Agenda Item I.4.a **Supplemental NMFS Presentation 1** September 2019

Agenda Item I.4

National Marine Fisheries Service (NMFS) Report on Preliminary Draft EIS for Authorization of Deep-Set Buoy Gear

September 16, 2019

SANC AND ATMOSPHERIC

NATIONAL

NOAA

Region

Overview

- Introduction
- Alternatives
- Affected Environment
- Impacts

OAA FISHERIES

- Sections to be Completed for Draft EIS
- Supplemental Report on Socioeconomic Impacts
- Addressing SSC Review of Biological Analysis

Introduction

- NMFS has prepared a preliminary draft EIS (PDEIS) to analyze impacts of the Council's ROA for authorizing DSBG under the HMS FMP
- Description of the Proposed Action
- Purpose and Need
- Proposed Action Area
- PDEIS also includes a preliminary socioeconomic analysis

Alternatives

- Alternative 1: No Action
- Alternative 2: Open Access
 - Gear Description and Tending Requirements
 - Deployment and Retrieval requirements
- Alternative 3: Limited Entry in the SCB, open access elsewhere
 - 5 permit issuance options
 - 5 qualifying criteria options

Affected Environment

- All federal waters (3-200nm from shore) off California and Oregon
- Affected environment includes species in the action area, essential fish habitat & critical habitat, and the socioeconomic environment
- Species are categorized according to their status (target fish, non-target fish, prohibited fish, and protected species) and relationship to the Proposed Action (likely to be affected, may be affected, not likely to be affected)

- Species <u>likely</u> to be affected
 - Based on those which have been caught so far in DSBG EFP trials

	2015	2016	2017	2018	2019*	TOTAL
Swordfish	136	474	556	640	19	1825
Bigeye thresher shark	66	57	35	35	0	193
Pelagic thresher shark	0	0	0	2	0	2
Common thresher shark	0	0	0	1	0	1
Shortfin mako shark	0	1	0	2	0	3
Blue shark	3	4	2	3	0	12
Common mola	0	0	0	1	0	1
Opah	2	1	0	0	0	3
Escolar	4	4	3	4	0	15
Humboldt squid	0	0	1	0	0	1
Giant squid	0	0	1	0	0	1
Yelloweye rockfish	0	0	1	0	0	1
Northern elephant seal	1	0	0	1	0	2
Loggerhead sea turtle	0	0	0	1	0	1
Total Days Fished	132	280	326	606	30	1374
	* Only includes January & February 2019					

Table 3-1. Summary of Reported DSBG Trials Catch, in Number of Individuals

- Species which <u>may</u> be affected are included based on technical discussions with NMFS Protected Resources Division (PRD).
 - These species dive deep and/or feed on squid like those used as bait in DSBG fishing, have been documented entangled by other fisheries that employ vertical lines, or are ESA-listed pinnipeds that have been caught by longline fishing near the action.
- Prohibited fish species, and other HMS species in the action area which are overfished or subject to overfishing, are not likely to be affected by the Proposed Action

- Essential Fish Habitat (EFH)
 - EFH consists of the epipelagic and mesopelagic zones of neritic and oceanic waters
 - The Proposed Action is not likely to affect EFH
- Critical Habitat
 - The Proposed Action is not likely to affect Steller sea lion critical habitat because DSBG fishing is not likely to occur within 3,000 feet of rookeries
 - The Proposed Action is also not likely to affect leatherback sea turtle critical habitat, as it is highly unlikely that jellyfish bycatch would occur

- Socioeconomic Environment
 - Other fisheries in or near the action area
 - DSBG EFP fishing trials
 - Other swordfish fisheries (DGN, harpoon, longline)
 - Recreational fisheries
 - The price of DSBG caught swordfish is a key indicator of socioeconomic impacts
 - Evidence from landings data suggest that DSBG price is higher on average than the price of DGN or longline, comparable to the price of harpoon
 - Also some evidence that DSBG price tends to fall over the course of a fishing season
 - Price analysis suggests a small but negative impact on DSBG price as the quantity of DSBG landings increases
 - Fishers and fishing communities
 - Processors, restaurants and consumers

Impacts

- No Action Alternative
 - No biological or socioeconomic impacts expected relative to baseline
 - Council may continue to recommend EFPs

Impacts

- Alternative 2 (Open Access)
 - Biological Impacts
 - Most likely swordfish catch in a given year is 6,635 individuals
 - Impacts not likely to affect species at a population level
 - Most likely number of protected species interactions in a given year is 5 northern elephant seals and 0 loggerhead sea turtles
 - Socioeconomic Impacts
 - Expected average swordfish price is \$5.58 per pound
 - Estimated \$5.7 million in total annual revenues, if swordfish CPUE remains at the levels seen so far in EFP trials

Impacts

- Alternative 3 (Limited Entry)
 - Biological Impacts
 - Most likely swordfish catch in a given year is 4,030 individuals
 - Impacts not likely to affect species at a population level
 - Most likely number of protected species interactions in a given year is 2 northern elephant seals and 0 loggerhead sea turtles
 - Socioeconomic Impacts
 - Expected average swordfish price is \$5.67 per pound
 - Estimated \$3.5 million in total annual revenues, if swordfish CPUE remains at the levels seen so far in EFP trials

Sections to be Completed for Draft EIS

- Cumulative Impacts
- Applicability with Other Laws & Regulations
- List of Acronyms, Indexes, etc.

Supplemental Report on Socioeconomic Impacts

- Analyze a scenario where CPUE declines with increasing effort
- From 2017 to 2018, active vessels rose from 5 to 26, and swordfish CPUE declined from about 1.7 per day to 1.1 per day
- Findings indicate that, if CPUE remains at 2018 levels after authorization, total revenues may be around 24% lower than if we see the average CPUE from all DSBG EFP fishing
- Profitability at the vessel level may constrain participation

Addressing SSC Review of Biological Analysis

- NMFS has been working on a number of sensitivity analyses based on the recommendations of the Council's SSC from their review of our methodology in June.
- Overall, no drastic change in the results presented in the PDEIS resulting from these sensitivity analyses. However, some of the approaches proposed by the SSC do reflect a higher degree of uncertainty in the predictions
 - Use of negative binomial model for swordfish
 - Negative binomial model fits source data better
 - Resulting annual catch predictions have a wider range, lower median and mode, and similar mean
 - Using distribution of effort estimates rather than a point estimate introduces more uncertainty in the predictions

