Agenda Item G.1.a Supplemental CPSMT PPT 1 September 2020

# Coastal Pelagic Species Management Team Presentation on the Pacific Sardine Rebuilding Plan

## **OUTLINE**

## •Historical Perspective

### • Modeling

## • CPSMT Recommendations and Rationale

### **Reconstruction of Historical Sardine Biomass**

modified from Baumgartner et al. 1992 (CalCOFI Reports) to remove anchovy



Year

### **Discussion – (slide presented by Dr. Kevin Hill to SSC)**

- Long-term 'equilibrium' conditions do not exist for CPS (Baumgartner et al. 1992), so long-term projections are not realistic;
- Sardine will rebound once environmental drivers favor recruitment/survival;
- No environmental data exists to project the population forward for decades;
- Steepness caveats:
  - Steepness in SS based on only 14 paired estimates; *h* is poorly estimated, so is fixed at a low value for assessment purposes;
  - Steepness might be lower during poor environmental conditions, but steepness in Clupeiformes is generally considered to be much higher (e.g. *h*=0.72, Thorson et al.). Likelihood profile/fits for *h* could also be due to SS model misspecification.
  - Steepness profile (median h=0.4) locks productivity into a low state indefinitely;
- Projections assume that 100% of ABC is taken not realistic given recent catch history

### **Inclusion of uncertainty**

- High recruitment variability ( $\sigma R = 1.2$ )
- Two productivity 'states of nature' considered:
  - $SB_0$  based on recruits from 2005-18 and 2010-18
- Uncertainty in Mexico catch: constant tonnage vs. rate
- Additional uncertainty in spawner-recruit calculations: Profiled a range of Beverton-Holt steepness parameters (h=0.30 to 0.80)

### **Rebuilding calculations: Definition of** *SB*<sub>0</sub>

#### Figure 4. Virgin spawning biomass $(SB_0)$ for the two states of nature.



#### **Rebuilding calculations: Definition of rebuilt**

- Stock is deemed 'rebuilt' when there is a greater than 50% probability of the stock achieving  $SB_{MSY}$ .
- $SB_{MSY} = SB_0 * 0.365$  (the target depletion level)
- Use of multiple recruitments to provide a range of  $SB_0$  values results in a range of rebuilding targets ( $SB_{MSY}$ ) for each simulation.

# Table 4. MSY references points and relative probabilities over the profiled range of<br/>steepness for two productivity states of nature.

|           |               | SE                                      | <b>0</b> (2005-18)     |                  |             |           |               | SB                                     | 0(2010-18)            |                   |             |
|-----------|---------------|-----------------------------------------|------------------------|------------------|-------------|-----------|---------------|----------------------------------------|-----------------------|-------------------|-------------|
|           |               | Median                                  | $SB_{\rm MSY}$         | Target           | Relative    |           |               | Median                                 | SB <sub>MSY</sub>     | Target            | Relative    |
| Steepness | $E_{\rm MSY}$ | Catch (mt)                              | (mt)                   | Depletion        | Probability | Steepness | $E_{\rm MSY}$ | Catch (mt)                             | (mt)                  | Depletion         | Probability |
| 0.30      | 0.075         | 16,112                                  | 162,286                | 0.42983          | 19%         | 0.30      | 0.075         | 4,465                                  | 44,975                | 0.43062           | 19%         |
| 0.35      | 0.110         | 22,791                                  | 155,613                | 0.41213          | 17%         | 0.35      | 0.110         | 6,307                                  | 43,066                | 0.41233           | 17%         |
| 0.40      | 0.150         | 28,880                                  | 143,687                | 0.38057          | 15%         | 0.40      | 0.150         | 7,990                                  | 39,751                | 0.38059           | 15%         |
| 0.45      | 0.190         | 34,538                                  | 134,826                | 0.35710          | 13%         | 0.45      | 0.190         | 9,554                                  | 37,296                | 0.35710           | 13%         |
| 0.50      | 0.230         | 39,897                                  | 127,896                | 0.33870          | 11%         | 0.50      | 0.230         | 11,037                                 | 35,379                | 0.33870           | 11%         |
| 0.55      | 0.280         | 45,058                                  | 117,800                | 0.31200          | 9%          | 0.55      | 0.280         | 12,464                                 | 32,587                | 0.31200           | 9%          |
| 0.60      | 0.330         | 50,109                                  | 110,394                | 0.29240          | 7%          | 0.60      | 0.330         | 13,861                                 | 30,538                | 0.29240           | 7%          |
| 0.65      | 0.390         | 55,125                                  | 101,953                | 0.27000          | 5%          | 0.65      | 0.385         | 15,249                                 | 28,588                | 0.27370           | 5%          |
| 0.70      | 0.455         | 60,198                                  | 94,656                 | 0.25070          | 3%          | 0.70      | 0.455         | 16,652                                 | 26,184                | 0.25070           | 3%          |
| 0.75      | 0.535         | 65,423                                  | 86,664                 | 0.22950          | 1%          | 0.75      | 0.535         | 18,098                                 | 23,974                | 0.22950           | 1%          |
| 0.80      | 0.640         | 70,942                                  | 77,650                 | 0.20570          | 0%          | 0.80      | 0.640         | 19,624                                 | 21,480                | 0.20570           | 0%          |
|           |               | $SB_0 =$                                | 377,567                | 0.36500 <        | <-Wtd Value |           |               | $SB_0 =$                               | 104,445               | 0.36500           | <-Wtd Value |
|           | Avera         | ge $SB_{MSY} =$                         | 137,812                |                  |             |           | Avera         | ge $SB_{MSY} =$                        | 38,122                |                   |             |
|           | Media         | an <i>SB</i> <sub>MSY</sub> =<br>Range: | 116,374 m<br>28,279 to | nt<br>586,221 mt |             |           | Media         | n <i>SB</i> <sub>MSY</sub> =<br>Range: | 28,885 m<br>12,720 to | nt<br>o 166,256 m | ıt          |

# Table 4. MSY references points and relative probabilities over the profiled range of steepness for two productivity states of nature.

|                     |               | SE              | 0(2005-18)     |            |             |
|---------------------|---------------|-----------------|----------------|------------|-------------|
|                     |               | Median          | $SB_{\rm MSY}$ | Target     | Relative    |
| Steepness           | $E_{\rm MSY}$ | Catch (mt)      | (mt)           | Depletion  | Probability |
| 0.30                | 0.075         | 16,112          | 162,286        | 0.42983    | 19%         |
| 0.35                | 0.110         | 22,791          | 155,613        | 0.41213    | 17%         |
| 0.40                | 0.150         | 28,880          | 143,687        | 0.38057    | 15%         |
| 0.45                | 0.190         | 34,538          | 134,826        | 0.35710    | 13%         |
| 0.50                | 0.230         | 39,897          | 127,896        | 0.33870    | 11%         |
| 0.55                | 0.280         | 45,058          | 117,800        | 0.31200    | 9%          |
| 0.60                | 0.330         | 50,109          | 110,394        | 0.29240    | 7%          |
| 0.65                | 0.390         | 55,125          | 101,953        | 0.27000    | 5%          |
| 0.70                | 0.455         | 60,198          | 94,656         | 0.25070    | 3%          |
| 0.75                | 0.535         | 65,423          | 86,664         | 0.22950    | 1%          |
| 0.80                | 0.640         | 70,942          | 77,650         | 0.20570    | 0%          |
|                     |               | $SB_0 =$        | 377,567        | 0.36500 <- | Wtd Value   |
|                     | Avera         | ge $SB_{MSY}$ = | 137,812        |            |             |
| Median $SB_{MSY} =$ |               | 116,374 m       | ıt             |            |             |

Range: 28,279 to 586,221 mt



#### **Rebuilding calculations: Alternative harvest strategies**

- Rebuilding analyses explored three US harvest alternatives, with two approaches to modeling Mexico's harvest: constant catch and constant rate.
- US rate = 0.18 (Alt 1); no future data to inform  $E_{MSY}$ , so static value from the MSE was used.
- US rate = 0.00 (Alt 2); zero take.
- US rate = 0.05 (Alt 3) was the Council's request for a reduced harvest scenario.

For the constant Mexico harvest rate runs, strategies were: Alt 1: Total E=0.2202 (where US E=0.1216 and Mexico E=0.0986) Alt 2: Total E=0.0986 (where US E=0.0000 and Mexico E=0.0986) Alt 3: Total E=0.1486 (where US E=0.0500 and Mexico E=0.0986)

#### Figure 9. Projected spawning stock biomass (mt) for $SB_{0(2005-18)}$ scenario.



U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service | modified from slide presented to SSC by Dr. Kevin Hill

#### Figure 7b. Probabilities of recovery to the 150,000 mt Cutoff threshold. See also Tables 8 and 9.



U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service | modified from slide presented to SSC by Dr. Kevin Hill

### **CPSMT Recommendations for Sardine Rebuilding Plan**

- Alternative 1 Status Quo
  - Rebuilding Target = 150,000 mt 1+biomass
  - $T_{min} = 12$  years (based on Rebuilder model projection for zero U.S. fishing rate)
  - $T_{max} = 24$  years (based on NS 1 guidelines method of doubling  $T_{min}$ )

• 
$$T_{target} = 14$$
 years

# **Rationale for Recommendations**

- Based on more than just modeling results
  - Historical information on sardine abundance
  - Historical information on range of sardine recruitment and population dynamics
  - Historical information on sardine fishery
  - An understanding of the modeling, its assumptions, and uncertainty

# **Rationale for Recommendations**

- Based on more than just modeling results
  - Examination of how to utilize modeling results for real world decision making
  - Socio-economics of fishing industry and communities it supports
    - Both other alternatives may have substantial negative effects
  - Under status quo management average recent harvest =  $\sim$ 2,200 mt
    - Only 472 mt of which are NSP
    - Very different from what was modeled

# 150,000 mt 1+biomass Rebuilding Target

- Modeling results for  $SB_{msy}$  provide a very wide range of values
- The median value for  $SB_{msy}$  was 116,374 mt
- The 'equivalent' of 150,000 mt of 1+biomass is 121,650 mt SB
  - Note that this SB estimate is based on data output from the 2020 assessment
  - Similar to median SB<sub>msy</sub> estimate
- $SB_{msy}$  is a moving target that depends on stock productivity

# 150,000 mt 1+biomass Rebuilding Target

- 1+biomass is the same metric as both the overfished threshold and the results reported by annual stock assessments
  - Conversion of 1+biomass to SB is not simple or straightforward
- Alignment should facilitate tracking progress toward rebuilding
  Helps avoid confusion over different biomass metric/units
- 150,000 mt 1+biomass is reasonable analog to  $B_{msy}$  for rebuilding
  - Equivalent SB is slightly above median SB<sub>msy</sub> for model deemed most informative for prevailing environmental conditions, therefore represents a rebuilding level consistent with producing MSY
  - Established level for which a target fishery can occur

# **Timelines for Rebuilding**

- Historical information suggests it may take some time before the stock rebounds and environmental conditions will be a primary driver
- U.S. management actions are implemented only in the U.S.
  - There are no international agreements for this transboundary stock
- $T_{min}$  is based on median result from zero U.S. fishing model
- $T_{max}$  is based on the doubling  $T_{min}$  method provided in NS 1 guidelines

# **Timelines for Rebuilding**

- Status quo U.S. harvest of NSP has averaged 0.6% of 1+biomass
- T<sub>target</sub> of 14 years is halfway between median zero fishing rate and U.S. 5% fishing rate model projection times for rebuilding
- CPSMT examined two other model runs
  - Constant rate U.S. harvest of 2,200 mt/year Rebuilder model = 17 years
  - Compound interest rate for more productive stock (30% annual increase) = 8 years

### **CPSMT Conclusions and Recommendations for Sardine Rebuilding Plan**

• Alternative 1 – Status Quo

• 
$$T_{min} = 12$$
 years

- $T_{max} = 24$  years
- $T_{target} = 14$  years
- Rebuilding Target = 150,000 mt 1+biomass

# Questions?

Photo courtesy of NOAA