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Introduction 

Observer programs are a valuable source of information for the management and compliance of 
regulations in many fisheries globally. Fishery observer duties may vary from fishery-to-fishery but in 
many cases, they record information on fishing locations and gear, enumerate catches of target and non-
target species (including bycatch), collect biological information about certain catches, and in some cases, 
they may also collect physical samples like otoliths, scales, stomach contents, or tissue samples. Such 
fishery observer programs can be extremely expensive, as well as logistically complicated. Thus, a 
common pursuit in the design of many fishery observer programs is to identify the minimum observer 
coverage necessary to provide a representative sample of fishery behaviors and catches. However, biases 
in observer data can easily be introduced and affect the potential inference regarding catch of target, non-
target (including bycatch) species across a fishery. 

Biases in observer data may result from several sources, some of which may be intentional behaviors 
while others may be inadvertent (Babcock & Pikitch, 2003; Benoit & Allard 2009). A major concern is 
bias associated with an “observer effect,” where fishers behave differently (e.g., different fishing 
locations, depths, times of day, bycatch avoidance, trip durations, or other operational characteristics) 
during observed trips than during unobserved trips (Vølstad and Fogarty 2006; Benoit & Allard 2009). 
Another potential form of bias, which we call the “unobservable vessel effect,” may occur for trips made 
by vessels that are never observed and whose behaviors may thus be unrepresented by trips of vessels that 
are observed.  Any such biases, may lead to skewed estimates of fishing effort, catch compositions, 
bycatch impacts, trip- and set-level metrics or more. These so-called unobservable vessels may result 
from a suite of factors, further described by Babcock and Pikitch (2003), including logistical constraints 
(e.g., vessels are too small or unsafe to carry observers), inappropriate stratification or allocation of 
sampling effort. 

In recent years, the requirement of vessel monitoring systems (VMS) for many fleets has provided a new 
tool by which to assess fleet dynamics and potential biases in some observer data. VMS transmit vessel 
locations at regular time intervals, often every 30 - 60 min, regardless of whether the vessel was ever 
observed. When combined with fishery landing records, the combination of vessel spatial, temporal, and 
movement characteristics derived from the VMS data can facilitate new analyses to quantify operational 
differences across vessels, trips, or even fishing sets. 

One fishery requiring VMS on all vessels (since 2013) is the large-mesh drift gillnet (DGN) fishery off 
the U.S. West Coast. The DGN fishery has targeted swordfish (Xiphias gladius) and other highly 
migratory species (HMS) off the U.S. West Coast for more than four decades (Urbisci et al., 2016; Eguchi 
et al., 2017). Throughout its history, operational characteristics, targeting behaviors, and regulations have 
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evolved considerably. The fishery has seen a suite of time-area closures aimed at bycatch reduction (e.g., 
leatherback turtles), leading to the current distribution of the fishery, which is largely centered in the 
Southern California Bight (SCB). For much of the fishery’s existence, fishery observers have collected 
critical information, facilitating validation of fisher logbooks, standardization of CPUE, and 
documentation of interactions between the fleet and marine mammals (Urbisci et al., 2016; Carretta 
2020). Such observer data has also been critical for the continued management of the fishery and 
development of more advanced dynamic ocean management tools for bycatch avoidance (e.g., Eguchi et 
al., 2017; Brodie et al., 2018; Hazen et al. 2018). 
 
The DGN fleet is required to carry fisheries observers on a portion of their trips each season. The NOAA 
West Coast Region Observer Program (WCROP) works with the fleet to cover a portion of the total 
fishing effort each fishing season. This typically results in 20 – 30 percent observer coverage. In the most 
recent Biological Opinion on the DGN fishery (NMFS 2013), questions about the representative quality 
of observer coverage and the overall reliability of bycatch estimates produced by observer data in the 
DGN fishery were considered. These questions ultimately led to the 2013 implementation of a VMS and a 
pre-trip notification requirement, providing expanded information about the spatiotemporal distributions 
of the entire fleet during all observed and unobserved trips in the fishery.   
 
We hypothesized that the integration of observer, logbooks, and landings data with VMS data was 
sufficient to identify individual set and trip metrics (e.g., season, location, trip duration, trip distance, 
average depth, sea-surface temperature), and to determine whether differences existed between observed 
and unobserved fishing. First, we developed a machine learning approach to quantify trip and set metrics 
for DGN activity. Second, we compared observed and unobserved trips to assess potential observer 
effects. Finally, we compared trip and set metrics for those vessels that were periodically observed with 
those vessels that were never observed, which we refer to as unobservable. 
 

Methods 
This data intensive study proceeded via several discrete steps: (1) Integrating data and engineering 
features; (2) Differentiating fishing and non-fishing trips; (3) Developing classification models to identify 
fishing sets; (4) Identifying true DGN trips; (5) Exploring observer coverage rates; (6) Analyzing trip and 
set level differences in observed and unobserved fishing behaviors.   
 
Integrating Data and Engineering Features 

The foundation of this study was the integration of disparate types of data, many of which are 
confidential. These data included fishery-dependent (observer, logbook, VMS, fisheries landings, and 
permit data) and fishery-independent (environmental, geospatial, and U.S. Coast Guard (USCG) vessel 
registries) data for six fishing seasons, September 2013 – January 2019. The requisite data were accessed 
from the Pacific Fisheries Information Network (PacFIN), which functions as an intermediary network 
that consolidates State and Federal fisheries data within a centralized data warehouse. Specifically, these 
data include: 
 

• Vessel Monitoring System (VMS) data: Since September 2013, DGN vessels have been 
required1 to transmit their locations (latitude, longitude) hourly via VMS for the duration of all 
observed and unobserved fishing trips. VMS data do not explicitly identify vessel behaviors (e.g., 
fishing, transiting, drifting, searching), but a suite of studies have used VMS data to infer vessel 

                                                             
1 4 Sept 2013 – 31 Jan 31 2014 (78 FR 54548); 22 May 2014 – 5 Aug 2014 (79 FR 29377); 9 Jul 2015 – 
present (80 FR 10392, 80 FR 32465) 
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activities (e.g., Russo et al., 2011; Muench et al., 2018; Watson et al., 2018). We engineered a 
suite of additional features within the VMS data (e.g., vessel speed, distance traveled between 
VMS records, distance to the coastline, bottom depth) to support the development of a behavioral 
inference model.  

• Vessel Characteristics: Vessels > 5 mt are required to register with the USCG and supply vessel 
characteristics such as vessel length and net and gross tonnage, along with other information 
including the owner, year built, and the ship builder. 

• Observer: The data used in this study are a subset of the information collected by WCROP 
observers on DGN vessels including the location, date, and time of set deployment and retrieval 
(aka haul).  

• Vessel Logbook: During the study timeframe, DGN vessel captains were required to submit their 
logbooks to the California Department of Fish and Wildlife (CDFW) and the data were 
keypunched into the NOAA Southwest Fisheries Science Center (SWFSC) logbook database. 
Vessel logbook information used in this study were the haul date (without time), set type, gear 
configuration, and area of catch. 

• Fish Landing Receipts: Upon completion of a commercial fishing trip, the sales transaction (aka 
fish ticket) between fishing vessels and dealers are submitted to the state of landing. The state 
landings data for the West coast are aggregated in the PacFIN data warehouse. Fish tickets 
include information such as the species, quantity in pounds, price paid, fishing gear type, and port 
of landing. For HMS fisheries like the DGN fishery, the state-reported gear types and species are 
translated into HMS fishery codes (D’Angelo, unpub), which aided in identifying DGN landings. 
All DGN landings used in this analysis were from the CDFW. 

• Geospatial features: We implemented a suite of geospatial analyses (ArcGIS Pro 2.4, Esri) to 
engineer additional features for behavioral comparison and fishing detection, such as bottom 
depth (GEBCO 2019), distance from shore, and distance to the nearest port. For each port visited 
by the DGN fleet during this study, we iteratively defined port areas polygons by first using 
simplified estuary polygons (buffered by 100m) from the Pacific Marine and Estuarine Fish 
Habitat Partnership (PMEP) West Coast USA Current and Historical Estuary Extent layer (2017). 
For ports without matching PMEP polygons, we created polygons manually around VMS records 
for which vessels were not moving and appeared to be inside a known fishing port. VMS activity 
“event types” were calculated based on a VMS record’s presence inside (‘in port’) or outside (‘at 
sea’) a port polygon (see example in Figure 2). Events were further distinguished for VMS 
records that occurred prior to entering (‘arrive port’) and subsequent to leaving (‘depart port’) a 
port polygon.   

• Environmental data: DGN gear is deployed along the ocean surface, typically on ocean 
temperature gradients, where target species are known to occur. To incorporate such behaviors, 
daily satellite records of sea surface temperatures (SST) (JPL MUR MEaSUREs Project 2015) 
were obtained through an ERDDAP server at the NOAA CoastWatch Program (Simons 2020). 
Daily SST records were matched with the spatial coordinates for each VMS record.  

The approach we used to integrate these data into a Comprehensive DGN database table was stepwise 
(Figure 1, steps 1 – 6), and followed a hybrid approach of the cross-industry standard process for data 
mining (CRISP-DM) (Chapman et al. 2000). CRISP-DM steps were not always linear, and lessons 
learned during one-step often triggered the improvement in logic for previous steps. Data integration steps 
were done in Oracle and ArcGIS Pro. The ArcGIS-created features were merged into the Comprehensive 
DGN table via an ArcGIS-Oracle database link. Likewise, data preparation for the classification models, 
as well as for the observer bias analysis were performed outside the database in Python, and the 

https://www.gebco.net/data_and_products/gridded_bathymetry_data/
https://www.pacificfishhabitat.org/data/estuary-extents
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classification model output features were merged into the Comprehensive DGN table using the cx_Oracle 
library in Python.  

 
Figure 1. Stepwise approach to integrate datasets, create sets and trips, validate the data, and analyze the data. Data 
source names include OLE – NOAAs Office of Law Enforcement; USCG – U.S. Coast Guard; WCROP – West 
Coast Region Observer Program; SWFSC – NOAA Southwest Fisheries Science Center; CDFW – California 
Department of Fish and Wildlife; PacFIN – Pacific Fisheries Information Network; PMEP - Pacific Marine and 
Estuarine Fish Habitat Partnership.  GEBCO and ERDDAP are commonly used names for a public bathymetric 
repository and a data server, respectively. Jet Propulsion Lab (JPL) satellite data were accessed via the ERDDAP 
server. 

Trip and Set Creation, Fishing Rules, and Data Validation  
Initially, we used the ‘depart port’ and ‘arrive port’ events created in the Geospatial Features step to 
delineate individual vessel trips (Watson & Haynie 2016). However, vessels do not always fish when they 
leave port. Depending on the configuration of a particular port, for example, a vessel may leave a defined 
port polygon for fueling, gear maintenance, long-term vessel storage, or other activities after which no 
fish were landed or sold. Such activities may trigger a new “trip” based on VMS data even if no fishing 
occurs. Most non-fishing trips were relatively brief, typically lasting less than 12 hours. Differentiating 
between fishing and non-fishing trips represents a first step in the process of modeling fishing activity 
(Watson and Haynie 2016).  
 
We used a stepwise approach to create and validate true DGN trips and sets from the individual vessel 
trips (Figure 1, steps 7 – 9). We first created features to denote known parameters of DGN fishing, 
employed classification models to identify fishing and non-fishing pings, and then reviewed the outputs 
of models with the known fishing parameters to determine true DGN trips and sets. We validated the data 
and checked for errors before and after each step. 
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We created more engineered features for known parameters of DGN fishing (Figure 1, step 7) such as 
fishing time (3:00 PM to 8:00 AM) and the speed of the vessel during a fishing set, estimated to be < 1.25 
knots (Sippel & Stohs, 2017). Combining fishing time (is_during_fishing_time) and fishing speed 
(is_fishing_speed) with the ‘at sea’ event type, we created another variable called ‘is_fishing_sql’. From 
Observer data, we calculated that DGN vessels fished their gear for about 11-12 hours, slightly longer 
than estimated in previous studies (Stohs and Sippel, 2017, Urbisci, Stohs, and Piner 2016). Thus, with 
hourly transmission rates, we considered 10-12 consecutive VMS points to be indicative of fishing sets 
(is_fishing_sql).We created the variable ‘is_observed_ping’ to denote that an observer was on board 
during the matched date and time, ‘is_driftgillnet_fishing’ to denote the presence of observer, logbook, or 
DGN landing data matched to VMS data by the date and time, and ‘season’ to denote the season of trip. 
Due to the closure of the northern portion of the fishing grounds in the Pacific Leatherback Closure Area 
(PLCA) (66 FR 44549; August 24, 2001) until November 15 of each year, we split the fishing year into 
two seasons (Season 1, 1 May – 15 Nov and Season 2, 16 Nov – 31 Jan). If the trip overlapped two 
seasons, it was classified as the season that included the majority of fishing days.  
  
Classification Modeling to Identify Fishing Sets 

We evaluated multiple machine learning classification models to identify fishing versus non-fishing records 
(Figure 1, step 8). These models included: (1) naïve Bayes, (2) support-vector machine, (3) decision tree, (4) 
random forest, and (5) gradient boosting. All records from the Comprehensive DGN dataset that were defined 
as (a) DGN fishing (is_driftgillnet_fishing) and (b) event_type = ‘at sea’ were exported to Python. An 
exploratory analysis for all observed trips was conducted to evaluate the relationship between the features and 
the target variable, which was the observer record that identified fishing versus non-fishing records 
(is_observed_ping). This approach along with domain knowledge guided model feature selection. All features 
used in the classification models were numeric and were scaled using min-max normalization and missing 
values in the SST data were filled using nearest-neighbor imputation. The data from the observed trips were 
randomly split into training (75% or 14342 records) and testing (25% or 4781 records) datasets.  

Each classification model was fitted to the training data using the default hyperparameter settings from the 
scikit-learn software libraries for machine learning in Python. The performance of each model was evaluated 
for prediction accuracy (i.e., fishing vs non-fishing) along with the receiver operating characteristic (ROC) 
curve and the area under the curve (AUC). Based on these criteria, rigorous model fitting was pursued for 
random forests and gradient boosting models, both of which are ensemble decision tree approaches. Random 
forest and gradient boosting models were optimized using k-fold cross-validation and a grid-search for 
hyperparameter tuning and selection based on the highest mean predictive accuracy. Models with the best 
hyperparameters were fitted to the training data and models were evaluated on the test data. The final models 
were applied to the out-of-sample (unobserved) data and the resulting predicted fishing records were merged 
into the Comprehensive DGN dataset (Appendix 1 - Table 1: is_fishing_rfm and is_fishing_gbc).     

By combining the results of the classification modeling with the fishing rules, we made the final determination 
of DGN fishing sets (is_fishing_set). Non-observed sets were considered valid fishing sets if, (a) both 
models agreed that the vessel was fishing, (b) the set occurred between 3:00 PM and 8:00 AM 
(is_during_fishing_time), and (c) the set was >= 6 hours (determined either by observer data soak times 
or estimated by the number of pings >= 6). We manually reviewed and validated all of the observed and 
unobserved sets that did not meet these criteria. 
 
  



6 
 

Identifying DGN Trips 
 
We developed a set of rules to characterize true fishing trips (aka DGN trips) from GIS-defined VMS 
trips based on the ‘depart port’ and ‘arrive port’ events. Trips were classified as DGN trips if they met at 
least one of these criteria: 

• There was positive DGN effort (is_driftgillnet_fishing) 
• There was a landing (i.e., at least one fish ticket) of DGN target species at the end of a trip 

('arrive port' date) or when the vessel was 'in port' and a landing was made within five days of the 
‘arrive port’ date. 

• The linked landings had the HMS fishery code = DGNLM.  

We flagged trips for review that did not easily link to landings, but had positive DGN fishing effort 
(is_driftgillnet_fishing). Various reasons caused problems with the trip-landing link process including 
miscoded gear or fishery (CDFW gear code or HMS fishery code), date errors on fish tickets, or erratic 
VMS ping rates. We reviewed and verified the unlinked DGN trip and landings data and made some 
manual links that fell into these categories: 

• Landings that occur within a trip (‘at sea’) 
• Landings with a date that exceeded five days after the ‘arrive port’ date.  
• Landings with HMS fishery code = DGNLM. 

The definition of a DGN trip is different from how the WCROP defined trips. Observers were assigned to 
cover a portion of fishing effort for a vessel and thus, their assignment period may have covered more 
than one fishing trip, so observer trip identifiers were not sufficient to differentiate trips.  

We created a sequential trip number (trip_num) and set number (set_num) for each verified trip and set.  
 
Exploring Observer Coverage 
 
Our ultimate goal was to evaluate bias in observer data, which first required summarizing the distribution 
of observer coverage rates throughout a suite of strata within the fishery. To investigate the relative 
representativeness of observer coverage spatially and temporally, we compared model-estimated fishing 
sets to observed fishing sets within and between weeks, seasons, and vessel categories. Figure 2 shows 
the distribution of estimated fishing effort (left panel) and observer coverage (right panel) for the six 
fishing years combined, September 2013 to January 2019. 
 
We categorized vessels as periodically observed vessels, unobservable vessels, and excluded vessels. A 
few vessels with very low observer coverage (only one observed trip in six fishing years) were grouped 
with the unobservable vessels category. The WCROP classifies some vessels in the fishery as 
unobservable for logistical reasons such as that they are too small or not safe enough to accommodate an 
observer.  Excluded vessels included those with erratic transmission rates or that only participated in the 
fishery for the first year of the study timeframe. 
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Figure 2: Map of the extent of the DGN fishery (total DGN effort (left panel) and observer coverage (right panel)) 
and ports visited by DGN fishing vessels for the six fishing years combined (September 2013 to January 2019). The 
DGN trips only land to California ports, but may stop in Oregon and Washington during northern DGN trips (or 
while participating in other west coast fisheries).  The inset shows an example of the port polygon for San Diego. 
PLCA is the Pacific Leatherback Closure Area (66 FR 44549) and EEZ is the U.S. Exclusive Economic 
Zone. 

Observer Bias Analysis 
In order to test if vessels fish differently when an observer was onboard, we compared metrics at the trip 
and set levels for the different vessel groups and seasons. The two comparisons were between: (1) 
Unobserved trips and sets versus observed trips and sets by vessels that periodically carry observers to 
test the observer effect; and (2) Trips and sets on vessels that periodically carry observers versus trips 
and sets by unobservable vessels that are exempted from observer coverage or that had very low observer 
coverage (only one observed trip in five fishing seasons) to test the unobservable vessel effect.  

We fit linear mixed-effect models (LME) to quantify the percent change (i.e., resulting model 
coefficients) in a number of log-transformed fishery metrics (i.e., response variables) between the vessel 
groups (Watson et al., 2018). The LME models were fit to the fishery metrics individually and for each 
season (Season 1, 1 May – 15 Nov; Season 2, 16 Nov – 31 Jan): 
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Yt,v=(β0+b0v)+β1∗is_observed_pingt,v+β2∗Vessel+εt,v 
 
where, for example, for the observed and unobserved trip or set comparison, the subscripts t and v 
represent trip and vessel, and ‘is_observed_ping’ is a binary, fixed-effect indicating if the trip was 
observed and individual ‘vessel’ was the random effect (to account for differences between individual 
vessels), which allows for broad level inferences about the fixed effects, i.e., observed and unobserved 
trips or sets. The random intercept for vessel (b0v) and residual (εt,v) were assumed to be independent and 
normally distributed with means zero and variances α2v and α2, respectively. Similarly, the 
‘is_observed_ping’ binary variable was replaced with another binary variable, ‘vessel_group’, for the 
comparison between vessels that periodically carry observers versus unobservable vessels. 
The fixed coefficient on ‘is_observed_ping’ and ‘vessel_group’ measured the change in the response 
between observed and unobserved trips on periodically observed vessels or between these observed 
vessels and the unobservable vessels.  
 
The fishery metrics to which we fit models represented a suite of behavioral and operational aspects of 
fishing at the trip- and set-level (Table 1) that we hypothesized could result in different catch or bycatch 
compositions (Brodie et al., 2018; Hazen et al., 2018; Mason et al., 2019). For example, during different 
seasons, sea surface temperatures have been used to indicate a greater probability of interaction between 
leatherback sea turtles and fishing fleets (Eguchi et al., 2017). If fishers sought to avoid bycatch to a 
greater extent when observers were onboard, then we might expect temperature profiles to be different for 
observed versus unobserved trips. 
 
Table 1. Description of trip- and set-level metrics that were fit to models to compare observed versus unobserved 
fishing behaviors.  

Scale Name Description 
Trip Sea Surface Temperature 

(SST) 
Average satellite-derived SST value from the final VMS 
location for each set per trip 

Trip Trip Duration Trip duration (hours) calculated between the first and last VMS 
record timestamps of each trip 

Trip Trip Distance Distance (nm) traveled during the trip, calculated from the sum 
of the distances between each VMS record.  

Trip Proportion of Trip Fishing Duration of the combined fishing sets (predicted or observed) 
divided by the trip duration 

Trip Distance from Shore Average distance (nm) from shore of the final VMS location of 
each set per trip 

Trip Depth Average depth of final VMS record of each set per trip 
Trip Catch per Unit Effort Total weight (lbs) of DGN target species (swordfish, thresher 

sharks, mako sharks, opah, and tunas) sold for each trip divided 
by the count of fishing sets per trip 

Trip Ex-Vessel per Unit Effort Nominal value (USD) of target fish sold per trip divided by the 
number of sets per trip 

Set Sea Surface Temperature 
(SST) 

Average SST extracted from gridded satellite SST data for each 
VMS position 

Set Soak Time Duration (min) between the begin set and begin haul, 
calculated from observer data when available or from the 
model estimated set data  

Set Distance from Shore Average distance (nm) from shore for each fishing set 
Set Depth Average bottom depth (m) for each fishing set 
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The data from the 2013/2014 fishing year (Sept 2013 to Jan 2014) were not included in the observer bias 
analysis because all offshore sets deeper than the 1100 fathoms (2012 m) depth contour were intentionally 
observed during that season as required by federal regulation (78 FR 54548).  

Results 
Integrating Data and Engineering Features 

A major highlight of this project is that we successfully built a repeatable process to integrate the fishery-
dependent and fishery-independent datasets. Along each step of the way, we learned something new and 
updated the process to be a bit more agile. The power of this integrated fishery-dependent dataset made it 
much easier to recognize and rectify the mistakes when the datasets did not agree. We explored the 
datasets visually, which aided in developing some of the engineered features and stepwise process for 
determining valid DGN trips and sets. 

Figure 3 shows the VMS, observer, logbook, and landings data for a vessel on a timeline during a typical 
fishing season. Using the combination of fishery-dependent data with engineered features, fishery rules, 
and machine learning, we could confidently determine fishing versus non-fishing activities and positive 
DGN fishing.    

 
Figure 3: Timeline of VMS data matched by date to observer (OBS), logbook (LOG), and landings data (LAND) 
for a periodically observed vessel. 
 
Plotting the recorded dates and positions from the datasets together on a map highlights how the data 
align in time and space. Figure 4 shows a portion of a typical observed trip. The VMS points are color-
coded to reflect the average vessel speed that we used to determine potential fishing activity (gray > 1.25 
knots, blue < 1.25 knots, ‘is_fishing_speed’). The observer set and haul positions overlay the VMS pings. 
We calculated the number of pings in each CDFW fishing block to determine primary (black outline) and 
secondary (gray outline) fishing areas on a given trip and matched that to what was recorded on the 
logbook (green) and fish ticket (gray hatch marks). We did not try to quantify the rate at which the 
recorded CDFW block data matched the actual fishing activity as that was beyond the scope of this study, 
however such explorations of the data are possible. 

18-Aug 7-Sep 27-Sep 17-Oct 6-Nov 26-Nov 16-Dec 5-Jan 25-Jan 14-Feb

Periodically Observed Vessel

VMS OBS LOG LAND
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Figure 4: Comparison of VMS, observer, logbook, and landings data for a portion of an observed fishing trip. 

Trip and Set Creation, Fishing Rules, and Data Validation  

Prior to validating trips and sets, we scrutinized vessel transmission rates along with other vessel 
characteristics. Of the 22 vessels that participated in the DGN fishery for the six fishing years, six of the 
vessels were unobservable and 18 were periodically observed. However, three of the periodically 
observed vessels had only one observed trip during the study period, and were thus treated as 
unobservable. At most, 20 vessels participated in the DGN fishery in a given year (Table 2).  

A few vessels had chronic VMS issues (unstable transmission rates, VMS turned off for long stretches of 
time, etc.) and could not be included in many of the analyses except for some basic trip and set metrics. 
The problem with unstable transmission rates is that trips or sets were initially created, but were flagged 
for review when they did not meet certain criteria. For instance, if a vessel’s VMS did not transmit for a 
week and it arrived and departed port during that time, initially we may have only estimated one long trip 
by stringing the ‘depart port’ and ‘arrive port’ events together. However, if landing occurred in the middle 
of a trip, the trip would be flagged for review. During the review process, we would look at the vessel 
track and the logbook or observer data, if available, and could determine whether the vessel made two 
distinct trips instead of one.  
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Table 2: Number of vessels participating in the DGN fishing each year. Some vessels had DGN landings, but were 
not matched to trips due to chronic problems with their VMS transmission rate.  

Metric 2013 2014 2015 2016 2017 2018 2019* All 

Vessels with 
landings  17 19 18 20 18 19 10 22 

Vessels with 
matched trips 17 17 14 19 14 15 9 19 

*2019 includes January only 

Erroneous transmission rates could also hamper estimating the total number of sets made in a given trip, 
which could inflate the catch per unit of effort. For example, if a vessel’s VMS did not transmit a signal 
for a few days while it was out at sea, or there were less than six pings during the night when vessels tend 
to be actively setting, it was challenging to estimate fishing versus non-fishing.  

Classification Models to Identify Fishing Sets 
The random forest and gradient boosting models performed better than the other modeling frameworks at 
identifying fishing versus non-fishing behaviors based on VMS transmitted pings. A ROC curve 
illustrates a model’s trade-off between its true positive rate (y-axis) and its false positive rate (x-axis), and 
the area under this curve (AUC) is a numeric measure of model performance (with an optimal value of 1). 
The AUC for both of our modeling frameworks was 0.96, representing highly accurate predictions with 
few false positives (Figure II-a). Additional metrics (Table 3) derived from a confusion matrix further 
illustrate the similar performance of both models.  
 
Table 3: Summary of fishing and non-fishing classification performance on an out-of-sample testing dataset.  

Model 
Performance 

Random Forest Classification 
Model (RFM) 

Gradient Boosting Classification 
Model (GBC) 

Metrics Derived from 
Confusion Matrix* 

Accuracy Rate 0.90 0.90 AR = (TP + TN)/n 

Error Rate 0.10 0.10 ER = (FP +FN)/n 

Precision  0.85 0.86 P = TP / (TP + FP) 

Recall 0.93 0.91 R = TP / (TP + FN) 

F1 Score 0.89 0.89 F1 =  2TP / (2TP + FP +FN) 

* TP = true positive, TN = true negative, n = samples (i.e., VMS pings), FP = false positive, FN = false negative.   
  
For the six fishing years, we estimated 2,448 total DGN sets from observer data and model predictions 
(Table 4) for all 22 vessels. 
 
Table 4: Estimated number of sets by year resulting from observer data and classification model predictions.  

Metric 2013 2014 2015 2016 2017 2018 2019* All 

Estimated count 
of sets 355 257 167 693 491 383 102 2448 

*2019 includes January only 
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Identifying DGN Trips 
 
For the six fishing years, we estimated 571 total DGN trips for which we were able to match to landings 
(HMS Fishery code = ‘DGNLM’) to trips created from VMS data (for all 22 vessels). The 571 DGN trips 
represented approximately 81% of the total estimated landings across years, from a low of 58% in 2015 to 
a high of 94% in 2016 (Figure 3, Table 4). DGN trip landings (lbs) were calculated as the sum of the 
target and non-target species that are typically landed by the fleet (swordfish, mako shark (Isurus 
oxyrinchus), thresher sharks (Alopias spp.), tunas (Thunnus spp.), and opah (Lampris guttatus)), which 
may not match official landing records.  
 
Nineteen percent of the landings (lbs) were not linked to trips due to gaps in VMS data either due to the 
implementation of the rules or errors in transmission rates. The lower rates of trip-link matching during 
the first three fishing years (2013 – 2015) were caused by data gaps due to the implementation of the rules 
that required VMS transmission. In 2013, vessels were not required to start using VMS until the fishing 
season was underway in the fall (78 FR 54548). In 2014 and 2015, VMS usage lapsed for most vessels 
between the expiration of the emergency rule (79 FR 29377) and the implementation of the final rule that 
required vessels to install VMS units and transmit locations (80 FR 10392, 80 FR 32465). There were 
fewer issues with VMS data and determining DGN trips for 2016 – 2019. There were a few cases where 
there was no matching fish tickets for an observed trip (e.g., the fish ticket may have been lost). 
 
The process for matching trips to landings was iterative. For example, there were a few cases where 
positive DGN effort (is_driftgillnet_fishing) was determined by the presence of observer or logbook data, 
or the classification model estimated fishing effort, but the landing did not have the HMS fishery code = 
‘DGNLM’. We found that most of these cases were due to errors with CDFW gear codes or HMS fishery 
codes and would manually update the HMS fishery code in the database (and report the error to CDFW).  
 

 
Figure 5: Total pounds landed of DGN target species by year and proportion of landings that verified DGN trips 
(VMS-landings linked) covered. 
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Table 5: Trip-link results for landings (lbs) and number of distinct fish tickets and estimated number of 
trips by year.  

Metric 2013 2014 2015 2016 2017 2018 2019* All 

Trip-linked 
Landings (lbs) 358,014 226,656 198,302 520,370 474,737 374,117 84,915 2,237,110 

Unmatched 
Landings (lbs) 66,204 97,380 144,614 32,603 107,207 83,647 2,869 534,524 

Total Landings 
(lbs) 424,218 324,036 342,916 552,973 581,944 457,763 87,784 2,771,634 

% Trip-linked 
Landings 84% 70% 58% 94% 82% 82% 97% 81% 

Trip-linked 
Trips 76 53 54 146 89 92 20 529 

Unmatched 
Trips 0 2 6 18 9 6 0 42 

Count of 
estimated trips 76 55 60 164 98 98 20 571 

*2019 includes January only 

 
Exploring Observer Coverage   
 
The WCROP provides observer coverage on 20 – 30% of all sets in a given fishing year for the DGN fleet 
(NMFS 2013). Table 6 shows the estimated number of unobserved and observed trips and sets by vessel 
group for all six fishing years combined. For unobserved trips with missing or erratic VMS transmission 
rates, we estimated the total number of sets by calculating the average number of sets per trip for each 
vessel separately, and then substituted those averages for the problem trips. Periodically observed vessels 
tended to have two or three observed trips per year, which equates to seven to 13 sets per year. The six 
unobservable vessels represent the three vessels that were unobservable with the three vessels with low 
observer coverage (only one observed trip in the six fishing years).  
 
Table 6:  The estimated number of unobserved and observed trips and sets and coverage rates (percent) by vessel 
group. 

Vessel 
Group 

Number 
of 

Vessels 

Unobserved 
Trips 

Observed 
Trips 

Percent 
Observed 

Trips 

Unobserved 
Sets 

Observed 
Sets 

Percent 
Observed 

Sets 

Excluded  5 47 4 9% 156 17 11% 

Unobservable  6 145 3 2% 528 11 2% 

Observable  11 296 121 41% 1200 558 47% 

Totals 22 443 128 22% 1956 586 23% 

 
Approximately 40% of the fleet was made up of unobservable vessels (six unobservable plus three 
excluded), an estimated 47% of sets made by periodically observed portion of the fleet was necessary to 
achieve the goal of 20 – 30% of observer coverage during this study.  
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We examined the number of trips and sets observed versus unobserved by week within season. We found 
that there was a systematic gap in observer coverage during parts of season 1 when fishing rates are low. 
Observers do not regularly begin covering the DGN fishery until September, although a few vessels fish 
before that in May through August. 
 
We explored patterns in the estimated effort and observer coverage spatially. Figure 1 shows a the 
comparison between total estimated DGN effort (left panel) and observer coverage (right panel)) for the 
six fishing years combined. Overall, there were no detectable areas with effort and no coverage. We 
mapped and grouped the data in various ways and calculated differences in coverage in smaller 15km-
hexbins to larger areas (i.e. PLCA, SCB, etc), but never found any evident differences in the distribution 
in estimated effort compared to coverage. 
 
Observer Bias Analysis 
 
We plotted the distributions of the trip and set level metrics prior to their inclusion in the LME models. 
Of the estimated 571 DGN trips and 2448 DGN sets, 364 trips (64%) and 1784 sets (73%) were included 
in the LME models. The various reasons trips and sets were not included in the LME models are listed in 
Table 7. We did not include data from the 2013/2014 fishing season in the observer bias analysis since the 
emergency rule (78 FR 54548) required all sets made deeper than 1100 fathoms to be observed.    
 
Table 7: Count of estimated number of valid DGN trips and sets by year and the number of records removed from 
the observer bias analysis by issue and metric type. 
Analysis 
Affected Issue (count) 2013 2014 2015 2016 2017 2018 2019 Total 

Trip Estimated trips 76 55 60 164 98 98 20 571 

Trip 
Trips excluded due to missing 
fish ticket or erratic VMS 
transmission  

0 2 6 17 9 8 0 43 

Trip 
Trips excluded due to potential 
bias (2013/2014 fishing year) 
or data quality issues 

76 39 6 8 2 7 0 137 

Trip 
Trips with landed HMS pounds 
or ex-vessel revenue > 2 Std. 
Dev.  

0 1 2 8 9 5 2 27 

Trip Trips used in Bias Analysis 0 13 46 131 78 78 18 364 

Set Estimated sets 355 257 167 693 491 383 102 2448 

Set Sets excluded due to potential 
bias (2013/2014 fishing year) 
or data quality issues 

355 196 6 19 1 1 0 578 

Set Sets with set durations > 2 Std. 
Dev. 0 6 5 31 22 18 4 86 

Set Sets used in Bias Analysis 0 55 156 643 468 364 98 1784 
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Trip and set data from five of the 22 vessels (three periodically observed and two unobservable) were 
excluded from the observer bias analysis, but some data were used for trip and set metrics (Table 8). Of 
those five, two of the 22 DGN vessels only fished during that year and three had unstable or unreliable 
VMS data where ping transmissions were missing for long periods and therefore, characterizing fishing 
behavior was impossible.  
 
Of the 17 remaining vessels, two vessels were missing VMS data for entire fishing seasons, but had DGN 
landings. Several other vessels had intermittent problems with their VMS transmissions and trips were 
omitted because unobserved fishing could not be sufficiently characterized. 
 
The unobservable vessel group tended to be slightly smaller in median length (48 ft) than the periodically 
observed vessels (51 ft), however the median engine horsepower and net tonnage were 16% and 18% 
greater, respectively, for periodically observed vessels. The range of vessels metrics was quite wide both 
the unobservable and periodically observed vessels groups contain vessels with the smallest and largest 
capacities and engine horsepower. 
 
 
Table 8:  Vessel metrics by vessel group.  

 
Vessel 
Group 

Number 
of 

Vessels 

Capacity (net tons) Engine (hp) Length (ft) 

Median  Range Median  Range Median  Range 

Excluded 5 14 8-16 300 120-471 38 35-40 

Unobservable 6 23 5-30 213 165-335 48 42-51 

Observable 11 27 5-65 250 180-1000 51 27-65 

All 22 16 5-65 244 120-1000 45 27-65 

   
We fit linear mixed-effect models (LME) to quantify the percent difference (i.e., resulting model 
coefficients) in a number of log-transformed fishery metrics (i.e., response variables) between the vessel 
groups (Watson et al., 2018). 
 
The results of the LME models show the percent difference in response variables by two vessel groupings 
and the trip level by season (Figure 11 and Appendix II) for (1) unobservable vessels versus periodically 
observed vessels (left panel), and (2) observed versus unobserved trips by periodically observed vessels. 
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Figure 11: Percent difference between observed and unobservable (left), and observed and unobserved (right) trips. 
Points represent mean difference error bars bound the 95% confidence intervals. Error bars that span zero illustrate 
no significant difference. For each metric, solid symbols designate Season 1 (May 1 - Nov 15) and dotted symbols 
designate Season 2 (November 15 - January 31). 

Overall, there were few statistically significant differences in fishing metrics between observed and 
unobserved trips on periodically observed vessels, or between unobservable and periodically observed 
vessels. Generally, the trip-level metrics showed more variability over the set-level metrics, probably 
since trip-level metrics were averaged over all of the sets in a trip and set-level metrics were only 
averaged over all of the data points for each individual set. We included many trip-level metrics that are 
similar, such as trip distance and trip duration, or distance from shore and depth and the results show 
those pairs of metrics had similar results. All of the model results are in Appendix 2.  
 
Notably, the periodically observed vessels fished about 45% deeper and farther from shore than the 
unobservable vessels at the trip- and set-level during Season 1. However, there was no significant 
difference during Season 2. Likewise, the observed versus unobserved trips for the periodically observed 
vessels showed a similar pattern, where observed trips fished 23% deeper when an observer was onboard 
during Season 1. This pattern was less evident in the distance-from-shore metrics. The pattern reversed 
for both depth and distance from shore in Season 2 for the set-level metrics and for depth in the trip-level 
metrics. There were slight differences between seasons for unobservable vessels versus periodically 
observed vessels. Catch and effort (number of sets) by unobservable vessels tended to be greater in 
Season 1 compared to the Season 2); however, the opposite was true for periodically observed vessels. 
The periodically observed vessels tended to have longer trip distances, fish at greater depths, and fished 
farther offshore than unobservable vessels. This may be explained by the fact that there are more 
periodically observed vessels than unobservable vessels and more of those vessels tend to have greater 
capacities and more engine horsepower. The difference in SST at the trip and set level between the vessel 
groups and seasons had very low variability. 
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Discussion 

A foundational aspect of partial coverage fishery observer programs is the assumption that sampling is 
sufficient to represent the full landscape of behaviors in a system (e.g., Pella & Geiger 2009). In 
traditional statistical designs, sample size power analyses typically benefit from the assumption that 
processes or individuals being sampled are either unaware or unconcerned with the fact that they are part 
of a study; this leads to little concern that subjects may bias the outcome of the results. However, in 
fisheries, the subjects (fishermen) being sampled may have perverse incentives to behave differently 
when they are observed versus unobserved. This is especially true when putative measures may result for 
some behaviors (e.g., exceeding bycatch quotas). We undertook a comprehensive and novel data-driven 
approach to examine potential differences between observed and unobserved fishing. While previous 
studies have explored biases by comparing, for example, landed catch compositions from observed and 
unobserved trips (e.g., Babcock & Pikitch 2003; Benoit & Allard 2009), ours is the first study (to our 
knowledge) to quantify potential biases by coupling trip- and set-level catches and revenues with spatial, 
environmental, and operational characteristics of observed and unobserved trips. In doing so for the DGN 
fishery, we observed little statistical evidence of differences between observed and unobserved trips, 
neither for vessels that periodically carried observers nor for vessels that were never observed. 

The DGN fishery has been the target of numerous studies focused on environmentally-driven 
distributions of target and bycatch species. Soykan et al. (2014) used two decades of landings and ocean 
condition data to demonstrate the strong association between fishing locations and the expected spatial 
distributions of target species. Such strong relationships have led the DGN fishery to be a seminal case 
study for dynamic ocean management and environmentally-explicit species distribution models (e.g., 
Brodie et al., 2018; Eguchi et al., 2017; Hazen et al., 2018). The strength of these associations makes it 
unsurprising that we found few statistical differences between observed and unobserved behaviors. 
Moreover, because the target species for this fishery are pelagic and are influenced by more ephemeral 
conditions like water temperatures at the surface, species movements are more likely to cover a broad 
spatial range. The fidelity of target species to certain environmental conditions is illustrated by Figure 11, 
which demonstrates a small variance in the SST differences for observed and unobserved trips, but a high 
variance for spatial metrics like trip distance or distance from shore, suggesting that vessels traveled 
variable distances in search of less variable environments. These observations support the notion that the 
drivers of selecting fishing locations may have been relatively persistent, regardless of observer presence. 

While our particular results apply to only one fishery, we applied a framework for large-scale integrations 
of fishery-dependent and fishery-independent datasets within an operational database backend that 
facilitate an understanding of a broad landscape of potential set- and trip-level fishing behaviors. 
Moreover, while several studies have used VMS data to classify fishing and non-fishing behaviors using 
machine learning approaches (e.g., Russo et al., 2011; Joo et al., 2013; O’Farrell et al., 2017), this may be 
the first study to do so using boosted regression trees, expanding the set of tools with which to detect 
fishing events. However, despite having a robust database infrastructure with which to efficiently merge 
datasets from multiple sources (e.g., VMS, an observer program, landings records) for model 
development and behavioral inference, a great deal of manual quality control was still required before the 
machine learning vessel behavior models could be trained.  

Several data challenges typified the quality control and data management for this study. First, despite a 
requirement for vessels to transmit location data via VMS, several vessels’ VMS data were insufficient 
for analyses. Gaps and inconsistencies in VMS data have been reported previously to affect inference 
(e.g., Watson & Haynie 2016; Thoya et al., 2021) and in this case, some vessels lacked enough VMS data 
to match to any fishing activity (e.g., observer or landings data). A potential and unknown sampling bias 
may occur for such vessels. One theory would be that vessels that are less likely to reliably transmit data 
despite the VMS requirement might also be more likely to behave differently when unobserved. However, 
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such vessels represented a small component of our dataset (one to three vessels per year) and as 
previously noted, environmental conditions may serve as a more predictable driver of fishery behavior 
than observer or VMS coverage. An additional challenge in data integration was matching VMS data to 
human-recorded data fields like dates reported in logbooks or landing records. This challenge, also 
reported elsewhere (e.g., Bastardie et al., 2010; Watson et al., 2018) typically occurs when there are no 
landings records whose dates reasonably align with the automated time stamps generated by VMS data or 
the generally more meticulously-recorded time stamps from fishery observers.  

 Implications and Conclusions 

We have developed a system within an integrated database backend that would facilitate the broad 
implementation of multiple different aspects of our approach for fisheries with partial observer coverage 
and VMS data for the West Coast, Alaska, or Pacific Islands regions. We have presented a comprehensive 
analysis of trip- and set-level characteristics to explore potential differences between observed and 
unobserved trips. Benoit & Allard (2009) assert that to detect an “observer effect,” analysts should 
examine statistical differences in the amounts of target catch, bycatch, and fishing effort. However, many 
key species of concern (e.g. leatherback sea turtles) are only rarely caught in the DGN fishery. Thus, the 
amounts of bycatch or bycatch to target catch ratios were not a meaningful analysis to explore. Our 
approach however quantified a broader set of fishery metrics that enabled a more comprehensive 
assessment of the behaviors that characterized the observed and unobserved trips and vessels. Thus, while 
no approach can detect whether rare bycatch species were discarded at sea, our approach is at least more 
robust to understand whether the behaviors and spatial footprint of unobserved fishing are consistent with 
those that were observed. 
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Appendix I – Comprehensive DGN 

 
The stepwise process for creating the Comprehensive DGN VMS integrated dataset creating engineered 
features (Table I-a) is as follows: 

1. Create a database table with VMS data for vessels participating in the DGN fishery from 
September 2013 to January 2019. 

1. Create engineered fields such as average vessel speed, distance between points, average 
distance between current point, previous point, and subsequent point, distance from 
shore, etc. (Watson et al., 2018). 

2. Create value-added fields such as ‘is_fishing_speed’, ‘is_during_fishing_time’, 
‘is_fishing_sql’. 

3. Merge vessel characteristics from the USCG data (net tonnage, length, year built, etc). 

2. Merge observer data into the table by matching on vessel, date, and time. The merged observer 
data (daily set-by-set records) included date, time, and position (latitude and longitude) of the set 
start, set end, and begin haul events. 

3. Merge logbook data into the table by matching on vessel and date. The merged logbook data 
included date, location (CDFW block), net mesh size, target species, set type (drift or set). 

4. Merge landings data in the table by matching on vessel and date and create 
‘is_driftgillnet_fishery’.  

5. Add Geospatial Features with  ArcGIS Pro 

1. Define port polygons. 

2.  Label each VMS record with vessel activity (in port, at sea, depart port, arrive port). The 
‘in port’ activity was derived by assessing whether the vessel was within the defined port 
polygon. 

3. Merge bottom depth data for each position. 

4. Using ArcGIS Pro, create trips by linking the sequential ‘depart port’ to ‘arrive port’ 
activities by vessel, referred to as ‘GIS-defined trips’.   

6. Merge SST for each position using a PL/SQL procedure, which retrieved the SST data through 
the ERDDAP web service.  

1. Create Trip and Set data, apply fishing rules, validate data.  

7. Determine fishing and non-fishing events using classification models with data fields described in 
steps 2 - 9. Merge model results into ‘is_fishing_rfm’ and ‘is_fishing_gbc’, then verify sets 
(is_fishing_set).  

8. Identify true fishing trips (aka DGN trips) from GIS-defined VMS trips based on the ‘depart port’ 
and ‘arrive port’ events. Assign a sequential trip number (trip_num) and set number (set_num) for 
each verified trip and set.  
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Table I-a:  Engineered features defined for each VMS record 

Variable Description Procedure Use 

event_type In port, at sea, depart port, 
arrive port 

ArcGIS Determine 
fishing effort 
Mapping 

distance_from_shore Distance to nearest point on 
coast (m) 

ArgGIS Trip & set metrics 

port_distance Distance to nearest port (m) (Fig. 
1) 

ArgGIS Determine event 
types (depart port, 
arrive port, in port) 

distance_m Distance between current and 
previous vessel position (m) 

PL/SQL Classification 
model input 

distance_tplus1 Difference between subsequent 
‘distance_m’ and current 
‘distance_m’ (m) 

PL/SQL Classification 
model input 

distance_tneg1 Difference between current 
‘distance_m’ and previous 
‘distance_m’ (m)  

PL/SQL Classification 
model input 

distance_t5 Average of a 5-record moving 
window (current ‘distance_m’, two 
subsequent ‘distance_m’, and 
two previous ‘distance_m’) (m) 

PL/SQL Classification 
model input 

speed Speed between current and 
previous vessel position (m/min) 

PL/SQL Classification 
model input 

speed_tplus1 
 

Difference in vessel speed 
between current and subsequent 
record (m/min)  

PL/SQL Classification 
model input 

speed_tneg1 Difference in vessel speed 
between current and previous 
record (m/min) 

PL/SQL Classification 
model input 

speed_t5 Average of a 5-record moving 
window (current speed, two 
subsequent speeds, and two 
previous speeds) (m/min)  

PL/SQL Classification 
model input 

depth Bottom depth (m)  ArgGIS Classification 
model input 

daily_temperature Daily sea surface temperature  PL/SQL Classification 
model input 
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is_fishing_logbook_day Boolean variable denoting if VMS 
record occurred on a date 
recorded in the vessel logbook 

PL/SQL Determine 
fishing effort 
 

is_observed_ping Boolean variable denoting if VMS 
record occurred during an 
observed set retrieval. VMS 
records were matched to 
observer records on date, time, 
and vessel 

PL/SQL Determine 
fishing effort 
 

is_observed_trip Boolean variable denoting if an 
observer was onboard during the 
trip. VMS records were matched 
to observer records on date, time, 
vessel. 

PL/SQL Determine 
fishing effort 
 

is_fishing_speed Boolean denoting if speed < 
38.58 (m/min) or 1.25 knots1  

PL/SQL Determine 
fishing effort 
 

is_during_fishing_time Boolean variable denoting pings 
from 3:00 PM to 8:00 AM 

PL/SQL  Determine 
fishing effort 

is_fishing_sql is_during_fishing_time + 
is_fishing_speed = 2 AND 
event_type = ‘at sea’ 

PL/SQL Determine 
fishing effort 
Classification 
model input 

is_driftgillnet_fishery Boolean variable denoting 
positive DGN fishing trip 
(is_observed_ping=1) OR 
(landing gear type = DGN) OR 
(is_fishing_logbook_day = 1)  

PL/SQL Trip & set metrics 

is_fishing_rfm Boolean variable denoting 
random forest classification 
model output (fishing or not 
fishing) for all defined ‘at sea’ 
event_types for DGN trips  

Python 
 

Classification 
model output 

is_fishing_gbc Boolean variable denoting 
gradient boosting classification 
model output (fishing or not 
fishing) for all defined ‘at sea’ 
event_types for DGN trips  

Python 
 

Classification 
model output 

is_fishing_set Boolean variable denoting a set 
is verified (is_during_fishing time 
= 1, event_type = ‘at sea, >=6 
pings from both is_fishing_rfm 
AND is_fishing_gbc) OR where 
ping rate was erratic 
(is_during_fishing time = 1, 
event_type = ‘at sea, >3 pings 

PL/SQL 
 

Determine 
fishing effort 
(ultimate 
determination) 
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AND >6 hours between first and 
last is_fishing_rfm/gbc 

is_set_end_point The last ping of is_fishing_set 
equivalent to when a vessel 
would begin to haul their net  

PL/SQL 
 

Mapping 
Trip & set metrics 
Bias analysis 

trip_num Sequential trip number used to 
identify for individual trips  

PL/SQL 
 

Trip & set metrics 
Bias analysis 

set_num Sequential set number based on 
trip number and order of sets as 
defined by the observer or as 
defined by classification models  

PL/SQL 
 

Trip & set metrics 
Bias analysis 

season Denotes season of trip (Season 
1, 1 May – 15 Nov or Season 2, 
16 Nov – 31 Jan). If the trip 
overlapped two seasons, season 
was based on the season that 
included the majority of fishing 
days. 

PL/SQL 
 

Bias analysis 

vessel_group Code denoting the vessel group 
that records belong to (excluded, 
unobservable, or observable) 

PL/SQL 
 

Bias analysis 

1Stohs & Sippel, 2017 
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Appendix II: Classification and Mixed-linear Effects Model Results 
Classification Model Results 

 
Figure II-a: ROC curve for the random forest and gradient boosting classification models on the testing data. 

 
LME Model results 
 
Table II-b. Trip summary statistics from the LME models for Season 1, May 1 - Nov 15 comparing unobservable 
and periodically observed vessels. 

LME  Coefficient P-value Lower CI Upper CI Trips 

Average Set Longitude 0.41 0.340 -0.43 1.25 136 

Average Set Latitude 0.85 0.573 -2.10 3.80 136 

Average Set Sea Surface Temperature -4.12 0.141 -9.60 1.36 136 

Trip Duration 30.40 0.122 -8.14 68.93 136 

Trip Distance 53.04 0.007 14.59 91.49 136 

Effort 18.67 0.383 -23.30 60.64 136 

Proportion of Trip Fishing -15.36 0.155 -36.53 5.80 136 
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Average Set Distance from Shore 39.05 0.013 8.27 69.83 136 

Average Set Depth 36.98 0.012 8.03 65.93 136 

Ex-vessel Revenue 18.37 0.622 -54.59 91.32 136 

RPUE 4.93 0.833 -40.77 50.62 136 

Catch 40.62 0.249 -28.38 109.62 136 

CPUE 24.25 0.278 -19.58 68.09 136 

 
Table II-c. Trip summary statistics from the LME models for season 2, November 15 - January 31, comparing 
unobservable and periodically observed vessels. 

LME  Coefficient P-value Lower CI Upper CI Trips 

Average Set Longitude -0.07 0.791 -0.57 0.43 228 

Average Set Latitude -0.19 0.724 -1.25 0.87 228 

Average Set Sea Surface Temperature 0.67 0.695 -2.68 4.03 228 

Trip Duration 2.48 0.901 -36.63 41.59 228 

Trip Distance 15.29 0.423 -22.14 52.72 228 

Effort 7.02 0.693 -27.80 41.84 228 

Proportion of Trip Fishing -2.66 0.719 -17.14 11.83 228 

Average Set Distance from Shore 3.54 0.690 -13.87 20.94 228 

Average Set Depth 14.99 0.194 -7.63 37.60 228 

Ex-vessel Revenue -0.82 0.974 -50.43 48.78 228 

RPUE -7.52 0.770 -57.82 42.78 228 

Catch 7.24 0.784 -44.50 58.99 228 

CPUE 3.37 0.869 -36.62 43.35 228 

 
Table II-d. Trip summary statistics from the LME models for Season 1, May 1 - Nov 15, comparing unobserved 
trips versus observed trips from periodically observed vessels. 

LME  Coefficient P-value Lower CI Upper C Trips 

Average Set Longitude 0.12 0.755 -0.66 0.91 79 

Average Set Latitude -1.54 0.391 -5.06 1.98 79 

Average Set Sea Surface Temperature -1.51 0.447 -5.41 2.38 79 

Trip Duration 11.99 0.280 -9.76 33.74 79 
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Trip Distance 6.42 0.612 -18.37 31.20 79 

Effort 14.66 0.222 -8.86 38.17 79 

Proportion of Trip Fishing 8.67 0.269 -6.71 24.06 79 

Average Set Distance from Shore 18.89 0.125 -5.24 43.02 79 

Average Set Depth 23.42 0.034 1.82 45.02 79 

Ex-vessel Revenue 14.42 0.561 -34.24 63.08 79 

RPUE 3.76 0.869 -40.75 48.26 79 

Catch 17.91 0.424 -26.03 61.86 79 

CPUE 4.38 0.823 -33.97 42.73 79 

 
Table II-e. Trip summary statistics from the LME models for Season 2, November 15 - January 31, comparing 
unobserved trips versus observed trips from periodically observed vessels. 

LME  Coefficient P-value Lower CI Upper CI Trips 

Longitude -0.22 0.230 -0.57 0.14 173 

Latitude -0.39 0.419 -1.35 0.56 173 

Sea Surface Temperature 0.14 0.888 -1.83 2.11 173 

Trip Duration 11.76 0.254 -8.45 31.96 173 

Trip Distance 11.72 0.293 -10.10 33.54 173 

Effort 14.27 0.184 -6.77 35.32 173 

Proportion of Trip Fishing 2.01 0.720 -8.97 12.99 173 

Distance from Shore 4.83 0.578 -12.18 21.84 173 

Depth -7.44 0.329 -22.36 7.49 173 

Ex-vessel Revenue 10.32 0.578 -26.02 46.65 173 

RPUE -4.93 0.765 -37.21 27.35 173 

Catch 7.982806 0.645215 -25.999251 41.964863 173 

CPUE -7.537897 0.614912 -36.905354 21.82956 173 

 
Table II-f. Trip summary statistics from the LME models for Season 1, May 1 - November 15, comparing sets made 
by unobservable versus periodically observed vessels. 

LME  Coefficient P-value Lower CI Upper CI Sets 

Longitude 0.53 0.156 -0.20 1.27 654 
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Latitude 0.79 0.522 -1.62 3.19 654 

Sea Surface Temperature -4.70 0.068 -9.75 0.36 654 

Soak Time 9.13 0.219 -5.44 23.69 654 

Distance from Shore 38.17 0.026 4.52 71.83 654 

Depth 50.57 0.002 18.92 82.21 654 

 

Table II-g. Trip summary statistics from the LME models for Season 2, November 15 - January 31, comparing sets 
made by unobservable versus periodically observed vessels. 

LME  Coefficient P-value Lower CI Upper CI Sets 

Longitude 0.21 0.556 -0.48 0.89 1130 

Latitude 0.28 0.720 -1.23 1.79 1130 

Sea Surface Temperature -0.80 0.660 -4.38 2.77 1130 

Soak Time -5.70 0.453 -20.58 9.18 1130 

Distance from Shore 15.10 0.122 -4.05 34.24 1130 

Depth 28.10 0.045 0.65 55.55 1130 

 
Table II-h. Trip summary statistics from the LME models for Season 1, May 1 - November 15, comparing 
unobserved and observed sets made by periodically observed vessels. 

LME  Coefficient P-value Lower CI Upper C Sets 

Longitude 0.04 0.824 -0.32 0.40 396 

Latitude -1.12 0.189 -2.79 0.55 396 

Sea Surface Temperature -1.02 0.286 -2.90 0.86 396 

Soak Time 11.85 0.014 2.42 21.28 396 

Distance from Shore 10.26 0.095 -1.77 22.30 396 

Depth 16.61 0.010 3.90 29.33 396 

 
Table II-i. Trip summary statistics from the LME models for Season 2, November 15 - January 31, comparing 
unobserved and observed sets made by periodically observed vessels. 

LME  Coefficient P-value Lower CI Upper CI Sets 

Longitude -0.17 0.095 -0.37 0.03 859 

Latitude -0.08 0.751 -0.60 0.44 859 

Sea Surface Temperature 0.98 0.021 0.15 1.82 859 
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Soak Time 15.39 <<0.001 9.25 21.53 859 

Distance from Shore -8.68 0.025 -16.27 -1.09 859 

Depth -4.79 0.243 -12.81 3.24 859 
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