The Combined Status of Gopher (Sebastes carnatus) and Black-and-Yellow Rockfishes
(Sebastes chrysomelas) in U.S. Waters Off California in 2019

 $\begin{array}{c} {\rm Melissa} \ {\rm H.} \ {\rm Monk^1} \\ {\rm Xi} \ {\rm He^1} \end{array}$

California 95060

¹Southwest Fisheries Science Center, U.S. Department of Commerce, National Oceanic and
 Atmospheric Administration, National Marine Fisheries Service, 110 McAllister Way, Santa Cruz,

13

12

1

2

3

4

5

DRAFT SAFE

 $_{14}^{16}$ Disclaimer: This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by NOAA

¹⁸ Fisheries. It does not represent and should not be construed to represent any agency determination or policy.

2019-08-21

- 19 This report may be cited as:
- 20 Monk, M. H. and X. He. 2019. The Combined Status of Gopher Sebastes carnatus and
- ²¹ Black-and-Yellow Rockfishes *Sebastes chrysomelas* in U.S. Waters Off California in 2019. Pacific
- ²² Fishery Management Council, Portland, OR. Available from
- 23 http://www.pcouncil.org/groundfish/stock-assessments/

The Combined Status of Gopher (Sebastes carnatus) and Black-and-Yellow Rockfishes (Sebastes chrysomelas) in U.S. Waters Off California in 2019

28 Contents

29	E>	cecut	ive Summary	i
30		Stoc	k	i
31		Cate	hes	i
32		Data	a and Assessment	<i>v</i> i
33		Stoc	k Biomass	ii
34		Recr	\mathbf{r} uitment	ci
35		Expl	loitation status \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots xi	ii
36		Ecos	system Considerations	V
37		Refe	rence Points	V
38		Man	agement Performance	/i
39		Unre	esolved Problems and Major Uncertainties $\ldots \ldots xv$	ii
40		Deci	sion Table \ldots \ldots \ldots \ldots xv	ii
41		Rese	earch and Data Needs $\ldots \ldots xx$	ii
	-	.		-
42	T	Intr	oduction	T
43		1.1	Basic Information and Life History	1
44		1.2	Early Life History	3
45		1.3	Map	3
46		1.4	Ecosystem Considerations	3
47		1.5	Fishery Information	4
48		1.6	Summary of Management History	5
49		1.7	Management Performance	7
50		1.8	Fisheries Off Mexico or Canada	7

51	2	Asse	essmen	ht	7
52		2.1	Data		7
53			2.1.1	Commercial Fishery Landings	8
54			2.1.2	Commercial Discards	10
55			2.1.3	Commercial Fishery Length and Age Data	10
56			2.1.4	Recreational Fishery Landings and Discards	11
57			2.1.5	Recreational Fishery Length and Age Data	13
58			2.1.6	Fishery-Dependent Indices of Abundance	15
59			2.1.7	Fishery-Dependent Indices: Available Length and Age Data $\ .\ .\ .$	20
60			2.1.8	Fishery-Independent Data Sources	21
61			2.1.9	Biological Parameters and Data	24
62			2.1.10	Environmental or Ecosystem Data Included in the Assessment $\ . \ . \ .$	28
63		2.2	Previo	us Assessments	28
64			2.2.1	History of Modeling Approaches Used for this Stock	28
65			2.2.2	2005 Assessment Recommendations	28
66		2.3	Model	Description	29
67			2.3.1	Transition to the Current Stock Assessment	29
68			2.3.2	Summary of Data for Fleets and Areas	32
69			2.3.3	Other Specifications	33
70			2.3.4	Modeling Software	33
71			2.3.5	Data Weighting	34
72			2.3.6	Priors	34
73			2.3.7	Estimated and Fixed Parameters	35
74		2.4	Model	Selection and Evaluation	36
75			2.4.1	Key Assumptions and Structural Choices	36
76			2.4.2	Alternate pre-STAR Models Considered	36
77			2.4.3	Uncertainty and Sensitivity Analyses to the pre-STAR base	37
78		2.5	Respon	nse to the Current STAR Panel Requests	38
79		2.6	Post-S	TAR Base Case Model Results	42
80			2.6.1	Convergence	43
81			2.6.2	Parameter Estimates	43
82			2.6.3	Fits to the Data	44

83		2.6.4	Retrospective Analysis	45
84		2.6.5	Likelihood Profiles	
85		2.6.6	Reference Points	47
86	3	Harvest P	rojections and Decision Tables	48
87	4	Regional 1	Management Considerations	48
88	5	Research	Needs	48
89	6	Acknowle	dgments	48
90	7	Tables		50
91	8	Figures		80
92	A	ppendix A.	California's Commercial Fishery Regulations	A-1
93	A	ppendix B.	California's Recreational Fishery Regulations	B-1
94	A	ppendix C.	Detailed fits to length composition data	C-1
95	Re	eferences		

⁹⁶ Executive Summary

97 Stock

⁹⁸ This assessment reports the status of the gopher and black-and-yellow rockfish

⁹⁹ complex (GBYR, *Sebastes carnatus/Sebastes chrysomelas*) resource as in U.S. waters off the

coast of California south of Cape Mendocino ($40^{\circ}10'$ N. latitude) using data through 2018.

¹⁰¹ Both gopher and black-and-yellow rockfishes are most abundant north of Point Conception

(34°27′ N. latitude) and are rare north of Point Arena (38°57′ N. latitude). The range of
gopher rockfish extends into Baja California, but the black-and-yellow rockfish are rare south
of Point Conception.

105 Catches

¹⁰⁶ Information on historical landings of GBYR are available back to 1916 (Table a). The

¹⁰⁷ recreational fleet began ramping up in the 1950s and has fluctuated over the last 50 years

¹⁰⁸ (Figure a). The majority of gopher and black-and-yellow rockfish recreational landings are

¹⁰⁹ from north of Point Conception.

Commercial landings were small during the years of World War II, ranging between 4 to 28
 metric

tons (mt) per year (Figure b). Commercial landings increased after World War II and show periods of cyclical catch for gopher and black-and-yellow rockfishes. The commercial live fish fishery began in the early 1990s, with the first reported live landings in 1993. Since then the commercial catch has been dominated by the live fish fishery, with minimal landings of dead gopher or black-and-yellow rockfishes. Estimates of total mortality of commercial discards were available starting in 2004, and were estimated prior to then. The catches aggregated by fleets modeled in this assessment can be found in Figure c.

Since 2000, annual total landings of catch and discards of GBYR have ranged between 70-169
mt, with landings (catch + discards) in 2018 totaling 92 mt.

Figure a: Catch history of GBYR for the recreational fleet.

Figure b: Catch history of GBYR for the commercial fleet by dead and live landings, and discards. Catches in 1936 and 1946 were minimal.

Year	Commercial	Commercial	Recreational	Recreational	Total
	Retained	Discard	North	South	
2009	35.62	5.38	65.64	4.30	110.93
2010	38.83	3.92	106.76	3.90	153.41
2011	42.39	5.72	76.16	10.24	134.52
2012	33.55	1.93	48.25	9.89	93.62
2013	33.45	2.85	38.43	8.86	83.59
2014	36.40	2.85	56.96	9.06	105.27
2015	43.25	2.93	58.09	5.00	109.27
2016	36.96	2.42	65.72	6.57	111.67
2017	42.04	1.65	49.36	11.15	104.19
2018	47.00	2.54	36.48	6.30	92.32

Table a: Recent GBYR landings (mt) by fleet.

Figure c: Catch history of GBYR in the model.

121 Data and Assessment

Gopher rockfish north of Point Conception (34°27′ N. latitude) was first assessed as a full stock assessment in 2005 (Key et al. 2005) using SS2 (version 1.19). The assessment was sensitive to the CPFV onboard observer index of abundance (referred to as Deb Wilson-Vandenberg's onboard observer index in this assessment). The final decision table was based around the emphasis given to a fishery-dependent index of abundance for the recreational fleet. The stock was found to be at 97% depletion.

Gopher rockfish south of Point Conception was assessed as a data poor species in 2010 (Dick and MacCall 2010). A Depletion-Corrected Average Catch (DCAC) model was used due to time constraints. The mean yield from the DCAC distribution was 25.5 mt.

This is the first full assessment to include data for black-and-yellow rockfish. Black-andyellow rockfish was assessed coastwide as a data poor species using Depletion-Based Stock Reduction Analysis (DB-SRA) (Dick and MacCall 2010). The DB-SRA model assigned a 40% probability that the then recent (2008-2009) catch exceeded the 2010 OFL.

This assessment covers the area from Cape Mendocino to the U.S./Mexico border (Figure d). The length composition data suggested that while the lengths of gopher and black-andyellow rockfish were similar, fish encountered south of Point Conception were smaller. The similarity of the length distributions between species and among modes within a region were similar and justified one combined recreational fleet within each of the two regions (north and south of Point Conception).

This stock assessment retains a single fleet for the commercial fishery, including discards. Data on commercial discards were not available for and not included in the 2005 assessment. The decision to retain one commercial fleet was made by examining the length distributions across species, fishing gears, and space, i.e., north and south of Point Conception. There is very little difference between the length composition of gopher and black-and-yellow rockfish landed in the commercial fleet north of Point Conception.

A number of sources of uncertainty are addressed in this assessment. This assessment includes length data, estimated growth, an updated length-weight curve, an updated maturity
curve, a number of new indices, and new conditional age-at-length data.

Figure d: Map depicting the core distribution of gopher and black-and-yellow rockfishes. The stock assessment is bounded at Cape Mendocino in the north to the U.S./Mexico border in the south.

150 Stock Biomass

The predicted spawning output from the base model generally showed a slight decline prior 151 to 1978, when the recruitment deviations were first estimated (Figure e and Table b). The 152 stock declined from 1978 to 1994, followed by a period increase from 1995 to 2003. From 153 2004-2018 the stock has been in decline, though increased in total biomass since 2016 and 154 stable spawning output since from 2018 to 2019. The 2019 estimated spawning output 155 relative to unfished equilibrium spawning output is above the target of 40% of unfished 156 spawning output at 43.82 (95% asymptotic interval: 33.57-54.06) (Figure f). Approximate 157 confidence intervals based on the asymptotic variance estimates show that the uncertainty 158 in the estimated spawning output is high, (95% asymptotic interval: 337-767 million eggs). 159

Year	Spawning Output	~ 95%	Estimated	~ 95% confidence
	(million eggs)	confidence	depletion	interval
	(interval	-	
2010	882	597 - 1168	69.99	58.05 - 81.92
2011	817	548 - 1086	64.77	53.48 - 76.06
2012	761	507 - 1014	60.33	49.63 - 71.03
2013	727	486 - 968	57.66	47.5 - 67.81
2014	697	466 - 928	55.31	45.56 - 65.05
2015	655	434 - 877	51.98	42.4 - 61.55
2016	614	399 - 828	48.69	39.16 - 58.22
2017	576	367 - 786	45.70	36.12 - 55.28
2018	553	344 - 762	43.85	34.08 - 53.63
2019	552	337 - 767	43.82	33.57 - 54.06

Table b: Recent trend in beginning of the year spawning output and depletion for the model for GBYR.

Spawning output with ~95% asymptotic intervals

Figure e: Time series of spawning biomass trajectory (circles and line: median; light broken lines: 95% credibility intervals) for the base case assessment model.

Fraction of unfished with ~95% asymptotic intervals

Figure f: Estimated percent depletion with approximate 95% asymptotic confidence intervals (dashed lines) for the base case assessment model.

160 Recruitment

Recruitment deviations were estimated from 1979-2018 (Figure g and Table c). There are estimates of very strong recruitment in 1991. Recruitment pulses were estimated for a number of other years including 1994-1995 and 2014-2015.

Year	Estimated	~ 95% confidence
	Recruitment $(1,000s)$	interval
2010	2451	1257 - 4779
2011	2014	983 - 4127
2012	1800	761 - 4258
2013	1589	676 - 3734
2014	4568	2519 - 8284
2015	5264	2985 - 9282
2016	2487	1274 - 4857
2017	3701	1976 - 6935
2018	1432	664 - 3089
2019	2778	1086 - 7111

Table c: Recent recruitment for the GBYR assessment.

Age-0 recruits (1,000s) with ~95% asymptotic intervals

Figure g: Time series of estimated GBYR recruitments for the base-case model with 95% confidence or credibility intervals.

¹⁶⁴ Exploitation status

Harvest rates estimated by the base model indicate catch levels have been below the limits that would be associated with the Spawning Potential Ratio (SPR) = 50% limit (corresponding to a relative fishing intensity of 100%) (Table d and Figure h). SPR is calculated as the lifetime spawning potential per recruit at a given fishing level relative to the lifetime spawning potential per recruit with no fishing. The relative inverse SPR over the last decade increased ranged from 0.64 to 0.77 from 2009-2015, and ranged from 0.80 to 0.82 from 2016-2018 (Table d).

Year	Estimated (1-SPR)/(1- SPR50%)	~ 95% confidence interval	Exploitation rate	95% confidence interval
2009	0.64	0.5 - 0.78	0.07	0.05 - 0.09
2010	0.78	0.64 - 0.93	0.10	0.08 - 0.13
2011	0.77	0.62 - 0.92	0.10	0.07 - 0.12
2012	0.67	0.52 - 0.81	0.07	0.05 - 0.09
2013	0.64	0.49 - 0.78	0.07	0.05 - 0.09
2014	0.74	0.59 - 0.88	0.09	0.06 - 0.11
2015	0.77	0.62 - 0.92	0.10	0.07 - 0.12
2016	0.81	0.66 - 0.96	0.10	0.07 - 0.13
2017	0.82	0.66 - 0.98	0.09	0.06 - 0.11
2018	0.80	0.63 - 0.96	0.07	0.05 - 0.1

Table d: Recent trend in spawning potential ratio (entered as $(1 - SPR)/(1 - SPR_{50\%}))$ and exploitation for GBYR in the model.

Figure h: Estimated inverse spawning potential ratio (SPR) for the post-STAR base model, plotted as one minus SPR so that higher exploitation rates occur on the upper portion of the y-axis. The management target is plotted as a red horizontal line and values above this reflect harvests in excess of the overfishing proxy based on the SPR_{50%} harvest rate. The last year in the time series is 2018.

172 Ecosystem Considerations

¹⁷³ In this assessment, ecosystem considerations were not explicitly included in the analysis.

¹⁷⁴ This is primarily due to a lack of relevant data and results of analyses (conducted elsewhere)

¹⁷⁵ that could contribute ecosystem-related quantitative information for the assessment.

176 Reference Points

This stock assessment estimates that GBYR in the model is above the biomass target 177 $(SB_{40\%})$, and well above the minimum stock size threshold $(SB_{25\%})$. The estimated relative 178 depletion level for the base model in 2018 is 0.439 (95% asymptotic interval: 0.341-0.536, 179 corresponding to an unfished spawning biomass of 552 million eggs (95% asymptotic interval: 180 337 - 767 million eggs) of spawning biomass in the base model (Table e). Unfished age 1+181 biomass was estimated to be 2,042 mt in the base case model. The target spawning biomass 182 $(SB_{40\%})$ is 504 million eggs, which corresponds with an equilibrium yield of 143 mt. Equi-183 librium yield at the proxy F_{MSY} harvest rate corresponding to $SPR_{50\%}$ is 134 mt (Figure 184 i). 185

Quantity	Estimate	Low	High
		2.5%	2.5%
		limit	limit
Unfished spawning output (million eggs)	1,261	968	1,554
Unfished age $1+$ biomass (mt)	2,042	$1,\!637$	$2,\!448$
Unfished recruitment (R_0)	$3,\!125$	$2,\!643$	$3,\!606$
Spawning output (2018 million eggs)	553	344	762
Depletion (2018)	0.439	0.341	0.536
Reference points based on $SB_{40\%}$			
Proxy spawning output $(B_{40\%})$	504	427	582
SPR resulting in $B_{40\%}$ (SPR _{B40\%})	0.458	0.458	0.458
Exploitation rate resulting in $B_{40\%}$	0.126	0.109	0.144
Yield with $SPR_{B40\%}$ at $B_{40\%}$ (mt)	143	124	162
Reference points based on SPR proxy for MSY			
Spawning output	563	476	649
SPR_{proxy}	0.5		
Exploitation rate corresponding to SPR_{proxy}	0.111	0.096	0.126
Yield with SPR_{proxy} at SB_{SPR} (mt)	134	116	152
Reference points based on estimated MSY values			
Spawning output at MSY (SB_{MSY})	281	235	328
SPR_{MSY}	0.299	0.29	0.308
Exploitation rate at MSY	0.209	0.174	0.244
Dead Catch MSY (mt)	163	141	185
Retained Catch MSY (mt)	163	141	185

Table e: Summary of reference points and management quantities for the base case model.

¹⁸⁶ Management Performance

Gopher and black-and-yellow rockfishes are managed as part of the minor nearshore complex in the Pacific Coast Groundfish Fishery Management Plan. The total mortality of the minor nearshore rockfish has been below the ACL in all years (2011-2016). Total mortality estimates from the NWFSC are not yet available are not yet available for 2017-2018. GBYR total mortality was on average 20% of the total minor nearshore rockfish total mortality from 2011-2016. A summary of these values as well as other base case summary results can be found in Table f. Table f: Recent trend in total mortality for gopher and black-and-yellow rockfishes (GBYR), combined, relative to the management guidelines for Nearshore Rockfish South of 40°10′ N. latitude. Total mortality estimates are based on annual reports from the NMFS NWFSC.

	GBYR	Shallow Nearshore Rockfish South	Nearshore Rockfish South
Year	Total mortality	Total mortality	ACL OFL
2011	122.87	436	1,001 1,156
2012	91.96	445	1,001 $1,145$
2013	104.53	495	990 1,164
2014	103.63	596	990 1,160
2015	107.95	676	1,114 $1,313$
2016	111.55	641	1,006 1,288
2017	-	-	1,163 $1,329$
2018	-	-	1,179 1,344

¹⁹⁴ Unresolved Problems and Major Uncertainties

The major source of uncertainty identified during the STAR panel is the structure of complex and contribution of each of the two species to the complex and biological parameters differences. Additionally, there is currently no information for either species on regional differences in biological parameters and contributions to the complex.

¹⁹⁹ Decision Table

The forecasts of stock abundance and yield were developed using the post-STAR base model, with the forecasted projections of the OFL presented in Table g. The total catches in 2019 and 2020 are set to the projected catch from CDFW of 114 mt.

Uncertainty in the forecasts is based upon the three states of nature agreed upon at the 203 STAR panel and are based three states of nature of growth. The external estimates of 204 growth were different than the internal estimates. Given that natural mortality is fixed in 205 the post-STAR base model, and the growth parameter k is negatively correlated with natural 206 mortality, k was chosen as the axis of uncertainty. The high state of nature fixes k at the 207 external estimate, and the low state of nature is the same distance in log space from the 208 base as the high state of nature. The low state of nature fixed k at 0.46 and the L1 and L1 209 parameters are estimated at 14.1 and 30.6, respectively. The high state of nature fixes all 210 growth parameters, k = 0.248, L1 = 13.8, and L2 = 28.5 to the external estimate of growth. 211 The growth parameters in the base model were estimated as k = 0.107, L1 = 13.4, and L2212 = 28.8.213

The forecasted buffer ramp was calculated assuming a category 2 stock, with sigma = 1.0 and a $p^* = 0.45$. The buffer ranges from 0.874 in 2021 ramping to 0.803 in 2030. For

reference, the model predicted sigma is 0.189 and the decision table-based sigma is 0.197. 216 Current medium-term forecasts based on the alternative states of nature project that the 217 stock will remain above the target threshold of 40% for all but two scenarios (Table h). The 218 low state of nature with the high catches results in a stock at 26.4% of unfished in 2030 and 219 the base state model with the high catches results in a stock at 33.2% of unfished in 2030. 220 The base case model with the base catches results in an increasing stock over the period 221 from 2021-2030. If the growth of GBYR is slower than the base model suggests, but the 222 base case catches are removed, the stock will be at the target threshold in 2030. 223

Table g: Projected OFL, default harvest control rule catch (ABC = ACL) above 40% SSB), biomass, and depletion using the post-STAR base case model with 2019-2020 catches set equal to the projected catch (114 mt) rather than the ABC.

Year	OFL (mt)	ABC Catch	Age 0+	Spawning	Fraction
		(mt)	Biomass (mt)	Output	unfished
				(million eggs)	
2019	154	114	1281	552.5	43.8
2020	154	114	1292	558.3	44.3
2021	136	119	1291	578.2	45.9
2022	137	119	1296	601.1	47.7
2023	143	122	1300	621.5	49.3
2024	150	127	1302	633.3	50.2
2025	155	130	1300	636.2	50.5
2026	158	131	1295	632.6	50.2
2027	158	130	1290	626.0	49.7
2028	156	128	1286	619.4	49.1
2029	155	125	1284	614.8	48.8
2030	153	123	1283	612.7	48.6

Figure i: Equilibrium yield curve for the base case model. Values are based on the 2018 fishery selectivity and with steepness fixed at 0.72.

Table h: Summary of 10-year projections beginning in 2020 for alternate states of nature based on an axis of uncertainty for the model. Columns range over low, mid, and high states of nature, and rows range over different assumptions of catch levels. The low state of nature fixed the growth parameter k at 0.046 and the high state fixes all growth parameters to the external estimate (k = 0.248, L1 = 13.8, L2 = 28.5). For reference the base case estimated k = 0.106, L1 = 13.4 and L2 = 28.9. The 2019 and 2020 catches were set to the project catch of 114 mt, provided by CDFW.

					States o	f nature		
			Low	State	Base	State	High	State
	Year	Catch	Spawning	Depletion	Spawning	Depletion	Spawning	Depletion
			Output		Output		Output	
	2019	114	444.4	37.3	552.5	43.8	1105.4	58.5
	2020	114	443.3	37.2	558.3	44.3	1168.8	61.9
	2021	75	449.6	37.7	578.2	45.9	1231.2	65.2
	2022	80	481.2	40.4	623.4	49.4	1296.5	68.6
Default harvest	2023	85	510.4	42.8	660.8	52.4	1322.9	70.0
for Low State	2024	91	534.5	44.9	687.1	54.5	1329.1	70.4
	2025	96	552.0	46.3	702.5	55.7	1328.9	70.4
	2026	101	562.5	47.2	709.3	56.3	1326.8	70.2
	2027	104	567.1	47.6	710.4	56.3	1324.2	70.1
	2028	105	567.5	47.6	708.5	56.2	1321.7	70.0
	2029	105	565.8	47.5	706.1	56.0	1320.3	69.9
	2030	104	563.8	47.3	704.8	55.9	1320.2	69.9
	2019	114	444.4	37.3	552.5	43.8	1105.4	58.5
	2020	114	443.3	37.2	558.3	44.3	1168.8	61.9
	2021	119	449.6	37.7	578.2	45.9	1231.2	65.2
	2022	119	460.9	38.7	601.1	47.7	1267.4	67.1
Default harvest	2023	122	475.0	39.9	621.5	49.3	1270.6	67.3
for Base State	2024	127	486.5	40.8	633.3	50.2	1257.1	66.6
	2025	130	492.9	41.4	636.2	50.5	1240.8	65.7
	2026	131	493.9	41.5	632.6	50.2	1226.6	64.9
	2027	130	490.8	41.2	626.0	49.7	1216.1	64.4
	2028	128	485.6	40.8	619.4	49.1	1209.7	64.0
	2029	125	480.5	40.3	614.8	48.8	1207.0	63.9
	2030	123	476.8	40.0	612.7	48.6	1207.2	63.9
	2019	114	444.4	37.3	552.5	43.8	1105.4	58.5
	202	114	443.3	37.2	558.3	44.3	1168.8	61.9
	2021	235	449.6	37.7	578.2	45.9	1231.2	65.2
	2022	225	410.9	34.5	544.4	43.2	1191.3	63.1
Default harvest	2023	215	390.6	32.8	522.5	41.4	1132.0	59.9
for High State	2024	204	377.9	31.7	503.3	39.9	1071.8	56.7
	2025	192	366.0	30.7	484.2	38.4	1025.9	54.3
	2026	183	353.2	29.7	466.5	37.0	996.7	52.8
	2027	177	340.4	28.6	451.7	35.8	980.5	51.9
	2028	173	328.9	27.6	440.7	34.9	972.2	51.5
	2029	170	320.2	26.9	433.5	34.4	968.2	51.3
	2030	168	314.3	26.4	429.2	34.0	966.0	51.1

2019						1237.83	552	337 - 767	43.8	33.57 - 54.06	2778	1086 - 7111
2018	92	1,344	1,179	0.80	0.07	1190.26	553	344 - 762	43.9	34.08 - 53.63	1432	664 - 3089
2017	104	1,329	1,163	0.82	0.09	1143.82	576	367 - 786	45.7	36.12 - 55.28	3701	1976 - 6935
2016	112	1,288	1,006	0.81	0.10	1148.01	614	399 - 828	48.7	39.16 - 58.22	2487	1274 - 4857
2015	109	1,313	1,114	0.77	0.10	1196.76	655	434 - 877	52.0	42.4 - 61.55	5264	2985 - 9282
2014	105	1,160	066	0.74	0.09	1238.94	697	466 - 928	55.3	45.56 - 65.05	4568	2519 - 8284
2013	84	1,164	066	0.64	0.07	1283.44	727	486 - 968	57.7	47.5 - 67.81	1589	676 - 3734
2012	94	1,145	1,001	0.67	0.07	1364.64	761	507 - 1014	60.3	49.63 - 71.03	1800	761 - 4258
2011	135	1,156	1,001	0.77	0.10	1469.27	817	548 - 1086	64.8	53.48 - 76.06	2014	983 - 4127
2010	153			0.78	0.10	1550.00	882	597 - 1168	70.0	58.05 - 81.92	2451	1257 - 4779
Quantity	Total mortality (mt)	Complex OFL (mt)	Complex ACL (mt)	$(1-SPR)(1-SPR_{50\%})$	Exploitation rate	Age 1+ biomass (mt)	Spawning Output	95% CI	Depletion	95% CI	Recruits	95% CI

summary.
results
case
Base
.::
Table

224 Research and Data Needs

²²⁵ We recommend the following research be conducted before the next assessment:

Investigate the structure of complex and contribution of each species to the GBYR complex. Investigate possible spatial differences in biological parameters within a single species and also between the two species. Little biological data for south of Point Conception or north of Point Arena was available for this assessment and is needed to better under biological parameters.

- (a) Conduct life history studies
- (b) conduct research to identify the proportion of each species in population and in catches

234
 2. Take a closer look at the Ralston [-@Ralston2010] historical catch reconstruction for gopher and black-and-yellow rockfishes. The recreational catch reconstruction for gopher rockfish south of Point Conception was an order of magnitude higher than expected when extracted for this assessment.

- 3. Refine the PISCO survey data and analysis to better identify age-0 fish in each month of survey. Occasional sampling during all months of the year would better help identify the length distribution of fish classified as age-0. This is the only recruitment index available for gopher and black-and-yellow rockfish. If possible, age data should be collected from the PISCO survey to aid in determining the growth of young gopher and black-and-yellow rockfish.
- 4. Refine CCFRP survey index to look at different possible model structures, including 244 a hierarchical structure and random effects. Limited time did not allow for these 245 explorations during this assessment cycle. It is also strongly recommended to continue 246 the coastwide sampling of the CCFRP program that began in 2017, as well as the 247 collection of biological samples for nearshore rockfish species. The CCFRP survey 248 is the only fishery-independent survey available for nearshore rockfish sampling the 249 nearshore rocky reef habitats. As of this assessment, only two years of coastwide data 250 are available, and the index was limited to the site in central California that have been 251 monitored since 2007. 252
- 5. Collection of length and age data are recommended for both the commercial and recreational fisheries. Very little age data are available from either fishery for gopher rockfish and none for black-and-yellow rockfish.
- 6. Data collection across Research Recommendations 1-5 is needed to improve the efficacy of data collection and ensure that samples are representative of the data sources and the fisheries. For example, the conditional age-at-length data in the dummy fleet represent a number of sampling techniques, areas sampled, and selectivities. Better coordination of research efforts will allow the age data to be better utilized by the assessment.

- Sampling of the commercial and recreational fleets by area in proportion to the length
 distribution of fish observed will also allow the model to better fit selectivity patterns
 and avoid possible patterns in the length and age composition residuals.
- 7. Investigate possible environmental drivers/co-variates for biological parameters, par ticularly for recruitment.
- 8. Examine the CFRS angler interview data for the recreational private/rental mode to create a "trip" based identifier or catch and effort. This will enable the creation of an index of abundance for the private/rental mode as well as investigate if selectivity for this mode differs from the party/charter mode.
- 9. Resolve differences between CalCOM and PacFIN expanded length composition data
 sets.