DRAFT: Improving Catch Estimation Methods in Sparsely Sampled Mixed-Stock Fisheries.

Nick Grunloh^a, Edward Dick^b, Don Pearson^b, John Field^b, Marc Mangel^{a,c}

March 13, 2018

^a Center for Stock Assessment Research, University of California, Santa Cruz, Mail Stop SOE-2, Santa Cruz, CA 95064, USA.

^b Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanographic and Atmospheric Administration, 110 McAllister Way, Santa Cruz, CA 95060, USA.

^c Department of Applied Mathematics and Statistics, Jack Baskin School of Engineering, University of California, Santa Cruz, Mail Stop SOE-2, Santa Cruz, CA 95064, USA.

Abstract

Effective management of exploited fish populations requires accurate estimates of commercial fisheries catches to inform monitoring and assessment efforts. In California, the high degree of heterogeneity in the species composition of many groundfish fisheries, particularly those targeting rockfish (genus Sebastes), leads to challenges in sampling all potential strata, or species, adequately. Limited resources and increasingly complex stratification of the sampling system inevitably leads to gaps in sample data. In the presence of sampling gaps, ad-hoc species composition point estimation is currently obtained according to historically derived "data borrowing" (imputation) protocols which introduce unknown bias and do not allow for uncertainty estimation or forecasting. In order to move from the current ad-hoc "data-borrowing" point estimators, we have constructed Bayesian hierarchical models to estimate species compositions, complete with accurate measures of uncertainty, as well as theoretically sound out-of-sample predictions. Furthermore, we introduce a Bayesian model averaging approach for inferring spatial pooling strategies across the over-stratified port sampling system. Our modeling approach, along with a computationally robust system of inference and model exploration, allows us to 1) objectively compare alternative models for estimation of species compositions in landed catch, 2) quantify uncertainty in historical landings, and 3) understand the effect of the highly stratified, and sparse, sampling system on the kinds of inference possible, while simultaneously making the most from the available data.

1 Introduction

Estimates of landed catch are a key component of many fishery management systems. Stock assessment models (referred to here as assessments) are often conditioned on time series of annual catch, usually under the assumption that catches are known without error. While some assessment models are able to incorporate uncertainty in catch (e.g. Stock Synthesis; Methot and Wetzel, 2013), reliable estimates of catch uncertainty are often unavailable. Without this information, assessment authors often rely on ad-hoc sensitivity analyses which may or may not be incorporated into management advice and/or fail to propagate catch uncertainty into quantities of interest to managers.

Over the past decade, the estimation of catch and associated uncertainty has become a focus for recreational fisheries in the United States (NAS, 2017). Commercial fisheries, on the other hand, are often assumed to have precise estimates of catch by species. This is due in part to the availability of landing receipts (aka fish tickets) which serve as a record of the weight of fish landed into various market categories (sort groups). As noted by Pearson et al. (2008), it is important to recognize that species and market categories are not synonymous. On the U.S. West Coast, for example, it is common for multiple species to be landed within a single market category (CALCOM 2018, PacFIN 2018). This is expected for categories that are clearly designated as mixed-species categories (e.g. "nearshore rockfish", or species within a particular genus or family). However, in some states, categories that are named after a single species still contain several species, to varying degrees, even after regulations require sorting into a particular category (Pearson et al., 2008). As a result, estimation of landings for a single species based on landing receipt data alone may produce biased estimates of total catch.

Fisherman, dealers, or processors typically decide how to sort species into existing market categories (defined by state agencies) on a landing receipt. Trained port samplers intercept vessels offloading catch or during subsequent processing in order to determine the species composition of catch landed in a given market category (Sen 1984, Crone 1995, Tsou et al. 2015). These species composition data are used to partition, or distribute, the weight of landed catch in a market category across species, a process commonly referred to as catch expansion (Pearson and Almany, 1995). To estimate total landings for a single species, the expanded catch is summed across all relevant market categories. Assuming that landing receipt data are a census of the landed catch, uncertainty in total catch for a given species reflects variability in the species composition among port samples. If information is available to estimate sources of bias in the landing receipt data, e.g. underreporting, then it is possible to also incorporate uncertainty in the bias correction factors as well (Bousquet et al. 2010).

In this study, we quantify sampling uncertainty for estimates of landed catch, although the modeling framework could be extended to include uncertainty or bias in landing receipt data.

Within market categories, particularly those used historically for groupings of highly specious rockfish (*Sebastes* spp), the species composition of landed catch can vary spatially, temporally, by fishing gear, and catch disposition (e.g. fish sold alive or dead). These differences are attributable to many factors, including market preference, fishing behavior, regulatory constraints, and biological/ecological characteristics (e.g. spatial distribution) of the landed species. As a result, estimates of species composition for a given market category are often stratified over time (e.g. quarterly) and across other relevant strata (e.g. ports, gears, catch disposition). Sampling programs often have limited funds, and attempts to reduce bias in species composition estimates through the introduction of additional strata comes at a cost, namely reduced precision (Tomlinson 1971, Cochran 1977).

On the U.S. West Coast, port sampling programs for rockfish and other groundfish allocate effort both spatially and temporally, but many domains of interest (e.g. market category, gear type, catch disposition) remain unsampled or sparsely sampled due to a proliferation of categories over time, logistical constraints, and limited resources (Sen 1986; Crone 1995; Pearson et al. 2008; Tsou et al. 2015). In California, for example, commercial port sampling effort has changed over time and space (Pearson and Almany 1995). For example, regular sampling of California ports north of Point Conception (roughly 34° 27' N. latitude) began as early as 1978, but the more southern ports were rarely sampled prior to 1983. This allocation of effort was largely based on the statewide distribution of landings, diffuse spatial distribution of southern commercial ports, and limitations in funding for port samplers.

When no port samples are collected for landed strata and domains, species composition estimates are borrowed from other strata using deterministic algorithms based on expert opinion. These algorithms have unknown bias and precision. In contrast, model-based estimators are increasingly used to estimate quantities of interest for domains with small sample sizes and/or unsampled strata (sometimes referred to as small area estimation; Rao 2003). As a pilot study, Shelton et al. (2012) developed a Bayesian hierarchical statistical framework for estimating species compositions in rockfish market categories from trawl fisheries from a single port in California in two separate years. Their model has the ability to partially pool information among sparsely sampled strata, predicts species compositions for unsampled strata, and can be combined with landing receipts to estimate total landings by species, across market categories and other strata, along with associated estimates of uncertainty. However, their model considered hierarchical pooling only among quarters within a single year. The authors also underscored the need to better understand performance of alternative models, and to overcome issues with computation time, particularly since commercial port sampling data sets often include hundreds of landed strata spanning decades, multiple ports, gear types, and other domains of interest.

Among the U.S. West Coast states, the challenge of estimating landings for sparselysampled mixed stock rockfish fisheries is perhaps greatest for California. Although overall landings have historically been greater for rockfish off of Oregon and Washington, California has a greater number of commercial ports, market categories, and landed species (Pearson and Erwin 1997). California's commercial landings also have greater species diversity among ports due to the geographical range of the coast and the observation that species diversity for this genus is greatest in the Southern California Bight (Love et al. 2002). Lastly, California includes two major biogeographic features, Point Conception and Cape Mendocino, that are associated with different physical oceanographic conditions and biological community assemblages (Hickey 1979, Checkley and Barth 2009, Gottscho 2016), and these features are also frequently used as spatial boundaries for stock assessments and management measures.

Of particular consequence to the estimation of species compositions in California is the proliferation of landed market categories over time, particularly during the 1990s, see Figure (1). Sampling effort also leveled off in the mid-1990s, with a reduction in effort in the early 2000s, associated with substantial declines in total catches as well as reductions in sampling resources. The net result of increased stratification and flat (or reduced) sampling effort over time is a decline in mean sample size per stratum, see Figure (1). In this situation, it is critical to understand how efforts to reduce bias (e.g. increasing the number of landed market categories) affect precision of the expanded catch estimates.

Assessments that take catch uncertainty into account are not new (c.f. Doubleday 1976), but most assessments on the U.S. West Coast assume catch is known without error (PFMC 2018). As a result, catch uncertainty is rarely propagated into management reference points. However, the implications of catch uncertainty are not limited to stock assessment efforts. In a management context, catch estimates with large (but unknown) uncertainty may cause managers to react to large, high-frequency deviations in estimated catch, and either impose unnecessary restrictions on a fishery, or mistakenly support excessive harvest. This is particularly an issue for prohibited and/or "choke" species, for which catch information is limited and may be based solely on estimates of discarded catch.

In this study, we evaluate the model-based framework proposed by Shelton et al. (2012) using commercial port sampling data collected in California, U.S.A. We describe species composition data collected by the California Cooperative Groundfish Survey (CCGS, 2017) over the period 1978-1990. We then extend the Shelton et al. framework to address limitations of their approach. Specifically, we evaluate alternative likelihoods to address overdispersion, compare multiple hierarchical structures for pooling information through time, and

integrate model predictions across uncertainties in the spatial model structure. Finally, we estimate landed catch by species for both sampled and unsampled strata, and summarize a general framework for quantifying uncertainty including an efficient database design for dissemination of results at any level of aggregation.

2 Methods

2.1 Data

As outlined in Sen (1984, 1986) the species composition port sampling data are the result of a cluster sampling protocol executed across the many strata of California's commercial fisheries. Each sample is intended to be two fifty- pound clusters selected at random from a stratum. Although port samplers do their best to follow protocol, in reality the port sampling environment does not always allow Sen's original protocol to be followed. Variations in the sampling protocol may result in only a single cluster being taken, or the size of clusters taken to vary from stratum to stratum based on the particular challenges of sampling each stratum.

Samples are recorded as integer pounds for each observed species, across the landed market categories, gear groups, and port complexes in time (quarters within year). Presently there are 71 rockfish market categories, although not all market categories are always used. The number of market categories with recorded landings has gone from less than 25 in 1978 to about 55 in 2014, see Figure (1). Landings are grouped into major fishing gear groups (trawl, hook and line, gillnet, fish pot, or other minor categories) and ten major port complexes spanning the California coast, see Figure (4).

The model based methodology proposed here does not rely strongly upon the cluster sampling structure, but rather views each sample as independent and identically distributed (i.i.d.) draws from a data generating model, conditional on a parameterization of the stratification system. So long as the parameterization and data generating model are sufficiently robust for handling the behavior of these data, a conditionally *i.i.d.* model of these data will be practically useful for producing predictions about the data generating system.

That said, for the purpose of modeling these data, it is enough to know which clusters were collected as part of which samples, and how big each cluster actually ended up being. This information is readily available from CALCOM, a database maintained by the California Cooperative Groundfish Survey (CALCOM, 2018). Just as in Shelton et al. (2012), we aggregate all observed clusters within each unique sample so that the total weight sampled is the sum of pounds in each cluster. Similarly the observed weight for a particular species, in each unique sample, is the sum of all of the observed weights across clusters.

Although model based data analysis has the potential to add significant structure to data, a judicious application of these methods must always confront the model with enough empirical information to adequately learn about the system. In this setting some market categories and time periods may not be well enough sampled to learn the parameters of the models presented here (see Figures (2 and 3) for a summary of landed weight, the number of landed strata, and the number of samples over the two modeled time periods). For this reason, we refrain from modeling any period where the minimum possible number of effective parameters exceeds the number of samples for the modeled period. Rather than apply models inappropriately, these landings are speciated as the nominal species for their market category. We later demonstrate that due to prioritization in sampling heavily landed, or otherwise commercially relevant categories, this sample size heuristic leaves relatively few landings to be speciated in a statistically uninformed way (i.e. "nominal" speciation). Thus nominal species.

2.2 Likelihood Modeling

For the purposes of accurately modeling not only species composition means, but also higher moments of the data (e.g. variances), it is necessary to recognize model limitations with respect to overdispersed data. Among the simplest models for count data are the Poisson and binomial models. Both models are typically specified with a single parameter for modeling all of the moments of the data, and thus they rely heavily on their respective data generating processes to accurately represent higher moments in the data. McCullagh and Nelder (1989, pg. 124) commiserate about the prevalence of overdispersed data in cluster sampling, and explain ways in which cluster sampling itself may result in overdispersion.

Extending the Poisson and binomial models to deal with overdispersion, typically involves adding additional parameters for the purpose of modeling higher moments of the data. The negative binomial (NB) distribution is often used as an overdispersed extension of the Poisson model, since it can be expressly written as an infinite mixture of Poisson distributions. The beta-binomial model is used as an overdispersed extension of the binomial model.

The Poisson and binomial models attempt to model both the mean and residual variance of the data, with a single parameter for each species. By definition these models do not have additional parameters to model the variance, but rather, residual variances in these models are simply transformations of their mean parameters. Only estimating the mean parameters in these cases may not be sufficient to produce models which predict well. In contrast, the negative binomial and beta-binomial models estimate an additional parameter which can be used to disentangle the mean and residual variance estimates. Thus the negative binomial and beta-binomial models may produce more accurate estimates of the residual variance, while producing more accurate measures of center. We develop an example on a subset of data to evaluate statistical support for overdispersed models, see Appendix (6.1), which we have subsequently used for the purposes of applying at an operational scale.

2.2.1 Beta-Binomial Model

For a particular market category, $y_{ijklm\eta}$ is the i^{th} sample of the j^{th} species' weight, in the k^{th} port, caught with the l^{th} gear, in the η^{th} quarter, of year m. The $y_{ijklm\eta}$ are modeled as i.i.d. observations from a beta-binomial distribution conditional on parameters $\mu_{jklm\eta}$ and $\sigma_{jklm\eta}^2$,

$$y_{ijklm\eta} \overset{i.i.d.}{\sim} BB(\mu_{jklm\eta}, \sigma_{jklm\eta}^2).$$

Above, $\mu_{jklm\eta}$ is the stratum level mean weight, and $\sigma_{jklm\eta}^2$ is the stratum level residual variance. $\mu_{jklm\eta}$ is related to a linear predictor, $\theta_{jklm\eta}$, via the mean function,

$$\mu_{jklm\eta} = n_{ijklm\eta} \frac{\exp(\theta_{jklm\eta})}{1 + \exp(\theta_{jklm\eta})}$$

Here $n_{ijklm\eta}$ is the observed aggregate cluster size for each sample. Additionally, $\sigma_{jklm\eta}^2$ is related to $\mu_{jklm\eta}$ and the overdispersion parameter, ρ , via the following equation,

$$\sigma_{jklm\eta}^2 = \mu_{jklm\eta} \left(1 - \frac{\mu_{jklm\eta}}{n_{ijklm\eta}} \right) \left(1 + (n_{ijklm\eta} - 1) \rho \right).$$

 ρ is the within-cluster correlation. The situation where $\rho \to 1$ represents identical information content among replicates within a cluster, with maximal overdispersion relative to the binomial distribution. The situation where $\rho \to 0$ represents totally independent information content among replicates within a cluster, and the beta-binomial model approaches the binomial model. ρ explicitly models average overdispersion across all strata within a market category, while $\mu_{jklm\eta}$ gives the model flexibility at the stratum level through the θ linear predictors,

$$\theta_{jklm\eta} = \beta_0 + \beta_j^{(s)} + \beta_k^{(p)} + \beta_l^{(g)} + \beta_{m\eta}^{(t)}.$$

Firstly, θ includes a reference level intercept (β_0) . Secondly, θ is factored among the many strata by additive offsets from β_0 for each of the species $(\beta_j^{(s)})$, port-complexes $(\beta_k^{(p)})$, and

gear-groups $(\beta_l^{(g)})$. Finally year and quarter parameters are indicated generally here inside the $\beta_{m\eta}^{(t)}$ term. Several forms for $\beta_{m\eta}^{(t)}$ are explored each implying a different prior and partial pooling strategies as described in the following section.

2.3 Priors

To complete the Bayesian formulation of this model, priors are expressed in a largely diffuse manner.

$$\beta_0 \propto 1$$

$$\left\{\beta_j^{(s)}, \beta_k^{(p)}, \beta_l^{(g)}\right\} \sim N(0, 32^2)$$

Since the β_0 reference level is chosen arbitrarily, with no conception of which values it may take, no restrictions are placed on the value of the intercept. The species $(\beta_j^{(s)})$, portcomplex $(\beta_k^{(p)})$, and gear-group $(\beta_l^{(g)})$ offsets are assigned diffuse normal priors. The large fixed values of the prior variance hyperparameters produce behavior similar to classical fixed effect models for species, port complex, and gear group parameters.

In returning to the time parameter model, $\beta_{m\eta}^{(t)}$, it is useful to consider how overparameterized models may cause overfitting and weaken model performance through the bias-variance dilemma (Ramasubramanian and Singh, 2016). Simply put, the bias-variance dilemma means that model formulation is not simply a bias reduction task, but rather the goal is to formulate models which reduce bias, while jointly minimizing uncertainty. Janyes (2003, pg. 511) describes how the inclusion of estimation bias via the Bayesian methodology may produce better performing estimates, more quickly, than unbiased counterparts. Among the simplest ways to see the principle is in the structure of the MSE performance metric, and how it can be explicitly written to value both estimator bias and variance, as follows.

$$MSE(\hat{\theta}) = \mathbb{E}\left[(\hat{\theta} - \theta)^2 \right] = \underbrace{\mathbb{E}\left[(\hat{\theta} - \mathbb{E}(\hat{\theta}))^2 \right]}_{\text{Var}(\hat{\theta})} + \underbrace{\left(\mathbb{E}(\hat{\theta}) - \theta \right)^2}_{\text{E}(\hat{\theta}) - \theta}$$

Furthermore a model can minimize bias, without regard for estimation uncertainty, by including one model parameter to be fit to each observation. These parameter estimates are totally unbiased, however such a model is also predictively useless since each estimated parameter is specifically bound to a particular observation, and thus such a model does not generalize.

For modeling $\beta_{m\eta}^{(t)}$ we consider a spectrum of models which span a wide range of partially pooled models with several different predictive structures as seen below.

2.3.1 (M1)

$$\beta_{m\eta}^{(t)} = \beta_m^{(y)} + \beta_\eta^{(q)}$$
$$\beta_m^{(y)} \sim N(0, 32^2)$$
$$\beta_\eta^{(q)} \sim N(0, 32^2)$$

(M1) represents a fixed effects model for additive year and quarter parameters. Here each year and quarter are assigned totally independent and diffuse priors.

2.3.2 (M2)

$$\beta_{m\eta}^{(t)} = \beta_m^{(y)} + \beta_\eta^{(q)}$$
$$\beta_m^{(y)} \sim N(0, v^{(y)})$$
$$\beta_\eta^{(q)} \sim N(0, v^{(q)})$$

(M2) estimates two hierarchical variance parameters, $v^{(y)}$ and $v^{(q)}$. $v^{(y)}$ has the effect of partially pooling information among year parameters, while $v^{(q)}$ partially pools information among quarter parameters (i.e. treats both year and quarter as "random effects"). The actual degree of pooling among each of the years and quarters is determined by the data.

Depending on the posterior distributions of $v^{(y)}$ and $v^{(q)}$, the $\beta^{(y)}$ and $\beta^{(q)}$ may be shrunk back toward the common mean (for small v) or allowed to take largely distinct values (in the case of large estimates of the v).

2.3.3 (M3)

$$\beta_{m\eta}^{(t)} = \beta_m^{(y)} + \beta_{\eta}^{(q)} + \beta_{m\eta}^{(y;q)}$$
$$\beta_m^{(y)} \sim N(0, v^{(y)})$$
$$\beta_{\eta}^{(q)} \sim N(0, v^{(q)})$$
$$\beta_{m\eta}^{(y;q)} \sim N(0, v)$$

(M3) functions similarly as (M2), in that it has hierarchical partial pooling among both the $\beta_m^{(y)}$ and $\beta_\eta^{(q)}$ parameters, except that it introduces a two-way interaction term between year and quarter. This interaction term allows estimates for particular quarters to differ from year to year, as opposed to the previous models in which quarters within a year are assumed to be identical from year to year.

Furthermore the $\beta_{m\eta}^{(y;q)}$ are also modeled hierarchically to introduce a single variance

parameter, v, shared among all of the $m\eta$ time chunks. Although this interaction term adds many parameters to the model, the shared v parameter functions to shrink extraneous $\beta_{m\eta}^{(y;q)}$ estimates back toward the common stratum mean.

2.3.4 (M4)

$$\beta_{m\eta}^{(t)} = \beta_{m\eta}^{(y:q)}$$
$$\beta_{m\eta}^{(y:q)} \sim N(0, v)$$

(M4) simplifies (M3) by excluding year and quarter main effects. This leaves all temporal information in the data to be modeled solely by the quarterly $\beta_{m\eta}^{(y;q)}$ interaction terms. This model represents more opportunity for partial pooling through time than (M3), as fewer time parameters are introduced. Furthermore all of the $\beta_{m\eta}^{(y;q)}$ are hierarchically pooled back toward a single common stratum mean via the single shared variance parameter, v.

A model treating the interaction terms as fixed effects (e.g. model (M4) where v is a large fixed value) was not considered. The $\beta_{m\eta}^{(y;q)}$ interaction terms introduce a very large number of parameters, which require regularization in this setting. Furthermore, pooling $\beta_{m\eta}^{(y;q)}$ through time introduces a formalized way to make predictions about unsampled strata.

2.3.5 (M5)

$$\beta_{m\eta}^{(t)} = \beta_{m\eta}^{(y;q)}$$
$$\beta_{m\eta}^{(y;q)} \sim N(0, v_{\eta})$$

(M5) is largely the same as (M4), but it represents slightly less potential partial pooling through its hierarchical prior variances, v_{η} , on $\beta_{m\eta}^{(y;q)}$. Here interaction terms are allowed to partially pool interactions across years, within a common quarter, but since each quarter is assigned a separate variance parameter no pooling is possible between quarters.

2.3.6 (M6)

$$\beta_{m\eta}^{(t)} = \beta_{m\eta}^{(y:q)}$$
$$\beta_{m\eta}^{(y:q)} \sim N(0, v_m)$$

(M6) follows the same idea as (M5), however here interaction terms are allowed to partially pool interactions within a common year, across the quarters of that year, but not between years. (M6) often involves fitting slightly more parameters than (M5) because, at least in this setting, it is typical to model more than four years of data at once.

Historically, regulations have been enacted with the aim of isolating catch in a market category to a single species (sort requirements). This clearly affects the composition of the target market category, but these regulations also affect the species composition of other market categories in which the target species previously occurred. We incorporate this information into the model structure by treating time periods with relatively stable regulatory conditions as independent models. In other words, information is only shared among years in which regulations were similar. For example, a sort requirement for widow rockfish (S. entomelas) was initiated in 1983. This not only affected the composition of the widow rockfish market category (269), but also the composition of other categories, such as the unspecified rockfish market category (250), within which most widow rockfish were previously landed. We model the first five years of available data (1978-1982) independently from the years 1983-1990. In 1991, a sort requirement for bocaccio rockfish (S. paucispinis) was enacted, which is known to have affected the composition of other categories, including the Chilipepper rockfish market category (254) and the Chilipepper/Bocaccio market category (956). Given these regulation changes, future year groupings might include independently modeled periods in 1991-1999 and 2000-2015, however the analysis of those years has not yet been developed and alternative year groupings may be explored for the most recent landings at a later time.

Hierarchical variance parameters are estimated from the data. As the above models learn the posteriors of the hierarchical variance parameters, it affects the degree of shrinkage as well as the effective number of parameters held within the respective hierarchies (Gelman, 2014). To achieve this, each variance parameter must itself be assigned a prior to be estimated. For all of the hierarchical variance parameters included in the above models v is assigned a diffuse inverse gamma (IG) prior $v \sim IG(1, 2 \times 10^3)$.

Finally the overdispersion parameter, ρ , is assigned a diffuse normal prior on the logit scale, $\text{logit}(\rho) \sim N(0, 2^2)$. The $N(0, 2^2)$ prior is indeed a symmetric, and far reaching, prior when back transformed to the unit interval. To notice this, it is helpful to realize that the central 95% interval for a $N(0, 2^2)$ (i.e. 0 ± 3.91), includes almost the entirety of the back transformed unit interval (i.e. 0.5 ± 0.48).

For the purpose of motivating the time parameter structure to be used across all market categories and time periods, each of models M1-M6 are fit to data from market category 250 from 1978-1982. Performing such a model selection exercise across all market categories, in each time period, would not only be impractical but would also risk overfitting models, particually in poorly sampled categories. In the early time periods, market category 250 is the most heavily sampled multi-species market category, and thus it represents an excellent data-set for testing.

2.4 Species Composition Prediction

Bayesian inference of the above models gives access to the full posterior distribution of all of the parameters of the model given the data. It is useful to emphasize that in the Bayesian setting, these parameters have full distributions, and they are typically handled as a large number of samples from the joint posterior distribution of the parameters. Once the posterior sampling is complete, this simplifies parameter mean and variance estimation; required moments are simply obtained by computing the desired moments from the posterior samples. Additionally, the fact that the parameters are full distributions means that any functions of those parameters are themselves random variables with the function representing a transformation of those parameters.

To obtain predicted species compositions from the beta-binomial model, first consider the posterior predictive distribution of sampled weight for a particular stratum.

$$p(y_{jklm\eta}^*|y) = \iint \mathrm{BB}\left(y_{jklm\eta}^*|\mu_{jklm\eta}, \sigma_{jklm\eta}^2\right) P\left(\mu_{jklm\eta}, \sigma_{jklm\eta}^2|y\right) d\mu_{jklm\eta} d\sigma_{jklm\eta}^2.$$

Here BB is the data generating beta-binomial distribution for a predictive observation and $P(\mu_{jklm\eta}, \sigma_{jklm\eta}^2 | y)$ is the posterior distribution of the parameters given the observed data. $\mu_{jklm\eta}$ and $\sigma_{jklm\eta}^2$ are integrated numerically via Monte Carlo integration to produce samples from the predictive distribution, $p(y_{jklm\eta}^*|y)$, for sampled weights in the $jklm\eta^{th}$ stratum.

Obtaining predictive species compositions from predictive weights amounts to computing the following transformation,

$$\pi_{jklm\eta}^* = \frac{y_{jklm\eta}^*}{\sum_j y_{jklm\eta}^*} \quad y_{klm\eta}^* \neq 0.$$

For a particular market category, $\pi^*_{jklm\eta}$ is predicted proportion of species j in the k^{th} port, caught with the l^{th} gear, in the η^{th} quarter, of year m.

2.5 Expansion of Landed Catch to Species

For a particular market category, speciated landings simply amounts to the multiplication of the known total landings ($\lambda_{klm\eta}$), reported on landing receipts in the $klm\eta^{th}$ stratum, with the posterior predictive species composition, $\pi^*_{jklm\eta}$, as follows

$$\lambda_{jklm\eta}^* = \lambda_{klm\eta} \pi_{jklm\eta}^*.$$

 $\lambda_{jklm\eta}^*$ is then the posterior predictive landings for species j in the $klm\eta^{th}$ stratum of a particular market category. Recall that since $\pi_{jklm\eta}^*$ is a random variable, then so is $\lambda_{jklm\eta}^*$. Computing the variance of $\lambda_{jklm\eta}^*$ simply amounts to computing the variance of random draws from the $\lambda_{jklm\eta}^*$ distribution. Furthermore, any level of aggregation of $\lambda_{jklm\eta}^*$ is easily obtained by summing $\lambda_{jklm\eta}^*$ draws across the desired indices. For example to obtain the distributions of yearly catch of Bocaccio in a particular market category (i.e. aggregated across ports, gears, and quarters) one simply fixes j to Bocaccio, and computes the following transformation of $\lambda_{jklm\eta}^*$.

$$\lambda^*_{j \cdots m \cdot} = \sum_k \sum_l \sum_\eta \lambda^*_{jklm\eta}$$

Distribution summaries such as quantiles, means, or variances may be computed by computing those metrics from the random draws of the resulting $\lambda_{j \dots m}^*$ distributions.

2.6 Model Exploration & Averaging

Presently, strata with diminishingly small sample sizes are managed by an ad-hoc "data borrowing" protocol, as outlined in Pearson and Erwin (1997). The protocol for "data borrowing" calls for pooling only when forced to fill holes brought about by unsampled strata. Naturally, such a pooling protocol introduces bias to fill in unsampled strata, however due to the mathematically unstructured way in which this bias is introduced, it is hard to quantitatively justify these "data borrowing" rules.

Model (M4) avoids temporal ad-hoc "borrowing" protocols described in Pearson and Erwin (1997) by making use of its hierarchical structure to fill temporal holes with a posterior predictive distribution for unseen time periods within the modeled period. This hierarchical structure uses the data to estimate the degree of pooling through time, rather than adhoc "data borrowing". In addition, the M4 model allows data collected during periods with similar regulations to inform predictions across both quarters and years, unlike the previous ad-hoc approach which only shared information among quarters within a year.

Despite the benefits of modeling these data as Bayesian hierarchical models, port sampling data still remains sparse. Given the degree of sparsity in these data it is certainly possible that models which consider an additional degree of data pooling between port complexes may offer predictive benefits. In exploring strategies for pooling data across space it is necessary to formalize the port complex pooling scheme in a way which provides a mathematically understandable and scalable structure to build upon.

Given the spatial structure, and complex behavior of, port complex parameters, the typ-

ical zero mean hierarchical regularization priors are not appropriate among port complexes. Pooling across spatial categorical parameters in this setting requires the ability to pool port complex parameters back toward an unknown number ($\leq K$) of mean levels. Rather than hierarchically regularize port complex, we frame port complex pooling as a model uncertainty problem, in which we consider some degree of full pooling among port complex, but the exact degree of pooling, and the particular partitioning of the pooled port complexes are not known.

Port complex pooling is achieved by repeatedly fitting model (M4) with different partitionings of the port complex variables within a particular market category and modeling time period. This model exploration exercise explores the possible ways to produce groupings of the existing port complexes (Figure (4) visualizes the California port complexes) so as to discover predictively useful partitionings of the port complexes. Insisting that the port complex groupings be partitions of the available port complexes provides a well-defined mathematical structure for exploring the space of pooled port complexes.

The size of the space of possible pooled models is in the setting is well defined in terms of the size of the set of items to be partitioned, K, as given by the Bell numbers (B_K) ,

$$B_K = \sum_{\kappa=0}^K \frac{1}{\kappa!} \left(\sum_{j=0}^{\kappa} (-1)^{\kappa-j} {\kappa \choose j} j^K \right).$$

In the case of California the set of items to be partitioned is the set of port complexes in California, of which there are K = 10, implying a grand total of $B_{10} = 115975$ ways of partitioning the port complexes in California in each market category and modeled time period. The brute force model selection strategy of computing all 115975 of these partitionings strategies is computationally infeasible. However, not all pooling schemes represent biologically relevant models. For example, it is likely reasonable to pool only among adjacent ports (i.e. no discontinuities between port complex pooling in space) due to species distributions and the presence of biogeographical provinces, and it may be similarly reasonable to assert that similar regions can only extend across a small number of ports.

We limit the set of models to be considered by applying two constraints. 1) Only adjacent port poolings are considered, and 2) the maximum size of a port complex grouping is fixed to be no larger than three port complexes. These two constraints were chosen so as to mirror the currently accepted protocols in Pearson and Erwin (1997), although many other constraints may, in theory, be chosen. When these two simple constraints are applied, the number of models to explore in each modeled period is reduced to a much more manageable 274 models. It this framework, it is not necessary to impose a priori conditions on how data are shared among ports (e.g. never borrowing across Point Conception, as in the current ad hoc approach). However, if the data strongly support a particular port configuration, models with that structure will have greater influence on model predictions.

An exhaustive search of the models in the constrained subspace of B_{10} , allows for a concrete comparison of the relative predictive accuracy of each partitioning. Additionally the partitioned models provide a set of candidate models for use in Bayesian Model Averaging (BMA) (Hoeting et al., 1999). BMA, as applied here, allows the model exploration strategy to average models across all potentially relevant partitions of the port complexes, so as to add robustness to final species composition estimates.

For the ι^{th} model in a set of candidate models M, then the BMA weight for M_{ι} follows directly from Bayes Theorem as,

$$\omega_{\iota} = Pr(M_{\iota}|y) = \frac{p(y|M_{\iota})p(M_{\iota})}{\sum_{\iota} p(y|M_{\iota})p(M_{\iota})}$$

Where ω_{ι} is the posterior probability that model ι is the true data generating model of the data, conditional on the subspace of candidate models and the observed data. ω_{ι} is then straightforwardly used to average posteriors across all of the models, as

$$\bar{p}(\theta|y) = \sum_{\iota} \omega_{\iota} p(\theta|y, M_{\iota})$$

3 Results

3.1 Characteristics of the Landings Data

In the two time periods modeled here, Figures (5 and 6) show how commercial port sampling effort tracks both total landed weight as well as the number of species in market categories accounting for the top 99% of total landings in each time period. Comparable results for the periods 1991-1999 and 2000-2015 are discussed Appendix (6.2), although we have not yet completed modeling for these time periods. Our model is applied to a relatively large proportion of the landings in both time periods, and nominal speciation occurs for a relatively negligible proportion of total landings. This is because 1) port sampling effort is largely opportunistic and implicitly prioritizes heavily landed market categories, and 2) our model is only fit to market categories with more data than model parameters. As a result market categories left with too few samples to fit our model tend to be less landed. Applying the sample size heuristic to determine which market categories are expended by our model results in 96.8% of landed weight being expanded via our model in 1983-1990.

The lower panels of Figures (5 and 6) demonstrate just how many different species are landed into commercially relevant market categories. Although market categories often carry names that label them with a nominal species, Figure (5) makes it abundantly clear that these names can mislead our thinking about the purity, and consistency, of these categories through time. To drive this point, consider the sampled species in market category 267 in 1978-1982. The nominal label for market category 267 is Brown Rockfish, while Brown Rockfish only amounts to a small fraction of that category in 1978-1982. In fact, only 6.3% of the sampled weight in 1978-1982 consisted of Brown Rockfish. In 1978-1982 market category 267 might be better named Widow Rockfish as Widow amounts to 92.6% of sampled weight in this time period, however market category 267 is composed of 99.6% Brown and 0% Widow in recent time periods (see Appendix 6.2).

3.2 Predictor and Prior Selection

	M1	M2	M3	M4	M5	M6
MSE	0.127245	0.127042	0.126801	0.122373	0.127236	0.126573
Δ DIC	2558.56	2259.94	2013.21	0	2175.32	2174.71
Δ WAIC	2562.65	2263.58	2009.32	0	2171.18	2170.56
pr(M y)	≈ 0	≈ 0	≈ 0	≈ 1	≈ 0	≈ 0

Table 1: Mean Squared Error (MSE; computed on the species composition scale), delta deviance information criterion (Δ DIC), delta widely applicable information criterion (Δ WAIC), and marginal Bayesian model probabilities (pr(M|y)) across the fit of models M1-M6 to data from 1978-1982 in market category 250.

Recall models (M1)-(M6) differ in the structure of the $\beta_{m\eta}^{(t)}$ time parameters. Table (1) shows the relative support for those model structures. From (M1) to (M4) the models represent a spectrum of models with an increasing potential of shrinkage among time parameters. Models M5 and M6 represent models which build in complexity, from (M4), via the inclusion of multiple hierarchical variance parameters among the interaction terms.

Across all of the time models, model M4 displays consistent support over all other candidate models considered here. It is worth mentioning that among all of the models considered here, (M4) offers the largest potential for hierarchical partial pooling among the time parameters. Model (M4) represents a model with maximal potential for pooling through time, while still maintain the ability to model differences in seasonality from year to year.

3.3 Model Exploration & Averaging

Considering Figure (7), the best partitioned model (first column, $\omega = 0.32$) gives distinct parameters to CRS and ERK, while pooling BRG/BDG, OSF/MNT/MRO, and OSB/O-LA/OSD. This model uses five parameters to model the ten ports complexes in California. Given the set of candidate models explained above, the BMA procedure gives this model a probability of 32%. Notice that the only difference among the top four models is in how the port complexes south of Point Conception are handled. In fact, the seven northerly port complexes are identically partitioned in the top four models, which also represent all of the possible partitionings of the southern three port complexes.

In this modeled period it is known that no species composition sampling was done south of Point Conception, thus it is not surprising that these models perform similarly. When no data are present, parameters simply represent place holders for out of sample prediction. Since the port complexes south of Point Conception are not informed by data, the predictions are identical in these categories. Since the first model makes identical predictions to the following three, and does so using the fewest parameters, it is correctly identified as the most parsimonious explanation among these data.

Considering how the top four model configurations share identical structure in the seven northerly port complexes, while exhaustively spanning the candidate partitions south of Point Conception, it is simple to see that BMA assign's approximately 71% marginal probability to the northerly model structure.

The results shown here only represent a single market category across the time period 1978-1982. Similar results for other market categories and time periods are provided in Appendix (6.3).

3.4 Prediction

Repeatedly fitting model (M4) across port complex configurations and applying the BMA procedure, ultimately provides access to posterior predictive distributions of the species compositions $(\pi_{jklm\eta}^*)$ within a market category and modeled period. A straight forward way to evaluate the performance of the model in each modeled period is to compare the predictions of the model in each modeled period with the actual observations of species compositions from port samplers.

We evaluate species composition posterior predictive distributions via Highest Density Intervals (HDI) at three levels containing 68%, 95%, and 99% of posterior predictive probability. Tables (2 and 3) show the proportion of observed species compositions which existed within the HDI across all strata, of each prediction level, in each modeled period. For exam-

	68%	95%	99%
250	67.1%	96.1%	98.7%
253	67.3%	96.3%	98.9%
262	67.4%	93.8%	95.3%
265	69.6%	96.0%	97.8%
269	68.2%	88.8%	90.2%
270	68.6%	93.6%	96.7%
956	68.3%	96.7%	99.2%
959	68.5%	96.3%	98.1%
961	69.3%	93.2%	95.3%
AVG	68.3%	94.5%	96.7%

ple, observed species compositions for market category 250 in the 1978-1982 time period fell within the 68% HDI of the posterior predictive distribution 67.1% of the time, Table (2).

Table 2: 1978-1982

	68%	95%	99%
245	60.8%	94.9%	97.7%
250	68.1%	96.0%	99.0%
253	69.3%	97.1%	98.9%
259	83.8%	91.9%	92.9%
262	68.5%	95.1%	95.9%
269	68.6%	94.2%	94.7%
270	67.9%	94.2%	96.7%
663	68.1%	94.1%	96.3%
667	69.4%	92.5%	93.5%
956	67.5%	96.2%	99.0%
959	67.4%	96.4%	99.0%
960	68.0%	96.1%	98.6%
961	68.6%	94.6%	97.8%
AVG	68.9%	94.9%	96.9%

Table 3: 1983-1990

Tables (2 and 3) largely show that the observed proportion of predicted samples aligns appropriately with the predictions made by the model. Considering the average performance across market categories at each prediction level, it appears that prediction is mostly appropriate with the possible exception of the 99% prediction level. The 99% prediction level appears to slightly under-predict on average, indicating that predictive distributions are slightly lighter in the far tails than the data.

4 Discussion

We describe here is a flexible modeling approach, building on the work of Shelton et al. (2012), for speciating sparsely sampled commercial landings. Our model uses Bayesian statistics to allow, but does not force, the data to inform pooling strategies through both time and space via hierarchical modeling and Bayesian model averaging. Our approach infers the level of pooling in time and space from data, and uses the complete Bayesian statistical framework to produce accurate estimates of uncertainty, and makes predictions for unobserved strata.

Generally speaking the model based statistical framework allows tremendous flexibility in accounting for a dynamic port sampling program. Market forces, regulation changes, and fisherman behavior are a few factors, among the many, which complicate the task of speciating commercial catch. Unlike a purely sample-based statistical framework, model based statistics allows analysts to quickly explore a wide range of hypotheses for estimating species compositions. The models entertained here manage to achieve generally well behaved predictive accuracy (Tables 2 and 3), however these models are by no means perfect. The models presented here simply offer a few fundamental improvements toward estimating species compositions.

Among the largest structural changes improving from the Bayesian methodology in Shelton et al. (2012) is the recognition of overdispersion in port sampling data. In the absence of highly predictive covariates, modeling overdispersion in port sampling data remains an important modeling consideration. Moving forward, modeling decisions will require a careful consideration of predictive accuracy and bias/variance trade-off, so as to tease better and better performance out of further models. The models presented here offer a great operational starting point and provide a basic framework for further model exploration.

This system provides easy access to estimates of uncertainty in commercial catch, at any aggregation of the stratification system. Making posterior predictive draws from these models widely available, makes it possible for stock assessment scientists to incorporate catch uncertainty into existing assessment models where possible and appropriate.

Due to observed trends in the sampling of more heavily landed, or specious, market categories, the vast majority of commercial landings from 1978-1990 are able to be expanded by our model. Moving into the modern era, regulation changes including the start of the live fish fishery, and the proliferation in the number of market categories, due to mandatory sort requirements, may challenge species composition estimation. However, due to the increased number of strata that these changes introduce, uncertainty estimation for these time periods will prove to be critical. Without a matched increase in sampling effort, alongside increased stratification, the number of samples per stratum falls dramatically and species composition estimation may well become very uncertain.

Given a sparse data setting, model-based strategies of catch estimation provide the best chance of a full statistical treatment of available data. However, a more informed path forward involves either increasing sampling effort, or a simplification of the stratification system. Either of these changes provide models with more data to better infer parameters. Model flexibility and justifiable stratum pooling strategies, will become vital for modeling data-sparse time periods. Although estimates are likely estimable in these sparse time periods, as pooling strategies become more extreme, model fit will suffer as both bias and variance estimates increase.

Future effort in developing models should include an exploration of the effect of landing weight on species compositions, as the current estimation algorithm in CALCOM uses landing weight information in its calculation. The model-based approach makes testing this hypothesis straight-forward, as the hypothesis may amount to the inclusion of a single slope parameter in the linear predictor, regressing on landing size. Given the current model's agreement with existing data, as well as with CALCOM estimates for well sampled strata, it is unlikely that landing size has an important predictive effect in all cases, however without testing the hypothesis, we can not say whether the effect will prove to be explanatory.

In an attempt to add further flexibility to the models presented here, exploring the possibility of gear-species interactions, as random effects, may prove fruitful. This could improve model performance not only due to differential gear selectivity, but also because some gear groups and port complexes are confounded in the California data due to spatial regulations (e.g. trawl gear is prohibited in Southern California). Furthermore the inclusion of random vessel effects may also find support, perhaps capturing variability in fishing behavior or changes in catch composition related to vessel size, as noted above.

Finally, further large changes to the methods proposed here might include a true multivariate handling of the likelihood. The Beta-Binomial univariate model, used here, suggests that the multivariate Dirichlet-Multinomial extension might be a good model for these data. We have yet to get these models to practically compute, due to excessive run times and computational server limitations, but in the future they may provide appropriate structure across the many species of this system. As affordable computing power increases, predictive distributions and summary statistics from improved models can be easily incorporated into the proposed database structure.

The BMA procedure presented here adds significant robustness and pooling potential to our species composition estimates, however it does so at a substantial computational cost. We have found ways (through parallel computation and constraining the model search) to make the computation tractable, however the solution is a "brute force" approach. Dirichlet Process (DP) Bayesian nonparameteric models (Ferguson, 1973) are a potential alternative approach to modeling the port parameters.

Our approach and analysis is intended to be a template for applying to other highly, or even just moderately comparable examples. For instance, this approach could be applied to historical rockfish catches off of Oregon and Washington, which have a different but comparable history of sampling mixed-species market categories that have shifted over time. More importantly, this general approach will be appropriate to additional investigations of the species composition of total landings in other poorly sampled and highly variable mixed stock fisheries that may have widely variable types of available data (e.g. Suter 2010, Benoit 2012, Saldaña-Ruiz et al. 2017, Fields et al. in press).

5 Figures

Figure 1: Number of commercial port samples per market category in California, 1978-2014 (upper panel), average sample size per stratum (middle panel), and number of market categories recorded on landing receipts (lower panel). On the lower panels, points indicate observed values, while the black lines represent 8 year moving averages

					1978 - 1982		1983 - 1990		
Category	Market Category	Description	Nominal Species or Group	Tons	# Strata	#Samples	Tons	# Strata	#Sample
es	250	Rockfish, unspecified	UNSPECIFIED ROCKFISH	36539.3	524	1021	55332	1048	2933
	262	Thornyheads	THORNYHEADS, UNSPECIFIED	8512.2	202	237	27929	406	392
	956	Rockfish, group bocaccio/chili	UNSPECIFIED ROCKFISH	3213.7	47	127	20227	655	870
Multi-species	957	Rockfish, group bolina	UNSPECIFIED SHELF ROCKFISH	27.6	27	0	417	426	1
ğ	958	Rockfish, group deepwater reds	ROCKFISH GROUP 3	16.3	1	0	19	10	0
÷	959	Rockfish, group red	UNSPECIFIED ROCKFISH	225.1	41	9	8883	843	501
÷	960	Rockfish, group small	UNSPECIFIED ROCKFISH	1.8	6	2	2223	439	118
Σ	961	Rockfish, group rosefish	ROCKFISH GROUP 6	162.1	13	12	4179	377	327
	962	Rockfish, group gopher	UNSPECIFIED ROCKFISH	0.0	0	0	314	225	2
	963	Rockfish, large red	UNSPECIFIED ROCKFISH	0.0	0	0	0	0	0
	245	Rockfish, cowcod	COWCOD	10.9	38	1	273	294	31
	246	Rockfish, copper (whitebelly) ¹	COPPER ROCKFISH	6.8	18	0	6	93	0
	247	Rockfish, canary	CANARY ROCKFISH	0.4	1	0	62	51	0
	248	Rockfish, yelloweye	YELLOWEYE ROCKFISH	0.0	0	0	0	0	0
	249	Rockfish, vermilion	VERMILION ROCKFISH	4.8	21	0	1	34	0
	251	Rockfish, black-and-yellow	BLACK AND YELLOW ROCKFISH	0.2	1	0	0	5	0
*	252	Rockfish, black	BLACK ROCKFISH	197.4	104	0	403	194	1
"Single-species"*	253	Rockfish, bocaccio	BOCACCIO	14512.9	184	224	1029	79	44
CE.	254	Rockfish, chilipepper	CHILIPEPPER ROCKFISH	68.7	48	0	90	102	2
be	255	Rockfish, greenspotted	GREENSPOTTED ROCKFISH	10.6	6	0	4	7	0
s S	256	Rockfish, starry	STARRY ROCKFISH	2.6	10	0	2	7	0
<u></u>	257	Rockfish, darkblotched	DARKBLOTCHED ROCKFISH	0.0	0	0	0	0	0
j.	258	Rockfish, China	CHINA ROCKFISH	78.2	68	1	48	147	4
Ĕ'	259	Rockfish, yellowtail	YELLOWTAIL ROCKFISH	287.5	116	0	868	223	11
	263	Rockfish, gopher	GOPHER ROCKFISH	232.4	95	0	35	51	0
	264	Rockfish, pinkrose	PINKROSE ROCKFISH	0.0	0	0	0	0	0
	265	Rockfish, yelloweye ²	YELLOWEYE ROCKFISH	774.8	175	27	108	99	0
	267	Rockfish, brown	BROWN ROCKFISH	981.3	246	9	186	111	3
	268	Rockfish, rosy	ROSY ROCKFISH	0.8	3	1	7	14	0
	269	Rockfish, widow	WIDOW ROCKFISH	12575.6	75	132	18802	374	497

1. Market category 246 is no longer used since whitebelly rockfish is now considered copper rockfish.

2. Market category 265 was redefined from red rockfish to yelloweye rockfish in 1981 by CDFW.

Figure 2: Landed weight (metric tons), number of landed strata (year, quarter, port complex, and gear group), and number of species composition samples by market category and time period. Market categories created after 1990 are not listed (e.g. 678, 679, 964, and 971-976). * "Single-species" market categories are nominal (in name only); landings in these categories often include a mixture of species.

					1978 - 1982			1983 - 1990		
ategory	Market Category	Description	Nominal Species or Group	Tons	# Strata	#Samples	Tons	# Strata	# Sample	
	270	Rockfish, splitnose	SPLITNOSE ROCKFISH	458.7	93	32	3	7	16	
	271	Rockfish, Pacific ocean perch	PACIFIC OCEAN PERCH	175.9	65	0	72	60	0	
	650	Rockfish, rougheye	ROUGHEYE ROCKFISH	0.0	0	0	0	0	0	
	651	Rockfish, olive	OLIVE ROCKFISH	1.1	7	0	4	32	0	
	652	Rockfish, grass	GRASS ROCKFISH	0.1	4	0	0	4	0	
	653	Rockfish, pink	PINK ROCKFISH	0.1	1	0	0	4	0	
	654	Rockfish, greenstriped	GREENSTRIPED ROCKFISH	0.0	0	0	0	0	0	
	655	Rockfish, copper	COPPER ROCKFISH	0.4	9	0	43	77	0	
	656	Rockfish, blackspotted	BLACKSPOTTED ROCKFISH	0.0	0	0	0	0	0	
	657	Rockfish, flag	FLAG ROCKFISH	0.5	4	0	0	0	0	
	658	Rockfish, treefish	TREEFISH	0.0	1	0	0	1	0	
	659	Rockfish, kelp	KELP ROCKFISH	0.0	2	0	0	4	0	
	660	Rockfish, honeycomb	HONEYCOMB ROCKFISH	0.0	1	0	0	0	0	
	661	Rockfish, greenblotched	GREENBLTCHED ROCKFISH	0.1	1	0	0	1	0	
	662	Rockfish, bronzespotted	BRONZESPOTTED ROCKFISH	0.0	0	0	0	0	0	
	663	Rockfish, bank ³	BANK ROCKFISH	0.0	1	0	432	54	15	
	664	Rockfish, rosethorn	ROSETHORN ROCKFISH	0.0	0	0	0	0	0	
	665	Rockfish, blue	BLUE ROCKFISH	176.8	117	0	129	194	2	
	666	Rockfish, squarespot	SQUARESPOT ROCKFISH	0.0	0	0	0	0	0	
	667	Rockfish, blackgill	BLACKGILL ROCKFISH	9.0	3	1	1213	206	128	
	668	Rockfish, stripetail	STRIPETAIL ROCKFISH	0.0	0	0	0	0	0	
	669	Rockfish, speckled	SPECKLED ROCKFISH	0.2	2	0	0	2	0	
	670	Rockfish, swordspine	SWORDSPINE ROCKFISH	0.0	0	0	0	0	0	
	671	Rockfish, calico	CALICO ROCKFISH	0.0	0	0	0	0	0	
	672	Rockfish, shortbelly	SHORTBELLY ROCKFISH	2.5	2	0	52	11	1	
	673	Rockfish, chameleon	CHAMELEON ROCKFISH	0.0	0	0	0	1	0	
	674	Rockfish, aurora	AURORA ROCKFISH	0.0	0	0	0	0	0	
	675	Rockfish, redbanded	REDBANDED ROCKFISH	0.0	0	0	1	1	0	
	676	Rockfish, Mexican	MEXICAN ROCKFISH	0.0	0	0	0	0	0	
	677	Rockfish, shortraker	SHORTRAKER ROCKFISH	0.0	0	0	0	0	0	
	970	Rockfish, quillback	QUILLBACK ROCKFISH	0.0	0	0	0	0	0	

3. Bank rockfish are sometimes referred to as "red widow" rockfish.

Figure 3: (Continued) Landed weight (metric tons), number of landed strata (year, quarter, port complex, and gear group), and number of species composition samples by market category and time period. Market categories created after 1990 are not listed (e.g. 678, 679, 964, and 971-976). * "Single-species" market categories are nominal (in name only); landings in these categories often include a mixture of species.

Figure 4: Map showing the ports in California that account for at least 95% of landings. Separating lines show how ports have been aggregated into port complexes.

Figure 5: Upper panel shows the proportion of landed weight (black) and number of samples (blue) in each market category for the 1978-1982 time period. Bottom panel shows the proportion of sampled weight for each species in each market category shown. The number above each colored bar indicated the number of species in the market category. Hashing indicates the species that is nominal in the relevant market category.

Figure 6: Upper panel shows the proportion of landed weight (black) and number of samples (blue) in each market category for the 1983-1990 time period. Bottom panel shows the proportion of sampled weight for each species in each market category shown. The number above each colored bar indicated the number of species in the market category. Hashing indicates the species that is nominal in the relevant market category.

Figure 7: The model averaging results of port complex model selection for market category 250 in 1978 to 1982. BMA weights (ω) for the top 10 models are displayed in the top row (each column is a distinct model). The following ten rows indicate the ten port complexes in California, and the colored cells indicate how port complexes are partitioned in each model.

6 Appendix

6.1 Appendix A: A Motivating Example

To discern between these discrete modeling options we considered Poisson, binomial, negative binomial, and beta-binomial models fit to a subset of the data from market category 250, in the Monterey port complex trawl fishery for the second quarter of 1982. This stratum was selected as a relatively data rich setting, although other stratum produce similar results. This stratum was visited 32 times by port samplers, collecting a total of 59 cluster samples across 55 unique species. For brevity, in this example, we only consider the six most prevalent species (BCAC, CLPR, WDOW, YTRK, BANK, STRK).

Simplified models under each of the discrete likelihoods, mentioned above, are fit to the subset data.

$$y_{ij} \overset{i.i.d.}{\sim} p(y_{ij}|\theta_j,\phi)$$

Here p takes the form of each of the considered Poisson, binomial, negative binomial, and beta-binomial models, θ_j represents the fixed species parameters, and ϕ is included to generally represent the nuisance parameters for modeling overdispersion in the negative binomial, and beta-binomial models.

	Poisson	Binomial	NB	BB
MSE	0.06412	0.06264	0.05171	0.04479
Δ DIC	1001.41	1230.60	5.03	0
Δ WAIC	1079.95	1323.75	3.43	0
pr(M y)	≈ 0	≈ 0	$\approx 10^{-7}$	≈ 1

Table 4: A table showing Mean Squared Error (MSE; computed on the species composition scale), delta deviance information criterion (Δ DIC), delta widely applicable information criterion (Δ WAIC), and marginal Bayesian model probabilities (pr(M|y)) across the likelihood models fit.

Table (4) shows model fit measures spanning a wide range of model selection philosophies and yet here they all consistently agree in ranking the likelihood models, with a clear preference for the overdispersed models (NB and BB). The beta-binomial model shows the most overall support and the Poisson model shows the least support. This initial result guides the use of the beta-binomial data generating model for the purposes of building a model to apply at an operational scale.

Figure (8) demonstrates how the beta-binomial model distributes predictive density over the unit interval. Species composition is bounded on [0, 1], thus in the presence of large variability, predictive density may aggregate around the bounds. Figure (9) visualizes the predictive species composition distributions as 95% Highest Density Intervals (HDI) (colored vertical lines), plotted on top of the predictive means for each model and the observed species compositions (black horizontal lines) from the data in Figure (9).

The large spread of the observed species compositions seen in Figure (9) visually demonstrate the degree of overdispersion present in port sampling data. The Poisson and binomial models disregard this overdispersion to prioritize fitting the data mean. The NB and BB models explicitly model overdispersion in the data, and as such they predict a larger subset of the data. Notably, only the intervals produced by the BB model include the low observed proportions of bocaccio (BCAC) and the high observed proportion of chilipepper rockfish (CLPR) in this example.

The split beta-binomial intervals seen in Figure (9) reflect a large amount of residual variability confined on the unit interval. The beta-binomial is the only model considered here, that estimates such a large degree of variability and thus it is the only model that produces predictive species composition distributions that effectively cover the range of observed species compositions. The predictive intervals in Figure (9) are the smallest possible regions on each of the densities visualized in Figure (8) so that each intervals contain 95% probability. For the example of STRK, notice that although the predictive HDI in Figure (9) is split, the vast majority of density (seen in Figure (8)) lies directly atop the data.

Beta-Binomial Posterior Predictive Species Compositions

Figure 8: A violin plot of the beta-binomial predictive distributions for the six most prevalent species in the market category 250, Monterey trawl fishery for the second quarter of 1982. Observed species compositions, from port sampling, are plotted atop each density.

95% Predictive HDI Model Comparison

Figure 9: Interval Plot: The predictive species composition distributions as 95% Highest Density Intervals (HDI) (colored vertical lines), plotted on top of the predictive means for each model and the observed species compositions (black horizontal lines) from the data

6.2 Appendix B: Modern Market Categories and Sampling

Figures (10 and 11) show structure in port sampling data for two modern unmoded time periods, 1991-1999 and 2000-2015. These modern time periods show similar patterns in port sampling effort as the above describes modeled time periods, although due to the increased number of market categories, port sampling is spread more thinly among the many categories. Namely port sampling effort still seems to track both total landed weight, as well as the number of species in each market category, however this pattern occurs across many more market categories.

In these two modern time periods a key feature of the data is the proliferation of the number of market categories. Figures (10 and 11) show market categories accounting for the top 99% of total landings in each time period. In the modeled periods, 1978-1982 and 1983-1990, the top 99% of total landings are landed into 6 and 12 distinct market categories respectively. In the unmodeled periods shown here, 1991-1999 and 2000-2015, the top 99% of total landings are landed into 20 and 28 distinct market categories respectively.

It was noted in Section (3.1) that market category 267 (nominally Brown Rockfish) was actually composed of relatively little Brown Rockfish, and actually contained mostly Widow Rockfish. Figure (11) shows that in the most modern time period (2000-2015) this pattern reverses as market category 267 is composed almost entirely (99.6%) of Brown Rockfish.

6.2.1 Figures

Figure 10: Upper panel shows the proportion of landed weight (black) and number of samples (blue) in each market category for the 1991-1999 time period. Bottom panel shows the proportion of sampled weight for each species in each market category shown. The number above each colored bar indicated the number of species in the market category. Hashing indicates the species that is nominal in the relevant market category.

Figure 11: Upper panel shows the proportion of landed weight (black) and number of samples (blue) in each market category for the 2000-2015 time period. Bottom panel shows the proportion of sampled weight for each species in each market category shown. The number above each colored bar indicated the number of species in the market category. Hashing indicates the species that is nominal in the relevant market category.

6.3 Appendix C: Spatial Model Averaging

In an effort to provide a flexible spatial pooling strategy among the categorical port complexes in this system, a "brute force" BMA approach is used. In each modeled time period, and market category, 274 variations of model (M4) are fit. Each of the 274 model variations differ only in how they partition port complexes along the California coast. In the extreme cases, port complexes may be modeled as (10) unpooled parameters, or in contrast, port complexes may be pooled into as few as four parameters, see Section (2.6).

In the case of pooling port complexes it is not enough to simply known how many port complexes groups to pool toward, but rather it is imperative to know which port complexes to pool together. Here we try all port complex pooling schemes, such that only adjacent port complexes are ever pooled, and pooling schemes shall never exceed three port complexes in size. For the case of a 10 port complexes system this results in 274 variations of model (M4) (for refer, in the case of a 3 port complex system this only amounts to 4 model variations). In each modeled period and market category all 274 model variation are fit and in an automated fashion these models are averaged together so as to approximately integrate port complex poolings decisions out of the modeling procedure.

Figures (12, 13 and 14) show the spatial model averaging results for all modeled time periods (1978-1982 and 1983-1990) in all modeled market categories. For brevity we only show the five most highly weighted models in each market category.

In 1978-1990, nine market categories are computed by the model. Results from all nine BMA partitioning schemes are shown in Figure (12). Market category 250 is described in more detail in Section (3.3) as it is the most heavily landed and sampled category in the 1978-1982 time period, see Figure (2). Of additional note in the 1978-1982 time period are market categories 270 and 959. The most heavily weighted model in market category 270 ($\omega = 0.08$) includes 7 port complex parameters, with no port complex pooling seen south of San Francisco. Furthermore only two port complex parameters are used from San Francisco north (CRS/ERK and BRG/BDG/OSF). In the north the break between ERK and BRG (i.e. Cape Mendocino) is a very consistent feature, while in the south there is more variability in how to partition port complexes. Additionally it is work noting that the top 5 models shown in market category 270 only amount to about 24% of model probability with the remaining 76% extending into the 269 unshown models for that market category. This represents an example of substantial model uncertainty with respect to the southern port complex model specification. In contrast, consider market category 959, where the first two models amount to 98% of model weight.

In the 1982-1990 time period, see Figures (13 and 14), where 13 market categories were
modeled. In contrast with 1978-1982, the 1983-1990 time period shows a lot of variability in the number of parameters used to model port complex. In 1983-1990 market category 262 has its most heavily weighted model only using 4 parameters while market category 663 uses 8 port complex parameters in its most heavily weighted model. Again in market category 663 most of the parameters are used to model the southern port complexes.

In general, across all time periods, notice that each market category has fairly unique port complex partitioning results. The fact that each market category behaves uniquely indicates the complexity of this system. Furthermore the fact that the BMA strategy picks up on these varied market category behaviors indicates the flexibility of this approach. Although the system is very dynamic, key breaks along California biogeographic features, such as Cape Mendocino and/or Point Conception, seem to be recurrent patterns.

Additionally, across all of the modeled periods no market category ever highly weights the fully unpooled model. This suggests the appropriateness of spatial pooling for these sparse data. These data represent the most well sampled time periods in CALCOM an still spatial pooling finds support. Furthermore it is worth reiterating that the fitted model, (M4), is already doing hierarchical temporal partial pooling, as described in Section (2.3), and even still pooled spatial models outperform the unpooled models.

6.3.1 Figures

		MCAT	250					MCAT	Г 269			MCAT 270					
ω	0.32	0.14	0.13	0.12	0.02	ω	0.19	0.14	0.14	0.13	0.07	ω	0.08	0.06	0.04	0.03	0.03
CRS						CRS						CRS					
ERK						ERK						ERK					
BRG						BRG						BRG					
BDG						BDG						BDG					
OSF						OSF						OSF					
MNT						MNT						MNT					
MRO						MRO						MRO					
OSB						OSB						OSB					
OLA						OLA						OLA					
OSD						OSD						OSD					

		MCAT	253					MCAT	956					MCAT	959		
ω	0.14	0.14	0.14	0.10	0.06	ω	0.10	0.08	0.07	0.07	0.06	ω	0.49	0.49	0.00	0.00	0.00
CRS						CRS						CRS					
ERK						ERK						ERK					
BRG						BRG						BRG					
BDG						BDG						BDG					
OSF						OSF						OSF					
MNT						MNT						MNT					
MRO						MRO						MRO					
OSB						OSB						OSB					
OLA						OLA						OLA					
OSD						OSD						OSD					

		MCAT	265					MCAT	262					MCAT	F 961		
ω	0.02	0.02	0.01	0.01	0.01	ω	0.30	0.21	0.06	0.05	0.04	ω	0.05	0.05	0.05	0.04	0.04
CRS						CRS						CRS					
ERK						ERK						ERK					
BRG						BRG						BRG					
BDG						BDG						BDG					
OSF						OSF						OSF					
MNT						MNT						MNT					
MRO						MRO						MRO					
OSB						OSB						OSB					
OLA						OLA						OLA					
OSD						OSD						OSD					

Figure 12: 1978-1982 model averaging results for all modeled market categories.

		MCAT	250					MCAT	Г 269					MCAT	F 956		
ω	0.73	0.25	0.00	0.00	0.00	ω	0.64	0.12	0.07	0.06	0.04	ω	0.26	0.21	0.19	0.11	0.10
CRS						CRS						CRS					
ERK						ERK						ERK					
BRG						BRG						BRG					
BDG						BDG						BDG					
OSF						OSF						OSF					
MNT						MNT						MNT					
MRO						MRO						MRO					
OSB						OSB						OSB					
OLA						OLA						OLA					
OSD						OSD						OSD					

		MCAT	253					MCAT	663					MCA	F 959		
ω	0.11	0.09	0.06	0.05	0.05	ω	0.49	0.49	0.00	0.00	0.00	ω	0.36	0.22	0.18	0.15	0.02
CRS						CRS						CRS					
ERK						ERK						ERK					
BRG						BRG						BRG					
BDG						BDG						BDG					
OSF						OSF						OSF					
MNT						MNT						MNT					
MRO						MRO						MRO					
OSB						OSB						OSB					
OLA						OLA						OLA					
OSD						OSD						OSD					

		MCAT	259					MCAT	667				MCAT 960				
ω	0.02	0.02	0.02	0.01	0.01	ω	0.07	0.03	0.03	0.03	0.03	ω	0.19	0.15	0.10	0.09	0.05
CRS						CRS						CRS					
ERK						ERK						ERK					
BRG						BRG						BRG					
BDG						BDG						BDG					
OSF						OSF						OSF					
MNT						MNT						MNT					
MRO						MRO						MRO					
OSB						OSB						OSB					
OLA						OLA						OLA					
OSD						OSD						OSD					

Figure 13: 1983-1990 model averaging results for all modeled market categories.

MCAT 961										
ω	0.17	0.12	0.10	0.08	0.08					
CRS										
ERK										
BRG										
BDG										
OSF										
MNT										
MRO										
OSB										
OLA										
OSD										

		MCA	Γ245			
ω	0.05	0.05	0.05	0.05	0.04	ω
CRS						CR
ERK						ER
BRG						BR
BDG						BD
OSF						OS
MNT						MN
MRO						MR
OSB						OS
OLA						OL
OSD						OS

MCAT 262										
ω	0.47	0.29	0.07	0.06	0.02					
CRS										
ERK										
BRG										
BDG										
OSF										
MNT										
MRO										
OSB										
OLA										
OSD										

1	ω	0.04	0.03	0.03	0.03	0.03
	CRS					
	ERK					
	BRG					
	BDG					
	OSF					
	MNT					
	MRO					
	OSB					
	OLA					
	OSD					

MCAT 270

Figure 14: (Continued) 1983-1990 model averaging results for all modeled market categories.

6.4 Appendix D: Nuisance Parameters

Tables (5 - 8) Summarize nuisance parameter posteriors for model M4 fitted in each market category, in each modeled period. Recall high values of ρ indicate overdispersion relative to the binomial model, and small values of v indicate a high degree of temporal pooling in the $\beta_{m\eta}^{(y;q)}$ parameters.

6.4.1 Overdispersion Parameter(ρ)

In general ρ estimates seem to account for a fair degree of overdispersion. Values of ρ never approach the maximal limit ($\rho = 1$), and thus the beta-binomial model seems to be appropriately to modeling the observed residual variance of these data, on average, without structurally underestimating variability.

MCAT	Mean	Median	SD
250	0.55	0.55	0.004
253	0.39	0.39	0.001
262	0.35	0.35	0.008
265	0.64	0.64	0.002
269	0.52	0.52	0.019
270	0.53	0.54	0.020
956	0.35	0.35	0.007
959	0.47	0.47	0.070
961	0.55	0.55	0.004

Table 5: 1978-1982: ρ posterior mean, median, and standard deviation summaries for all modeled market categories.

MCAT	Mean	Median	SD
245	0.65	0.65	0.014
250	0.51	0.51	0.002
253	0.47	0.47	0.010
259	0.75	0.75	0.009
262	0.41	0.41	0.001
269	0.57	0.57	0.046
270	0.74	0.75	0.027
663	0.51	0.51	0.001
667	0.49	0.49	0.022
956	0.43	0.43	0.003
959	0.55	0.55	0.004
960	0.45	0.45	0.004
961	0.59	0.59	0.001

Table 6: 1983-1990 ρ posterior mean, median, and standard deviation summaries for all modeled market categories.

6.4.2 Temporal Pooling(v)

Each modeled market category and time period require a different degree of pooling. The variance estimates span 2 orders of magnitudes with the smallest estimate (indicating the most temporal shrinkage) occurring in market category 250 in 1983-1990 and the largest estimate (indicating the least temporal shrinkage) occurring in market category 269 in 1983-1990. Modeling each market category separately provides the flexibility to separately characterize these largely distinct temporal pooling behaviors.

MCAT	Mean	Median	Posterior SD
250	12915.85	18523.12	8699.87
253	22747.87	23063.76	1535.53
262	20254.41	20506.36	2581.87
265	15846.22	16694.98	7601.15
269	20135.05	19975.15	4667.11
270	19931.96	19955.13	6033.35
956	19659.11	19795.60	1227.99
959	19159.69	13375.80	19256.94
961	18631.44	19498.31	7970.44

MCAT	Mean	Median	Posterior SD
245	20211.82	20204.95	1276.83
250	236.03	192.53	134.67
253	20455.18	20140.50	1521.72
259	20246.14	20186.61	898.99
262	20445.49	20348.56	343.70
269	34386.49	25951.03	24030.32
270	20253.34	19908.07	9269.02
663	19563.87	19624.09	331.04
667	20089.55	20078.27	2723.34
956	20581.67	20664.71	913.92
959	19242.41	18707.09	5076.03
960	20059.66	20012.80	1703.89
961	20127.69	20141.04	580.80

Table 7: 1978-1982 v posterior mean, median, and standard deviation summaries for all modeled market categories. Table 8: 1983-1990 v posterior mean, median, and standard deviation summaries for all modeled market categories.

6.5 Appendix E: ComX Distributions of Landed Catch for Select Species, 1978-1990

As described in the text, ComX generates predictive distributions of species compositions, by stratum (market category, year, quarter, gear group, and port complex). When multiplied by the total weight of fish landed in a stratum, we obtain the predictive distribution of landed weight by species (i.e. the "expanded" landings estimates by species) for that stratum. This approach allows us to summarize the predictive distributions using percentiles (10th, 25th, 50th, 75th, and 90th) as well as the mean, and to report coefficients of variation (CV). This appendix describes distributions of landed catch at two levels of aggregation, as currently stored in the "COMX_DB" database at the NMFS SWFSC Fisheries Ecology Division. First, we present landings distributions by species, year and gear group, aggregating across all market categories, port complexes, and quarters. This level of aggregation is commonly used in "data-rich" stock assessments that partition annual catch by fishing fleet. Second, we present results by species and year, aggregating across all market categories, port complexes, and gear groups. This higher level of aggregation is commonly used in "data-moderate" (e.g. surplus production) and "data-poor" (e.g. catch-based) assessment methods.

Given that there are 90+ species in the PFMC's Groundfish Fishery Management Plan, each landed by multiple gear types, we present results for a subset of species that account for the vast majority of landings, as well as a selection of "minor" stocks that were landed in smaller quantities. Specifically, we ranked species in order of landed weight using the CALCOM database, and identified 9 species that account for 90% of the landed rockfish in California over the period 1978-1990, see Table (9). We also included a selection of minor stocks (in terms of total landings in California) to evaluate performance of the current model in "data-limited" and "data-poor" situations.

In order to generate meaningful comparisons of the ComX distributions and estimates from CALCOM, we ensured that both sets of estimates were based on the same subset of expanded strata. As noted in the main text, ComX does not fit a model to strata in which the minimum number of model parameters is less than the number of available samples. Strata meeting this criterion were excluded from the comparisons in this appendix. For example, the expanded ComX estimates in this appendix exclude landings prior to 1984 in Southern California (insufficient data), market categories 245, 253, and 956 prior to 1983, and market category 265 in both time periods. Market category 245 was excluded because it was only sampled once prior to 1983, and therefore ComX did not fit a model for 245 in this time period. Market categories 253 and 956, prior to 1983, were excluded from the comparison due to issues associated with a reclassification of landing receipts during that time period

Rockfish Species	1978-1990 Expanded Landings (1000s of mt)							
Top 90% of Rockfish Landing								
Widow	47.1							
Bocaccio	44.9							
Chilipepper	32.1							
Bank	14.5							
Yellowtail	10.2							
Blackgill	8.1							
Darkblotched	7.2							
Canary	6.5							
Splitnose	5.4							
Select Minor Stocks								
Cowcod	2.1							
Pacific Ocean Perch	0.9							
Bronzespotted	0.6							
Chameleon	0.1							
Mexican	0.04							

Table 9: Rockfish species in descending order of landed catch in California. Source: CAL-COM 2018.

(details can be found in Pearson et al. 2008). Pearson et al. also described a re-definition of market category 265 that led to its exclusion. To ensure an accurate comparison, expanded landings estimates from CALCOM were queried from the COM_LANDS table based on the same strata that were used to generate the ComX distributions.

Since some market categories are named after a particular species, an uninformed user may mistakenly query landings based on a market category description, assuming they represent total landings for that species (e.g. market category 253, the nominal "bocaccio" category). Using the same subset of strata outlined above, we compare ComX estimates to the landings in the nominal category for each species and gear to illustrate how nominal landings estimates differ from expanded estimates.

6.5.1 Expanded Landings Aggregated by Species, Year, and Gear Group

Since deviations between estimates from CALCOM and ComX can occur for a number of reasons, we provide a brief summary of our comparisons to date. Members of the technical team are currently researching specific cases and will be prepared to present further details during the methodological review. We first present species making up 90% of commercial landings, in rank order of landings and beginning with Widow Rockfish (*Sebastes entomelas*), followed by a selection of minor stocks, beginning with Cowcod (*S. levis*).

6.5.1.1 Widow Rockfish (Sebastes entomelas)

Expanded landings of widow rockfish were dominated by the trawl gear group, with relatively minor contributions from line and net gears, see Figure (15). Since 1983, regulations require sorting of widows into market category 269, and this species represents one of the most "data-rich" examples, as indicated by the small CVs, particularly for trawl gear estimates. Landings of widow continue to occur in market categories other than 269, which accounts for the slight negative bias between the "nominal" landings and the expanded landings from both ComX and CALCOM. The largest deviations between ComX and CALCOM occur prior to the sort requirement (1979-1981), but the 1982 estimates from all three methods are very similar. Line gear estimates are the least precise among gear groups, but this would have little effect on assessment results due to their minor contribution to total removals.

6.5.1.2 Bocaccio (S. paucispinis)

Expanded landings for Bocaccio, Figure (16) are consistently precise across gears and years for the areas examined in this comparison. ComX distributions at the species/year/gear level have CVs less than 0.4 for all years in the trawl and line gears, as well as for net gear types after 1983. Point estimates for trawl landings from CALCOM generally fall between the 10th and 90th percentiles of the ComX distributions, with the exception of 1980, 1983, and 1984. Use of the nominal "Bocaccio" market category (253) produces very poor estimates of landed catch, reflecting the fact that Bocaccio was landed in large quantities in other market categories, and other species were landed in market category 253.

6.5.1.3 Chilipepper Rockfish (S. goodei)

Chilipepper and Bocaccio are frequently caught together, resulting in similar trends in landings by gear for the two species. Chilipepper landings distributions are also precise relative to other species in the comparison set, having CVs less than 0.4 in most years and gears after 1982, see Figure (17). Expanded point estimates from CALCOM are mostly consistent with ComX distributions, with the exception of trawl landings after 1983, where the CALCOM expansion procedure estimates consistently greater landings, especially after 1987. Chilipepper were almost never landed in their nominal market category (254), by comparison.

6.5.1.4 Bank Rockfish (S. rufus)

Estimates of Bank Rockfish prior to 1983 are consistently imprecise at this level of aggregation, with CVs > 1 for all gears and years, see Figure (18). Bank rockfish are common in Southern California and, as noted above, this comparison excludes landings in Southern California prior to 1984 due to limited sampling. Potential approaches to estimate landings for this species in Southern California could include prediction (hindcasting) of species compositions based on data collected from Southern California after 1983. The general trends in expanded trawl landings are roughly consistent, with deviations in 1984 and 1986, although one would expect some deviations by random chance. ComX estimates are consistently higher than CALCOM for line gears, with the opposite pattern in net gears. As with Chilipepper, only a small fraction of Bank Rockfish were landed in their nominal market category (663).

6.5.1.5 Yellowtail Rockfish (S. flavidus)

ComX distributions of expanded catch for Yellowtail Rockfish were less precise, with CVs greater than 0.4 in all years and gear groups, see Figure (19). Trawl landings estimates from CALCOM showed no clear trend and were highly variable. Means of the ComX distributions showed an initial increase, followed by a decline from 1980 to 1986, after which landings stabilized around 200 mt per year. Deviations between the mean and median estimates from ComX reflect skewness of the predictive distributions. For both line and net gear types, CALCOM produces expanded estimates that are consistently larger, and with more interannual variability, than ComX. Yellowtail landed by trawl gears are rarely landed in their nominal category (259), but total weight of fish in the nominal "yellowtail" category are of similar scale to the ComX expanded estimates for both line and net gear groups.

6.5.1.6 Blackgill Rockfish (S. melanostomus)

Expanded landings of Blackgill Rockfish are highly imprecise prior to 1983 in all gears, with CVs from ComX consistently greater than 1, see Figure (20). CVs of trawl and net gears remain above 0.4 for the remainder of the expanded time periods, while the precision of line gears increases after 1984. Mean and median landings by trawl gears increase in ComX in 1983, and then remain stable. CALCOM estimates after 1983 are highly variable, but lower (on average) than ComX. Both expansion methods show increases in landings by line gears, with a slower rate of increase in the ComX estimates, relative to the CALCOM expansion protocol. The largest deviation between the two expansion methods for net fisheries occurs in 1988, which is the most precisely estimated year for that gear group in ComX (CV = 0.36). Landings in the nominal "blackgill" category (667) are a poor representation of trawl catch. Nominal landings in the line and net gear groups show a similar trend to expanded estimates, but are biased low.

6.5.1.7 Darkblotched Rockfish (S. crameri)

Expanded trawl landings for Darkblotched Rockfish show slight increasing trends based on either CALCOM or ComX estimates. The CALCOM estimates show more interannual variability and estimate trawl landings in 1987 as being more than twice the estimate from ComX Figure (21). Estimates for line gears, although a minor component of total removals, are higher for ComX prior to 1986, but consistent with CALCOM from 1987-1990. While CALCOM shows negligible landings of Darkblotched by net gears, ComX estimates about 100-200 mt annually. CVs for ComX landings of Darkblotched are high for early years (pre-1984) and net gears in all years (minimum net CV = 0.65). After 1983, CVs for trawl gears range from 0.34 to 0.49. Landings in the "darkblotched" market category (257) are a poor representation of actual landings for trawl and line gears. Landings in the net gear group are consistent with CALCOM, but lower than ComX.

6.5.1.8 Canary Rockfish (S. pinniger)

Over the modeled time period, trawl gears dominated the catch of Canary Rockfish, with only minor contributions by line and net gears, see Figure (22). Point estimates of expanded trawl catch fall consistently between the 10th and 90th percentiles of ComX distributions, but show a slightly different trend prior to 1982. ComX CVs for Canary rockfish are greater than 0.4 for all year/gear combinations, with line gears having the highest precision (consistently less than 0.6) after 1984. Canary is another species with landings that are not well-represented by landings in the nominal "canary" market category (247). Nominal landings in category 247 were negligible in all years for all three gear groups.

6.5.1.9 Splitnose Rockfish (S. diploproa)

Expanded landings estimates from both CALCOM and ComX show an increase in Splitnose Rockfish trawl catch after 1982, followed by a decline that is more pronounced in the CAL-COM estimates, particularly after 1986, see Figure (23). CALCOM point estimates before 1987 fall between the 10th and 90th percentiles of the ComX distributions. Expanded estimates from net gears are similar in both CALCOM and ComX (slightly higher in ComX), but line gears in CALCOM are attributed negligible landings in CALCOM, compared to a minor, but steadily increasing amount based on ComX. CVs of the ComX distributions for Splitnose are less than 0.4 for trawl gears after 1983, and around 0.5 for line and net gears after 1985. Estimates prior to 1983 are generally poor for line and net gears, with CVs greater than one in all years. With the exception of the first two years in the trawl time series, nominal landings in the "splitnose" market category (270) are negligible, and not a reliable estimate of Splitnose Rockfish landings.

6.5.1.10 Cowcod (S. levis)

Cowcod is the first of "minor" species (in terms of total landings) that we chose to examine. Despite its modest contribution to overall rockfish landings, Cowcod is currently managed with the intent to rebuild the stock from a previously declared "overfished" status. As noted in the last assessment (Dick and MacCall, 2014), uncertainty in catch for cowcod leads to considerable uncertainty in estimates of historical spawning stock biomass. As noted above, the nominal market category for Cowcod (245) was excluded from this comparison for years prior to 1983 due to insufficient sample size. This exclusion contributes to the large CVs of the ComX distributions in the early time period, see Figure (24). However, the general imprecision also reflects the fact that many species are landed in category 245, including Bronzespotted, Bocaccio, and Chilipepper (Butler et al. 1999). The smallest CVs were estimated for line gears after 1984 (often less than 0.5), with trawl gears having the highest CVs on average. As noted above, landings in market category 245 ("cowcod") actually consist of several species, and cowcod were often landed in market categories other than 245, so the use of market category 245 to approximate landings of Cowcod is not recommended. ComX estimates of trawl landings are considerably higher than estimates from CALCOM. Estimates of expanded landings by line gears show similar trends, but again show higher inter-annual variability in CALCOM. Both estimators show a similar pattern in the net fishery over time, but CALCOM estimates are higher than ComX for the years 1984-1986.

6.5.1.11 Pacific Ocean Perch (S. alutus)

Pacific Ocean Perch (aka "POP") has a center of distribution to the north of California, but some POP were landed in the state, mainly by trawl gears, see Figure (25). Most year/gear landings distributions from ComX have CVs greater than 1 for this species. A higher level of aggregation (e.g. across gears) for California landings during this time period may be warranted in an assessment context, particularly given the minor contributions from line and net gears. CALCOM estimates for trawl gears are highly variable across years, and smaller (on average) than ComX means. Landings in the nominal "POP" category (271) do not track expanded landings in either CALCOM or ComX.

6.5.1.12 Bronzespotted Rockfish (S. gilli)

Trends in Bronzespotted Rockfish landings from ComX, Figure 26, are very similar to Cowcod, Figure (24), but at a slightly smaller scale. Both species occupy similar habitat, are caught by similar gears, and are landed in similar market categories. Similar to Cowcod, ComX estimates are generally imprecise, and larger than estimates from CALCOM, particularly for trawl gears. Estimates from CALCOM are very similar to ComX means for net gears, but CALCOM estimates do not show a steady increasing trend as suggested by ComX. Nominal landings in the "bronzespotted" market category (662) are negligible for all gear groups. CVs for line gears approach reasonable levels in later years, but most year/gear combinations for Bronzespotted have CVs greater than 1.

6.5.1.13 Chameleon Rockfish (S. phillipsi)

ComX distributions for Chameleon Rockfish are highly skewed and imprecise for Chameleon Rockfish, with CVs greater than 1 for all year and gear combinations and means sometimes exceeding the 75th percentile, see Figure (27). As Pearson et al. (2008) noted, Chameleon Rockfish are "...uncommon in commercial landings, particularly in northern and central California. They can be confused with both splitnose and aurora rockfish. The strata in which they occur are not well sampled." Despite being highly imprecise, point estimates from ComX are considerably higher than those produced by CALCOM, particularly in the trawl fishery. The behavior of ComX in data-poor scenarios is worth further investigation, particularly if estimation of landed catch for minor stocks like Chameleon becomes a priority to management.

6.5.1.14 Mexican Rockfish (S. macdonaldi)

Perhaps the most "data-poor" example in our comparison, CVs for landings distributions of Mexican Rockfish exceed 2 for almost every year/gear combination, see Figure (28). Prior to 1983, the distributions are so skewed that the ComX mean exceeds the 90th percentile of the distribution, and medians are near zero. Mexican Rockfish are primarily caught in Southern California, and years prior to 1984 in that region were excluded for purposes of this comparison due to insufficient sampling. The unreliability of Mexican Rockfish landings was previously noted by Pearson et al. (2008).

6.5.2 Expanded Landings Aggregated by Species and Year

Using the same set of species as in our comparisons among ComX, CALCOM, and nominal categories, we generated ComX predictive distributions by species and year, i.e. now aggregating across gear types. This format for catch data is commonly used in assessments of "data-limited" and "data-poor" stocks. We present percentiles means and medians as Figures 29 - 42, to illustrate the flexibility of the database structure in COMX_DB, and how it can

produce distributions of landings (and associated summary statistics) at any desired level of aggregation. CVs of landings distributions are reduced, as expected, with higher levels of aggregation, Table (43), but general patterns among species and years are generally consistent with the previous species/year/gear comparison (e.g. minor stocks having generally higher CVs than stocks making up the top 90% of landings).

6.5.3 Figures

trawl.WDOW

Figure 15: ComX distributions of expanded landings for Widow Rockfish (*S. entomelas*) by year and gear group. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in market category 269 ("widow rockfish"; red line) shown for comparison. CVs by year and gear group are color coded as follows: CV < 0.4 (green), $0.4 \le CV \le 1.0$ (yellow), CV > 1.0 (red).

Figure 16: ComX distributions of expanded landings for Bocaccio Rockfish (*S. paucispinis*) by year and gear group. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in market category 253 ("bocaccio"; red line) shown for comparison. CVs by year and gear group are color coded as follows: CV < 0.4 (green), $0.4 \leq \text{CV} \leq 1.0$ (yellow), CV > 1.0 (red).

trawl.CLPR

Figure 17: ComX distributions of expanded landings for Chilipepper Rockfish (*S. goodei*) by year and gear group. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in market category 254 ("chilipepper"; red line) shown for comparison. CVs by year and gear group are color coded as follows: CV < 0.4 (green), $0.4 \leq \text{CV} \leq 1.0$ (yellow), CV > 1.0 (red).

trawl.BANK

gill net.BANK

Figure 18: ComX distributions of expanded landings for Bank Rockfish (*S. rufus*) by year and gear group. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in market category 663 ("bank"; red line) shown for comparison. CVs by year and gear group are color coded as follows: CV < 0.4 (green), $0.4 \leq CV \leq 1.0$ (yellow), CV > 1.0 (red).

trawl.YTRK

gill_net.YTRK

Figure 19: ComX distributions of expanded landings for Yellowtail Rockfish (*S. flavidus*) by year and gear group. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in market category 259 ("yellowtail"; red line) shown for comparison. CVs by year and gear group are color coded as follows: CV < 0.4 (green), $0.4 \leq \text{CV} \leq 1.0$ (yellow), CV > 1.0 (red).

trawl.BLGL

gill net.BLGL

Figure 20: ComX distributions of expanded landings for Blackgill Rockfish (*S. melanostomus*) by year and gear group. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in market category 667 ("blackgill"; red line) shown for comparison. CVs by year and gear group are color coded as follows: CV < 0.4 (green), $0.4 \leq \text{CV} \leq 1.0$ (yellow), CV > 1.0 (red).

trawl.DBRK

Figure 21: ComX distributions of expanded landings for Darkblotched Rockfish (*S. crameri*) by year and gear group. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in market category 257 ("darkblotched"; red line) shown for comparison. CVs by year and gear group are color coded as follows: CV < 0.4 (green), $0.4 \leq CV \leq 1.0$ (yellow), CV > 1.0 (red).

Figure 22: ComX distributions of expanded landings for Canary Rockfish (*S. pinniger*) by year and gear group. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in market category 247 ("canary"; red line) shown for comparison. CVs by year and gear group are color coded as follows: CV < 0.4 (green), $0.4 \le CV \le 1.0$ (yellow), CV > 1.0 (red).

trawl.SNOS

Figure 23: ComX distributions of expanded landings for Splitnose Rockfish (*S. diploproa*) by year and gear group. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in market category 270 ("splitnose"; red line) shown for comparison. CVs by year and gear group are color coded as follows: CV < 0.4 (green), $0.4 \leq \text{CV} \leq 1.0$ (yellow), CV > 1.0 (red).

trawl.CWCD

Figure 24: ComX distributions of expanded landings for Cowcod (*S. levis*) by year and gear group. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in market category 245 ("cowcod"; red line) shown for comparison. CVs by year and gear group are color coded as follows: CV < 0.4 (green), $0.4 \leq CV \leq 1.0$ (yellow), CV > 1.0 (red).

trawl.POP

gill_net.POP

Figure 25: ComX distributions of expanded landings for Pacific Ocean Perch (*S. alutus*) by year and gear group. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in market category 271 ("pacific ocean perch"; red line) shown for comparison. CVs by year and gear group are color coded as follows: CV < 0.4 (green), $0.4 \le CV \le 1.0$ (yellow), CV > 1.0 (red).

trawl.BRNZ

Figure 26: ComX distributions of expanded landings for Bronzespotted Rockfish (*S. gilli*) by year and gear group. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in market category 662 ("bronzespotted"; red line) shown for comparison. CVs by year and gear group are color coded as follows: CV < 0.4 (green), $0.4 \leq CV \leq 1.0$ (yellow), CV > 1.0 (red).

gill_net.CMEL

Figure 27: ComX distributions of expanded landings for Chameleon Rockfish (*S. phillipsi*) by year and gear group. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in market category 673 ("chameleon"; red line) shown for comparison. CVs by year and gear group are color coded as follows: CV < 0.4 (green), $0.4 \leq \text{CV} \leq 1.0$ (yellow), CV > 1.0 (red).

trawl.MXRF

Figure 28: ComX distributions of expanded landings for Mexican Rockfish (*S. macdonaldi*) by year and gear group. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) and the nominal landings in market category 676 ("mexican"; red line) shown for comparison. CVs by year and gear group are color coded as follows: CV < 0.4 (green), $0.4 \le CV \le 1.0$ (yellow), CV > 1.0 (red).

Figure 29: ComX distributions of expanded annual landings for Widow Rockfish (*Sebastes entomelas*), all gears combined. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.

Figure 30: ComX distributions of expanded annual landings for Bocaccio (*S. paucispinis*), all gears combined. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.

Figure 31: ComX distributions of expanded annual landings for Chilipepper Rockfish (*S. goodei*), all gears combined. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.

Figure 32: ComX distributions of expanded annual landings for Bank Rockfish (S. rufus), all gears combined. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.

Figure 33: ComX distributions of expanded annual landings for Yellowtail Rockfish (*S. flavidus*), all gears combined. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.

BLGL

Figure 34: ComX distributions of expanded annual landings for Blackgill Rockfish (*S. melanostomus*), all gears combined. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.

Figure 35: ComX distributions of expanded annual landings for Darkblotched Rockfish (*S. crameri*), all gears combined. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.

 $\overline{1}$

Figure 36: ComX distributions of expanded annual landings for Canary Rockfish (*S. pinniger*), all gears combined. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.

Figure 37: ComX distributions of expanded annual landings for Splitnose Rockfish (*S. diploproa*), all gears combined. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.

Figure 38: ComX distributions of expanded annual landings for Cowcod (*S. levis*), all gears combined. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.

Figure 39: ComX distributions of expanded annual landings for Pacific Ocean Perch (*S. alutus*), all gears combined. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.

Figure 40: ComX distributions of expanded annual landings for Bronzespotted Rockfish (*S. gilli*), all gears combined. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.

Figure 41: ComX distributions of expanded annual landings for Chameleon Rockfish (*S. phillipsi*), all gears combined. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.

Figure 42: ComX distributions of expanded annual landings for Mexican Rockfish (*S. macdonaldi*), all gears combined. Distribution percentiles shown in grey (light grey = 10th to 90th, dark grey = 25th to 50th), along with the mean (solid black line), and median (dashed black line). Point estimates of expanded landings from CALCOM (blue line) shown for comparison.

 78

	CV of Species-Year Landings Distribution													
YEAR	WDOW	BCAC	CLPR	BANK	YTRK	BLGL	DBRK	CNRY	SNOS	CWCD	POP	BRNZ	CMEL	MXRF
1978	0.48	0.25	0.34	1.12	0.70	1.71	0.82	0.49	0.47	2.43	1.44	9.28		6.72
1979	0.58	0.28	0.38	1.25	0.80	1.97	0.89	0.53	0.74	2.66	1.64	9.07		7.73
1980	0.74	0.36	0.48	1.56	1.03	2.61	1.16	0.67	1.22	2.55	2.14	4.63		9.55
1981	0.17	0.29	0.41	1.33	0.83	2.26	0.99	0.58	1.25	2.92	1.78	10.55		7.83
1982	0.03	0.21	0.30	0.93	0.62	1.31	0.71	0.43	0.56	1.50	1.34	2.10		7.19
1983	0.07	0.15	0.20	0.27	0.52	0.45	0.48	0.56	0.30	0.86	0.99	1.32	1.57	2.26
1984	0.08	0.14	0.17	0.24	0.48	0.38	0.37	0.45	0.24	0.49	0.77	0.75	1.21	1.91
1985	0.06	0.12	0.15	0.22	0.39	0.32	0.31	0.41	0.20	0.40	0.66	0.58	1.07	1.70
1986	0.07	0.12	0.16	0.22	0.41	0.29	0.32	0.42	0.21	0.42	0.66	0.58	1.11	1.76
1987	0.09	0.15	0.19	0.26	0.52	0.31	0.37	0.49	0.26	0.55	0.76	0.69	1.31	1.97
1988	0.08	0.13	0.16	0.23	0.45	0.22	0.28	0.42	0.22	0.47	0.59	0.63	1.04	1.69
1989	0.10	0.14	0.17	0.25	0.49	0.25	0.32	0.44	0.26	0.48	0.66	0.64	1.08	1.78
1990	0.08	0.14	0.17	0.25	0.47	0.26	0.30	0.42	0.23	0.51	0.60	0.72	1.08	1.76

Figure 43: Coefficients of Variation (CVs) of ComX distributions for expanded annual landings by species and year, 1978-1990. Species within the black border comprise 90% of cumulative commercial landings, 1978-1990. CVs are color coded as follows: CV < 0.4 (green), $0.4 \le CV \le 1.0$ (yellow), CV > 1.0 (red). See text for species codes.

References

- [1] Benoît, H.P., 2012. An empirical model of seasonal depth-dependent fish assemblage structure to predict the species composition of mixed catches. Canadian journal of fisheries and aquatic sciences, 70(2), pp. 220-232.
- [2] Bousquet, N., N. Cadigan, T. Duchesne, and L. Rivest. 2010. Detecting and correcting underreported catches in fish stock assessment: trial of a new method. Canadian Journal of Fisheries and Aquatic Sciences 67:1247-1261.
- [3] Butler, J., L. Jacobson, J. Barnes, H. Moser, and R. Collins. 1999. Stock Assessment of Cowcod. Pacific Fishery Management Council, Portland, OR. Available from http://www.pcouncil.org/groundfish/stock-assessments/
- [4] CALCOM, 2018. California Cooperative Groundfish Survey Database: CDFG, Belmont, CA; PSMFC, Belmont, CA; NMFS, Santa Cruz, CA. http://calcomfish.ucsc.edu.
- [5] CCGS (California Cooperative Groundfish Survey). (2017). Pacific States Marine Fisheries Commission, 350 Harbor Boulevard, Belmont, California, 94002. URL: 128.114.3.187.
- [6] Checkley Jr, D. M., & Barth, J. A. (2009). Patterns and processes in the California Current System. Progress in Oceanography, 83(1-4), 49-64.
- [7] Cochran, W. G. (1977). Sampling Techniques: 3d Ed. Wiley.
- [8] Crone, P. R. (1995). Sampling design and statistical considerations for the commercial groundfish fishery of Oregon. Canadian Journal of Fisheries and Aquatic Sciences, 52(4), 716-732.
- [9] Dick, E. and A. MacCall. 2014. Status and Productivity of Cowcod, Sebastes levis, in the Southern California Bight, 2013. Pacific Fishery Management Council, Portland, OR. Available from http://www.pcouncil.org/groundfish/stock-assessments/
- [10] Doubleday, W. G. (1976). A least squares approach to analyzing catch at age data. Int. Comm. Northwest Atl. Fish. Res. Bull, 12(1), 69-81.
- [11] Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. The annals of statistics, 209-230.
- [12] Fields, A.T., Fischer, G.A., Shea, S.K., Zhang, H., Abercrombie, D.L., Feldheim, K.A., Babcock, E.A. and Chapman, D.D. in press. Species composition of the international shark fin trade assessed through a retail-market survey in Hong Kong. Conservation Biology. (page proofs available online).
- [13] Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2014). Bayesian data analysis (Vol. 2). Boca Raton, FL, USA: Chapman & Hall/CRC.

- [14] Gottscho, A. D. (2016). Zoogeography of the San Andreas Fault system : Great Pacific Fracture Zones correspond with spatially concordant phylogeographic boundaries in western North America. Biological Reviews, 91(1), 235-254.
- [15] Hickey, B. M. (1979). The California Current system—hypotheses and facts. Progress in Oceanography, 8(4), 191-279.
- [16] Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian model averaging: a tutorial. Statistical science, 382-401.
- [17] Jaynes, E. T. (2003). Probability theory: The logic of science. Cambridge university press.
- [18] Love, M. S., Yoklavich, M., & Thorsteinson, L. K. (2002). The rockfishes of the northeast Pacific. Univ of California Press.
- [19] Pearson, D. E., & Almany, G. (1995). The effectiveness of California's commercial rockfish port sampling program.
- [20] Ramasubramanian, K., & Singh, A. (2016). Machine Learning Using R. Apress.
- [21] Methot Jr, R. D., & Wetzel, C. R. (2013). Stock synthesis: a biological and statistical framework for fish stock assessment and fishery management. Fisheries Research, 142, 86-99.
- [22] McCullagh P. & Nelder, J.A. (1989). Generalized Linear Models, 2nd ed. London: Chapman and Hall.
- [23] NAS (National Academies of Sciences, Engineering, and Medicine). 2017. Review of the Marine Recreational Information Program. Washington, DC: The National Academies Press.
- [24] PacFIN (Pacific Fisheries Information Network). 2018. https://pacfin.psmfc.org.
- [25] Pearson, D. and B. Erwin. 1997. Documentation of California's Commercial Market Sampling Data Entry and Expansion Programs. NOAA Technical Memorandum NMFS, NOAA-TM-NMFS-SWFSC-240. 67 p.
- [26] Pearson, D., B. Erwin, and M. Key. 2008. Reliability of California's Groundfish Landing Estimates from 1969-2006. NOAA Technical Memorandum NMFS, NOAA-TM-NMFS-SWFSC-431. 139 p.
- [27] PFMC (Pacific Fisheries Management Council). 2018. Groundfish: Stock Assessments, STAR Reports, STAT Reports, Rebuilding Analyses, Terms of Reference. https://www.pcouncil.org/groundfish/stock-assessments.
- [28] R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- [29] Rao, J. N. K. (2003). Small area estimation. John Wiley & Sons, Ltd.

- [30] Rue H., Martino S., Lindgren F., Simpson D., Riebler A. (2013). R-INLA: Approximate Bayesian Inference using Integrated Nested Laplace Approximations. Trondheim, Norway. URL http://www.r-inla.org/.
- [31] Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the royal statistical society: Series b (statistical methodology), 71(2), 319-392.
- [32] Saldaña-Ruiz, L.E., Sosa-Nishizaki, O. and Cartamil, D., 2017. Historical reconstruction of Gulf of California shark fishery landings and species composition, 1939–2014, in a datapoor fishery context. Fisheries Research, 195, pp.116-129.
- [33] Sen, A.R. (1984). Sampling commercial rockfish landings in California. NOAA Tech Memo. NOAA-TM-NMFS-SWFSC-45.
- [34] Sen AR. (1986). Methodological problems in sampling commercial rockfish landings. Fish Bull. 84: 409-421.
- [35] Shelton, A. O., Dick, E. J., Pearson, D. E., Ralston, S., & Mangel, M. (2012). Estimating species composition and quantifying uncertainty in multispecies fisheries: hierarchical Bayesian models for stratified sampling protocols with missing data. Canadian Journal of Fisheries and Aquatic Sciences, 69(2), 231-246.
- [36] Suter, J.M., 2010. An evaluation of the area stratification used for sampling tunas in the eastern Pacific Ocean and implications for estimating total annual catches. Inter-American Tropical Tuna Commission Special Report 18. https://www.iattc.org/SpecialReportsENG.htm
- [37] Tomlinson, P. K. (1971). Some sampling problems in fishery work. Biometrics, 631-641.
- [38] Tsou, T., L. Wargo, M. Langness, C. Jones, R. LeGoff, D. Downs, V. Okimura, B. Walker, and D. Bacon. 2015. Washington Coastal Commercial Groundfish Port Sampling, 2015 Report. Washington Department of Fish and Wildlife, Fish Program Report Number FPA 15-07. 53 p.