PRESEASON REPORT I Stock Abundance Analysis

 ANDEnvironmental Assessment Part 1 for 2018 Ocean Salmon Fishery Regulations
REGULATION IDENTIFIER NUMBER 0648-BH22

Pacific Fishery Management Council
7700 NE Ambassador Place, Suite 101
Portland, OR 97220-1384
(503) 820-2280
www.pcouncil.org
MARCH 2018

AcKNOWLEDGMENTS

SALMON TECHNICAL TEAM
DR. MICHAEL O'FARRELL, CHAIR
National Marine Fisheries Service, Santa Cruz, California
DR. ROBERT KOPE, VICE-CHAIR
National Marine Fisheries Service, Seattle, Washington
MS. WENDY BEEGHLEY
Washington Department of Fish and Wildlife, Montesano, Washington
MR. CRAIG FOSTER
Oregon Department of Fish and Wildlife, Clackamas, Oregon
DR. STEVE HAESEKER
U.S. Fish and Wildlife Service, Vancouver, Washington
MR. LARRIE LAVOY
National Marine Fisheries Service, Seattle, Washington
MR. ALEX LETVIN
California Department of Fish and Wildlife, Santa Rosa, California
\title{ PACIFIC FISHERY MANAGEMENT COUNCIL STAFF }
MS. ROBIN EHLKE
MS. AMY L'MANIAN

The Salmon Technical Team and the Council staff express their thanks for the expert assistance provided by Mr. Kyle Van de Graaf, Washington Department of Fish and Wildlife; Eric Schindler, Oregon Department of Fish and Wildlife; Ms. Vanessa Gusman and Ms. Melodie Palmer-Zwahlen, California Department of Fish and Wildlife; Ms. Sandy Zeiner and Ms. Ashton Harp of the Northwest Indian Fisheries Commission; and numerous other agency and tribal personnel in completing this report.

This document may be cited in the following manner:
Pacific Fishery Management Council. 2018. Preseason Report I: Stock Abundance Analysis and Environmental Assessment Part 1 for 2018 Ocean Salmon Fishery Regulations. (Document prepared for the Council and its advisory entities.) Pacific Fishery Management Council, 7700 NE Ambassador Place, Suite 101, Portland, Oregon 97220-1384.

A report of the Pacific Fishery Management Council pursuant to National Oceanic and Atmospheric Administration Award Number FNA10NMF4410016.

TABLE OF CONTENTS

Page
LIST OF TABLES vii
LIST OF FIGURES viii
LIST OF ACRONYMS AND ABBREVIATIONS ix
INTRODUCTION 1
Purpose and Need 1
CHAPTER I: DESCRIPTION OF THE AFFECTED ENVIRONMENT 3
ABUNDANCE FORECASTS 4
ACCEPTABLE BIOLOGICAL CATCH, ANNUAL CATCH LIMITS, AND OVERFISHING LIMITS 4
Acceptable Biological Catch 4
Annual Catch Limit 5
Overfishing Limit 5
STATUS DETERMINATION CRITERIA 5
CHAPTER II: AFFECTED ENVIRONMENT - CHINOOK SALMON ASSESSMENT 12
CHINOOK STOCKS SOUTH OF CAPE FALCON 13
Sacramento River Fall Chinook 13
Predictor Description 13
Predictor Performance 13
Stock Forecast and Status 14
OFL, ABC, and ACL 14
Sacramento River Winter Chinook 14
Predictor Description 15
Predictor Performance 15
Stock Forecast and Status 15
Klamath River Fall Chinook 15
Predictor Description 15
Predictor Performance 15
Stock Forecast and Status 16
OFL, ABC, and ACL 16
Other California Coastal Chinook Stocks 17
Oregon Coast Chinook Stocks 17
Predictor Description 17
Predictor Performance 18
Stock Forecast and Status 18
CHINOOK STOCKS NORTH OF CAPE FALCON 19
Columbia River Chinook 19
Predictor Description 20
Predictor Performance 21
Stock Forecasts and Status 21

TABLE OF CONTENTS (continued)

Page
Washington Coast Chinook 21
Predictor Description and Past Performance 22
Stock Forecasts and Status 22
Puget Sound Chinook 22
Predictor Description 23
Predictor Performance 23
Stock Forecasts and Status 23
STOCK STATUS DETERMINATION UPDATES 23
SELECTIVE FISHERY CONSIDERATIONS FOR CHINOOK 23
CHAPTER III - COHO SALMON ASSESMENT 49
COLUMBIA RIVER AND OREGON/CALIFORNIA COAST COHO 49
OREGON PRODUCTION INDEX AREA 49
Hatchery Coho 49
Predictor Description 49
Predictor Performance 50
Stock Forecast and Status 50
Oregon Coastal Natural Coho 50
Predictor Description 51
Predictor Performance 52
Stock Forecasts and Status 52
Lower Columbia River Natural 52
Predictor Description 52
Predictor Performance 52
Stock Forecast and Status 53
Oregon Production Index Area Summary of 2018 Stock Forecasts 53
WASHINGTON COAST COHO 53
Willapa Bay 53
Predictor Description 53
Predictor Performance 54
Stock Forecasts and Status 54
OFL, ABC, and ACL 54
Grays Harbor 54
Predictor Description 54
Predictor Performance 54
Stock Forecasts and Status 54
OFL 55
Quinault River 55
Predictor Description 55
Predictor Performance 55
Stock Forecasts and Status 55

TABLE OF CONTENTS (continued)

Page
Queets River 55
Predictor Description 55
Predictor Performance 55
Stock Forecasts and Status 55
OFL 56
Hoh River 56
Predictor Description 56
Predictor Performance 56
Stock Forecasts and Status 56
OFL 56
Quillayute River 56
Predictor Description 57
Predictor Performance 57
Stock Forecasts and Status 57
North Washington Coast Independent Tributaries 58
Predictor Description 58
Predictor Performance 58
Stock Forecasts and Status 58
PUGET SOUND COHO STOCKS 58
Strait of Juan de Fuca 59
Predictor Description 59
Predictor Performance 59
Stock Forecasts and Status 59
OFL 59
Nooksack-Samish 59
Predictor Description 59
Predictor Performance 60
Stock Forecasts and Status 60
Skagit 60
Predictor Description 60
Predictor Performance 60
Stock Forecasts and Status 60
OFL 60
Stillaguamish 61
Predictor Description 61
Predictor Performance 61
Stock Forecasts and Status 61
OFL 61

TABLE OF CONTENTS (continued)

Page
Snohomish 61
Predictor Description 61
Predictor Performance 61
Stock Forecasts and Status 62
OFL 62
Hood Canal 62
Predictor Description 62
Predictor Performance 62
Stock Forecasts and Status 62
OFL 63
South Sound 63
Predictor Description 63
Stock Forecasts and Status 63
STOCK STATUS DETERMINATION UPDATES 63
SELECTIVE FISHERY CONSIDERATIONS FOR COHO 63
CHAPTER IV: AFFECTED ENVIRONMENT - PINK SALMON ASSESSMENT 74
CHAPTER V: DESCRIPTION AND ANALYSIS OF THE NO-ACTION ALTERNATIVE 75
ANALYSIS OF EFFECTS ON THE ENVIRONMENT OF THE NO-ACTION ALTERNATIVE 75
Overview 75
Sacramento River Fall Chinook 75
Sacramento River Winter Chinook 76
Klamath River Fall Chinook 76
California Coastal Chinook Stocks 76
Oregon Coast Chinook Stocks 76
Columbia River Chinook Stocks 76
Washington Coast and Puget Sound Chinook Stocks 77
Oregon Production Index Area Coho Stocks 77
Washington Coast, Puget Sound, and Canadian Coho Stocks 77
Summary 78
Conclusion 78
CHAPTER VI: REFERENCES 95
APPENDIX A: SUMMARY OF COUNCIL STOCK MANAGEMENT GOALS 97
APPENDIX B: SALMON HARVEST ALLOCATION SCHEDULES 113
APPENDIX C: OREGON PRODUCTION INDEX DATA 125
APPENDIX D: SACRAMENTO RIVER WINTER CHINOOK MANAGEMENT 131

LIST OF TABLES

Page
TABLE I-1. Preseason adult Chinook salmon stock forecasts in thousands of fish 7
TABLE I-2. Preseason adult coho salmon stock forecasts in thousands of fish 10
TABLE II-1. Harvest and abundance indices for adult Sacramento River fall Chinook (SRFC) in thousands of fish 24
TABLE II-2. Sacramento River winter Chinook escapement, allowable age-3 impact rates, and management performance. 26
TABLE II-3. Klamath River fall Chinook ocean abundance (thousands), harvest rate, and river run size estimates (thousands) by age 27
TABLE II-4. Comparisons of preseason forecast and postseason estimates for ocean abundance of adult Klamath River fall Chinook 29
TABLE II-5. Summary of management objectives and predictor performance for Klamath River fall Chinook 33
TABLE II-6. Harvest levels and rates of age-3 and age-4 Klamath River fall Chinook 34
TABLE II-7. Rogue River fall Chinook inriver run and ocean population indices 38
TABLE II-8. Predicted and postseason returns of Columbia River adult summer and fall Chinook in thousands of fish 39
TABLE II-9. Preseason forecasts and postseason estimates of Puget Sound run size for summer/fall Chinook in thousands of fish 42
TABLE III-1. Preliminary preseason and postseason coho stock abundance estimates for Oregon production index area stocks in thousands of fish 64
TABLE III-2. Oregon production index (OPI) area coho harvest impacts, spawning, abundance, and exploitation rate estimates in thousands of fish. 66
TABLE III-3. Preseason forecasts and postseason estimates of ocean escapements for selected Washington coastal adult natural coho stocks in thousands of fish 67
TABLE III-4. Preseason forecasts and postseason estimates of ocean escapements for selected Puget Sound adult natural coho stocks in thousands of fish 68
TABLE III-5. Status categories and constraints for Puget Sound and Washington Coast coho under the FMP and PST Southern Coho Management Plan. 70
TABLE III-6. Projected coho mark rates for 2018 U.S. forecasts under base period fishing patterns (percent marked). 71
TABLE IV-1. Estimated annual (odd-numbered years) run sizes and forecasts for Fraser River and Puget Sound pink salmon in millions of fish. 74
TABLE V-I. 2017 Commercial troll management measures for non-Indian ocean salmon fisheries - Council adopted 79
TABLE V-2. 2017 Recreational management measures for non-Indian ocean salmon fisheries - Council adopted. 85
TABLE V-3. 2017 Treaty Indian ocean troll management measures for ocean salmon fisheries - Council adopted 90
TABLE V-4. Stock status relative to overfished and overfishing criteria. 91
TABLE V-5. Postseason $\mathrm{S}_{\mathrm{ACL}}, \mathrm{S}_{\mathrm{OFL}}$, and spawner escapement estimates for Sacramento River fall Chinook (SRFC), Klamath River fall Chinook (KRFC) and Willapa Bay coho. 92
TABLE V-6. Estimated ocean escapements and exploitation rates for critical natural and Columbia River hatchery coho stocks (thousands of fish) 92
TABLE V-7. Comparison of Lower Columbia natural (LCN), Oregon coastal natural (OCN), and Rogue/Klamath (RK) coho projected harvest mortality and exploitation rates by fishery under Council-adopted 2017 management measures and preliminary 2018 preseason abundance estimates 92
TABLE V-8 Maximum allowable fishery impact rate for OCN coho under Amendment 13 matrix and the revised OCN work group matrix based on parent escapement levels by stock component and marine survival category. 94

LIST OF FIGURES

Page
FIGURE II-1. The Sacramento Index (SI) and relative levels of its components. The Sacramento River fall Chinook $S_{\text {MSY }}$ of 122,000 adult spawners is noted on the vertical axis 46
FIGURE II-2. Sacramento Index (SI) forecast based on log-log regression of the SI on jack escapement from the previous year, accounting for autocorrelated errors. The solid line represents the fitted model and the black dot denotes the SI forecast. Years shown are SI years. 46
FIGURE II-3. Regression estimators for Klamath River fall Chinook ocean abundance (September 1) based on that year's river return of same cohort. Numbers in plots denote brood years 47
FIGURE II-4. Selected preseason vs. postseason forecasts for Chinook stocks with substantial contribution to Council area fisheries. 48
FIGURE III-1a. Selected preseason vs. postseason forecasts for coho stocks with substantial contribution to Council area fisheries 72
FIGURE III-1b. Selected preseason vs. postseason forecasts for coho stocks with substantial contribution to Council area fisheries 73

LIST OF ACRONYMS AND ABBREVIATIONS

ABC	acceptable biological catch
ACL	annual catch limit
BY	brood year
CDFW	California Department of Fish and Wildlife
CoTC	Coho Technical Committee (of the PSC)
Council	Pacific Fishery Management Council
CRFMP	Columbia River Fishery Management Plan
CWT	coded-wire tag
EA	Environmental Assessment
EEZ	exclusive economic zone (from 3-200 miles from shore)
EIS	Environmental Impact Statement
EMAP	Environmental Monitoring and Assessment Program
ESA	Endangered Species Act
ESU	evolutionarily significant unit
$\mathrm{F}_{\text {ABC }}$	exploitation rate associated with ABC
$\mathrm{F}_{\text {ACL }}$	exploitation rate associated with $\mathrm{ACL}\left(=\mathrm{F}_{\mathrm{ABC}}\right)$
FMP	fishery management plan
$\mathrm{F}_{\text {MSY }}$	maximum sustainable yield exploitation rate
FNMC	Far-North-Migrating Coastal
Fofl	exploitation rate associated with the overfishing limit ($=\mathrm{F}_{\text {MSY }}$, MFMT)
FONSI	Finding of No Significant Impacts
FRAM	Fishery Regulatory Assessment Model
GAM	generalized additive models
ISBM	individual stock-based management
Jack CR	Columbia River jacks (coho)
Jack OC	Oregon coastal and Klamath River Basin jacks (coho)
Jack OPI	Jack CR + Jack OC (coho)
KMZ	Klamath management zone (ocean zone between Humbug Mountain and Horse Mountain where management emphasis is on Klamath River fall Chinook)
KOHM	Klamath Ocean Harvest Model
KRFC	Klamath River fall Chinook
KRTT	Klamath River Technical Team
LCN	lower Columbia River natural (coho)
LCR	lower Columbia River (natural tule Chinook)
LRB	lower Columbia River bright (Chinook)
LRH	lower Columbia River hatchery (tule fall Chinook returning to hatcheries below Bonneville Dam)
LRW	lower Columbia River wild (bright fall Chinook spawning naturally in tributaries below Bonneville Dam)
MCB	Mid-Columbia River bright (bright hatchery fall Chinook released below McNary Dam)
MFMT	maximum fishing mortality threshold
MOC	mid-Oregon coast
MSA	Magnuson-Stevens Fishery Conservation and Management Act
MSM	mixed stock model
MSST	minimum stock size threshold
MSY	maximum sustainable yield
NA	not available
NEPA	National Environmental Policy Act
NMFS	National Marine Fisheries Service
NOC	north Oregon coast

LIST OF ACRONYMS AND ABBREVIATIONS (continued)

NPGO	North Pacific Gyre Oscillation
NS1G	National Standard 1 Guidelines
OCN	Oregon coast natural (coho)
OCNL	Oregon coast natural lake (coho)
OCNR	Oregon coast natural river (coho)
ODFW	Oregon Department of Fish and Wildlife
OFL	overfishing limit
OPI	Oregon Production Index (coho salmon stock index south of Leadbetter Point)
OPIH	Oregon Production Index public hatchery
OPITT	Oregon Production Index Technical Team
OY	Optimum Yield
PDO	Pacific Decadal Oscillation
PFMC	Pacific Fishery Management Council (Council)
PRIH	Private hatchery
PSC	Pacific Salmon Commission
PST	Pacific Salmon Treaty
RER	rebuilding exploitation rate
RK	Rogue/Klamath (coho)
RMP	Resource Management Plan (for exemption from ESA section 9 take prohibitions under limit 6 of the 4(d) rule)
ROPI	Rogue Ocean Production Index (Chinook)
SAB	Select Area brights (bright fall Chinook destined for Select Area sites on the lower Columbia River)
$\mathrm{S}_{\text {ABC }}$	spawning escapement associated with ABC
$\mathrm{S}_{\text {ACL }}$	spawning escapement associated with ACL ($=\mathrm{S}_{\mathrm{ABC}}$)
SCH	Spring Creek Hatchery (tule fall Chinook returning to SCH)
SHM	Sacramento Harvest Model
SI	Sacramento Index
SJF	Strait of Juan de Fuca
$\mathrm{S}_{\text {MSY }}$	MSY spawning escapement
$\mathrm{S}_{\text {OFL }}$	spawning escapement associated with the overfishing limit ($=\mathrm{S}_{\mathrm{MSY}}$)
SOC	south Oregon Coast
SRFC	Sacramento River fall Chinook
SRS	Stratified Random Sampling
SRWC	Sacramento River winter Chinook
STEP	Salmon Trout Enhancement Program
STT	Salmon Technical Team (formerly the Salmon Plan Development Team)
TAC	Technical Advisory Committee (U.S. v. Oregon)
URB	Upriver bright (naturally spawning bright fall Chinook primarily migrating past McNary Dam)
VSI	visual stock identification
WCVI	West Coast Vancouver Island
WDFW	Washington Department of Fish and Wildlife

INTRODUCTION

This is the second report in an annual series of four reports prepared by the Salmon Technical Team (STT) of the Pacific Fishery Management Council (Council) to document and help guide ocean fishery salmon management off the coasts of Washington, Oregon, and California. The report focuses on Chinook, coho, and pink salmon stocks that have been important in determining Council fisheries in recent years, and on stocks listed under the Endangered Species Act (ESA) with established National Marine Fisheries Service (NMFS) ESA consultation standards. This report will be formally reviewed at the Council's March 2018 meeting.

This report provides 2018 salmon stock abundance forecasts, and an analysis of the impacts of 2017 management measures or regulatory procedures, on the projected 2018 abundance. This analysis is intended to give perspective in developing 2018 management measures. This report also constitutes the first part of an Environmental Assessment (EA) to comply with National Environmental Policy Act (NEPA) requirements for the 2018 ocean salmon management measures. An EA is used to determine whether an action being considered by a Federal agency has significant impacts. This part of the EA includes a statement of the purpose and need, a summary description of the affected environment, a description of the No-Action Alternative, and an analysis of the No-Action Alternative effects on the salmon stocks included in the Council's Salmon Fishery Management Plan (FMP).

The STT and Council staff will provide two additional reports prior to the beginning of the ocean salmon season to help guide the Council's selection of annual fishery management measures: Preseason Report II and Preseason Report III. These reports will analyze the impacts of the Council's proposed alternatives and adopted fishery management recommendations, respectively. Preseason Report II will constitute the second part of the EA, and will include additional description of the affected environment relevant to the alternative management measures considered for 2018 ocean salmon fisheries, a description of the alternatives, and an analysis of the environmental consequences of the alternatives. Preseason Report II will analyze the potential impacts of a reasonable range of alternatives, which will inform the final fishery management measures included in Preseason Report III. Preseason Report III will describe and analyze the effects of the Council's final proposed action, including cumulative effects. Together, these parts of the EA will provide the necessary components to determine if a finding of no significant impact (FONSI) or Environmental Impact Statement (EIS) is warranted.

Chapter I provides a summary of stock abundance forecasts. Chapters II and III provide detailed stock-bystock analyses of abundance, a description of prediction methodologies, and accuracy of past abundance forecasts for Chinook and coho salmon, respectively. Chapter IV summarizes abundance and forecast information for pink salmon. Chapter V provides an assessment of 2017 regulations applied to 2018 abundance forecasts. Appendices provide supplementary information as follows: Appendix A provides a summary of Council stocks and their management objectives; Appendix B contains the Council's current harvest allocation schedules, and Appendix C contains pertinent data for Oregon Production Index (OPI) area coho. For 2018, Appendix D was included to summarize changes in Sacramento River Winter Chinook management expected to be implemented beginning in 2018. For NEPA purposes, Chapters I-IV of this document describe the affected environment and Chapter V provides a description and analysis of the NoAction Alternative.

Purpose and Need

The purpose of this action, implementation of the 2018 ocean salmon fishery management measures, is to allow fisheries to harvest surplus production of healthy natural and hatchery salmon stocks within the constraints specified under the Salmon FMP, the Pacific Salmon Treaty (PST), and consultation standards established for ESA-listed salmon stocks. In achieving this purpose, management measures must take into
account the allocation of harvest among different user groups and port areas. Without this action, 2017 management measures would be in effect, which do not consider changes in abundance of stocks in the mixed stock ocean salmon fisheries. Therefore, this action is needed to ensure constraining stocks are not overharvested, and that harvest of abundant stocks can be optimized and achieve the most overall benefit to the nation.

The Salmon FMP also establishes nine more general harvest-related objectives:

1. Establish ocean exploitation rates for commercial and recreational salmon fisheries that are consistent with requirements for stock conservation objectives and annual catch limits (ACLs), specified ESA consultation standards, or Council-adopted rebuilding plans.
2. Fulfill obligations to provide opportunity for Indian harvest of salmon as provided in treaties with the United States, as mandated by applicable decisions of the Federal courts, and as specified in the October 4, 1993 opinion of the Solicitor, Department of Interior, with regard to federally-recognized Indian fishing rights of Klamath River Tribes.
3. Maintain ocean salmon fishing seasons supporting the continuance of established recreational and commercial fisheries, while meeting salmon harvest allocation objectives among ocean and inside recreational and commercial fisheries that are fair and equitable, and in which fishing interests shall equitably share the obligations of fulfilling any treaty or other legal requirements for harvest opportunities.
4. Minimize fishery mortalities for those fish not landed from all ocean salmon fisheries as consistent with achieving optimum yield (OY) and bycatch management specifications.
5. Manage and regulate fisheries so that the OY encompasses the quantity and value of food produced, the recreational value, and the social and economic values of the fisheries.
6. Develop fair and creative approaches to managing fishing effort, and evaluate and apply effort management systems as appropriate to achieve these management objectives.
7. Support the enhancement of salmon stock abundance in conjunction with fishing effort management programs to facilitate economically viable and socially acceptable commercial, recreational, and tribal seasons.
8. Achieve long-term coordination with the member states of the Council, Indian tribes with federallyrecognized fishing rights, Canada, the North Pacific Fishery Management Council, Alaska, and other management entities which are responsible for salmon habitat or production. Manage consistent with the PST and other international treaty obligations.
9. In recommending seasons, to the extent practicable, promote the safety of human life at sea.

These objectives, along with the consultation standards established under the ESA, provide "sideboards" for setting management measures necessary to implement the Salmon FMP, which conforms to the terms and requirements of the Magnuson-Stevens Fishery Conservation and Management Act (MSA) and the National Standard 1 Guidelines (NS1G).

Implementation of 2018 management measures will allow fisheries to harvest surplus production of healthy natural and hatchery salmon stocks within the constraints specified under the Salmon FMP and consultation standards established for ESA-listed salmon stocks.

The reauthorization of the MSA in 2006 established new requirements to end and prevent overfishing through specification of overfishing limits (OFL), acceptable biological catch (ABC), ACLs and accountability measures (AMs). Because OFLs, ABCs, and ACLs are based on annual abundance forecasts, Preseason Report I also specifies OFLs, ABCs, and ACLs for 2018 fisheries.

CHAPTER I: DESCRIPTION OF THE AFFECTED ENVIRONMENT

The action area for this proposed action is the exclusive economic zone (EEZ), 3 to 200 nautical miles, off the West Coast of the U.S. (California, Oregon, and Washington).

The affected environment relevant to establishing the 2018 ocean salmon fishery management measures consists of the following components:

- Target Species - Chinook, coho, and pink salmon,
- ESA-listed salmon stocks; and
- Socioeconomic aspects of coastal communities, federally-recognized Tribes, and states.

A description of the historical baseline for these components of the affected environment is presented in the Review of 2017 Ocean Salmon Fisheries (PFMC 2018). The current status (2018 ocean abundance forecasts) of the environmental components expected to be affected by the 2018 ocean salmon fisheries regulation alternatives (FMP salmon stocks, including those listed under the ESA) are described in this report (Part 1 of the 2018 salmon EA); the Review of 2017 Ocean Salmon Fisheries (PFMC 2018) provides an historical description of the salmon fishery-affected environment, including stock status and socioeconomic impacts, and represents the current status of the socioeconomic component of the affected environment.

The No-Action alternative was assessed in the 2017 NEPA process for ocean salmon regulations (Preseason Reports II and III; PFMC 2017b and 2017c). In those analyses, proposed management measures were determined to have no significant impacts on several components of the affected environment. These components included:

- Non-target species - Pacific Halibut, groundfish (NMFS 2003; PFMC 2006, 2017a)
- Marine mammals - pinnipeds, killer whales (NMFS 2003, 2008; PFMC 2006, 2017a)
- Seabirds (NMFS 2003; PFMC 2006, 2017a)
- Ocean and coastal habitats, ESA critical habitat, and Essential Fish Habitat (EFH) (NMFS 2003; PFMC 2006, 2017a)
- Biodiversity and ecosystem function (NMFS 2003; PFMC 2006, 2017a)
- Unique characteristics of the geographic area (NMFS 2003; PFMC 2006, 2017a)
- Cultural, scientific, or historical resources such as those eligible for listing in the National Register of Historic Places (NMFS 2003; PFMC 2006, 2017a)
- Public health or safety (NMFS 2003; PFMC 2006, 2017a)

The 2018 No-Action alternative is the same as the 2017 action, therefore it is expected to have no significant impacts on these elements of the environment. Thus, this document includes analysis of the impacts of the No Action alternative on salmon stocks identified in the FMP, the component of the environment for which conditions have changed such that the effects in 2018 are different.

The component of the affected environment that is described in this document consists only of the salmon stocks identified in the FMP (Appendix A). The 2018 forecast abundance of the FMP salmon stocks represents this component of the affected environment. The surviving stock after fishery-related mortality is generally referred to as spawning escapement (S), and the proportion of the stock that succumbs to fishing-related mortality is generally referred to as the exploitation rate (F); these are the metrics that constitute conservation objectives for FMP stocks, and by which effects of the alternatives to this part of the affected environment are evaluated. Thus, application of management measures (alternatives) to the abundance forecasts (affected environment) results in projected exploitation rates and spawning escapements (effects).

A description of the other components of the affected environment considered for 2018 ocean salmon fishery regulation alternatives, including socioeconomic components and updated additional information on the biological components of the environment, will be presented in Preseason Report II, to be issued after the March Council meeting.

ABUNDANCE FORECASTS

Abundance forecasts in 2018 are summarized for key Chinook and coho salmon stocks in Tables I-1 and I2 , respectively. A cursory comparison of preseason forecast and postseason abundance estimates for selected stocks is presented in Figures II-2, 3, 4 and III-1. More detailed analyses of this subject are covered in Chapters II (Chinook) and III (coho). Information on pink salmon abundance and forecasts is contained in Chapter IV. Council Salmon FMP conservation objectives are presented in Appendix A; allocation objectives are presented in Appendix B.

In addition to the key stocks with abundance forecasts listed in Tables I-1 and I-2, Council management decisions for the 2018 ocean salmon fishing seasons may be constrained by other stocks, such as those listed under the ESA or subject to PSC agreements, which may not have abundance forecasts made, or do not have abundance forecasts available in time for inclusion in this report. These include the following Evolutionarily Significant Units (ESUs): Central Valley Spring Chinook, California Coastal Chinook, Lower Columbia River (LCR) natural tule Chinook, Snake River Fall Chinook; Central California Coast coho, Southern Oregon/Northern California Coast coho, and Interior Fraser (including Thompson River) coho.

ACCEPTABLE BIOLOGICAL CATCH, ANNUAL CATCH LIMITS, AND OVERFISHING LIMITS

Amendment 16 to the Salmon FMP, approved in December 2011, was developed to comply with the requirements of the 2006 MSA reauthorization, including specification of acceptable biological catch (ABC), annual catch limits (ACLs), overfishing limits (OFLs), and Scientific and Statistical Committee (SSC) recommendations for ABC. Amendment 16 established that ABC and ACLs were required for two stocks, Sacramento River fall Chinook (SRFC) and Klamath River fall Chinook (KRFC), which serve as indicator stocks for the Central Valley Fall and Southern Oregon/Northern California Chinook complexes, respectively. Other stocks in the FMP are not required to have ACLs either because they were components of these two stock complexes, were ESA-listed, were hatchery stocks, or were managed under an international agreement. Since publication of Amendment 16, ABC and ACL specifications have been added to the Salmon FMP for Willapa Bay natural coho.

ABCs and ACLs are not specified for stocks that are managed under an international agreement as there is a statutory exception in the MSA to the requirement for ACLs, and the NS1Gs state that ABCs are not required if stocks meet this international exception. The NS1Gs allow the flexibility to consider alternative approaches for specifying ACLs for stocks with unusual life history characteristics like Pacific salmon, and particularly for species listed under the ESA and hatchery stocks. For hatchery stocks, broodstock goals serve as conservation objectives rather than specifying ACLs. For ESA-listed stocks, biological opinions and associated consultation standards describe necessary controls to ensure their long-term conservation.

Preseason OFLs are determined for all non-ESA-listed and non-hatchery stocks with an estimate of $\mathrm{F}_{\text {mSY }}$ (or Maximum Fishing Mortality Threshold, MFMT) and sufficient information available to make abundance forecasts.

Acceptable Biological Catch

For salmon, ABC is defined in terms of spawner escapement $\left(\mathrm{S}_{\mathrm{ABC}}\right)$, which is determined annually based on stock abundance, in spawner equivalent units (N) and the exploitation rate $\mathrm{F}_{\mathrm{ABC}}$.
$\mathrm{S}_{\mathrm{ABC}}=\mathrm{NX}\left(1-\mathrm{F}_{\mathrm{ABC}}\right)$
The $A B C$ control rule defines $F_{A B C}$ as a fixed exploitation rate reduced from $F_{M S Y}$ to account for scientific uncertainty. The degree of the reduction in F between $F_{A B C}$ and $F_{M S Y}$ depends on whether $F_{M S Y}$ is directly estimated (tier 1 stock) or a proxy value is used (tier 2 stock). For tier 1 stocks, $\mathrm{F}_{\mathrm{AbC}}$ equals $\mathrm{F}_{\mathrm{msy}}$ reduced by five percent. For tier 2 stocks, $\mathrm{F}_{\mathrm{ABC}}$ equals $\mathrm{F}_{\mathrm{MSY}}$ reduced by ten percent.

Tier-1: $\mathrm{F}_{\mathrm{ABC}}=\mathrm{F}_{\mathrm{MSY}} \times 0.95$.
Tier-2: $\mathrm{F}_{\mathrm{ABC}}=\mathrm{F}_{\mathrm{MSY}} \times 0.90$.

Annual Catch Limit

ACLs are also defined in terms of spawner escapement ($\mathrm{S}_{\mathrm{ACL}}$) based on N and the corresponding exploitation rate $\left(\mathrm{F}_{\mathrm{ACL}}\right)$, where the exploitation rate is a fixed value that does not change on an annual basis.
$\mathrm{F}_{\mathrm{ACL}}$ is equivalent to $\mathrm{F}_{\mathrm{ABC}}$ and
$S_{\mathrm{ACL}}=\mathrm{Nx}\left(1-\mathrm{F}_{\mathrm{ACL}}\right)$,
which results in $\mathrm{S}_{\mathrm{ACL}}=\mathrm{S}_{\mathrm{ABC}}$ for each management year.
During the annual preseason salmon management process, $S_{A C L}$ is estimated using the fixed $F_{A C L}$ exploitation rate and the preseason forecast of N . Thus, fishery management measures must result in an expected spawning escapement greater than or equal to this preseason estimate of $\mathrm{S}_{\mathrm{ACL}}$.

Overfishing Limit

For salmon, OFL is defined in terms of spawner escapement ($\mathrm{S}_{\mathrm{OFL}}$), which is consistent with the common practice of using spawner escapement to assess stock status for salmon. S S on stock abundance, in spawner equivalent units (N) and the exploitation rate $\mathrm{F}_{\text {OFL }}$.
$\mathrm{F}_{\text {OFL }}$ is defined as being equal to $\mathrm{F}_{\mathrm{MSY}}$ (or MFMT) and
$\mathrm{S}_{\mathrm{OFL}}=\mathrm{N} \mathrm{x}_{\mathrm{x}}\left(1-\mathrm{F}_{\mathrm{MSY}}\right)$.

STATUS DETERMINATION CRITERIA

Amendment 16 also included new status determination criteria (SDC) for overfishing, approaching an overfished condition, overfished, not overfished/rebuilding, and rebuilt. These criteria are:

- Overfishing occurs when a single year exploitation rate exceeds the maximum fishing mortality threshold (MFMT), which is based on the maximum sustainable yield exploitation rate ($\mathrm{F}_{\mathrm{MSY}}$);
- Approaching an overfished condition occurs when the geometric mean of the two most recent postseason estimates of spawning escapement, and the current preseason forecast of spawning escapement, is less than the minimum stock size threshold (MSST);
- Overfished status occurs when the most recent 3-year geometric mean spawning escapement is less than the MSST;
- Not overfished/rebuilding status occurs when a stock has been classified as overfished and has not yet been rebuilt, and the most recent 3-year geometric mean spawning escapement is greater than the MSST but less than $S_{M S Y}$;
- A stock is rebuilt when the most recent 3-year geometric mean spawning escapement exceeds $\mathrm{S}_{\mathrm{MSY}}$.

Comparison of stock status to criteria for overfishing, overfished, not overfished/rebuilding, and rebuilt were reported in the annual SAFE document, Review of 2017 Ocean Salmon Fisheries (PFMC 2018).

Approaching an overfished condition relies on current year preseason forecasts and Council adopted fishing regulations for the upcoming season in order to calculate projected spawning escapement. In this report, because the actual regulations for the upcoming season are not yet known, the calculations are based on preseason forecasts and Council-adopted regulations from the year prior. Thus, the stock status in this report is described as being at risk of approaching an overfished condition. Once the regulations for the upcoming season are adopted and spawning escapement is projected, the status description will be updated and provided in the Preseason-III report. All SDC rely on the most recent estimates available, which in some cases may be a year or more in the past because of incomplete broods or data availability; however, some status descriptions reported in the SAFE document may be updated if more recent spawning escapement or exploitation rate estimates become available between the time the SAFE document and this document are published.

TABLE l-1. Preseason adult Chinook salmon stock forecasts in thousands of fish. (Page 1 of 3)

Production Source and	2013	2014	2015	2016	2017	2018	Methodology for 2018 Prediction and Source
Stock or Stock Group							
Sacramento River							
Fall (Sacramento Index)	834.2	634.7	652.0	299.6	230.7	229.4	Log-log regression of the Sacramento Index on jack escapement from the previous year, accounting for lag-1 autocorrelated errors. STT.
Winter (age-3 absent fishing)	--	--	--	--	--	1.6	Stochastic life cycle model applied to natural- and hatchery-origin production. STT.
Klamath River (Ocean Abundance)							
Fall	727.7	299.3	423.8	142.2	54.2	359.2	Linear regression analysis of age-specific ocean abundance estimates on river runs of same cohort. STT.
Oregon Coast							
North and South/Local Migrating	--	--	--	--	--	--	None.
Columbia River (Ocean Escapement)							
Upriver Spring ${ }^{\text {a/ }}$	141.4	227.0	232.5	188.8	160.4	166.7	Log-normal sibling regressions of cohort returns in previous run years. Columbia River TAC.
Willamette Spring	59.8	58.7	55.4	68.7	38.1	53.8	Age-specific linear regressions of cohort returns in previous run years. ODFW.
Sandy Spring	6.1	5.5	5.5	NA	3.6	5.3	Recent 3-year average. ODFW.
Cow litz Spring	5.5	7.8	11.2	25.1	17.1	5.2	Age-specific linear regressions of cohort returns in previous run years. WDFW.
Kalama Spring	0.7	0.5	1.9	4.9	3.1	1.5	Age-specific linear regressions of cohort returns in previous run years. WDFW.
Lew is Spring	1.6	1.1	1.1	1.0	0.7	3.7	Age-specific linear regressions of cohort returns in previous run years. WDFW.
Upriver Summer ${ }^{\text {b/ }}$	73.5	67.5	73.0	93.3	63.1	67.3	Log-linear brood year sibling regressions or average return (4-ocean fish). Columbia River TAC subgroup.
URB Fall	432.5	973.3	500.3	589.0	260.0	200.1	Columbia River Fall Chinook: Age-specific average cohort ratios or
SCH Fall	38.0	115.1	160.5	89.6	158.4	50.1	brood year sibling regressions. Columbia River TAC subgroup and
LRW Fall	14.2	34.2	18.9	22.2	12.5	7.6	WDFW.
LRH Fall	88.0	110.0	94.9	133.7	92.4	62.4	
MCB Fall	105.2	360.1	113.3	101.0	45.6	36.4	

TABLE1-1. Preseason adult Chinook salmon stock forecasts in thousands of fish. (Page 2 of 3)

Production Source and								Methodology for 2018 Prediction and Source
Stock or Stock Group		2013	2014	2015	2016	2017	2018	
Washington Coast								Return per spaw ners applied to 3-6 year olds (brood years 2012-15) adjusted by brood year performance.
Willapa Bay Fall	Natural	4.9	2.9	3.8	3.3	4.2	3.8	
	Hatchery	22.2	29.5	31.0	36.2	34.3	40.3	
Grays Harbor Fall	Natural	--	--	--	--	--	16.4	Based on a 4-year average recruits for age-3, and recruits per spaw ner adjusted by brood performance for age-4, 5, 6 .
	Hatchery	--	--	--	--	--	4.8	Based on a 10-year average recruits per spaw n for age 3 and log linear regressions for age-4 on Age-2 and 3; age-5 on age-2, 3, and 4 for all stocks; and age- 6 on age-5.
Quinault Spring/Summer	Natural	NA	NA	NA	NA	NA	NA	Hatchery: Based on ten-year average recruits per spaw ner for age3 ; log linear regressions for age-4 on age-2 and 3; age-5 on age-2, 3, 4 for all stocks; and age-6 on age-5.
	Hatchery	--	--	--	--	--	4.8	
Quinault Fall	Natural	4.0	6.0	8.1	5.5	5.9	NA	
	Hatchery	3.1	10.3	4.0	5.3	4.4	NA	
Queets Spring/Sum	Natural	0.4	0.5	0.4	0.5	0.5	0.5	Recent year average.
Queets Fall	Natural	3.8	3.6	4.3	4.9	3.7	3.3	Recruits per spaw ner adiusted by brood performance.
	Hatchery	0.9	0.9	1.5	1.7	0.9	0.6	Recruits per spaw ner adjusted by brood performance.
Hoh Spring/Summer	Natural	0.9	0.9	0.8	0.9	1.0	1.1	Spaw ner/Recruit all years geometric mean for each age class.
Hoh Fall	Natural	3.1	2.5	2.6	1.8	2.7	2.6	Spaw ner/Recruit of recent 3 years adjusted by previous brood performance for all ages.
Quillayute Spring	Hatchery	2.1	2.0	1.7	1.8	2.2	2.1	Recent 2 year mean adjusted by previous performance.
Quillayute Sum/Fall	Natural	6.6	7.6	8.5	7.5	7.6	8.0	Summer: Recent 5 year mean for all ages except age-3. Used the regression of age-3 to escapement. Fall: Recent 5 year means; adjusted for previous 5 year forecast performance.
Hoko ${ }^{\text {c/ }}$	Natural	1.2	2.7	3.3	2.9	1.5	1.5	Includes supplemental. 2017 recruits for age-3 is recent 5 -year average return, age $4-6$ is sibling regression.
North Coast Totals								
Spring/Summer	Natural	1.3	1.4	1.2	1.4	NA	NA	
Fall	Natural	17.5	19.7	23.5	19.7	NA	NA	
Spring/Summer	Hatchery	2.1	2.0	1.7	1.8	NA	NA	
Fall	Hatchery	4.0	11.2	5.5	7.0	NA	NA	

Production Source and								
Stock or Stock Group		2013	2014	2015	2016	2017	2018	Methodology for 2018 Prediction and Source
Puget Sound summer/fall ${ }^{\text {d/ }}$								
Nooksack/Samish	Hatchery	46.3	43.9	38.6	27.9	21.2	24.6	Three year average return rate.
East Sound Bay	Hatchery	1.9	1.2	1.2	0.7	0.8	0.7	Three year average return rate.
Skagit ${ }^{\text {// }}$	Natural	12.9	18.0	11.8	15.1	15.8	13.3	Natural: Hierarchical Bayesian model to estimate the spaw ner-recruit
	Hatchery	0.3	0.3	0.6	0.4	0.4	0.3	dynamics. Hatchery: Recent 4-year average terminal smolt to adult return rate to estimate ages 3-5.
Stillaguamis ${ }^{\text {f/ }}$	Natural	1.3	1.6	0.5	0.5	1.5	1.6	Natural plus Hatchery. Multiple regression environmental model (EMPAR).
Snohomish ${ }^{\text {f/ }}$	Natural	3.6	5.3	4.2	3.3	3.4	3.5	Multiple regression environmental model (EMPAR).
	Hatchery	6.9	5.4	3.3	5.0	4.8	6.5	Terminal Run (to 8-2), w ith ocean fishing, Wallace Model Data.
Tulalip ${ }^{\text {t/ }}$	Hatchery	10.9	4.7	1.3	1.4	5.3	7.5	Three year geomean terminal return.
South Puget Sound	Natural	5.0	4.8	3.8	4.5	4.7	4.8	Natural: Puyallup R. average return per spaw ner applied to brood
	Hatchery	102.0	96.7	62.4	43.1	80.4	123.6	years contributing ages $3-5$. For Nisqually, 4 -year average SAR age specific survival. For Green, 3 -year average return/out-migrant rate for each age. Hatchery: Average return at age multiplied by smolt release for Green, Nisqually, Puyallup, Carr Inlet, and Area 10E.
Hood Canal ${ }^{\text {e/ }}$	Natural	3.4	3.5	3.1	2.3	2.5	3.9	Natural fish based on the Hood Canal terminal run reconstructionbased relative contribution of the individual Hood Canal management units in the 2013-2017 return years.
	Hatchery	65.7	80.6	59	42.7	48.3	57.6	Brood 2015 fingerling lbs released from WDFW facilities in 2015, multiplied by the average of post-season estimated terminal area return rates for the last 3 years (2013-2017).
Strait of Juan de Fuca Including Dungeness spring run ${ }^{e /}$	Natural	3.1	3.8	4.9	3.7	3.1	6.0	Natural and hatchery. Dungeness and Ew ha hatchery estimated by recent return rates time average releases. Dungeness wild estimated by smolts times average hatchery return rate. Ew ha w ild estimated using recent 3 year returns from otolith and CWT.

a/ Since 2005, the upriver spring Chinook run includes Snake River summer Chinook.
b/ Since 2005, the upriver summer Chinook run includes only upper Columbia summer Chinook, and not Snake River summer Chinook.
c/ Expected spaw ning escapement w ithout fishing.
d/ Unless otherw ise noted, forecasts are for Puget Sound run size (4B) available to U.S. net fisheries. Does not include fish caught in troll and recreational fisheries.
e/ Terminal run forecast.
f/ 2018 in terminal runsize; 2010-2014 as escapement w ithout fishing; 2015-2017 a mixture of runsize types.

TABLE I-2. Preseason adult coho salmon stock forecasts in thousands of fish. (Page 1 of 2)

Production Source and Stock or Stock Group		2013	2014	2015	2016	2017	2018	Methodology for 2018 Prediction and Source
OPI Area Total Abundance (California, Oregon Coasts, and Columbia River)		716.4	1,213.7	1,015.0	549.2	496.2	349.0	Abundance of all OPI components based on cohort reconstruction including all fishery impacts using Mixed Stock Model (MSM); prior to 2008 only fishery impacts south of Leadbetter Point were used (traditional OPI accounting). OPIT, see Chapter III for details.
OPI Public	Hatchery	525.4	983.1	808.4	396.5	394.3	294.1	OPIH: Columbia River jacks adjusted for delayed smolt releases and total
Columbia River Early		331.6	526.6	515.2	153.7	231.7	164.7	OPI jacks regressed on 1970-2017 adults. Columbia/Coastal proportions
Columbia River Late		169.5	437.5	261.8	226.9	154.6	121.5	based on jacks; Columbia early/late proportions based on jacks; Coastal
Coastal N. of Cape Blanco		5.6	4.8	6.9	5.5	3.5	3.3	NS proportions based on smolts.
Coastal S. of Cape Blanco		18.7	14.2	24.4	10.4	4.5	4.6	
Low er Columbia River	Natural	46.5	33.4	35.9	40.0	30.1	21.9	Oregon: recent two year average return; Washingtion: natural smolt production multiplied by 2015 brood marine survival rate. Abundance is

| Oregon Coast (OCN) | Natural | 191.0 | 230.6 | 206.6 | 152.7 | 101.9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Rivers: Generalized additive model (GAM) relating ocean recruits to parental spawners and marine environmental variables. See text in Chapter III for details. Lakes: recent three year average return.
primarily based on smolt production and survival. See text in Chapter III for details.

Page Intentionally Left Blank

CHAPTER II: AFFECTED ENVIRONMENT - CHINOOK SALMON ASSESSMENT

CHINOOK STOCKS SOUTH OF CAPE FALCON

Sacramento River Fall Chinook

The SRFC stock comprises a large proportion of the Chinook spawners returning to Central Valley streams and hatcheries. SRFC are designated as the indicator stock for the Central Valley fall Chinook stock complex, which was established under FMP Amendment 16 to facilitate setting and assessing compliance with ABC and ACLs, as required by the 2006 revision of the MSA. The Sacramento Index (SI) is the aggregate-age index of adult SRFC ocean abundance.

Predictor Description

The SI is the sum of (1) adult SRFC ocean fishery harvest south of Cape Falcon, OR between September 1 and August 31, (2) adult SRFC impacts from non-retention ocean fisheries when they occur, (3) the recreational harvest of adult SRFC in the Sacramento River Basin, and (4) the SRFC adult spawner escapement (Table II-1, Figure II-1).

The SI forecasting approach uses jack escapement estimates to predict the SI and accounts for autocorrelated errors. In practice, this means that if, in the previous year, the modeled SI value was larger than the SI postseason estimate for that year, the current year forecast is adjusted downward to account for that error. Conversely, if the modeled SI value in the previous year was less than the postseason estimate of the SI for that year, the current year SI forecast would be adjusted upward to compensate for that error.

The forecast of the log-transformed SI was made using the model
$\log \mathrm{SI}_{t}=\beta_{0}+\beta_{1} \log \mathrm{~J}_{t-1}+\rho \varepsilon_{t-1}$,
where $\log \mathrm{SI}_{t}$ and $\log \mathrm{J}_{t-1}$ are log-transformed SI and jack escapement values, respectively; t is the year for which the SI is being forecast; β_{0} is the intercept; β_{1} is the slope; ρ is the autocorrelation coefficient; and ε_{t-1} is the difference between the modeled value of the \log SI for year $t-1$ and the postseason estimate of \log SI in year $t-1$. The $\log \mathrm{SI}_{t}$ is back-transformed to the arithmetic scale and corrected for bias in this transformation,

$$
\mathrm{SI}_{t}=\mathrm{e}^{\log \mathrm{SI}_{t}+0.5 \sigma^{2}}
$$

where σ^{2} is the variance of the normally distributed error component of the fitted model (referred to as the "innovation" variance). A more detailed description of the forecast approach can be found in Appendix E of the 2014 Preseason Report I (PFMC 2014a).

Predictor Performance

The performance of past SI forecasts is displayed graphically in Figure II-4. For 2017, the postseason estimate of the SI was 139,997, which is 61 percent of the preseason forecast of 230,700.

A control rule, adopted as part of Amendment 16 to the salmon FMP, is used annually to specify the maximum allowable exploitation rate on SRFC (Appendix A, Figure A-1). The allowable exploitation rate is determined by the predicted number of potential adult spawners in the absence of fisheries, which is defined for SRFC as the forecast SI. The FMP allows for any ocean and river harvest allocation that meets the exploitation rate constraints defined by the control rule. The regulations adopted in 2017 were expected to result in 133,242 hatchery and natural area adult spawners and an exploitation rate of 42.2 percent.

Postseason estimates of these quantities were 44,574 hatchery and natural area adult spawners and an exploitation rate of 68.2 percent (Table II-1).

Stock Forecast and Status

Sacramento Index forecast model parameters were estimated from SI data for years 1983-2017 and jack escapement data for years 1982-2016. A total of 24,375 SRFC jacks were estimated to have escaped to Sacramento River basin hatcheries and natural spawning areas in 2017. This jack escapement and the estimated parameters
$\beta_{o}=7.571421$,
$\beta_{1}=0.5425872$,
$\rho=0.778056$,
$\epsilon_{t-1}=-1.006827$,
$\sigma^{2}=0.1489286$,
result in a 2018 SI forecast of 229,432.
Figure II-2 graphically displays the 2018 SI forecast. The model fit (line in Figure II-2) was higher than the 2017 postseason estimate of the SI. As a result, the 2018 SI forecast value is adjusted downward from the fitted model.

The forecast SI applied to the SRFC control rule (Appendix A, Figure A-1) results in an allowable exploitation rate of 46.8 percent which produces, in expectation, 122,000 hatchery and natural area adult spawners. Therefore, fisheries impacting SRFC must be crafted to achieve, in expectation, a minimum of 122,000 adult spawners in 2018.

In 2018, invoking de minimis fishing rates under Amendment 16 will be unnecessary because SRFC potential spawner abundance is projected to be greater than 162,667 hatchery and natural area adults. Therefore, projected escapement will meet or exceed the $S_{\text {MSY }}$ of 122,000 with an exploitation rate greater than 0.25 .

OFL, ABC, and ACL
The OFL, ABC, and ACL are defined in terms of spawner escapement ($\mathrm{S}_{\mathrm{ofL}}, \mathrm{S}_{\mathrm{ABC}}$, and $\mathrm{S}_{\mathrm{ACL}}$), and are calculated using potential spawner abundance forecasts and established exploitation rates. For SRFC, Fmsy $=0.78$, the proxy value for Tier-2 Chinook stocks that do not have estimates of this rate derived from a stock-specific spawner-recruit analysis. The OFL for SRFC is $\mathrm{S}_{\mathrm{FL}}=229,432 \times(1-0.78)=50,475$. Because SRFC is a Tier-2 stock, $\mathrm{F}_{\mathrm{ABC}}=\mathrm{F}_{\mathrm{MSY}} \times 0.90=0.70$, and $\mathrm{F}_{\mathrm{ACL}}=\mathrm{F}_{\mathrm{ABC}}$. The ABC for SRFC is $\mathrm{S}_{\mathrm{ABC}}=229,432$ $\times(1-0.70)=68,830$, with $S_{A C L}=S_{\mathrm{ABC}}$. These preseason estimates will be recalculated with postseason abundance estimates (when available) to assess ACL and OFL compliance.

Sacramento River Winter Chinook

ESA-listed endangered SRWC are harvested incidentally in ocean fisheries, primarily off the central California coast. A two-part consultation standard for endangered SRWC was first implemented in 2012.

The first component of the consultation standard is the season and size limit provisions that have been in place since the 2004 Biological Opinion. These provisions state that the recreational salmon fishery between Point Arena and Pigeon Point shall open no earlier than the first Saturday in April and close no later than the second Sunday in November. The recreational salmon fishery between Pigeon Point and the U.S.Mexico Border shall open no earlier than the first Saturday in April and close no later than the first Sunday in October. The minimum size limit shall be at least 20 inches total length. The commercial salmon fishery
between Point Arena and the U.S.-Mexico border shall open no earlier than May 1 and close no later than September 30, with the exception of an October fishery conducted Monday through Friday between Point Reyes and Point San Pedro, which shall end no later than October 15. The minimum size limit shall be at least 26 inches total length.

The second component of the consultation standard is specified by a control rule that limits the maximum age-3 impact rate (allowable as a preseason forecast) for the area south of Point Arena, California. From 2012-2017, the control rule specified the maximum allowable age-3 impact rate on the basis of the geometric mean of the most recent three years of spawner escapement. A new SRWC control rule, recommended by the Council, is expected to be implemented for the first time in 2018 (see Appendices A and D for a description of this control rule). This Council-recommended control rule specifies the maximum allowable age-3 impact rate on the basis of a forecast of the SRWC age-3 escapement in the absence of fisheries.

Predictor Description

The forecast of the age-3 escapement absent fishing (abundance) is based on a SRWC life cycle model that is stratified by age, sex, and origin (hatchery and natural). Juvenile survival rates spanning outmigration in freshwater and early ocean residence are applied to hatchery- and natural-origin juvenile production estimates. The age- 3 escapement absent fishing is then forecasted by applying age- and sex-specific maturation rates and the age- 3 natural mortality rate. The forecast is stochastic and thus the age- 3 escapement absent fishing is represented by a distribution. The median of this distribution is applied to the control rule to specify the maximum allowable age-3 impact rate. A complete description of the abundance forecasting approach can be found in O'Farrell et al. (2016). The abundance forecasting approach used here is the Base model described in the aforementioned report.

Predictor Performance

The forecast of SRWC age-3 escapement absent fishing is expected to be implemented for the first time in 2018.

Stock Forecast and Status

The forecast of SRWC age-3 escapement absent fishing is 1,594. Application of the Council-recommended control rule results in a maximum age-3 impact rate of 14.4 percent for the area south of Point Arena in 2018 (Table II-2).

Klamath River Fall Chinook

Predictor Description

For Klamath River fall Chinook, linear regressions are used to relate September 1 ocean abundance estimates of age-3, age-4, and age- 5 fish to that year's river run size estimates of age-2, age-3, and age-4 fish, respectively (Table II-3). Historical abundance estimates were derived from a cohort analysis of CWT information (brood years 1979-2013). The y-intercept of the regressions is constrained to zero, which gives the biologically reasonable expectation that a river run size of zero predicts an ocean abundance remainder of zero for the same cohort. The abundance of age- 2 fish is not forecasted because no precursor to age- 2 fish of that brood is available. Ocean fisheries harvest nominal numbers of age-2 KRFC.

Predictor Performance

Since 1985, the preseason ocean abundance forecasts for age-3 fish have ranged from 0.33 to 3.10 times the postseason estimates; for age- 4 fish from 0.37 to 2.60 times the postseason estimates; and for the adult stock as a whole from 0.34 to 2.39 times the postseason estimates (Table II-4). The September 1, 2016
age- 3 forecast $(42,000)$ was 0.38 times its postseason estimate $(111,964)$. The age- 4 forecast $(10,600)$ was 1.01 times its postseason estimate (10,545); and the age- 5 forecast $(1,700)$ was 0.86 times its postseason estimate $(1,973)$. The preseason forecast of the adult stock as a whole was 0.44 times the postseason estimate.

Management of KRFC harvest since 1986 has attempted to achieve specific harvest rates on fullyvulnerable age-4 and age-5 fish in ocean and river fisheries (Table II-5). The Council has used a combination of quotas and time/area restrictions in ocean fisheries in an attempt to meet the harvest rate objective set each year. Since 1992, fisheries have been managed to achieve $50 / 50$ allocation between tribal and non-tribal fisheries. Tribal and recreational river fisheries have been managed on the basis of adult Chinook quotas.

The FMP describes a control rule used annually to specify the maximum allowable exploitation rate on KRFC (Appendix A, Figure A-2). The allowable exploitation rate is determined by the predicted number of potential spawners, which is defined as the natural area adult escapement expected in the absence of fisheries. The FMP allows for any ocean and river harvest allocation that meets the exploitation rate constraints defined by the control rule. The 2017 salmon fishery regulations were expected to result in 11,379 natural-area spawning adults and an age-4 ocean harvest rate of 3.1 percent. Postseason estimates of these quantities were 18,514 natural-area adult spawners and an age- 4 ocean harvest rate of 4.0 percent (Table II-5 and Table II-6).

Stock Forecast and Status

The 2018 forecast for the ocean abundance of KRFC as of September 1, 2017 (preseason) is 330,049 age3 fish, 28,415 age- 4 fish, and 767 age- 5 fish.

Late-season commercial ocean fisheries in 2017 (September through November) were estimated to have harvested 195 adult KRFC, including 170 age-4 (a 0.6 percent age- 4 ocean harvest rate), which will be deducted from the ocean fishery's allocation in determining the 2018 allowable ocean harvest. Late-season recreational ocean fisheries were not estimated to have harvested any adult KRFC.

The forecast of potential spawner abundance is derived from the ocean abundance forecasts, ocean natural mortality rates, age-specific maturation rates, stray rates, and the proportion of escapement expected to spawn in natural areas. The 2018 KRFC potential spawner abundance forecast is 59,733 natural-area adults. This potential spawner abundance forecast applied to the KRFC control rule results in an allowable exploitation rate of 31.9 percent, which produces, in expectation, 40,700 natural-area adult spawners. Therefore, fisheries impacting KRFC must be crafted to achieve, in expectation, a minimum of 40,700 natural-area adult spawners in 2018.

In 2018, invoking de minimis fishing rates under Amendment 16 will not be necessary because KRFC potential spawner abundance is projected to be greater than 54,267 natural-area adults. Therefore, projected escapement will meet or exceed the $S_{\text {MSY }}$ of 40,700 with an exploitation rate greater than 0.25 .

OFL, ABC, and ACL

The OFL, ABC, and ACL are defined in terms of spawner escapement ($\mathrm{S}_{\mathrm{ofL}}, \mathrm{S}_{\mathrm{ABC}}$, and $\mathrm{S}_{\mathrm{ACL}}$), and are calculated using potential spawner abundance forecasts and established exploitation rates. For KRFC, $\mathrm{F}_{\text {mSY }}$ $=0.71$, the value estimated from a stock-specific spawner-recruit analysis (STT 2005). The OFL for KRFC is $=59,733 \times(1-0.71)=17,323$. Because KRFC is a Tier-1 stock, $\mathrm{F}_{\mathrm{ABC}}=\mathrm{F}_{\mathrm{MSY}} \times 0.95=0.68$, and $\mathrm{F}_{\mathrm{ACL}}=$ $\mathrm{F}_{\mathrm{ABC}}$. The ABC for KRFC is $\mathrm{S}_{\mathrm{ABC}}=59,733 \times(1-0.68)=19,115$, with $\mathrm{S}_{\mathrm{ACL}}=\mathrm{S}_{\mathrm{ABC}}$. These preseason
estimates will be recalculated with postseason abundance estimates (when available) to assess ACL and OFL compliance.

Other California Coastal Chinook Stocks

Other California coastal streams that support fall Chinook stocks which contribute to ocean fisheries off Oregon and California include the Smith, Little, Mad, Eel, Mattole, and Russian rivers, and Redwood Creek. Except for the Smith River, these stocks are included in the California coastal Chinook ESU, which is listed as threatened under the ESA. Current information is insufficient to forecast the ocean abundance of these stocks; however, the NMFS ESA consultation standard restricts the KRFC age-4 ocean harvest rate to no more than 16.0 percent to limit impacts on these stocks. In 2017, the age-4 ocean harvest rate was estimated to be 4.0 percent. The Klamath River spring, Smith River, Rogue River, Umpqua River, and other Oregon Chinook stocks south of the Elk River are components of the Southern Oregon/Northern California (SONC) Chinook complex, and as such, specification of ACLs is deferred to KRFC, the indicator stock for the SONC Chinook complex.

Oregon Coast Chinook Stocks

Oregon coast Chinook stocks are categorized into three major subgroups based on ocean migration patterns: the North Oregon Coast (NOC) Chinook aggregate, the Mid Oregon Coast (MOC) Chinook aggregate, and the South Oregon Coast (SOC) Chinook aggregate. Although their ocean harvest distributions overlap somewhat, they have been labeled as far-north, north, or south/local migrating, respectively.

Far-North and North Migrating Chinook (NOC and MOC groups)

Far-north and north migrating Chinook stocks include spring and fall stocks north of and including the Elk River, with the exception of Umpqua River spring Chinook. Based on CWT analysis, the populations from ten major NOC river systems from the Nehalem through the Siuslaw Rivers are harvested primarily in ocean fisheries off British Columbia and Southeast Alaska, and to a much lesser degree in Council area and terminal area (state waters) fisheries off Washington and Oregon. CWT analysis indicates populations from five major MOC systems, from the Coos through the Elk Rivers, are harvested primarily in ocean fisheries off British Columbia, Washington, Oregon, and in terminal area fisheries. Minor catches occur in California fisheries, and variable catches have been observed in southeast Alaska troll fisheries.

NOC and MOC Chinook stocks are components of the Far-North-Migrating Coastal (FNMC) Chinook complex, which is an exception to the ACL requirements of the MSA because they are managed under an international agreement (the PST); therefore, specification of ACLs is not necessary for stocks in the FNMC complex.

Predictor Description

Quantitative abundance predictions are made for all three of the coastal Chinook groups (NOC, MOC, and SOC), but are not used in annual development of Council area fishery regulations. Quantitative forecasts of abundance are based on sibling regression analyses from individual basins' escapement assessment data and scale sampling, which occur coast-wide. Forecast data for the NOC are used in the PSC management process in addition to terminal area management actions.

Natural spawner escapement is assessed yearly from the Nehalem through Sixes rivers. Peak spawning counts of adults are obtained from standard index areas on these rivers and monitored to assess stock trends (PFMC 2018, Chapter II, Table II-5 and Figure II-3). Natural fall Chinook stocks from both the NOC and MOC dominate production from this subgroup. Also present in lesser numbers are naturally-produced spring Chinook stocks from several rivers, and hatchery fall and/or spring Chinook released in the Trask, Nestucca, Salmon, Alsea, and Elk rivers.

Basin-specific forecasts constitute the overall aggregate forecasts and are derived in conjunction with annual PSC Chinook model input and calibration activities; however, they were not available at publication time.

Predictor Performance

There was no information available to evaluate performance of predictors for NOC and MOC stocks.

Stock Forecast and Status

North Oregon Coast
Since 1977, the Salmon River Hatchery production has been tagged for use primarily as a PSC indicator stock for the NOC stock component. Because these fish are primarily harvested in fisheries north of the Council management area, the STT has not reviewed the procedure by which this indicator stock is used in estimating annual stock status. The 2017 NOC density from standard survey areas (Nehalem R. through the Siuslaw R.) was a slight decrease from 2016 (PFMC 2018, Appendix B, Table B-11).

Based on the density index of total spawners, the generalized expectation for NOC stocks in 2018 is below recent years' average abundance. Specifically, the 2017 spawner density in standard survey areas for the NOC averaged 120 spawners per mile, the lowest since 2011.

Mid Oregon Coast

Since 1977, the Elk River Hatchery production has been tagged for potential use as a PSC indicator stock for the MOC stock aggregate. Age-specific ocean abundance forecasts for 2018 are not currently available, but are being developed. The STT has not undertaken a review of the methods used by Oregon Department of Fish and Wildlife (ODFW) staff in developing these abundance forecasts.

The 2017 MOC density from standard survey areas (Coos and Coquille basins) averaged 40 adult spawners per mile, below recent years' average abundance and the second lowest since 2008 (PFMC 2018, Appendix B, Table B-11). Fall Chinook escapement goals are currently under development for the South Umpqua and Coquille basins of the MOC.

South/Local Migrating Chinook (SOC group)

South/local migrating Chinook stocks include Rogue River spring and fall Chinook, fall Chinook from smaller rivers south of the Elk River, and Umpqua River spring Chinook. These stocks are important contributors to ocean fisheries off Oregon and northern California. Umpqua River spring Chinook contribute to a lesser degree to fisheries off Washington, British Columbia, and southeast Alaska.

SOC stocks are components of the Southern Oregon/Northern California (SONC) Chinook complex, and as such, specification of ACLs is deferred to KRFC, the indicator stock for the SONC complex.

Rogue River Fall Chinook

Rogue River fall Chinook contribute to ocean fisheries principally as age- 3 through age- 5 fish. Mature fish enter the river each year from mid-July through October, with the peak of the run occurring during August and September.

Predictor Description

Carcass recoveries in Rogue River index surveys covering a large proportion of the total spawning area were available for 1977-2004. Using Klamath Ocean Harvest Model (KOHM) methodology, these carcass numbers, allocated into age-classes from scale data, were used to estimate the Rogue Ocean Population

Index (ROPI) for age-3 to age-5 fish. A linear regression was developed using the escapement estimates (all ages) in year t based on seining at Huntley Park (1976-2004) to predict the ROPI in year $t+1$ (19772005).

Beginning in 2015, a revised predictor was used which relies on the Huntley Park escapement estimate and dispenses with the use of the carcass counts. Linear regressions are used to relate May 1 ocean abundance estimates of age-3, age-4, age-5, and age-6 Rogue fall Chinook to the previous year's river run size estimates of age-2, age-3, age-4, and age-5 fish, respectively. Historical May 1 ocean abundance estimates were derived from a cohort analysis of 1988-2006 brood years. May $1(\mathrm{t})$ ocean abundances were converted to September $1(\mathrm{t}-1)$ forecasts by dividing the May (t) number by the assumed September 1 ($\mathrm{t}-1$) through May 1 (t) survival rate of 0.5 age- $3,0.8$ age- $4,0.8$ age- 5 , and 0.8 age- 6 . River run size estimates are derived from a flow-based expansion of standardized seine catches of fall Chinook at Huntley Park (RM 8). The y-intercept of the regressions is constrained to zero.

The 2017 Huntley Park escapement estimate and the resulting 2018 ROPI forecast of 462,800 consists of age-3 $(303,000)$, age-4 $(138,800)$ and age-5-6 $(21,000)$ fish.

Predictor Performance

The ROPI is based on cohort reconstruction methods with index values predicted from regression equations. Because postseason estimates of the ROPI are not available, it is not possible to assess predictor performance.

Stock Forecast and Status

The 2018 ROPI is above recent years' average (Table II-7).

Other SOC Stocks

Umpqua and Rogue spring Chinook contribute to ocean fisheries primarily as age- 3 fish. Mature Chinook enter the rivers primarily during April and May and generally prior to annual ocean fisheries.

Natural fall Chinook stocks from river systems south of the Elk River and spring Chinook stocks from the Rogue and Umpqua rivers dominate production from this subgroup. Substantial releases of hatchery spring Chinook occur in both the Rogue and Umpqua rivers, although also present in lesser numbers are hatchery fall Chinook, primarily from the Chetco River.

These stocks are minor contributors to general season mixed-stock ocean fisheries. Standard fall Chinook spawning index escapement data were available for the smaller SOC rivers (Winchuck, Chetco, and Pistol rivers). These had been used for assessment of the conservation objective for the SOC stocks prior to 2015. The 2017 average density from standard survey areas was 26 adult spawners per mile, the lowest since 2013 (PFMC 2018, Appendix B, Table B-8). Beginning in 2015, for the SOC Chinook stock complex, the conservation objective is assessed using the escapement estimate of naturally produced fall Chinook at Huntley Park on the Rogue River (PFMC 2018, Appendix B, Table B-10, Chapter II, Table II-5 and Figure II-3).

CHINOOK STOCKS NORTH OF CAPE FALCON

Columbia River Chinook

Columbia River fall Chinook stocks form the largest contributing stock group to Council Chinook fisheries north of Cape Falcon. Abundance of these stocks is a major factor in determining impacts of fisheries on weak natural stocks critical to Council area management, particularly ESA-listed Lower Columbia River (LCR) natural tule Chinook. Abundance predictions are made for five major fall stock units characterized
as being hatchery or natural production, and originating above or below Bonneville Dam. The upriver brights (URB) and lower river wild (LRW) are primarily naturally-produced stocks, although the upriver brights do have a substantial hatchery component. The lower river hatchery (LRH) tule, Spring Creek Hatchery (SCH) tule, and Mid-Columbia Bright (MCB) are primarily hatchery-produced stocks. The MCB include the Lower River Bright (LRB) stock as a small naturally-produced component. LRB spawn in the mainstem Columbia River near Beacon Rock and are believed to have originated from MCB hatchery strays. The tule stocks generally mature at an earlier age than the bright fall stocks and do not migrate as far north. Minor fall stocks include the Select Area Bright (SAB), a stock originally from the Rogue River.

Upper Columbia River summer Chinook also contribute to Council area fisheries, although like URB and LRW, most ocean impacts occur in British Columbia (B.C.) and Southeast Alaska (SEAK) fisheries. Upper Columbia River summer Chinook have both natural and hatchery components, and originate in areas upstream from Rock Island Dam.

URB and upper Columbia summer Chinook are exempt from the ACL requirements of the MSA because they are managed under an international agreement (the PST); therefore, specification of ACLs is not necessary for these two stocks. ESA consultation standards serve the purpose of ACLs for ESA-listed stocks like LRW Chinook. Broodstock goals serve the purpose of ACLs for hatchery-origin stocks like LRH, SCH, and MCB.

Predictor Description

Preseason forecasts of Columbia River fall and summer Chinook stock abundance, used by the STT to assess the Council's adopted fishery regulations, are based on age-specific and stock-specific forecasts of annual ocean escapement (returns to the Columbia River). These forecasts are developed by WDFW and a subgroup of the U.S. v Oregon Technical Advisory Committee (TAC). Columbia River return forecast methodologies used for Council management are identical to those used for planning Columbia River fall season fisheries, although minor updates to Council estimates of inriver run size may occur prior to finalization of the inriver fishery plans, based on the results of planned ocean fisheries.

The 2018 return of summer and each fall Chinook stock group is forecasted using relationships between successive age groups within a cohort. The database for these relationships was constructed by combining age-specific estimates of escapement and inriver fishery catches for years since 1964 (except for MCB, which started in the 1980s). Typically, only the more recent broods are used in the current predictions. Fall Chinook stock identification in the Columbia River mixed-stock fisheries is determined by sampling catch and escapement for CWTs and visual stock identification (VSI). Age composition estimates are based on CWT data and scale reading of fishery and escapement samples, where available. These stock and age data for Columbia River fall Chinook are the basis for the return data presented in the Review of 2017 Ocean Salmon Fisheries (Appendix B, Tables B-15 through B-20). The 2017 returns for summer Chinook and the five fall Chinook stocks listed in this report may differ somewhat from those provided in the Review of 2017 Ocean Salmon Fisheries, since ocean escapement estimates may have been updated after that report was printed.

Summer and fall Chinook ocean escapement forecasts developed for the March Council meeting do not take into account variations in marine harvest. The STT combines the initial inriver run size (ocean escapement; Table II-8) with expected Council area fishery harvest levels and stock distribution patterns to produce adjusted ocean escapement forecasts based on the proposed ocean fishing regulations. These revised forecasts are available at the end of the Council preseason planning process in April and are used for preseason fishery modeling in the Columbia River.

Predictor Performance

Performance of the preliminary inriver run size estimation methodology can be assessed, in part, by examining the differences between preseason forecasts and postseason estimates (Table II-8; Figure II-4). The recent 10 -year average March preliminary preseason forecasts as a percentage of the postseason estimates are 104 percent for URB, 103 percent for LRW, 115 percent for LRH, 138 percent for SCH, and 107 percent for MCB. None of the fall Chinook stocks had a notable bias in the recent time series of March preliminary forecasts, although all were slightly over-forecasted in March. The recent 5 -year average March preliminary preseason forecasts as a percentage of the postseason estimates for summer Chinook is 90 percent.

Stock Forecasts and Status

The preliminary forecast for 2018 URB fall Chinook ocean escapement is 200,100 adults, about 67 percent of last year's return of 297,100 and about 46 percent of the recent 10 -year average of 432,400 . This forecast is about 77 percent of the 260,000 forecast in 2017 and is well below the strong returns that occurred during 2010-2016. This ocean escapement will allow for moderate ocean and in-river fisheries while achieving the FMP $\mathrm{S}_{\text {MSY }}$ conservation objective of 39,625 natural area spawners in the Hanford Reach, Yakima River, and areas above Priest Rapids Dam.

The forecast for the 2018 ocean escapement of ESA-listed Snake River wild fall Chinook was not available at the time this report was written.

Ocean escapement of LRW fall Chinook in 2018 is forecast at 7,600 adults, about 48 percent of the recent 10 -year average return of 15,900 . The forecast is about 97 percent of last year's actual return. The spawning escapement goal of 5,700 in the North Fork Lewis River is expected to be achieved this year.

The preliminary forecast for 2018 ocean escapement of LRH fall Chinook is for a return of 62,400 adults, about 97 percent of last year's return and 68 percent of the recent 10 -year average of 91,400 . Based on this abundance forecast, the total allowable LCR natural tule exploitation rate for 2018 fisheries is no greater than 38.0 percent under the matrix developed by the Tule Chinook Workgroup in 2011, which is used by NMFS in developing ESA guidance for this stock (Appendix A Table A-6).

The preliminary ocean escapement forecast of SCH fall Chinook in 2018 is 50,100 adults, about 104 percent of last year's return of 48,200 and 57 percent of the 10 -year average of 87,100 .

The preliminary forecast for the 2018 ocean escapement of MCB fall Chinook is 36,400 adults, about 77 percent of last year's return of 47,400 and about 32 percent of the recent 10 -year average of 112,500 .

The preliminary forecast for summer Chinook in 2018 is 67,300 adults, approximately 99 percent of last year's return of 68,200 and about 78 percent of the recent 5 -year average of 86,400 . This ocean escapement should allow opportunity for both ocean and in-river fisheries while easily exceeding the FMP $\mathrm{S}_{\text {mSY }}$ conservation objective of 12,143 escapement above Rock Island Dam.

Washington Coast Chinook

Washington Coast Chinook consist of spring, summer, and fall stocks from Willapa Bay through the Hoko River. Based on limited CWT analysis, these populations are harvested primarily in ocean fisheries off British Columbia and Southeast Alaska, and to a lesser degree in Council-area fisheries off Washington and Oregon.

Washington Coast Chinook stocks are components of the FNMC Chinook complex, which is an exception to the ACL requirements of the MSA because it is managed under an international agreement (the PST); therefore, specification of ACLs is not necessary for stocks in the FNMC complex.

Predictor Description and Past Performance

Council fisheries have negligible impacts on Washington coast Chinook stocks and information to assess past performance is unavailable. However, abundance estimates are provided for Washington Coastal fall stocks in subsequent preseason fishery impact assessment reports prepared by the STT (e.g., Preseason Report III).

Stock Forecasts and Status

The 2018 Willapa Bay natural fall Chinook terminal runsize forecast is 3,838 , which is above the FMP $S_{\text {MSY }}$ conservation objective of 3,393 . The hatchery fall Chinook terminal runsize forecast is 40,258 .

The 2018 Grays Harbor spring Chinook terminal runsize forecast is 1,748 , which is above the FMP S MSY conservation objective of 1,092 . The natural fall Chinook terminal runsize forecast is 16,399 , which is above the FMP $\mathrm{S}_{\text {MSY }}$ conservation objective of 11,388 . The fall hatchery terminal runsize forecast is 4,818 .

The 2018 Queets River spring Chinook terminal runsize forecast is 536. The natural fall Chinook terminal runsize forecast is 3,336 , which is above the FMP $\mathrm{S}_{\text {MSY }}$ conservation objective of 2,500 . The fall hatchery terminal runsize forecast is 630 .

The 2018 Quinault River natural and hatchery Chinook forecasts were unavailable at the time of printing.
The 2018 Hoh River natural spring/summer Chinook spawning escapement forecast is 1,092 , which is above the FMP conservation objective of 900 . The natural fall Chinook forecast is 2,584 , which is above the FMP $\mathrm{S}_{\text {MSY }}$ conservation objective of 1,200 .

The 2018 Quillayute River hatchery spring Chinook ocean escapement forecast is 2,143 and the natural summer/fall Chinook forecast is 7,968 (1,131 summer and 6,837 fall). The FMP $\mathrm{S}_{\text {MSY }}$ conservation objectives are spawning escapements of 1,200 summer Chinook and 3,000 fall Chinook.

Puget Sound Chinook

Puget Sound Chinook stocks include all fall, summer, and spring stocks originating from U.S. tributaries in Puget Sound and the eastern Strait of Juan de Fuca (east of Salt Creek, inclusive). Puget Sound Chinook consists of numerous natural Chinook stocks of small to medium-sized populations and substantial hatchery production. The Puget Sound ESU was listed under the ESA as threatened in March 1999.

Council-area fishery impacts to Puget Sound Chinook stocks are generally very low, on the order of 5 percent or less. NMFS issued a biological opinion in 2004 concluding that Council-area fisheries were not likely to jeopardize listed Puget Sound Chinook, and exempting these fisheries from the ESA section 9 take prohibition as long as they are consistent with the terms and conditions in the opinion. This opinion does not cover Puget Sound fisheries. In recent years, the comanagers have developed annual fishery management plans for Puget Sound and NMFS has issued one-year biological opinions for these plans exempting them from ESA section 9 take prohibitions. These opinions take into account the combined impacts of ocean and Puget Sound fisheries. Puget Sound stocks contribute to fisheries off B.C., are present to a lesser degree off SEAK, and are impacted to a minor degree by Council-area ocean fisheries. Because Council-area fishery impacts to Puget Sound Chinook stocks are minor, ocean regulations are not generally used to manage these stocks

Predictor Description

Methodologies for estimates are described in the annual Puget Sound management reports (starting in 1993, reports are available by Puget Sound management unit, not by individual species). Forecasts for Puget Sound stocks generally assume production is dominated by age-4 adults. The STT has not undertaken a review of the methods employed by state and tribal staffs in preparing these abundance forecasts. Run-size expectations for various Puget Sound stock management units are listed in Table I-1.

Predictor Performance

There was no information available to evaluate performance of predictors for Puget Sound Chinook stocks.

Stock Forecasts and Status

ACLs are undefined in the FMP for ESA-listed stocks like Puget Sound Chinook, and are deferred to ESA consultation standards.

Spring Chinook

Puget Sound Spring Chinook abundances are expected to be greater than recent years, but continue to remain depressed.

Summer/Fall Chinook

The 2018 preliminary natural Chinook return forecast is 33,100 and the preliminary hatchery Chinook return forecast is 220,800 . The 2017 preseason natural Chinook return forecast was 31,000 and the hatchery Chinook return forecast was 161,200 (includes supplemental category forecasts).

Since ESA listing and development of the Resource Management Plan (RMP), fishery management for Puget Sound Chinook has changed from an escapement goal basis to the use of stock-specific exploitation rates and "critical abundance thresholds." This new approach is evaluated on an annual basis through the RMP.

STOCK STATUS DETERMINATION UPDATES

Sacramento River fall Chinook and Klamath River fall Chinook were found to meet the criteria for being classified as overfished in the PFMC Review of 2017 Ocean Salmon Fisheries, released in February 2018. These two stocks also meet the criteria for being at risk of approaching an overfished condition in 2018, given 2017 fishery management measures (Table V-4).

SELECTIVE FISHERY CONSIDERATIONS FOR CHINOOK

As the North of Falcon region has moved forward with mass marking of hatchery Chinook salmon stocks, the first mark selective fishery for Chinook salmon in Council waters was implemented in June 2010 in the recreational fishery north of Cape Falcon. In 2011 and 2012, the mark selective fishery in June was 8 and 15 days, respectively. In 2013 and 2014, the North of Falcon mark selective recreational fishery started in mid-May in Neah Bay and La Push subareas, then opened in all areas in late May or June. In 2015, the mark selective Chinook quota was 10,000 fish in the mid-May to mid-June fishery. There were no mark selective fisheries for Chinook in Council waters in 2016 and 2017. Selective fishing options for nonIndian fisheries may be under consideration in the ocean area from Cape Falcon, Oregon to the U.S./Canada border. Observed mark rates on Chinook in 2017 ocean fisheries in this area ranged from 59 to 73 percent. Based on preseason abundance forecasts, the expected mark rate for Chinook in this area for 2018 should be similar to those observed during the non-mark selective fishery in 2017.

TABLE II-1. Harvest and abundance indices for adult Sacramento River fall Chinook (SRFC) in thousands of fish. (Page 2 of 2)

Year	SRFC Ocean Harvest South of Cape Falcon ${ }^{\text {a }}$				River Harvest		Spaw ning Escapement			Sacramento Index (SI) ${ }^{\text {c }}$	Exploitation Rate (\%) ${ }^{\text {d/ }}$
	Troll	Sport	Non-Ret ${ }^{\text {b/ }}$	Total			Natural	Hatchery	Total		
2011	46.6	22.8	0.0	69.4	17.4	e/	76.5	42.9	119.3	206.1	42
2012	182.9	93.3	0.3	276.5	62.2	${ }^{\text {e/ }}$	163.2	122.3	285.4	624.2	54
2013	290.7	114.4	0.0	405.1	55.5	e/	301.5	104.7	406.2	866.8	53
2014	240.5	62.4	0.0	302.9	35.7	e/	167.7	44.7	212.5	551.1	61
2015	100.0	24.4	0.0	124.4	16.9	e/	73.2	39.8	112.9	254.2	56
2016	62.9	28.9	0.0	91.8	23.9	${ }^{\text {e/ }}$	53.9	35.8	89.7	205.3	56
$2017{ }^{\text {f/ }}$	38.8	31.7	0.0	70.5	25.0	${ }^{\text {e/ }}$	17.5	27.0	44.6	140.0	68

a/ Ocean harvest for the period September 1 (t-1) through August 31 (t).
b/ Mortalities estimated from non-retention ocean fisheries (e.g., coho-only fisheries, non-retention GSI sampling). In 2008, there were 37 estimated mortalities as a result of non-retention fisheries that have been rounded to 0 in this table.
c/ The SI is the sum of (1) SRFC ocean fishery harvest south of Cape Falcon betw een September 1 and August 31, (2) SRFC impacts from non-retention ocean fisheries w hen they occur, (3) the recreational harvest of SRFC in the Sacramento River Basin, and (4) the SRFC spaw ner escapement.
d/ Total ocean harvest, non-retention ocean fishery mortalities, and river harvest of SRFC as a percentage of the SI
e/ Estimates derived from CDFW Sacramento River Basin angler survey. Estimates not marked with a footnote are inferred from escapement data and the mean river harvest rate estimate.
f/ Preliminary.

TABLE II-2.
Sacramento River winter Chinook escapement, allowable age-3 impact rates, and management performance.

Year	Escapement ${ }^{\text {a/ }}$	3-yr GM Escapement ${ }^{\text {b/ }}$	Abundance Forecast ${ }^{\text {c }}$	Age-3 impact rate south of Point Arena, CA		
				Maximum Allow able (\%) ${ }^{\text {d }}$	Preseason Forecast (\%)	Postseason Estimate (\%)
2000	--	--	-	-	-	21.4
2001	8,224	--	-	-	-	23.3
2002	7,464	--	-	-	-	21.8
2003	8,218	--	-	-	-	10.3
2004	7,869	7,960	-	-	-	24.8
2005	15,839	7,844	-	-	-	17.2
2006	17,290	10,080	-	-	-	15.1
2007	2,541	12,917	-	-	-	17.8
2008	2,830	8,862	-	-	-	0.0
2009	4,537	4,991	-	-	-	0.0
2010	1,596	3,195	-	-	-	e/
2011	824	2,737	-	-	-	28.3
2012	2,671	1,814	-	13.7	13.7	12.6
2013	6,084	1,520	-	12.9	12.9	18.8
2014	3,015	2,375	-	15.4	15.4	15.8
2015	3,439	3,659	-	19.0	17.5	e/
2016	1,546	3,981	-	19.9	12.8	$11.2{ }^{\text {f/ }}$
2017	975	2,521	-	15.8	12.2	NA ${ }^{9 /}$
2018	NA	1,731	1,594	14.4	NA	NA

a/ Escapement includes jacks and adults spaw ning in natural areas and fish used for broodstock at Livingston Stone National Fish Hatchery.
b/ Geometric mean of escapement for the three prior years (e.g., 2017 GM computed from 2014-2016 escapement).
c/ Abundance forecast is defined as the predicted age-3 escapement in the absence of fisheries.
d/ Allow able impact rates from 2012-2017 w ere determined by a control rule utilizing the three-year geometric
mean of escapement. Beginning in 2018, allow able impact rates w ere determined by a new control rule utilizing the abundance forecast.
e/ Insufficient data for postseason estimate.
f / Preliminary. Incomplete cohort data (age-4 escapement unavailable).
$\mathrm{g} /$ Not estimated. Incomplete cohort data (age-3 and age-4 escapement unavailable).

	Annual Ocean Harvest Rate										
		Ocean Abundance Sept. 1 (t-1)			Sept. 1 (t-1) - Aug. 31 (t)		Klamath Basin River Run (t)				
	Year (t)	Age-3	Age-4	Total	Age-3	Age-4	Age-2	Age-3	Age-4	Age-5	Total Adults
	1981	493.2	57.0	550.2	0.21	0.53	28.2	64.1	14.4	1.8	80.3
	1982	561.1	133.4	694.5	0.30	0.52	39.4	30.1	33.9	2.6	66.6
ग	1983	313.3	114.2	427.5	0.19	0.60	3.8	35.9	20.7	0.9	57.5
\bigcirc	1984	157.3	82.8	240.1	0.08	0.38	8.3	21.7	24.4	1.1	47.2
극	1985	374.8	56.9	431.7	0.11	0.24	69.4	32.9	25.7	5.8	64.4
	1986	1,304.4	140.8	1,445.2	0.18	0.46	44.6	162.9	29.8	2.3	195.0
	1987	781.1	341.9	1,123.0	0.16	0.43	19.1	89.7	112.6	6.8	209.1
	1988	756.3	234.8	991.0	0.20	0.39	24.1	101.2	86.5	3.9	191.6
	1989	369.8	177.2	547.1	0.15	0.36	9.1	50.4	69.6	4.3	124.3
	1990	176.1	104.0	280.1	0.30	0.55	4.4	11.6	22.9	1.3	35.9
	1991	69.4	37.2	106.6	0.03	0.18	1.8	10.0	21.6	1.1	32.7
	1992	39.5	28.2	67.7	0.02	0.07	13.7	6.9	18.8	1.0	26.7
	1993	168.5	15.0	183.5	0.05	0.16	7.6	48.3	8.2	0.7	57.2
	1994	119.9	41.7	161.7	0.03	0.09	14.4	37.0	26.0	1.0	64.0
	1995	787.3	28.7	816.0	0.04	0.14	22.8	201.9	18.3	2.6	222.8
N	1996	192.3	226.3	418.6	0.05	0.16	9.5	38.8	136.7	0.3	175.8
	1997	140.2	62.8	203.0	0.01	0.06	8.0	35.0	44.2	4.6	83.7
	1998	154.8	44.7	199.5	0.00	0.09	4.6	59.2	29.7	1.7	90.6
	1999	129.1	30.5	159.5	0.02	0.09	19.2	29.2	20.5	1.3	51.0
	2000	617.1	44.2	661.3	0.06	0.10	10.2	187.1	30.5	0.5	218.1
	2001	356.1	133.8	489.9	0.03	0.09	11.3	99.1	88.2	0.1	187.3
	2002	513.6	98.9	612.5	0.02	0.15	9.2	94.6	62.5	3.7	160.8
	2003	401.1	192.2	593.3	0.08	0.21	3.8	94.3	96.8	0.9	191.9
	2004	159.4	105.2	264.7	0.12	0.35	9.6	33.1	40.5	5.3	78.9
	2005	190.0	38.1	228.1	0.02	0.20	2.3	43.8	17.5	3.9	65.2
	2006	90.6	63.4	154.0	0.01	0.10	26.9	18.5	41.6	1.3	61.4
	2007	376.9	33.6	410.5	0.06	0.21	1.7	113.7	16.8	1.6	132.1
	2008	68.0	81.4	149.4	0.00	0.10	25.2	18.6	50.2	1.7	70.6
	2009	240.7	21.1	261.8	0.00	0.00	11.9	78.6	16.4	5.6	100.6
	2010	192.8	62.1	254.9	0.01	0.04	16.6	46.1	44.3	0.4	90.9
$\begin{aligned} & \frac{O}{2} \\ & \frac{0}{0} \\ & \stackrel{\rightharpoonup}{\mathbb{D}} \\ & = \end{aligned}$											

TABLE II-3. Klamath River fall Chinook ocean abundance (thousands), harvest rate, and river run size estimates (thousands) by age. (Page 2 of 2).

Year (t)	Ocean Abundance Sept. 1 (t-1) \quadAnnual Ocean Harvest Rate Sept. $1(t-1)$ - Aug. $31(t)$					Klamath Basin River Run (t)				
	Age-3	Age-4	Total	Age-3	Age-4	Age-2	Age-3	Age-4	Age-5	Total Adults
2011	240.2	64.6	304.7	0.03	0.08	84.9	59.0	41.0	2.0	102.0
2012	799.0	74.3	873.3	0.03	0.08	21.4	243.9	49.3	2.1	295.3
2013	438.3	194.4	632.6	0.04	0.20	14.4	55.2	108.8	1.1	165.0
2014	216.6	180.7	397.3	0.03	0.17	22.3	57.8	98.7	3.9	160.4
2015	110.4	61.0	171.4	0.02	0.22	6.1	36.7	34.0	7.1	77.8
2016	$33.5{ }^{\text {a/ }}$	24.7	58.3	$0.01{ }^{\text {a }}$	0.09	2.8	8.6	15.4	0.5	24.6
2017	$42.4{ }^{\text {b/ }}$	$24.9{ }^{\text {a/ }}$	122.5	$N A^{\text {c/ }}$	$0.04{ }^{\text {a/ }}$	21.9	23.2	7.1	1.5	31.8

a/ Preliminary: incomplete cohort data (age-5 unavailable).
b/ Preliminary: incomplete cohort data (age-4 and age-5 unavailable).
c/ Not estimated: incomplete cohort data (age-4 and age-5 unavailable).

TABLE II-4. Comparisons of preseason forecast and postseason estimates for ocean abundance of adult Klamath River fall Chinook. (Page 1 of 4)

Year (t)	${\text { Preseason Forecast }{ }^{a l}}_{\text {Sept. } 1(\mathrm{t}-1)}$ Postseason Estimate $_{\text {Sept. } 1(\mathrm{t}-1)}$	Pre/Postseason	
	113,000		
1985	$426,000^{\mathrm{b} /}$	276,000	0.41
1986	511,800	$1,304,409$	0.33
1987	370,800	781,122	0.66
1988	450,600	756,261	0.49
1989	479,000	369,828	1.22
1990	176,200	176,122	2.72
1991	50,000	69,424	2.54
1992	294,400	39,502	1.27
1993	138,000	168,473	1.75
1994	269,000	119,915	1.15
1995	479,800	787,309	0.34
1996	224,600	192,272	2.50
1997	176,000	140,153	1.60
1998	84,800	154,799	1.14
1999	349,600	129,066	0.66
2000	187,200	617,097	0.57
2001	209,000	356,128	0.53
2002	171,300	513,604	0.41
2003	72,100	401,112	0.43
2004	185,700	159,446	0.45
2005	44,100	189,976	0.98
2006	515,400	90,606	0.49
2007	31,600	376,922	1.37
2008	474,900	68,003	0.46
2009	223,400	240,713	1.97
2010	304,600	192,760	1.16
2011	$1,567,600$	240,160	1.27
2012	390,700	798,975	1.96
2013	219,800	438,264	0.89
2014	342,200	216,494	1.02
2015	93,400	110,391	3.10
2016	42,000	33,546	2.78
$2017^{\text {c/ }}$	330,000	111,964	0.38
2018		--	--

TABLE II-4. Comparisons of preseason forecasts and postseason estimates for ocean abundance of adult Klamath River fall Chinook. (Page 2 of 4)

Year (t)	Preseason Forecast ${ }^{2 /}$ Sept. 1 (t-1)	Postseason Estimate Sept. 1 (t-1)	Pre/Postseason
	Age-4		
1985	56,900	57,500	0.99
1986	66,300	140,823	0.47
1987	206,100	341,875	0.60
1988	186,400	234,751	0.79
1989	215,500	177,245	1.22
1990	50,100	103,951	0.48
1991	44,600	37,171	1.20
1992	44,800	28,169	1.59
1993	39,100	15,037	2.60
1994	86,100	41,736	2.06
1995	47,000	28,726	1.64
1996	268,500	226,282	1.19
1997	53,900	62,820	0.86
1998	46,000	44,733	1.03
1999	78,800	30,456	2.59
2000	38,900	44,176	0.88
2001	247,000	133,801	1.85
2002	143,800	98,927	1.45
2003	132,400	192,180	0.69
2004	134,500	105,246	1.28
2005	48,900	38,079	1.28
2006	63,700	63,383	1.01
2007	26,100	33,615	0.78
2008	157,200	81,408	1.93
2009	25,200	21,124	1.19
2010	106,300	62,092	1.71
2011	61,600	64,568	0.95
2012	79,600	74,289	1.07
2013	331,200	194,356	1.70
2014	67,400	180,662	0.37
2015	71,100	60,980	1.17
2016	45,100	24,712	1.83
2017°	10,600	10,545	1.01
2018	28,400	--	--

TABLE II-4. Comparisons of preseason forecasts and postseason estimates for ocean abundance of adult Klamath River fall Chinook. (Page 3 of 4)

Year (t)	Preseason Forecast ${ }^{a}$ Sept. 1 (t-1)	Postseason Estimate Sept. 1 (t-1)	Pre/Postseason
Age-5			
1985	NA	11,113	NA
1986	NA	6,376	NA
1987	5,300	19,414	0.27
1988	13,300	14,632	0.91
1989	10,100	9,612	1.05
1990	7,600	7,767	0.98
1991	1,500	2,774	0.54
1992	1,300	1,444	0.90
1993	1,100	1,759	0.63
1994	500	1,468	0.34
1995	2,000	3,805	0.53
1996	1,100	788	1.40
1997	7,900	9,004	0.88
1998	3,300	2,382	1.39
1999	2,000	2,106	0.95
2000	1,400	1,051	1.33
2001	1,300	258	5.04
2002	9,700	6,933	1.40
2003	6,500	1,915	3.39
2004	9,700	17,184	0.56
2005	5,200	6,859	0.76
2006	2,200	5,236	0.42
2007	4,700	2,911	1.61
2008	1,900	2,900	0.66
2009	5,600	7,059	0.79
2010	1,800	517	3.48
2011	5,000	2,753	1.82
2012	4,600	5,110	0.90
2013	5,700	3,944	1.45
2014	12,100	7,623	1.59
2015	10,400	13,283	0.78
2016	3,700	1,142	3.24
$2017{ }^{\text {c/ }}$	1,700	1,973	0.86
2018	800	--	--

TABLE II-4. Comparisons of preseason forecasts and postseason estimates for ocean abundance of adult Klamath River fall Chinook. (Page 4 of 4)

Year (t)	Preseason Forec Sept. 1 (t-1)	Postseason Estimate Sept. 1 (t-1)	Pre/Postseason
Total Adults			
1985	169,900 ${ }^{\text {d/ }}$	344,613	0.49
1986	492,300 ${ }^{\text {d }}$	1,451,608	0.34
1987	723,200	1,142,411	0.63
1988	570,500	1,005,644	0.57
1989	676,200	556,685	1.21
1990	536,700	287,840	1.86
1991	222,300	109,369	2.03
1992	96,100	69,115	1.39
1993	334,600	185,269	1.81
1994	224,600	163,119	1.38
1995	318,000	819,840	0.39
1996	749,400	419,342	1.79
1997	286,400	211,977	1.35
1998	225,300	201,914	1.12
1999	165,600	161,628	1.02
2000	389,900	662,324	0.59
2001	435,500	490,187	0.89
2002	362,500	619,464	0.59
2003	310,200	595,207	0.52
2004	216,300	281,876	0.77
2005	239,800	234,914	1.02
2006	110,000	159,225	0.69
2007	546,200	413,448	1.32
2008	190,700	152,311	1.25
2009	505,700	268,896	1.88
2010	331,500	255,369	1.30
2011	371,100	307,481	1.21
2012	1,651,800	878,374	1.88
2013	727,700	636,564	1.14
2014	299,300	404,779	0.74
2015	423,800	184,654	2.29
2016	142,200	59,400	2.39
$2017{ }^{\text {c/ }}$	54,200	124,482	0.44
2018	359,200	--	--

a/ Original preseason forecasts for years 1985-2001 w ere for May 1 (t); converted to Sept. 1 (t-1) forecasts by dividing the May 1 (t) number by the assumed Sept. 1 ($t-1$) through May 1 (t) survival rate in those years: 0.5 age- $3,0.8$ age- $4,0.8$ age-5.
b/ A scalar of 0.75 w as applied to the jack count to produce the forecast because, (1) most jacks returned to the Trinity River, and (2) the jack count w as outside the database range.
c/ Postseason estimates are preliminary.
d/ Does not include age- 5 adults.

	Preseason		Postseason		Preseason		Postseason		Preseason	Summary of management objectives and predictor performance for Klamath River fall Chinook.		
Average or	Ocean Ab Sept. Fore	bundance $(t-1)$ cast $^{\text {a/ }}$	Ocean A Sept. Estim	undance $(t-1)$ nate	A Harv For	Rate $\mathrm{st}^{\mathrm{b} /}$	A Harv Esti	Rate $\mathrm{e}^{\mathrm{c} /}$		dult vest cast		dult vest mate
Year (t)	Age-3	Age-4	Age-3	Age-4	Ocean	River	Ocean	River	Ocean	River	Ocean	River
1986-90	447,640	144,880	677,548	199,729	0.30	0.51	0.44	0.54	104,100	56,020	214,598	51,814
1991-95	185,520	52,320	236,925	30,168	0.09	0.28	0.13	0.34	12,980	14,460	13,095	13,667
1996-00	262,960	97,220	246,677	81,693	0.11	0.44	0.10	0.33	30,500	44,180	21,336	31,382
2001	187,200	247,000	356,128	133,801	0.14	0.61	0.09	0.29	45,600	105,300	21,747	50,780
2002	209,000	143,800	513,604	98,927	0.13	0.57	0.15	0.26	30,000	70,900	28,896	35,069
2003	171,300	132,400	401,112	192,180	0.16	0.50	0.21	0.28	30,600	52,200	70,995	39,715
2004	72,100	134,500	159,446	105,246	0.15	0.38	0.35	0.48	26,500	35,800	64,226	29,807
2005	185,700	48,900	189,976	38,079	0.08	0.16	0.20	0.19	7,100	9,600	12,807	10,001
2006	44,100	63,700	90,606	63,383	0.11	0.23	0.10	0.18	10,000	10,000	10,401	10,345
2007	515,400	26,100	376,922	33,615	0.16	0.63	0.21	0.56	30,200	51,400	30,249	33,884
2008	31,600	157,200	68,003	81,408	0.02	0.43	0.10	0.38	4,500	49,500	8,718	24,180
2009	474,900	25,200	240,713	21,124	0.00	0.57	0.00	0.40	100	61,700	51	34,040
2010	223,400	106,300	192,760	62,092	0.12	0.49	0.04	0.40	22,600	46,600	4,497	32,920
2011	304,600	61,600	240,160	64,568	0.16	0.54	0.08	0.34	26,900	42,700	11,996	30,502
2012	1,567,600	79,600	798,975	74,289	0.16	0.77	0.08	0.51	92,400	227,600	34,721	109,263
2013	390,700	331,200	438,264	194,356	0.16	0.62	0.20	0.51	74,800	154,800	59,403	82,835
2014	219,800	67,400	216,494	180,662	0.16	0.40	0.17	0.25	23,200	31,400	40,152	31,353
2015	342,200	71,100	110,391	60,980	0.16	0.59	0.22	0.47	29,400	57,700	20,017	35,890
$2016{ }^{\text {d/ }}$	93,400	45,100	33,546	24,712	0.08	0.19	0.09	0.31	6,300	8,500	3,027	6,470
$2017{ }^{\text {/ }}$	42,000	10,600	111,964	10,545	0.03	0.06	0.04	0.08	700	900	1,685	1,947
2018	330,000	28,400	-	-	-	-	-	-	-	-	-	-

a/ Original preseason forecasts for years 1990-2001 were for May 1 (t); converted to Sept. 1 ($\mathrm{t}-1$) forecasts by dividing the May 1 (t) number by the assumed Sept. $1(\mathrm{t}-1)$ through May 1 (t) survival rate in those years: 0.5 age- $3,0.8$ age- $4,0.8$ age- 5 .
b/ Ocean harvest rate forecast is the fraction of the predicted ocean abundance expected to be harvested Sept. 1 ($\mathrm{t}-1$) through August 31(t). River harvest rate forecast is the fraction of the predicted river run expected to be harvested in river fisheries. Original ocean harvest rate forecasts for year (t), 19902001, w ere based on a May 1 (t) ocean abundance denominator; converted to Sept. 1 ($t-1$) abundance denominator by multiplying former values by 0.8
$\mathrm{c} /$ Ocean harvest rate is the fraction of the postseason ocean abundance harvested Sept. 1 ($\mathrm{t}-1$) through August 31 (t). River harvest rate is the fraction of the river run harvested by river fisheries.
d/ Postseason estimates are preliminary for age-3.
e/ Postseason estimates are preliminary for age-3 and age-4.
TABLE II-6. Harvest levels and rates of age-3 and age-4 Klamath River fall Chinook. (Page 1 of 4)

Year (t) or Average	Ocean Fisheries (Sept. 1 (t-1) - Aug. 31 (t))									
	KMZ			North of KMZ	South of KMZ	Subtotal	Ocean Total	River Fisheries (t)		
	Troll	Sport	Subtotal					Net	Sport	Total
	HARVEST (numbers of fish)									
Age-3										
1986-90	15,081	6,253	21,334	38,683	64,397	103,080	124,414	7,200	9,480	16,680
1991-95	8	689	698	3,055	5,086	8,141	8,839	4,980	2,189	7,170
1996-00	93	740	833	2,157	7,326	9,483	10,316	8,840	3,764	12,604
2001	113	105	218	2,749	6,082	8,831	9,049	17,885	7,294	25,179
2002	220	784	1,004	1,501	9,916	11,417	12,421	11,734	6,258	17,992
2003	176	669	845	1,921	27,586	29,507	30,352	6,996	5,061	12,057
2004	402	970	1,372	9,710	7,324	17,034	18,406	4,679	2,051	6,730
2005	0	568	568	619	2,381	3,000	3,568	4,394	1,641	6,035
2006	0	477	477	32	341	373	850	2,388	13	2,401
2007	770	8,101	8,871	4,194	9,367	13,561	22,432	17,543	5,734	23,277
2008	0	0	0	0	0	0	0	3,225	608	3,833
2009	0	51	51	0	0	0	51	19,820	4,715	24,535
2010	112	28	140	0	1,664	1,664	1,804	13,132	1,884	15,016
2011	334	1,119	1,453	35	4,830	4,865	6,318	13,286	2,630	15,916
2012	1,121	11,350	12,471	926	13,089	14,015	26,486	70,409	12,104	82,513
2013	390	5,574	5,964	865	11,986	12,851	18,815	18,996	7,675	26,671
2014	0	566	566	4,144	1,550	5,694	6,260	3,386	1,778	5,164
2015	48	293	341	652	1,596	2,248	2,589	10,604	4,509	15,113
2016	0	0	0	14	312	326	326	918	430	1,348
$2017^{\text {a }}$	0	0	0	105	1,159	1,264	1,264	1,259	23	1,282

N 0 0 0 0 ∞ 0 0 0 0	Year (t) or Average	Ocean Fisheries (Sept. 1 (t-1) - Aug. 31 (t))									
		KMZ			North of KMZ	South of KMZ	Subtotal	Ocean Total		Fisheries	
		Troll	Sport	Subtotal					Net	Sport	Total
		HARVEST (numbers of fish)									
	Age-4										
	1986-90	10,282	4,358	14,640	38,450	31,653	70,103	84,743	28,720	5,500	34,220
T0	1991-95	34	484	519	1,438	1,807	3,245	3,764	5,072	856	5,928
\bigcirc	1996-00	200	1,002	1,202	3,833	5,093	8,926	10,128	15,076	2,948	18,023
그글	2001	1,312	1,604	2,916	5,819	3,926	9,745	12,661	20,759	4,819	25,578
	2002	1,938	827	2,765	2,811	9,416	12,227	14,992	11,929	4,063	15,992
	2003	834	919	1,753	7,856	30,011	37,867	39,620	22,754	4,592	27,346
	2004	1,429	1,234	2,663	11,645	22,132	33,777	36,440	17,623	1,751	19,374
	2005	247	317	564	5,243	1,909	7,152	7,716	3,048	304	3,352
	2006	196	725	921	4,192	985	5,177	6,098	7,569	42	7,611
	2007	270	2,336	2,606	1,991	2,472	4,463	7,069	8,987	502	9,489
	2008	6,379	1,106	7,485	581	113	694	8,179	17,891	1,260	19,151
	2009	0	0	0	0	0	0	0	5,831	706	6,537
	2010	42	112	154	886	1,482	2,368	2,522	16,630	1,134	17,764
	2011	417	176	593	1,043	3,780	4,823	5,416	12,587	1,466	14,053
$\omega_{\boldsymbol{N}}$	2012	336	2,087	2,423	760	2,957	3,717	6,140	23,285	1,718	25,003
	2013	4,265	6,236	10,501	4,029	23,993	28,022	38,523	43,671	12,043	55,714
	2014	1,292	1,434	2,726	19,818	8,977	28,795	31,521	21,303	3,404	24,707
	2015	273	197	470	5,763	7,127	12,890	13,360	13,160	2,692	15,852
	2016	0	56	56	632	1,570	2,202	2,258	3,966	870	4,836
	$2017{ }^{\text {a }}$	0	129	129	102	190	292	421	503	43	546

	Ocean Fisheries (Sept. 1 (t-1) - Aug. 31 (t))								River Fisheries (t)									
	Year (t) or Average	KMZ			North of KMZ	South of KMZ	Subtotal	Ocean Total										
		Troll	Sport	Subtotal					Net	Sport	Total							
	HARVEST RATE ${ }^{\text {/ }}$																	
	1986-90	0.02	0.01	0.03	0.08	0.09	0.17	0.20	0.09	0.11	0.20							
${ }_{0}$	1991-95	0.00	0.01	0.01	0.01	0.02	0.03	0.03	0.13	0.06	0.18							
8	1996-00	0.00	0.00	0.00	0.01	0.02	0.03	0.03	0.14	0.07	0.21							
각	2001	0.00	0.00	0.00	0.01	0.02	0.02	0.03	0.18	0.07	0.25							
-	2002	0.00	0.00	0.00	0.00	0.02	0.02	0.02	0.12	0.07	0.19							
	2003	0.00	0.00	0.00	0.00	0.07	0.07	0.08	0.07	0.05	0.13							
	2004	0.00	0.01	0.01	0.06	0.05	0.11	0.12	0.14	0.06	0.20							
	2005	0.00	0.00	0.00	0.00	0.01	0.02	0.02	0.10	0.04	0.14							
	2006	0.00	0.01	0.01	0.00	0.00	0.00	0.01	0.13	0.00	0.13							
	2007	0.00	0.02	0.02	0.01	0.02	0.04	0.06	0.15	0.05	0.20							
	2008	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.17	0.03	0.21							
	2009	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.25	0.06	0.31							
	2010	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.28	0.04	0.33							
	2011	0.00	0.00	0.01	0.00	0.02	0.02	0.03	0.23	0.04	0.27							
ω	2012	0.00	0.01	0.02	0.00	0.02	0.02	0.03	0.29	0.05	0.34							
	2013	0.00	0.01	0.01	0.00	0.03	0.03	0.04	0.34	0.14	0.48							
	2014	0.00	0.00	0.00	0.02	0.01	0.03	0.03	0.06	0.03	0.09							
	2015	0.00	0.00	0.00	0.01	0.01	0.02	0.02	0.29	0.12	0.41							
	2016	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.11	0.05	0.16							
	$2017{ }^{\text {a/ }}$	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.05	0.00	0.06							

Ocean Fisheries (Sept. 1 (t-1) - Aug. 31 (t))								River Fisheries (t)		
Year (t) or Average		KMZ		North of	South of					
	Troll	Sport	Subtotal	KMZ	KMZ	Subtotal	Ocean Total	Net	Sport	Total
HARVEST RATE ${ }^{\text {/ }}$										
Age-4										
1986-90	0.05	0.02	0.07	0.21	0.16	0.37	0.44	0.45	0.09	0.54
1991-95	0.00	0.01	0.01	0.05	0.06	0.11	0.13	0.29	0.04	0.34
1996-00	0.00	0.01	0.01	0.05	0.04	0.09	0.10	0.28	0.05	0.33
2001	0.01	0.01	0.02	0.04	0.03	0.07	0.09	0.24	0.05	0.29
2002	0.02	0.01	0.03	0.03	0.10	0.12	0.15	0.19	0.06	0.26
2003	0.00	0.00	0.01	0.04	0.16	0.20	0.21	0.24	0.05	0.28
2004	0.01	0.01	0.03	0.11	0.21	0.32	0.35	0.43	0.04	0.48
2005	0.01	0.01	0.01	0.14	0.05	0.19	0.20	0.17	0.02	0.19
2006	0.00	0.01	0.01	0.07	0.02	0.08	0.10	0.18	0.00	0.18
2007	0.01	0.07	0.08	0.06	0.07	0.13	0.21	0.53	0.03	0.56
2008	0.08	0.01	0.09	0.01	0.00	0.01	0.10	0.36	0.03	0.38
2009	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.36	0.04	0.40
2010	0.00	0.00	0.00	0.01	0.02	0.04	0.04	0.37	0.03	0.40
2011	0.01	0.00	0.01	0.02	0.06	0.07	0.08	0.31	0.04	0.34
2012	0.00	0.03	0.03	0.01	0.04	0.05	0.08	0.47	0.03	0.51
2013	0.02	0.03	0.05	0.02	0.12	0.14	0.20	0.40	0.11	0.51
2014	0.01	0.01	0.02	0.11	0.05	0.16	0.17	0.22	0.03	0.25
2015	0.00	0.00	0.01	0.09	0.12	0.21	0.22	0.39	0.08	0.47
2016	0.00	0.00	0.00	0.03	0.06	0.09	0.09	0.26	0.06	0.31
$2017^{\text {a/ }}$	0.00	0.01	0.01	0.01	0.02	0.03	0.04	0.07	0.01	0.08

a/ Preliminary (incomplete cohort).
b/ Ocean harvest rates are the fraction of Sept. $1(t-1)$ ocean abundance harvested in these fisheries. River harvest rates are the fraction of the river run (t) harvested in these fisheries.

N 0 ∞ 0 0 1 0 0 0 0 0	Return Inriver Run Index in Thousands of Fish ${ }^{\text {a/ }}$						Ocean Harvest Rate by Age ${ }^{\text {// }}$		Rogue Ocean Population Index (ROPI) in Thousands of Fish ${ }^{\text {c/d/ }}$			
	Year	Age-2	Age-3	Age-4	Age-5-6	Total ${ }^{\text {d/ }}$	Age-3	Age-4-6	Age-3	Age-4	Age-5-6	Total
	1977-80	1.0	2.3	2.2	0.2	5.7	0.23	0.55	14.1	6.5	0.5	21.1
	1981-85	21.4	17.6	22.9	2.3	64.1	0.18	0.45	197.5	60.0	16.6	274.1
	1986-90	30.8	47.2	37.5	4.5	120.0	0.20	0.44	485.0	112.0	30.3	627.2
T	1991-95	16.7	28.9	17.2	3.5	66.4	0.03	0.13	165.1	51.2	11.8	228.2
(1)	1996-00	15.1	31.2	18.2	4.6	69.1	0.03	0.10	199.1	66.6	13.6	279.3
윽	2001	27.9	29.5	33.9	16.6	107.9	0.03	0.09	164.8	146.2	18.6	329.6
-	2002	43.8	64.1	63.1	30.6	201.6	0.02	0.15	337.9	70.0	28.4	436.3
	2003	20.1	66.9	99.0	47.0	233.0	0.08	0.21	530.4	151.9	52.2	734.5
	2004	20.3	30.6	69.5	35.4	155.8	0.12	0.34	243.3	158.4	82.5	484.3
	2005 ${ }^{\text {f/ }}$	5.0	17.7	28.7	11.6	63.0	0.02	0.20	245.2	72.6	58.2	376.0
	2006	7.4	11.6	19.6	7.1	45.7	0.01	0.10	60.4	42.1	23.5	126.0
	2007	3.4	15.8	16.6	12.7	48.5	0.06	0.21	89.5	27.5	15.8	132.9
	2008	16.2	7.6	14.1	4.2	42.1	0.00	0.10	41.3	37.6	15.4	94.2
	2009	15.2	34.3	28.0	4.5	82.0	0.00	0.00	195.9	18.0	11.4	225.3
	2010	15.1	23.6	26.5	2.7	67.9	0.01	0.04	183.4	81.3	21.5	286.2
	2011	31.9	25.1	41.1	5.5	103.6	0.03	0.08	183.2	56.0	19.9	259.1
	2012	11.0	39.9	28.0	5.3	84.2	0.03	0.08	385.6	59.4	31.2	476.2
∞	2013	24.3	17.0	66.1	3.1	110.5	0.04	0.20	133.4	94.5	21.7	249.6
	2014	12.5	20.5	29.2	6.7	68.9	0.03	0.17	295.5	40.5	49.0	385.0
	2015	8.5	6.8	23.1	3.0	41.4	0.02	0.22	151.5	48.5	22.8	222.8
	2016	17.7	8.1	17.7	2.9	46.5	$0.01{ }^{\text {e/ }}$	0.09	102.6	16.2	17.6	$136.4{ }^{\text {e/ }}$
	2017	25.0	58.6	24.4	12.5	120.7		$0.04{ }^{\text {e/ }}$	$214.0{ }^{\text {e/ }}$	$19.2{ }^{\text {e/ }}$	13.6	$246.8{ }^{\text {e/ }}$
	2018	NA	NA	NA	NA	NA	-	-	$303.0{ }^{\text {f/ }}$	$138.8{ }^{\text {f/ }}$	$21.0{ }^{\text {f/ }}$	$462.8{ }^{\text {f/ }}$

a/ Huntley Park passage estimate and estuary harvest. Age composition from Huntley Park scale analysis.
b/ Exploitation rates since 1981 are based on Klamath River fall Chinook cohort analysis.
c/ Based on cohort reconstruction methods. Index values predicted from regression equations; postseason estimates are not available.
d/ Rogue ocean abundances initially reconstructed to May $1(\mathrm{t})$; converted to Sept. 1 ($\mathrm{t}-1$) forecasts by dividing the May 1 (t) number by the assumed Sept. 1 ($\mathrm{t}-1$) through
May 1 (t) survival rate: 0.5 age-3, 0.8 age-4, 0.8 age-5, 0.8 age- 6 .
e / Preliminary, complete cohort not available.
f/ Preseason forecast.

TABLE II-8. Predicted and postseason returns of Columbia River adult summer and fall Chinook in thousands of fish. (Page 1 of 3)

Year or	March Preseason	April STT Modeled		March	April
Average	Forecast $^{a /}$	Forecast $^{1 /}$	Postseason Return	Pre/Postseason	Pre/Postseason

	URB				
1984-85	124.6	126.1	163.9	0.75	0.76
1986-90	306.8	305.5	291.4	1.02	1.02
1991-95	86.2	91.5	105.3	0.83	0.87
1996-00	144.9	140.9	153.8	0.94	0.92
2001	127.2	132.7	232.6	0.55	0.57
2002	281.0	273.8	276.9	1.01	0.99
2003	280.4	253.2	373.2	0.75	0.68
2004	292.2	287.0	367.9	0.79	0.78
2005	352.2	354.6	268.7	1.31	1.32
2006	253.9	249.1	230.4	1.10	1.08
2007	182.4	185.2	112.6	1.62	1.64
2008	162.5	165.9	196.9	0.83	0.84
2009	259.9	269.8	212.0	1.23	1.27
2010	310.8	319.1	324.9	0.96	0.98
2011	398.2	399.5	324.1	1.23	1.23
2012	353.5	353.0	298.1	1.19	1.18
2013	432.5	434.7	784.1	0.55	0.55
2014	973.3	919.4	684.2	1.42	1.34
2015	500.3	516.2	795.9	0.63	0.65
2016	589.0	579.4	406.6	1.45	1.42
$2017{ }^{\text {c/ }}$	260.0	275.1	297.1	0.88	0.93
2018	200.1	-	-	-	

			LRW		
1984-85	14.8	NA	13.3	1.12	NA
1986-90	27.8	30.8	32.6	0.86	0.95
1991-95	13.9	13.2	14.8	0.99	0.93
1996-00	6.1	5.5	9.5	0.69	0.62
2001	16.7	18.5	15.7	1.06	1.18
2002	18.7	18.3	24.9	0.75	0.73
2003	24.6	23.4	26.0	0.95	0.90
2004	24.1	24.2	22.3	1.08	1.09
2005	20.2	21.4	16.8	1.20	1.27
2006	16.6	16.6	18.1	0.92	0.92
2007	10.1	10.0	4.3	2.35	2.33
2008	3.8	3.8	7.1	0.54	0.54
2009	8.5	8.6	7.5	1.13	1.15
2010	9.7	10.0	10.9	0.89	0.92
2011	12.5	13.1	15.2	0.82	0.86
2012	16.2	16.2	13.9	1.17	1.17
2013	14.2	14.3	25.8	0.55	0.55
2014	34.2	33.4	25.8	1.33	1.29
2015	18.9	19.4	32.4	0.58	0.60
2016	22.2	22.4	13.0	1.71	1.72
$2017{ }^{\text {c/ }}$	12.5	13.6	7.8	1.60	1.74
2018	7.6	-	-	-	-

TABLE II-8. Predicted and postseason returns of Columbia River adult summer and fall Chinook in thousands of fish. (Page 2 of 3)

	March Preseason Forecast $^{\text {/ }}$	April STT Modeled Forecast $^{\text {// }}$	March Postseason Return	April Pre/Postseason	Pre/Postseason

TABLE II-8. Predicted and postseason returns of Columbia River adult summer and fall Chinook in thousands of fish. (Page 3 of 3)

Year	March Preseason Forecast $^{\text {a }}$	April STT Modeled Forecas ${ }^{\text {b/ }}$	March Postseason Return	April Pre/Postseason	MCB Pre/Postseason
$1991-95$	34.6	35.6	32.4	1.08	1.10
$1996-00$	49.9	47.9	48.6	1.07	1.04
2001	43.5	45.3	76.4	0.57	0.59
2002	96.2	91.8	108.4	0.89	0.85
2003	104.8	94.6	150.2	0.70	0.63
2004	90.4	88.8	117.6	0.77	0.76
2005	89.4	89.7	98.0	0.91	0.92
2006	88.3	86.6	80.4	1.10	1.08
2007	68.0	69.1	46.9	1.45	1.47
2008	54.0	55.1	75.5	0.72	0.73
2009	94.4	97.9	73.1	1.29	1.34
2010	79.0	74.6	79.0	1.00	0.94
2011	100.0	100.4	85.4	1.17	1.18
2012	90.8	90.7	58.7	1.55	1.55
2013	105.2	96.3	243.4	0.43	0.40
2014	360.1	340.2	203.8	1.77	1.67
2015	113.3	116.9	170.6	0.66	0.69
2016	101.0	99.4	88.3	1.14	1.13
$2017^{\text {c/ }}$	45.6	48.3	47.4	0.96	1.02
2018	36.4	-	-	-	-

	SUMMER			
2008	52.0		55.5	0.94
2009	70.7		53.9	1.31
2010	88.8	72.3	1.23	
2011	91.1	92.6	80.6	1.13
2012	91.2	78.5	58.3	1.56
2013	73.5	64.7	67.6	1.09
2014	67.5	78.3	0.86	1.59
2015	73.0	95.6	126.9	0.58
2016	93.3	64.8	91.0	1.03
$2017^{c /}$	63.1	-	68.2	0.93
2018	67.3	-	-	0.79

a/ March preseason forecasts are ocean escapements based on terminal run size and stock-specific cohort relationships affected by the historical "normal" ocean fisheries, generally betw een 1979 and the most recent complete broods.
b/ STT-modeled forecasts adjust March preseason forecasts for Council-adopted ocean regulations each year, and should provide a more accurate estimate of expected ocean escapement.
c/ Postseason estimates are preliminary.

$\stackrel{\bigcirc}{\infty}$	Year or Average	Preseason Forecast	Postseason Return	Pre/Postseason									
$\begin{aligned} & \stackrel{0}{\mathbb{N}} \\ & \underset{\infty}{2} \end{aligned}$	Nooksack-Samish Hatchery and Natural				East Sound Bay Hatchery			Skagit Hatchery			Skagit Natural		
0	1993-95	45.2	27.6	1.64	3.3	1.6	7.45	1.3	3.4	0.50	9.1	7.3	1.26
익	1996-00	27.0	35.4	0.82	2.1	0.5	12.55	0.2	0.2	0.83	7.0	10.9	0.79
ग	2001	34.9	65.6	0.55	1.6	0.9	16.00	0.0	0.0	-	9.1	14.1	0.65
\bigcirc	2002	52.8	57.0	0.99	1.6	0.9	2.29	0.0	0.1	-	13.8	20.0	0.69
윽	2003	45.8	30.0	1.51	1.6	0.2	8.00	0.0	0.3	-	13.7	10.3	1.38
	2004	34.2	18.1	1.83	0.8	0.0	200.00	0.5	0.0	-	20.3	24.3	0.83
	2005	19.5	16.5	1.07	0.4	0.0	13.33	0.7	0.4	3.50	23.4	23.4	0.99
	2006	16.9	31.9	0.53	0.4	0.0	25.00	0.6	0.4	1.51	24.1	22.5	1.07
	2007	18.8	26.5	0.71	0.4	0.0	66.67	1.1	0.4	2.75	15.0	13.0	1.15
	2008	35.3	29.1	1.21	0.8	0.0	0.00	0.7	0.2	3.50	23.8	15.0	1.59
	2009	23.0	20.9	1.10	0.1	0.0	25.00	0.6	0.1	6.00	23.4	12.5	1.87
	2010	30.3	35.8	0.85	2.3	0.7	3.29	0.9	0.1	11.25	13.0	10.0	1.30
	2011	37.5	33.3	1.13	0.4	0.7	0.57	1.5	0.1	15.00	14.3	9.2	1.55
	2012	44.0	32.6	1.35	0.4	1.6	0.25	1.3	0.1	13.00	8.3	15.8	0.53
	2013	47.2	31.4	1.50	2.0	1.1	1.82	0.3	0.1	3.00	12.9	13.0	0.99
	2014	43.9	25.5	1.72	1.2	0.3	4.00	0.3	0.0	7.50	18.0	10.1	1.78
N	2015	38.6	18.1	2.13	1.2	0.9	1.33	0.6	0.0	0.00	11.8	14.8	0.80
	2016	27.9	15.8	1.77	0.7	0.7	1.00	0.4	0.1	4.00	15.1	21.1	0.72
	$2017{ }^{\text {b/ }}$	21.2	NA	NA	0.8	NA	NA	0.4	NA	NA	15.8	NA	NA
	2018	24.6	-	-	0.7	-	-	0.3	-	-	13.3	-	-

Year or Average	Preseason Forecast	Postseason Return	Pre/Postseason									
Stillaguam ish ${ }^{\text {c/ }}$Natural				Snohomish ${ }^{\text {c/ }}$Hatchery			Snohomish ${ }^{\text {c/ }}$Natural			Tulalip ${ }^{\text {c/ }}$ Hatchery		
1993-95	1.8	1.2	1.92	2.0	4.1	0.48	4.6	4.8	0.96	2.6	3.9	1.30
1996-00	1.6	1.3	1.20	7.0	5.6	1.67	5.3	5.5	0.98	3.7	10.1	0.39
2001	1.7	1.4	1.22	4.1	0.9	4.57	5.8	8.4	0.69	5.5	5.1	1.08
2002	2.0	1.6	1.25	6.8	2.6	2.66	6.7	7.3	0.92	5.8	5.2	1.12
2003	2.0	1.0	1.98	9.4	5.8	1.63	5.5	5.6	0.99	6.0	8.7	0.69
2004	3.3	1.6	1.19	10.1	6.4	1.58	15.7	11.2	1.40	6.8	6.5	1.05
2005	2.0	1.2	1.42	9.9	4.0	2.48	14.2	5.0	2.84	6.4	7.4	0.86
2006	1.6	1.3	1.26	9.6	4.3	2.23	8.7	8.8	0.99	9.3	5.8	1.60
2007	1.9	0.8	2.38	8.7	6.6	1.32	12.3	4.0	3.08	8.4	6.1	1.38
2008	1.1	1.8	0.61	8.8	6.3	1.40	6.5	8.7	0.75	2.7	3.2	0.84
2009	1.7	1.2	1.42	4.9	2.2	2.23	8.4	2.3	3.65	4.0	1.7	2.35
2010	1.4	1.0	1.40	5.6	2.7	2.07	9.9	4.8	2.06	3.4	3.2	1.06
2011	1.8	1.3	1.38	5.2	3.1	1.68	7.4	2.0	3.70	3.5	5.8	0.60
2012	0.9	1.7	0.53	3.9	8.4	0.46	2.8	3.4	0.82	5.9	0.6	9.83
2013	1.3	0.9	1.44	5.9	6.1	0.97	3.6	2.6	1.38	10.9	1.9	5.74
2014	1.6	0.4	4.00	5.4	6.2	0.87	5.3	2.4	2.21	4.7	1.8	2.61
2015	0.5	0.6	0.83	3.3	4.8	0.69	4.2	2.3	1.83	1.3	2.0	0.65
2016	0.5	0.5	1.00	5.0	10.0	0.50	3.3	3.5	0.94	1.4	6.0	0.23
$2017{ }^{\text {b/ }}$	1.5	NA	NA	4.8	NA	NA	3.4	NA	NA	5.3	NA	NA
2018	1.6	-	-	6.5	-	-	3.5	-	-	7.5	-	-

0 0 0 0	Year or Average	Preseason Forecast	Postseason Return	Pre/Postseason	Preseason Forecast	Postseason Return	Pre/Postseason	Preseason Forecast	Postseason Return	Pre/Post- season	Preseason Forecast	Postseason Return	Pre/Postseason
$\stackrel{1}{8}$	South Puget Sound Hatchery				South Puget Sound Natural			Strait of Juan de Fuca Hatchery			Strait of Juan de Fuca Natural		
(1)													
0	1993-95	54.7	56.1	1.14	22.1	15.0	0.86	2.5	0.9	11.98	1.7	1.6	1.21
\bigcirc	1996-00	64.3	51.1	1.13	19.2	24.0	0.92	2.1	1.2	5.34	0.9	2.3	0.39
T0	2001	73.7	76.6	0.76	16.2	60.6	0.80	0.0	1.7	0.00	3.5	2.0	1.75
8	2002	90.8	69.3	1.07	16.9	57.0	0.79	0.0	1.6	0.00	3.6	2.2	0.97
각	2003	86.6	57.2	1.14	19.6	38.6	1.28	0.0	1.3	0.00	3.4	2.8	0.72
-	2004	86.5	66.6	1.16	17.5	42.3	0.61	0.0	1.4	0.00	3.6	4.1	0.85
	2005	83.1	73.9	0.95	17.7	19.0	0.46	0.0	1.4	0.00	4.2	2.1	2.00
	2006	85.8	104.1	0.82	21.3	37.0	0.58	0.0	1.2	0.00	4.2	3.2	1.31
	2007	83.0	140.3	0.59	17.0	30.1	0.56	0.0	0.8	0.00	4.4	1.3	3.38
	2008	101.6	90.6	1.12	21.1	32.2	0.65	0.0	0.7	0.00	3.2	1.2	2.67
	2009	93.0	72.7	1.28	17.2	13.3	1.29	0.0	1.5	0.00	2.4	1.3	1.85
	2010	97.4	82.9	1.17	12.7	15.8	0.80	0.0	0.7	0.00	1.9	2.6	0.73
	2011	118.6	83.9	1.41	8.9	20.6	0.43	0.0	0.7	0.00	2.5	2.9	0.86
	2012	95.8	61.9	1.55	8.9	23.0	0.39	0.0	1.2	0.00	2.9	2.1	1.38
	2013	102.0	75.5	1.35	5.0	22.2	0.23	2.7	2.1	1.29	1.6	4.8	0.33
-	2014	96.7	37.1	2.61	4.8	7.1	0.68	3.8	2.0	1.90	1.5	4.2	0.36
+	2015	62.4	47.1	1.32	3.8	5.5	0.69	4.9	2.8	1.75	3.5	4.5	0.78
	2016	43.1	83.8	0.51	4.5	6.0	0.75	4.3	1.9	2.26	2.3	2.6	0.88
	$2017{ }^{\text {b/ }}$	80.4	NA	NA	5.7	NA	NA	3.8	NA	NA	0.8	NA	NA
	2018	123.6	-	-	4.8	-	-	6.0	-	-	1.4	-	-

FIGURE II-1. The Sacramento Index (SI) and relative levels of its components. The Sacramento River fall Chinook $S_{\text {msy }}$ of 122,000 adult spawners is noted on the vertical axis.

FIGURE II-2. Sacramento Index (SI) forecast based on log-log regression of the SI on jack escapement from the previous year, accounting for autocorrelated errors. The solid line represents the fitted model and the black dot denotes the SI forecast. Years shown are SI years.

FIGURE II-3. Regression estimators for Klamath River fall Chinook ocean abundance (September 1) based on that year's river return of same cohort. Numbers in plots denote brood years.

Sacramento River fall Chinook

Lower Columbia Hatchery Tule Chinook

Klamath River fall Chinook

Spring Creek Hatchery Tule Chinook

FIGURE II-4. Selected preseason vs. postseason forecasts for Chinook stocks with substantial contribution to Council area fisheries.

CHAPTER III - COHO SALMON ASSESMENT

COLUMBIA RIVER AND OREGON/CALIFORNIA COAST COHO

OREGON PRODUCTION INDEX AREA

The majority of coho harvested in the Oregon Production Index (OPI) area originate from stocks produced in rivers located within the OPI area (Leadbetter Point, Washington to the U.S./Mexico border). These stocks include hatchery and natural production from the Columbia River, Oregon Coast, and northern California, and are divided into the following components: (1) public hatchery (OPIH), (2) Oregon coastal natural (OCN), including river and lake components, (3) Lower Columbia natural (LCN), and (4) natural and hatchery stocks south of Cape Blanco, Oregon, which include the Rogue, Klamath, and Northern California coastal stocks. Direct comparisons of 2017 abundance forecasts with recent year preseason abundance forecasts and postseason estimates are reported in Table III-1.

Beginning in 2008, a new method was developed to estimate coho abundances for both the natural and hatchery components of the Columbia River and the Oregon coast. The traditional method of stock abundance estimation used only catch data from Leadbetter Point, Washington, to the U.S./Mexico border. The assumption prior to 2008 was that OPI stocks that were caught north of the OPI area were balanced by northern stocks that were caught inside the OPI area. This assumption was valid as long as fisheries north and south were balanced. However, in recent years, fisheries to the south have been more restrictive than those to the north, leading to underestimation of harvest of OPI area stocks. In addition, the estimation technique was not consistent with the methods used in Coho FRAM. The Mixed Stock Model (MSM) used for constructing the FRAM base period data was used to estimate the contribution of various coho stocks, including the OPI area stocks, to ocean fisheries and was based on CWT recoveries and associated tag rates. The MSM includes all fisheries that impact a particular stock, and therefore should provide a better overall accounting of total harvest and mortality of both Columbia River and Oregon coast coho stocks. The new run size estimates are based on the 1986-1997 base period and FRAM run reconstructions for more recent years. The Oregon Production Index Technical Team (OPITT) decided to use the MSM run reconstruction database for future accounting and forecasts. The MSM estimates were refined for use in 2009, with particular attention to the base period reconstruction for OCN coho. In 2010, the relationship between the MSM and previous time series was reconsidered. The changes in fishery effort patterns that resulted in biased harvest estimates began in the mid- to late-1990s, so the first few years of the MSM time series should be equivalent to the previous time series. This was used as justification to use the MSM data set as a continuation of the previous time series starting in 1986. In 2013, the OPI hatchery and OCN predictors used the longer, merged time series. This results in a higher level of statistical significance for the predictors and lower residuals in most recent years.

Hatchery Coho

OPI area public hatchery coho smolt production occurs primarily in Columbia River facilities and net pens. Several facilities located in Oregon coastal rivers and in the Klamath River Basin, California, collectively produce fewer coho. Salmon Trout Enhancement Hatchery Coho Smolt Program (STEP) program releases were discontinued after the 2004 brood. OPI area smolt releases since 1960 are reported by geographic area in Appendix C, Table C-1.

There have been no Oregon coastal private hatchery coho (PRIH) smolt releases since 1990.

Predictor Description

Prior to 2008, the OPIH stock predictor was a multiple linear regression with the following variables: (1) Columbia River jacks (Jack CR), (2) Oregon coastal and Klamath River Basin jacks (Jack OC), and (3) a
correction term for the proportion of delayed smolts released from Columbia River hatcheries (Jack CR * [SmD/SmCR]).

In 2008, the stock predictor was modified slightly from that used in previous years. Because of the shorter data set (1986-2007 vs. 1970-2007) and the near-total phase-out of coastal coho salmon hatcheries, the factor for Oregon and California jacks (Jack OC) was not statistically significant in the regression. A simplified model with all OPI jacks combined into one term (Jack OPI) was used, and all parameters were statistically significant. In 2011, the longer (1970-2010) time series was used with the simplified model.

The OPIH stock predictor is partitioned into Columbia River early and late stocks based on the proportion of the 2017 jack returns of each stock adjusted for stock-specific maturation rates. The coastal hatchery stock is partitioned into northern and southern coastal stock components. The northern OPIH coastal stock is comprised of hatchery production from the central Oregon Coast. The southern OPIH coastal stock is comprised of hatchery production from the Rogue River basin in southern Oregon and the Klamath and Trinity basins in northern California. The 2018 partition was based on the proportion of the smolt releases in 2017.

For the 2018 abundance forecast, the database includes 1970-2017 recruits and 1969-2016 jack returns (in thousands of fish). The model was:

$$
\operatorname{OPIH}(\mathrm{t})=\mathrm{a}(\operatorname{Jack} \operatorname{OPI}(\mathrm{t}-1))+\mathrm{b}((\operatorname{Jack} \operatorname{CR}(\mathrm{t}-1)([\operatorname{SmD}(\mathrm{t}-1) / \operatorname{SmCR}(\mathrm{t}-1)])+\mathrm{c}
$$

Where:

a	$=$	19.21
b	$=$	27.22
c	$=$	-91.65
adjusted r^{2}	$=$	0.94

The OPIH stock data set and a definition of the above terms are presented in Appendix C, Table C-2.

Predictor Performance

Recent year OPIH stock preseason abundance forecasts partitioned by production area, stock, and as a total, are compared with postseason estimates in Table III-1. The 2017 preseason abundance prediction of 394,300 OPIH coho was 1.4 times higher than the preliminary postseason estimate of 284,800 coho.

Since 1983, the OPIH predictor has performed well (Figure III-1a). The years with the highest variations were due principally to high interannual variability in the jack-to-adult ratios.

Stock Forecast and Status

Using the appropriate values from Appendix C, Table C-2, the OPIH abundance forecast for 2018 is 294,100 coho, 75 percent of the 2017 prediction and 3 percent higher than the preliminary 2017 postseason estimate.

Oregon Coastal Natural Coho

The OCN stock is composed of natural production north of Cape Blanco, Oregon from river (OCNR) and lake (OCNL) systems, which are forecasted independently.

Under the FMP, ESA consultation standards are used in place of ACLs for ESA-listed stocks like OCN (and Southern Oregon/Northern California (SONCC) and Central California Coho (CCC)) coho.

Predictor Description

Oregon Coastal Natural Rivers

Prior to 2010, a variety of methods were used to forecast OCNR coho abundance. Beginning in 2011, generalized additive models (GAMs) were used to relate OCNR recruitment to ocean environment indices. Nine variables were evaluated, ranging from indices of large-scale ocean patterns (e.g., Pacific Decadal Oscillation [PDO]) to local ecosystem variables (e.g., sea surface temperature at Charleston, OR). It was found that high explanatory power and promising forecast skill could be achieved when the mean May-July PDO averaged over the four years prior to the return year was used in combination with two other variables in a GAM. The multi-year average of the PDO, in essence, explains the lower frequency (multi-year) variability in recruitment, and can be viewed as a replacement of the Regime Index used previously. A final set of six models using six different environmental indices plus parent spawner abundance was chosen from the possible model combinations. When averaging the predictions from the set of models (the ensemble mean), a higher skill (in terms of variance explained or cross-validation) was achieved than by selecting any single model. Making multiple forecasts from a set of models also provides a range of possible outcomes that reflects, to some degree, the uncertainty in understanding how salmon productivity is driven by ocean conditions.

The GAM with 3 predictor variables can be expressed in the following general form:
$\hat{Y}=f\left(X_{1}\right)+f\left(X_{2}\right)+f\left(X_{3}\right)+\varepsilon$

Where \hat{Y} is the prediction, X_{1} through X_{3} are the predictor variables, and ε is the deviation of \hat{Y} from the observation Y. For the prediction, Y was the log-transformation of annual recruit abundance. The term f represents a smooth function, which in this case is a cubic spline.

The ensemble mean predictor used for the 2018 forecast was the geometric mean of the six GAM predictors:

Ensemble Mean of six forecasts based on environmental conditions and spawners.

Variables		Prediction	r^{2}	OCV $^{\mathrm{a} /}$	
PDO	Spring Transition (Julian date; t-1)	Log Spawners (t-3)	45,305	0.66	0.57
PDO	Multivariate ENSO Index (Oct-Dec; t-1)	Upwelling (July-Sept; t-1)	51,496	0.69	0.59
PDO	Spring Transition (Julian date; t-1)	Multivariate ENSO Index (Oct-Dec; t-1)	48,917	0.68	0.61
PDO	Upwelling (July-Sept; t-1)	Sea Surface Temperature (May-Jul; t-1)	52,992	0.64	0.52
PDO	Sea Surface Height (Apr-June; t-1)	Upwelling (July-Sept; t-1)	52,512	0.69	0.58
PDO	Upwelling (Sept-Nov; t-1)	Sea Surface Temperature (Jan; t)	46,043	0.67	0.54
Ensemble Mean (90\% prediction intervals)	49,450	0.71	0.62		

a/ OCV - ordinary cross-validation score
The OCNR stock data set and a definition of the above terms are presented in Appendix C, Table C-4.

Oregon Coastal Natural Lakes

Since 1988, except for 2008, the abundance of OCNL index coho has been predicted using the most recent three-year average adult stock abundance. OCNL coho production occurs from three lake systems (Tenmile, Siltcoos, and Tahkenitch). Following the same reasoning used for the OCN Rivers predictor in 2008, OPITT chose to use the 2007 postseason abundance estimate of 10,000 coho for the 2008 preseason prediction instead of using the most recent three-year average.

For 2018, OPITT chose to use the most recent three-year average adult stock abundance, which predicts 5,400 coho.

Predictor Performance

Recent year OCN preseason abundance predictions are compared to postseason estimates in Table III-1. The 2017 preseason abundance prediction of 101,900 OCN coho was 1.55 times higher than the preliminary postseason estimate of 65,600 coho

Stock Forecasts and Status

The 2018 preseason prediction for OCN (river and lake systems combined) is 54,900 coho, 54 percent of the 2017 preseason prediction and 84 percent of the 2017 postseason estimate (Table III-1). The 2018 preseason prediction for OCNR and OCNL components are 49,500 and 5,400 coho, respectively.

Based on parent escapement levels and observed OPI smolt-to-jack survival for 2015 brood OPI smolts, the total allowable OCN coho exploitation rate for 2018 fisheries is no greater than 15.0 percent under the Salmon FMP (Amendment 13) and no greater than 15.0 percent under the matrix developed by the OCN Coho Work Group during their review of Amendment 13 (Table V-8; Appendix A, Tables A-2 and A-3, respectively). The work group recommendation was accepted by the Council as expert biological advice in November 2000.

In November 2013, the Council approved a methodology change for a new marine survival index for the OCN coho harvest matrix that uses biological and oceanographic indicators for preseason planning beginning in 2014^{1}. Based on this methodology, the marine survival index of 4.3 percent allows for a total allowable exploitation rate for 2018 fisheries that is no greater than 15.0 percent (Table V-8: Appendix Table A-4).

Lower Columbia River Natural

LCN coho consist of naturally produced coho mostly from Columbia River tributaries below Bonneville dam; however, coho produced in the upper Willamette are not part of the ESA-listed ESU and are not included in the LCN coho forecast. LCN coho were listed as endangered under the Oregon State ESA in 2002, and as threatened under the Federal ESA on June 28, 2005. Under the FMP, ESA consultation standards are used in place of ACLs for ESA-listed stocks like LCN coho.

Predictor Description

The 2018 predictions for the Oregon LCN coho populations are derived by the recent 2-year average abundances based on spawning ground counts. The 2018 adult abundance forecast for Oregon LCN coho is 9,000 .

The 2018 predictions for the Washington LCN coho populations are derived by combining estimates of the 2015 brood year natural smolt production based on watershed area and the marine survival rate of 3.9 percent. The 2018 adult abundance forecast for Washington LCN coho is 12,900.

Predictor Performance
The LCN stock predictor methodology was developed in 2007. The preseason abundance compared to the postseason estimate is presented in Table III-1. The 2017 preseason abundance prediction of 30,100 LCN coho was slightly lower than the preliminary postseason estimate of 31,200 coho.

[^0]
Stock Forecast and Status

The 2018 prediction for LCN coho is 21,900 coho (Table III-1). This abundance estimate includes both Oregon and Washington LCN components.

NMFS ESA guidance for harvest of LCN coho in marine and mainstem Columbia River fisheries is based on a matrix describing parent escapement levels for multiple populations and the observed Columbia River OPI smolt-to-jack survival rate. Based on this matrix, the total allowable marine and mainstem Columbia River exploitation rate for LCN coho in 2018 fisheries would be no more than 18.0 percent.

Oregon Production Index Area Summary of 2018 Stock Forecasts

The 2018 combined OPI area stock abundance is predicted to be 349,000 coho, which is 70 percent of the 2017 preseason prediction of 496,200 coho and slightly below the 2017 preliminary postseason estimate of 350,400 coho. The historical OPI abundances are reported in Table III-2.

WASHINGTON COAST COHO

Washington coastal coho stocks include all natural and hatchery stocks originating in Washington coastal streams north of the Columbia River to the western Strait of Juan de Fuca (west of the Sekiu River). The stocks in this group most pertinent to ocean salmon fishery management are Willapa Bay (hatchery), Grays Harbor, Quinault (hatchery), Queets, Hoh, and Quillayute coho. These stocks contribute primarily to ocean fisheries off Washington and B.C.

A variety of preseason abundance estimators currently are employed for Washington coast and Puget Sound coho stocks, primarily based on smolt production and survival (Table I-2). These estimators are used to forecast preseason abundance of adult ocean (age-3) recruits.

A comparison was made of preseason ocean age-3 forecasts with postseason estimates derived from run reconstructions using FRAM ("Backwards" mode) to expand observed escapements to ocean abundance from CWT recovery data. It should be noted that forecast methodology has changed over time, and the overall trends and biases may not reflect the current methods.

Except for Willapa Bay, Washington Coast coho fall within an exception to the ACL requirements of the MSA because they are managed under an international agreement (the PST); therefore, specification of ACLs is not necessary for these stocks.

Willapa Bay

Predictor Description

The natural forecast was calculated using the 2015 brood year spawner escapements expanded by freshwater survival to calculate Willapa Bay smolt outmigrants. That value was then applied to a marine survival rate of 2.8 percent (WDFW, 2018) and corrected for a three-year average (2015-17) model performance. The terminal runsize was expanded to ocean age-3 using a recent two-year average exploitation rate (2016-2017) from the ocean fisheries.

The hatchery forecast is based on a terminal marine survival rate of 2.4 percent created by back-calculating the ocean age- 3 hatchery estimate minus a current two-year average (2016-17) of ocean impacts then divided by the total smolts released for brood year 2015. This was applied to the 2015 brood year smolts released in the spring of 2017 to create a terminal runsize. The terminal runsize was expanded to ocean age- 3 using a recent two-year average exploitation rate (2016-17) from the ocean fisheries.

Predictor Performance

There was no information available to evaluate performance of predictors for Willapa coho stocks.

Stock Forecasts and Status

The 2018 natural coho ocean age-3 abundance forecast is 20,645 compared to a 2017 preseason forecast of 36,720.

The 2018 Willapa Bay hatchery coho ocean age-3 abundance forecast is 44,542 compared to a 2017 preseason forecast of 54,998 .
$O F L, A B C$, and $A C L$
The OFL, ABC, and ACL are defined in terms of spawner escapement ($\mathrm{S}_{\mathrm{OFL}}, \mathrm{S}_{\mathrm{ABC}}$, and $\mathrm{S}_{\mathrm{ACL}}$), and are calculated using potential spawner abundance forecasts and established exploitation rates. For Willapa Bay natural coho, $\mathrm{F}_{\mathrm{MSY}}=0.74$, the value estimated from a stock-specific spawner-recruit analysis. The OFL for Willapa Bay natural coho is $\mathrm{SofL}_{\mathrm{OF}}=20,645 \times(1-0.74)=5,368$. Because Willapa Bay natural coho are a Tier-1 stock, $\mathrm{F}_{\mathrm{ABC}}=\mathrm{F}_{\mathrm{MSY}} \times 0.95=0.70$, and $\mathrm{F}_{\mathrm{ACL}}=\mathrm{F}_{\mathrm{ABC}}$. The ABC for Willapa Bay natural coho is $\mathrm{S}_{\mathrm{ABC}}$ $=20,645 \times(1-0.70)=6,194$, with $\mathrm{S}_{\mathrm{ACL}}=\mathrm{S}_{\mathrm{ABC}}$. These preseason estimates will be recalculated with postseason abundance estimates (when available) to assess ACL and OFL compliance.

Grays Harbor

Preseason abundance forecasts are made for natural fish throughout the system and for hatchery fish returning to three freshwater rearing complexes and three saltwater net-pen sites. The forecasts include fish originating from numerous volunteer production projects.

Predictor Description

The natural forecast is the sum of the Chehalis River natural, Humptulips River natural, and South Bay tributary natural forecasts. The Chehalis River coho forecast was developed using the model Ocean Recruits ~ PDO and maximum one-day September upwelling index. The Humptulips and South Bay tributary forecasts are based on recruit densities scaled from Clearwater and Chehalis basins, respectively.

The hatchery forecast is the sum of the Chehalis River, Humptulips River, and Grays Harbor net pen and off-site hatchery program hatchery-origin forecasts. The Chehalis River, Humptulips River, and Grays Harbor net-pen and off-site hatchery program hatchery-origin forecasts were based on recent 10 year average return/smolt rates (excluding two highest return rates) expanded to ocean age- 3 recruits.

Predictor Performance

A comparison of preseason ocean age-3 forecasts with postseason estimates for Grays Harbor natural coho derived from FRAM run reconstruction indicated no notable bias. The 2016 forecast was slightly higher than the 2016 postseason estimate (Table III-3; Figure III-1).

Stock Forecasts and Status

The 2018 Grays Harbor natural ocean age- 3 abundance forecast is 42,379 , compared to a 2017 preseason forecast of 50,043 . This ocean abundance results in classification of this stock's status as "Low" under the 2002 PST Southern Coho Management Plan (Table III-5).

The 2018 Grays Harbor hatchery coho ocean age- 3 abundance forecast is 51,414 , compared to a 2017 preseason forecast of 36,355 .

OFL

The OFL is defined in terms of spawner escapement $\left(\mathrm{S}_{\text {OFL }}\right)$. For Grays Harbor natural coho MFMT $=0.65$ and the OFL is $\mathrm{S}_{\mathrm{OFL}}=42,379 \times(1-0.65)=14,833$. The preseason $\mathrm{S}_{\mathrm{OFL}}$ will also be recalculated with postseason abundance estimates (when available) to assess OFL compliance.

Quinault River

Predictor Description

The natural forecast represents the recent 10-year average (excluding 2009 and 2014) ocean age-3 abundance.

The hatchery forecast is based on the smolt releases from the Quinault Cook Creek Hatchery $(651,821)$ multiplied by the marine survival rate of 4.54 percent. The marine survival rate is based on the 10 -year smolt to ocean age-3 survival (excluding 2009 and 2014). This is a higher marine survival rate than the 4.38 percent used in 2017.

Predictor Performance

There was no information available to evaluate performance of predictors for these stocks.

Stock Forecasts and Status

The 2018 forecast for Quinault natural coho is 25,442 ocean age- 3 recruits, a decrease from the 2017 forecast of 26,300 .

The Quinault hatchery coho forecast is 29,622 ocean age- 3 recruits. 100 percent of the hatchery smolts were marked with an adipose fin clip.

Queets River

Predictor Description

The natural coho forecast represents the estimated smolt outmigration multiplied by a projected marine survival rate of 4.96 percent to January age-3. The marine survival rate estimate is based on a model developed by Quinault Fisheries Department, which uses a relationship between survival to January age-3 and the mean PDO value for June plus the maximum upwelling index for February measured at 48 N 125 W . In 2017, an estimated 172,871 smolts emigrated from the Queets System.

The hatchery forecast is based on the smolt releases from $2017(585,885)$ multiplied by a three-year average (2014-2016) marine survival rate of 2.27 percent. This is a higher marine survival rate than the 2.12 percent used in 2017.

Predictor Performance

A comparison of preseason ocean age-3 forecasts with postseason estimates derived from FRAM run reconstruction indicated no persistent tendency to under- or over- predict abundance. The 2016 forecast was higher than the postseason estimate (Table III-3; Figure III-1).

Stock Forecasts and Status

The 2018 Queets natural coho forecast is 6,964 ocean age-3 recruits, an increase compared to the 2016 and 2017 forecast levels of 3,495 and 6,548 , respectively. This ocean abundance results in classification of this stock's status as "low" under the 2002 PST Southern Coho Management Plan (Table III-5).

The 2018 Queets hatchery (Salmon River) coho forecast is 10,814 ocean age-3 recruits, a decrease compared to the 2017 forecast of 13,652 . Approximately 85 percent of the fish released from the Salmon River facility were marked with an adipose fin clip.

OFL
The OFL is defined in terms of spawner escapement ($\mathrm{S}_{\text {OFL }}$). For Queets River coho, MFMT $=0.65$, and the OFL is $\mathrm{S}_{\mathrm{OFL}}=6,964 \times(1-0.65)=2,437$. The preseason $\mathrm{S}_{\mathrm{OFL}}$ value will be recalculated with postseason abundance estimates (when available) to assess OFL compliance.

Hoh River

Predictor Description

The natural coho forecast is based on estimated average smolt production per square mile of watershed from the Clearwater tributary which lies between the Queets River mainstem and the Hoh River. The Quinault Fisheries Department has a long-standing trapping program on the Clearwater River to estimate smolt production, it is assumed the two rivers produce smolts at a comparable rate per square mile of watershed (WDFW 2018). To estimate Hoh River production the Clearwater production of 491 smolts per square mile was multiplied by the size of the Hoh watershed (299 square miles), for a total of 146,809 coho smolts.

The total natural smolt production estimate was then multiplied by an expected marine survival rate of 4.88 percent. This marine survival rate represents the mean of the Queets River wild stock forecast (4.96 percent January age-3) and the Strait of Juan de Fuca wild stock forecast (4.80 percent January age-3). Each model used correlations between ocean indicators and January age-3 run sizes from prior years.

No hatchery production is projected for the Hoh system for 2018.

Predictor Performance

A comparison of preseason ocean age-3 forecasts with postseason estimates derived from FRAM run reconstruction indicated a tendency to under-predict actual run-size. The 2016 forecast was lower than the postseason estimate (Table III-3; Figure III-1).

Stock Forecasts and Status

The 2018 Hoh River natural coho forecast is 5,816 ocean age-3 recruits, an increase compared to the 2017 forecast of 6,198 . This ocean abundance results in classification of this stock's status as "abundant" under the 2002 PST Southern Coho Management Plan (Table III-5).

OFL
The OFL is defined in terms of spawner escapement (Sofl). For Hoh River coho, MFMT $=0.65$, and the OFL is $\mathrm{S}_{\text {ofl }}=5,816 \times(1-0.65)=2,036$. The preseason Sofl value will be recalculated with postseason abundance estimates (when available) to assess OFL compliance.

Quillayute River

Quillayute River coho consist of a summer run that is managed primarily for hatchery production, and a fall run that is managed primarily for natural production. Quillayute River coho have both natural and hatchery components to both runs.

Predictor Description

The natural coho forecast is based on a scalar and average smolt production when the Quillayute system was trapped. The Clearwater River smolt production is used as a scalar to adjust the smolt production up or down from average production during the years the Bogachiel and Dickey Rivers were trapped, 198788, 1990, and 1992-94 respectively. The Quinault Fisheries Department has a long-standing trapping program on the Clearwater River to estimate smolt production.

In 2017, an estimated 99,651 smolts emigrated from the Dickey River and 236,035 smolts emigrated from the rest of the Quillayute system. The total freshwater production for the system is the sum of the two pieces, or 335,686 wild smolts. Separating these into summer and fall wild coho smolts by the relative number of spawners in brood year 2015 yields estimates of 69,231 wild summer coho smolts and 266,455 wild fall coho smolts.

Summer Coho

The summer natural coho forecast is based on the estimated total summer coho smolt production $(69,231)$ and a projected marine survival rate of 4.88 percent. This marine survival rate represents the mean of the Queets River wild stock forecast and the Strait of Juan de Fuca wild stock forecast. It is a lower marine survival rate than the 5.10 percent used in 2017.

An examination of the return rates of both hatchery releases and natural smolts indicate hatchery return rates are slightly below natural returns. Thus, for the hatchery component, a marine survival rate of 3.88 percent was selected. The survival rate of 3.88 percent was multiplied by a release of 105,156 smolts.

Fall Coho

The forecast for the natural component was based on the estimated total fall coho smolt production $(266,455)$ multiplied by an expected marine survival rate of 4.88 percent, the same as summer natural returns.

The fall hatchery production forecast was based on the same prediction of marine survival (3.88 percent) used for the summer hatchery coho forecast, multiplied by a release of 523,941 smolts.

Predictor Performance

A comparison of preseason ocean age-3 forecasts with postseason estimates for fall natural coho derived from FRAM run reconstruction indicated no notable bias. The 2016 Quillayute fall forecast was lower than the postseason estimate (Table III-3; Figure III-1).

Stock Forecasts and Status

The 2018 Quillayute River summer natural and hatchery coho forecasts are 2,743 and 3,312 ocean age-3 recruits, respectively; 100 percent of the hatchery smolts were marked with an adipose fin clip. The 2018 forecast abundance of natural summer coho is higher than the 2017 forecast.

The 2018 Quillayute River fall natural and hatchery coho forecasts are 10,557 and 16,505 ocean age- 3 recruits, respectively. The 2018 forecast abundance of Quillayute fall natural and hatchery coho forecasts are lower than the respective 2017 forecasts. The hatchery smolts were marked as follows: 363,535 (69.38 percent) adipose fin clip only; 80,185 (15.30 percent) adipose fin clip + CWT; and 80,221 (15.31 percent CWT only.

The ocean abundance forecast for Quillayute fall natural coho results in classification of the stock abundance as "abundant" under the 2002 PST Southern Coho Management Plan (Table III-5).

North Washington Coast Independent Tributaries

Predictor Description

Production from several smaller rivers and streams along the North Washington Coast (Waatch River, Sooes River, Ozette River, Goodman Creek, Mosquito Creek, Cedar Creek, Kalaloch Creek, Raft River, Camp Creek, Duck Creek, Moclips River, Joe Creek, Copalis River, and Conner Creek), which flow directly into the Pacific Ocean, is forecast as an aggregate. Generally, stock assessment programs on these systems are minimal.

The 2018 forecast of natural coho production for these independent streams is based on a prediction of 350 smolts per square mile of watershed drainage, 424 square miles of watershed, and resulting in 148,400 smolts multiplied by an expected marine survival rate of 2.8 percent. This rate was the average of the jackbased and the PDO models.

Predictor Performance

There was no information available to evaluate performance of predictors for these stocks.

Stock Forecasts and Status

The 2018 forecast of natural coho production for these independent streams is 4,144 age- 3 ocean recruits, compared to the 2017 preseason forecast of 6,460 . The 2018 hatchery forecast is unavailable at the time of printing. The 2017 hatchery preseason forecast was 163 age- 3 ocean recruits, none of the smolts released were marked with an adipose fin clip.

PUGET SOUND COHO STOCKS

Puget Sound coho salmon stocks include natural and hatchery stocks originating from U.S. tributaries in Puget Sound and the Strait of Juan de Fuca. The primary stocks in this group that are most pertinent to ocean salmon fishery management are Strait of Juan de Fuca, Hood Canal, Skagit, Stillaguamish, Snohomish, and South Puget Sound (hatchery) coho. These stocks contribute primarily to ocean fisheries off Washington and B.C.

A variety of preseason abundance estimators currently are employed for Puget Sound coho stocks, primarily based on smolt production and survival (Table I-2). These estimators are used to forecast preseason abundance of adult ocean age-3 recruits. Forecasts for natural Puget Sound coho stocks were generally derived by measured or predicted smolt production from each major watershed or region, multiplied by stock-specific marine survival rate predictions based on a jack return model from the WDFW Big Beef Creek Research Station in Hood Canal, natural coho CWT tagging programs at Baker Lake (Skagit River basin) and South Fork Skykomish River, adult recruits/smolt data generated from the WDFW Deschutes River Research Station, or other information. Puget Sound hatchery forecasts were generally the product of 2015 brood year (BY) smolt releases from each facility, and a predicted marine survival rate for each program. Hatchery marine survival rates were typically based on recent year average survival rates derived from CWT recovery information and/or run reconstructions.

The 2018 total Puget Sound region natural and hatchery coho ocean recruit forecast is 529,836 , compared to a 2017 preseason forecast of 597,523 . The 2018 natural forecast is 243,074 , compared to the 2017 preseason forecast of 288,265 . The 2018 hatchery forecast is 286,762 , compared to the 2017 preseason forecast of 309,258 .

A comparison was made of preseason ocean age-3 forecasts with postseason estimates derived from run reconstructions using FRAM ("Backwards" mode). This method expands observed escapements and actual
catch to produce a FRAM estimate of post-season ocean abundance. This post-season FRAM estimate is dependent upon Base Period (1986-1992 fishing years) CWT recovery data. It should be noted that forecast methodology has changed over time, and the overall trends and biases may not reflect the current methods.

Puget Sound coho fall within an exception to the ACL requirements of the MSA because they are managed under an international agreement (the PST); therefore, specification of ACLs is not necessary for these stocks.

Strait of Juan de Fuca

Predictor Description

The natural forecast includes both Eastern and Western Strait of Juan de Fuca drainages. The forecast is based on a January age-3 ocean survival rate of 4.79 percent, derived from a weighted average of the predictions of ocean survival from two regression models, one using the Elwha hatchery coho jack return rate as an indicator of survival and the other using the NPGO from January through March of the oceanentry year. The marine survival rate was then applied to the coho smolt outmigration $(184,140)$ to produce the forecast of January age-3 recruits and converted to ocean age-3.

Predictor Performance

A comparison of preseason ocean age- 3 forecasts with postseason estimates derived from FRAM run reconstruction in recent years indicated no notable bias. The 2016 preseason forecast under-predicted the 2016 postseason estimate by a factor of . 55 (Table III-4; Figure III-1b).

Stock Forecasts and Status

The 2018 Strait of Juan de Fuca natural ocean age-3 abundance forecast is 7,168 compared to the 2017 preseason forecast of 13,058 .

The 2018 Strait of Juan de Fuca hatchery ocean age-3 abundance forecast is 10,552 .
The preseason forecast of 7,168 age- 3 ocean recruits places Strait of Juan de Fuca natural coho in the Critical category under the FMP and in the Low category under the PST. This results in an allowable total exploitation rate of no more than 20 percent under both the Council-adopted exploitation rate matrix (Appendix A, Table A-5) and the 2002 PST Southern Coho Management Plan (Table III-5).

OFL
The OFL is defined in terms of spawner escapement (Sofl). For Strait of Juan de Fuca coho MFMT $=0.60$, and the OFL is $\mathrm{S}_{\text {OFL }}=7,168 \times(1-0.60)=2,867$. The preseason $\mathrm{S}_{\text {OFL }}$ value will be recalculated with postseason abundance estimates (when available) to assess OFL compliance.

Nooksack-Samish

Predictor Description

The natural coho forecast is the product of projected natural smolt production from each stream basin in the region, multiplied by stock-specific marine survival rate expectations.

The hatchery forecast is based on median marine survival rate expectations for Lummi Bay Hatchery or Skookum Hatchery multiplied by the number of smolts released.

Predictor Performance

There was no information available to evaluate performance of predictors for Nooksack-Samish coho stocks.

Stock Forecasts and Status

The 2018 Nooksack-Samish natural ocean age-3 abundance forecast is 20,574, compared to the 2017 preseason forecast of 13,235 .

The 2018 Nooksack-Samish hatchery ocean age-3 abundance forecast is 61,256 , compared to the 2017 preseason forecast of 45,610 .

Skagit

Predictor Description

This natural forecast is based on weighted regression results of Saratoga Chlorophyll May, ONI JanuaryJune, PDO May - September and NPGO May - September. The range of brood years used in this analysis was 1996 to 2014; brood years 1998 and 1999 were excluded. The analysis produced an average marine survival rate of 6.15 ; this was multiplied by the measured smolt production from the Skagit basin. Policy agreement was reached to use the lower 95 percent confidence interval of the 2017 smolt outmigration estimate.

The hatchery forecast is based on weighted regression results of Saratoga Chlorophyll May, PDO May September and NPGO May - September. Analysis of Marblemount Hatchery CWT recoveries for brood years 1996-2013 produced an average marine survival rate of 3.91 percent; this was multiplied by the total number of smolts released from all regional hatcheries.

Predictor Performance

A comparison of preseason ocean age-3 forecasts with postseason estimates derived from FRAM run reconstruction indicated a tendency to over-predict actual run size, especially early in the time series. The 2016 preseason forecast under-predicted the postseason estimate by a factor of . 21 (Table III-4; Figure III1b).

Stock Forecasts and Status

The 2018 Skagit natural ocean age- 3 abundance forecast is 59,196 , compared to the 2017 preseason forecast of 11,160 .

The 2018 Skagit hatchery ocean age-3 abundance forecast is 13,101 , compared to the 2017 preseason forecast of 7,551.

The preseason forecast of 59,196 age-3 ocean recruits places Skagit natural coho in the Low category under the FMP and in the Moderate category under the PST. This results in an allowable total exploitation rate of no more than 35 percent under both the Council adopted exploitation rate matrix (Appendix A, Table A5) and the 2002 PST Southern Coho Management Plan (Table III-5).

OFL

The OFL is defined in terms of spawner escapement (Sofl). For Skagit River coho, MFMT = 0.20 and the OFL is $\mathrm{S}_{\text {ofL }}=59,196 \times(1-0.20)=43,357$. The preseason $\mathrm{S}_{\text {ofl }}$ value will be recalculated with postseason abundance estimates (when available) to assess OFL compliance.

Stillaguamish

Predictor Description

The natural forecast is based on the regression of adult terminal returns on adjusted smolt trap catch per unit effort (CPUE). The 2018 terminal run size was calculated using 2016 terminal escapement estimate multiplied by the ratio 2017 CPUE (2.7) to 2016 CPUE (0.4). The resulting terminal run-size estimate was then expanded by a recent 5-year pre-terminal ER average on Stillaguamish coho (2010-2014 TAMM post season reports, 20.4 percent (8.8 percent- 32.0 percent)) to get an ocean age- 3 forecast.

No hatchery production can be reliably forecasted for the Stillaguamish system for 2018.

Predictor Performance

A comparison of preseason ocean age-3 forecasts with postseason estimates derived from FRAM run reconstruction in recent years indicated no notable bias. The 2016 preseason forecast under-predicted the postseason estimate by a factor of 15 (Table III-4; Figure III-1b).

Stock Forecasts and Status

The 2018 Stillaguamish natural ocean age-3 abundance forecast is 18,950 , which compares to the 2017 preseason forecast of 7,622 .

The 2018 Stillaguamish hatchery ocean age- 3 abundance is expected to be less than 500, if any.
The preseason forecast of 18,950 age- 3 ocean recruits places Stillaguamish natural coho in the Low category under the FMP and in the Moderate category under the PST. This results in an allowable total exploitation rate of no more than 35 percent under both the Council-adopted exploitation rate matrix (Appendix A, Table A-5) and the 2002 PST Southern Coho Management Plan (Table III-5).

OFL

The OFL is defined in terms of spawner escapement ($\mathrm{Sofl}_{\text {IL }}$). For Stillaguamish coho, MFMT $=0.20$ and the OFL is $\mathrm{S}_{\text {OFL }}=18,950 \times(1-0.20)=15,160$. The preseason Soft value will be recalculated with postseason abundance estimates (when available) to assess OFL compliance.

Snohomish

Predictor Description

The natural forecast is based on production of 2017 out-migrant smolts estimated from rotary screwtraps in the Skykomish and Snoqualmie rivers and a 4.5 prcent marine survival. Smolt production for the Snohomish system in 2017 was set conservatively at the lower bound of the 95precent CI estimate for both the Skykomish and the Snoqualmie, for a total watershed production of $1,465,000$ smolts.

The hatchery forecast is based on 2017 hatchery releases of smolts from the WDFW Wallace River Hatchery and Tulalip Bernie Kai Kai Gobin Hatchery and a 4.5 percent marine survival.

Predictor Performance

A comparison of preseason ocean age-3 forecasts with postseason estimates derived from FRAM run reconstruction indicated no notable bias. The 2016 forecast under-estimated the postseason estimate by a factor of 0.32 (Table III-4; Figure III-1b).

Stock Forecasts and Status

The 2018 Snohomish natural ocean age-3 abundance forecast is 65,925 , compared to the 2017 preseason forecast of 107,325 .

The 2018 Snohomish hatchery ocean age- 3 abundance forecast is 38,303 , compared to the 2017 preseason forecast of 61,935 .

The preseason forecast of 65,925 age-3 ocean recruits places Snohomish natural coho in the Low category under the FMP and in the Moderate category under the PST. This results in an allowable total exploitation rate of no more than 40 percent under both the Council-adopted exploitation rate matrix (Appendix A, Table A-5) and the 2002 PST Southern Coho Management Plan (Table III-5).

OFL

The OFL is defined in terms of spawner escapement (Sofl). For Snohomish coho, MFMT = 0.20 and the OFL is $\mathrm{S}_{\text {ofl }}=65,295 \times(1-0.20)=52,236$. The preseason $\mathrm{S}_{\text {ofl }}$ value will be recalculated with postseason abundance estimates (when available) to assess OFL compliance.

Hood Canal

Predictor Description

The natural forecast is based on a regression of CWT natural Big Beef Creek jacks on Hood Canal December age-2 recruits, using brood years 1983-1998 and 2002-2013 and converted to ocean age-3. The 1999-2001 broods were excluded because of the unusually high recruit-per-tagged jack ratio, which is not expected to occur this year.

The hatchery forecast is based on average cohort reconstruction-based December age-2 recruits/smolt for the six most recent available broods from each facility, applied to the 2015 brood smolt releases for each facility and converted to ocean age-3.

Predictor Performance

A comparison of preseason ocean age- 3 forecasts with postseason estimates derived from FRAM run reconstruction indicated no notable bias. The 2016 preseason forecast slightly under-predicted the postseason estimate by a factor of 0.93 (Table III-4; Figure III-1b).

Stock Forecasts and Status

The 2018 Hood Canal natural ocean age- 3 abundance forecast is 59,530, compared to the 2017 preseason forecast of 115,606 .

The 2018 Hood Canal hatchery ocean age-3 abundance forecast is 84,549 , compared to the 2017 preseason forecast of 74,897 .

The preseason forecast of 59,530 age- 3 ocean recruits places Hood Canal natural coho in the Normal category under the FMP and in the Abundant category under the PST. This results in an allowable total exploitation rate of no more than 65 percent under both the Council adopted exploitation rate matrix (Appendix A, Table A-5) and the 2002 PST Southern Coho Management Plan (Table III-5).

OFL
The OFL is defined in terms of spawner escapement $\left(\mathrm{S}_{\mathrm{OFL}}\right)$. For Hood Canal coho MFMT $=0.45$, and the OFL is $\mathrm{S}_{\text {OFL }}=59,530 \times(1-0.45)=32,741$. The preseason $\mathrm{S}_{\text {OFL }}$ value will be recalculated with postseason abundance estimates (when available) to assess OFL compliance.

South Sound

Predictor Description

The natural forecast is the product of projected smolt production from each of the stream basins in the region multiplied by a marine survival rate expectation for natural coho in the region. The upper South Sound natural stocks' marine survival rate of 2.0 percent was based upon methods from WDFW, 2018 Wild Coho Forecast paper. The deep South Sound stocks' marine survival prediction of 1.3 percent also came from the methods of WDFW 2018 Wild Coho Forecast paper.

The hatchery forecast is the product of projected smolt production from each of the stream basins in the region multiplied by a marine survival rate expectation for hatchery coho in the region. The upper South Sound hatchery stocks' marine survival rate of 2.0 percent was based upon methods from WDFW, 2018 Wild Coho Forecast paper. The deep South Sound stocks' marine survival prediction of 1.3 percent also came from the methods of WDFW 2018 Wild Coho Forecast paper.

Stock Forecasts and Status

The 2018 South Sound natural ocean age-3 abundance forecast is 11,731 compared to the 2017 preseason forecast of 20,232.

The 2018 South Sound hatchery ocean age- 3 abundance forecast is 79,001 , compared to the 2017 preseason forecast of 102,360.

STOCK STATUS DETERMINATION UPDATES

Queets River natural coho, Strait of Juan de Fuca natural coho, and Snohomish River natural coho were found to meet the criteria for being classified as overfished in the PFMC Review of 2017 Ocean Salmon Fisheries, released in February 2018. Queets River coho and Strait of Juan de Fuca coho also meet the criteria for being at risk of approaching an overfished condition in 2018, given the 2017 regulations package (Table V-4).

SELECTIVE FISHERY CONSIDERATIONS FOR COHO

As the region has moved forward with mass marking of hatchery coho salmon stocks, selective fishing options have become an important consideration for fishery managers. Projected coho mark rates in Canadian, Puget Sound, and north Washington Coast fisheries are generally higher than 2017 projections. Table III-6 summarizes projected 2018 mark rates for coho fisheries by month from Southern British Columbia, Canada to the Oregon Coast, based on preseason abundance forecasts.

TABLE III-1. Preliminary preseason and postseason coho stock abundance estimates for Oregon production index area stocks in thousands of fish. (Page 1 of 2)

Year or Average	Preseason	$\text { season }^{\text {a }}$	Pre/Post season ${ }^{\text {a }}$	Preseason	eason ${ }^{\text {a }}$	Pre/Post season ${ }^{\text {a }}$	Preseason	Postseason ${ }^{\text {a/ }}$	Pre/Post season ${ }^{\text {a/ }}$	Preseason	eason ${ }^{\text {a/ }}$	Pre/Post season ${ }^{\text {a/ }}$
	Columbia River Hatchery			Columbia River Hatchery			Low er Columbia River Natural (LCN)			Oregon Coast Natural (OCN) (Rivers and Lakes)		
		Early			Late							
1996-00	212.9	181.4	1.3	128.9	102.5	1.6				62.7	52.8	1.5
2001	1036.5	873.0	1.2	491.8	488.3	1.0				50.1	163.2	0.3
2002	161.6	324.7	0.5	143.5	271.8	0.5				71.8	304.5	0.2
2003	440.0	645.7	0.7	377.9	248.0	1.5				117.9	278.8	0.4
2004	313.6	389.0	0.8	274.7	203.0	1.4				150.9	197.0	0.8
2005	284.6	282.7	1.0	78.0	111.6	0.7				152.0	150.1	1.0
2006	245.8	251.4	1.0	113.8	156.3	0.7				60.8	116.4	0.5
2007	424.9	291.0	1.5	139.5	171.0	0.8	21.5	20.5	1.0	255.4	60.0	4.3
2008	110.3	333.9	0.3	86.4	207.6	0.4	13.4	28.7	0.5	60.0	170.9	0.4
2009	672.7	681.4	1.0	369.7	374.1	1.0	32.7	37.6	0.9	211.6	257.0	0.8
2010	245.3	274.3	0.9	144.2	263.6	0.5	15.1	53.2	0.3	148.0	266.8	0.6
2011	216.0	288.5	0.7	146.5	141.2	1.0	22.7	29.5	0.8	249.4	311.6	0.8
2012	229.8	114.7	2.0	87.4	55.6	1.6	30.1	12.9	2.3	291.0	123.8	2.4
2013	331.6	190.8	1.7	169.5	110.7	1.5	46.5	36.8	1.3	191.0	128.4	1.5
2014	526.6	760.5	0.7	437.5	480.3	0.9	33.4	108.7	0.3	230.6	403.3	0.6
2015	515.2	150.5	3.4	261.9	91.8	2.9	35.9	20.9	1.7	206.6	70.4	2.9
2016	153.7	127.0	1.2	226.9	96.1	2.4	40.0	16.0	2.5	152.7	83.2	1.8
2017	231.7	170.9	1.4	154.6	108.4	1.4	30.1	31.2	1.0	101.9	65.6	1.6
2018	164.7	-	-	121.5	-	-	21.9	-	-	54.9	-	-

a/ Postseason estimates are based on preliminary data and not all stocks have been updated.
b/ LCN abundance is included as a subset of early/late hatchery abundance beginning in 2007. STEP estimates not included.
c/ Program w as discontinued in 2005.

[^1]b/ Includes estimated non-retention mortalities; troll: release mort.(1982-present) and drop-off mort.(all yrs.); sport: release mort.(1994-present) and drop-off mort.(all yrs.).
c/ Includes STEP smolt releases through the 2007 return year, after which the program w as terminated.
d/ Includes Rogue River.
e/ FRAM post-season runs used after 1985 and includes OPI origin stock catches in all fisheries.
$\mathrm{f} /$ Private hatchery stocks are excluded in calculating the OPI area stock aggregate ocean exploitation rate index.
g/ Preliminary.

Year	Preseason Forecast	Postseason Return	Pre/Postseason									
	Quillayute River Fall			Hoh River			Queets River			Grays Harbor ${ }^{\text {a/ }}$		
1990	45.5	11.7	3.91	8.1	8.7	0.93	13.6	27.3	0.50	81.2	96.1	0.84
1991	16.3	26.4	0.62	6.3	11.6	0.55	16.1	26.6	0.60	244.6	139.1	1.76
1992	22.8	15.8	1.44	8.9	15.4	0.58	11.7	17.7	0.66	60.4	58.0	1.04
1993	13.2	10.5	1.26	8.3	3.4	2.47	12.9	12.7	1.01	144-153	58.5	2.46-2.62
1994	11.6	8.4	1.38	5.0	2.2	2.31	6.9	2.5	2.78	53.8-60.2	14.0	3.84-4.30
1995	13.1	19.8	0.66	6.8	9.7	0.70	12.1	10.7	1.13	103.4	70.2	1.47
1996	13.0	20.3	0.64	4.2	7.7	0.54	8.3	22.6	0.37	121.4	89.7	1.35
1997	8.9	5.8	1.53	2.8	4.1	0.68	4.3	2.2	1.92	26.1	20.2	1.29
1998	8.0	17.4	0.46	3.4	5.6	0.61	4.2	6.3	0.66	30.1	46.4	0.65
1999	14.5	16.1	0.90	3.2	6.8	0.47	4.3	8.6	0.50	57.7	42.7	1.35
2000	8.7	16.5	0.53	3.5	9.3	0.38	2.7	12.1	0.22	47.8	51.9	0.92
2001	23.0	28.4	0.81	8.5	16.2	0.52	12.0	35.8	0.33	51.3	103.2	0.50
2002	22.3	33.2	0.67	8.5	13.2	0.64	12.5	26.3	0.47	55.4	142.0	0.39
2003	24.9	22.5	1.11	12.5	8.7	1.44	24.0	15.7	1.52	58.0	108.4	0.54
2004	21.2	20.7	1.02	8.1	6.9	1.17	18.5	13.3	1.39	117.9	90.8	1.30
2005	18.6	20.9	0.89	7.6	8.2	0.93	17.1	11.9	1.43	91.1	65.9	1.38
2006	14.6	9.9	1.48	6.4	2.7	2.36	8.3	9.2	0.90	67.3	30.6	2.20
2007	10.8	10.7	1.01	5.4	5.8	0.93	13.6	7.1	1.92	59.4	34.6	1.72
2008	10.5	11.1	0.95	4.3	4.3	1.00	10.2	7.4	1.39	42.7	49.0	0.87
2009	19.3	15.5	1.24	9.5	9.5	1.00	31.4	16.0	1.97	59.2	104.6	0.57
2010	22.0	16.4	1.34	7.6	10.9	0.70	21.8	16.5	1.32	67.9	126.1	0.54
2011	28.2	12.8	2.20	11.6	12.1	0.96	13.3	11.9	1.12	89.1	100.9	0.88
2012	33.5	12.4	2.70	14.3	5.7	2.51	37.2	8.1	4.59	150.2	104.0	1.44
2013	17.2	15.7	1.10	8.6	8.6	1.00	24.5	9.2	2.66	196.8	78.8	2.50
2014	18.4	20.5	0.90	8.9	11.1	0.80	10.3	11.6	0.89	108.8	196.4	0.55
2015	10.5	5.5	1.91	5.1	2.9	1.76	7.5	3.3	2.27	142.6	31.4	4.54
2016	4.5	11.6	0.39	2.1	5.3	0.39	3.5	6.0	0.58	35.7	35.1	1.02
2017	15.8	NA	NA	6.2	NA	NA	6.5	NA	NA	50.0	NA	NA
2018	10.6	-	-	5.8	-	-	7.0	-	-	42.4	-	-

a/ Coho FRAM w as used to estimate post-season ocean abundance.

$\begin{aligned} & \mathrm{N} \\ & \underset{\infty}{0} \end{aligned}$	Year	Preseason Forecast ${ }^{\text {b }}$	$\begin{gathered} \text { Postseason } \\ \text { Return } \\ \hline \end{gathered}$	Pre／Postseason	Preseason Forecast	Postseaso Return	Pre／Postseason	Preseason Forecast	Postseason Return	Pre／Postseason
T	Skagit River				Stillaguamish River			Hood Canal		
${ }_{8}^{8}$	1990	NA	87.2	－	75.8	34.1	2.22	94.2	14.2	6.63
$\stackrel{1}{8}$	1991	NA	81.4	－	71.5	11.3	6.33	38.1	15.3	2.49
\％	1992	NA	64.6	－	42.4	18.0	2.36	23.2	19.9	1.17
\bigcirc	1993	NA	69.6	－	61.8	10.6	5.83	89.6	16.7	5.37
${ }^{\sim}$	1994	NA	108.2	－	21.9	30.3	0.72	25.4	57.0	0.45
O	1995	NA	86.4	－	70.3	20.4	3.45	36.4	41.1	0.89
ユ	1996	NA	48.3	－	51.6	12.5	4.13	25.1	37.2	0.67
	1997	70.9	63.1	1.12	36.0	14.1	2.56	78.4	101.8	0.77
	1998	55.0	95.1	0.58	47.8	31.1	1.54	108.0	118.5	0.91
	1999	75.7	40.9	1.85	35.7	7.5	4.77	65.1	17.6	3.70
	2000	30.2	95.2	0.32	17.7	31.2	0.57	61.0	39.7	1.54
	2001	87.2	132.5	0.66	24.4	81.8	0.30	62.0	110.0	0.56
	2002	98.5	71.8	1.37	19.7	30.4	0.65	34.9	81.0	0.43
	2003	116.6	114.1	1.02	37.8	49.8	0.76	33.4	199.9	0.17
	2004	155.8	145.3	1.07	38.0	73.9	0.51	98.7	219.7	0.45
	2005	61.8	52.4	1.18	56.7	29.1	1.95	98.4	68.3	1.44
	2006	106.6	11.5	9.25	45.0	11.8	3.81	59.4	49.7	1.20
∞	2007	26.8	83.0	0.32	69.2	45.2	1.53	42.4	78.6	0.54
	2008	61.4	35.5	1.73	31.0	15.3	2.03	30.4	25.8	1.18
	2009	33.4	87.5	0.38	13.4	27.4	0.49	48.6	45.7	1.06
	2010	95.9	62.0	1.55	25.9	16.6	1.56	33.2	13.3	2.50
	2011	138.1	68.6	2.01	66.6	63.2	1.05	74.7	58.2	1.28
	2012	48.3	142.6	0.34	47.5	63.7	0.75	73.4	84.5	0.87
	2013	137.2	150.8	0.91	33.1	89.9	0.37	36.8	37.8	0.97
	2014	112.4	54.1	2.08	32.5	59.7	0.54	82.8	77.4	1.07
	2015	121.4	15.3	7.94	31.3	6.1	5.13	61.5	64.2	0.96
	2016	8.9	43.3	0.21	2.8	18.6	0.15	35.3	38.1	0.93
	2017	11.2	NA	NA	7.6	NA	NA	115.6	NA	NA
	2018	59.2	－	－	19.0	－	－	59.5	－	－

a/ Coho FRAMw as used to estimate post season ocean abundance.
b/ Preseason forecasts in 1986-1996 w ere based on accounting system that signficantly underestimated escapement and are not comparable to post season.

TABLE III-5. Status categories and constraints for Puget Sound and Washington Coast coho under the FMP and PST Southern Coho Management Plan.

FMP		
FMP Stock	${\text { Total Exploitation Rate Constraint }{ }^{a /}}^{\text {Categorical Status }^{2 /}}$	Low
Skagit	35%	Low
Stillaguamish	35%	Low
Snohomish	40%	Normal
Hood Canal	65%	Critical
Strait of Juan de Fuca	20%	
Quillayute Fall	59%	
Hoh	65%	
Queets	65%	
Grays Harbor	65%	

PST Southern Coho Management Plan

U.S. Management Unit	Total Exploitation Rate Constraint ${ }^{\mathrm{b} /}$	Categorical Status $^{\mathrm{c} /}$
Skagit	35%	Moderate
Stillaguamish	35%	Moderate
Snohomish	40%	Moderate
Hood Canal	65%	Abundant
Strait of Juan de Fuca	20%	Low
Quillayute Falll	40%	Abundant
Hoh $^{c /}$	66%	Abundant
Queets $^{c /}$	20%	Low
Grays Harbor $^{\text {Law }}$	20%	Low

a/ Preliminary. For Puget Sound stocks, the exploitation rate constraints and categorical status (Normal, Low, Critical) reflect application of Comprehensive Coho Agreement rules, as adopted in the FMP. For Washington Coast stocks, exploitation rate constraints represent MFMT. Note that under U.S. v. Washington and Hoh v. Baldrige case law , the management objectives can differ from FMP objectives provided there is an annual agreement among the state and tribal comanagers; therefore, the exploitation rates used to report categorical status do not necessarily represent maximum allow able rates for these stocks. b/ Preliminary. For Puget Sound and Washington Coast management units, the exploitation rate constraints reflect application of the 2002 PST Southern Coho Management Plan.
c/ Categories (Abundant, Moderate, Low) correspond to the general exploitation rate ranges depicted in paragraph 3(a) of the 2002 PST Southern Coho Management Plan. For Washington Coast stocks, categorical status is determined by the exploitation rate associated w ith meeting the escapement goal (or the low er end of the escapement goal range). This also becomes the maximum allow able rate unless the stock is in the "Low" status. In that case, an $E R$ of up to 20% is allow ed.

Area	Fishery	June	July	August	Sept
Canada					
Johnstone Strait	Recreational	-	41\%	36\%	-
West Coast Vancouver Island	Recreational	56\%	50\%	59\%	67\%
North Georgia Strait	Recreational	62\%	64\%	63\%	60\%
South Georgia Strait	Recreational	48\%	65\%	57\%	61\%
Juan de Fuca Strait	Recreational	54\%	54\%	54\%	54\%
Johnstone Strait	Troll	69\%	62\%	39\%	58\%
NW Vancouver Island	Troll	57\%	49\%	48\%	39\%
SW Vancouver Island	Troll	59\%	55\%	55\%	55\%
Georgia Strait	Troll	68\%	67\%	68\%	64\%
Puget Sound					
Strait of Juan de Fuca (Area 5)	Recreational	59\%	55\%	53\%	53\%
Strait of Juan de Fuca (Area 6)	Recreational	58\%	52\%	52\%	50\%
San Juan Island (Area 7)	Recreational	51\%	60\%	58\%	44\%
North Puget Sound (Areas 6 \& 7A)	Net	-	56\%	60\%	52\%
Council Area					
Neah Bay (Area 4/4B)	Recreational	48\%	58\%	55\%	61\%
LaPush (Area 3)	Recreational	60\%	60\%	64\%	50\%
Westport (Area 2)	Recreational	70\%	69\%	67\%	64\%
Columbia River (Area 1)	Recreational	79\%	79\%	73\%	76\%
Tillamook	Recreational	70\%	66\%	61\%	54\%
New port	Recreational	67\%	63\%	60\%	49\%
Coos Bay	Recreational	59\%	55\%	46\%	32\%
Brookings	Recreational	54\%	41\%	37\%	18\%
Neah Bay (Area 4/4B)	Troll	55\%	56\%	56\%	58\%
LaPush (Area 3)	Troll	55\%	59\%	56\%	57\%
Westport (Area 2)	Troll	56\%	61\%	65\%	62\%
Columbia River (Area 1)	Troll	73\%	72\%	71\%	67\%
Tillamook	Troll	65\%	64\%	65\%	61\%
New port	Troll	64\%	62\%	60\%	59\%
Coos Bay	Troll	59\%	56\%	51\%	38\%
Brookings	Troll	47\%	48\%	51\%	60\%
Columbia River					
Buoy 10	Recreational	-	-	-	72\%

Hoh Natural Coho

Queets Natural Coho

FIGURE III-1a. Selected preseason vs. postseason forecasts for coho stocks with substantial contribution to Council area fisheries.

CHAPTER IV: AFFECTED ENVIRONMENT - PINK SALMON ASSESSMENT

Two major runs comprise the pink salmon population available to Council fisheries during odd-numbered years: the Fraser River (British Columbia) run, which is more abundant, and the Puget Sound run. The 2017 run size forecast for Fraser pinks was 8.69 million fish and the 2017 Puget Sound pink salmon run size forecast was 1.15 million. This was the lowest Puget Sound forecast on record, though there have been smaller actual runs. The actual run sizes for 2017 are not yet available. Pink salmon runs occur in oddnumbered years, therefore they will not be an important management consideration in 2018.

Table IV-1 provides a summary of recent run sizes and forecasts.
TABLE IV-1. Estimated annual (odd-numbered years) run sizes and forecasts for Fraser River and Puget Sound pink salmon in millions of fish.

Year	Puget Sound		Fraser River ${ }^{\text {a/ }}$	
	Forecast	Actual	Forecast	Actual
1977	NA	0.88	NA	8.21
1979	NA	1.32	NA	14.40
1981	NA	0.50	NA	18.69
1983	NA	1.01	NA	15.35
1985	NA	1.76	NA	19.10
1987	NA	1.57	NA	7.17
1989	NA	1.93	NA	16.63
1991	NA	1.09	NA	22.18
1993	NA	1.06	NA	16.98
1995	3.4	2.08	NA	12.90
1997	NA	0.44	11.40	8.18
1999	NA	0.96	NA	3.59
2001	2.92	3.56	5.47	21.17
2003	2.32	2.90	17.30	26.00
2005	1.98	1.23	16.30	10.00
2007	3.34	2.45	19.60	11.00
2009	5.16	9.84	17.54	19.50
2011	5.98	5.27	17.50	20.65
2013	6.27	8.75	8.93	15.90
2015	6.76	3.70	14.50	5.78
$2017{ }^{\text {b/ }}$	1.15	NA	8.69	NA

[^2]
CHAPTER V: DESCRIPTION AND ANALYSIS OF THE NO-ACTION ALTERNATIVE

The No-Action Alternative consists of the preseason management measures adopted by the Council and approved by the Secretary of Commerce for the 2017 ocean salmon management season between the U.S./Canada border and the U.S./Mexico border. The management measures relate to three fishery sectors: non-Indian commercial (Table V-1), recreational (Table V-2), and treaty Indian (Table V-3). A description of the 2017 preseason management measures and analyses of their projected effects on the biological and socioeconomic environment are presented in Preseason Report III (PFMC 2017c). A description of the 2017 management measures as implemented, including inseason modifications, and an analysis of their effects on the environment, including a historical perspective, is presented in the SAFE document - Review of 2017 Ocean Salmon Fisheries (PFMC 2018).

ANAL YSIS OF EFFECTS ON THE ENVIRONMENT OF THE NO-ACTION alternative

Overview

Table V-4 provides a summary of Salmon FMP stock spawning escapement and exploitation rate projections for 2018 under the No-Action Alternative (2017 regulations), as well as postseason estimates of these quantities for earlier years, which are compared to FMP conservation objectives. For some stocks, postseason estimates of these metrics were either incomplete or unavailable when the Review of 2017 Ocean Salmon Fisheries was published. A preliminary determination of stock status under the FMP SDC was available for some of these stocks in time for this report; however, some estimates remain unavailable. The STT will report to the Council on the status of stocks at the March 2018 Council meeting, and may further update the status of stocks present in Table V-4 at that time.

Chinook escapements and fishery impacts were forecast using the Sacramento Harvest Model, the Winter Run Harvest Model, and the Klamath Ocean Harvest Model for SRFC, SRWC, and KRFC, respectively. Assessment of effects under the No-Action Alternative for Oregon Coast Chinook are not available. Columbia River Chinook stock assessments were based on qualitative assessment of the magnitude of forecasts, if available, in relation to escapement goals.

Coho escapements and fishery impacts were estimated using Coho FRAM. Abundance forecasts for 2018 were updated for Washington and Oregon stocks, but forecasts for Canadian stocks are unchanged from those employed for 2017 planning. Updated forecasts for Canadian stocks are expected to become available in March 2018. To provide information on the effect of changes in abundance forecasts, the final 2017 preseason regulatory package for ocean and inside fisheries was applied to 2018 projections of abundance.

Sacramento River Fall Chinook

A repeat of 2017 regulations would be expected to result in an escapement of 134,942 hatchery and natural area SRFC adults. This projection is higher than the minimum escapement level specified by the control rule for $2018(122,000), \mathrm{S}_{\mathrm{MSY}}(122,000)$, and the 2018 preseason $\mathrm{S}_{\mathrm{ACL}}(68,830$; Tables V-4 and V-5). The geometric mean of the 2016 and 2017 spawning escapement estimates and the 2018 forecast spawning escapement under the No-Action Alternative, is less than the MSST, which would indicate that the stock is at risk of approaching an overfished condition. However, as reported in PFMC (2018), SRFC already meets the criteria for overfished status. The predicted SRFC exploitation rate under the No-Action Alternative is 41.2 percent, which is below the MFMT (78.0 percent; Table V-4) and the maximum allowable rate specified by the control rule for 2018 (46.8 percent). If the ocean fisheries were closed from January through August 2018 between Cape Falcon and the U.S./Mexico border, and Sacramento Basin fisheries were closed in 2018, the expected number of hatchery and natural area adult spawners would be 218,227.

The 2017 estimate of SRFC adult escapement was 44,574, which exceeds the 2017 postseason $\mathrm{S}_{\text {ACL }}$ of 41,999 (Table V-5).

Sacramento River Winter Chinook

A repeat of 2017 regulations would be expected to result in an age- 3 impact rate of 12.6 percent for the area south of Point Arena. The 2018 forecast age-3 impact rate under the No-Action alternative is lower than the 2018 maximum allowable rate of 14.4 percent.

Klamath River Fall Chinook

A repeat of 2017 regulations, which included a river recreational harvest allocation of 15.9 percent of the non-tribal harvest and a tribal allocation of 50 percent of the overall adult harvest, would be expected to result in 56,507 natural area adult spawners. This projection is greater than the minimum escapement level specified by the control rule for $2018(40,700), \mathrm{S}_{\mathrm{MSY}}(40,700)$, and the 2018 preseason $\mathrm{S}_{\mathrm{ACL}}(19,115$; Tables V-4 and V-5). The geometric mean of the 2016 and 2017 natural area adult spawner escapement estimates and the 2018 forecast spawning escapement under the No-Action Alternative, is lower than the MSST which would indicate that the stock is at risk of approaching an overfished condition. However, as reported in PFMC (2018), KRFC already meets the criteria for overfished status. The predicted KRFC exploitation rate under the No-Action Alternative is 5.4 percent, which is lower than the MFMT (71.0 percent; Table V-4) and the maximum allowable rate specified by the control rule for 2018 (31.9 percent). If the ocean fisheries were closed from January through August 2018 between Cape Falcon and Point Sur, and the Klamath Basin fisheries (tribal and recreational) were closed in 2018, the expected number of natural area adult spawners would be 59,620 .

The 2017 estimate of KRFC escapement was 18,514 natural area adults, which exceeds the 2017 postseason $\mathrm{S}_{\mathrm{AcL}}$ of 6,542 (Table V-5).

California Coastal Chinook Stocks

The NMFS ESA consultation standard restricts the KRFC age-4 ocean harvest rate to no more than 16.0 percent to limit impacts on these stocks. The postseason estimate of this rate for 2017 is 4.0 percent. Applying 2017 regulations to the 2018 KRFC abundance results in an age- 4 ocean harvest rate forecast of 2.4 percent. If the ocean fisheries were closed from January through August 2018 between Cape Falcon and Point Sur, the expected age-4 ocean harvest rate would be 0.6 percent (170 age-4 KRFC were harvested during the September through November 2017 period).

Oregon Coast Chinook Stocks

The FMP conservation objective for the northern and central Oregon coast Chinook stock complexes is based on a total goal of 150,000 to 200,000 natural adult spawners. For these two stock complexes attainment of goals are assessed using peak spawner counts observed in standard index reaches for the respective complexes. For the southern Oregon coast Chinook stock complex, the FMP conservation objective is assessed using the escapement estimate at Huntley Park on the Rogue River. Forecasts are not available for all of these stocks, but given recent trends, the escapement goals would likely be met again in 2018 under 2017 fishing seasons.

Columbia River Chinook Stocks

The 2018 forecasts for Columbia River spring and summer stocks are greater than the 2017 forecasts. The 2018 forecasts for tule and bright fall Chinook are less than the 2017 forecast. Despite these reduced forecasts in 2018 from 2017, applying 2017 regulations to the forecasted 2018 abundance of Columbia River Chinook would result in ocean escapements meeting spawning escapement goals for all summer and fall Chinook stocks (Table V-4).

Washington Coast and Puget Sound Chinook Stocks

Council fisheries north of Cape Falcon have a negligible impact on Washington coast Chinook stocks and a minor impact on stocks that originate in Puget Sound. These stocks have northerly marine distribution patterns, and are therefore impacted primarily by Canadian and Alaskan fisheries. An evaluation of 2017 Council area management measures on projected 2018 abundance would not provide a useful comparison of fishery impacts in relation to conservation objectives.

Oregon Production Index Area Coho Stocks

Ocean fisheries were modeled with 2017 Council regulations and 2017 expectations for non-Council area fisheries. Because of the decrease in forecasts for most hatchery coho stocks in 2018 relative to the forecasts in 2017, this model run shows slightly higher fishery impact rates. Due to the changes in the forecasts, the model run shows fishery impact rate increases for OCN coho, LCN coho, and RK coho. This provides some indication of the fishery impacts and fisheries planning relative to the conservation objectives in 2018. Under this scenario, the expected escapement is 47,500 for OCN coho (Table V-6). For Columbia River hatchery coho stocks, the predicted ocean exploitation rate (excluding Buoy 10) is 51.1 percent on the Columbia River early stock and 34.7 percent on the Columbia River late stock. Predicted ocean escapements (after Buoy 10) into the Columbia River in 2018 show that under 2017 ocean regulations, Columbia River early and late coho would be expected to meet egg take goals.

As noted in Chapter III, the total allowable OCN coho exploitation rate for 2018 fisheries is no greater than 15.0 percent in the revised OCN coho matrix (Table V-8; Appendix A, Table A-4), and the total allowable RK hatchery coho marine exploitation rate is 13.0 percent (NMFS ESA consultation standard). Under 2017 fishery regulations and 2018 abundance forecasts, these exploitation rates are predicted to be 13.9 percent for OCN, and 4.5 percent (marine) for RK coho (Table V-7). The 2018 allowable LCN coho exploitation rate is expected to be 18.0 percent in the marine area and mainstem Columbia River fisheries combined pending NMFS ESA guidance. Under 2017 fishery regulations and 2018 abundance forecasts, the exploitation rate is predicted to be 9.5 percent for marine fisheries (excluding the Buoy 10 fishery) using combined unmarked Columbia River hatchery stocks as the proxy. The LCN coho exploitation rate estimate for the Buoy 10 fishery would be 1.7 percent and the estimated exploitation rate in freshwater fisheries would be 3.0 percent. The total exploitation rate on LCN coho would be 14.2 percent, less than the assumed 18.0 percent allowable rate.

Washington Coast, Puget Sound, and Canadian Coho Stocks

Exploitation rate and ocean escapement expectations in relation to management goals for selected naturallyspawning coho stocks, given 2018 preseason abundance forecasts and 2017 preseason projections for fishing patterns, are presented in Table V-6. The 2018 forecasts for Canadian coho stocks are not available, but are assumed to be at 2017 levels for this analysis. More detailed fishery management goals for Council area coho stocks are listed in Appendix A.

Under 2017 regulations, 2018 exploitation rates are expected to meet FMP conservation objectives applicable for 2018 for all Puget Sound coho stocks. Ocean abundance forecasts for all Washington Coast natural coho stocks are above FMP spawning escapement conservation objectives. Management objectives for most U.S. stocks subject to the PSC agreement would be met under 2017 regulations except Queets and Grays Harbor coho, which do not meet PSC agreement management objectives under 2017 regulations.

Projected 2018 spawning escapements of Willapa Bay natural coho (11,343), Queets natural coho (5,393), and Strait of Juan de Fuca natural coho $(6,800)$ are below their respective S msy levels of $17,200,5,800$, and 11,000 . For Queets natural and Strait of Juan de Fuca natural coho, the geometric mean of the 2015 and 2016 spawner escapement estimates, and the 2018 forecast spawning escapement under the No-Action Alternative, are lower than their respective MSST levels which would indicate that the stocks are at risk of
approaching an overfished condition. However, as reported in PFMC (2018), Queets natural and Strait of Juan de Fuca natural coho already meet the criteria for overfished status.

The exploitation rate by U.S. fisheries south of the Canadian border on Interior Fraser (B.C.) coho is projected to be 7.5 percent, which is well below the anticipated 10.0 percent allowable exploitation rate under the 2002 PST Coho Agreement. The Council area fisheries portion would be 2.2 percent.

Coho bycatch during Puget Sound fisheries directed at chum and sockeye salmon will also be a consideration for preseason planning.

Summary

The effects of projected impacts (where available) under 2017 fishery regulations and 2018 abundance forecasts are as follows:

- SRFC are at risk of approaching an overfished condition, though they already have met the criteria for overfished status.
- For SRWC, the predicted age-3 impact rate is less than the maximum allowable rate specified by the control rule and thus meets the 2018 objective.
- KRFC is at risk of approaching an overfished condition, though they already have met the criteria for overfished status.
- The KRFC age-4 ocean harvest rate would not exceed the California Coastal Chinook ESA consultation standard.
- Grays Harbor, Hoh, Quillayute fall, Hood Canal, Skagit, Stillaguamish, and Snohomish coho would achieve SmSy $^{\text {spawning escapement objectives; Willapa Bay, Queets, and Strait of Juan de Fuca coho }}$ would not achieve $S_{\text {MSY }}$ spawning escapement objectives.
- Queets and Strait of Juan de Fuca coho are at risk of approaching an overfished condition, though they already have met the criteria for overfished status.
- OCN coho and LCN coho stocks would have projected exploitation rates that comply with anticipated ESA consultation standards.
- All coho stocks would have exploitation rates below the MFMT.
- All Puget Sound coho stocks would have exploitation rates that comply with the annual rates allowed under the FMP harvest rate matrix and the PST 2002 Southern Coho Management Plan.
- Queets and Grays Harbor coho stocks would have exploitation rates that do not comply with the annual rates allowed under the FMP harvest rate matrix and the PST 2002 Southern Coho Management Plan.

Conclusion

The No-Action alternative would not meet the Purpose and Need for the proposed action because:

- SRFC and KRFC met the criteria for being at risk of approaching an overfished condition, though they already have met the criteria for overfished status.
- Queets coho and Strait of Juan de Fuca coho met the criteria for being at risk of approaching an overfished condition, though they have already met the criteria for overfished status.
- Projected total exploitation rates on Queets and Grays Harbor natural coho would be above the PST management objectives.

The No-Action alternative does not reflect consideration of changes in the status of salmon stocks from the previous year; therefore, over- or under- harvest of some salmon stocks would occur if this alternative were implemented. The analysis of the No-Action Alternative does, however, provide perspective that is useful in the planning process for 2018 ocean salmon fishery management measures. An understanding of stock shortfalls and surpluses under the No-Action Alternative helps managers, advisors, and constituents construct viable alternatives to the status-quo management measures.

TABLE V-I. 2017 Commercial troll management measures for non-Indian ocean salmon fisheries - Council adopted.
(Page 1 of 6)

A. SEASON DESCRIPTIONS
 North of Cape Falcon
 Supplemental Management Information

1. Overall non-Indian TAC: 90,000 Chinook and 47,600 coho marked with a healed adipose fin clip (marked).
2. Non-Indian commercial troll TAC: 45,000 Chinook and 5,600 marked coho.
3. Trade: May be considered during the April council meeting.
4. Overall Chinook and/or coho TACs may need to be reduced or fisheries adjusted to meet NMFS ESA guidance, FMP requirements, upon conclusion of negotiations in the North of Falcon forum, or upon receipt of preseason catch and abundance expectations for Canadian and Alaskan fisheries.

Model \#: Coho-1731, Chinook 2017

U.S./Canada Border to Cape Falcon

- May 1 through the earlier of June 30 or 27,000 Chinook, no more than 8,900 of which may be caught in the area between the U.S./Canada border and the Queets River and no more than 9,000 of which may be caught in the area between Leadbetter Pt. and Cape Falcon (C.8).
In the area between the U.S./Canada border and the Queets River, a landing and possession limit of 60 Chinook per vessel per calendar week (Monday through Sunday) will be in place.

Seven days per week (C.1). All salmon except coho (C.4, C.7). Chinook minimum size limit of 28 inches total length (B).
Vessels in possession of salmon north of the Queets River may not cross the Queets River line without first notifying WDFW at 360-249-1215 with area fished, total Chinook and halibut catch aboard, and destination. Vessels in possession of salmon south of the Queets River may not cross the Queets River line without first notifying WDFW at 360-249-1215 with area fished, total Chinook and halibut catch aboard, and destination. When it is projected tha approximately 75% of the overall Chinook guideline has been landed, or approximately 75% of the Chinook subarea guideline has been landed in the area between the U.S./Canada border and the Queets River, or approximately 75% of the Chinook subarea guideline has been landed in the area between Leadbetter Pt. and Cape Falcon, inseason action will be considered to ensure the guideline is not exceeded. See compliance requirements (C.1) and gear restrictions and definitions (C.2, C.3).

U.S./Canada Border to Cape Falcon

- July 1-4, July 7 -September 19 or 18,000 Chinook or 5,600 coho whichever comes first; no more than 7,200 Chinook may be caught in the area between the U.S./Canada border and the Queets River (C.8).
Open five days per week, Friday through Tuesday. In the area between the U.S./Canada border and the Queets River, a landing and possession limit of 60 Chinook and 10 coho per vessel per open period will be in place (C.1, C.6). In the area from the Queets River to Cape Falcon, a landing and possession limit of 75 Chinook and 10 coho per vessel per open period will be in place (C.1, C.6).

Chinook minimum size limit of 28 inches total length. Coho minimum size limit of 16 inches total length (B, C.1). All coho must be marked with a healed adipose fin clip (C.8.c). No chum retention north of Cape Alava, Washington in August and September (C.4, C.7). See compliance requirements (C.1) and gear restrictions and definitions (C.2, C.3). Vessels in possession of salmon north of the Queets River may not cross the Queets River line without first notifying WDFW at 360-249-1215 with area fished, total Chinook and halibut catch aboard, and destination. Vessels in possession of salmon south of the Queets River may not cross the Queets River line without first notifying WDFW at 360-249-1215 with area fished, total Chinook and halibut catch aboard, and destination. When it is projected that approximately 75% of the overall Chinook guideline has been landed, or approximately 75% of the Chinook subarea guideline has been landed in the area between the U.S./Canada border to the Queets River, inseason action will be considered to ensure the guideline is not exceeded.

For all commercial troll fisheries north of Cape Falcon: Mandatory Yelloweye Rockfish Conservation Area, Cape Flattery and Columbia Control Zones, and beginning August 14, Grays Harbor Control Zone closed (C.5). Vessels must land and deliver their fish within 24 hours of any closure of this fishery. Vessels fishing or in possession of salmon while fishing north of Leadbetter Point must land and deliver their fish within the area and north of Leadbetter Point. Vessels fishing or in possession of salmon while fishing south of Leadbetter Point must land and deliver their fish within the area and south of Leadbetter Point, except that Oregon permitted vessels may also land their fish in Garibaldi, Oregon. Under state law, vessels must report their catch on a state fish receiving ticket. Oregon State regulations require all fishers landing salmon into Oregon from any fishery between Leadbetter Point, Washington and Cape Falcon, Oregon must notify ODFW within one hour of delivery or prior to transport away from the port of landing by either calling 541-867-0300 ext. 271 or sending notification via e-mail to nfalcon.trollreport@state.or.us. Notification shall include vessel name and number, number of salmon by species, port of landing and location of delivery, and estimated time of delivery. Inseason actions may modify harvest guidelines in later fisheries to achieve or prevent exceeding the overall allowable troll harvest impacts (C.8).

TABLE V-1. 2017 Commercial troll management measures for non-Indian ocean salmon fisheries - Council adopted.
(Page 3 of 6)

A. SEASON DESCRIPTIONS

Horse Mt. to Point Arena (Fort Bragg)

September 1 through the earlier of September 30, or a 3,000 Chinook quota (C.9.b).
Five days per week, Friday through Tuesday. All salmon except coho (C.4, C.7). Chinook minimum size limit of 27 inches total length (B, C.1). Landing and possession limit of 60 Chinook per vessel per open period (C.8.e). All fish caught in this area must be landed between the OR/CA border and Point Arena (C.6). All fish must be offloaded within 24 hours of any closure of the fishery and prior to fishing outside the area (C.1). See compliance requirements (C.1) and gear restrictions and definitions (C.2, C.3).

In 2018, the season will open April 16-30 for all salmon except coho, with a 27 inch Chinook minimum size limit and the same gear restrictions as in 2017. All fish caught in the area must be landed in the area. This opening could be modified following Council review at its March 2018 meeting.

Point Arena to Pigeon Point (San Francisco)

August 1-29;

September 1-30 (C.9.b)
Seven days per week. All salmon except coho (C.4, C.7). Chinook minimum size limit of 27 inches total length prior to September 1, 26 inches thereafter (B, C.1). All fish must be landed in California. All salmon caught in California prior to September 1 must be landed and offloaded no later than 11:59 p.m., August 30 (C.6). In September, all fish must be landed south of Point Arena until the quota in the Fort Bragg fishery is met and the fishery has closed for 24 hours (C.6). See compliance requirements (C.1) and gear restrictions and definitions (C.2, C.3).

Point Reyes to Point San Pedro (Fall Area Target Zone)

October 2-6 and 9-13.
Five days per week, Monday through Friday. All salmon except coho (C.4, C.7). Chinook minimum size limit of 26 inches total length (B, C.1). All fish caught in this area must be landed between Point Arena and Pigeon Point (C.6). See compliance requirements (C.1) and gear restrictions and definitions (C.2, C.3).

Pigeon Point to U.S./Mexico Border (Monterey)

May 1-31;
June 1-30 (C.9.b).
Seven days per week. All salmon except coho (C.4, C.7). Chinook minimum size limit of 27 inches total length (B, C.1). All fish must be landed in California. All salmon caught in California prior to September 1 must be landed and offloaded no later than 11:59 p.m., August 30 (C.6). See compliance requirements (C.1) and gear restrictions and definitions (C.2, C.3).

California State regulations require all salmon be made available to a CDFW representative for sampling immediately at port of landing. Any person in possession of a salmon with a missing adipose fin, upon request by an authorized agent or employee of the CDFW, shall immediately relinquish the head of the salmon to the state (California Fish and Game Code §8226)

B. MINIMUM SIZE (Inches) (See C.1)

| | Chinook | | | Coho | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Area (when open) | Total
 Length | Head-off | | Total Length | Head-off | Pink |
| North of Cape Falcon | 28 | 21.5 | | 16 | 12 | None |
| Cape Falcon to Humbug Mt. | 28 | 21.5 | | - | - | None |
| Humbug Mt. to OR/CA Border | - | - | | - | - | - |
| OR/CA Border to Humboldt S. Jetty | - | - | | - | - | - |
| Horse Mt. to Pt. Arena | 27 | 20.5 | | - | - | None |
| Pt. Arena to Pigeon Pt. < Sept. 1 | 27 | 20.5 | | - | - | None |
| Pt. Arena to Pigeon Pt. \geq Sept. 1 | 26 | 19.5 | | - | - | None |
| Pigeon Pt. to U.S./Mexico Border | 27 | 20.5 | | - | - | None |

C. REQUIREMENTS, DEFINITIONS, RESTRICTIONS, OR EXCEPTIONS

C.1. Compliance with Minimum Size or Other Special Restrictions: All salmon on board a vessel must meet the minimum size, landing/possession limit, or other special requirements for the area being fished and the area in which they are landed if the area is open or has been closed less than 48 hours for that species of salmon. Salmon may be landed in an area that has been closed for a species of salmon more than 48 hours only if they meet the minimum size, landing/possession limit, or other special requirements for the area in which they were caught. Salmon may not be filleted prior to landing.

Any person who is required to report a salmon landing by applicable state law must include on the state landing receipt for that landing both the number and weight of salmon landed by species. States may require fish landing/receiving tickets be kept on board the vessel for 90 days or more after landing to account for all previous salmon landings.
C.2. Gear Restrictions:
a. Salmon may be taken only by hook and line using single point, single shank, barbless hooks.
b. Cape Falcon, Oregon, to the OR/CA border: No more than 4 spreads are allowed per line.
c. OR/CA border to U.S./Mexico border: No more than 6 lines are allowed per vessel, and barbless circle hooks are required when fishing with bait by any means other than trolling.
C.3. Gear Definitions:

Trolling defined: Fishing from a boat or floating device that is making way by means of a source of power, other than drifting by means of the prevailing water current or weather conditions.
Troll fishing gear defined: One or more lines that drag hooks behind a moving fishing vessel. In that portion of the fishery management area off Oregon and Washington, the line or lines must be affixed to the vessel and must not be intentionally disengaged from the vessel at any time during the fishing operation.
Spread defined: A single leader connected to an individual lure and/or bait.
Circle hook defined: A hook with a generally circular shape and a point which turns inward, pointing directly to the shank at a 90́angle.
C.4. Vessel Operation in Closed Areas with Salmon on Board:
a. Except as provided under C.4.b below, it is unlawful for a vessel to have troll or recreational gear in the water while in any area closed to fishing for a certain species of salmon, while possessing that species of salmon; however, fishing for species other than salmon is not prohibited if the area is open for such species, and no salmon are in possession.
b. When Genetic Stock Identification (GSI) samples will be collected in an area closed to commercial salmon fishing, the scientific research permit holder shall notify NOAA OLE, USCG, CDFW, WDFW, ODFW and OSP at least 24 hours prior to sampling and provide the following information: the vessel name, date, location and time collection activities will be done. Any vessel collecting GSI samples in a closed area shall not possess any salmon other than those from which GSI samples are being collected. Salmon caught for collection of GSI samples must be immediately released in good condition after collection of samples.
C.5. Control Zone Definitions:
a. Cape Flattery Control Zone - The area from Cape Flattery ($48-23^{\prime} 00$ " N. lat.) to the northern boundary of the U.S. EEZ; and the area from Cape Flattery south to Cape Alava ($48^{\circ} 10^{\prime} 00^{\prime \prime} \mathrm{N}$. lat.) and east of $125^{\circ} 05^{\prime} 00^{\prime \prime} \mathrm{W}$. long.
b. Mandatory Yelloweye Rockfish Conservation Area - The area in Washington Marine Catch Area 3 from $48^{\circ} 00.00^{\prime} \mathrm{N}$. lat.; $125^{\circ} 14.00^{\prime} \mathrm{W}$. long. to $48^{\circ} 02.00^{\prime} \mathrm{N}$. lat.; $125^{\circ} 14.00^{\prime} \mathrm{W}$. long. to $48^{\circ} 02.00^{\prime} \mathrm{N}$. lat.; $125^{\circ} 16.50^{\prime} \mathrm{W}$. long. to $48^{\circ} 00.00^{\prime} \mathrm{N}$. lat.; $125^{\circ} 16.50^{\prime} \mathrm{W}$. long. and connecting back to $48^{\circ} 00.00^{\prime} \mathrm{N}$. lat.; $125^{\circ} 14.00^{\prime} \mathrm{W}$. long.
c. Grays Harbor Control Zone - The area defined by a line drawn from the Westport Lighthouse ($46^{\circ} 53^{\prime} 18^{\prime \prime} \mathrm{N}$. lat., $124^{\circ} 07^{\prime} 01^{\prime \prime}$ W. long.) to Buoy \#2 ($46^{\circ} 52^{\prime} 42^{\prime \prime}$ N. lat., $124^{\circ} 12^{\prime} 42^{\prime \prime}$ W. long.) to Buoy \#3 ($46^{\circ} 55^{\prime} 00 " \mathrm{~N}$. lat., $124^{\circ} 14^{\prime} 48^{\prime \prime}$ W. long.) to the Grays Harbor north jetty ($46^{\circ} 55^{\prime} 36^{\prime \prime}$ N. lat., $124^{\circ} 10^{\prime} 51^{\prime \prime}$ W. long.).
d. Columbia Control Zone - An area at the Columbia River mouth, bounded on the west by a line running northeast/southwest between the red lighted Buoy \#4 ($46^{\circ} 13^{\prime} 35^{\prime \prime} \mathrm{N}$. lat., $124^{\circ} 06^{\prime} 50^{\prime \prime} \mathrm{W}$. long.) and the green lighted Buoy \#7 ($46^{\circ} 15^{\prime} 09^{\prime} \mathrm{N}$. lat., $124^{\circ} 06^{\prime} 16^{\prime \prime}$ W. long.); on the east, by the Buoy \#10 line which bears north/south at 357° true from the south jetty at $46^{\circ} 14^{\prime} 00^{\prime \prime}$ N. lat., $124^{\circ} 03^{\prime} 07^{\prime \prime} \mathrm{W}$. long. to its intersection with the north jetty; on the north, by a line running northeast/southwest between the green lighted Buoy \#7 to the tip of the north jetty ($46^{\circ} 15^{\prime} 48^{\prime \prime} \mathrm{N}$. lat., $124^{\circ} 05^{\prime} 20^{\prime \prime} \mathrm{W}$. long.), and then along the north jetty to the point of intersection with the Buoy \#10 line; and, on the south, by a line running northeast/southwest between the red lighted Buoy \#4 and tip of the south jetty ($46^{\circ} 14^{\prime} 03^{\prime \prime} \mathrm{N}$. lat., $124^{\circ} 04^{\prime} 05^{\prime \prime} \mathrm{W}$. long.), and then along the south jetty to the point of intersection with the Buoy \#10 line.
e. Klamath Control Zone - The ocean area at the Klamath River mouth bounded on the north by $41^{\circ} 38^{\prime} 48^{\prime \prime} \mathrm{N}$. lat. (approximately 6 nautical miles north of the Klamath River mouth); on the west by $124^{\circ} 23^{\prime} 00^{\prime \prime} \mathrm{W}$. long. (approximately 12 nautical miles off shore); and on the south by $41^{\circ} 26^{\prime} 48^{\prime \prime} \mathrm{N}$. lat. (approximately 6 nautical miles south of the Klamath River mouth).

TABLE V-1. 2017 Commercial troll management measures for non-Indian ocean salmon fisheries - Council adopted. (Page 5 of 6)

C. REQUIREMENTS, DEFINITIONS, RESTRICTIONS, OR EXCEPTIONS (continued)

f. Waypoints for the 40 fathom regulatory line from Cape Falcon to Humbug Mt. (50 CFR 660.71 (k) (12)-(70).

```
4546.00' N. lat., 12404.49' W. long.;
4544.34' N. lat., 12405.09' W. long.;
45}40.40.64' N. lat., 12404.90' W. long.;
45 }33.00' N. lat., 12404.46' W. long.
45'32.27' N. lat., 12404.74' W. long.
45o}29.26' N. lat., 12404.22' W. long.;
45}\mp@subsup{}{}{\circ}20.2\mp@subsup{5}{}{\prime}N\mathrm{ N. lat., 124}\mp@subsup{}{}{\circ}04.6\mp@subsup{7}{}{\prime}\textrm{W}. long
45`19.99' N. lat., 12404.62' W. long.;
45 }17.5\mp@subsup{0}{}{\prime}\textrm{N}. lat., 12404.91' W. long.
45`11.29' N. lat., 12405.20' W. long.;
45'05.80' N. lat., 124}\mp@subsup{}{}{\circ}05.4\mp@subsup{0}{}{\prime}\textrm{W}. long.
45}\mp@subsup{}{}{\circ}05.0\mp@subsup{8}{}{\prime}N. lat., 12405.93' W. long.;
45 }03.8\mp@subsup{3}{}{\prime}\textrm{N}. lat., 12406.47' W. long.; 
45'01.70' N. lat., 12406.53' W. long.;
44}58.7\mp@subsup{5}{}{\prime}N. N. lat., 12407.14' W. long.
4451.28' N. lat., 12410.21' W. long.
4449.49' N. lat., 12410.90' W. long.;
4444.96' N. lat., 12414.39' W. long.;
4443.44' N. lat., 12414.78' W. long.;
44042.26' N. lat., 12413.81' W. long.
4441.68' N. lat., 12415.38' W. long.;
4434.87' N. lat., 12415.80' W. long.
44}33.74' N. lat., 124014.44' W. long.
44o27.66' N. lat., 12416.99' W. long.
44}19.13' N. lat., 124o19.22' W. long.
4415.35' N. lat., 12417.38' W. long.
4414.38' N. lat., 12417.78' W. long.;
4412.80' N. lat., 12417.18' W. long.
440}09.2\mp@subsup{3}{}{\prime}N. lat., 12415.96' W. long.;
```

	ong.;
	$4^{\circ} 01.18^{\prime} \mathrm{N}$. lat., $124^{\circ} 15.42^{\prime} \mathrm{W}$. long.;
	$43^{\circ} 51.61^{\prime} \mathrm{N}$. lat., $124^{\circ} 14.68^{\prime} \mathrm{W}$. long.;
	$43^{\circ} 42.66^{\prime} \mathrm{N}$. lat., $124^{\circ} 15.46$ ' W. long.;
	43²0.49' N. lat., 124¹5.74' W. long.;
	$43^{\circ} 38.77^{\prime} \mathrm{N}$. lat., $124^{\circ} 15.64^{\prime} \mathrm{W}$. long.;
	$43^{\circ} 34.52^{\prime} \mathrm{N}$. lat., $124^{\circ} 16.73^{\prime} \mathrm{W}$. long.;
	$43^{\circ} 28.82^{\prime} \mathrm{N}$. lat., $124^{\circ} 19.52^{\prime} \mathrm{W}$. long.;
	$43^{\circ} 23.91^{\prime} \mathrm{N}$. lat., $124^{\circ} 24.28^{\prime} \mathrm{W}$. long.;
	$43^{\circ} 20.83^{\prime} \mathrm{N}$. lat., $124^{\circ} 26.63^{\prime} \mathrm{W}$. long.;
	$43^{\circ} 17.96^{\prime} \mathrm{N}$. lat., $124^{\circ} 28.81^{\prime} \mathrm{W}$. long.;
	$43^{\circ} 16.75^{\prime} \mathrm{N}$. lat., $124^{\circ} 28.42^{\prime} \mathrm{W}$. long.;
	$43^{\circ} 13.97^{\prime} \mathrm{N}$. lat., $124^{\circ} 31.99^{\prime} \mathrm{W}$. long.;
	$43^{\circ} 13.72^{\prime} \mathrm{N}$. lat., $124^{\circ} 33.25^{\prime} \mathrm{W}$. long.;
	$43^{\circ} 12.26^{\prime} \mathrm{N}$. lat., $124^{\circ} 34.16^{\prime} \mathrm{W}$. long.;
	$43^{\circ} 10.96{ }^{\prime}$ N. lat., $124^{\circ} 32.33^{\prime} \mathrm{W}$. long.;
	$43^{\circ} 05.65^{\prime} \mathrm{N}$. lat., $124^{\circ} 31.52^{\prime} \mathrm{W}$. long.;
	$42^{\circ} 59.66^{\prime}$ N. lat., $124^{\circ} 32.58^{\prime} \mathrm{W}$. long.;
	$42^{\circ} 54.97^{\prime} \mathrm{N}$. lat., $124^{\circ} 36.99^{\prime} \mathrm{W}$. long.;
	$42^{\circ} 53.81^{\prime} \mathrm{N}$. lat., $124^{\circ} 38.57{ }^{\prime} \mathrm{W}$. long.;
	$42^{\circ} 50.00^{\prime} \mathrm{N}$. lat., $124^{\circ} 39.68^{\prime} \mathrm{W}$. long.;
	$42^{\circ} 49.13^{\prime} \mathrm{N}$. lat., $124^{\circ} 39.70^{\prime} \mathrm{W}$. long.;
	$42^{\circ} 46.47{ }^{\prime} \mathrm{N}$. lat., $124^{\circ} 38.89^{\prime} \mathrm{W}$. long.;
	$42^{\circ} 45.74^{\prime} \mathrm{N}$. lat., $124^{\circ} 38.86{ }^{\prime} \mathrm{W}$. long.;
	$42^{\circ} 44.79^{\prime} \mathrm{N}$. lat., $124^{\circ} 37.96^{\prime} \mathrm{W}$. long.;
	$42^{\circ} 45.01^{\prime} \mathrm{N}$. lat., $124^{\circ} 36.39^{\prime} \mathrm{W}$. long.;
	$42^{\circ} 44.14^{\prime} \mathrm{N}$. lat., $124^{\circ} 35.17^{\prime} \mathrm{W}$. long.;
	$42^{\circ} 42.14^{\prime} \mathrm{N}$. lat., $124^{\circ} 32.82^{\prime} \mathrm{W}$. long.;
	$2^{\circ} 40.50^{\prime} \mathrm{N}$. lat., $124^{\circ} 31.98^{\prime} \mathrm{W}$. long

$43^{\circ} 51.61^{\prime} \mathrm{N}$. lat., $124^{\circ} 14.68^{\prime} \mathrm{W}$. long.;
$43^{\circ} 42.66^{\prime} \mathrm{N}$. lat., $124^{\circ} 15.46^{\prime} \mathrm{W}$. long.
$43^{\circ} 40.49^{\prime} \mathrm{N}$. lat., $124^{\circ} 15.74^{\prime} \mathrm{W}$. long.
$43^{\circ} 38.77^{\prime} \mathrm{N}$. lat., $124^{\circ} 15.64^{\prime} \mathrm{W}$. long.
$43^{\circ} 34.52^{\prime} \mathrm{N}$. lat., $124^{\circ} 16.73^{\prime} \mathrm{W}$. long.
$43^{\circ} 28.82^{\prime} \mathrm{N}$. lat., $124^{\circ} 19.52^{\prime} \mathrm{W}$. long.
$43^{\circ} 23.91^{\prime}$ N. lat., $124^{\circ} 24.28^{\prime}$ W. long.
$43^{\circ} 20.83^{\prime} \mathrm{N}$. lat., $124^{\circ} 26.63^{\prime} \mathrm{W}$. long.
$43^{\circ} 17.96^{\prime} \mathrm{N}$. lat., $124^{\circ} 28.81^{\prime} \mathrm{W}$. long.;
$43^{\circ} 16.75^{\prime} \mathrm{N}$. lat., $124^{\circ} 28.42^{\prime} \mathrm{W}$. long.
$3^{\prime} 13.97^{\prime}$ N. lat., $124^{\circ} 31.99^{\prime}$ W. long.
$43^{\circ} 13.72^{\prime} \mathrm{N}$. lat., $124^{\circ} 33.25^{\prime} \mathrm{W}$. long.
$3^{\prime} 12.26^{\prime}$ N. lat., $124^{\circ} 34.16^{\prime} \mathrm{W}$. long.
$43^{\circ} 10.96^{\prime} \mathrm{N}$. lat., $124^{\circ} 32.33^{\prime} \mathrm{W}$. long.

$42^{\circ} 59.66^{\prime}$ N. lat., $124^{\circ} 32.58^{\prime} \mathrm{W}$. long.
N. lat., 124 36.99 W. long.;
$42^{\circ} 53.81^{\prime} \mathrm{N}$. lat., $124^{\circ} 38.57^{\prime} \mathrm{W}$. long.
W. long.
$42^{\circ} 49.13^{\prime} \mathrm{N}$. lat., $124^{\circ} 39.70^{\prime} \mathrm{W}$. long.;
$2^{\circ} 45.74^{\prime} \mathrm{N}$. lat., $124^{\circ} 38.80^{\prime}$ W. . long.;
$42^{\circ} 44.79^{\prime} \mathrm{N}$. lat., $124^{\circ} 37.96^{\prime} \mathrm{W}$. long.
$42^{\circ} 45.01^{\prime} \mathrm{N}$. lat., $124^{\circ} 36.39^{\prime} \mathrm{W}$. long.
1243282 W long
$42^{\circ} 40.50^{\prime} \mathrm{N}$. lat., $124^{\circ} 31.98^{\prime} \mathrm{W}$. long
C.6. Notification When Unsafe Conditions Prevent Compliance with Regulations: If prevented by unsafe weather conditions or mechanical problems from meeting special management area landing restrictions, vessels must notify the U.S. Coast Guard and receive acknowledgment of such notification prior to leaving the area. This notification shall include the name of the vessel, port where delivery will be made, approximate amount of salmon (by species) on board, the estimated time of arrival, and the specific reason the vessel is not able to meet special management area landing restrictions.

In addition to contacting the U.S. Coast Guard, vessels fishing south of the Oregon/California border must notify CDFW within one hour of leaving the management area by calling 800-889-8346 and providing the same information as reported to the U.S. Coast Guard. All salmon must be offloaded within 24 hours of reaching port.
C.7. Incidental Halibut Harvest: During authorized periods, the operator of a vessel that has been issued an incidental halibut harvest license may retain Pacific halibut caught incidentally in Area 2A while trolling for salmon. Halibut retained must be no less than 32 inches in total length, measured from the tip of the lower jaw with the mouth closed to the extreme end of the middle of the tail, and must be landed with the head on. When halibut are caught and landed incidental to commercial salmon fishing by an IPHC license holder, any person who is required to report the salmon landing by applicable state law must include on the state landing receipt for that landing both the number of halibut landed, and the total dressed, head-on weight of halibut landed, in pounds, as well as the number and species of salmon landed.
License applications for incidental harvest must be obtained from the International Pacific Halibut Commission (phone: 206-6341838). Applicants must apply prior to mid-March 2018 for 2018 permits (exact date to be set by the IPHC in early 2018). Incidental harvest is authorized only during April, May, and June of the 2017 troll seasons and after June 30 in 2017 if quota remains and if announced on the NMFS hotline (phone: 800-662-9825 or 206-526-6667). WDFW, ODFW, and CDFW will monitor landings. If the landings are projected to exceed the IPHC's preseason allocation or the total Area 2A non-Indian commercial halibut allocation, NMFS will take inseason action to prohibit retention of halibut in the non-Indian salmon troll fishery
TABLE V-1. 2017 Commercial troll management measures for non-Indian ocean salmon fisheries- - Council adopted.
(Page 6 of 6)

C. REQUIREMENTS, DEFINITIONS, RESTRICTIONS, OR EXCEPTIONS (continued)

May 1, 2017 through December 31, 2017, and April 1-30, 2018, license holders may land or possess no more than one Pacific halibut per each two Chinook, except one Pacific halibut may be possessed or landed without meeting the ratio requirement, and no more than 35 halibut may be possessed or landed per trip. Pacific halibut retained must be no less than 32 inches in total length (with head on).

Incidental Pacific halibut catch regulations in the commercial salmon troll fishery adopted for 2017, prior to any 2017 inseason action, will be in effect when incidental Pacific halibut retention opens on April 1, 2018 unless otherwise modified by inseason action at the March 2018 Council meeting.
a. "C-shaped" yelloweye rockfish conservation area is an area to be voluntarily avoided for salmon trolling. NMFS and the Council request salmon trollers voluntarily avoid this area in order to protect yelloweye rockfish. The area is defined in the Pacific Council Halibut Catch Sharing Plan in the North Coast subarea (Washington marine area 3), with the following coordinates in the order listed:
$48^{\circ} 18^{\prime} \mathrm{N}$. lat.; $125^{\circ} 18^{\prime} \mathrm{W}$. long.;
$48^{\circ} 18^{\prime} \mathrm{N}$. lat.; $124^{\circ} 59^{\prime} \mathrm{W}$. long.;
$48^{\circ} 11^{\prime} \mathrm{N}$. lat.; $124^{\circ} 59^{\prime} \mathrm{W}$. long.;
$48^{\circ} 11^{\prime} \mathrm{N}$. lat.; $125^{\circ} 11^{\prime}$ W. long.;
$48^{\circ} 04^{\prime} \mathrm{N}$. lat.; $125^{\circ} 11^{\prime} \mathrm{W}$ W. long.;
$48^{\circ} 04^{\prime} \mathrm{N}$. lat.; $124^{\circ} 59^{\prime}$ W. long.;
$48^{\circ} 00^{\prime} \mathrm{N}$. lat.; $124^{\circ} 59^{\prime} \mathrm{W}$. long.;
$48^{\circ} 00^{\prime} \mathrm{N}$. lat.; $125^{\circ} 18^{\prime} \mathrm{W}$. long.;
and connecting back to $48^{\circ} 18^{\prime} \mathrm{N}$. lat.; $125^{\circ} 18^{\prime} \mathrm{W}$. long.
C.8. Inseason Management: In addition to standard inseason actions or modifications already noted under the season description, the following inseason guidance is provided to NMFS:
a. Chinook remaining from the May through June non-Indian commercial troll harvest guideline north of Cape Falcon may be transferred to the July through September harvest guideline if the transfer would not result in exceeding preseason impact expectations on any stocks.
b. NMFS may transfer fish between the recreational and commercial fisheries north of Cape Falcon if there is agreement among the areas' representatives on the Salmon Advisory Subpanel (SAS), and if the transfer would not result in exceeding preseason impact expectations on any stocks.
c. At the March 2018 meeting, the Council will consider inseason recommendations for special regulations for any experimental fisheries (proposals must meet Council protocol and be received in November 2017).
d. If retention of unmarked coho is permitted by inseason action, the allowable coho quota will be adjusted to ensure preseason projected impacts on all stocks is not exceeded.
e. Landing limits may be modified inseason to sustain season length and keep harvest within overall quotas.
C.9. State Waters Fisheries: Consistent with Council management objectives:
a. The State of Oregon may establish additional late-season fisheries in state waters.
b. The State of California may establish limited fisheries in selected state waters. Check state regulations for details.
C.10. KMZ Area described: For the purposes of California Fish and Game Code, Section 8232.5, the definition of the Klamath Management Zone (KMZ) for the ocean salmon season shall be that area from Humbug Mountain, Oregon, to Horse Mountain, California

TABLE V-2. 2017 Recreational management measures for non-Indian ocean salmon fisheries - Council adopted. (Page 1 of 5)

Cape Alava to Queets River (La Push Subarea)

- June 24 through earlier of September 4 or 1,090 marked coho subarea quota with a subarea guideline of 2,500 Chinook (C.5). Seven days per week. All salmon, two fish per day. All coho must be marked with a healed adipose fin clip. See gear restrictions and definitions (C.2, C.3). Inseason management may be used to sustain season length and keep harvest within the overall Chinook and coho recreational TACs for north of Cape Falcon (C.5).

Queets River to Leadbetter Point (Westport Subarea)

- July 1 through earlier of September 4 or 15,540 marked coho subarea quota with a subarea guideline of 21,400 Chinook (C.5). Seven days per week. All salmon; two fish per day, no more than one of which can be a Chinook. All coho must be marked with a healed adipose fin clip (C.1). See gear restrictions and definitions (C.2, C.3). Grays Harbor Control Zone closed beginning August 14 (C.4.b). Inseason management may be used to sustain season length and keep harvest within the overall Chinook and coho recreational TACs for north of Cape Falcon (C.5).

Leadbetter Point to Cape Falcon (Columbia River Subarea)

- June 24 through earlier of September 4 or 21,000 marked coho subarea quota with a subarea guideline of 13,200 Chinook (C.5). Seven days per week. All salmon; two fish per day, no more than one of which can be a Chinook. All coho must be marked with a healed adipose fin clip (C.1). See gear restrictions and definitions (C.2, C.3). Columbia Control Zone closed (C.4.c). Inseason management may be used to sustain season length and keep harvest within the overall Chinook and coho recreational TACs for north of Cape Falcon (C.5).

TABLE V-2. 2017 Recreational management measures for non-Indian ocean salmon fisheries - Council adopted.
(Page 2 of 5)

A. SEASON DESCRIPTIONS

South of Cape Falcon

Supplemental Management Information

1 Sacramento River fall Chinook spawning escapement of 133,242 hatchery and natural area adults.
2. Sacramento Index exploitation rate of 42.2%.
3. Klamath River recreational fishery allocation: 129 adult Klamath River fall Chinook.
4. Klamath tribal allocation: 814 adult Klamath River fall Chinook.
5. Overall recreational coho TAC: 18,000 coho marked with a healed adipose fin clip (marked), and 6,000 coho in the non-markselective coho fishery.
6. Fisheries may need to be adjusted to meet NMFS ESA consultation standards, FMP requirements, other management objectives, or upon receipt of new allocation recommendations from the CFGC.

Cape Falcon to Humbug Mt.

- March 15-October 31 (C.6), except as provided below during the all-salmon mark-selective and September non-mark-selective coho fisheries.
Seven days per week. All salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B). See gear restrictions and definitions (C.2, C.3).
- Non-mark-selective coho fishery: September 2 through the earlier of September 30 or a landed catch of 6,000 coho (C.5).

Seven days per week. All salmon, two fish per day (C.1). Chinook minimum size limit of 24 inches total length. Coho minimum size limit of 16 inches total length (B). See gear restrictions and definitions (C.2, C.3).

The all salmon except coho season reopens the earlier of October 1 or attainment of the coho quota (C.5). During October the fishery is only open shoreward of the 40 fathom regulatory line (C.4.f).

In 2018, the season between Cape Falcon and Humbug Mountain will open March 15 for all salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B); and the same gear restrictions as in 2017 (C.2, C.3). This opening could be modified following Council review at the March 2018 Council meeting.

Fishing in the Stonewall Bank yelloweye rockfish conservation area restricted to trolling only on days the all depth recreational halibut fishery is open (call the halibut fishing hotline 1-800-662-9825 for specific dates) (C.3.b, C.4.d).

Cape Falcon to Humbug Mt.

- All-salmon mark-selective coho fishery: June 24 through the earlier of July 31 or a landed catch of 18,000 marked coho (C.5). Seven days per week. All salmon, two fish per day. All retained coho must be marked with a healed adipose fin clip (C.1). Chinook minimum size limit of 24 inches total length. Coho minimum size limit of 16 inches total length (B). See gear restrictions and definitions (C.2, C.3). Any remainder of the mark-selective quota may be transferred on an impact neutral basis to the September non-mark-selective quota from Cape Falcon to Humbug Mountain. The all salmon except coho season reopens the earlier of August 1 or attainment of the coho quota (C.5.e)

Fishing in the Stonewall Bank Yelloweye Rockfish Conservation Area restricted to trolling only on days the all depth recreational halibut fishery is open (call the halibut fishing hotline 1-800-662-9825 for specific dates) (C.3.b, C.4.d).

Humbug Mt. to OR/CA Border (Oregon KMZ)

- Closed (C.6).

OR/CA Border to Horse Mt. (California KMZ)

- Closed (C.6).

TABLE V-2. 2017 Recreational management measures for non-Indian ocean salmon fisheries - Council adopted.

A. SEASON DESCRIPTIONS

Horse Mt. to Point Arena (Fort Bragg)

- April 1-May 31;
- August 15-November 12 (C.6).

Seven days per week. All salmon except coho, two fish per day (C.1). Chinook minimum size limit of 20 inches total length (B). See gear restrictions and definitions (C.2, C.3).

In 2018, season opens April 7 for all salmon except coho, two fish per day (C.1). Chinook minimum size limit of 20 inches total length (B); and the same gear restrictions as in 2017 (C.2, C.3). This opening could be modified following Council review at the March 2018 Council meeting.

Point Arena to Pigeon Point (San Francisco)

- April 1-30;
- May 15-October 31 (C.6).

Seven days per week. All salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length through April 30, 20 inches thereafter (B). See gear restrictions and definitions (C.2, C.3).

In 2018, season opens April 7 for all salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B); and the same gear restrictions as in 2017 (C.2, C.3). This opening could be modified following Council review at the March 2018 Council meeting.

Pigeon Point to Point Sur (Monterey North)

- April 1-July 15 (C.6).

Seven days per week. All salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B). See gear restrictions and definitions (C.2, C.3).

In 2018, season opens April 7 for all salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B); and the same gear restrictions as in 2017 (C.2, C.3). This opening could be modified following Council review at the March 2018 Council meeting.

Point Sur to U.S./Mexico Border (Monterey South)

- April 1-May 31 (C.6).

Seven days per week. All salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B). See gear restrictions and definitions (C.2, C.3).

In 2018, season opens April 7 for all salmon except coho, two fish per day (C.1). Chinook minimum size limit of 24 inches total length (B); and the same gear restrictions as in 2017 (C.2, C.3). This opening could be modified following Council review at the March 2018 Council meeting.

California State regulations require all salmon be made available to a CDFW representative for sampling immediately at port of landing. Any person in possession of a salmon with a missing adipose fin, upon request by an authorized agent or employee of the CDFW, shall immediately relinquish the head of the salmon to the state. (California Code of Regulations Title 14 Section 1.73)

B. MINIMUM SIZE (Inches) (See C.1)

Area (when open)	Chinook	Coho	Pink
North of Cape Falcon	24	16	None
Cape Falcon to Humbug Mt.	24	16	None
Humbug Mt. to OR/CA Border	-	-	-
OR/CA Border to Horse Mt.	-	-	-
Horse Mt. to Pt. Arena	20	-	20
Pt. Arena to Pigeon Pt. \leq April 30	24	-	24
Pt. Arena to Pigeon Pt. > April 30	20	-	20
Pigeon Pt. to Pt. Sur	24	-	24
Pt. Sur to U.S./Mexico Border	24	-	24

TABLE V-2. 2017 Recreational management Alternatives for non-Indian ocean salmon fisheries - Council adopted.
(Page 4 of 5)

C. REQUIREMENTS, DEFINITIONS, RESTRICTIONS, OR EXCEPTIONS

C.1. Compliance with Minimum Size and Other Special Restrictions: All salmon on board a vessel must meet the minimum size or other special requirements for the area being fished and the area in which they are landed if that area is open. Salmon may be landed in an area that is closed only if they meet the minimum size or other special requirements for the area in which they were caught. Salmon may not be filleted prior to landing.
Ocean Boat Limits: Off the coast of Washington, Oregon, and California, each fisher aboard a vessel may continue to use angling gear until the combined daily limits of Chinook and coho salmon for all licensed and juvenile anglers aboard have been attained (additional state restrictions may apply).
C.2. Gear Restrictions: Salmon may be taken only by hook and line using barbless hooks. All persons fishing for salmon, and all persons fishing from a boat with salmon on board, must meet the gear restrictions listed below for specific areas or seasons.
a. U.S./Canada Border to Pt. Conception, California: No more than one rod may be used per angler; and no more than two single point, single shank barbless hooks are required for all fishing gear. [Note: ODFW regulations in the state-water fishery off Tillamook Bay may allow the use of barbed hooks to be consistent with inside regulations.]
b. Horse Mt., California, to Pt. Conception, California: Single point, single shank, barbless circle hooks (see gear definitions below) are required when fishing with bait by any means other than trolling, and no more than two such hooks shall be used. When angling with two hooks, the distance between the hooks must not exceed five inches when measured from the top of the eye of the top hook to the inner base of the curve of the lower hook, and both hooks must be permanently tied in place (hard tied). Circle hooks are not required when artificial lures are used without bait.
C.3. Gear Definitions:
a. Recreational fishing gear defined: Off Oregon and Washington, angling tackle consists of a single line that must be attached to a rod and reel held by hand or closely attended; the rod and reel must be held by hand while playing a hooked fish. No person may use more than one rod and line while fishing off Oregon or Washington. Off California, the line must be attached to a rod and reel held by hand or closely attended; weights directly attached to a line may not exceed four pounds (1.8 kg). While fishing off California north of Pt. Conception, no person fishing for salmon, and no person fishing from a boat with salmon on board, may use more than one rod and line. Fishing includes any activity which can reasonably be expected to result in the catching, taking, or harvesting of fish.
b. Trolling defined: Angling from a boat or floating device that is making way by means of a source of power, other than drifting by means of the prevailing water current or weather conditions.
c. Circle hook defined: A hook with a generally circular shape and a point which turns inward, pointing directly to the shank at a 90° angle.
C.4. Control Zone Definitions:
a. The Bonilla-Tatoosh Line: A line running from the western end of Cape Flattery to Tatoosh Island Lighthouse ($48^{\circ} 23^{\prime} 30^{\prime \prime} \mathrm{N}$. lat., $124^{\circ} 44^{\prime} 12^{\prime \prime \prime}$ W. long.) to the buoy adjacent to Duntze Rock ($48^{\circ} 24^{\prime} 37^{\prime \prime} \mathrm{N}$. lat., $124^{\circ} 44^{\prime} 37^{\prime \prime} \mathrm{W}$. long.), then in a straight line to Bonilla Pt. ($48^{\circ} 355^{\prime} 39^{\prime \prime}$ N. lat., $124^{\circ} 42^{\prime} 58^{\prime \prime}$ W. Iong.) on Vancouver Island, British Columbia.
b. Grays Harbor Control Zone - The area defined by a line drawn from the Westport Lighthouse ($46^{\circ} 53^{\prime} 18^{\prime \prime} \mathrm{N}$. lat., $124^{\circ} 07^{\prime} 01^{\prime \prime}$ W. long.) to Buoy \#2 ($46^{\circ} 52^{\prime} 42^{\prime \prime} \mathrm{N}$. lat., $124^{\circ} 12^{\prime} 42^{\prime \prime} \mathrm{W}$. long.) to Buoy \#3 ($46^{\circ} 55^{\prime} 00^{\prime \prime} \mathrm{N}$. lat., $124^{\circ} 14^{\prime} 48^{\prime \prime} \mathrm{W}$. long.) to the Grays Harbor north jetty ($46^{\circ} 55^{\prime} 36^{\prime \prime} \mathrm{N}$. lat., $124^{\circ} 10^{\prime} 51^{\prime \prime}$ W. long.).
c. Columbia Control Zone: An area at the Columbia River mouth, bounded on the west by a line running northeast/southwest between the red lighted Buoy \#4 ($46^{\circ} 13^{\prime} 35^{\prime \prime} \mathrm{N}$. lat., $124^{\circ} 06^{\prime} 50^{\prime \prime} \mathrm{W}$. long.) and the green lighted Buoy \#7 ($46^{\circ} 15^{\prime} 09^{\prime} \mathrm{N}$. lat., $124^{\circ} 06^{\prime} 16^{\prime \prime}$ W. long.); on the east, by the Buoy \#10 line which bears north/south at 357° true from the south jetty at $46^{\circ} 14^{\prime} 00^{\prime \prime}$ N . lat., $124^{\circ} 03^{\prime} 07^{\prime \prime} \mathrm{W}$. long. to its intersection with the north jetty; on the north, by a line running northeast/southwest between the green lighted Buoy \#7 to the tip of the north jetty ($46^{\circ} 15^{\prime} 48^{\prime \prime} \mathrm{N}$. lat., $124^{\circ} 05^{\prime} 20^{\prime \prime} \mathrm{W}$. long. and then along the north jetty to the point of intersection with the Buoy \#10 line; and on the south, by a line running northeast/southwest between the red lighted Buoy \#4 and tip of the south jetty ($46^{\circ} 14^{\prime} 03^{\prime \prime} \mathrm{N}$. lat., $124^{\circ} 04^{\prime} 05^{\prime \prime} \mathrm{W}$. long.), and then along the south jetty to the point of intersection with the Buoy \#10 line.
d. Stonewall Bank Yelloweye Rockfish Conservation Area: The area defined by the following coordinates in the order listed:
$44^{\circ} 37.46^{\prime} \mathrm{N}$. lat.; $124^{\circ} 24.92^{\prime} \mathrm{W}$. long.
$44^{\circ} 37.46^{\prime} \mathrm{N}$. lat.; 124²3.63' W. long.
$44^{\circ} 28.71^{\prime} \mathrm{N}$. lat.; $124^{\circ} 21.80^{\prime} \mathrm{W}$. long.
$44^{\circ} 28.71^{\prime} \mathrm{N}$. lat.; $124^{\circ} 24.10^{\prime} \mathrm{W}$. long.
$44^{\circ} 31.42^{\prime} \mathrm{N}$. lat.; $124^{\circ} 25.47^{\prime} \mathrm{W}$. long.
and connecting back to $44^{\circ} 37.46^{\prime} \mathrm{N}$. lat.; $124^{\circ} 24.92^{\prime} \mathrm{W}$. long.
e. Klamath Control Zone: The ocean area at the Klamath River mouth bounded on the north by $41^{\circ} 38^{\prime} 48^{\prime \prime}$ N. lat. (approximately 6 nautical miles north of the Klamath River mouth); on the west by $124^{\circ} 23^{\prime} 00^{\prime \prime}$ W. long. (approximately 12 nautical miles off shore); and, on the south by $41^{\circ} 26^{\prime} 48^{\prime \prime} \mathrm{N}$. lat. (approximately 6 nautical miles south of the Klamath River mouth).

TABLE V-2. 2017 Recreational management Alternatives for non-Indian ocean salmon fisheries - Council adopted. (Page 5 of 5)
f. Waypoints for the 40 fathom regulatory line from Cape Falcon to Humbug Mt. (50 CFR 660.71 (k) (12)-(70).
C.5. Inseason Management: Regulatory modifications may become necessary inseason to meet preseason management objectives such as quotas, harvest guidelines, and season duration. In addition to standard inseason actions or modifications already noted under the season description, the following inseason guidance is provided to NMFS:
a. Actions could include modifications to bag limits, or days open to fishing, and extensions or reductions in areas open to fishing.
b. Coho may be transferred inseason among recreational subareas north of Cape Falcon to help meet the recreational season duration objectives (for each subarea) after conferring with representatives of the affected ports and the Council's SAS recreational representatives north of Cape Falcon, and if the transfer would not result in exceeding preseason impact expectations on any stocks.
c. Chinook and coho may be transferred between the recreational and commercial fisheries north of Cape Falcon if there is agreement among the representatives of the SAS, and if the transfer would not result in exceeding preseason impact expectations on any stocks.
d. Fishery managers may consider inseason action modifying regulations restricting retention of unmarked coho. To remain consistent with preseason expectations, any inseason action shall consider, if significant, the difference between observed and preseason forecasted mark rates. Such a consideration may also include a change in bag limit of two salmon, no more than one of which may be a coho.
e. Marked coho remaining from the Cape Falcon to Humbug Mt. recreational mark-selective coho quota may be transferred inseason to the Cape Falcon to Humbug Mt. non-mark-selective recreational fishery if the transfer would not result in exceeding preseason impact expectations on any stocks.
C.6. Additional Seasons in State Territorial Waters: Consistent with Council management objectives, the States of Washington, Oregon, and California may establish limited seasons in state waters. Check state regulations for details.

TABLE V-3. 2017 Treaty Indian ocean troll management measures for ocean salmon fisheries - Council adopted.

A. SEASON DESCRIPTIONS
Supplemental Management Information
1. Overall Treaty-Indian TAC: 40,000 Chinook and 12,500 coho.
May 1 through the earlier of June 30 or 20,000 Chinook quota.
All salmon except coho. If the Chinook quota for the May-June fishery is not fully utilized, the excess fish may be transferred into
the later all-salmon season (C.5.a). If the Chinook quota is exceeded, the excess will be deducted from the later all-salmon season
(C.5). See size limit (B) and other restrictions (C).

- July 1 through the earlier of September 15, or 20,000 Chinook quota (C.5), or 12,500 coho quota.

All Salmon. See size limit (B) and other restrictions (C).

B. MINIMUM SIZE (Inches)					
Area (when open)	Chinook		Coho		Pink
	Total Length	Head-off	Total Length	Head-off	
North of Cape Falcon	24.0 (61.0 cm)	18.0 (45.7 cm)	-	-	None

C. REQUIREMENTS, DEFINITIONS, RESTRICTIONS, OR EXCEPTIONS

C.1. Tribe and Area Boundaries. All boundaries may be changed to include such other areas as may hereafter be authorized by a Federal court for that tribe's treaty fishery.
S'KLALLAM - Washington State Statistical Area 4B (AII).
MAKAH - Washington State Statistical Area 4B and that portion of the FMA north of $48^{\circ} 02^{\prime} 15^{\prime \prime}$ N. lat. (Norwegian Memorial) and east of $125^{\circ} 44^{\prime} 00^{\prime \prime}$ W. long.

QUILEUTE - That portion of the FMA between $48^{\circ} 10.00^{\prime} \mathrm{N}$. lat. (Cape Alava) and $47^{\circ} 31^{\prime} 42^{\prime \prime} \mathrm{N}$. lat. (Queets River) and east of $125^{\circ} 44^{\prime} 00^{\prime \prime} \mathrm{W}$. long.
$\underline{\mathrm{HOH}}$ - That portion of the FMA between $47^{\circ} 54^{\prime} 18^{\prime \prime} \mathrm{N}$. lat. (Quillayute River) and $47^{\circ} 21^{\prime} 00^{\prime \prime} \mathrm{N}$. lat. (Quinault River) and east of $\overline{125^{\circ}} 44^{\prime} 00^{\prime \prime} \mathrm{W}$. long.
 east of $125^{\circ} 08.50^{\prime} \mathrm{W}$. long.
C.2. Gear restrictions
a. Single point, single shank, barbless hooks are required in all fisheries.
b. No more than eight fixed lines per boat.
c. No more than four hand held lines per person in the Makah area fishery (Washington State Statistical Area 4B and that portion of the FMA north of $48^{\circ} 02^{\prime} 15^{\prime \prime} \mathrm{N}$. lat. (Norwegian Memorial) and east of $125^{\circ} 44^{\prime} 00^{\prime \prime} \mathrm{W}$. long.)
C.3. Quotas
a. The quotas include troll catches by the S'Klallam and Makah tribes in Washington State Statistical Area 4B from May 1 through August 31.
b. The Quileute Tribe will continue a ceremonial and subsistence fishery during the time frame of October 1 through October 15 in the same manner as in 2004-2015. Fish taken during this fishery are to be counted against treaty troll quotas established for the 2017 season (estimated harvest during the October ceremonial and subsistence fishery: 20 Chinook; 40 coho).
C.4. Area Closures
a. The area within a six nautical mile radius of the mouths of the Queets River ($47^{\circ} 31^{\prime} 42^{\prime \prime}$ N. lat.) and the Hoh River ($47^{\circ} 45^{\prime} 12^{\prime \prime}$ N . lat.) will be closed to commercial fishing.
b. A closure within two nautical miles of the mouth of the Quinault River ($47^{\circ} 21^{\prime} 00^{\prime \prime} \mathrm{N}$. lat.) may be enacted by the Quinault Nation and/or the State of Washington and will not adversely affect the Secretary of Commerce's management regime.
C.5. Inseason Management: In addition to standard inseason actions or modifications already noted under the season description, the following inseason guidance is provided to NMFS:
a. Chinook remaining from the May through June treaty-Indian ocean troll harvest guideline north of Cape Falcon may be transferred to the July through September harvest guideline on a fishery impact equivalent basis.

ABLE V-4. Stock status relative to overfished and overfishing criteria. A stock is approaching an overfished condition if the 3-year geometric mean of the most recent two years and the forecast spawning escapement is less than the minimum stock size threshold (MSST); a stock would experience overfishing if the total annual exploitation rate exceeds the maximum fishing mortality threshold (MFMT). Occurrences of stocks at risk of approaching an overfished condition or experiencing overfishing are indicated in bold. 2018 spawning escapement and exploitation rate estimates are based on preliminary 2018 preseason abundance forecasts and 2017 Council regulations.

	Spaw ning Escapement									Total Exploitation Rate						
						$\begin{aligned} & \hline \text { Forecast } \\ & 2018^{b /} \end{aligned}$	$\begin{gathered} \hline 3-\mathrm{yr} \text { Geo } \\ \text { Mean } \\ \hline \end{gathered}$	MSST	$\mathrm{S}_{\text {MSY }}$							
	2013	2014	2015	2016	$2017{ }^{\text {a/ }}$					2013	2014	2015	2016	$2017{ }^{\text {a/ }}$	$2018{ }^{\text {b/ }}$	MFMT
Chinook																
Sacramento Fall	406,200	212,468	112,947	89,674	44,574	134,942	81,401	91,500	122,000	0.53	0.61	0.56	0.56	0.68	0.41	0.78
Klamath River Fall	59,156	95,104	28,112	13,937	18,514	56,507	24,430	30,525	40,700	0.64	0.36	0.59	0.37	0.09	0.05	0.71
Southern Oregon ${ }^{\text {c/ }}$	81,655	53,546	30,462	27,278	90,674	NA	42,236	20,500	34,992	NA	NA	NA	NA	NA	NA	0.54
Central and Northern OR	189	157	247	118	114	NA	149	$30 \mathrm{fish} / \mathrm{mi}$	$60 \mathrm{fish} / \mathrm{mi}$	NA	NA	NA	NA	NA	NA	0.78
Upper River Bright - Falld ${ }^{\text {d/ }}$	305,445	233,934	323,276	151,373	97,789	107,700	116,820	19,182	39,625	0.52	0.53	0.40	NA	NA	NA	0.86
Upper River - Summer ${ }^{\text {d/ }}$	68,380	77,982	88,691	79,253	56,265	41,100	56,802	6,072	12,143	0.62	0.74	0.89	NA	NA	NA	0.75
Willapa Bay - Fall ${ }^{\text {e/ }}$	1,904	2,075	2,824	1,887	NA	NA	2,228	1,696	3,393	0.59	0.49	0.57	NA	NA	NA	0.78
Grays Harbor Fall ${ }^{\text {/ }}$	12,582	11,400	22,200	11,248	NA	NA	14,172	5,694	11,388	0.59	0.49	0.57	NA	NA	NA	0.78
Grays Harbor Spring	2,459	1,583	1,841	926	NA	NA	1,392	546	1,092	NA	NA	NA	NA	NA	NA	0.78
Queets - Falld ${ }^{\text {d/ }}$	2,582	3,820	5,313	2,915	NA	NA	3,897	1,250	2,500	0.59	0.49	0.57	NA	NA	NA	0.87
Queets - Sp/Su	520	377	532	704	NA	NA	521	350	700	NA	NA	NA	NA	NA	NA	0.78
Hoh - Falle ${ }^{\text {/ }}$	1,269	1,933	1,795	2,831	1,808	NA	2,094	600	1,200	0.59	0.49	0.57	NA	NA	NA	0.90
Hoh Sp/Su	750	744	1,070	1,144	1,364	NA	1,186	450	900	NA	NA	NA	NA	NA	NA	0.78
Quillayute - Falle/	4,017	2,782	3,440	3,654	3,391	NA	3,493	1,500	3,000	0.59	0.49	0.57	NA	NA	NA	0.87
Quillayute - Sp/Su	957	608	794	900	1,146	NA	936	600	1,200	NA	NA	NA	NA	NA	NA	0.78
Hoko -Su/Fa ${ }^{\text {d/ }}$	1,406	1,760	2,877	1,324	1,188	NA	1,654	425	850	0.25	0.42	0.29	NA	NA	NA	0.78
Coho																
Willapa Bay	22,638	47,154	10,790	25,290	NA	11,343	14,574	8,600	17,200	NA	NA	NA	NA	NA	0.51	0.74
Grays Harbor	56,785	105,039	21,278	37,849	NA	29,976	28,901	18,320	24,426	0.44	0.46	0.50	0.11	NA	0.29	0.65
Queets	5,684	7,557	2,028	5,156	NA	5,393	3,835	4,350	5,800	0.39	0.44	0.33	0.15	NA	0.23	0.65
Hoh	2,899	4,565	1,794	5,009	4,478	3,731	4,374	1,890	2,520	0.70	0.43	0.30	0.07	NA	0.36	0.65
Quillayute Fall	7,072	7,425	2,571	9,630	8,745	6,369	8,125	4,725	6,300	0.55	0.50	0.45	0.17	NA	0.40	0.59
Juan de Fuca	8,461	11,002	3,779	7,704	NA	6,800	5,828	7,000	11,000	0.43	0.17	0.18	0.03	NA	0.05	0.60
Hood Canal	16,064	26,776	26,926	24,313	NA	34,893	28,374	10,750	14,350	0.55	0.66	0.59	0.36	NA	0.41	0.65
Skagit	88,751	24,820	5,794	35,823	NA	54,292	22,419	14,875	25,000	0.44	0.50	0.58	0.17	NA	0.09	0.60
Stillaguamish	60,387	35,763	2,909	12,933	NA	17,415	8,685	6,100	10,000	0.33	0.40	0.52	0.30	NA	0.08	0.50
Snohomish	125,870	46,244	12,804	44,141	NA	53,087	31,074	31,000	50,000	0.39	0.43	0.58	0.32	NA	0.20	0.60

a/ Preliminary.
b/ Preliminary approximations based on preseason forecasts and the previous year fishing regulations
c/ MSST 18,440 (20,500 as measured at Huntley Park).
d/ CWT based exploitation rates from annual catch and escapement distribution from PSC-CTC 2013 Exploitation Rate Analysis.
e/ Queets River fall Chinook CWT exploitation rates used as a proxy. Exploitation rates in the terminal fisheries will differ from those calculated for Queets fall CWTs.

TABLE V-5. Postseason $\mathrm{S}_{\mathrm{ACL}}, \mathrm{S}_{\text {ofL }}$, and spawner escapement estimates for Sacramento River fall Chinook (SRFC), Klamath River fall Chinook (KRFC) and Willapa Bay coho. For the current year, data are preseason values based on current abundance forecasts and the previous year fishing regulations.

	SRFC			KRFC			Willapa Bay Coho		
Year	$\mathrm{SACL}^{\text {a/ }}$	SofL	Escapement ${ }^{\text {b/ }}$	$\mathrm{SaCL}^{\text {a }}$	$\mathrm{S}_{\text {OFL }}$	Escapement ${ }^{\text {c/ }}$	$\mathrm{SACL}^{\text {a }}$	SofL	Escapement ${ }^{\text {// }}$
2012	187,246	137,314	285,429	70,943	64,292	121,543	--	--	--
2013	260,041	190,696	406,200	52,016	47,140	59,156	--	--	--
2014	165,317	121,232	212,468	47,673	43,203	95,104	--	--	--
2015	76,272	55,933	112,947	22,207	20,126	28,112	9,873	8,643	17,086
2016	61,587	45,164	89,674	7,053	6,392	13,937	NA	NA	NA
2017	41,999	30,799	44,574	6,542	5,929	18,514	10,906	9,547	24,754
2018	68,830	50,475	134,942	19,115	17,323	56,507	6,194	5,368	11,343

$\mathrm{a} / \mathrm{S}_{\mathrm{ACL}}=\mathrm{S}_{\mathrm{ABC}}$.
b/ Hatchery and natural area adult spaw ners.
c/ Natural area adult spaw ners.

TABLE V-6. Estimated ocean escapements and exploitation rates for critical natural and Columbia River hatchery coho stocks (thousands of fish) based on preliminary 2018 preseason abundance forecasts and 2017 Council management measures. ${ }^{a /}$

Stock	Ocean Escapement and ER Estimates Under 2017 Regulations ${ }^{\text {b/ }}$				2017 FMP ConservationObjective ${ }^{c /}$
	2018 Preseason		2017 Final Preseason		
	Ocean Escapement	Exploitation Rate	Ocean Escapement	Exploitation Rate	
Natural Coho Stocks					
Skagit	51.8	8.6\%	9.5	11.1\%	Exploitation Rate $\leq 35.0 \% \mathrm{~d} /$
Stillaguamish	16.9	8.1\%	6.8	8.5\%	Exploitation Rate $\leq 35.0 \% \mathrm{~d} /$
Snohomish	51.4	19.5\%	88.5	15.2\%	Exploitation Rate $\leq 40.0 \% \mathrm{~d} /$
Hood Canal	32.4	41.5\%	64.4	40.4\%	Exploitation Rate $\leq 65.0 \% \mathrm{~d} /$
Strait of Juan de Fuca	6.5	5.3\%	12.0	4.9\%	Exploitation Rate $\leq 20.0 \% \mathrm{~d} /$
Quillayute Fall	10.2	39.9\%	15.3	39.7\%	6.3-15.8 Spaw ners
Hoh	5.3	36.1\%	5.7	35.5\%	2.0-5.0 Spaw ners
Queets	6.1	23.1\%	5.8	22.1\%	5.8-14.5 Spaw ners
Grays Harbor	40.3	29.4\%	47.9	28.9\%	35.4 Spaw ners
LCN	19.5	14.2\%	27.6	11.4\%	Exploitation Rate $\leq 18.0^{\text {e/ }}$
OCN	47.5	13.9\%	92.7	9.3\%	Exploitation Rate $\leq 15.0 \%{ }^{\text {e/ }}$
R/K	2.5	4.7\%	2.4	3.3\%	Exploitation Rate $\leq 13.0 \%{ }^{\text {e/ }}$
Hatchery Coho Stocks					
Columbia Early	121.2	51.1\%	183.1	46.7\%	6.2 Hatchery Escapement
Columbia Late	85.7	34.7\%	119.7	28.6\%	14.2 Hatchery Escapement

a/ Quota levels include harvest and hooking mortality estimates used in planning the Council's 2016 ocean fisheries and a coho catch for the Canadian troll fishery off the West Coast of Vancouver Island (WCVI).
b/ 2017 preseason regulations with the follow ing coho quotas: U.S. Canada Border to Cape Falcon: Treaty Indian troll-12,500; non-Indian troll- 5,600 selective; recreational- 42,000 selective; Cape Falcon to OR/CA border: recreational-18,000 selective and 6,000 non-selective; troll-none. Ocean escapement is generally the estimated number of coho escaping ocean fisheries and entering freshw ater. For Puget Sound stocks, ocean escapement is the total abundance minus ocean fisheries (ie outside Puget Sound). For the OCN coho stock, this value represents the estimated spaw ner escapement in SRS accounting. For Columbia R. hatchery and LCN stocks, ocean escapement represents the number of coho after the Buoy 10 fishery; the LCN exploitation rates show n are total marine and mainstem Columbia R. fishery ERs. The Council fisheries exploitation rates are forecast at 9.3% using 2018 abundances with 2017 fishery regulations and 7.6% in 2017 w ith the 2017 ESA limit of 18.0% including mainstem Columbia R. fisheries.
c/ Goals represent FMP conservation objectives, ESA consultation standards, or hatchery escapement needs. Spaw ning escapement goals are not directly comparable to ocean escapement because the latter occur before inside fisheries.
d/ Assumed exploitation rate based on preliminary abundance forecasts.
e/ Pending confirmation of 2017 ESA consultation standard.

TABLE V-7. Comparison of Lower Columbia natural (LCN), Oregon coastal natural (OCN), and Rogue/Klamath (RK) coho projected harvest mortality and exploitation rates by fishery under Council-adopted 2017 management measures and preliminary 2018 preseason abundance estimates.

Fishery	Projected Harvest Mortality and Exploitation Rate					
	LCN		OCN		$\mathrm{RK}^{\text {a }}$	
	Number	Percent	Number	Percent	Number	Percent
SOUTHEAST ALASKA	0	0.0\%	0	0.0\%	0	0.0\%
BRITISH COLUMBIA	25	0.1\%	220	0.4\%	7	0.3\%
PUGET SOUND/STRAITS	20	0.1\%	15	0.0\%	0	0.0\%
NORTH OF CAPE FALCON						
Recreational	672	3.1\%	314	0.6\%	1	0.0\%
Treaty Indian Troll	211	1.0\%	122	0.2\%	0	0.0\%
Non-Indian Troll	286	1.3\%	165	0.3\%	0	0.0\%
SOUTH OF CAPE FALCON						
Recreational:						
Cape Falcon to Humbug Mt.	638	2.9\%	4,050	7.3\%	14	0.5\%
Humbug Mt. to Horse Mt. (KMZ)	0	0.0\%	9	0.0\%	2	0.1\%
Fort Bragg	4	0.0\%	92	0.2\%	32	1.2\%
South of Pt. Arena	16	0.1\%	381	0.7\%	46	1.7\%
Troll:						
Cape Falcon to Humbug Mt.	194	0.9\%	376	0.7\%	1	0.0\%
Humbug Mt. to Horse Mt. (KMZ)	0	0.0\%	5	0.0\%	0	0.0\%
Fort Bragg	0	0.0\%	13	0.0\%	6	0.2\%
South of Pt. Arena	23	0.1\%	443	0.8\%	10	0.4\%
BUOY 10	376	1.7\%	56	0.1\%	0	0.0\%
ESTUARY/FRESHWATER	NA	NA	1,388	2.5\%	6	0.2\%
TOTAL	2,465	11.2\%	7,644	13.9\%	125	4.7\%

a/ Unmarked hatchery production used as a surrogate for Rogue/Klamath natural stock coho.

	TABLE V-8 Maximum allowable fishery impact rate for OCN coho under Amendment 13 matrix and the revised OCN work group matrix based on parent escapement levels by stock component and marine survival category. ${ }^{\text {a }}$												
		OCN Coho Spaw ners by Stock Component				Marine Survival Indicator		Amendment 13 Matrix			OCN Work Group Matrix ${ }^{\text {a/ }}$		
	Fishery Year (t)	Parent Spaw ner Year (t-3)	Northern	North- Central	South- Central	Hatchery Jack Survival	Predicted OCN Adult Survival	Marine Survival Category	Parental Spaw ner Category	Maximum Allow able Impacts	Marine Survival Category ${ }^{\mathrm{b} / \mathrm{c} /}$	Parental Spaw ner Category	Maximum Allow able Impacts
	1998	1995	3,900	13,600	36,500	0.04\%	-	Low	Very Low	$\leq 10-13 \%$	Extremely Low	Very Low	$\leq 8 \%$
J	1999	1996	3,300	18,100	52,600	0.10\%	-	Med	Very Low	$\leq 15 \%$	Low	Critical	0-8\%
(1)	2000	1997	2,100	2,800	18,400	0.12\%	-	Med	Very Low	<15\%	Low	Critical	0-8\%
윽	2001	1998	2,600	3,300	25,900	0.27\%	-	Med	Very Low	<15\%	Medium	Critical	0-8\%
	2002	1999	8,900	11,800	29,200	0.09\%	-	Med	Low	<15\%	Low	Low	$\leq 15 \%$
	2003	2000	17,900	14,300	36,500	0.20\%	-	Med	Low	<15\%	Med	Low	<15\%
	2004	2001	33,500	25,200	112,000	0.14\%	-	Med	Low	$\leq 15 \%$	Med	Low	<15\%
	2005	2002	52,500	104,000	104,100	0.11\%	-	Med	High	$\leq 20 \%$	Low	High	$\leq 15 \%$
	2006	2003	59,600	68,900	99,800	0.12\%	-	Med	High	$\leq 20 \%$	Low	High	$\leq 15 \%$
	2007	2004	28,800	42,100	101,900	0.17\%	-	Med	Med	$\leq 20 \%$	Med	Med	$\leq 20 \%$
	2008	2005	16,500	51,400	86,700	0.07\%	-	Low	High	<15\%	Extremely Low	High	<8\%
	2009	2006	24,100	21,200	83,500	0.27\%	-	Med	Low	<15\%	Med	Low	$\leq 15 \%$
	2010	2007	17,500	12,300	36,500	0.12\%	-	Med	Low	$\leq 15 \%$	Low	Low	<15\%
	2011	2008	25,600	68,100	86,000	0.12\%	-	Med	High	$\leq 20 \%$	Low	High	<15\%
	2012	2009	48,100	86,400	128,200	0.09\%	-	Med	High	$\leq 20 \%$	Low	High	$\leq 15 \%$
$\stackrel{\square}{\square}$	2013	2010	55,000	56,500	171,900	0.14\%	6.8\%	Med	High	$\leq 20 \%$	Med	High	$\leq 30 \%$
	2014	2011	45,900	119,100	191,300	0.26\%	7.1\%	Med	High	$\leq 20 \%$	Med	High	$\leq 30 \%$
	2015	2012	7,500	33,800	57,800	0.20\%	7.5\%	Med	Low	$\leq 15 \%$	Med	Low	$\leq 15 \%$
	2016	2013	11,000	39,700	73,700	0.10\%	6.2\%	Med	Med	$\leq 20 \%$	Med	Med	$\leq 20 \%$
	2017	2014	67,400	121,900	170,400	0.13\%	5.6\%	Med	High	$\leq 30 \%$	Med	High	$\leq 30 \%$
	2018	2015	6,700	22,700	27,700	0.11\%	4.3\%	Low	Low	$\leq 15 \%$	Low	Low	$\leq 15 \%$
	2019	2016	18,700	26,500	30,700	,	-	-	Low	-	-	Low	-
	2020	2017	13,400	22,700	22,900	-	-	-	Low	-	-	Low	-

$\mathrm{a} /$ Developed by the OCN Coho Work Group as a result of the 2000 Review of Amendment 13. See Appendix A, tables A-2 and A-4 for details
b/ OCN w orkgroup matrix w as modified during the 2012 methodology review. For 2013, the marine survival category is determined by a predicted OCN adult survival rate that is based on th natural smolt to jack relationship at Mill Creek in the Yaquina River basin.
c/ OCN w orkgroup matrix w as modified during the 2013 methodology review. Beginning in 2014, the marine survival category is determined by a predicted OCN adult survival rate that is based on biologic and oceanographic indicators.

CHAPTER VI: REFERENCES

National Marine Fisheries Service (NMFS). 2003. Final Programmatic environmental impact statement for Pacific salmon fisheries management off the coasts of Southeast Alaska, Washington, Oregon, and California, and in the Columbia River basin. National Marine Fisheries Service Northwest Region, Seattle.

NMFS. 2008. Endangered Species Act-section 7 formal consultation biological opinion: Effects of the 2008 Pacific Coast salmon plan fisheries on the southern resident killer whale distinct population segment (Orcinus orca) and their critical habitat. National Marine Fisheries Service Northwest Region, Seattle.

O'Farrell, M., Hendrix, N., and Mohr, M. 2016. An evaluation of preseason abundance forecasts for Sacramento River winter Chinook salmon. Report prepared for the 2016 Salmon Methodology Review. Pacific Fishery Management Council, Portland, Oregon. http://www.pcouncil.org/wpcontent/uploads/2016/10/D2_Att1_SRWC_forecast_rev_doc_Oct032016_NOV2016BB.pdf

Pacific Fishery Management Council (PFMC). 2006. Environmental assessment for the proposed 2006 management measures for the ocean salmon fishery managed under the Pacific Coast salmon plan. Pacific Fishery Management Council, Portland, Oregon.

PFMC. 2017a. Preseason Report I: Stock Abundance Analysis and Environmental Assessment - Part 1 for 2017 Ocean Salmon Fishery Regulations. Pacific Fishery Management Council, Portland, Oregon.

PFMC. 2017b. Preseason Report II: Proposed Alternatives and Environmental Assessment - Part 2 for 2017 Ocean Salmon Fishery Regulations. Pacific Fishery Management Council, Portland, Oregon.

PFMC. 2017c. Preseason Report III: Council Adopted Management Measures and Environmental Assessment Part 3 for 2017 Ocean Salmon Fisheries. Pacific Fishery Management Council, Portland, Oregon.

PFMC. 2018. Review of 2017 Ocean Salmon Fisheries: Stock Assessment and Fishery Evaluation Document for the Pacific Coast Salmon Fishery Management Plan. Pacific Fishery Management Council, Portland, Oregon.

WDFW. 2018. 2018 Wild Coho Forecasts for Puget Sound, Washington Coast, and Lower Columbia. Washington Department of Fish and Wildlife, Olympia, Washington.

Page Intentionally Left Blank

APPENDIX A SUMMARY OF COUNCIL STOCK MANAGEMENT GOALS

LIST OF TABLES

Page
TABLE A-1. Conservation objectives and reference points governing harvest control rules and status determination criteria for salmon stocks and stock complexes 99
TABLE A-2. Allowable fishery impact rate criteria for OCN coho stock components under the Salmon Fishery Management Plan Amendment 13 106
TABLE A-3. Fishery impact rate criteria for OCN coho stock components based on the harvest matrix resulting from the OCN work group 2000 review of Amendment 13 107
TABLE A-4. Fishery impact rate criteria for OCN coho stock components based on the harvest matrix resulting from the OCN work group 2000 review of Amendment 13 including modifications to the marine survival index adopted during the 2012 and 2013 methodology reviews. 108
TABLE A-5. Council adopted management objectives for Puget Sound natural coho management units, expressed as exploitation rate ceilings for critical, low and normal abundance based status categories, with runsize breakpoints 109
TABLE A-6. Council recommended management objectives for Lower Columbia River natural tule Chinook, expressed as exploitation rate ceilings for abundance based status categories, with runsize forecast bins expressed as adult river mouth return forecasts of Lower Columbia River hatchery tule Chinook 109
LIST OF FIGURES
Page
FIGURE A-1. Sacramento River fall Chinook control rule. 110
FIGURE A-2. Klamath River fall Chinook control rule 110
FIGURE A-3. Sacramento River winter Chinook impact rate control rule 111

Page Intentionally Left Blank

TABLE A-1. Conservation objectives and reference points governing harvest control rules and status determination criteria for salmon stocks and stock complexes ${ }^{a /}$ (Page 1 of 7)

CHINOOK					
Stocks In The Fishery	Conservation Objective	$\mathrm{S}_{\text {MSY }}$	MSST	MFMT ($\mathrm{F}_{\mathrm{MSY}}$)	ACL
Sacramento River Fall Indicator stock for the Central Valley fall (CVF) Chinook stock complex.	122,000-180,000 natural and hatchery adult spawners (MSY proxy adopted 1984). This objective is intended to provide adequate escapement of natural and hatchery production for Sacramento and San Joaquin fall and late-fall stocks based on habitat conditions and average run-sizes as follows: Sacramento River 1953-1960; San Joaquin River 1972-1977 (ASETF 1979; PFMC 1984; SRFCRT 1994). The objective is less than the estimated basin capacity of 240,000 spawners (Hallock 1977), but greater than the 118,000 spawners for maximum production estimated on a basin by basin basis before Oroville and Nimbus Dams (Reisenbichler 1986).	122,000	91,500	$\begin{gathered} 78 \% \\ \text { Proxy } \\ \text { (SAC } \\ \text { 2011a) } \end{gathered}$	Based on $\mathrm{F}_{\mathrm{ABC}}$ and annual ocean abundance. $\mathrm{F}_{\mathrm{ABC}}$ is $\mathrm{F}_{\mathrm{MSY}}$ reduced by Tier 2 (10\%) uncertainty
Sacramento River Spring ESA Threatened	NMFS ESA consultation standard/recovery plan: Conform to Sacramento River Winter Chinook ESA consultation standard (no defined objective for ocean management prior to listing).	Undefined	Undefined	Undefined	
Sacramento River Winter ESA Endangered	NMFS ESA consultation standard/recovery plan: Recreational seasons: Point Arena to Pigeon Point between the first Saturday in April and the second Sunday in November; Pigeon Point to the U.S./Mexico Border between the first Saturday in April and the first Sunday in October. Minimum size limit ≥ 20 inches total length. Commercial seasons: Point Arena to the U.S./Mexico border between May 1 and September 30, except Point Reyes to Point San Pedro between October 1 and 15 (Monday through Friday). Minimum size limit ≥ 26 inches total length. In addition to these season and minimum size limit restrictions, annual limits to the preseason-predicted age-3 impact rate south of Point Arena, defined by a control rule, were implemented beginning in 2012 and updated in 2018 (See Figure A-3).	Undefined	Undefined	Undefined	ESA consultation standard applies.
California Coastal Chinook ESA Threatened	NMFS ESA consultation standard/recovery plan: Limit ocean fisheries to no more than a 16.0% age-4 ocean harvest rate on Klamath River fall Chinook.	Undefined	Undefined	Undefined	
Klamath River Fall Indicator stock for the Southern Oregon Northern California (SONC) Chinook stock complex.	At least 32% of potential adult natural spawners, but no fewer than 40,700 naturally spawning adults in any one year. Brood escapement rate must average at least 32% over the long-term, but an individual brood may vary from this range to achieve the required tribal/nontribal annual allocation. Natural area spawners to maximize catch estimated at 40,700 adults (STT 2005).	40,700	30,525	71\% (STT 2005)	Based on $\mathrm{F}_{\mathrm{ABC}}$ and annual ocean abundance. $\mathrm{F}_{\mathrm{ABC}}$ is $\mathrm{F}_{\mathrm{MSY}}$ reduced by Tier 1 (5\%) uncertainty
Klamath River - Spring	Undefined	Undefined	Undefined	Undefined	
Smith River	Undefined	Undefined	Undefined	$\begin{gathered} \hline 78 \% \\ \text { Proxy } \\ \text { (SAC } \\ \text { 2011a) } \end{gathered}$	Component stock of SONC
Southern Oregon	At least 41,000 naturally-produced adults passing Huntley Park in the Rogue River to provide MSY spawning escapement. (PFMC 2015)	34,992	20,500		complex; ACL indicator stock is KRFC

TABLE A-1. Conservation objectives and reference points governing harvest control rules and status determination criteria for salmon stocks and stock complexes. ${ }^{2 /}$ (Page 2 of 7)

TABLE A-1. Conservation objectives and reference points governing harvest control rules and status determination criteria for salmon stocks and stock complexes. ${ }^{2 /}$ (Page 3 of 7)

CHINOOK							
Stocks In The Fishery	Conservation Objective	$\mathrm{S}_{\text {MSY }}$	MSST	$\begin{aligned} & \text { MFMT } \\ & \left(F_{\mathrm{MSY}}\right) \end{aligned}$	ACL		
North Lewis River Fall	NMFS consultation standard/recovery plan. Mclsaac (1990) stock-recruit analysis supports MSY objective of 5,700 natural adult spawners.	5,700	ESA consultation standard applies.	76\%	ESA consultation standard applies.		
Snake River Fall	NMFS consultation standard/recovery plan. No more than 70.0\% of 19881993 base period AEQ exploitation rate for all ocean fisheries.	Undefined		Undefined			
Upper Willamette Spring	NMFS consultation standard/recovery plan. Not applicable for ocean fisheries.	Undefined		Undefined			
Columbia Upper River Spring	NMFS consultation standard/recovery plan. Not applicable for ocean fisheries.	Undefined		Undefined			
Snake River Spring/Summer	NMFS consultation standard/recovery plan. Not applicable for ocean fisheries.	Undefined		Undefined			
Columbia Lower River Hatchery - Fall	14,800 adults for hatchery egg-take. River mouth goal of 25,000.	Not applicable to hatchery stocks					
Columbia Lower River Hatchery Spring	3,500 adults to meet Cowlitz, Kalama, and Lewis Rivers broodstock needs.						
Columbia Mid-River Bright Hatchery Fall	7,900 for Little White Salmon Hatchery egg-take.						
Columbia Spring Creek Hatchery Fall	6,000 adults to meet hatchery egg-take goal.						
Columbia Upper River Bright Fall	40,000 natural bright adults above McNary Dam (MSY proxy adopted in 1984 based on CRFMP). The management goal has been increased to 60,000 by Columbia River managers in recent years.	$\begin{aligned} & \hline 39,625 \\ & \text { (Langness } \\ & \text { and } \\ & \text { Reidinger } \\ & 2003 \text {) } \end{aligned}$	19,812	$\begin{aligned} & 85.91 \% \\ & \text { (Langness } \\ & \text { and } \\ & \text { Reidinger } \\ & 2003 \text {) } \end{aligned}$	International exception applies, ACLs are not applicable.		
Columbia Upper River Summer	Hold ocean fishery impacts at or below base period; recognize CRFMP objective - MSY proxy of 80,000 to 90,000 adults above Bonneville Dam, including both Columbia and Snake River stocks (state and tribal management entities considering separate objectives for these stocks).	$\begin{gathered} \hline 12,143 \\ \text { (CTC } \\ 1999) \end{gathered}$	6,071	$\begin{aligned} & \hline 75 \% \\ & \text { (CTC } \\ & 1999) \end{aligned}$			

TABLE A-1.Conservation objectives and reference points governing harvest control rules and status determination criteria for salmon stocks and stock complexes.a/ (Page 5 of 7)

СОНО					
Stocks In The Fishery	Conservation Objective	$\mathrm{S}_{\text {MSY }}$	MSST	$\begin{aligned} & \text { MFMT } \\ & \text { (F }{ }_{\text {MSY }} \text {) } \end{aligned}$	ACL
Central California Coast ESA Threatened	NMFS ESA consultation standard/recovery plan: No retention of coho south of the OR/CA border.	Undefined	ESA consultation standard applies	Undefined	ESA consultation standard applies.
Southern Oregon/Northern California Coast ESA Threatened	NMFS ESA consultation standard/recovery plan: No more than a 13.0% AEQ exploitation rate in ocean fisheries on Rogue/Klamath hatchery coho.	Undefined		Undefined	
Oregon Coastal Natural ESA Threatened	NMFS ESA consultation standard/recovery plan: Total AEQ exploitation rate limit based on parental seeding level and marine survival matrix in FMP Table 3-2.	Undefined		Undefined	
Lower Columbia Natural ESA Threatened	NMFS ESA consultation standard/recovery plan: AEQ exploitation rate limit on ocean and mainstem Columbia fisheries identified in annual NMFS guidance.	Undefined		Undefined	
Oregon Coast Hatchery	Hatchery production.				
Columbia River Late Hatchery	Hatchery rack return goal of 6,400 adults. River mouth goal of 9,700.				
Columbia River Early Hatchery	Hatchery rack return goal of 21,700 adults. River mouth goal of 77,200.				
Willapa Bay - Hatchery	Hatchery rack return goal of 6,100 adults.		Not applicable	hatchery sto	
Quinault - Hatchery	Hatchery production.				
Quillayute - Summer Hatchery	Hatchery production.				
South Puget Sound Hatchery	Hatchery rack return goal of 52,000 adults.				
Willapa Bay Natural	17,200 natural area spawners.	17,200	8,600	74\%	Based on $F_{A B C}$ and annual ocean abundance. $F_{A B C}$ is $F_{M S Y}$ reduced by Tier 1 (5\%) uncertainty

COHO						
Stocks In The Fishery	Conservation Objective		MFMT			
Grays Harbor	35,400 natural adult spawners (MSP based on WDF [1979])	Annual natural spawning escapement targets may vary from FMP conservation objectives if agreed to by WDFW and treaty tribes under the provisions of Hoh v. Baldrige, U.S. v. Washington, or subsequent U.S. District Court orders	24,426 $\mathrm{~S}_{\text {MSP }}$ (FMP) ${ }^{*} \mathrm{~F}_{\text {SMY }}$ (SAC 2010b)	18,320 (Johnstone et al. 2011)	$\begin{gathered} \text { MFMT=65\% } \\ \text { (Johnstone } \\ \text { et al. 2011) } \\ \text { F }_{\text {MSY }}=69 \% \\ \text { (SAC 2011b) } \\ \hline \end{gathered}$	International exception applies, ACLs are not applicable.
Queets	MSY range of 5,800 to 14,500 natural adult spawners (Lestelle et al 1984)		5,800 (Johnston et al. 2011)	4,350 (Johnstone et al. 2011)	MFMT=65\% (Johnstone et al. 2011) $\mathrm{F}_{\mathrm{MSY}}=68 \%$ (SAC 2011b)	
Hoh	MSY range of 2,000 to 5,000 natural adult spawners (Lestelle et al. 1984)		$\begin{gathered} 2,520 \\ (S A C 2010 b) \end{gathered}$	$\begin{gathered} 1,890 \\ S_{\text {мsх** }} 0.75 \end{gathered}$	MFMT=65\% (Johnstone et al. 2011) $\mathrm{F}_{\mathrm{MSY}}=69 \%$ (SAC 2011b)	
Quillayute - Fall	MSY range of 6,300 to 15,800 natural adult spawners (Lestelle et al. 1984)		6,300 (Johnston et al. 2011)	4,725 (Johnstone et al. 2011)	$\begin{aligned} & \text { MFMT=59\%; } \\ & \text { F }_{\text {MSY }}=59 \% \\ & \text { (SAC 2011b) } \end{aligned}$	
Strait of Juan de Fuca	Total allowable MSY exploitation rate of: 0.60 for ocean age-3 abundance $>27,445$; 0.40 for ocean age- 3 abundance $>11,679$ and $\leq 27,445 ; 0.20$ for ocean age- 3 abundance $\leq 11,679$		11,000 (Bowhay et al. 2009) 24,35	7,000 (Bowhay et al. 2009)	60\% (Bowhay et al. 2009)	
Hood Canal	Total allowable MSY exploitation rate of: 0.65 for ocean age-3 abundance $>41,000 ; 0.45$ for ocean age- 3 abundance $>19,545$ and $\leq 41,000$; 0.20 for ocean age-3 abundance $\leq 19,545$		14,350 (Bowhay et al. 2009)	10,750 (Bowhay et al. 2009)	65\% (Bowhay et al. 2009)	
Skagit	Total allowable MSY exploitation rate of: 0.60 for ocean age-3 abundance $>62,500 ; 0.35$ for ocean age- 3 abundance $>22,857$ and $\leq 62,500$; 0.20 for ocean age-3 abundance $\leq 22,857$		$\begin{gathered} 25,000 \\ \text { (Bowhay et al. } \\ 2009 \text {) } \end{gathered}$	14,857 (Bowhay et al. 2009)	60\% (Bowhay et al. 2009)	
Stillaguamish	Total allowable MSY exploitation rate of: 0.50 for ocean age-3 abundance $>20,000 ; 0.35$ for ocean age-3 abundance $>9,385$ and $\leq 20,000 ; 0.20$ for ocean age-3 abundance $\leq 9,385$		$\begin{gathered} 10,000 \\ \text { (Bowhay et al. } \\ 2009 \text {) } \end{gathered}$	6,100 Bowhay et al. 2009)	50\% (Bowhay et al. 2009)	
Snohomish	Total allowable MSY exploitation rate of: 0.60 for ocean age-3 abundance $>125,000 ; 0.40$ for ocean age-3 abundance $>51,667$ and $\leq 125,000 ; 0.20$ for ocean age-3 abundance $\leq 51,667$		$\begin{gathered} 50,000 \\ \text { (Bowhay et al. } \\ 2009 \text {) } \end{gathered}$	31,000 (Bowhay et al. 2009)	60\% (Bowhay et al. 2009)	

TABLE A-1. Conservation objectives and reference points governing harvest control rules and status determination criteria for salmon stocks and stock complexes. ${ }^{a /}$ (Page 7 of 7)

PINK (odd-numbered years)					
Stocks In The Fishery	Conservation Objective	$\mathrm{S}_{\text {MSY }}$	MSST	MFMT ($\mathrm{F}_{\mathrm{MSY}}$)	ACL
Puget Sound	900,000 natural spawners or consistent with provisions of the Pacific Salmon Treaty (Fraser River Panel).	900,000	450,000	Undefined	International exception applies, ACLs are not applicable.

a/ Some hatchery goals and ESA consultation standards have been updated relative to the version of this table in the FMP.
b/ Conservation objectives for Puget Sound Chinook stocks represent those used in management for the 2017 salmon seasons and are subject to change for the 2018 pre-season planning process

TABLE A-2. Allowable fishery impact rate criteria for OCN coho stock components under the Salmon Fishery Management Plan Amendment 13.

a/ When a stock component achieves a medium or high parent spawner status under a medium or high marine survival index, but a major basin within the stock component is less than 10% of full seeding, (1) the parent spawner status will be downgraded one level to establish the allowable fishery impact rate for that component, and (2) no coho-directed harvest impacts will be allowed within that particular basin.
b/ This exploitation rate criteria applies when (1) parent spawners are less than 38% of the Level \#1 rebuilding criteria, or (2) marine survival conditions are projected to be at an extreme low as in 1994-1996 (<0.0006 jack per hatchery smolt). If parent spawners decline to lower levels than observed through 1998, rates of less than 10% would be considered, recognizing that there is a limit to further bycatch reduction opportunities.

TABLE A-3. Fishery impact rate criteria for OCN coho stock components based on the harvest matrix resulting from the OCN work group 2000 review of Amendment 13.

Parent Spawner Status ${ }^{\text {a/ }}$	Marine Survival Index (based on return of jacks per hatchery smolt)						
	Extremely Low (<0.0008)	Low (0.0008 to 0.0014)		Medium (>0.0014 to 0.0040)		$\begin{gathered} \text { High } \\ (>0.0040) \end{gathered}$	
High Parent Spawners > 75\% of full seeding	$\begin{gathered} E \\ \leq 8 \% \end{gathered}$	$\begin{gathered} J \\ \leq 15 \% \end{gathered}$		$\begin{gathered} 0 \\ \leq 30 \% \end{gathered}$		$\begin{aligned} & \therefore \mathrm{T} \because \\ & \therefore 45 \% \end{aligned}$	
Medium Parent Spawners >50\% \& < 75% of full seeding	$\begin{gathered} D \\ \leq 8 \% \end{gathered}$	$\begin{gathered} \mathrm{I} \\ \leq 15 \% \end{gathered}$		$\begin{gathered} \mathrm{N} \\ \leq 20 \% \end{gathered}$			
Low Parent Spawners > 19\% \& \leq 50% of full seeding	$\begin{gathered} C \\ \leq 8 \% \end{gathered}$	$\begin{gathered} H \\ \leq 15 \% \end{gathered}$		$\begin{gathered} M \\ \leq 15 \% \end{gathered}$		$\begin{aligned} & \because R \\ & \because \\ & \leq 25 \% \end{aligned}$	
Very Low Parent Spawners > 4 fish per mile \& $\leq 19 \%$ of full seeding	$\begin{gathered} B \\ \leq 8 \% \end{gathered}$	≤ 11			\%		1\%
Critical ${ }^{\text {b/ }}$ Parental Spawners ≤ 4 fish per mile	$\begin{gathered} \hline A \\ 0-8 \% \end{gathered}$	0 -					
Sub-aggregate and Basin Specific Spawner Criteria Data							
Sub-aggregate	Miles of Available Spawning Habitat	100% of Full Seeding	"Critical"		Very Low, Low, Medium \& High		
			$\begin{aligned} & 4 \text { Fish per } \\ & \text { Mile } \end{aligned}$	12\% of Full Seeding	19\% of Full Seeding	50% of Full Seeding	75% of full Seeding
Northern	899	21,700	3,596	NA	4,123	10,850	16,275
North - Central	1,163	55,000	4,652	NA	10,450	27,500	41,250
South - Central	1,685	50,000	6,740	NA	9,500	25,000	37,500
Southern	450	5,400	NA	648	1,026	2,700	4,050
Coastwide Total	4,197	132,100			25,099	66,050	99,075

a/ Parental spawner abundance status for the OCN aggergate assumes the status of the weakest sub-aggregate.
b/ "Critical" parental spawner status is defined as 4 fish per mile for the Northern, North-Central, and South-Central subaggergates. Because the ratio of high quality spawning habitat to total spawning habitat in the Rogue River Basin differs significantly from the rest of the basins on the coast, the spawner density of 4 fish per mile does not represent "Critical" status for that basin. Instead. "Critical" status for the Rogue Basin (Southern Sub-aggergate) is estimated as 12% of full seeding of high quality

TABLE A-4. Fishery impact rate criteria for OCN coho stock components based on the harvest matrix resulting from the OCN work group 2000 review of Amendment 13 including modifications to the marine survival index adopted during the 2012 and 2013 methodology reviews.

Parent Spawner Status ${ }^{\text {a/ }}$		Marine Survival Index (Wild adult coho salmon survival as predicted by the two-variable GAM ensemble forecast)						
		ExtremelyLow$<2 \%$		Low$2 \%-4.5 \%$		$\begin{gathered} \text { Medium } \\ >4.5 \%-8 \% \end{gathered}$		High $>8 \%$
High Parent Spawners of full seeding	$>75 \%$	$\begin{gathered} E \\ \leq 8 \% \end{gathered}$			J 15%	$\begin{gathered} 0 \\ \leq 30 \% \end{gathered}$		$\begin{aligned} & T \\ \leq & 45 \% \end{aligned}$
Medium Parent Spawne $\leq 75 \%$ of full	$>50 \% ~ \& ~$ ing	D $\leq 8 \%$			I 15\%	$\begin{aligned} & N \\ \leq & 20 \% \end{aligned}$		$\begin{aligned} & S \\ \leq & 38 \% \end{aligned}$
Low Parent Spawne $\leq 50 \%$ of full se	$>19 \% ~ \& ~$ ing	$\begin{array}{r} C \\ \leq 8 \% \end{array}$			H 15%	$\begin{aligned} & M \\ \leq & 15 \% \end{aligned}$		$\begin{aligned} & R \\ & \leq 25 \% \end{aligned}$
Very Low 	4 fish per ull seeding	B $\leq 8 \%$			G 11\%	$\begin{aligned} & L \\ \leq & 11 \% \end{aligned}$		$\leq 11 \%$
Critical Parent Spawne mile	≤ 4 fish per	$\begin{gathered} A \\ 0-8 \end{gathered}$			$\begin{aligned} & F \\ & -8 \% \end{aligned}$	$\begin{gathered} K \\ 0-8 \% \end{gathered}$		$\begin{gathered} P \\ 0-8 \% \end{gathered}$
Sub-aggregate and Basin Specific Spawner Criteria Data								
	Miles of			Criti		Very Low,	w, Medium	\& High
Sub-aggregate	Available Spawning Habitat	of Full Seeding			12\% of Full Seeding	19\% of Full Seeding	$\begin{aligned} & \hline 50 \% \text { of } \\ & \text { Full } \\ & \text { Seeding } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 75 \% \text { of } \\ & \text { Full } \\ & \text { Seeding } \\ & \hline \end{aligned}$
Northern	899	21,700		3,596	NA	4,123	10,850	16,275
North-Central	1,163	55,000		2	NA	10,450	27,500	41,250
South-Central	1,685	50,000		6,740	NA	9,500	25,000	37,500
Southern (Removed per adoption of Amendment 16)								
Coastwide Total	3,747	126,700	14,988			24,073	63,350	95,025

[^3]TABLE A-5. Council adopted management objectives for Puget Sound natural coho management units, expressed as exploitation rate ceilings for critical, low and normal abundance based status categories, with runsize breakpoints (abundances expressed as ocean age-3).

Status	Management Unit				
	Strait of Juan de Fuca	Hood Canal	Skagit	Stillaguamish	Snohomish
Critical/Low Runsize Breakpoint	11,679	19,545	22,857	9,385	51,667
Critical Exploitation Rate	0.20	0.20	0.20	0.20	0.20
Low/normal runsize breakpoint	27,445	41,000	62,500	20,000	125,000
Low Exploitation Rate	0.40	0.45	0.35	0.35	0.40
Normal Exploitation Rate	0.60	0.65	0.60	0.50	0.60

TABLE A-6. Council recommended management objectives for Lower Columbia River natural tule Chinook, expressed as exploitation rate ceilings for abundance based status categories, with runsize forecast bins expressed as adult river mouth return forecasts of Lower Columbia River hatchery tule Chinook.

Runsize Forecast Bins	$<30,000$	30,000 to 40,000	40,000 to 85,000	$>85,000$
Maximum Exploitation Rate	0.30	0.35	0.38	0.41

FIGURE A-1. Sacramento River fall Chinook control rule. Potential spawner abundance is the predicted hatchery and natural area adult spawners in the absence of fisheries, which is equivalent to the Sacramento Index. See the salmon FMP, Section 3.3.6, for control rule details.

FIGURE A-2. Klamath River fall Chinook control rule. Potential spawner abundance is the predicted natural area adult spawners in the absence of fisheries. See the salmon FMP, Section 3.3.6, for control rule details.

SACRAMENTO RIVER WINTER CHINOOK CONTROL RULE

The first component of the SRWC consultation standard consists of time/area/fishery closure and size limit provisions described in Chapter II and Table A-1.

The second component of the SRWC consultation standard is a control rule that specifies the maximum forecast age-3 impact rate for the area south of Point Arena, California. In November 2017, the Council adopted a new control rule for recommendation to National Marine Fisheries Service for implementation in 2018 and beyond. Appendix D of this report provides a summary of anticipated changes to SRWC management in 2018.

Council Recommended control rule for 2018 and beyond:

When the age- 3 escapement absent fishing is forecasted to be 3,000 or more, the maximum forecast age- 3 impact rate is 0.20 . Between age- 3 escapement absent fishing levels of 3,000 and 500 , the maximum forecast age- 3 impact rate decreases linearly from 0.20 to 0.10 . At age- 3 escapement absent fishing levels less than 500 , the maximum forecast age- 3 impact rate decreases linearly from 0.10 to zero.

FIGURE A-3. Council Recommended Sacramento River winter Chinook impact rate control rule; which specifies the maximum forecast age-3 impact rate for the area south of Point Arena, California, as a function of forecasted age-3 escapement absent fishing.

Page Intentionally Left Blank

APPENDIX B SALMON HARVEST ALLOCATION SCHEDULES

TABLE OF CONTENTS

Page
HARVEST ALLOCATION - SECTION 5.3 OF THE PACIFIC COAST SALMON FISHERY MANAGEMENT PLAN 115
5.3 ALLOCATION 115
5.3.1 Commercial (Non-Tribal) and Recreational Fisheries North of Cape Falcon 115
5.3.1.1 Goal, Objectives, and Priorities 115
5.3.1.2 Allocation Schedule Between Gear Types 116
5.3.1.3 Recreational Subarea Allocations 117
5.3.2 Commercial and Recreational Fisheries South of Cape Falcon 118
5.3.3 Tribal Indian Fisheries 121
5.3.3.1 California 121
5.3.3.2 Columbia River 121
5.3.3.3 U.S. v. Washington Area 121
MEASURES TO MANAGE THE HARVEST - SECTION 6.5 OF THE PACIFIC COAST SALMON FISHERY MANAGEMENT PLAN 122
6.5 SEASONS AND QUOTAS 122
6.5.1 Preferred Course of Action 122
6.5.2 Procedures for Calculating Seasons 122
6.5.3 Species-Specific and Other Selective Fisheries 122
6.5.3.1 Guidelines 122
6.5.3.2 Selective Fisheries Which May Change Allocation Percentages North of Cape Falcon 123
6.5.4 Procedures for Calculating Quotas 124
6.5.5 Procedures for Regulating Ocean Harvests of Pink and Sockeye 124

Page Intentionally Left Blank

5.3 ALLOCATION

"A Conservation and management measures shall not discriminate between residents of different states. If it becomes necessary to allocate or assign fishing privileges among various United States fishermen, such allocation shall be (A) fair and equitable to all such fishermen; (B) reasonably calculated to promote conservation; and (C) carried out in such manner that no particular individual, corporation, or other entity acquires an excessive share of such privileges."

Magnuson-Stevens Act, National Standard 4
Harvest allocation is required when the number of fish is not adequate to satisfy the perceived needs of the various fishing industry groups and communities, to divide the catch between non-Indian ocean and inside fisheries and among ocean fisheries, and to provide federally recognized treaty Indian fishing opportunity. In allocating the resource between ocean and inside fisheries, the Council considers both in-river harvest and spawner escapement needs. The magnitude of in-river harvest is determined by the states in a variety of ways, depending upon the management area. Some levels of in-river harvests are designed to accommodate federally recognized in-river Indian fishing rights, while others are established to allow for non-Indian harvests of historical magnitudes. Several fora exist to assist this process on an annual basis. The North of Cape Falcon Forum, a state and tribal sponsored forum, convenes the pertinent parties during the Council's preseason process to determine allocation and conservation recommendations for fisheries north of Cape Falcon. The individual states also convene fishery industry meetings to coordinate their input to the Council.

5.3.1 Commercial (Non-Tribal) and Recreational Fisheries North of Cape Falcon

5.3.1.1 Goal, Objectives, and Priorities

Harvest allocations will be made from a total allowable ocean harvest, which is maximized to the largest extent possible but still consistent with PST and treaty-Indian obligations, state fishery needs, and spawning escapement requirements, including consultation standards for stocks listed under the ESA. The Council shall make every effort to establish seasons and gear requirements that provide troll and recreational fleets a reasonable opportunity to catch the available harvest. These may include single-species directed fisheries with landing restrictions for other species.

The goal of allocating ocean harvest north of Cape Falcon is to achieve, to the greatest degree possible, the objectives for the commercial and recreational fisheries as follows:

- Provide recreational opportunity by maximizing the duration of the fishing season while minimizing daily and area closures and restrictions on gear and daily limits.
- Maximize the value of the commercial harvest while providing fisheries of reasonable duration.

The priorities listed below will be used to help guide establishment of the final harvest allocation while meeting the overall commercial and recreational fishery objectives.

At total allowable harvest levels up to 300,000 coho and 100,000 Chinook:

- Provide coho to the recreational fishery for a late June through early September all-species season. Provide Chinook to allow (1) access to coho and, if possible, (2) a minimal Chinook-only fishery prior to the all-species season. Adjust days per week and/or institute area restrictions to stabilize season duration.
- Provide Chinook to the troll fishery for a May and early June Chinook season and provide coho to (1) meet coho hooking mortality in June where needed and (2) access a pink salmon fishery in odd years. Attempt to ensure that part of the Chinook season will occur after June 1.

At total allowable harvest levels above 300,000 coho and above 100,000 Chinook:

- Relax any restrictions in the recreational all-species fishery and/or extend the all-species season beyond Labor Day as coho quota allows. Provide Chinook to the recreational fishery for a Memorial Day through late June Chinook-only fishery. Adjust days per week to ensure continuity with the all-species season.
- Provide coho for an all-salmon troll season in late summer and/or access to a pink fishery. Leave adequate Chinook from the May through June season to allow access to coho.

5.3.1.2 Allocation Schedule Between Gear Types

Initial commercial and recreational allocation will be determined by the schedule of percentages of total allowable harvest as follows:

TABLE 5-1. Initial commercial/recreational harvest allocation schedule north of Cape Falcon.

Coho			Chinook		
Harvest (thousands of fish)	Percentage ${ }^{\mathrm{a} /}$		Harvest (thousands of fish)	Percentage ${ }^{\mathrm{a} /}$	
	Troll	Recreational		Troll	Recreational
0-300	25	75	0-100	50	50
>300	60	40	>100-150	60	40
			>150	70	30

a/ The allocation must be calculated in additive steps when the harvest level exceeds the initial tier.
This allocation schedule should, on average, allow for meeting the specific fishery allocation priorities described above. The initial allocation may be modified annually by preseason and inseason trades to better achieve (1) the commercial and recreational fishery objectives and (2) the specific fishery allocation priorities. The final preseason allocation adopted by the Council will be expressed in terms of quotas, which are neither guaranteed catches nor inflexible ceilings. Only the total ocean harvest quota is a maximum allowable catch.

To provide flexibility to meet the dynamic nature of the fisheries and to assure achievement of the allocation objectives and fishery priorities, deviations from the allocation schedule will be allowed as provided below and as described in Section 6.5.3.2 for certain selective fisheries.

1. Preseason species trades (Chinook and coho) that vary from the allocation schedule may be made by the Council based upon the recommendation of the pertinent recreational and commercial SAS representatives north of Cape Falcon. The Council will compare the socioeconomic impacts of any such recommendation to those of the standard allocation schedule before adopting the allocation that best meets FMP management objectives.
2. Inseason transfers, including species trades of Chinook and coho, may be permitted in either direction between recreational and commercial fishery allocations to allow for uncatchable fish in one fishery to be reallocated to the other. Fish will be deemed "uncatchable" by a respective commercial or recreational fishery only after considering all possible annual management actions to allow for their
harvest which meet framework harvest management objectives, including single species or exclusive registration fisheries. Implementation of inseason transfers will require (1) consultation with the pertinent recreational and commercial SAS members and the STT, and (2) a clear establishment of available fish and impacts from the transfer.
3. An exchange ratio of four coho to one Chinook shall be considered a desirable guideline for preseason trades. Deviations from this guideline should be clearly justified. Inseason trades and transfers may vary to meet overall fishery objectives. (The exchange ratio of four coho to one Chinook approximately equalizes the species trade in terms of average ex-vessel values of the two salmon species in the commercial fishery. It also represents an average species catch ratio in the recreational fishery.)
4. Any increase or decrease in the recreational or commercial total allowable catch (TAC), resulting from an inseason restructuring of a fishery or other inseason management action, does not require reallocation of the overall north of Cape Falcon non-Indian TAC.
5. The commercial TACs of Chinook and coho derived during the preseason allocation process may be varied by major subareas (i.e., north of Leadbetter Point and south of Leadbetter Point) if there is a need to do so to decrease impacts on weak stocks. Deviations in each major subarea will generally not exceed 50 percent of the TAC of each species that would have been established without a geographic deviation in the distribution of the TAC. Deviation of more than 50 percent will be based on a conservation need to protect weak stocks and will provide larger overall harvest for the entire fishery north of Cape Falcon than would have been possible without the deviation. In addition, the actual harvest of coho may deviate from the initial allocation as provided in Section 6.5.3.2 for certain selective fisheries.
6. The recreational TACs of Chinook and coho derived during the preseason allocation process will be distributed among four major recreational port areas as described for coho and Chinook distribution in Section 5.3.1.3. The Council may deviate from subarea quotas (1) to meet recreational season objectives based on agreement of representatives of the affected ports and/or (2) in accordance with Section 6.5.3.2 with regard to certain selective fisheries. Additionally, based on the recommendations of the SAS members representing the ocean sport fishery north of Cape Falcon, the Council will include criteria in its preseason salmon management recommendations to guide any inseason transfer of coho among the recreational subareas to meet recreational season duration objectives. Inseason redistributions of quotas within the recreational fishery or the distribution of allowable coho catch transfers from the commercial fishery may deviate from the preseason distribution.

5.3.1.3 Recreational Subarea Allocations

Coho

The north of Cape Falcon preseason recreational TAC of coho will be distributed to provide 50 percent to the area north of Leadbetter Point and 50 percent to the area south of Leadbetter Point. The distribution of the allocation north of Leadbetter point will vary, depending on the existence and magnitude of an inside fishery in Area 4B, which is served by Neah Bay.

In years with no Area 4B fishery, the distribution of coho north of Leadbetter Point (50 percent of the total recreational TAC) will be divided to provide 74 percent to the area between Leadbetter Point and the Queets River (Westport), 5.2 percent to the area between Queets River and Cape Flattery (La Push), and 20.8 percent to the area north of the Queets River (Neah Bay). In years when there is an Area 4B (Neah Bay) fishery under state management, the allocation percentages north of Leadbetter Point will be modified to maintain more equitable fishing opportunity among the ports by decreasing the ocean harvest share for Neah Bay. This will be accomplished by adding 25 percent of the numerical value of the Area 4B fishery
to the recreational TAC north of Leadbetter Point prior to calculating the shares for Westport and La Push. The increase to Westport and La Push will be subtracted from the Neah Bay ocean share to maintain the same total harvest allocation north of Leadbetter Point. Table 5-2 displays the resulting percentage allocation of the total recreational coho catch north of Cape Falcon among the four recreational port areas (each port area allocation will be rounded to the nearest hundred fish, with the largest quotas rounded downward if necessary to sum to the TAC).

TABLE 5-2. Percentage allocation of total allowable coho harvest among the four recreational port areas north of Cape Falcon. ${ }^{\text {a/ }}$			
Port Area	Without Area 4B Add-on		With Area 4B Add-on
Columbia River	50.0\%	50.0\%	
Westport	37.0\%	37.0\%	plus 17.3% of the Area 4B add-on
La Push	2.6\%	2.6\%	plus 1.2% of the Area 4B add-on
Neah Bay	10.4\%	10.4\%	minus 18.5% of the Area 4B add-on

TABLE 5-3. Example distributions of the recreational coho TAC north of Leadbetter Point.

Sport TAC North of Cape Falcon	Without Area 4B Add-On				With Area 4B Add-On ${ }^{\text {a/ }}$					
	Columbia River	Westport	La Push	Neah Bay	Columbia River	Westport	La Push	Neah Bay		
								Ocean	Add-on	Total
50,000	25,000	18,500	1,300	5,200	25,000	19,900	1,400	3,700	8,000	11,700
150,000	75,000	55,500	3,900	15,600	75,000	57,600	4,000	13,600	12,000	25,600
300,000	150,000	111,000	7,800	31,200	150,000	114,500	8,000	27,500	20,000	47,500

a/ The add-on levels are merely examples. The actual numbers in any year would depend on the particular mix of stock abundances and season determinations.

Chinook

Subarea distributions of Chinook will be managed as guidelines and shall be calculated by the STT with the primary objective of achieving all-species fisheries without imposing Chinook restrictions (i.e., area closures or bag limit reductions). Chinook in excess of all-species fisheries needs may be utilized by directed Chinook fisheries north of Cape Falcon or by negotiating a Chinook/coho trade with another fishery sector.

Inseason management actions may be taken by the NMFS NW Regional Administrator to assure that the primary objective of the Chinook harvest guidelines for each of the four recreational subareas north of Cape Falcon are met. Such actions might include: closure from 0 to 3 , or 0 to 6 , or 3 to 200 , or 5 to 200 nautical miles from shore; closure from a point extending due west from Tatoosh Island for 5 miles, then south to a point due west of Umatilla Reef Buoy, then due east to shore; closure from North Head at the Columbia River mouth north to Leadbetter Point; change species that may be landed; or other actions as prescribed in the annual regulations.

5.3.2 Commercial and Recreational Fisheries South of Cape Falcon

The allocation of allowable ocean harvest of coho salmon south of Cape Falcon has been developed to provide a more stable recreational season and increased economic benefits of the ocean salmon fisheries at varying stock abundance levels. When coupled with various recreational harvest reduction measures or the timely transfer of unused recreational allocation to the commercial fishery, the allocation schedule is designed to help secure recreational seasons extending at least from Memorial Day through Labor Day when possible, assist in maintaining commercial markets even at relatively low stock sizes, and fully utilize
available harvest. Total ocean catch of coho south of Cape Falcon will be treated as a quota to be allocated between troll and recreational fisheries as provided in Table 5-4.
(Note: The allocation schedule provides guidance only when coho abundance permits a directed coho harvest, not when the allowable impacts are insufficient to allow coho retention south of Cape Falcon. At such low levels, allocation of the allowable impacts will be accomplished during the Council's preseason process.)

TABLE 5-4. Allocation of allowable ocean harvest of coho salmon (thousands of fish) south of Cape Falcon. ${ }^{\text {a/ }}$

Total Allowable Ocean Harvest	Recreational Allocation		Commercial Allocation	
	Number	Percentage	Number	Percentage
\#100			b/	b/
	$\# 100^{\text {b/cl }}$	$100^{\text {b/ }}$		
200			$33^{\text {b/ }}$	$17^{\text {b/ }}$
	$167{ }^{\text {b/c/ }}$	$84^{\text {b/ }}$		
300	200	67	100	33
350	217	62	133	38
400	224	56	176	44
500	238	48	262	52
600	252	42	348	58
700	266	38	434	62
800	280	35	520	65
900	290	32	610	68
1,000	300	30	700	70
1,100	310	28	790	72
1,200	320	27	880	73
1,300	330	25	970	75
1,400	340	24	1,060	76
1,500	350	23	1,150	77
1,600	360	23	1,240	78
1,700	370	22	1,330	78
1,800	380	21	1,420	79
1,900	390	21	1,510	79
2,000	400	20	1,600	80
2,500	450	18	2,050	82
3,000	500	17	2,500	83

a/ The allocation schedule is based on the following formula: first 150,000 coho to the recreational base (this amount may be reduced as provided in footnote b); over 150,000 to 350,000 fish, share at $2: 1,0.667$ to troll and 0.333 to recreational; over 350,000 to 800,000 the recreational share is 217,000 plus 14% of the available fish over 350,000 ; above 800,000 the recreational share is 280,000 plus 10% of the available fish over 800,000 .
Note: The allocation schedule provides guidance only when coho abundance permits a directed coho harvest, not when the allowable impacts are insufficient to allow general coho retention south of Cape Falcon. At such low levels, allocation of the allowable impacts will be determined in the Council's preseason process. Deviations from the allocation may also be allowed to meet consultation standards for ESA-listed stocks (e.g., the 1998 biological opinion for California coastal coho requires no retention of coho in fisheries off California).
b/ If the commercial allocation is insufficient to meet the projected hook-and-release mortality associated with the commercial all-salmon-except-coho season, the recreational allocation will be reduced by the number needed to eliminate the deficit.
c/ When the recreational allocation is 167,000 coho or less, special allocation provisions apply to the recreational harvest distribution by geographic area (unless superseded by requirements to meet a consultation standard for ESA-listed stocks); see text of FMP as modified by Amendment 11 allocation provisions.

The allocation schedule is designed to give sufficient coho to the recreational fishery to increase the probability of attaining no less than a Memorial Day to Labor Day season as stock sizes increase. This increased allocation means that, in many years, actual catch in the recreational fishery may fall short of its allowance. In such situations, managers will make an inseason reallocation of unneeded recreational coho to the south of Cape Falcon troll fishery. The reallocation should be structured and timed to allow the commercial fishery sufficient opportunity to harvest any available reallocation prior to September 1, while still assuring completion of the scheduled recreational season (usually near mid-September) and, in any event, the continuation of a recreational fishery through Labor Day. This reallocation process will occur no later than August 15 and will involve projecting the recreational fishery needs for the remainder of the summer season. The remaining projected recreational catch needed to extend the season to its scheduled closing date will be a harvest guideline rather than a quota. If the guideline is met prior to Labor Day, the season may be allowed to continue if further fishing is not expected to result in any considerable danger of impacting the allocation of another fishery or of failing to meet an escapement goal.

The allocation schedule is also designed to assure there are sufficient coho allocated to the troll fishery at low stock levels to ensure a full Chinook troll fishery. This hooking mortality allowance will have first priority within the troll allocation. If the troll allocation is insufficient for this purpose, the remaining number of coho needed for the estimated incidental coho mortality will be deducted from the recreational share. At higher stock sizes, directed coho harvest will be allocated to the troll fishery after hooking mortality needs for Chinook troll fishing have been satisfied.

The allowable harvest south of Cape Falcon may be further partitioned into subareas to meet management objectives of the FMP. Allowable harvests for subareas south of Cape Falcon will be determined by an annual blend of management considerations including:

1. Abundance of contributing stocks
2. Allocation considerations of concern to the Council
3. Relative abundance in the fishery between Chinook and coho
4. Escapement goals
5. Maximizing harvest potential

Troll coho quotas may be developed for subareas south of Cape Falcon consistent with the above criteria. California recreational catches of coho, including projections of the total catch to the end of the season, would be included in the recreational allocation south of Cape Falcon, but the area south of the OregonCalifornia border would not close when the allocation is met; except as provided below when the recreational allocation is at 167,000 or fewer fish.

When the south of Cape Falcon recreational allocation is equal to or less than 167,000 coho:

1. The recreational fisheries will be divided into two major subareas, as listed in \#2 below, with independent quotas (i.e., if one quota is not achieved or is exceeded, the underage or overage will not be added to or deducted from the other quota; except as provided under \#3 below).
2. The two major recreational subareas will be managed within the constraints of the following impact quotas, expressed as a percentage of the total recreational allocation (percentages based on avoiding large deviations from the historical harvest shares):
a. Central Oregon (Cape Falcon to Humbug Mountain) - 70 percent
b. South of Humbug Mountain -

30 percent

In addition,
(1) Horse Mountain to Point Arena will be managed for an impact guideline of 3 percent of the south of Cape Falcon recreational allocation, and
(2) There will be no coho harvest constraints south of Point Arena. However, the projected harvest in this area (which averaged 1,800 coho from 1986-1990) will be included in the south of Humbug Mountain impact quota.
3. Coho quota transfers can occur on a one-for-one basis between subareas if Chinook constraints preclude access to coho.

5.3.3 Tribal Indian Fisheries

5.3.3.1 California

On October 4, 1993 the Solicitor, Department of Interior, issued a legal opinion in which he concluded that the Yurok and Hoopa Valley Indian tribes of the Klamath River Basin have a federally protected right to the fishery resource of their reservations sufficient to support a moderate standard of living or 50 percent of the total available harvest of Klamath-Trinity basin salmon, whichever is less. The Secretary of Commerce recognized the tribes' federally reserved fishing right as applicable law for the purposes of the MSA (58 FR 68063, December 23, 1993). The Ninth Circuit Court of Appeals upheld the conclusion that the Hoopa Valley and Yurok tribes have a federally reserved right to harvest fish in Parravano v. Babbitt and Brown, 70 F.3d 539 (1995) (Cert. denied in Parravano v. Babbitt and Brown 110, S.Ct 2546 [1996]). The Council must recognize the tribal allocation in setting its projected escapement level for the Klamath River.

5.3.3.2 Columbia River

Pursuant to a September 1, 1983 Order of the U.S. District Court, the allocation of harvest in the Columbia River was established under the "Columbia River Fish Management Plan" which was implemented in 1988 by the parties of U.S. v. Oregon. This plan replaced the original 1977 plan (pages 16-20 of the 1978 FMP). Since the Columbia River Fishery Management Plan expired on December 31, 1998, fall Chinook in Columbia River fisheries were managed through 2007 under the guidance of annual management agreements among the U.S. v. Oregon parties. Since 2008, two 10-year management agreements (20082017 and 2018-2027) were negotiated through the U.S. v. Oregon process. The management agreement provides a framework within which the relevant parties may exercise their sovereign powers in a coordinated and systematic manner in order to protect, rebuild, and enhance upper Columbia River fish runs while providing harvest for both treaty Indian and non-Indian fisheries. The parties to the agreement are the United States, the states of Oregon, Washington, and Idaho, and four Columbia River treaty Indian tribes-Warm Springs, Yakama, Nez Perce, and Umatilla.

5.3.3.3 U.S. v. Washington Area

Treaty Indian tribes have a legal entitlement to the opportunity to take up to 50 percent of the harvestable surplus of stocks which pass through their usual and accustomed fishing areas. The treaty Indian troll harvest which would occur if the tribes chose to take their total 50 percent share of the weakest stock in the ocean, is computed with the current version of the Fishery Regulation Assessment Model (FRAM), assuming this level of harvest did not create conservation or allocation problems on other stocks. A quota may be established in accordance with the objectives of the relevant treaty tribes concerning allocation of the treaty Indian share to ocean and inside fisheries. The total quota does not represent a guaranteed ocean harvest, but a maximum allowable catch.

The requirement for the opportunity to take up to 50 percent of the harvestable surplus determines the treaty shares available to the inside/outside Indian and all-citizen fisheries. Ocean coho harvest ceilings off the

Washington coast for treaty Indians and all-citizen fisheries are independent within the constraints that (1) where feasible, conservation needs of all stocks must be met; (2) neither group precludes the other from the opportunity to harvest its share, and; (3) allocation schemes may be established to specify outside/inside sharing for various stocks.

6.5 SEASONS AND QUOTAS

For each management area or subarea, the Council has the option of managing the commercial and recreational fisheries for either coho or Chinook using the following methods: (1) fixed quotas and seasons; (2) adjustable quotas and seasons; and (3) seasons only. The Council may also use harvest guidelines within quotas or seasons to trigger inseason management actions established in the preseason regulatory process.

Quotas provide very precise management targets and work best when accurate estimates of stock abundance and distribution are available, or when needed to ensure protection of depressed stocks from potential overfishing. The Council does not view quotas as guaranteed harvests, but rather the maximum allowable harvest, which assures meeting the conservation objective of the species or stock of concern. While time and area restrictions are not as precise as quotas, they allow flexibility for effort and harvest to vary in response to abundance and distribution.

6.5.1 Preferred Course of Action

Because of the need to use both seasons and quotas, depending on the circumstances, the Council will make the decision regarding seasons and quotas annually during the preseason regulatory process, subject to the limits specified below. Fishing seasons and quotas also may be modified during the season as provided under Section 10.2.

6.5.2 Procedures for Calculating Seasons

Seasons will be calculated using the total allowable ocean harvest determined by procedures described in Chapter 5, and further allocated to the commercial and recreational fishery in accordance with the allocation plan presented in Section 5.3, and after consideration of the estimated amount of effort required to catch the available fish, based on past seasons.

Recreational seasons will be established with the goal of encompassing Memorial Day and/or Labor Day weekends in the season, if feasible. Opening dates will be adjusted to provide reasonable assurance that the recreational fishery is continuous, minimizing the possibility of an in-season closure.

Criteria used to establish commercial seasons, in addition to the estimated allowable ocean harvests, the allocation plan, and the expected effort during the season, will be: (1) bycatch mortality; (2) size, poundage, and value of fish caught; (3) effort shifts between fishing areas; (4) harvest of pink salmon in odd-numbered years; and (5) protection for weak stocks when they frequent the fishing areas at various times of the year.

6.5.3 Species-Specific and Other Selective Fisheries

6.5.3.1 Guidelines

In addition to the all-species and single or limited species seasons established for the commercial and recreational fisheries, other species-limited fisheries, such as "ratio" fisheries and fisheries selective for marked or hatchery fish, may be adopted by the Council during the preseason regulatory process. In adopting such fisheries, the Council will consider the following guidelines:

1. Harvestable fish of the target species are available.
2. Harvest impacts on incidental species will not exceed allowable levels determined in the management plan.
3. Proven, documented, selective gear exists (if not, only an experimental fishery should be considered).
4. Significant wastage of incidental species will not occur or a written economic analysis demonstrates the landed value of the target species exceeds the potential landed value of the wasted species.
5. The selective fishery will occur in an acceptable time and area where wastage can be minimized and target stocks are maximally available.
6. Implementation of selective fisheries for marked or hatchery fish must be in accordance with U.S. v. Washington stipulation and order concerning co-management and mass marking (Case No. 9213, Subproceeding No. 96-3) and any subsequent stipulations or orders of the U.S. District Court, and consistent with international objectives under the PST (e.g., to ensure the integrity of the codedwire tag program).

6.5.3.2 Selective Fisheries Which May Change Allocation Percentages North of Cape Falcon

As a tool to increase management flexibility to respond to changing harvest opportunities, the Council may implement deviations from the specified port area allocations and/or gear allocations to increase harvest opportunity through mark-selective fisheries. The benefits of any mark-selective fishery will vary from year to year and fishery to fishery depending on stock abundance, the mix of marked and unmarked fish, projected hook-and-release mortality rates, and public acceptance. These factors should be considered on an annual and case-by-case basis when utilizing mark-selective fisheries. The deviations for mark-selective fisheries are subordinate to the allocation priorities in Section 5.3.1.1 and may be allowed under the following management constraints:

1. Mark-Selective fisheries will first be considered during the months of May and/or June for Chinook and July through September for coho. However, the Council may consider mark-selective fisheries at other times, depending on year to year circumstances identified in the preceding paragraph.
2. The total impacts within each port area or gear group on the critical natural stocks of management concern are not greater than those under the original allocation without the mark-selective fisheries.
3. Other allocation objectives (i.e., treaty Indian, or ocean and inside allocations) are satisfied during negotiations in the North of Cape Falcon Forum.
4. The mark-selective fishery is assessed against the guidelines in Section 6.5.3.1.
5. Mark-selective fishery proposals need to be made in a timely manner in order to allow sufficient time for analysis and public comment on the proposal before the Council finalizes its fishery recommendations.

If the Council chooses to deviate from specified port and/or gear allocations, the process for establishing a mark-selective fishery would be as follows:

1. Allocate the TAC among the gear groups and port areas according to the basic FMP allocation process described in Section 5.3.1 without the mark-selective fishery.
2. Each gear group or port area may utilize the critical natural stock impacts allocated to its portion of the TAC to access additional harvestable, marked fish, over and above the harvest share established in step one, within the limits of the management constraints listed in the preceding paragraph.

6.5.4 Procedures for Calculating Quotas

Quotas will be based on the total allowable ocean harvest and the allocation plan as determined by the procedures of Chapter 5.

To the extent adjustable quotas are used, they may be subject to some or all of the following inseason adjustments:

1. For coho, private hatchery contribution to the ocean fisheries in the OPI area.
2. Unanticipated loss of shakers (bycatch mortality of undersized fish or unauthorized fish of another species that have to be returned to the water) during the season. (Adjustment for coho hooking mortality during any all-salmon-except-coho season will be made when the quotas are established.)
3. Any catch that take place in fisheries within territorial waters that are inconsistent with federal regulations in the EEZ.
4. If the ability to update inseason stock abundance is developed in the future, adjustments to total allowable harvest could be made, where appropriate.
5. The ability to redistribute quotas between subareas depending on the performance toward achieving the overall quota in the area.

Changes in the quotas as a result of the inseason adjustment process will be avoided unless the changes are of such magnitude that they can be validated by the STT and Council, given the precision of the original estimates.

The basis for determining the private hatchery contribution in (1) above will be either coded-wire tag analysis or analysis of scale patterns, whichever is determined by the STT to be more accurate, or another more accurate method that may be developed in the future, as determined by the STT and Council.

In reference to (4) and (5) above, if reliable techniques become available for making inseason estimates of stock abundance, and provision is made in any season for its use, a determination of techniques to be applied will be made by the Council through the Salmon Methodology Review process and discussed during the preseason regulatory process.

6.5.5 Procedures for Regulating Ocean Harvests of Pink and Sockeye

Sockeye salmon are only very rarely caught in Council-managed ocean salmon fisheries and no specific procedures have been established to regulate their harvest. Procedures for pink salmon are as follows:

1. All-species seasons will be planned such that harvest of pink salmon can be maximized without exceeding allowable harvests of Chinook and/or coho and within conservation and allocation constraints of the pink stocks.
2. Species specific or ratio fisheries for pink salmon will be considered under the guidelines for species specific fisheries presented in Section 6.5.3, and allocation constraints of the pink stocks.

APPENDIX C

OREGON PRODUCTION INDEX DATA

LIST OF TABLES

Page
TABLE C-1. Millions of coho smolts released annually into the OPI area by geographic area and rearing agency127
TABLE C-2. Data set used in predicting Oregon production index hatchery (OPIH) adult coho. 128
TABLE C-3. Estimated coho salmon natural spawner abundance in Oregon coastal basins for each OCN coho management section 129
TABLE C-4. Data set used in predicting Oregon coastal natural river (OCNR) coho ocean recruits with random survey sampling and Mixed Stock Model (MSM) accounting 130

Page Intentionally Left Blank

a/ Defined here as 30 fish per pound or larger and released in February or later.
b/ Beginning in 1989, does not include minor releases from STEP projects.
c/ Preliminary.

TABLE C-2. Data set used in predicting Oregon production index hatchery (OPIH) adult coho. Adults and jacks shown in thousands of fish and smolts in millions of fish.

Year (t) or Average			Jacks (t-1)			Columbia River Smolts (t-1)			
	Adults (t)		Total OPP ${ }^{\text {c/ }}$	Columbia River ${ }^{\text {d }}$	$\begin{gathered} \hline \text { OR Coast/ } \\ C A^{e /} \end{gathered}$	Total OPI ${ }^{\text {// }}$	Normal Timed ${ }^{g /}$	Delayed ${ }^{\text {h/ }}$	Delayed Smolt Adjustment ${ }^{\text {i }}$
	$\mathrm{OPIH}^{\text {a/ }}$	MSM ${ }^{\text {// }}$							
1970-1975	2,432.6	-	119.0	113.3	5.7	32.7	26.4	1.3	4.7
1976-1980	1,879.5	-	91.7	81.5	10.2	34.9	27.4	2.8	6.4
1981-1985	867.9	-	47.2	40.6	6.6	33.5	22.6	6.3	8.3
1986-1990	1,486.2	1,459.0	60.6	50.6	10.0	35.9	21.0	8.9	15.5
1991-1995	605.9	581.2	27.7	22.6	5.0	38.1	26.3	5.5	4.5
1996-2000	320.2	329.2	22.4	18.3	4.0	28.9	22.3	3.4	2.5
2001	1,417.1	1,478.7	87.4	71.7	15.7	32.2	28.7	2.0	4.7
2002	649.8	689.5	25.2	18.9	6.3	26.8	23.9	1.4	1.0
2003	936.6	1,009.9	49.9	41.7	8.2	25.3	23.4	0.3	0.5
2004	622.1	693.6	35.4	29.4	6.0	24.5	21.2	2.0	2.5
2005	443.2	454.0	25.0	21.2	3.8	23.4	21.2	0.8	0.8
2006	440.6	523.4	25.9	20.9	5.0	22.0	20.2	0.4	0.4
2007	476.6	545.3	36.3	34.2	2.2	21.8	20.3	0.1	0.2
2008	565.3	576.9	16.0	14.9	1.2	22.7	20.8	0.6	0.4
2009	1,066.2	1,051.0	60.4	58.4	2.0	22.8	20.8	1.1	2.9
2010	551.3	546.5	25.1	23.8	1.4	21.9	20.7	0.2	0.2
2011	442.3	454.2	23.3	22.2	1.1	19.3	18.2	0.3	0.4
2012	182.3	183.1	17.9	13.9	4.0	19.9	18.1	0.9	0.7
2013	316.9	335.1	26.3	24.1	2.2	19.2	17.1	1.1	1.5
2014	1,263.6	1,316.5	51.4	49.4	2.0	19.6	18.0	0.6	1.6
2015	251.7	254.7	39.6	37.0	2.6	19.4	16.9	1.5	3.0
2016	233.8	242.3	19.7	18.6	1.0	18.9	16.9	1.3	1.3
2017	284.8	284.8	22.9	22.4	0.4	18.4	16.5	1.3	1.6
2018	-	294.1^{k}	19.0	18.3	0.7	17.2	16.0	0.7	0.8

a/ Adult OPIH = Harvest impacts plus escapement for public hatchery stocks originating in the Columbia River, Oregon coastal rivers, and the Klamath River, California.
b/ Adult MSM = Harvest impacts plus escapement for public hatchery stocks originating in the Columbia River, Oregon coastal rivers, and the Klamath River. Estimates derived from the MSM and used for prediction beginning in 2008.
c/ Jack OPI = Total Jack CR and Jack OC.
d/ Jack CR = Columbia River jack returns corrected for small adults.
e/ Jack OC = Oregon coastal and California hatchery jack returns corrected for small adults.
f/ Total OPI = Columbia River (Sm D + Sm CR), Oregon coastal and Klamath Basin.
g/ SmCR = Columbia River smolt releases from the previous year expected to return as adults in the year listed.
h/ Sm D = Columbia River delayed smolt releases from the previous year expected to return as adults in the year listed.
i/ Correction term for delayed smolts released from Col. R. hatcheries (Col. R. Jacks*(Delayed Smolts/Col. R. Smolts)).
j/ Data not used in subsequent predictions due to 日 Niño impacts.
$\mathrm{k} /$ Preseason predicted adults.

TABLE C-3. Estimated coho salmon natural spawner abundance in Oregon coastal basins for each OCN coho management component

Component and Basin ${ }^{\text {a/ }}$	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	$\begin{aligned} & \hline 2003- \\ & 2017 \\ & \text { Avg. } \\ & \hline \end{aligned}$
NORTHERN																
Necanicum	2,377	2,198	1,218	750	431	1,055	3,827	4,445	2,120	902	798	5,727	847	936	523	1,877
Nehalem	32,517	18,736	10,451	11,614	14,033	17,205	21,753	32,215	15,322	2,963	4,539	30,577	3,079	7,549	5,412	15,198
Tillamook	13,008	2,532	1,995	8,774	2,295	4,828	16,251	14,890	19,250	1,686	4,402	20,090	1,345	7,102	2,899	8,090
Nestucca	10,194	4,695	686	1,876	394	1,844	4,252	1,947	7,857	1,751	946	6,369	1,029	2,412	4,330	3,372
Ind. Tribs.	0	661	2,116	1,121	376	639	2,052	1,473	1,341	218	271	4,607	440	699	208	1,081
TOTAL	58,096	28,822	16,466	24,135	17,529	25,571	48,135	54,970	45,890	7,520	10,956	67,370	6,740	18,698	13,372	29,618
NORTH CENTRAL																
Salmon	42	1,642	79	513	59	652	753	1,382	3,636	297	1,165	3,680	332	1,054	406	1,046
Siletz	8,038	8,179	14,567	5,205	2,197	20,634	24,070	6,283	33,094	4,495	7,660	19,496	2,216	3,015	5,463	10,974
Yaquina	16,484	5,539	3,441	4,247	3,158	10,913	11,182	8,589	19,074	6,268	3,553	25,582	2,400	3,730	2,511	8,445
Beaver Ck.	5,552	4,569	2,264	1,950	611	1,218	3,575	2,072	2,389	1,878	2,015	6,564	332	1,709	1,509	2,547
Alsea	10,281	5,233	13,907	1,972	2,146	13,320	14,638	9,688	28,337	8,470	9,283	25,855	6,185	7,375	4,169	10,724
Siuslaw	29,003	8,729	16,907	5,869	3,552	17,491	30,607	25,983	28,082	11,946	14,118	38,896	10,352	9,141	6,968	17,176
Ind. Tribs.	1,852	8,179	242	1,468	547	3,910	1,610	2,548	4,487	492	1,929	1,890	856	464	1,646	2,141
TOTAL	71,252	42,070	51,407	21,224	12,270	68,138	86,435	56,545	119,099	33,846	39,723	121,963	22,673	26,488	22,672	53,054
SOUTH CENTRAL																
Umpqua	34,783	29,920	42,532	18,092	11,783	37,868	57,984	70,019	94,655	20,969	27,016	66,272	14,860	7,494	13,314	36,504
Coos	25,761	23,337	17,048	11,266	1,329	14,881	26,979	27,658	10,999	9,414	6,884	38,880	3,030	4,624	2,509	14,973
Coquille	22,403	22,138	11,806	28,577	13,968	8,791	22,286	23,564	55,667	5,911	23,637	41,660	3,357	9,494	4,359	19,841
Floras Ck.	952	7,446	506	1,104	340	786	3,203	11,329	9,217	2,502	1,936	1,022	1,585	942	443	2,888
Sixes R.	86	403	105	294	97	43	176	92	334	34	567	410	168	120	61	199
Coastal Lakes	16,076	18,642	14,725	24,127	8,955	23,608	17,349	38,744	20,281	18,922	13,659	22,010	4,729	8,044	1,300	16,745
Ind. Tribs.	-	-	-	-	-	0	188	484	101	48	33	106	-	0	0	96
TOTAL	100,061	101,886	86,722	83,460	36,472	85,977	128,165	171,890	191,254	57,800	73,732	170,360	27,729	30,718	21,986	91,246
SOUTH																
Rogue ${ }^{\text {b/ }}$	6,805	24,509	9,957	3,911	5,136	414	2,566	3,671	4,545	5,474	11,210	2,409	4,072	6,302	4,529	6,367

a/ The sum of the individual basins may not equal the aggregate totals due to the use of independent estimates at different geographic scales.
b/ Mark recapture estimate based on seining at Huntley Park in the low er Rogue River.

∞		Recruits		Environmental Index-Month(s) ${ }^{\text {a/ }}$							
To	Year (t)	Adults	Spaw ners	PDO-MJJ	UWI-JAS	UWI-SON	SSH-AMJ	SST-AMJ	SST-J	MEI-ON	SPR.TRN
¢	1970-1975	237.5	112.3	-0.7	35.5	-19.7	-84.8	11.6	9.0	-0.5	98.3
0	1976-1980	204.3	30.7	-0.3	26.4	-29.2	-113.6	11.1	9.9	0.1	86.0
\bigcirc	1981-1985	148.9	26.8	-0.1	28.4	-30.0	-96.8	11.4	10.4	0.5	85.0
J	1986-1990	153.8	28.9	0.1	29.6	-39.2	-91.0	11.6	10.4	0.4	82.0
(1)	1991-1995	150.7	27.0	0.3	29.3	-40.8	-77.9	11.6	10.4	0.7	89.0
윽	1996-2000	131.8	25.2	0.5	31.2	-49.0	-61.7	11.7	10.8	0.6	94.8
-	2000	156.6	21.5	0.4	35.8	-26.8	-56.2	11.4	10.2	-0.6	72.0
	2001	246.1	34.7	-0.4	47.1	-38.2	-126.2	10.7	10.1	-0.2	61.0
	2002	227.3	61.0	-0.6	50.5	-25.9	-148.6	10.1	11.0	1.0	80.0
	2003	164.0	143.1	-0.2	55.5	-26.4	-63.5	11.1	10.3	0.5	112.0
	2004	146.3	236.4	0.0	27.0	4.3	-62.6	11.9	10.2	0.7	110.0
	2005	113.3	213.3	0.5	51.8	-9.0	-25.7	12.5	11.5	-0.3	145.0
	2006	64.9	154.1	0.8	53.6	-14.1	-36.4	11.2	9.8	1.1	112.0
	2007	157.0	139.9	0.6	27.5	-9.9	-123.7	10.6	8.9	-1.2	74.0
	2008	262.9	104.7	0.2	32.7	-10.7	-113.3	9.6	9.4	-0.6	89.0
	2009	255.6	57.3	-0.3	24.3	-47.1	-96.0	10.5	10.8	1.0	82.0
	2010	352.4	156.1	-0.5	34.2	-32.9	-48.5	11.7	10.1	-1.7	100.0
ω	2011	98.1	245.4	-0.8	29.3	-26.3	-46.3	10.7	9.2	-0.9	100.0
	2012	130.2	244.7	-0.7	53.6	-29.9	-34.5	11.0	9.9	0.1	121.0
	2013	377.4	336.0	-0.8	35.3	-7.8	-106.6	10.7	9.1	0.0	100.0
	2014	64.6	80.2	-0.4	41.3	-40.1	-30.1	11.2	12.3	0.6	101.0
	2015	74.4	110.8	0.2	40.4	-7.9	-65.4	10.3	11.0	2.3	92.0
	2017	64.1	337.7	1.0	48.0	-68.2	-127.4	11.6	0.0	-0.3	85.0
	$2018{ }^{\text {b/ }}$	49.5	52.4	1.3	46.1	-36.2	-63.9	11.2	11.0	-0.4	116.0

a/ Environmental Index descriptions:
PDO - Pacific Decadal Oscillation (4-year moving average)
UWI - Upw elling wind index (mean upw elling winds index in months of ocean migration year at $42^{\circ} \mathrm{N} 125^{\circ} \mathrm{W}$)
SSH - Sea surface height (South Beach, OR at $44^{\circ} 37.5^{\prime} \mathrm{N}, 124^{\circ} 02.6^{\prime} \mathrm{W}$)
SST - Sea surface temperature (mean sea surface temperature in January of return year at Charleston, OR)
MEI - Multi-variate ENSO index
SPR.TRN - Spring transition date (Julian)
b/ Adult recruits is a forecasted number.

APPENDIX D
 SACRAMENTO RIVER WINTER CHINOOK MANAGEMENT

SUMMARY OF CHANGES TO SACRAMENTO RIVER WINTER CHINOOK MANAGEMENT

Since 2012, Sacramento River winter Chinook salmon (SRWC) have been managed according to a twopart consultation standard. The first part of the consultation standard included the season length and size limit regulations for fisheries south of Point Arena, California, that are described in Chapter 2 of this report. The second part of the consultation standard was the specification of the maximum allowable age-3 impact rate for the area south of Point Arena, determined by a control rule, and based on the most recent 3-year geometric mean of SRWC escapement.

The first part of the SRWC consultation standard remains in place, unchanged. In the second part of the consultation standard, there were two primary concerns raised regarding this SRWC control rule. The first concern related to the specification of an allowable impact rate of zero at mean spawner levels less than 500 fish. The second concern was that the use of past escapement estimates for setting allowable impact rates would not be sufficiently responsive to rapid changes in abundance. To address these concerns, the Council formed the ad hoc Sacramento River Winter Chinook Workgroup in November 2015 and tasked the workgroup with exploring alternative management frameworks for SRWC. Over a period of approximately two years, the workgroup analyzed a range of alternative SRWC control rules and presented their results to the Council at several meetings in 2016 and 2017. At their November 2017 meeting, the Council adopted a new control rule for recommendation to the National Marine Fisheries Service (NMFS). NMFS is currently considering approval of this new control rule, and it is anticipated that the Council will use this new control rule during the 2018 fishery planning process.

Figure D-1 displays the control rule used from 2012-2017 (Panel A) and the new control rule that will be implemented in 2018 (Panel B). The 2012-2017 control rule specified the maximum allowable impact rate based on the 3 -year geometric mean of escapement. The new control rule specifies the maximum allowable impact rate based on a forecast of the age-3 escapement absent fishing ${ }^{2}$.

The forms of these control rules differ. Most notably, the new control rule begins reducing the allowable impact rate from the maximum level (20 percent) at an abundance of 3,000 , while the previous control rule began reducing the impact rate at a geometric mean of 4,000 spawners. In addition, the new control rule allows for a non-zero age- 3 impact rate when the abundance forecast is less than or equal to 500 fish. Lastly, the new control rule never allows for an impact rate greater than 20 percent, whereas the previous control rule allowed for an uncapped allowable impact rate when the geometric mean exceeded 5,000 spawners.

In Figure D-1, panel B, arrows indicate the application of the new control rule for managing 2018 ocean salmon fisheries. The 2018 forecast of age-3 escapement absent fishing is 1,594. At this level of abundance, the control rule specifies a maximum allowable age-3 impact rate of 14.4 percent. Under the 2012-2017 control rule, the maximum allowable age-3 impact rate would have been 13.5 percent, based on a geometric mean of 1,731 fish.

[^4]

Figure D-1. Sacramento River winter Chinook control rules. Panel A displays the 2012-2017 control rule and panel B displays the new control rule. Arrows in panel B indicate the maximum allowable impact rate for 2018 based on the forecasted age-3 escapement absent fishing.

This map is for reference only and is not intended for use in navigation or fishery regulation.

[^0]: ${ }^{1}$ For additional information see the November 2013 PFMC Briefing Book, Agenda Item C.2.a, Attachment 1: Technical Revision to the OCN Coho Work Group Harvest Matrix.

[^1]: $\mathrm{a} /$ The OPl area includes ocean and inside harvest impacts and escapement to streams and lakes south of Leadbetter Pt., Washington.

[^2]: a/ Total run size.
 b/ Preliminary forecast.

[^3]: a/ Parental spawner abundance status for the OCN aggregate assumes the status of the weakest sub-aggregate.

[^4]: ${ }^{2}$ A detailed description of the abundance forecasting approach for SRWC can be found here: http://www.pcouncil.org/wp-content/uploads/2016/10/SRWC_forecast_rev_doc_Oct032016.pdf

