# Status of petrale sole (*Eopsetta jordani*) along the U.S. west coast in 2019

Chantel R. Wetzel<sup>1</sup>

<sup>1</sup>Northwest Fisheries Science Center, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, Washington 98112

August 2019

#### DRAFT SAFE

Disclaimer: This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by NOAA Fisheries. It does not represent and should not be construed to represent any agency determination or policy. This report may be cited as:

Wetzel, C.R. 2019. Status of petrale sole (*Eopsetta jordani*) along the U.S. west coast in 2019. Pacific Fishery Management Council, 7700 Ambassador Place NE, Suite 200, Portland, OR 97220.

# Status of petrale sole (*Eopsetta jordani*) along the U.S. west coast in 2019

# Contents

| E        | xecut      | tive Summary                                                                                         | i           |
|----------|------------|------------------------------------------------------------------------------------------------------|-------------|
|          | Stoc       | k                                                                                                    | i           |
|          | Lan        | dings                                                                                                | i           |
|          | Data       | a and Assessment                                                                                     | iii         |
|          | Upd        | ated Data                                                                                            | iii         |
|          | Stoc       | k Biomass                                                                                            | iv          |
|          | Reci       | $\operatorname{ruitment}$                                                                            | rii         |
|          | Exp        | loitation Status                                                                                     | ix          |
|          | Ecos       | system Considerations                                                                                | ii          |
|          | Refe       | erence Points                                                                                        | ii          |
|          | Mar        | agement Performance                                                                                  | iii         |
|          | Unr        | esolved Problems and Major Uncertainties $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots x$ | iv          |
|          | Deci       | ision Table $\ldots$                                                                                 | v           |
|          | Rese       | earch and Data Needs                                                                                 | <i>v</i> ii |
| 1        | <b>T</b> 4 |                                                                                                      | -           |
| T        | Intr       | oduction                                                                                             | T           |
|          | 1.1        | Basic Information                                                                                    | 1           |
|          | 1.2        | Life History                                                                                         | 2           |
|          | 1.3        | Historical and Current Fishery Information                                                           | 2           |
|          | 1.4        | Summary of Management History and Performance                                                        | 3           |
|          | 1.5        | Fisheries off Canada and Alaska                                                                      | 5           |
| <b>2</b> | Dat        | a                                                                                                    | 5           |
|          | 2.1        | Fishery-Independent Data                                                                             | 6           |
|          |            | 2.1.1 NWFSC West Coast Groundfish Bottom Trawl Survey                                                | 6           |
|          |            | 2.1.2 AFSC/NWFSC West Coast Triennial Shelf Survey                                                   | 7           |
|          | 2.2        | Fishery-Dependent Data                                                                               | 9           |

|   |                | 2.2.1  | Commercial Fishery Landings                                                        | 9  |
|---|----------------|--------|------------------------------------------------------------------------------------|----|
|   |                | 2.2.2  | Discards                                                                           | 10 |
|   |                | 2.2.3  | Foreign Landings                                                                   | 11 |
|   |                | 2.2.4  | Historical Commercial Catch-Per-Unit Effort/Logbooks                               | 11 |
|   |                | 2.2.5  | Fishery Length and Age Data                                                        | 11 |
|   | 2.3            | Biolog | gical Data                                                                         | 12 |
|   |                | 2.3.1  | Natural Mortality                                                                  | 12 |
|   |                | 2.3.2  | Maturation and Fecundity                                                           | 13 |
|   |                | 2.3.3  | Sex Ratio                                                                          | 14 |
|   |                | 2.3.4  | Length-Weight Relationship                                                         | 14 |
|   |                | 2.3.5  | Growth (Length-at-Age)                                                             | 14 |
|   |                | 2.3.6  | Ageing Precision and Bias                                                          | 15 |
|   |                | 2.3.7  | Environmental and Ecosystem Data                                                   | 15 |
| 3 | $\mathbf{Ass}$ | essmei | nt Model                                                                           | 15 |
|   | 3.1            | Histor | ry of Modeling Approaches Used for This Stock                                      | 15 |
|   | 3.2            | Gener  | al Model Specifications and Assumptions                                            | 16 |
|   |                | 3.2.1  | Changes Between the 2013, the 2015 Update, and the Current Update Assessment Model | 16 |
|   |                | 3.2.2  | Summary of Fleets and Areas                                                        | 17 |
|   |                | 3.2.3  | Priors                                                                             | 17 |
|   |                | 3.2.4  | Data Weighting                                                                     | 18 |
|   |                | 3.2.5  | Estimated and Fixed Parameters                                                     | 18 |
|   |                | 3.2.6  | Key Assumptions and Structural Choices                                             | 18 |
|   |                | 3.2.7  | Bridging Analysis                                                                  | 19 |
|   |                | 3.2.8  | Convergence                                                                        | 19 |
|   | 3.3            | Base I | Model Results                                                                      | 19 |
|   |                | 3.3.1  | Parameter Estimates                                                                | 19 |
|   |                | 3.3.2  | Fits to the Data                                                                   | 21 |
|   |                | 3.3.3  | Population Trajectory                                                              | 22 |
|   |                | 3.3.4  | Sensitivity Analyses                                                               | 23 |
|   |                | 3.3.5  | Retrospective Analysis                                                             | 24 |
|   |                | 3.3.6  | Added Data Analysis                                                                | 24 |

|    | 3.3.7      | Historical Analysis                        | . 25        |
|----|------------|--------------------------------------------|-------------|
|    | 3.3.8      | Likelihood Profiles                        | . 25        |
|    | 3.3.9      | Reference Points                           | . 26        |
| 4  | Harvest P  | rojections and Decision Tables             | 26          |
| 5  | Regional 1 | Management Considerations                  | 27          |
| 6  | Research   | Needs                                      | 27          |
| 7  | Acknowle   | dgments                                    | 27          |
| 8  | Reference  | S                                          | 29          |
| 9  | Tables     |                                            | 34          |
| 10 | Figures    |                                            | 69          |
| 11 | Appendix   | A. Detailed Fit to Length Composition Data | 186         |
| 12 | Appendix   | B. Detailed Fit to Age Composition Data    | 208         |
| 13 | Appendix   | C. List of Auxiliary Files Available       | <b>22</b> 4 |

# **Executive Summary**

## Stock

This assessment reports the status of the petrale sole (*Eopsetta jordani*) off the U.S. coast of California, Oregon, and Washington using data through 2018. While petrale sole are modeled as a single stock, the spatial aspects of the coast-wide population are addressed through geographic separation of data sources/fleets where possible. There is currently no genetic evidence suggesting distinct biological stocks of petrale sole off the U.S. coast. The limited tagging data available to describe adult movement suggests that petrale sole may have some homing ability for deep water spawning sites but also have the ability to move long distances between spawning sites, inter-spawning season, as well as seasonally.

# Landings

While records do not exist, the earliest catches of petrale sole are reported in 1876 in California and 1884 in Oregon. In this assessment, fishery removals have been divided among 4 fleets: 1) Winter North trawl, 2) Summer North trawl, 3) Winter South trawl, and 4) Summer South trawl. Landings for the North fleet are defined as fish landed in Washington and Oregon ports. Landings for the South fleet are defined as fish landed in California ports. Recent annual catches between 1981-2018 range between 755 and 3008 mt per year and the most recent year landings are shown in Table a. The landings are summarized into winter and summer fleets where winter is defined as November to February and summer running from March to October. Petrale sole are caught nearly exclusively by trawl fleets; non-trawl gears contribute only a small fraction of the catches across all years.

From the inception of the fishery through the war years, the vast majority of catches occurred between March and October (the summer fishery), when the stock is dispersed over the continental shelf. The post-World War II period witnessed a steady decline in the amount and proportion of annual catches occurring during the summer months (March-October). Conversely, petrale sole catch during the winter season (November-February), when the fishery targets spawning aggregations, has exhibited a steadily increasing trend since the 1940s. From the mid-1980s through the early 2000s, catches during the winter months were roughly equivalent to or exceeded catches throughout the remainder of the year, whereas during the past 10 years, the relative catches during the winter and summer have been more variable across years (Table a). Petrale sole are a desirable market species and discarding has historically been low.

| Year | Winter | Summer | Winter | Summer | Total    |
|------|--------|--------|--------|--------|----------|
|      | (N)    | (N)    | (S)    | (S)    | Landings |
| 2009 | 847    | 642    | 470    | 250    | 2209     |
| 2010 | 264    | 292    | 78     | 121    | 755      |
| 2011 | 224    | 427    | 40     | 78     | 768      |
| 2012 | 410    | 494    | 124    | 108    | 1135     |
| 2013 | 513    | 1045   | 130    | 280    | 1967     |
| 2014 | 853    | 861    | 273    | 386    | 2373     |
| 2015 | 1040   | 1077   | 215    | 354    | 2686     |
| 2016 | 865    | 1168   | 237    | 235    | 2506     |
| 2017 | 1142   | 1271   | 201    | 393    | 3008     |
| 2018 | 957    | 1262   | 218    | 402    | 2840     |

Table a: Landings (mt) for the past 10 years for petrale sole by source.



Figure a: 'Landings of by the Northern and Southern winter and summer fleets off the U.S. west coast.

# **Data and Assessment**

This an update assessment for petrale sole, which was last assessed in 2013 and updated in 2015. This update assessment was conducted using the length- and age-structured modeling software Stock Synthesis (version 3.30.13). The coastwide population was modeled allowing separate growth and mortality parameters for each sex (a two-sex model) with the fishing year beginning on November 1 and ending on October 31. The fisheries are structured seasonally based on winter (November to February) and summer (March to October) fishing seasons due to the development and growth of the wintertime fishery, which began in the 1950s. In recent decades, wintertime catches have often exceed summertime catches. The fisheries are modeled as the Winter North and Summer North fleets, where the North includes both Washington and Oregon, and Southern Winter and Southern Summer encompasses California fisheries.

The model includes fishery data in the form of catches, discard rates and average weights, length- and age-frequency data, as well as standardized winter fishery catch-per-unit-effort (CPUE). Biological data are derived from both port and on-board observer sampling programs. The National Marine Fisheries Service (NMFS) AFSC/NWFSC West Coast Triennial Shelf Survey early (1980, 1983, 1986, 1989, 1992) and late period (1995, 1998, 2001, and 2004) and the NWFSC West Coast Groundfish Bottom Trawl Survey (2003-2018) relative biomass indices and biological sampling provide fishery independent information on relative trend and demographics of the petrale sole stock.

# Updated Data

The base assessment model structure is consistent with the 2013 assessment and the 2015 update, except as noted here. Modifications from the previous assessment model include:

- 1. Commercial catches (2015-2018 added);
- 2. Commercial length and age data (all years reprocessed, 2015-2018 added);
- 3. Observed discard rates, average weights, and lengths (2002-2017 reprocessed, 2014-2017 added);
- 4. AFSC/NWFSC West Coast Triennial Shelf Survey early and late indices of abundance and length composition data (1980-2004 reprocessed);
- 5. NWFSC West Coast Groundfish Bottom Trawl Survey index of abundance, length and age composition data (2003-2018 reprocessed, 2015-2018 added);
- 6. Model tuning to re-weight data using the McAllister and Iannelli approach (same approach applied in the 2013 assessment);

- 7. Length-weight relationship parameters estimated outside of the stock assessment model from the NWFSC West Coast Groundfish Bottom Trawl Survey data up to 2018 and input as fixed values;
- 8. The natural mortality prior for female and male fish was updated; and,
- 9. Model fitting using latest version of Stock Synthesis (SS v.3.30.13).

### **Stock Biomass**

Petrale sole were lightly exploited during the early 1900s, but by the 1950s, the fishery was well developed with the stock showing declines in biomass and catches (Figures a and b). The rate of decline in spawning biomass accelerated through the 1970s reaching minimums generally around or below 10% of the unexploited levels during the 1980s through the early 2000s (Figure c). The petrale sole spawning stock biomass is estimated to have increased in recent years due to reduced catches during rebuilding and in response to above average recruitment in 2006, 2007, and 2008. The 2019 estimated spawning biomass relative to unfished equilibrium spawning biomass is above the target of 25% of unfished spawning biomass, at 39.1% (~ 95% asymptotic interval:  $\pm 28.2\%$ -50.1%) (Table b).

| Year | Spawning Biomass | ~ 95%         | Estimated | ~ 95%         |
|------|------------------|---------------|-----------|---------------|
|      | (mt)             | Confidence    | Relative  | Confidence    |
|      |                  | Interval      | Spawning  | Interval      |
|      |                  |               | Biomass   |               |
| 2010 | 4227             | 3452 - 5002   | 0.127     | 0.087 - 0.166 |
| 2011 | 5378             | 4414 - 6342   | 0.161     | 0.111 - 0.211 |
| 2012 | 7205             | 5958 - 8452   | 0.216     | 0.150 - 0.281 |
| 2013 | 9488             | 7888 - 11087  | 0.284     | 0.199 - 0.369 |
| 2014 | 11433            | 9524 - 13341  | 0.342     | 0.241 - 0.443 |
| 2015 | 12691            | 10603 - 14778 | 0.380     | 0.270 - 0.490 |
| 2016 | 13206            | 11039 - 15374 | 0.395     | 0.283 - 0.508 |
| 2017 | 13519            | 11293 - 15745 | 0.405     | 0.292 - 0.518 |
| 2018 | 13365            | 11077 - 15653 | 0.400     | 0.289 - 0.511 |
| 2019 | 13078            | 10689 - 15467 | 0.391     | 0.282 - 0.501 |

Table b: Recent trend in estimated spawning biomass (mt) and estimated relative spawning biomass.



#### Spawning biomass (mt) with ~95% asymptotic intervals

Figure b: Estimated time-series of spawning biomass trajectory (circles and line: median; light broken lines: 95% credibility intervals) for the base assessment model.



#### %unfished with ~95% asymptotic intervals

Figure c: Estimated time-series of relative spawning biomass (depletion) (circles and line: median; light broken lines: 95% credibility intervals) for the base assessment model.

# Recruitment

Annual recruitment was treated as stochastic, and estimated as annual deviations from log-mean recruitment where mean recruitment is the fitted Beverton-Holt stock recruitment curve. The time-series of estimated recruitments shows a relationship with the decline in spawning biomass, punctuated by larger recruitments in 2006, 2007, and 2008 (Figure d). However, recruitment in recent years (2013 - 2017) is estimated to be less than the expected mean recruitment indicating an absence of strong incoming recruitment (Table c).

The five largest estimated recruitments estimated within the model (in ascending order) occurred in 2006, 1998, 1966, 2007, and 2008. The four lowest recruitments estimated within the model (in ascending order) occurred in 1986, 1992, 1987, and 2003.

Table c: Recent estimated trend in recruitment and estimated recruitment deviations determined from the base model. The recruitment deviations for 2018 and 2019 were fixed at zero within the model.

| Year | Estimated   | $\widetilde{}$ 95% Confidence | Estimated   | ~ 95% Confidence |
|------|-------------|-------------------------------|-------------|------------------|
|      | Recruitment | Interval                      | Recruitment | Interval         |
|      |             |                               | Devs.       |                  |
| 2010 | 12637       | 8002 - 19956                  | -0.134      | -0.446 - 0.177   |
| 2011 | 15344       | 9888 - 23810                  | -0.002      | -0.288 - 0.283   |
| 2012 | 22946       | 15296 - 34420                 | 0.339       | 0.097 - 0.581    |
| 2013 | 13483       | 8315 - 21863                  | -0.239      | -0.610 - 0.132   |
| 2014 | 13529       | 8178 - 22379                  | -0.261      | -0.660 - 0.138   |
| 2015 | 12792       | 7177 - 22801                  | -0.330      | -0.817 - 0.158   |
| 2016 | 16460       | 8550 - 31688                  | -0.102      | -0.674 - 0.469   |
| 2017 | 16517       | 7577 - 36006                  | -0.122      | -0.853 - 0.610   |
| 2018 | 19018       | 8362 - 43254                  | 0.000       | -0.784 - 0.784   |
| 2019 | 18972       | 8346 - 43127                  | 0.000       | -0.784 - 0.784   |



### Age-0 recruits (1,000s) with ~95% asymptotic intervals

Figure d: Time-series of estimated petrale sole recruitments for the base model with 95% confidence or credibility intervals.

### **Exploitation Status**

The relative spawning biomass of petrale sole was estimated to have dropped below the management target (25%) for the first time in 1965. The stock continued to decline and first fell below the minimum stock size threshold level of 12.5% in 1980 (although, at the time the management target and thresholds were not set at the current values of 25% and 12.5%). The relative spawning biomass remained around the threshold stock size until approximately 2010, with the stock reaching its lowest relative spawning biomass level in 1993 at 5.8%. In 2009 petrale sole was formally declared overfished. Fishing mortality rates sharply declined during the rebuilding period, relative to previous year rates, which exceeded the target (Figure e). After reduced harvests, the 2015 update stock assessment estimated the stock to have rebuilt to the management target (25%) in 2014. This update estimates that the relative spawning biomass exceeded 25% in 2013 with harvest rates in the most recent years remaining under of the target rate (Table d and Figures e and f).

| Year | $1\text{-}\mathrm{SPR}$ | $\sim 95\%$   | Exploitation | $\sim 95\%$   |
|------|-------------------------|---------------|--------------|---------------|
|      |                         | Confidence    | Rate         | Confidence    |
|      |                         | Interval      |              | Interval      |
| 2009 | 0.793                   | 0.724 - 0.861 | 0.232        | 0.190 - 0.273 |
| 2010 | 0.570                   | 0.469 - 0.670 | 0.075        | 0.060 - 0.091 |
| 2011 | 0.498                   | 0.399 - 0.597 | 0.051        | 0.041 - 0.061 |
| 2012 | 0.515                   | 0.419 - 0.612 | 0.061        | 0.049 - 0.072 |
| 2013 | 0.584                   | 0.491 - 0.677 | 0.092        | 0.076 - 0.108 |
| 2014 | 0.578                   | 0.485 - 0.670 | 0.103        | 0.085 - 0.120 |
| 2015 | 0.580                   | 0.489 - 0.672 | 0.110        | 0.092 - 0.129 |
| 2016 | 0.549                   | 0.458 - 0.640 | 0.102        | 0.085 - 0.119 |
| 2017 | 0.584                   | 0.495 - 0.673 | 0.122        | 0.102 - 0.143 |
| 2018 | 0.573                   | 0.484 - 0.662 | 0.119        | 0.098 - 0.140 |

Table d: Recent trend in spawning potential ratio 1-SPR and summary exploitation rate for age 3+ biomass for petrale sole.



Figure e: Estimated relative spawning potential ratio 1-SPR for the base model. One minus SPR is plotted so that higher exploitation rates occur on the upper portion of the y-axis. The management target is plotted as a red horizontal line and values above this reflect harvests in excess of the overfishing proxy based on the SPR30% harvest rate. The last year in the time-series is 2018.



Figure f: Phase plot of estimated 1-SPR(%) vs. relative spawning biomass (B/Btarget) for the base case model. The red circle indicates 2018 estimated status and exploitation for petrale sole.

### **Ecosystem Considerations**

Ecosystem factors have not been explicitly modeled in this assessment, but there are several aspects of the California current ecosystem that may impact petrale sole population dynamics and warrant further research. Castillo (1992) and Castillo et al. (1995) suggest that density-independent survival of early life stages is low and show that offshore Ekman transportation of eggs and larvae may be an important source of variation in year-class strength in the Columbia INPFC area. The effects of the Pacific Decadal Oscillation on California current temperature and productivity (Mantua et al. 1997) may also contribute to non-stationary recruitment dynamics for petrale sole. The prevalence of a strong late 1990s year-class for many West Coast groundfish species suggests that environmentally driven recruitment variation may be correlated among species with relatively diverse life history strategies. Although current research efforts along these lines are limited, a more explicit exploration of ecosystem processes may be possible in future petrale sole stock assessments if resources are available for such investigations.

### **Reference Points**

This update stock assessment estimates that the spawning biomass of petrale sole is above the management target. Due to reduced landings and a series of above average recruitments (2006, 2007, and 2008), an increasing trend in spawning biomass was estimated in the base model with a decline in the start of the year spawning biomass estimate in 2019. The estimated relative spawning biomass in 2019 is 39.1% (~ 95% asymptotic interval:  $\pm 28.2\%$ -50.1%), corresponding to an spawning biomass of 13,078 mt (~ 95% asymptotic interval: 10,689-15,467 mt) (Table e). Unfished age 3+ biomass was estimated to be 54,086.6 mt in the base model.

The target spawning biomass based on the biomass target  $(SB_{25\%})$  is 8,351.5 mt, with an equilibrium catch of 3,148.5 mt (Table e). Equilibrium yield at the proxy  $F_{MSY}$  harvest rate corresponding to  $SPR_{30\%}$  is 3,135.2 mt. Estimated MSY catch is at a 3,156.7 spawning biomass of 7,563.3 mt (22.6% relative spawning biomass).

| Quantity                                            | Estimate | ${\sim}2.5\%$ | ${\sim}97.5\%$ |
|-----------------------------------------------------|----------|---------------|----------------|
|                                                     |          | Confi-        | Confi-         |
|                                                     |          | dence         | dence          |
|                                                     |          | Interval      | Interval       |
| Unfished spawning biomass (mt)                      | 33405.9  | 27188.1       | 39623.7        |
| Unfished age $3+$ biomass (mt)                      | 54086.6  | 45524.9       | 62648.3        |
| Unfished recruitment (R0, thousands)                | 20361.1  | 12720.2       | 28002          |
| Spawning $biomass(2019 mt)$                         | 13077.7  | 10688.8       | 15466.6        |
| Relative spawning biomass (depletion) (2019)        | 0.391    | 0.282         | 0.501          |
| Reference points based on $SB_{25\%}$               |          |               |                |
| Proxy spawning biomass $(B_{25\%})$                 | 8351.5   | 6797          | 9905.9         |
| SPR resulting in $B_{25\%}$ (SPR <sub>B25\%</sub> ) | 0.285    | 0.26          | 0.31           |
| Exploitation rate resulting in $B_{25\%}$           | 0.182    | 0.163         | 0.2            |
| Yield with $SPR_{B25\%}$ at $B_{25\%}$ (mt)         | 3148.5   | 2887.6        | 3409.4         |
| Reference points based on SPR proxy for MSY         |          |               |                |
| Spawning biomass                                    | 8866.2   | 6954.6        | 10777.7        |
| $SPR_{30\%}$                                        |          |               |                |
| Exploitation rate corresponding to $SPR_{30\%}$     | 0.173    | 0.147         | 0.198          |
| Yield with $SPR_{30\%}$ at $SB_{SPR}$ (mt)          | 3135.2   | 2849.4        | 3420.9         |
| Reference points based on estimated MSY values      |          |               |                |
| Spawning biomass at $MSY$ ( $SB_{MSY}$ )            | 7563.3   | 5677.6        | 9448.9         |
| $SPR_{MSY}$                                         | 0.263    | 0.202         | 0.323          |
| Exploitation rate at $MSY$                          | 0.196    | 0.166         | 0.227          |
| MSY (mt)                                            | 3156.7   | 2909.6        | 3403.8         |

Table e: Summary of reference points and management quantities for the base case.

# Management Performance

The 2009 stock assessment estimated petrale sole to be at 11.6% of unfished spawning stock biomass. Based on the 2009 stock assessment, the 2010 coast-wide ACL was reduced to 1,200 mt to reflect the overfished status of the stock and the 2011 coast-wide overfishing limit (OFL) and ACL were set at 1,021 mt and 976 mt, respectively (Table f).

Recent coast-wide annual landings have not exceeded the ACL. The 2009, 2011, and 2013 full assessments estimated that petrale sole have been below the management target since the 1960s and below the overfished threshold between the early 1980s and 2009 with fishing mortality rates in excess of the current F-target for flatfish of  $SPR_{30\%}$ . The 2015 update assessment estimated that the stock had recovered with the relative spawning biomass exceeding the management target.

Table f: Recent trend in total catch and landings (mt) relative to the management guidelines. Estimated total catch reflect the landings plus the model estimated discarded biomass based on discard rate data.

| Year | OFL (mt; ABC      | ACL (mt; OY       | Total Landings | Estimated       |
|------|-------------------|-------------------|----------------|-----------------|
|      | prior to $2011$ ) | prior to $2011$ ) | (mt)           | Total Catch     |
|      |                   |                   |                | $(\mathrm{mt})$ |
| 2009 | 2811              | 2433              | 2209           | 2334            |
| 2010 | 2751              | 1200              | 755            | 869             |
| 2011 | 1021              | 976               | 768            | 785             |
| 2012 | 1275              | 1160              | 1135           | 1153            |
| 2013 | 2711              | 2592              | 1967           | 1995            |
| 2014 | 2774              | 2652              | 2373           | 2392            |
| 2015 | 3073              | 2816              | 2686           | 2704            |
| 2016 | 3208              | 2910              | 2506           | 2523            |
| 2017 | 3208              | 3136              | 3008           | 3026            |
| 2018 | 3152              | 3013              | 2840           | 2857            |

# **Unresolved Problems and Major Uncertainties**

Parameter uncertainty is explicitly captured in the asymptotic confidence intervals reported throughout this assessment for key parameters and management quantities. These intervals reflect the uncertainty in the model fit to the data sources included in the assessment, but do not include uncertainty associated with alternative model configurations, weighting of data sources (a combination of input sample sizes and relative weighting of likelihood components), or fixed parameters.

There are a number of major uncertainties regarding model parameters that have been explored via sensitivity analysis. The most notable explorations involved the sensitivity of model estimates to:

- 1. The value of natural mortality by sex.
- 2. The current sex ratio between female and males in the population of petrale sole.
- 3. Fecundity estimates based upon new research for petrale sole and measured differences in fecundity between northern and southern fish.
- 4. Changes in the model estimates based on alternative data weighting approaches.

Additionally, a reconstructed historical Washington catch history has not been included in the petrale sole stock assessment. Washington state is currently undergoing efforts to determine historical catches for petrale sole and the next stock assessment is likely to incorporate these new historical catch estimates.

# **Decision** Table

The forecast of stock abundance and yield was developed using the base model. The total catches in 2019 and 2020 are set at values provided by the Groundfish Management Team (GMT) of the PFMC at 2908 and 2845 mt, respectively. The management adopted ACL values for these years are 2921 and 2857 mt. The exploitation rate for 2021 and beyond is based upon an SPR of 30% and the 25:5 harvest control rule. The average exploitation rates, across recent years, by fleet as provided by the GMT were used to distribute catches during the forecast period.

Uncertainty in the forecasts is based upon the three states of nature based on the likelihood profile of female natural mortality (M). The low and high values for natural mortality were chosen using a change of 1.2 negative log-likelihood units (75% interval) from the minimum value to correspond midpoints of the lower 25% probability and upper 25% probability regions from the base model. Based on the profile the range of uncertainty around natural mortality were selected at a low value of 0.130 yr<sup>-1</sup> and high of 0.185 yr<sup>-1</sup>.

Catches during the projection period under the current harvest control rule are projected to start at 4115 mt and decline over the projection period to 3093 mt, in the base model, as the stock declines towards that target spawning biomass (Table g). Across the low and high states of nature the under the current harvest control rule, the relative biomass (depletion) range between 0.24 - 0.34 by the end of the 12-year projection period (Table h).

Table g: Projections of potential OFL (mt) and ABC (mt) and the estimated spawning biomass and relative spawning biomass based on ABC removals. The 2019 and 2020 ABC and OFL values shown are based on current harvest specifications, rather than the updated model estimates.

| Year | OFL  | ABC  | Spawning Biomass | Relative |
|------|------|------|------------------|----------|
|      |      |      | $(\mathrm{mt})$  | Biomass  |
| 2019 | 3042 | 2908 | 13078            | 0.391    |
| 2020 | 2976 | 2845 | 12558            | 0.376    |
| 2021 | 4402 | 4115 | 12019            | 0.360    |
| 2022 | 3936 | 3660 | 10799            | 0.323    |
| 2023 | 3634 | 3365 | 10038            | 0.300    |
| 2024 | 3470 | 3199 | 9655             | 0.289    |
| 2025 | 3402 | 3120 | 9523             | 0.285    |
| 2026 | 3392 | 3097 | 9527             | 0.285    |
| 2027 | 3406 | 3096 | 9580             | 0.287    |
| 2028 | 3425 | 3097 | 9635             | 0.288    |
| 2029 | 3442 | 3098 | 9677             | 0.290    |
| 2030 | 3452 | 3093 | 9701             | 0.290    |

Table h: Decision table summary of 10-year projections beginning in 2021 for alternate states of nature based on an axis of uncertainty about female natural mortality for the base model. The removals in 2019 and 2020 were set at the defined management specification of 2908 and 2845 mt, respectively, assuming full attainment. Columns range over low, mid, and high states of nature, and rows range over different assumptions of catch levels. The ABC catch stream is based on the equilibrium yield applying the SPR30 harvest rate.

|                      | States of nature     |       |          |           |          |           |          |           |
|----------------------|----------------------|-------|----------|-----------|----------|-----------|----------|-----------|
|                      | M = 0.13 $M = 0.159$ |       | M =      | 0.185     |          |           |          |           |
|                      | Year                 | Catch | Spawning | Depletion | Spawning | Depletion | Spawning | Depletion |
|                      |                      |       | Biomass  |           | Biomass  |           | Biomass  |           |
|                      | 2021                 | 4115  | 11517    | 0.308     | 12019    | 0.360     | 12572    | 0.414     |
|                      | 2022                 | 3660  | 10361    | 0.277     | 10798    | 0.323     | 11279    | 0.371     |
|                      | 2023                 | 3365  | 9603     | 0.257     | 10039    | 0.301     | 10502    | 0.346     |
| ABC                  | 2024                 | 3199  | 9179     | 0.246     | 9659     | 0.289     | 10140    | 0.334     |
|                      | 2025                 | 3120  | 8985     | 0.241     | 9533     | 0.285     | 10046    | 0.331     |
|                      | 2026                 | 3097  | 8923     | 0.239     | 9545     | 0.286     | 10088    | 0.332     |
|                      | 2027                 | 3096  | 8918     | 0.239     | 9606     | 0.288     | 10173    | 0.335     |
|                      | 2028                 | 3097  | 8929     | 0.239     | 9671     | 0.289     | 10249    | 0.337     |
|                      | 2029                 | 3098  | 8938     | 0.239     | 9720     | 0.291     | 10301    | 0.339     |
|                      | 2030                 | 3093  | 8939     | 0.239     | 9752     | 0.292     | 10328    | 0.340     |
|                      | 2021                 | 3451  | 11517    | 0.308     | 12019    | 0.360     | 12572    | 0.414     |
|                      | 2022                 | 3188  | 10764    | 0.288     | 11193    | 0.335     | 11668    | 0.384     |
|                      | 2023                 | 3017  | 10286    | 0.275     | 10697    | 0.320     | 11140    | 0.367     |
| $\operatorname{SPR}$ | 2024                 | 2927  | 10052    | 0.269     | 10486    | 0.314     | 10928    | 0.360     |
| target =             | 2025                 | 2891  | 9991     | 0.268     | 10470    | 0.313     | 10926    | 0.360     |
| 0.34                 | 2026                 | 2893  | 10028    | 0.269     | 10556    | 0.316     | 11025    | 0.363     |
|                      | 2027                 | 2909  | 10103    | 0.271     | 10675    | 0.320     | 11150    | 0.367     |
|                      | 2028                 | 2924  | 10184    | 0.273     | 10790    | 0.323     | 11260    | 0.371     |
|                      | 2029                 | 2937  | 10257    | 0.275     | 10886    | 0.326     | 11344    | 0.373     |
|                      | 2030                 | 2944  | 10318    | 0.276     | 10961    | 0.328     | 11401    | 0.375     |
|                      | 2021                 | 2690  | 11517    | 0.308     | 12019    | 0.360     | 12572    | 0.414     |
|                      | 2022                 | 2592  | 11228    | 0.301     | 11648    | 0.349     | 12115    | 0.399     |
|                      | 2023                 | 2537  | 11105    | 0.297     | 11486    | 0.344     | 11906    | 0.392     |
| $\operatorname{SPR}$ | 2024                 | 2522  | 11140    | 0.298     | 11519    | 0.345     | 11916    | 0.392     |
| target =             | 2025                 | 2534  | 11287    | 0.302     | 11680    | 0.350     | 12066    | 0.397     |
| 0.4                  | 2026                 | 2567  | 11489    | 0.308     | 11900    | 0.356     | 12274    | 0.404     |
|                      | 2027                 | 2604  | 11702    | 0.313     | 12127    | 0.363     | 12482    | 0.411     |
|                      | 2028                 | 2636  | 11905    | 0.319     | 12334    | 0.369     | 12663    | 0.417     |
|                      | 2029                 | 2664  | 12088    | 0.324     | 12513    | 0.375     | 12810    | 0.422     |
|                      | 2030                 | 2686  | 12248    | 0.328     | 12664    | 0.379     | 12925    | 0.425     |

# **Research and Data Needs**

Progress on a number of research topics and data issues would substantially improve the ability of this assessment to reliably and precisely model petrale sole population dynamics in the future:

- 1. In the past many assessments have derived historical catches independently. The states of California and Oregon have completed comprehensive historical catch reconstructions. At the time of this assessment, a comprehensive historical catch reconstruction is not available for Washington. Completion of a Washington catch reconstruction would provide the best possible estimated catch series that accounts for all the catch and better resolves historical catch uncertainty for flatfish as a group.
- 2. Due to limited data, new studies on the maturity at length or age for petrale sole would be beneficial.
- 3. Where possible, historical otolith samples aged using a combination of surface and break-and-burn methods should be re-aged using the break-and-burn method. Early surface read otoliths should also be re-aged using the break-and-burn method. Historical otoliths aged with a standard method will allow the further evaluation of the potential impacts of consistent under ageing using surface methods, changes in selectivity during early periods of time without any composition information, and potential changes in growth.
- 4. Studies on stock structure and movement of petrale sole, particularly with regard to the winter-summer spawning migration of petrale sole and the likely trans-boundary movement of petrale sole between U.S. and Canadian waters seasonally.
- 5. The extent of spatial variability on productivity processes such as growth, recruitment, and maturity is currently unknown and would benefit from further research.

Quantity 2010 2011 2012 2013 2014 20152016 2017 2018 2019 OFL (mt) 2751 1021 1275271127743073 3208 3208 31523042 2921 ACL (mt) 1200 9761160 259226522816291031363013755768113519672373268625063008 2840Landings (mt) 78511531995239227042523 3026 2857Total Est. Catch (mt) 869 1- $\hat{S}P\hat{R}$ 0.4980.5150.5800.5490.5730.5700.5840.5780.584Exploitation rate 0.0750.0510.0610.0920.1030.1100.1020.1220.119 15463.3Age 3 + biomass (mt)11515.018960.3 21683.223276.724487.524741.524774.123996.723350.8Spawning Biomass 4227 53787205 948811433126911320613519133651307895% CI 3452 - 50024414 - 63425958 - 84527888 - 11087 9524 - 1334110603 - 14778 11039 - 1537411293 - 15745 11077 - 15653 10689 - 15467Relative Depletion 0.1270.1610.2160.2840.3420.3800.3950.4050.4000.3910.292 - 0.5180.289 - 0.51195% CI 0.087 - 0.1660.111 - 0.211 0.150 - 0.281 0.199 - 0.369 0.241 - 0.443 0.270 - 0.490 0.283 - 0.508 0.282 - 0.501 18972Recruits 126371534422946 13483135291279216460165171901895% CI 8002 - 19956 9888 - 23810 15296 - 34420 8315 - 21863 8178 - 22379 7177 - 22801 8550 - 31688 7577 - 360068362 - 43254 8346 - 43127

Table i: Base model results summary.



Figure g: Equilibrium yield curve for the base case model. Values are based on the 2018 fishery selectivity and with steepness estimated at 0.84.