
DRAFT: Improving Catch Estimation Methods in
Sparsely Sampled Mixed-Stock Fisheries.

Nick Grunloha, Edward Dickb, Don Pearsonb, John Fieldb, Marc Mangela,c

March 13, 2018

a Center for Stock Assessment Research, University of California, Santa Cruz, Mail Stop
SOE-2, Santa Cruz, CA 95064, USA.
b Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fish-
eries Service, National Oceanographic and Atmospheric Administration, 110 McAllister Way,
Santa Cruz, CA 95060, USA.
c Department of Applied Mathematics and Statistics, Jack Baskin School of Engineering,
University of California, Santa Cruz, Mail Stop SOE-2, Santa Cruz, CA 95064, USA.

Abstract

Effective management of exploited fish populations requires accurate estimates of
commercial fisheries catches to inform monitoring and assessment efforts. In California,
the high degree of heterogeneity in the species composition of many groundfish fisheries,
particularly those targeting rockfish (genus Sebastes), leads to challenges in sampling
all potential strata, or species, adequately. Limited resources and increasingly complex
stratification of the sampling system inevitably leads to gaps in sample data. In the
presence of sampling gaps, ad-hoc species composition point estimation is currently ob-
tained according to historically derived “data borrowing” (imputation) protocols which
introduce unknown bias and do not allow for uncertainty estimation or forecasting. In
order to move from the current ad-hoc “data-borrowing” point estimators, we have con-
structed Bayesian hierarchical models to estimate species compositions, complete with
accurate measures of uncertainty, as well as theoretically sound out-of-sample predic-
tions. Furthermore, we introduce a Bayesian model averaging approach for inferring
spatial pooling strategies across the over-stratified port sampling system. Our mod-
eling approach, along with a computationally robust system of inference and model
exploration, allows us to 1) objectively compare alternative models for estimation of
species compositions in landed catch, 2) quantify uncertainty in historical landings, and
3) understand the effect of the highly stratified, and sparse, sampling system on the
kinds of inference possible, while simultaneously making the most from the available
data.

1

Agenda Item I.6
Attachment 1

September 2018



1 Introduction

Estimates of landed catch are a key component of many fishery management systems. Stock
assessment models (referred to here as assessments) are often conditioned on time series of
annual catch, usually under the assumption that catches are known without error. While
some assessment models are able to incorporate uncertainty in catch (e.g. Stock Synthesis;
Methot and Wetzel, 2013), reliable estimates of catch uncertainty are often unavailable.
Without this information, assessment authors often rely on ad-hoc sensitivity analyses which
may or may not be incorporated into management advice and/or fail to propagate catch
uncertainty into quantities of interest to managers.

Over the past decade, the estimation of catch and associated uncertainty has become a
focus for recreational fisheries in the United States (NAS, 2017). Commercial fisheries, on
the other hand, are often assumed to have precise estimates of catch by species. This is due
in part to the availability of landing receipts (aka fish tickets) which serve as a record of the
weight of fish landed into various market categories (sort groups). As noted by Pearson et al.
(2008), it is important to recognize that species and market categories are not synonymous.
On the U.S. West Coast, for example, it is common for multiple species to be landed within a
single market category (CALCOM 2018, PacFIN 2018). This is expected for categories that
are clearly designated as mixed-species categories (e.g. “nearshore rockfish”, or species within
a particular genus or family). However, in some states, categories that are named after a
single species still contain several species, to varying degrees, even after regulations require
sorting into a particular category (Pearson et al., 2008). As a result, estimation of landings
for a single species based on landing receipt data alone may produce biased estimates of total
catch.

Fisherman, dealers, or processors typically decide how to sort species into existing market
categories (defined by state agencies) on a landing receipt. Trained port samplers intercept
vessels offloading catch or during subsequent processing in order to determine the species
composition of catch landed in a given market category (Sen 1984, Crone 1995, Tsou et al.
2015). These species composition data are used to partition, or distribute, the weight of
landed catch in a market category across species, a process commonly referred to as catch
expansion (Pearson and Almany, 1995). To estimate total landings for a single species, the
expanded catch is summed across all relevant market categories. Assuming that landing
receipt data are a census of the landed catch, uncertainty in total catch for a given species
reflects variability in the species composition among port samples. If information is available
to estimate sources of bias in the landing receipt data, e.g. underreporting, then it is possible
to also incorporate uncertainty in the bias correction factors as well (Bousquet et al. 2010).
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In this study, we quantify sampling uncertainty for estimates of landed catch, although the
modeling framework could be extended to include uncertainty or bias in landing receipt data.

Within market categories, particularly those used historically for groupings of highly
specious rockfish (Sebastes spp), the species composition of landed catch can vary spa-
tially, temporally, by fishing gear, and catch disposition (e.g. fish sold alive or dead). These
differences are attributable to many factors, including market preference, fishing behavior,
regulatory constraints, and biological/ecological characteristics (e.g. spatial distribution) of
the landed species. As a result, estimates of species composition for a given market category
are often stratified over time (e.g. quarterly) and across other relevant strata (e.g. ports,
gears, catch disposition). Sampling programs often have limited funds, and attempts to
reduce bias in species composition estimates through the introduction of additional strata
comes at a cost, namely reduced precision (Tomlinson 1971, Cochran 1977).

On the U.S. West Coast, port sampling programs for rockfish and other groundfish allo-
cate effort both spatially and temporally, but many domains of interest (e.g. market category,
gear type, catch disposition) remain unsampled or sparsely sampled due to a proliferation
of categories over time, logistical constraints, and limited resources (Sen 1986; Crone 1995;
Pearson et al. 2008; Tsou et al. 2015). In California, for example, commercial port sampling
effort has changed over time and space (Pearson and Almany 1995). For example, regular
sampling of California ports north of Point Conception (roughly 34◦ 27’ N. latitude) began
as early as 1978, but the more southern ports were rarely sampled prior to 1983. This al-
location of effort was largely based on the statewide distribution of landings, diffuse spatial
distribution of southern commercial ports, and limitations in funding for port samplers.

When no port samples are collected for landed strata and domains, species composition
estimates are borrowed from other strata using deterministic algorithms based on expert
opinion. These algorithms have unknown bias and precision. In contrast, model-based esti-
mators are increasingly used to estimate quantities of interest for domains with small sample
sizes and/or unsampled strata (sometimes referred to as small area estimation; Rao 2003).
As a pilot study, Shelton et al. (2012) developed a Bayesian hierarchical statistical frame-
work for estimating species compositions in rockfish market categories from trawl fisheries
from a single port in California in two separate years. Their model has the ability to partially
pool information among sparsely sampled strata, predicts species compositions for unsam-
pled strata, and can be combined with landing receipts to estimate total landings by species,
across market categories and other strata, along with associated estimates of uncertainty.
However, their model considered hierarchical pooling only among quarters within a single
year. The authors also underscored the need to better understand performance of alternative
models, and to overcome issues with computation time, particularly since commercial port
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sampling data sets often include hundreds of landed strata spanning decades, multiple ports,
gear types, and other domains of interest.

Among the U.S. West Coast states, the challenge of estimating landings for sparsely-
sampled mixed stock rockfish fisheries is perhaps greatest for California. Although overall
landings have historically been greater for rockfish off of Oregon and Washington, California
has a greater number of commercial ports, market categories, and landed species (Pearson
and Erwin 1997). California’s commercial landings also have greater species diversity among
ports due to the geographical range of the coast and the observation that species diversity for
this genus is greatest in the Southern California Bight (Love et al. 2002 ). Lastly, California
includes two major biogeographic features, Point Conception and Cape Mendocino, that
are associated with different physical oceanographic conditions and biological community
assemblages (Hickey 1979, Checkley and Barth 2009, Gottscho 2016), and these features are
also frequently used as spatial boundaries for stock assessments and management measures.

Of particular consequence to the estimation of species compositions in California is the
proliferation of landed market categories over time, particularly during the 1990s, see Figure
(1). Sampling effort also leveled off in the mid-1990s, with a reduction in effort in the early
2000s, associated with substantial declines in total catches as well as reductions in sampling
resources. The net result of increased stratification and flat (or reduced) sampling effort
over time is a decline in mean sample size per stratum, see Figure (1). In this situation, it
is critical to understand how efforts to reduce bias (e.g. increasing the number of landed
market categories) affect precision of the expanded catch estimates.

Assessments that take catch uncertainty into account are not new (c.f. Doubleday 1976),
but most assessments on the U.S. West Coast assume catch is known without error (PFMC
2018). As a result, catch uncertainty is rarely propagated into management reference points.
However, the implications of catch uncertainty are not limited to stock assessment efforts.
In a management context, catch estimates with large (but unknown) uncertainty may cause
managers to react to large, high-frequency deviations in estimated catch, and either impose
unnecessary restrictions on a fishery, or mistakenly support excessive harvest. This is partic-
ularly an issue for prohibited and/or “choke” species, for which catch information is limited
and may be based solely on estimates of discarded catch.

In this study, we evaluate the model-based framework proposed by Shelton et al. (2012)
using commercial port sampling data collected in California, U.S.A. We describe species com-
position data collected by the California Cooperative Groundfish Survey (CCGS, 2017) over
the period 1978-1990. We then extend the Shelton et al. framework to address limitations
of their approach. Specifically, we evaluate alternative likelihoods to address overdisper-
sion, compare multiple hierarchical structures for pooling information through time, and
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integrate model predictions across uncertainties in the spatial model structure. Finally, we
estimate landed catch by species for both sampled and unsampled strata, and summarize
a general framework for quantifying uncertainty including an efficient database design for
dissemination of results at any level of aggregation.

2 Methods

2.1 Data

As outlined in Sen (1984, 1986) the species composition port sampling data are the result
of a cluster sampling protocol executed across the many strata of California’s commercial
fisheries. Each sample is intended to be two fifty- pound clusters selected at random from a
stratum. Although port samplers do their best to follow protocol, in reality the port sampling
environment does not always allow Sen’s original protocol to be followed. Variations in the
sampling protocol may result in only a single cluster being taken, or the size of clusters
taken to vary from stratum to stratum based on the particular challenges of sampling each
stratum.

Samples are recorded as integer pounds for each observed species, across the landed
market categories, gear groups, and port complexes in time (quarters within year). Presently
there are 71 rockfish market categories, although not all market categories are always used.
The number of market categories with recorded landings has gone from less than 25 in
1978 to about 55 in 2014, see Figure (1). Landings are grouped into major fishing gear
groups (trawl, hook and line, gillnet, fish pot, or other minor categories) and ten major port
complexes spanning the California coast, see Figure (4).

The model based methodology proposed here does not rely strongly upon the cluster
sampling structure, but rather views each sample as independent and identically distributed
(i.i.d.) draws from a data generating model, conditional on a parameterization of the strat-
ification system. So long as the parameterization and data generating model are sufficiently
robust for handling the behavior of these data, a conditionally i.i.d. model of these data will
be practically useful for producing predictions about the data generating system.

That said, for the purpose of modeling these data, it is enough to know which clusters were
collected as part of which samples, and how big each cluster actually ended up being. This
information is readily available from CALCOM, a database maintained by the California
Cooperative Groundfish Survey (CALCOM, 2018). Just as in Shelton et al. (2012), we
aggregate all observed clusters within each unique sample so that the total weight sampled
is the sum of pounds in each cluster. Similarly the observed weight for a particular species,
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in each unique sample, is the sum of all of the observed weights across clusters.
Although model based data analysis has the potential to add significant structure to

data, a judicious application of these methods must always confront the model with enough
empirical information to adequately learn about the system. In this setting some market
categories and time periods may not be well enough sampled to learn the parameters of the
models presented here (see Figures (2 and 3) for a summary of landed weight, the number
of landed strata, and the number of samples over the two modeled time periods). For
this reason, we refrain from modeling any period where the minimum possible number of
effective parameters exceeds the number of samples for the modeled period. Rather than
apply models inappropriately, these landings are speciated as the nominal species for their
market category. We later demonstrate that due to prioritization in sampling heavily landed,
or otherwise commercially relevant categories, this sample size heuristic leaves relatively few
landings to be speciated in a statistically uninformed way (i.e. “nominal” speciation). Thus
nominal speciation represents a negligible component of the overall expanded landings for
most species.

2.2 Likelihood Modeling

For the purposes of accurately modeling not only species composition means, but also higher
moments of the data (e.g. variances), it is necessary to recognize model limitations with
respect to overdispersed data. Among the simplest models for count data are the Poisson and
binomial models. Both models are typically specified with a single parameter for modeling
all of the moments of the data, and thus they rely heavily on their respective data generating
processes to accurately represent higher moments in the data. McCullagh and Nelder (1989,
pg. 124) commiserate about the prevalence of overdispersed data in cluster sampling, and
explain ways in which cluster sampling itself may result in overdispersion.

Extending the Poisson and binomial models to deal with overdispersion, typically involves
adding additional parameters for the purpose of modeling higher moments of the data. The
negative binomial (NB) distribution is often used as an overdispersed extension of the Poisson
model, since it can be expressly written as an infinite mixture of Poisson distributions. The
beta-binomial model is used as an overdispersed extension of the binomial model.

The Poisson and binomial models attempt to model both the mean and residual variance
of the data, with a single parameter for each species. By definition these models do not have
additional parameters to model the variance, but rather, residual variances in these models
are simply transformations of their mean parameters. Only estimating the mean parameters
in these cases may not be sufficient to produce models which predict well.
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In contrast, the negative binomial and beta-binomial models estimate an additional pa-
rameter which can be used to disentangle the mean and residual variance estimates. Thus
the negative binomial and beta-binomial models may produce more accurate estimates of the
residual variance, while producing more accurate measures of center. We develop an example
on a subset of data to evaluate statistical support for overdispersed models, see Appendix
(6.1), which we have subsequently used for the purposes of applying at an operational scale.

2.2.1 Beta-Binomial Model

For a particular market category, yijklmη is the ith sample of the jth species’ weight, in the
kth port, caught with the lth gear, in the ηth quarter, of year m. The yijklmη are modeled as
i.i.d. observations from a beta-binomial distribution conditional on parameters µjklmη and
σ2
jklmη,

yijklmηi.i.d.∼ BB(µjklmη, σ
2
jklmη).

Above, µjklmη is the stratum level mean weight, and σ2
jklmη is the stratum level residual

variance. µjklmη is related to a linear predictor, θjklmη, via the mean function,

µjklmη = nijklmη
exp(θjklmη)

1 + exp(θjklmη)
.

Here nijklmη is the observed aggregate cluster size for each sample. Additionally, σ2
jklmη

is related to µjklmη and the overdispersion parameter, ρ, via the following equation,

σ2
jklmη = µjklmη

(
1− µjklmη

nijklmη

)(
1 + (nijklmη − 1) ρ

)
.

ρ is the within-cluster correlation. The situation where ρ→ 1 represents identical infor-
mation content among replicates within a cluster, with maximal overdispersion relative to
the binomial distribution. The situation where ρ → 0 represents totally independent infor-
mation content among replicates within a cluster, and the beta-binomial model approaches
the binomial model. ρ explicitly models average overdispersion across all strata within a
market category, while µjklmη gives the model flexibility at the stratum level through the θ
linear predictors,

θjklmη = β0 + β
(s)
j + β

(p)
k + β

(g)
l + β(t)

mη.

Firstly, θ includes a reference level intercept (β0). Secondly, θ is factored among the many
strata by additive offsets from β0 for each of the species (β(s)

j ), port-complexes (β(p)
k ), and
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gear-groups (β(g)
l ). Finally year and quarter parameters are indicated generally here inside

the β(t)
mη term. Several forms for β(t)

mη are explored each implying a different prior and partial
pooling strategies as described in the following section.

2.3 Priors

To complete the Bayesian formulation of this model, priors are expressed in a largely diffuse
manner.

β0 ∝ 1{
β
(s)
j , β

(p)
k , β

(g)
l

}
∼ N(0, 322)

Since the β0 reference level is chosen arbitrarily, with no conception of which values it
may take, no restrictions are placed on the value of the intercept. The species (β(s)

j ), port-
complex (β(p)

k ), and gear-group (β(g)
l ) offsets are assigned diffuse normal priors. The large

fixed values of the prior variance hyperparameters produce behavior similar to classical fixed
effect models for species, port complex, and gear group parameters.

In returning to the time parameter model, β(t)
mη, it is useful to consider how overparameter-

ized models may cause overfitting and weaken model performance through the bias-variance
dilemma (Ramasubramanian and Singh, 2016). Simply put, the bias-variance dilemma
means that model formulation is not simply a bias reduction task, but rather the goal is
to formulate models which reduce bias, while jointly minimizing uncertainty. Janyes (2003,
pg. 511) describes how the inclusion of estimation bias via the Bayesian methodology may
produce better performing estimates, more quickly, than unbiased counterparts. Among the
simplest ways to see the principle is in the structure of the MSE performance metric, and
how it can be explicitly written to value both estimator bias and variance, as follows.

MSE(θ̂) = E
[

(θ̂ − θ)2
]

=

Var(θ̂)︷ ︸︸ ︷
E
[ (

θ̂ − E(θ̂)
)2 ]

+

Bias(θ̂,θ)2︷ ︸︸ ︷(
E(θ̂)− θ

)2
Furthermore a model can minimize bias, without regard for estimation uncertainty, by

including one model parameter to be fit to each observation. These parameter estimates
are totally unbiased, however such a model is also predictively useless since each estimated
parameter is specifically bound to a particular observation, and thus such a model does not
generalize.

For modeling β(t)
mη we consider a spectrum of models which span a wide range of partially

pooled models with several different predictive structures as seen below.
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2.3.1 (M1)

β(t)
mη = β(y)

m + β(q)
η

β(y)
m ∼ N(0, 322)

β(q)
η ∼ N(0, 322)

(M1) represents a fixed effects model for additive year and quarter parameters. Here
each year and quarter are assigned totally independent and diffuse priors.

2.3.2 (M2)

β(t)
mη = β(y)

m + β(q)
η

β(y)
m ∼ N(0, v(y))

β(q)
η ∼ N(0, v(q))

(M2) estimates two hierarchical variance parameters, v(y) and v(q). v(y) has the effect of
partially pooling information among year parameters, while v(q) partially pools information
among quarter parameters (i.e. treats both year and quarter as “random effects”). The actual
degree of pooling among each of the years and quarters is determined by the data.
Depending on the posterior distributions of v(y) and v(q), the β(y) and β(q) may be shrunk
back toward the common mean (for small v) or allowed to take largely distinct values (in
the case of large estimates of the v).

2.3.3 (M3)

β
(t)
mη = β

(y)
m + β

(q)
η + β

(y:q)
mη

β
(y)
m ∼ N(0, v(y))

β
(q)
η ∼ N(0, v(q))

β
(y:q)
mη ∼ N(0, v)

(M3) functions similarly as (M2), in that it has hierarchical partial pooling among both
the β(y)

m and β(q)
η parameters, except that it introduces a two-way interaction term between

year and quarter. This interaction term allows estimates for particular quarters to differ
from year to year, as opposed to the previous models in which quarters within a year are
assumed to be identical from year to year.

Furthermore the β
(y:q)
mη are also modeled hierarchically to introduce a single variance
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parameter, v, shared among all of the mη time chunks. Although this interaction term adds
many parameters to the model, the shared v parameter functions to shrink extraneous β(y:q)

mη

estimates back toward the common stratum mean.

2.3.4 (M4)

β(t)
mη = β(y:q)

mη

β(y:q)
mη ∼ N(0, v)

(M4) simplifies (M3) by excluding year and quarter main effects. This leaves all temporal
information in the data to be modeled solely by the quarterly β(y:q)

mη interaction terms. This
model represents more opportunity for partial pooling through time than (M3), as fewer
time parameters are introduced. Furthermore all of the β(y:q)

mη are hierarchically pooled back
toward a single common stratum mean via the single shared variance parameter, v.

A model treating the interaction terms as fixed effects (e.g. model (M4) where v is a large
fixed value) was not considered. The β(y:q)

mη interaction terms introduce a very large number of
parameters, which require regularization in this setting. Furthermore, pooling β(y:q)

mη through
time introduces a formalized way to make predictions about unsampled strata.

2.3.5 (M5)

β(t)
mη = β(y:q)

mη

β(y:q)
mη ∼ N(0, vη)

(M5) is largely the same as (M4), but it represents slightly less potential partial pooling
through its hierarchical prior variances, vη, on β

(y:q)
mη . Here interaction terms are allowed to

partially pool interactions across years, within a common quarter, but since each quarter is
assigned a separate variance parameter no pooling is possible between quarters.

2.3.6 (M6)

β(t)
mη = β(y:q)

mη

β(y:q)
mη ∼ N(0, vm)

(M6) follows the same idea as (M5), however here interaction terms are allowed to par-
tially pool interactions within a common year, across the quarters of that year, but not
between years. (M6) often involves fitting slightly more parameters than (M5) because, at
least in this setting, it is typical to model more than four years of data at once.
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Historically, regulations have been enacted with the aim of isolating catch in a market
category to a single species (sort requirements). This clearly affects the composition of the
target market category, but these regulations also affect the species composition of other
market categories in which the target species previously occurred. We incorporate this in-
formation into the model structure by treating time periods with relatively stable regulatory
conditions as independent models. In other words, information is only shared among years
in which regulations were similar. For example, a sort requirement for widow rockfish (S. en-
tomelas) was initiated in 1983. This not only affected the composition of the widow rockfish
market category (269), but also the composition of other categories, such as the unspecified
rockfish market category (250), within which most widow rockfish were previously landed.
We model the first five years of available data (1978-1982) independently from the years
1983-1990. In 1991, a sort requirement for bocaccio rockfish (S. paucispinis) was enacted,
which is known to have affected the composition of other categories, including the Chilipep-
per rockfish market category (254) and the Chilipepper/Bocaccio market category (956).
Given these regulation changes, future year groupings might include independently modeled
periods in 1991-1999 and 2000-2015, however the analysis of those years has not yet been
developed and alternative year groupings may be explored for the most recent landings at a
later time.

Hierarchical variance parameters are estimated from the data. As the above models learn
the posteriors of the hierarchical variance parameters, it affects the degree of shrinkage as well
as the effective number of parameters held within the respective hierarchies (Gelman, 2014).
To achieve this, each variance parameter must itself be assigned a prior to be estimated.
For all of the hierarchical variance parameters included in the above models v is assigned a
diffuse inverse gamma (IG) prior v ∼ IG(1, 2× 103).

Finally the overdispersion parameter, ρ, is assigned a diffuse normal prior on the logit
scale, logit(ρ) ∼ N(0, 22). The N(0, 22) prior is indeed a symmetric, and far reaching, prior
when back transformed to the unit interval. To notice this, it is helpful to realize that the
central 95% interval for a N(0, 22) (i.e. 0 ± 3.91), includes almost the entirety of the back
transformed unit interval (i.e. 0.5± 0.48).

For the purpose of motivating the time parameter structure to be used across all market
categories and time periods, each of models M1-M6 are fit to data from market category
250 from 1978-1982. Performing such a model selection exercise across all market categories,
in each time period, would not only be impractical but would also risk overfitting models,
particually in poorly sampled categories. In the early time periods, market category 250 is
the most heavily sampled multi-species market category, and thus it represents an excellent
data-set for testing.
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2.4 Species Composition Prediction

Bayesian inference of the above models gives access to the full posterior distribution of
all of the parameters of the model given the data. It is useful to emphasize that in the
Bayesian setting, these parameters have full distributions, and they are typically handled
as a large number of samples from the joint posterior distribution of the parameters. Once
the posterior sampling is complete, this simplifies parameter mean and variance estimation;
required moments are simply obtained by computing the desired moments from the posterior
samples. Additionally, the fact that the parameters are full distributions means that any
functions of those parameters are themselves random variables with the function representing
a transformation of those parameters.

To obtain predicted species compositions from the beta-binomial model, first consider
the posterior predictive distribution of sampled weight for a particular stratum.

p(y∗jklmη|y) =

∫∫
BB
(
y∗jklmη|µjklmη, σ2

jklmη

)
P
(
µjklmη, σ

2
jklmη|y

)
dµjklmηdσ

2
jklmη.

Here BB is the data generating beta-binomial distribution for a predictive observation
and P (µjklmη, σ

2
jklmη|y) is the posterior distribution of the parameters given the observed

data. µjklmη and σ2
jklmη are integrated numerically via Monte Carlo integration to produce

samples from the predictive distribution, p(y∗jklmη|y), for sampled weights in the jklmηth

stratum.
Obtaining predictive species compositions from predictive weights amounts to computing

the following transformation,

π∗
jklmη =

y∗jklmη∑
j y

∗
jklmη

y∗klmη 6= 0.

For a particular market category, π∗
jklmη is predicted proportion of species j in the kth

port, caught with the lth gear, in the ηth quarter, of year m.

2.5 Expansion of Landed Catch to Species

For a particular market category, speciated landings simply amounts to the multiplication of
the known total landings (λklmη), reported on landing receipts in the klmηth stratum, with
the posterior predictive species composition, π∗

jklmη, as follows

λ∗jklmη = λklmηπ
∗
jklmη.
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λ∗jklmη is then the posterior predictive landings for species j in the klmηth stratum of a
particular market category. Recall that since π∗

jklmη is a random variable, then so is λ∗jklmη.
Computing the variance of λ∗jklmη simply amounts to computing the variance of random
draws from the λ∗jklmη distribution. Furthermore, any level of aggregation of λ∗jklmη is easily
obtained by summing λ∗jklmη draws across the desired indices. For example to obtain the
distributions of yearly catch of Bocaccio in a particular market category (i.e. aggregated
across ports, gears, and quarters) one simply fixes j to Bocaccio, and computes the following
transformation of λ∗jklmη,

λ∗j··m· =
∑
k

∑
l

∑
η

λ∗jklmη

.
Distribution summaries such as quantiles, means, or variances may be computed by

computing those metrics from the random draws of the resulting λ∗j··m· distributions.

2.6 Model Exploration & Averaging

Presently, strata with diminishingly small sample sizes are managed by an ad-hoc “data
borrowing” protocol, as outlined in Pearson and Erwin (1997). The protocol for “data bor-
rowing” calls for pooling only when forced to fill holes brought about by unsampled strata.
Naturally, such a pooling protocol introduces bias to fill in unsampled strata, however due
to the mathematically unstructured way in which this bias is introduced, it is hard to quan-
titatively justify these “data borrowing” rules.

Model (M4) avoids temporal ad-hoc “borrowing” protocols described in Pearson and
Erwin (1997) by making use of its hierarchical structure to fill temporal holes with a posterior
predictive distribution for unseen time periods within the modeled period. This hierarchical
structure uses the data to estimate the degree of pooling through time, rather than ad-
hoc “data borrowing”. In addition, the M4 model allows data collected during periods with
similar regulations to inform predictions across both quarters and years, unlike the previous
ad-hoc approach which only shared information among quarters within a year.

Despite the benefits of modeling these data as Bayesian hierarchical models, port sam-
pling data still remains sparse. Given the degree of sparsity in these data it is certainly
possible that models which consider an additional degree of data pooling between port com-
plexes may offer predictive benefits. In exploring strategies for pooling data across space
it is necessary to formalize the port complex pooling scheme in a way which provides a
mathematically understandable and scalable structure to build upon.

Given the spatial structure, and complex behavior of, port complex parameters, the typ-
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ical zero mean hierarchical regularization priors are not appropriate among port complexes.
Pooling across spatial categorical parameters in this setting requires the ability to pool port
complex parameters back toward an unknown number (≤ K) of mean levels. Rather than
hierarchically regularize port complex, we frame port complex pooling as a model uncer-
tainty problem, in which we consider some degree of full pooling among port complex, but
the exact degree of pooling, and the particular partitioning of the pooled port complexes are
not known.

Port complex pooling is achieved by repeatedly fitting model (M4) with different par-
titionings of the port complex variables within a particular market category and modeling
time period. This model exploration exercise explores the possible ways to produce group-
ings of the existing port complexes (Figure (4) visualizes the California port complexes)
so as to discover predictively useful partitionings of the port complexes. Insisting that the
port complex groupings be partitions of the available port complexes provides a well-defined
mathematical structure for exploring the space of pooled port complexes.

The size of the space of possible pooled models is in the setting is well defined in terms
of the size of the set of items to be partitioned, K, as given by the Bell numbers (BK),

BK =
K∑
κ=0

1

κ!

(
κ∑
j=0

(−1)κ−j (κj) j
K

)
.

In the case of California the set of items to be partitioned is the set of port complexes
in California, of which there are K = 10, implying a grand total of B10 = 115975 ways of
partitioning the port complexes in California in each market category and modeled time pe-
riod. The brute force model selection strategy of computing all 115975 of these partitionings
strategies is computationally infeasible. However, not all pooling schemes represent biologi-
cally relevant models. For example, it is likely reasonable to pool only among adjacent ports
(i.e. no discontinuities between port complex pooling in space) due to species distributions
and the presence of biogeographical provinces, and it may be similarly reasonable to assert
that similar regions can only extend across a small number of ports.

We limit the set of models to be considered by applying two constraints. 1) Only adjacent
port poolings are considered, and 2) the maximum size of a port complex grouping is fixed
to be no larger than three port complexes. These two constraints were chosen so as to
mirror the currently accepted protocols in Pearson and Erwin (1997), although many other
constraints may, in theory, be chosen. When these two simple constraints are applied, the
number of models to explore in each modeled period is reduced to a much more manageable
274 models. It this framework, it is not necessary to impose a priori conditions on how data
are shared among ports (e.g. never borrowing across Point Conception, as in the current
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ad hoc approach). However, if the data strongly support a particular port configuration,
models with that structure will have greater influence on model predictions.

An exhaustive search of the models in the constrained subspace of B10, allows for a
concrete comparison of the relative predictive accuracy of each partitioning. Additionally
the partitioned models provide a set of candidate models for use in Bayesian Model Averaging
(BMA) (Hoeting et al., 1999). BMA, as applied here, allows the model exploration strategy
to average models across all potentially relevant partitions of the port complexes, so as to
add robustness to final species composition estimates.

For the ιth model in a set of candidate models M , then the BMA weight for Mι follows
directly from Bayes Theorem as,

ωι = Pr(Mι|y) =
p(y|Mι)p(Mι)∑
ι p(y|Mι)p(Mι)

.

Where ωι is the posterior probability that model ι is the true data generating model of
the data, conditional on the subspace of candidate models and the observed data. ωι is then
straightforwardly used to average posteriors across all of the models, as

p̄(θ|y) =
∑
ι

ωιp(θ|y,Mι).

3 Results

3.1 Characteristics of the Landings Data

In the two time periods modeled here, Figures (5 and 6) show how commercial port sampling
effort tracks both total landed weight as well as the number of species in market categories
accounting for the top 99% of total landings in each time period. Comparable results for
the periods 1991-1999 and 2000-2015 are discussed Appendix (6.2), although we have not
yet completed modeling for these time periods. Our model is applied to a relatively large
proportion of the landings in both time periods, and nominal speciation occurs for a relatively
negligible proportion of total landings. This is because 1) port sampling effort is largely
opportunistic and implicitly prioritizes heavily landed market categories, and 2) our model
is only fit to market categories with more data than model parameters. As a result market
categories left with too few samples to fit our model tend to be less landed. Applying the
sample size heuristic to determine which market categories are expended by our model results
in 96.8% of landed weight being expanded via our model in the 1978-1982 time period and
98.3% of landed weight expanded by our model in 1983-1990.
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The lower panels of Figures (5 and 6) demonstrate just how many different species are
landed into commercially relevant market categories. Although market categories often carry
names that label them with a nominal species, Figure (5) makes it abundantly clear that
these names can mislead our thinking about the purity, and consistency, of these categories
through time. To drive this point, consider the sampled species in market category 267
in 1978-1982. The nominal label for market category 267 is Brown Rockfish, while Brown
Rockfish only amounts to a small fraction of that category in 1978-1982. In fact, only 6.3% of
the sampled weight in 1978-1982 consisted of Brown Rockfish. In 1978-1982 market category
267 might be better named Widow Rockfish as Widow amounts to 92.6% of sampled weight
in this time period, however market category 267 is composed of 99.6% Brown and 0%
Widow in recent time periods (see Appendix 6.2).

3.2 Predictor and Prior Selection

M1 M2 M3 M4 M5 M6
MSE 0.127245 0.127042 0.126801 0.122373 0.127236 0.126573
∆ DIC 2558.56 2259.94 2013.21 0 2175.32 2174.71
∆ WAIC 2562.65 2263.58 2009.32 0 2171.18 2170.56
pr(M |y) ≈ 0 ≈ 0 ≈ 0 ≈ 1 ≈ 0 ≈ 0

Table 1: Mean Squared Error (MSE; computed on the species composition scale), delta
deviance information criterion (∆ DIC), delta widely applicable information criterion (∆
WAIC), and marginal Bayesian model probabilities (pr(M |y)) across the fit of models M1-
M6 to data from 1978-1982 in market category 250.

Recall models (M1)-(M6) differ in the structure of the β(t)
mη time parameters. Table (1)

shows the relative support for those model structures. From (M1) to (M4) the models repre-
sent a spectrum of models with an increasing potential of shrinkage among time parameters.
Models M5 and M6 represent models which build in complexity, from (M4), via the inclusion
of multiple hierarchical variance parameters among the interaction terms.

Across all of the time models, model M4 displays consistent support over all other candi-
date models considered here. It is worth mentioning that among all of the models considered
here, (M4) offers the largest potential for hierarchical partial pooling among the time pa-
rameters. Model (M4) represents a model with maximal potential for pooling through time,
while still maintain the ability to model differences in seasonality from year to year.

16



3.3 Model Exploration & Averaging

Considering Figure (7), the best partitioned model (first column, ω = 0.32) gives distinct
parameters to CRS and ERK, while pooling BRG/BDG, OSF/MNT/MRO, and OSB/O-
LA/OSD. This model uses five parameters to model the ten ports complexes in California.
Given the set of candidate models explained above, the BMA procedure gives this model a
probability of 32%. Notice that the only difference among the top four models is in how the
port complexes south of Point Conception are handled. In fact, the seven northerly port
complexes are identically partitioned in the top four models, which also represent all of the
possible partitionings of the southern three port complexes.

In this modeled period it is known that no species composition sampling was done south
of Point Conception, thus it is not surprising that these models perform similarly. When
no data are present, parameters simply represent place holders for out of sample prediction.
Since the port complexes south of Point Conception are not informed by data, the predictions
are identical in these categories. Since the first model makes identical predictions to the
following three, and does so using the fewest parameters, it is correctly identified as the
most parsimonious explanation among these data.

Considering how the top four model configurations share identical structure in the seven
northerly port complexes, while exhaustively spanning the candidate partitions south of
Point Conception, it is simple to see that BMA assign’s approximately 71% marginal prob-
ability to the northerly model structure.

The results shown here only represent a single market category across the time period
1978-1982. Similar results for other market categories and time periods are provided in
Appendix (6.3).

3.4 Prediction

Repeatedly fitting model (M4) across port complex configurations and applying the BMA
procedure, ultimately provides access to posterior predictive distributions of the species
compositions (π∗

jklmη) within a market category and modeled period. A straight forward
way to evaluate the performance of the model in each modeled period is to compare the
predictions of the model in each modeled period with the actual observations of species
compositions from port samplers.

We evaluate species composition posterior predictive distributions via Highest Density
Intervals (HDI) at three levels containing 68%, 95%, and 99% of posterior predictive proba-
bility. Tables (2 and 3) show the proportion of observed species compositions which existed
within the HDI across all strata, of each prediction level, in each modeled period. For exam-

17



ple, observed species compositions for market category 250 in the 1978-1982 time period fell
within the 68% HDI of the posterior predictive distribution 67.1% of the time, Table (2).

68% 95% 99%
250 67.1% 96.1% 98.7%
253 67.3% 96.3% 98.9%
262 67.4% 93.8% 95.3%
265 69.6% 96.0% 97.8%
269 68.2% 88.8% 90.2%
270 68.6% 93.6% 96.7%
956 68.3% 96.7% 99.2%
959 68.5% 96.3% 98.1%
961 69.3% 93.2% 95.3%
AVG 68.3% 94.5% 96.7%

Table 2: 1978-1982

68% 95% 99%
245 60.8% 94.9% 97.7%
250 68.1% 96.0% 99.0%
253 69.3% 97.1% 98.9%
259 83.8% 91.9% 92.9%
262 68.5% 95.1% 95.9%
269 68.6% 94.2% 94.7%
270 67.9% 94.2% 96.7%
663 68.1% 94.1% 96.3%
667 69.4% 92.5% 93.5%
956 67.5% 96.2% 99.0%
959 67.4% 96.4% 99.0%
960 68.0% 96.1% 98.6%
961 68.6% 94.6% 97.8%
AVG 68.9% 94.9% 96.9%

Table 3: 1983-1990

Tables (2 and 3) largely show that the observed proportion of predicted samples aligns
appropriately with the predictions made by the model. Considering the average perfor-
mance across market categories at each prediction level, it appears that prediction is mostly
appropriate with the possible exception of the 99% prediction level. The 99% prediction
level appears to slightly under-predict on average, indicating that predictive distributions
are slightly lighter in the far tails than the data.
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4 Discussion

We describe here is a flexible modeling approach, building on the work of Shelton et al.
(2012), for speciating sparsely sampled commercial landings. Our model uses Bayesian
statistics to allow, but does not force, the data to inform pooling strategies through both
time and space via hierarchical modeling and Bayesian model averaging. Our approach
infers the level of pooling in time and space from data, and uses the complete Bayesian
statistical framework to produce accurate estimates of uncertainty, and makes predictions
for unobserved strata.

Generally speaking the model based statistical framework allows tremendous flexibility
in accounting for a dynamic port sampling program. Market forces, regulation changes,
and fisherman behavior are a few factors, among the many, which complicate the task of
speciating commercial catch. Unlike a purely sample-based statistical framework, model
based statistics allows analysts to quickly explore a wide range of hypotheses for estimating
species compositions. The models entertained here manage to achieve generally well be-
haved predictive accuracy (Tables 2 and 3), however these models are by no means perfect.
The models presented here simply offer a few fundamental improvements toward estimating
species compositions.

Among the largest structural changes improving from the Bayesian methodology in Shel-
ton et al. (2012) is the recognition of overdispersion in port sampling data. In the absence
of highly predictive covariates, modeling overdispersion in port sampling data remains an
important modeling consideration. Moving forward, modeling decisions will require a care-
ful consideration of predictive accuracy and bias/variance trade-off, so as to tease better
and better performance out of further models. The models presented here offer a great
operational starting point and provide a basic framework for further model exploration.

This system provides easy access to estimates of uncertainty in commercial catch, at
any aggregation of the stratification system. Making posterior predictive draws from these
models widely available, makes it possible for stock assessment scientists to incorporate catch
uncertainty into existing assessment models where possible and appropriate.

Due to observed trends in the sampling of more heavily landed, or specious, market
categories, the vast majority of commercial landings from 1978-1990 are able to be expanded
by our model. Moving into the modern era, regulation changes including the start of the live
fish fishery, and the proliferation in the number of market categories, due to mandatory sort
requirements, may challenge species composition estimation. However, due to the increased
number of strata that these changes introduce, uncertainty estimation for these time periods
will prove to be critical. Without a matched increase in sampling effort, alongside increased
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stratification, the number of samples per stratum falls dramatically and species composition
estimation may well become very uncertain.

Given a sparse data setting, model-based strategies of catch estimation provide the best
chance of a full statistical treatment of available data. However, a more informed path
forward involves either increasing sampling effort, or a simplification of the stratification
system. Either of these changes provide models with more data to better infer parameters.
Model flexibility and justifiable stratum pooling strategies, will become vital for modeling
data-sparse time periods. Although estimates are likely estimable in these sparse time pe-
riods, as pooling strategies become more extreme, model fit will suffer as both bias and
variance estimates increase.

Future effort in developing models should include an exploration of the effect of land-
ing weight on species compositions, as the current estimation algorithm in CALCOM uses
landing weight information in its calculation. The model-based approach makes testing this
hypothesis straight-forward, as the hypothesis may amount to the inclusion of a single slope
parameter in the linear predictor, regressing on landing size. Given the current model’s
agreement with existing data, as well as with CALCOM estimates for well sampled strata, it
is unlikely that landing size has an important predictive effect in all cases, however without
testing the hypothesis, we can not say whether the effect will prove to be explanatory.

In an attempt to add further flexibility to the models presented here, exploring the possi-
bility of gear-species interactions, as random effects, may prove fruitful. This could improve
model performance not only due to differential gear selectivity, but also because some gear
groups and port complexes are confounded in the California data due to spatial regulations
(e.g. trawl gear is prohibited in Southern California). Furthermore the inclusion of ran-
dom vessel effects may also find support, perhaps capturing variability in fishing behavior
or changes in catch composition related to vessel size, as noted above.

Finally, further large changes to the methods proposed here might include a true multi-
variate handling of the likelihood. The Beta-Binomial univariate model, used here, suggests
that the multivariate Dirichlet-Multinomial extension might be a good model for these data.
We have yet to get these models to practically compute, due to excessive run times and
computational server limitations, but in the future they may provide appropriate structure
across the many species of this system. As affordable computing power increases, predictive
distributions and summary statistics from improved models can be easily incorporated into
the proposed database structure.

The BMA procedure presented here adds significant robustness and pooling potential to
our species composition estimates, however it does so at a substantial computational cost.
We have found ways (through parallel computation and constraining the model search) to
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make the computation tractable, however the solution is a “brute force” approach. Dirichlet
Process (DP) Bayesian nonparameteric models (Ferguson, 1973) are a potential alternative
approach to modeling the port parameters.

Our approach and analysis is intended to be a template for applying to other highly, or
even just moderately comparable examples. For instance, this approach could be applied
to historical rockfish catches off of Oregon and Washington, which have a different but
comparable history of sampling mixed-species market categories that have shifted over time.
More importantly, this general approach will be appropriate to additional investigations of
the species composition of total landings in other poorly sampled and highly variable mixed
stock fisheries that may have widely variable types of available data (e.g. Suter 2010, Benoit
2012, Saldaña-Ruiz et al. 2017, Fields et al. in press).
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5 Figures
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Figure 1: Number of commercial port samples per market category in California, 1978-
2014 (upper panel), average sample size per stratum (middle panel), and number of market
categories recorded on landing receipts (lower panel). On the lower panels, points indicate
observed values, while the black lines represent 8 year moving averages
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Figure 2: Landed weight (metric tons), number of landed strata (year, quarter, port complex, and gear group), and number
of species composition samples by market category and time period. Market categories created after 1990 are not listed (e.g.
678, 679, 964, and 971-976). * “Single-species” market categories are nominal (in name only); landings in these categories often
include a mixture of species.
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Figure 3: (Continued) Landed weight (metric tons), number of landed strata (year, quarter, port complex, and gear group), and
number of species composition samples by market category and time period. Market categories created after 1990 are not listed
(e.g. 678, 679, 964, and 971-976). * “Single-species” market categories are nominal (in name only); landings in these categories
often include a mixture of species.
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Figure 4: Map showing the ports in California that account for at least 95% of landings.
Separating lines show how ports have been aggregated into port complexes.
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Figure 5: Upper panel shows the proportion of landed weight (black) and number of samples (blue) in each market category
for the 1978-1982 time period. Bottom panel shows the proportion of sampled weight for each species in each market category
shown. The number above each colored bar indicated the number of species in the market category. Hashing indicates the
species that is nominal in the relevant market category.
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Figure 6: Upper panel shows the proportion of landed weight (black) and number of samples (blue) in each market category
for the 1983-1990 time period. Bottom panel shows the proportion of sampled weight for each species in each market category
shown. The number above each colored bar indicated the number of species in the market category. Hashing indicates the
species that is nominal in the relevant market category.
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MCAT 250
ω 0.32 0.14 0.13 0.12 0.02 0.02 0.02 0.02 0.02 0.02
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Figure 7: The model averaging results of port complex model selection for market category 250 in 1978 to 1982. BMA weights
(ω) for the top 10 models are displayed in the top row (each column is a distinct model). The following ten rows indicate the
ten port complexes in California, and the colored cells indicate how port complexes are partitioned in each model.
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6 Appendix

6.1 Appendix A: A Motivating Example

To discern between these discrete modeling options we considered Poisson, binomial, negative
binomial, and beta-binomial models fit to a subset of the data from market category 250,
in the Monterey port complex trawl fishery for the second quarter of 1982. This stratum
was selected as a relatively data rich setting, although other stratum produce similar results.
This stratum was visited 32 times by port samplers, collecting a total of 59 cluster samples
across 55 unique species. For brevity, in this example, we only consider the six most prevalent
species (BCAC, CLPR, WDOW, YTRK, BANK, STRK).

Simplified models under each of the discrete likelihoods, mentioned above, are fit to the
subset data.

yij i.i.d.∼ p(yij|θj, φ)

Here p takes the form of each of the considered Poisson, binomial, negative binomial, and
beta-binomial models, θj represents the fixed species parameters, and φ is included to gener-
ally represent the nuisance parameters for modeling overdispersion in the negative binomial,
and beta-binomial models.

Poisson Binomial NB BB
MSE 0.06412 0.06264 0.05171 0.04479
∆ DIC 1001.41 1230.60 5.03 0
∆ WAIC 1079.95 1323.75 3.43 0
pr(M |y) ≈ 0 ≈ 0 ≈ 10−7 ≈ 1

Table 4: A table showing Mean Squared Error (MSE; computed on the species composition
scale), delta deviance information criterion (∆ DIC), delta widely applicable information cri-
terion (∆ WAIC), and marginal Bayesian model probabilities (pr(M |y)) across the likelihood
models fit.

Table (4) shows model fit measures spanning a wide range of model selection philosophies
and yet here they all consistently agree in ranking the likelihood models, with a clear prefer-
ence for the overdispersed models (NB and BB). The beta-binomial model shows the most
overall support and the Poisson model shows the least support. This initial result guides
the use of the beta-binomial data generating model for the purposes of building a model to
apply at an operational scale.

Figure (8) demonstrates how the beta-binomial model distributes predictive density over
the unit interval. Species composition is bounded on [0, 1], thus in the presence of large
variability, predictive density may aggregate around the bounds.
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Figure (9) visualizes the predictive species composition distributions as 95% Highest
Density Intervals (HDI) (colored vertical lines), plotted on top of the predictive means for
each model and the observed species compositions (black horizontal lines) from the data in
Figure (9).

The large spread of the observed species compositions seen in Figure (9) visually demon-
strate the degree of overdispersion present in port sampling data. The Poisson and binomial
models disregard this overdispersion to prioritize fitting the data mean. The NB and BB
models explicitly model overdispersion in the data, and as such they predict a larger subset
of the data. Notably, only the intervals produced by the BB model include the low observed
proportions of bocaccio (BCAC) and the high observed proportion of chilipepper rockfish
(CLPR) in this example.

The split beta-binomial intervals seen in Figure (9) reflect a large amount of residual
variability confined on the unit interval. The beta-binomial is the only model considered
here, that estimates such a large degree of variability and thus it is the only model that
produces predictive species composition distributions that effectively cover the range of ob-
served species compositions. The predictive intervals in Figure (9) are the smallest possible
regions on each of the densities visualized in Figure (8) so that each intervals contain 95%
probability. For the example of STRK, notice that although the predictive HDI in Figure
(9) is split, the vast majority of density (seen in Figure (8)) lies directly atop the data.
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6.1.1 Figures

Figure 8: A violin plot of the beta-binomial predictive distributions for the six most preva-
lent species in the market category 250, Monterey trawl fishery for the second quarter of
1982. Observed species compositions, from port sampling, are plotted atop each density.
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Figure 9: Interval Plot: The predictive species composition distributions as 95% Highest
Density Intervals (HDI) (colored vertical lines), plotted on top of the predictive means for
each model and the observed species compositions (black horizontal lines) from the data
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6.2 Appendix B: Modern Market Categories and Sampling

Figures (10 and 11) show structure in port sampling data for two modern unmodled time
periods, 1991-1999 and 2000-2015. These modern time periods show similar patterns in port
sampling effort as the above describes modeled time periods, although due to the increased
number of market categories, port sampling is spread more thinly among the many categories.
Namely port sampling effort still seems to track both total landed weight, as well as the
number of species in each market category, however this pattern occurs across many more
market categories.

In these two modern time periods a key feature of the data is the proliferation of the
number of market categories. Figures (10 and 11) show market categories accounting for
the top 99% of total landings in each time period. In the modeled periods, 1978-1982 and
1983-1990, the top 99% of total landings are landed into 6 and 12 distinct market categories
respectively. In the unmodeled periods shown here, 1991-1999 and 2000-2015, the top 99%
of total landings are landed into 20 and 28 distinct market categories respectively.

It was noted in Section (3.1) that market category 267 (nominally Brown Rockfish) was
actually composed of relatively little Brown Rockfish, and actually contained mostly Widow
Rockfish. Figure (11) shows that in the most modern time period (2000-2015) this pattern
reverses as market category 267 is composed almost entirely (99.6%) of Brown Rockfish.

6.2.1 Figures
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Figure 10: Upper panel shows the proportion of landed weight (black) and number of samples (blue) in each market category
for the 1991-1999 time period. Bottom panel shows the proportion of sampled weight for each species in each market category
shown. The number above each colored bar indicated the number of species in the market category. Hashing indicates the
species that is nominal in the relevant market category.
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Figure 11: Upper panel shows the proportion of landed weight (black) and number of samples (blue) in each market category
for the 2000-2015 time period. Bottom panel shows the proportion of sampled weight for each species in each market category
shown. The number above each colored bar indicated the number of species in the market category. Hashing indicates the
species that is nominal in the relevant market category.
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6.3 Appendix C: Spatial Model Averaging

In an effort to provide a flexible spatial pooling strategy among the categorical port complexes
in this system, a “brute force” BMA approach is used. In each modeled time period, and
market category, 274 variations of model (M4) are fit. Each of the 274 model variations
differ only in how they partition port complexes along the California coast. In the extreme
cases, port complexes may be modeled as (10) unpooled parameters, or in contrast, port
complexes may be pooled into as few as four parameters, see Section (2.6).

In the case of pooling port complexes it is not enough to simply known how many port
complexes groups to pool toward, but rather it is imperative to know which port complexes
to pool together. Here we try all port complex pooling schemes, such that only adjacent port
complexes are ever pooled, and pooling schemes shall never exceed three port complexes in
size. For the case of a 10 port complexes system this results in 274 variations of model (M4)
(for refer, in the case of a 3 port complex system this only amounts to 4 model variations). In
each modeled period and market category all 274 model variation are fit and in an automated
fashion these models are averaged together so as to approximately integrate port complex
poolings decisions out of the modeling procedure.

Figures (12, 13 and 14) show the spatial model averaging results for all modeled time
periods (1978-1982 and 1983-1990) in all modeled market categories. For brevity we only
show the five most highly weighted models in each market category.

In 1978-1990, nine market categories are computed by the model. Results from all nine
BMA partitioning schemes are shown in Figure (12). Market category 250 is described in
more detail in Section (3.3) as it is the most heavily landed and sampled category in the
1978-1982 time period, see Figure (2). Of additional note in the 1978-1982 time period
are market categories 270 and 959. The most heavily weighted model in market category
270 (ω = 0.08) includes 7 port complex parameters, with no port complex pooling seen
south of San Francisco. Furthermore only two port complex parameters are used from San
Francisco north (CRS/ERK and BRG/BDG/OSF). In the north the break between ERK
and BRG (i.e. Cape Mendocino) is a very consistent feature, while in the south there is
more variability in how to partition port complexes. Additionally it is work noting that the
top 5 models shown in market category 270 only amount to about 24% of model probability
with the remaining 76% extending into the 269 unshown models for that market category.
This represents an example of substantial model uncertainty with respect to the southern
port complex model specification. In contrast, consider market category 959, where the first
two models amount to 98% of model weight.

In the 1982-1990 time period, see Figures (13 and 14), where 13 market categories were
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modeled. In contrast with 1978-1982, the 1983-1990 time period shows a lot of variability in
the number of parameters used to model port complex. In 1983-1990 market category 262
has its most heavily weighted model only using 4 parameters while market category 663 uses
8 port complex parameters in its most heavily weighted model. Again in market category
663 most of the parameters are used to model the southern port complexes.

In general, across all time periods, notice that each market category has fairly unique port
complex partitioning results. The fact that each market category behaves uniquely indicates
the complexity of this system. Furthermore the fact that the BMA strategy picks up on
these varied market category behaviors indicates the flexibility of this approach. Although
the system is very dynamic, key breaks along California biogeographic features, such as Cape
Mendocino and/or Point Conception, seem to be recurrent patterns.

Additionally, across all of the modeled periods no market category ever highly weights the
fully unpooled model. This suggests the appropriateness of spatial pooling for these sparse
data. These data represent the most well sampled time periods in CALCOM an still spatial
pooling finds support. Furthermore it is worth reiterating that the fitted model, (M4), is
already doing hierarchical temporal partial pooling, as described in Section (2.3), and even
still pooled spatial models outperform the unpooled models.

6.3.1 Figures
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MCAT 250
ω 0.32 0.14 0.13 0.12 0.02
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MCAT 253
ω 0.14 0.14 0.14 0.10 0.06
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MCAT 265
ω 0.02 0.02 0.01 0.01 0.01
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OSD

MCAT 269
ω 0.19 0.14 0.14 0.13 0.07
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MRO
OSB
OLA
OSD

MCAT 956
ω 0.10 0.08 0.07 0.07 0.06
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OSB
OLA
OSD

MCAT 262
ω 0.30 0.21 0.06 0.05 0.04

CRS
ERK
BRG
BDG
OSF
MNT
MRO
OSB
OLA
OSD

MCAT 270
ω 0.08 0.06 0.04 0.03 0.03
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OSB
OLA
OSD

MCAT 959
ω 0.49 0.49 0.00 0.00 0.00
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OSD

MCAT 961
ω 0.05 0.05 0.05 0.04 0.04
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MNT
MRO
OSB
OLA
OSD

Figure 12: 1978-1982 model averaging results for all modeled market categories.
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MCAT 250
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CRS
ERK
BRG
BDG
OSF
MNT
MRO
OSB
OLA
OSD

MCAT 253
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MCAT 663
ω 0.49 0.49 0.00 0.00 0.00
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OSD

MCAT 667
ω 0.07 0.03 0.03 0.03 0.03
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OSD

MCAT 956
ω 0.26 0.21 0.19 0.11 0.10
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OSB
OLA
OSD

MCAT 959
ω 0.36 0.22 0.18 0.15 0.02

CRS
ERK
BRG
BDG
OSF
MNT
MRO
OSB
OLA
OSD

MCAT 960
ω 0.19 0.15 0.10 0.09 0.05
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MNT
MRO
OSB
OLA
OSD

Figure 13: 1983-1990 model averaging results for all modeled market categories.
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MCAT 961
ω 0.17 0.12 0.10 0.08 0.08
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MCAT 245
ω 0.05 0.05 0.05 0.05 0.04
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MCAT 262
ω 0.47 0.29 0.07 0.06 0.02
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MCAT 270
ω 0.04 0.03 0.03 0.03 0.03
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ERK
BRG
BDG
OSF
MNT
MRO
OSB
OLA
OSD

Figure 14: (Continued) 1983-1990 model averaging results for all modeled market categories.
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6.4 Appendix D: Nuisance Parameters

Tables (5 - 8) Summarize nuisance parameter posteriors for model M4 fitted in each market
category, in each modeled period. Recall high values of ρ indicate overdispersion relative to
the binomial model, and small values of v indicate a high degree of temporal pooling in the
β
(y:q)
mη parameters.

6.4.1 Overdispersion Parameter(ρ)

In general ρ estimates seem to account for a fair degree of overdispersion. Values of ρ
never approach the maximal limit (ρ = 1), and thus the beta-binomial model seems to be
appropriately to modeling the observed residual variance of these data, on average, without
structurally underestimating variability.

MCAT Mean Median SD
250 0.55 0.55 0.004
253 0.39 0.39 0.001
262 0.35 0.35 0.008
265 0.64 0.64 0.002
269 0.52 0.52 0.019
270 0.53 0.54 0.020
956 0.35 0.35 0.007
959 0.47 0.47 0.070
961 0.55 0.55 0.004

Table 5: 1978-1982: ρ posterior mean,
median, and standard deviation sum-
maries for all modeled market categories.

MCAT Mean Median SD
245 0.65 0.65 0.014
250 0.51 0.51 0.002
253 0.47 0.47 0.010
259 0.75 0.75 0.009
262 0.41 0.41 0.001
269 0.57 0.57 0.046
270 0.74 0.75 0.027
663 0.51 0.51 0.001
667 0.49 0.49 0.022
956 0.43 0.43 0.003
959 0.55 0.55 0.004
960 0.45 0.45 0.004
961 0.59 0.59 0.001

Table 6: 1983-1990 ρ posterior mean, me-
dian, and standard deviation summaries
for all modeled market categories.
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6.4.2 Temporal Pooling(v)

Each modeled market category and time period require a different degree of pooling. The
variance estimates span 2 orders of magnitudes with the smallest estimate (indicating the
most temporal shrinkage) occurring in market category 250 in 1983-1990 and the largest esti-
mate (indicating the least temporal shrinkage) occurring in market category 269 in 1983-1990.
Modeling each market category separately provides the flexibility to separately characterize
these largely distinct temporal pooling behaviors.

MCAT Mean Median Posterior SD
250 12915.85 18523.12 8699.87
253 22747.87 23063.76 1535.53
262 20254.41 20506.36 2581.87
265 15846.22 16694.98 7601.15
269 20135.05 19975.15 4667.11
270 19931.96 19955.13 6033.35
956 19659.11 19795.60 1227.99
959 19159.69 13375.80 19256.94
961 18631.44 19498.31 7970.44

Table 7: 1978-1982 v posterior mean, me-
dian, and standard deviation summaries
for all modeled market categories.

MCAT Mean Median Posterior SD
245 20211.82 20204.95 1276.83
250 236.03 192.53 134.67
253 20455.18 20140.50 1521.72
259 20246.14 20186.61 898.99
262 20445.49 20348.56 343.70
269 34386.49 25951.03 24030.32
270 20253.34 19908.07 9269.02
663 19563.87 19624.09 331.04
667 20089.55 20078.27 2723.34
956 20581.67 20664.71 913.92
959 19242.41 18707.09 5076.03
960 20059.66 20012.80 1703.89
961 20127.69 20141.04 580.80

Table 8: 1983-1990 v posterior mean, me-
dian, and standard deviation summaries
for all modeled market categories.
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6.5 Appendix E: ComX Distributions of Landed Catch for Select

Species, 1978-1990

As described in the text, ComX generates predictive distributions of species compositions, by
stratum (market category, year, quarter, gear group, and port complex). When multiplied by
the total weight of fish landed in a stratum, we obtain the predictive distribution of landed
weight by species (i.e. the “expanded” landings estimates by species) for that stratum. This
approach allows us to summarize the predictive distributions using percentiles (10th, 25th,
50th, 75th, and 90th) as well as the mean, and to report coefficients of variation (CV). This
appendix describes distributions of landed catch at two levels of aggregation, as currently
stored in the “COMX_DB” database at the NMFS SWFSC Fisheries Ecology Division.
First, we present landings distributions by species, year and gear group, aggregating across
all market categories, port complexes, and quarters. This level of aggregation is commonly
used in “data-rich” stock assessments that partition annual catch by fishing fleet. Second, we
present results by species and year, aggregating across all market categories, port complexes,
quarters, and gear groups. This higher level of aggregation is commonly used in “data-
moderate” (e.g. surplus production) and “data-poor” (e.g. catch-based) assessment methods.

Given that there are 90+ species in the PFMC’s Groundfish Fishery Management Plan,
each landed by multiple gear types, we present results for a subset of species that account
for the vast majority of landings, as well as a selection of “minor” stocks that were landed
in smaller quantities. Specifically, we ranked species in order of landed weight using the
CALCOM database, and identified 9 species that account for 90% of the landed rockfish in
California over the period 1978-1990, see Table (9). We also included a selection of minor
stocks (in terms of total landings in California) to evaluate performance of the current model
in “data-limited” and “data-poor” situations.

In order to generate meaningful comparisons of the ComX distributions and estimates
from CALCOM, we ensured that both sets of estimates were based on the same subset of
expanded strata. As noted in the main text, ComX does not fit a model to strata in which the
minimum number of model parameters is less than the number of available samples. Strata
meeting this criterion were excluded from the comparisons in this appendix. For example,
the expanded ComX estimates in this appendix exclude landings prior to 1984 in Southern
California (insufficient data), market categories 245, 253, and 956 prior to 1983, and market
category 265 in both time periods. Market category 245 was excluded because it was only
sampled once prior to 1983, and therefore ComX did not fit a model for 245 in this time
period. Market categories 253 and 956, prior to 1983, were excluded from the comparison
due to issues associated with a reclassification of landing receipts during that time period

43



Rockfish Species
1978-1990

Expanded Landings
(1000s of mt)

Top 90% of Rockfish Landings
Widow 47.1
Bocaccio 44.9

Chilipepper 32.1
Bank 14.5

Yellowtail 10.2
Blackgill 8.1

Darkblotched 7.2
Canary 6.5
Splitnose 5.4
Select Minor Stocks

Cowcod 2.1
Pacific Ocean Perch 0.9

Bronzespotted 0.6
Chameleon 0.1
Mexican 0.04

Table 9: Rockfish species in descending order of landed catch in California. Source: CAL-
COM 2018.

(details can be found in Pearson et al. 2008). Pearson et al. also described a re-definition of
market category 265 that led to its exclusion. To ensure an accurate comparison, expanded
landings estimates from CALCOM were queried from the COM_LANDS table based on the
same strata that were used to generate the ComX distributions.

Since some market categories are named after a particular species, an uninformed user
may mistakenly query landings based on a market category description, assuming they rep-
resent total landings for that species (e.g. market category 253, the nominal “bocaccio”
category). Using the same subset of strata outlined above, we compare ComX estimates to
the landings in the nominal category for each species and gear to illustrate how nominal
landings estimates differ from expanded estimates.

6.5.1 Expanded Landings Aggregated by Species, Year, and Gear Group

Since deviations between estimates from CALCOM and ComX can occur for a number of
reasons, we provide a brief summary of our comparisons to date. Members of the technical
team are currently researching specific cases and will be prepared to present further details
during the methodological review. We first present species making up 90% of commercial
landings, in rank order of landings and beginning with Widow Rockfish (Sebastes entomelas),
followed by a selection of minor stocks, beginning with Cowcod (S. levis).
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6.5.1.1 Widow Rockfish (Sebastes entomelas)

Expanded landings of widow rockfish were dominated by the trawl gear group, with relatively
minor contributions from line and net gears, see Figure (15). Since 1983, regulations require
sorting of widows into market category 269, and this species represents one of the most
“data-rich” examples, as indicated by the small CVs, particularly for trawl gear estimates.
Landings of widow continue to occur in market categories other than 269, which accounts
for the slight negative bias between the “nominal” landings and the expanded landings from
both ComX and CALCOM. The largest deviations between ComX and CALCOM occur
prior to the sort requirement (1979-1981), but the 1982 estimates from all three methods are
very similar. Line gear estimates are the least precise among gear groups, but this would
have little effect on assessment results due to their minor contribution to total removals.

6.5.1.2 Bocaccio (S. paucispinis)

Expanded landings for Bocaccio, Figure (16) are consistently precise across gears and years
for the areas examined in this comparison. ComX distributions at the species/year/gear level
have CVs less than 0.4 for all years in the trawl and line gears, as well as for net gear types
after 1983. Point estimates for trawl landings from CALCOM generally fall between the
10th and 90th percentiles of the ComX distributions, with the exception of 1980, 1983, and
1984. Use of the nominal “Bocaccio” market category (253) produces very poor estimates of
landed catch, reflecting the fact that Bocaccio was landed in large quantities in other market
categories, and other species were landed in market category 253.

6.5.1.3 Chilipepper Rockfish (S. goodei)

Chilipepper and Bocaccio are frequently caught together, resulting in similar trends in land-
ings by gear for the two species. Chilipepper landings distributions are also precise relative
to other species in the comparison set, having CVs less than 0.4 in most years and gears after
1982, see Figure (17). Expanded point estimates from CALCOM are mostly consistent with
ComX distributions, with the exception of trawl landings after 1983, where the CALCOM ex-
pansion procedure estimates consistently greater landings, especially after 1987. Chilipepper
were almost never landed in their nominal market category (254), by comparison.

6.5.1.4 Bank Rockfish (S. rufus)

Estimates of Bank Rockfish prior to 1983 are consistently imprecise at this level of aggre-
gation, with CVs > 1 for all gears and years, see Figure (18). Bank rockfish are common
in Southern California and, as noted above, this comparison excludes landings in Southern
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California prior to 1984 due to limited sampling. Potential approaches to estimate land-
ings for this species in Southern California could include prediction (hindcasting) of species
compositions based on data collected from Southern California after 1983. The general
trends in expanded trawl landings are roughly consistent, with deviations in 1984 and 1986,
although one would expect some deviations by random chance. ComX estimates are consis-
tently higher than CALCOM for line gears, with the opposite pattern in net gears. As with
Chilipepper, only a small fraction of Bank Rockfish were landed in their nominal market
category (663).

6.5.1.5 Yellowtail Rockfish (S. flavidus)

ComX distributions of expanded catch for Yellowtail Rockfish were less precise, with CVs
greater than 0.4 in all years and gear groups, see Figure (19). Trawl landings estimates from
CALCOM showed no clear trend and were highly variable. Means of the ComX distributions
showed an initial increase, followed by a decline from 1980 to 1986, after which landings
stabilized around 200 mt per year. Deviations between the mean and median estimates from
ComX reflect skewness of the predictive distributions. For both line and net gear types,
CALCOM produces expanded estimates that are consistently larger, and with more inter-
annual variability, than ComX. Yellowtail landed by trawl gears are rarely landed in their
nominal category (259), but total weight of fish in the nominal “yellowtail” category are of
similar scale to the ComX expanded estimates for both line and net gear groups.

6.5.1.6 Blackgill Rockfish (S. melanostomus)

Expanded landings of Blackgill Rockfish are highly imprecise prior to 1983 in all gears, with
CVs from ComX consistently greater than 1, see Figure (20). CVs of trawl and net gears
remain above 0.4 for the remainder of the expanded time periods, while the precision of line
gears increases after 1984. Mean and median landings by trawl gears increase in ComX in
1983, and then remain stable. CALCOM estimates after 1983 are highly variable, but lower
(on average) than ComX. Both expansion methods show increases in landings by line gears,
with a slower rate of increase in the ComX estimates, relative to the CALCOM expansion
protocol. The largest deviation between the two expansion methods for net fisheries occurs
in 1988, which is the most precisely estimated year for that gear group in ComX (CV =
0.36). Landings in the nominal “blackgill” category (667) are a poor representation of trawl
catch. Nominal landings in the line and net gear groups show a similar trend to expanded
estimates, but are biased low.
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6.5.1.7 Darkblotched Rockfish (S. crameri)

Expanded trawl landings for Darkblotched Rockfish show slight increasing trends based
on either CALCOM or ComX estimates. The CALCOM estimates show more interannual
variability and estimate trawl landings in 1987 as being more than twice the estimate from
ComX Figure (21). Estimates for line gears, although a minor component of total removals,
are higher for ComX prior to 1986, but consistent with CALCOM from 1987-1990. While
CALCOM shows negligible landings of Darkblotched by net gears, ComX estimates about
100-200 mt annually. CVs for ComX landings of Darkblotched are high for early years (pre-
1984) and net gears in all years (minimum net CV = 0.65). After 1983, CVs for trawl gears
range from 0.34 to 0.49. Landings in the “darkblotched” market category (257) are a poor
representation of actual landings for trawl and line gears. Landings in the net gear group
are consistent with CALCOM, but lower than ComX.

6.5.1.8 Canary Rockfish (S. pinniger)

Over the modeled time period, trawl gears dominated the catch of Canary Rockfish, with only
minor contributions by line and net gears, see Figure (22). Point estimates of expanded trawl
catch fall consistently between the 10th and 90th percentiles of ComX distributions, but show
a slightly different trend prior to 1982. ComX CVs for Canary rockfish are greater than 0.4
for all year/gear combinations, with line gears having the highest precision (consistently less
than 0.6) after 1984. Canary is another species with landings that are not well-represented
by landings in the nominal “canary” market category (247). Nominal landings in category
247 were negligible in all years for all three gear groups.

6.5.1.9 Splitnose Rockfish (S. diploproa)

Expanded landings estimates from both CALCOM and ComX show an increase in Splitnose
Rockfish trawl catch after 1982, followed by a decline that is more pronounced in the CAL-
COM estimates, particularly after 1986, see Figure (23). CALCOM point estimates before
1987 fall between the 10th and 90th percentiles of the ComX distributions. Expanded esti-
mates from net gears are similar in both CALCOM and ComX (slightly higher in ComX),
but line gears in CALCOM are attributed negligible landings in CALCOM, compared to
a minor, but steadily increasing amount based on ComX. CVs of the ComX distributions
for Splitnose are less than 0.4 for trawl gears after 1983, and around 0.5 for line and net
gears after 1985. Estimates prior to 1983 are generally poor for line and net gears, with CVs
greater than one in all years. With the exception of the first two years in the trawl time
series, nominal landings in the “splitnose” market category (270) are negligible, and not a
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reliable estimate of Splitnose Rockfish landings.

6.5.1.10 Cowcod (S. levis)

Cowcod is the first of “minor” species (in terms of total landings) that we chose to examine.
Despite its modest contribution to overall rockfish landings, Cowcod is currently managed
with the intent to rebuild the stock from a previously declared “overfished” status. As noted
in the last assessment (Dick and MacCall, 2014), uncertainty in catch for cowcod leads to
considerable uncertainty in estimates of historical spawning stock biomass. As noted above,
the nominal market category for Cowcod (245) was excluded from this comparison for years
prior to 1983 due to insufficient sample size. This exclusion contributes to the large CVs
of the ComX distributions in the early time period, see Figure (24). However, the general
imprecision also reflects the fact that many species are landed in category 245, including
Bronzespotted, Bocaccio, and Chilipepper (Butler et al. 1999). The smallest CVs were
estimated for line gears after 1984 (often less than 0.5), with trawl gears having the highest
CVs on average. As noted above, landings in market category 245 (“cowcod”) actually consist
of several species, and cowcod were often landed in market categories other than 245, so the
use of market category 245 to approximate landings of Cowcod is not recommended. ComX
estimates of trawl landings are considerably higher than estimates from CALCOM. Estimates
of expanded landings by line gears show similar trends, but again show higher inter-annual
variability in CALCOM. Both estimators show a similar pattern in the net fishery over time,
but CALCOM estimates are higher than ComX for the years 1984-1986.

6.5.1.11 Pacific Ocean Perch (S. alutus)

Pacific Ocean Perch (aka “POP”) has a center of distribution to the north of California, but
some POP were landed in the state, mainly by trawl gears, see Figure (25). Most year/gear
landings distributions from ComX have CVs greater than 1 for this species. A higher level
of aggregation (e.g. across gears) for California landings during this time period may be
warranted in an assessment context, particularly given the minor contributions from line
and net gears. CALCOM estimates for trawl gears are highly variable across years, and
smaller (on average) than ComX means. Landings in the nominal “POP” category (271) do
not track expanded landings in either CALCOM or ComX.

6.5.1.12 Bronzespotted Rockfish (S. gilli)

Trends in Bronzespotted Rockfish landings from ComX, Figure 26, are very similar to Cow-
cod, Figure (24), but at a slightly smaller scale. Both species occupy similar habitat, are
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caught by similar gears, and are landed in similar market categories. Similar to Cowcod,
ComX estimates are generally imprecise, and larger than estimates from CALCOM, par-
ticularly for trawl gears. Estimates from CALCOM are very similar to ComX means for
net gears, but CALCOM estimates do not show a steady increasing trend as suggested by
ComX. Nominal landings in the “bronzespotted” market category (662) are negligible for all
gear groups. CVs for line gears approach reasonable levels in later years, but most year/gear
combinations for Bronzespotted have CVs greater than 1.

6.5.1.13 Chameleon Rockfish (S. phillipsi)

ComX distributions for Chameleon Rockfish are highly skewed and imprecise for Chameleon
Rockfish, with CVs greater than 1 for all year and gear combinations and means sometimes
exceeding the 75th percentile, see Figure (27). As Pearson et al. (2008) noted, Chameleon
Rockfish are “...uncommon in commercial landings, particularly in northern and central Cal-
ifornia. They can be confused with both splitnose and aurora rockfish. The strata in which
they occur are not well sampled.” Despite being highly imprecise, point estimates from
ComX are considerably higher than those produced by CALCOM, particularly in the trawl
fishery. The behavior of ComX in data-poor scenarios is worth further investigation, partic-
ularly if estimation of landed catch for minor stocks like Chameleon becomes a priority to
management.

6.5.1.14 Mexican Rockfish (S. macdonaldi)

Perhaps the most “data-poor” example in our comparison, CVs for landings distributions of
Mexican Rockfish exceed 2 for almost every year/gear combination, see Figure (28). Prior
to 1983, the distributions are so skewed that the ComX mean exceeds the 90th percentile
of the distribution, and medians are near zero. Mexican Rockfish are primarily caught in
Southern California, and years prior to 1984 in that region were excluded for purposes of
this comparison due to insufficient sampling. The unreliability of Mexican Rockfish landings
was previously noted by Pearson et al. (2008).

6.5.2 Expanded Landings Aggregated by Species and Year

Using the same set of species as in our comparisons among ComX, CALCOM, and nominal
categories, we generated ComX predictive distributions by species and year, i.e. now aggre-
gating across gear types. This format for catch data is commonly used in assessments of
“data-limited” and “data-poor” stocks. We present percentiles means and medians as Figures
29 - 42, to illustrate the flexibility of the database structure in COMX_DB, and how it can
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produce distributions of landings (and associated summary statistics) at any desired level
of aggregation. CVs of landings distributions are reduced, as expected, with higher levels
of aggregation, Table (43), but general patterns among species and years are generally con-
sistent with the previous species/year/gear comparison (e.g. minor stocks having generally
higher CVs than stocks making up the top 90% of landings).

6.5.3 Figures
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Figure 15: ComX distributions of expanded landings for Widow Rockfish (S. entomelas) by year and gear group. Distribution
percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and
median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in
market category 269 (“widow rockfish”; red line) shown for comparison. CVs by year and gear group are color coded as follows:
CV < 0.4 (green), 0.4 ≤ CV ≤ 1.0 (yellow), CV > 1.0 (red).
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Figure 16: ComX distributions of expanded landings for Bocaccio Rockfish (S. paucispinis) by year and gear group. Distribution
percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and
median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in
market category 253 (“bocaccio”; red line) shown for comparison. CVs by year and gear group are color coded as follows: CV
< 0.4 (green), 0.4 ≤ CV ≤ 1.0 (yellow), CV > 1.0 (red).
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Figure 17: ComX distributions of expanded landings for Chilipepper Rockfish (S. goodei) by year and gear group. Distribution
percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and
median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in
market category 254 (“chilipepper”; red line) shown for comparison. CVs by year and gear group are color coded as follows: CV
< 0.4 (green), 0.4 ≤ CV ≤ 1.0 (yellow), CV > 1.0 (red).
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Figure 18: ComX distributions of expanded landings for Bank Rockfish (S. rufus) by year and gear group. Distribution
percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and
median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in
market category 663 (“bank”; red line) shown for comparison. CVs by year and gear group are color coded as follows: CV <
0.4 (green), 0.4 ≤ CV ≤ 1.0 (yellow), CV > 1.0 (red).
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Figure 19: ComX distributions of expanded landings for Yellowtail Rockfish (S. flavidus) by year and gear group. Distribution
percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and
median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in
market category 259 (“yellowtail”; red line) shown for comparison. CVs by year and gear group are color coded as follows: CV
< 0.4 (green), 0.4 ≤ CV ≤ 1.0 (yellow), CV > 1.0 (red).
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Figure 20: ComX distributions of expanded landings for Blackgill Rockfish (S. melanostomus) by year and gear group. Distri-
bution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line),
and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in
market category 667 (“blackgill”; red line) shown for comparison. CVs by year and gear group are color coded as follows: CV
< 0.4 (green), 0.4 ≤ CV ≤ 1.0 (yellow), CV > 1.0 (red).
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Figure 21: ComX distributions of expanded landings for Darkblotched Rockfish (S. crameri) by year and gear group. Distri-
bution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line),
and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in
market category 257 (“darkblotched”; red line) shown for comparison. CVs by year and gear group are color coded as follows:
CV < 0.4 (green), 0.4 ≤ CV ≤ 1.0 (yellow), CV > 1.0 (red).
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Figure 22: ComX distributions of expanded landings for Canary Rockfish (S. pinniger) by year and gear group. Distribution
percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and
median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in
market category 247 (“canary”; red line) shown for comparison. CVs by year and gear group are color coded as follows: CV <
0.4 (green), 0.4 ≤ CV ≤ 1.0 (yellow), CV > 1.0 (red).
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Figure 23: ComX distributions of expanded landings for Splitnose Rockfish (S. diploproa) by year and gear group. Distribution
percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and
median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in
market category 270 (“splitnose”; red line) shown for comparison. CVs by year and gear group are color coded as follows: CV
< 0.4 (green), 0.4 ≤ CV ≤ 1.0 (yellow), CV > 1.0 (red).
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Figure 24: ComX distributions of expanded landings for Cowcod (S. levis) by year and gear group. Distribution percentiles
shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed
black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in market category 245
(“cowcod”; red line) shown for comparison. CVs by year and gear group are color coded as follows: CV < 0.4 (green), 0.4 ≤ CV
≤ 1.0 (yellow), CV > 1.0 (red).
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Figure 25: ComX distributions of expanded landings for Pacific Ocean Perch (S. alutus) by year and gear group. Distribution
percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and
median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in
market category 271 (“pacific ocean perch”; red line) shown for comparison. CVs by year and gear group are color coded as
follows: CV < 0.4 (green), 0.4 ≤ CV ≤ 1.0 (yellow), CV > 1.0 (red).
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Figure 26: ComX distributions of expanded landings for Bronzespotted Rockfish (S. gilli) by year and gear group. Distribution
percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and
median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in
market category 662 (“bronzespotted”; red line) shown for comparison. CVs by year and gear group are color coded as follows:
CV < 0.4 (green), 0.4 ≤ CV ≤ 1.0 (yellow), CV > 1.0 (red).
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Figure 27: ComX distributions of expanded landings for Chameleon Rockfish (S. phillipsi) by year and gear group. Distribution
percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and
median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in
market category 673 (“chameleon”; red line) shown for comparison. CVs by year and gear group are color coded as follows: CV
< 0.4 (green), 0.4 ≤ CV ≤ 1.0 (yellow), CV > 1.0 (red).
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Figure 28: ComX distributions of expanded landings for Mexican Rockfish (S. macdonaldi) by year and gear group. Distribution
percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and
median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in
market category 676 (“mexican”; red line) shown for comparison. CVs by year and gear group are color coded as follows: CV <
0.4 (green), 0.4 ≤ CV ≤ 1.0 (yellow), CV > 1.0 (red).
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Figure 29: ComX distributions of expanded annual landings for Widow Rockfish (Sebastes entomelas), all gears combined.
Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black
line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.
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Figure 30: ComX distributions of expanded annual landings for Bocaccio (S. paucispinis), all gears combined. Distribution
percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and
median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.
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Figure 31: ComX distributions of expanded annual landings for Chilipepper Rockfish (S. goodei), all gears combined. Distri-
bution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line),
and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.
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Figure 32: ComX distributions of expanded annual landings for Bank Rockfish (S. rufus), all gears combined. Distribution
percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and
median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.
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Figure 33: ComX distributions of expanded annual landings for Yellowtail Rockfish (S. flavidus), all gears combined. Distribu-
tion percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line),
and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.
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Figure 34: ComX distributions of expanded annual landings for Blackgill Rockfish (S. melanostomus), all gears combined.
Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black
line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.
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Figure 35: ComX distributions of expanded annual landings for Darkblotched Rockfish (S. crameri), all gears combined.
Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black
line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.
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Figure 36: ComX distributions of expanded annual landings for Canary Rockfish (S. pinniger), all gears combined. Distribution
percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and
median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.
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Figure 37: ComX distributions of expanded annual landings for Splitnose Rockfish (S. diploproa), all gears combined. Distri-
bution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line),
and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.
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Figure 38: ComX distributions of expanded annual landings for Cowcod (S. levis), all gears combined. Distribution percentiles
shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed
black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.
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Figure 39: ComX distributions of expanded annual landings for Pacific Ocean Perch (S. alutus), all gears combined. Distribution
percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and
median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.
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Figure 40: ComX distributions of expanded annual landings for Bronzespotted Rockfish (S. gilli), all gears combined. Distri-
bution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line),
and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.
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Figure 41: ComX distributions of expanded annual landings for Chameleon Rockfish (S. phillipsi), all gears combined. Distri-
bution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line),
and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.
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Figure 42: ComX distributions of expanded annual landings for Mexican Rockfish (S. macdonaldi), all gears combined. Distri-
bution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line),
and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.
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Figure 43: Coefficients of Variation (CVs) of ComX distributions for expanded annual landings by species and year, 1978-1990.
Species within the black border comprise 90% of cumulative commercial landings, 1978-1990. CVs are color coded as follows:
CV < 0.4 (green), 0.4 ≤ CV ≤ 1.0 (yellow), CV > 1.0 (red). See text for species codes.
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