-09-03). Primary data sources in-
clude landings and age-composition data from the retained catch (Figure 3). For recent years,
data on the discarded portion of commercial catch are available, including discard lengths,
rates, and mean observed individual body weight of the discarded catch. The relative index
of abundance estimated from the National Marine Fisheries Service (NMFS) Northwest Fish-
eries Science Center (NWFSC) West Coast Groundfish Bottom Trawl (WCGBT) Survey,
which includes depths from 55 - 1,280 m, represents the primary source of information on the
stock’s trend and was updated and re-analyzed to include the most recent data, covering the
period 2003-2019 (Figure 4); the updated index was consistent with the previous (Figures
5 and 12). Note that the WCGBT Survey does not access the closed Cowcod Conservation
areas in southern California, and was not performed in 2020 due to the global SARS-CoV-2
pandemic. Other, discontinued, survey indices contribute information on trend and sablefish
demographics: (a) NWFEFSC Slope Survey conducted from 1998-2002, (b) Alaska Fisheries
Science Center (AFSC) Slope Survey (1997-2001), and (¢) AFSC/NWEFSC Triennial Shelf
Survey (1980-2004). Additionally, an environmental time-series of sea level was used as a
survey index of recruitment in the base model; this time-series was updated and re-analyzed
using the latest tide gauge data (Figures 13 and 14).

All externally estimated model parameters, (a) weight-length relationship, (b) maturity
schedule, and (c) fecundity relationships remained unchanged from the 2019 benchmark
assessment. As in previous assessments, growth and natural mortality were estimated using
sex-specific relationships. Uncertainty in recruitment was included by estimating a full time-
series of deviations from the stock-recruitment curve. The ‘one-way-trip’ nature of the time-
series does not facilitate estimation of the steepness parameter (h) of the stock-recruitment
relationship. Therefore, h was fixed at 0.7, similar to values used on other groundfish
stock assessments, and was explored via sensitivity analysis in 2019; we explore information
regarding h via likelihood profiles. During the 2019 assessment, a vast number of historical
management actions were evaluated and condensed to a subset that were most likely to have
had a direct influence on fishery behavior (either sorting and retention, selectivity, or both).
These time periods were used to define time blocks to reduce the complexity of selectivity
and retention parameterizations. The 2019 benchmark assessment utilized the same general
structure as the 2011 assessment, with the addition of full retention for the trawl fishery
after the implementation of the IFQ program in 2011.

During the exploration of recent data for this update assessment, modelers identified in-
creased discarding in the trawl fleet, for which the discard ratio nearly quadrupled between
2018 and 2019 (Figure 64). In the first iteration of this update model, retention curve
parameters were fixed, as discard length compositions were not included due to conflicts
between the age and length data found in the 2019 benchmark assessment. Absent the
data or structural flexibility to account for increased discarding, a model that conformed to
the Terms of Reference (TOR) for an update assessment was unable to satisfactorily fit to
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the age composition data from the trawl fleets (Figure 17) nor the WCGBT survey length
composition data (Figure 18), and greatly overestimated the 2019 index (Figure 19). Be-
cause the TOR model estimates retention for both fisheries in a single timeblock from 2011
onward, the discard data forced the model to generate many small fish, thus overestimating
the model-expected index of abundance, the frequency of young and/or small individuals,
and distorting the recruitment pattern (Figure 20).

We rectify the lack of fit to the data found in the TOR model by re-introducing the discard
length compositions and time-blocking the retention curve to include a new block for the
final two years of the model period (2019-2020; the benchmark model’s terminal period
for retention selectivity ran from 2011-2017). This adjustment resolved the aforementioned
model fit issues (Figures 21-28), and is herein presented as the ”base model”.

Aging error, both precision and accuracy, was extensively investigated during the 2011
assessment but remains unresolved given the lack of an age validation study for sablefish.
The age error analysis for this assessment used the same software and methods as the
2019 assessment, and the 2015 update and 2011 assessment before it. The larger number
of between-lab reads from the AFSC and the NWFSC available for the 2019 assessment
showed a small amount of variability between laboratories. Therefore, the analysis used
the between-lab reads as well as the double reads from the NWFSC, treating them both
as unbiased but potentially non-linearly variable. The age imprecision was such that by
age 50 observed ages could differ from true ages by up to 16-17 years. The potential for
underestimating or overestimating the age of the oldest fish still remains, and thus, the
potential for aging bias remains a source of uncertainty.

Stock Biomass and Dynamics

During the first half of the 20th century it is estimated that sablefish were exploited at
relatively modest levels. Modest catches continued until the 1960s, along with a higher
frequency of above average, but uncertain, estimates of recruitment through the 1970s. The
spawning stock biomass increased during the mid-1950s to mid-1970s. Subsequently, biomass
is estimated to have declined between the mid-1970s and the early 2010s, with the largest
harvests occurring during the 1970s followed by harvests that were, on average, higher than
pre-1970s harvest through the 2000s. Despite estimates of harvest rates that were right
around the target in the 1980s and 1990s and largely below overfishing rates from the 1990s
forward coupled with a few high recruitments from the 1980s forward, the spawning biomass
has only recently begun to increase. A period of low recruitment from 2001-2012 corresponds
to with the decrease in harvest rates, restricting the rate of recovery. This stock assessment
does suggest spawner per recruitment rates higher than the target during some years from
the 1990s (as well as back to the 1970s) forward for two reasons. First, there have been
many years with lower than expected recruitment. Second, stock assessment estimates of
unfished spawning biomass have been steadily declining in each subsequent assessment prior
to this update since 2007. Estimates of unfished biomass scale catch advice.

Although the relative trend in spawning biomass is robust to uncertainty in the leading
model parameters, the productivity of the stock is uncertain due to confounding of natural
mortality, absolute stock size, and productivity. The estimates of uncertainty around the

iv



point estimate of unfished stock size are large, suggesting that the unfished spawning biomass
could range from just under 108,000 mt to 230,000 mt. The point estimate of 2021 spawning
biomass from the base model is 97,801.9, however, the 95% interval ranges broadly from
40,802-154,801 mt. The point estimate of 2021 spawning biomass relative to an unfished
state (i.e., depletion) from the base model is 57.9% of unexploited levels ( 95% interval:
38.4%-77.5%).

Table ii: Estimated recent trend in spawning biomass and the fraction unfished and the 95
percent intervals.

Year Spawning Lower Upper Fraction Lower Upper
Biomass Interval Interval Unfished Interval Interval
(mt)
2011  80,351.5 32,648.1 128,054.9 0.48 0.32 0.63
2012  79,223.0 31,838.5 126,607.5 0.47 0.31 0.63
2013  79,605.1 32,059.9 127,150.3 0.47 0.31 0.63
2014  80,187.9 32,563.5 127,812.3 0.47 0.31 0.64
2015  79,676.1 32,447 .4 126,904.8 0.47 0.31 0.63
2016  78,633.2 31,824.6 125,441.8 0.47 0.31 0.62
2017  79,326.7 31,973.0 126,680.6 0.47 0.31 0.63
2018  80,687.2 32,503.6 128,870.8 0.48 0.31 0.64
2019  83,925.1 33,936.0 133,914.2 0.50 0.33 0.67
2020  90,756.5 37,136.0 144,377.0 0.54 0.35 0.72
2021  97,801.9 40,802.4 154,801.4 0.58 0.38 0.77
Recruitment

Sablefish recruitment is estimated to be quite variable with large amounts of uncertainty in
individual recruitment events. A period with generally higher frequencies of strong recruit-
ments spans from the early 1950s through the 1970s, followed by a lower frequency of large
recruitments during 1980 forward, contributing to stock declines, with some recent larger
recuritments pushing the population higher in the past few years. The period with a higher
frequency of high recruitments contributed to a large increase in stock biomass that subse-
quently declined throughout much of the 1970s forward. Less frequent large recruitments
during the mid-1980s through 1990 slowed the rate of stock decline, with another series of
large recruitments during 1999 and 2000 leading to a leveling off in the stock decline. The
above-average cohorts from 2008, 2010, 2013, and 2016 are contributing to an increasing
spawning stock size.
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Figure ii: Time series of estimated sablefish spawning biomass (mt) from the base model
(circles) with 95% intervals (dashedlines).
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Figure iii: Time series of estimated recruitment deviations from the base model (solid line)
with 95% intervals (vertical lines; upper panel) and recruitment without intervals (lower
panel).
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Exploitation Status

Although the estimated productivity and absolute scale of the stock are poorly informed by
the available data and are, therefore, sensitive to changes in model structure and treatment
of data, all sensitivity or alternate models evaluated showed a declining trend in biomass
since the 1970s followed by a recent increase in biomass (Figures 33 and 34). The spawner
potential ratio (SPR) relative to the fishing mortality target or overfishing level (SPR5¢)
that stabilizes the stock at the target (reported as (1 — SPR)/[1 — SPRy5y]), was greater
than 1 (thus exceeding the target rate) during nearly half of the years from 1976 through
2000, has been below the target since, and was between 0.62 and 0.76 from 2015-2019,
descending to 0.40 in 2020. 'Relative 1-SPR’ in Table 4 refers to (1—SPR)/[1—SPR,5y] ;
where 1 is the target exploitation rate, and values over 1 indicate overexploitation relative to
this proxy. While highly uncertain, the absolute equilibrium yield at the estimated fishing
mortality that leads to the maximum sustainable yield (Fy,qy) is 9,024 mt (4,242-13,807,
~95% interval), while the proxy SPR rate of 0.45 leads to a proxy MSY of 8,350 mt (3,924
- 12,777, 95% interval).

Table iii: Estimates of total dead catch (mt), relative 1-spawning potential ratio (SPR; 1-
SPR/1-SPRTarget=0.45%), and exploitation rate (catch/biomass of age-4+) from the base
model. Approximate 95% intervals follow in parentheses.

Year  Model-Estimated Rel 1-SPR Interval Exploitation Interval
Total Dead Rate
Catch

2011 6,253.97 0.97 0.60-1.34 0.0316 0.0138-0.0494
2012 5,283.60 0.75 0.41-1.09 0.0240 0.0106-0.0375
2013 4,050.48 0.61 0.31-0.92 0.0192 0.0084-0.0300
2014 4,294.90 0.61 0.30-0.92 0.0200 0.0088-0.0311
2015 5,105.52 0.71 0.37-1.05 0.0243 0.0108-0.0379
2016 5,401.39 0.76 0.41-1.10 0.0270 0.0119-0.0421
2017 5,465.76 0.68 0.36-1.01 0.0250 0.0110-0.0389
2018 5,220.22 0.66 0.34-0.98 0.0243 0.0107-0.0379
2019 5,372.81 0.62 0.31-0.92 0.0244 0.0107-0.0381
2020 3,882.69 0.40 0.18-0.63 0.0149 0.0066-0.0231

Ecosystem Considerations

The National Oceanic and Atmospheric Administration (NOAA) document titled ‘Imple-
menting a Next Generation Stock Assessment Enterprise, An update to the NOAA Fisheries
Stock Assessment Improvement Plan’ (Lynch, Methot, and Link (2018)) calls for bringing
an ecosystem perspective into the assessment process. Moreover, introducing this perspec-
tive to the assessment process is a key component of the NOAA Fisheries Ecosystem-Based
Fisheries Management (EBFM) Policy (NOAA National Oceanic and Atmospheric Admin-
istration (2016)), which calls for incorporation of ecosystem considerations into the manage-
ment of living marine resources. Uptake of EBFM principles and tools into the assessment
process can be accomplished through including ecosystem information in assessments, har-
vest control rules, and management decisions that are coordinated across species-specific
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Figure iv: Estimated relative spawning potential ratio (1 — SPR/1 — SPRy,g0t—0.45%)
vs. estimated spawning biomass relative to the proxy 40% level from the base model. Higher
spawning output occurs on the right side of the x-axis, higher exploitation rates occur on
the upper side of the y-axis. The dark blue circle indicates the last year of available data,
2020, and the grey lines indicate the 95% confidence interval. Plot is based on maximum
likelihood estimation results.
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Figure v: Time series of estimated relative spawning potential ratio (1-SPR/1-
SPRTarget=0.45%) from the base model (points) with 95% intervals (dashed lines). Values
above 1.0 (red, horizontal line) reflect harvest rates in excess of the current overfishing proxy.

management plans and account for diverse trade-offs (NOAA National Oceanic and Atmo-
spheric Administration (2016), Lynch, Methot, and Link (2018)). Guidelines for incorpo-
rating ecosystem considerations into fisheries management advice form the core of Guiding
Principle 5 for implementing the NOAA EBFM Policy.

This assessment includes ecological factors based on the idea that research focused on the
linkages within a social-ecological system (SES) and how they increase or decrease sustain-
ability can help inform the management of natural resources (Ostrom (2009)). The SES
framework requires consideration of extractive goals and human activities at a level that
allows for ecological sustainability while also considering human well-being. Thus, the SES
framework facilitates the consideration of environmental and human impacts on sablefish as
well as sablefish impacts on the ecosystem and humans (e.g., Levin et al. (2016)).

The sablefish CVA McClure and Haltuch (n.d.)} suggests that processes affecting recruit-
ment are sensitive to climatic and, therefore, oceanic drivers. Given high climate vulner-
ability, changes in the abundance, productivity, and spatial distribution of sablefish are
likely, and these changes are likely to impact fishing fleets and communities because of the
high value of this fishery. The CVA also suggests that sablefish are likely to shift their
distribution in response to climate variability. Strong coast-wide recruitment appears to
be associated with good recruitment north of Cape Mendocino (~ 40°N). Modeling work
shows that strong recruitment is correlated with transport and temperature in the northern
portion (40° — 48°N) of the U.S. West Coast, specifically with the northern transport of
yolk-sac larvae (Tolimieri et al. (2018)). A re-analysis of the relationship between sea level



and recruitment found that variation around the stock-recruitment curve was negatively
correlated with sea level north of Cape Mendocino. Reliable sea-level data are available
back to 1925; the ability to produce an environment-recruitment index with this time series
may allow for both hindcasting to better represent stock dynamics during data-poor time
periods and nowcasting of recruitment with robust estimates of uncertainty.

The sablefish stock has experienced latitudinal shifts in the center of the distribution of stock
biomass along the US West Coast, which has affected fishing opportunities to individual
ports (Selden et al. (n.d.)). The population centroid shifted to the north from 1980 to
1992 then south by 2013. More recently, the distribution of stock biomass shifted north,
illustrated by an increase in trawl survey biomass in the north, but not as far north as in
the 1990s.

Whale entanglements with pot gear has the potential to limit effort in the pot-gear sectors
due to protections for marine mammals. The estimated fleet-wide entanglements were con-
sistently above the 5-year running average threshold during 2002 to 2017 in the combined
Limited Entry sablefish and Open Access Fixed Gear pot sectors (Hanson et al. (2019)).
This result was largely due to the Open Access Fixed Gear pot sector, which had entangle-
ments consistently above the 5-year running average threshold, while entanglements in the
Limited Entry sablefish pot sector were consistently below the threshold.

A detailed description of social-ecological system (SES) analyses, the Climate Vulnerabil-
ity Assessment, and environmental drivers of sablefish recruitment is available in the 2019
Benchmark Assessment report (Haltuch et al. (2019)), and truncated from this update
document.

Reference Points

Unfished spawning biomass was estimated to be 168,875 mt (107,749-230,001 ~95% inter-
val). The abundance of sablefish was estimated to have declined to near the target during
the period 1980-2000. The estimate of the target spawning biomass was 67,550 (43,099-
92,001, ~95% interval). The stock was estimated to be above the target stock size in the
beginning of 2021 at 97,802 mt (40,801-154,802, ~95% interval). The stock was estimated
to be above the depletion level that would lead to maximum yield (0.4) (Figures 31 and 32).
The estimate of the stock’s current 2021 level of depletion was 0.579.

Table iv: Summary of reference points and management quantities, including estimates of
the 95 percent intervals.

Estimate Lower Upper
Interval Interval
Unfished Spawning Biomass (mt) 168,875 107,749 230,001
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Table iv: Summary of reference points and management quantities, including estimates of
the 95 percent intervals. (continued)

Estimate Lower Upper
Interval Interval
Unfished Age 4+ Biomass (mt) 393,647 242,084 545,210
Unfished Recruitment (RO) 16,392 6,586 26,198
Spawning Biomass (mt) (2021) 97,802 40,802 154,801
Fraction Unfished (2021) 0.579 0.384 0.775
Proxy Spawning Biomass (mt) SB40 Percent 67,550 43,100 92,000
SPR Resulting in SB40 Percent 0.464
Exploitation Rate Resulting in SB40 Percent 0.043 0.035 0.051
Yield with SPR Based On SB40 Percent (mt) 8,209 3,857 12,562
Proxy Spawning Biomass (mt) (SPR45) 64,848 41,376 88,320
Exploitation Rate Corresponding to SPR45 0.045 0.037 0.053
Yield with SPR45 at SB SPR (mt) 8,350 3,924 12,777
Spawning Biomass (mt) at MSY (SB MSY) 41,702 26,527 56,876
SPR MSY 0.328 0.324 0.331
Exploitation Rate Corresponding to SPR MSY 0.070 0.057 0.083
MSY (mt) 9,024 4,242 13,807
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Figure vi: Time series of estimated depletion (i.e., spawning biomass relative to unfished
spawning biomass) from the base model (circles) with 95% intervals (dashed lines).
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Management Performance

Sablefish management includes a rich history of seasons, size-limits, trip-limits, and a com-
plex permit system. Managers divide coast-wide yield targets among the fleets, fishery
sectors (including both limited entry and open access), as well as north and south of 36°N
latitude. Peak catches occurred during the late 1970s just prior to the imposition of the first
catch limits. Over the last decade, the total estimated dead catch has been 55% of the sum
of the overfishing limits and 65% of the annual catch limits.

Table v: Recent trend in the overfishing limits (OFL), the annual catch limits (ACLs), the
total landings, and model-estimated total dead catch ("total mortality”, mt). Note that the
Acceptable Biological Catches (ABCs) and ACLs are equal because the stock is estimated
to be above 40% of the unfished spawning biomass, and the PFMC has not seen fit to lower
the ACLs for other reasons.

Year OFL ACL Landings Total
Mortality
2011 8,808 6,813 6,149.25 6,253.97
2012 8,623 6,605 5,184.80 5,283.59
2013 6,621 5,451 3,987.20 4,050.48
2014 7,158 5,909 4,216.46 4,294.90
2015 7,857 6,512 5,025.23 5,105.53
2016 8,526 7,121 5,305.81 5,401.39
2017 8,050 7,117 5,350.64 5,465.75
2018 8,239 7,419 5,126.94 5,220.23
2019 8,489 7,750 5,193.71 5,372.81
2020 8,648 7,896 3,762.75 3,882.70
2021 9,402 8,791 - -
2022 9,005 8,375 - -
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Unresolved Problems and Major Uncertainties

The data available for sablefish off the U.S. West Coast are not informative with respect
to absolute stock size and productivity. This is, in part, due to the one-way-trip nature
of the historical series (i.e., a slow and steady decline in spawning biomass), which can be
consistent with a larger less productive stock, a smaller more productive stock, or many
combinations in between. While the historical catches provide some information about the
minimum stock size necessary to remove the catches from the population, there is limited
information in the data regarding the upper limit of the stock size. The above factors are
also confounded by movement of sablefish between the region included in this assessment
and regions to the north primarily, which is ignored in the stock assessment. Likelihood
profiles, parameter estimates, and general model behavior illustrate that small changes in
any of a suite of parameters can result in different management reference points. However,
because leading model parameters, such as natural mortality, selectivity, and historical re-
cruitments, are estimated within the stock assessment model, the uncertainty about these
estimates remains large and uncertainty intervals typically overlapped among the investi-
gated models. The uncertainty will remain high until a more informative time-series, better
quality demographic and biological information are accumulated, or a range-wide analysis
is completed for sablefish.

There is no age validation for sablefish. Validation is complicated by the fact that most
known-age fish from Alaska are aged at less than 20 years while there are very few ages from
the US West Coast, particularly in recent decades. Uncertainty in the current aging methods
(both bias and imprecision), as well as relatively sparse fishery sampling, result in age data
that potentially variable. Furthermore, because sablefish grow rapidly, nearing asymptotic
length in their first decade of life, length data is not particularly informative about historical
patterns in recruitment. The patterns observed in historical sablefish recruitment suggest
that the stock trajectory (via shifts in recruitment strength) is closely linked to productivity
regimes in the US West Coast. Uncertainty in future environmental conditions, changes
in the timing, dynamics, and productivity of the California Current ecosystem via climate
change or cycles similar to the historical period should be considered a significant source
of uncertainty in all projections of stock status. The ongoing WCGBT Survey is a fairly
precise relative index of abundance over a broad demo- graphic component of the stock, but
it does not survey the entire stock as sablefish reside in waters deeper than 1280 m, the
survey depth limit, and to the north of the Washington /British Columbia border. To the
modelers’ knowledge there is no information from the Pacific coast of Mexico. Therefore,
a portion of the stock is unobserved. This index has the potential to inform future stock
assessments about the scale of the population relative to catches being removed, however
such information will require contrast in the observed survey trend.

Decision Table and Harvest Projections
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Decision Table

The decision table reports 12-year projections for alternate states of nature (columns) and
management options (rows). The results of this table are conditioned on the Groundfish
Management Team specified catches for 2021 and 2022, which are below the already-specified
annual catch limits approved by the Pacific Fisheries Management Council.

Uncertainty in management quantities for the decision table was characterized using the
asymptotic standard deviation for the 2021 spawning biomass from the base model. Specifi-
cally, the 2021 spawning biomass for the high and low states of nature are given by the base
model mean +1.15 - standard deviation (i.e., the 12.5th and 87.5th perceuntiles). A search
across fixed values of R, was used to attain the 2021 spawning biomass values for the high
and low states of nature. The base catch streams were based on the 40-10 harvest control
rule and a P* = 0.45 buffer vector. This is presented as the bottom row of the decision table
as it represents the highest exploitation level among the three catch streams. To replicate
a request of the Groundfish Management Team representative at the 2019 STAR panel, the
additional catch streams were set using the Category 1 values of P* = 0.35 and P* = 0.40;
these are presented as the first and second rows of the decision table, respectively.

Spawning stock biomass in 2021 ranges across the three states of nature from 64,916 to
131,513 mt, with corresponding stock status ranging from 51% to 63% of the unfished stock
size. The decision table suggests that all catch scenarios under across all states of nature
result in decreases in stock size. Under both the base and high states of nature and across all
catch scenarios, the stock remains either at or above the target stock size at the end of the
projection period. The reason that depletion does not decline as substaintally as suspected
in the base case at the 12-year time horizon is the emergence of recent, large recruitment
events into the fishery; this is reflected in a disproportionate increase in summary biomass
(Figure 68). However, all catch scenarios under the low state of nature drive the stock into
the precautionary zone by 2030, where it remains in 2032.
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Table vi: Decision table of 12-year projections of spawning stock biomass (SSB) and %
unfished (depletion) for alternative states of nature (columns) and management options
(rows) beginning in 2021. Low and high states of nature are based on the 2021 SSB +
1.15-base model SSB standard deviation and the resulting unfished recruitment was used
for the projections. Results are conditioned on the 2021 and 2022 catches, provided by
the Pacific Fisheries Management Council Groundfish Management Team (GMT), being
achieved exactly. The alternative catch streams are based on the GMT’s requested P*
values of 0.35 and 0.40. Note that values for the agreed-upon buffer level of P* = 0.45
is presented as the third row of the decision table as it represents the highest exploitation
level among the three catch streams. Catches are total dead biomass, i.e., dead discard plus

catch.

Year Total Low state (0.25) Base (0.5) High state (0.25)
scenario catch SSB Depletion | SSB Depletion | SSB Depletion
P*=0.35 2021 7,405 64,916 0.51 97,802 0.58 131,513 0.63

2022 7,055 66,222 0.52 99,957  0.59 134,550  0.65

2023 9,412 65,396 0.51 99,450  0.59 134,266  0.64

2024 8,608 62,150 0.49 96,661 0.57 131,626  0.63

2025 8,101 59,177  0.46 94,436  0.56 129,680 0.62

2026 7,796 56,750 0.44 92,909 0.55 128,548  0.62

2027 7,649 54,732 0.43 91,867 0.54 127,974  0.61

2028 7,570 52,951 0.41 91,099 0.54 127,714 0.61

2029 7,504 51,310 0.40 90,483 0.54 127,626  0.61

2030 7,437 | 49,770 0.39 89,967 0.53 127,646  0.61

2031 7,342 48,316  0.38 89,530 0.53 127,742 0.61

2032 7,247 | 46,956  0.37 89,175 0.53 127,911 0.61
P*=0.40 2021 7,405 64,916 0.51 97,802 0.58 131,513 0.63

2022 7,055 66,222 0.52 99,957  0.59 134,550  0.65

2023 10,107 | 65,396 0.51 99,450 0.59 134,266  0.64

2024 9,252 61,794 0.48 96,308 0.57 131,273 0.63

2025 8,722 58,494  0.46 93,761 0.56 129,004  0.62

2026 8,421 55,765 0.44 91,935 0.54 127,568 0.61

2027 8,282 53,451 0.42 90,602 0.54 126,699 0.61

2028 8,218 51,380 0.40 89,546 0.53 126,149  0.60

2029 8,168 49,449  0.39 88,643 0.52 125,774 0.60

2030 8,117 | 47,616 0.37 87,840 0.52 125,509  0.60

2031 8,039 45,869 0.36 87,117 0.52 125,324 0.60

2032 7,950 | 44,214 0.35 86,479 0.51 125,215  0.60
P*=0.45 2021 7,405 64,916 0.51 97,802 0.58 131,513 0.63

2022 7,055 66,222 0.52 99,957  0.59 134,550 0.65

2023 10,825 | 65,396 0.51 99,450 0.59 134,266  0.64

2024 9,923 61,426 0.48 95,935 0.57 130,908 0.63

2025 9,372 57,787 0.45 93,014 0.55 128,302  0.62

2026 9,070 54,742  0.43 90,821 0.54 126,550  0.61

2027 8,934 52,126 0.41 89,130 0.53 125,375 0.60

2028 8,888 49,760 0.39 87,727  0.52 124,528  0.60

2029 8,860 | 47,532 0.37 86,483 0.51 123,858 0.59

2030 8,810 | 45,402 0.36 85,346 0.51 123,298 0.59

2031 8,753 43,364 0.34 84,304 0.50 122,829 0.59

2032 8,684 41,415  0.32 83,351 0.49 122,438 0.59
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Harvest Projections

Previous sablefish stock assessments have been designated as Category 1 stock assessments.
Projections and decision tables are based on P*=0.45, the adopted value for the most recent
management cycle, and the values of o adopted by the Pacific Fisheries Management Council
for stock projections. The time series of multiplicative buffer fractions that are a function
of P* and the time series of os provide the multipliers on the overfishing limit; these values
are all less than 1 for category 1 stocks. o for sablefish is the time-varying category 1 value,
which starts at 0.5 in the year after the (update) assessment and increases throughout the
projection period. The uncertainty around the OFL value for the first forecast year (2022) is
0.319; the uncertainty around spawning output in that same year is 0.298, both less than 0.5.
The multipliers are combined with OFLs to calculate the ABC values. The Council sets ACL
values which cannot exceed (with limited exceptions) the ABCs as modified by the 40-10 rule.
The total catches in 2021 and 2022 were set at the Pacific Fisheries Management Council
Groundfish Management Team requested values, below the Pacific Fisheries Management
Council annual catch limits for sablefish. The average ratio between GMT-specified 2021-
2022 catches were used to distribute catches among the fisheries for forecasted years.

Projections are provided through 2032 (Table 7). Current medium-term projections from
the base model under the Pacific Fisheries Management Council 40-10 harvest control rule
estimate that the stock will remain above the target stock size of 40% of the estimated
unfished spawning biomass during the projection period. Forecasts from the 2019 benchmark
assessment projected the spawning biomass to increase by 28% from 2017 to 2021 given
specified harvests, whereas the current assessment estimated the increase at 23%. The
estimate of unexploited spawning biomass (in the year of each assessment) is 13% higher
than that estimated in 2019 and 19% lower than the 2011 estimate. Relative unfished
biomass in 2021 was estimated at 0.58, while the 2019 benchmark assessment forecasted it
to be 0.46.

Table vii: Projections of potential OFLs (mt), ABCs (mt), estimated spawning biomass
and fraction unfished. The total catches in 2021 and 2022 were set at the PFMC Groundfish
Management Team requested values of 7,405 mt for 2021 and 7,055 mt for 2022 which are
about 20% lower than the ACL = ABC for those years; see Table 6 for GMT-defined ACLs
and OFLs in 2021 and 2022.

Year  Predicted Catches Age 4+ Spawning Fraction
OFL (mt) (2021-22) Biomass Biomass Unfished
or ABCs (mt) (mt)
(2023+)
(mt)

2021 - 7,405.00 265,655 97,801.9 0.58
2022 - 7,055.00 261,481 99,956.5 0.59
2023 11,577.1 10,824.6 253540 99,449.9 0.59
2024 10,669.8 9,922.9 246090 95,943.8 0.57
2025 10,120.6 9,371.7 241976 93,063.3 0.55
2026 9,837.4 9,070.1 238823 90,925.0 0.54
2027 9,742.3 8,933.7 236280 89,290.8 0.53
2028 9,735.2 8,888.3 234037 87,941.5 0.52
2029 9,747.2 8,860.2 231955 86,743.8 0.51
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Table vii: Projections of potential OFLs (mt), ABCs (mt), estimated spawning biomass
and fraction unfished. (continued)

Year  Predicted Catches Age 4+ Spawning Fraction
OFL (mt) (2021-22) Biomass Biomass Unfished
or ABCs (mt) (mt)
(2023+)
(mt)
2030 9,746.0 8,810.4 229993 85,644.5 0.51
2031 9,725.9 8,753.3 228162 84,634.2 0.50
2032 9,691.9 8,684.0 226462 83,707.8 0.50
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Scientific Uncertainty

The time series of multiplicative buffer fractions that are a function of P* and the time
series of os provide the multipliers on the overfishing limit; these values are all less than
1 for category 1 stocks. o for sablefish is the time-varying category 1 value, which starts
at 0.5 in the year after the (update) assessment and increases throughout the projection
period. The uncertainty around the OFL value for the first forecast year (2022) is 0.319;
the uncertainty around spawning output in that same year is 0.298, both less than 0.5.

Research and Data Needs

Most of the research needs listed below entail investigations that need to take place outside
of the routine assessment cycle and require additional resources to be completed.

1. Not all of the available sablefish otoliths were aged for this stock assessment update
because of time constraints resulting from Covid-19, exacerbated by the the federal
government furlough in 2019, and, in some cases, the sample sizes of aged fish are
lower than what would be ideal. Resources should be provided to age otolith samples
from years with missing age data or small sample sizes.

2. A transboundary stock assessment and the management framework to support such
assessments would be beneficial given the migratory nature and broad distribution of
sablefish along the Pacific Rim. A transboundary assessment would likely improve the
ability to estimate the scale of the population, particularly during the early modeled
period.

3. Investigation of environmental covariates for recruitment on a stock-wide, northeast
Pacific scale.

4. Continuation of the annual WCGBT Survey will provide information on stock trends
and incoming recruitments. A longer survey time series may improve the precision of
estimates of absolute stock size and productivity into the future.

5. Age validation is needed to verify the level of age bias present in the data, if any.

6. Investigate aging methods that could prove more precise and/or rapid than current
break-and-burn methods. More accurate age data would facilitate tracking cohorts to
older ages, improving estimates of historical year-class strengths.



7. Research on understanding the interactions between spatial patterns in sablefish
growth, fishery size selectivity, and movement across the Northeast Pacific began
during 2019 and are ongoing. The results of this research should be considered in
future benchmark stock assessments.

8. Anecdotal information, such as the large 1947 recruitment reported by central Cali-
fornia sport fisherman, along with historical records could be investigated to provide
additional information on historical patterns of recruitment.
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