Status of Pacific ocean perch (*Sebastes alutus*) along the US west coast in 2017

Chantel R. Wetzel¹ Lee Cronin-Fine² Kelli F. Johnson^{1,2}

¹Northwest Fisheries Science Center, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, Washington 98112

²University of Washington, School of Aquatic and Fishery Sciences

DRAFT SAFE

Disclaimer: This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by NOAA Fisheries. It does not represent and should not be construed to represent any agency determination or policy. Please cite as:

Wetzel, C.R., Cronin-Fine, L., and Johnson, K.F. 2017. Status of Pacific ocean perch (*Sebastes alutus*) along the US west coast in 2017. Pacific Fishery Managment Council, 7700 Ambassador Place NE, Suite 200, Portland, OR 97220.

Status of Pacific ocean perch (Sebastes alutus) along the US west coast in 2017

Contents

E	xecut	ve Summary	i
	Stoc		i
	Lan	ings	i
	Data	and Assessment	i
	Stoc	Biomass	V
	Reci	$\operatorname{nitment}$	i
	Exp	pitation Status	х
	Ecos	vstem Considerations	i
	Refe	ence Points	i
	Man	agement Performance	i
	Unre	solved Problems and Major Uncertainties	V
	Deci	ion Table $\ldots \ldots x$	V
	Rese	arch and Data Needs	ii
1	Intr	duction	1
T	11101		L -
	1.1	Distribution and Stock Structure	T
	1.2	Historical and Current Fishery	1
	1.3	Summary of Management History and Performance	2
	1.4	Fisheries off Canada and Alaska	2
2	Dat	L	3
	2.1	Fishery-Independent Data	3
		2.1.1 Northwest Fisheries Science Center (NWFSC) Shelf-Slope Survey	4
		2.1.2 Northwest Fisheries Science Center (NWFSC) Slope Survey	5
		2.1.3 Alaska Fisheries Science Center (AFSC) Slope Survey	5
		2.1.4 Pacific Ocean Perch Survey	6
		2.1.5 Fishery Independent Data Not Included in the Base Model	6

			2.1.5.1 Triennial Shelf Survey	6
			2.1.5.2 Washington Research Lengths	7
	2.2	Fisher	y-Dependent Data	8
		2.2.1	Commercial Fishery Landings	8
		2.2.2	Discards	9
		2.2.3	Fishery Length and Age Data	10
		2.2.4	Fishery Data Not Included in the Base Model	10
			2.2.4.1 Historical Commercial Catch-Per-Unit Effort	10
			2.2.4.2 Oregon Special Projects Length and Age Data	11
	2.3	Biolog	ical Data	11
		2.3.1	Natural Mortality	11
		2.3.2	Sex Ratio, Maturation, and Fecundity	12
		2.3.3	Length-Weight Relationship	12
		2.3.4	Growth (Length-at-Age)	12
		2.3.5	Ageing Precision and Bias	13
	2.4	Histor	y of Modeling Approaches Used for This Stock	13
		2.4.1	Previous Assessments	13
3	Ass	essmer	nt	14
	3.1	Genera	al Model Specifications and Assumptions	14
		3.1.1	Changes Between the 2011 Assessment Model and Current Model $\ .$.	14
		3.1.2	Summary of Fleets and Areas	15
		3.1.3	Other Specifications	16
		3.1.4	Modeling Software and Model Bridging	17
		3.1.5	Priors	17
		3.1.6	Data Weighting	18
		3.1.7	Estimated and Fixed Parameters	18
	3.2	Model	Selection and Evaluation	19
		3.2.1	Key Assumptions and Structural Choices	19
		3.2.2	Alternate Models Considered	19
		3.2.3	Convergence	20

3.4	Response to the 2011 STAR Panel Recommendations $\ . \ . \ . \ .$		21
3.5	Response to the 2017 STAR Panel Requests $\ldots \ldots \ldots \ldots$		22
3.6	Base Model Results		23
	3.6.1 Parameter Estimates		23
	3.6.2 Fits to the Data		25
	3.6.3 Population Trajectory		27
	3.6.4 Uncertainty and Sensitivity Analyses		27
	3.6.5 Retrospective Analysis		29
	3.6.6 Likelihood Profiles		29
	3.6.7 Reference Points		30
4 Ha	rvest Projections and Decision Tables		30
5 Reg	gional Management Considerations		31
6 Res	search Needs		31
7 Acl	knowledgments		31
8 Tal	bles		33
9 Fig	gures		67
10 Ap	ppendix A. Detailed Fit to Length Composition Data		153
11 Ap	pendix B. Detailed Fit to Age Composition Data		164
12 Ap	pendix C. Description of CPUE and Triennial Data		170
13 Ap nes	ppendix D. SSC Groundfish Subcommittee Discussion Regardines	ıg Steep	_ 178
14 Ap	ppendix E. List of Auxiliary Files Available		181
$15~{ m Ref}$	ferences		

iii

Executive Summary

Stock

This assessment reports the status of the Pacific ocean perch rockfish (*Sebastes alutus*) off the US west coast from Northern California to the Canadian border using data through 2016. Pacific ocean perch are most abundant in the Gulf of Alaska and have been observed off of Japan, in the Bering Sea, and south to Baja California, though they are sparse south of Oregon and rare in southern California. Although neither catches nor other data from north of the US-Canada border were included in this assessment, the connectivity of these populations and the contribution to the biomass possibly through adult migration and/or larval dispersion is not certain. To date, no significant genetic differences have been found in the range covered by this assessment.

Landings

Harvest of Pacific ocean perch first exceeded 1 mt off the US west coast in 1918. Catches ramped up in the 1940s with large removals in Washington waters. During the 1950s the removals primary occurred in Oregon waters with catches from Washington declining following the 1940s. The largest removals, occurring between 1966-1968, were largely a result of harvest by foreign vessels. The fishery proceeded with more moderate removals ranging between 1165 to 2619 metric tons (mt) per year between 1969 and 1980. Removals generally declined from 1981 to 1994 to between 1031 and 1617 mt per year. Pacific ocean perch was declared overfished in 1999, resulting in large reductions in harvest in years since the declaration. Since 2000, annual landings of Pacific ocean perch have ranged between 54-270 mt, with landings in 2016 totaling 68 mt.

Pacific ocean perch are a desirable market species and discarding has historically been low. However, management restrictions (e.g. trip limits) resulted in increased discarding starting in the early 1990s. During the 2000s discarding increased for Pacific ocean perch due to harvest restrictions imposed to allow rebuilding, with estimated discard rates from the fishery peaking in 2009 and 2010 to approximately 50%, prior to implementation of catch shares in 2011. Since 2011, discarding of Pacific ocean perch has been estimated to be less than 3.5%.

Year	California	Oregon	Washington	At-sea	Survey	Total
				hake		Landings
2007	0.15	83.65	45.12	4.05	0.58	133.55
2008	0.39	58.64	16.61	15.93	0.80	92.36
2009	0.92	58.74	33.22	1.56	2.72	97.17
2010	0.14	58.00	22.29	16.87	1.68	98.98
2011	0.12	30.26	19.66	9.17	1.94	61.14
2012	0.18	30.41	21.79	4.52	1.62	58.51
2013	0.08	34.86	14.83	5.41	1.71	56.89
2014	0.18	33.91	15.82	3.92	0.57	54.40
2015	0.12	38.05	11.41	8.71	1.59	59.88
2016	0.23	40.81	13.12	10.30	3.10	67.56

Table a: Landings (mt) for the past 10 years for Pacific ocean perch by source.

Figure a: Landings of Pacific ocean perch for California, Oregon, Washington, the foriegn fishery (1966-1976), at-sea hake fishery, and fishery-independent surveys.

Data and Assessment

This a new full assessment for Pacific ocean perch, which was last assessed in 2011. In this assessment, aspects of the model including landings, data, and modelling assumptions were re-evaluated. The assessment was conducted using the length- and age-structured modeling software Stock Synthesis (version 3.30.03.05). The coastwide population was modeled allowing separate growth and mortality parameters for each sex (a two-sex model) from 1918 to 2017 and forecasted beyond 2017.

All of the data sources included in the base model for Pacific ocean perch have been reevaluated for 2017. Changes of varying degrees have occurred in the data from those used in previous assessments. The landings history has been updated and extended back to 1918. Harvest was negligible prior to that year. Survey data from the Alaska and Northwest Fisheries Science Centers have been used to construct indices of abundance analyzed using a spatio-temporal delta-model. Length, marginal age or conditional age-at-length compositions were also created for each fishery-dependent and -independent data source.

The definition of fishing fleets have changed from those in the 2011 assessment. Three fishing fleets were specified within the model: 1) a combined bottom trawl, mid-water trawl, and fixed gear fleet, where only a small fraction of Pacific ocean perch were captured by fixed gear (termed the fishery fleet), 2) the historical foreign fleet, and 3) the at-sea hake fishery. The fleet grouping was based on discarding practices. The fishery fleet estimated a retention curve based on discarding data and known management restrictions. However, very little if any discarding is assumed to have occurred by the foreign fleet and the catch reported by the at-sea hake fishery accounts for both discarded and landed fish and hence, no additional mortality was estimated for each of these fleets.

The assessment uses landings data and discard-fraction estimates; survey indices of abundance; length- or age-composition data for each year and fishery or survey (with conditional ageat-length compositional data for the NWFSC shelf-slope survey); information on weightat-length, maturity-at-length, and fecundity-at-length; information on natural mortality and the steepness of the Beverton-Holt stock-recruitment relationship; and estimates of ageing error. Recruitment at "equilibrium spawning output", length-based selectivity of the fisheries and surveys, retention of the fishery, catchability of the surveys, growth, the time-series of spawning output, age and size structure, and current and projected future stock status are outputs of the model. Natural mortality (0.054 yr^{-1}) and steepness (0.50) were fixed in the final model. This was done due to relatively flat likelihood surfaces, such that fixing parameters and then varying them in sensitivity analyses was deemed the best way to characterize uncertainty.

Although this assessment using many types of data since the 1980s, there is little information about steepness and natural mortality. Estimates of steepness are uncertain partly because of highly variable recruitment. Uncertainty in natural mortality is common in many fish stock assessments even when length and age data are available. A number of sources of uncertainty are explicitly included in this assessment. This assessment includes gender differences in growth, a non-linear relationship between individual spawner biomass and effective spawning output, and an updated relationship between length and maturity, based upon non-published information (Melissa Head, personal communication, NOAA, NWFSC). As is always the case, overall uncertainty is greater than that predicted by a single model specification. Among other sources of uncertainty that are not included in the current model are the degree of connectivity between the stocks of Pacific ocean perch off of Vancouver Island, British Columbia and those in US waters, and the effect of climatic variables on recruitment, growth and survival.

A base model was selected that best captures the central tendency for those sources of uncertainty considered in the model.

Stock Biomass

The predicted spawning output from the base model generally showed a slight decline prior to 1966 when fishing by the foreign fleet commenced. A short, but sharp decline occurred between 1966 and 1970, followed by a period of the spawning output stabilizing or with a minimal decline until the late 1990s. The stock showed increases in stock size following the year 2000 due to a combination of strong recruitment and low catches. The 2017 estimated spawning output relative to unfished equilibrium spawning output is above the target of 40% of unfished spawning output at 76.6% (~ 95% asymptotic interval: \pm 55.6%-97.7%). Approximate confidence intervals based on the asymptotic variance estimates show that the uncertainty in the estimated spawning output is high.

Year	Spawning Output	~ 95%	Estimated	~ 95%
	(million eggs)	Confidence	Depletion	Confidence
		Interval		Interval
2008	3745	1620 - 5870	0.544	0.380 - 0.708
2009	3885	1688 - 6083	0.564	0.395 - 0.733
2010	3976	1731 - 6221	0.577	0.405 - 0.749
2011	4032	1759 - 6305	0.585	0.412 - 0.759
2012	4067	1780 - 6354	0.590	0.416 - 0.764
2013	4091	1797 - 6384	0.594	0.420 - 0.768
2014	4197	1857 - 6538	0.609	0.433 - 0.785
2015	4516	2021 - 7011	0.656	0.470 - 0.841
2016	4931	2231 - 7630	0.716	0.517 - 0.914
2017	5280	2407 - 8153	0.766	0.556 - 0.977

Table b: Recent trend in estimated spawning output (million eggs) and estimated relative spawning output (depletion).

Spawning output with ~95% asymptotic intervals

Figure b: Estimated time-series of spawning output trajectory (circles and line: median; light broken lines: 95% credibility intervals) for the base assessment model.

Spawning depletion with ~95% asymptotic intervals

Figure c: Estimated time-series of relative spawning output (depletion) (circles and line: median; light broken lines: 95% credibility intervals) for the base assessment model.

Recruitment

Recruitment deviations were estimated for the entire assessment period. There is little information regarding recruitment prior to 1965, and the uncertainty in these estimates is expressed in the model. Past assessments estimated large recruitments in 1999 and 2000. In recent years, a recruitment of unprecedented size is estimated to have occurred in 2008. Additionally, there is early evidence of a strong recruitment in 2013. The four lowest recruitments estimated within the model (in ascending order) occurred in 2012, 2003, 2005, and 2007.

Table c: Recent estimated trend in recruitment and estimated recruitment deviations determined from the base model

Year	Estimated	~ 95% Confidence	Estimated	~ 95% Confidence
	Recruitment	Interval	Recruitment	Interval
			Devs.	
2008	116128	66566 - 202591	2.623	2.323 - 2.923
2009	4731	2047 - 10932	-0.592	-1.347 - 0.163
2010	7499	3650 - 15404	-0.140	-0.732 - 0.453
2011	15198	7730 - 29880	0.562	0.031 - 1.093
2012	2101	879 - 5026	-1.420	-2.2370.603
2013	29027	13826 - 60941	1.118	0.482 - 1.754
2014	4630	1629 - 13160	-0.813	-1.863 - 0.238
2015	10661	2987 - 38052	-0.004	-1.372 - 1.364
2016	11016	3082 - 39382	0.000	-1.372 - 1.372
2017	11253	3151 - 40194	0.000	-1.372 - 1.372

Age-0 recruits (1,000s) with ~95% asymptotic intervals

Figure d: Time-series of estimated Pacific ocean perch recruitments for the base model with 95% confidence or credibility intervals.

Exploitation Status

The spawning output of Pacific ocean perch reached a low in 1989. Landings for Pacific ocean perch decreased significantly in 2000 compared to previous years. The estimated relative depletion was possibly below the target biomass level between the 1970s and 1990s, but has likely remained above the target otherwise, and currently is significantly greater than the 40% unfished spawning output target. Throughout the late 1960s and the early 1970s the exploitation rate and values of relative spawning potential $((1-\text{SPR})/(1-\text{SPR}_{50\%}))$ were mostly above target levels. Recent exploitation rates on Pacific ocean perch were predicted to be significantly below target levels.

Year	(1-SPR)/	~ 95%	Exploitation	~ 95%
	(1-SPR50%)	Confidence	Rate	Confidence
		Interval		Interval
2007	0.087	0.039 - 0.134	0.002	0.001 - 0.003
2008	0.072	0.031 - 0.113	0.002	0.001 - 0.002
2009	0.097	0.040 - 0.153	0.002	0.001 - 0.004
2010	0.092	0.039 - 0.145	0.002	0.001 - 0.003
2011	0.032	0.014 - 0.050	0.001	0.000 - 0.001
2012	0.031	0.014 - 0.048	0.001	0.000 - 0.001
2013	0.030	0.013 - 0.046	0.001	0.000 - 0.001
2014	0.026	0.012 - 0.040	0.000	0.000 - 0.001
2015	0.026	0.012 - 0.040	0.001	0.000 - 0.001
2016	0.027	0.012 - 0.041	0.001	0.000 - 0.001

Table d: Recent trend in spawning potential ratio (1-SPR)/(1-SPR50) and summary exploitation rate for Pacific ocean perch.

Figure e: Estimated relative spawning potential ratio (1-SPR)/(1-SPR50%) for the base model. One minus SPR is plotted so that higher exploitation rates occur on the upper portion of the y-axis. The management target is plotted as a red horizontal line and values above this reflect harvests in excess of the overfishing proxy based on the SPR50% harvest rate. The last year in the time-series is 2016.

Figure f: Phase plot of estimated (1-SPR)/(1-SPR50%) vs. depletion (B/Btarget) for the base case model.

Ecosystem Considerations

Rockfish are an important component of the California Current ecosystem along the US west coast, with more than sixty five species filling various niches in both soft and hard bottom habitats from the nearshore to the continental slope, as well as near bottom and pelagic zones. Pacific ocean perch are generally considered to be semi-demersal, but there can, at times, be a significant pelagic component to their distribution.

Recruitment is one mechanism by which the ecosystem may directly impact the population dynamics of Pacific ocean perch. The 1999 cohort for many species of rockfish was large – sometimes significantly so. Long-term averages suggest that environmental conditions may influence the spawning success and survival of larvae and juvenile rockfish. Pacific ocean perch showed above average recruitment deviations in 1999 and 2000. The specific pathways through which environmental conditions exert influence on Pacific ocean perch dynamics are unclear; however, changes in water temperature and currents, distribution of prey and predators, and the amount and timing of upwelling are all possible linkages. Changes in the environment may also result in changes in length-at-maturity, fecundity, growth, and survival which can affect the status of the stock and its susceptibility to fishing. Unfortunately, there are few data available for Pacific ocean perch that provide insights into these effects.

Fishing has effects on both the age-structure of a population, as well as the habitat with which the target species is associated. Fishing often targets larger, older fish and years of fishing mortality results in a truncated age-structure when compared to unfished conditions. Rockfish are often associated with habitats containing living structure such as sponges and corals, and fishing may alter that habitat to a less desirable state. This assessment provides a look at the effects of fishing on age structure, and recent studies on essential fish habitat are beginning to characterize important locations for rockfish throughout their life history; however, there is little current information available to evaluate the specific effects of fishing on the ecosystem issues specific to Pacific ocean perch.

Reference Points

This stock assessment estimates that the spawning output of Pacific ocean perch is above the management target. Due to reduced landing and the large 2008 year-class, an increasing trend in spawning output was estimated in the base model. The estimated depletion in 2017 is 76.6% (~ 95% asymptotic interval: \pm 55.6%-97.7%), corresponding to an unfished spawning output of 5,280 million eggs (~ 95% asymptotic interval: 2,407-8,153 million eggs). Unfished age 3+ biomass was estimated to be 147,286 mt in the base model. The target spawning output based on the biomass target ($SB_{40\%}$) is 2,755.7 million eggs, with an equilibrium catch of 1,808.3 mt. Equilibrium yield at the proxy F_{MSY} harvest rate corresponding to $SPR_{50\%}$ is 1,822.5 mt. Estimated MSY catch is at a 1,825.3 spawning output of 2,425 million eggs (35.2% depletion)

Quantity	Estimate	${\sim}95\%$
		Confidence
		Interval
Unfished spawning output (million eggs)	6889.2	4860.7 - 8917.6
Unfished age $3+$ biomass (mt)	147286	104000.8 - 190571.2
Unfished recruitment (R0, thousands)	12110.2	9046.1 - 16212.1
Spawning $output(2017 million eggs)$	5280.4	2407.4 - 8153.3
Relative spawning output (depletion) (2017)	0.766	0.556 - 0.977
Reference points based on $SB_{40\%}$		
Proxy spawning output $(B_{40\%})$	2755.7	1944.3 - 3567
SPR resulting in $B_{40\%}$ (SPR _{B40\%})	0.55	0.55 - 0.55
Exploitation rate resulting in $B_{40\%}$	0.028	0.028 - 0.029
Yield with $SPR_{B40\%}$ at $B_{40\%}$ (mt)	1808.3	1278.2 - 2338.4
Reference points based on SPR proxy for MSY		
Spawning output	2296.4	1620.2 - 2972.5
SPR_{proxy}	0.5	
Exploitation rate corresponding to SPR_{proxy}	0.033	0.033 - 0.034
Yield with SPR_{proxy} at SB_{SPR} (mt)	1822.5	1288.5 - 2356.5
Reference points based on estimated MSY values		
Spawning output at MSY (SB_{MSY})	2425	1708.1 - 3141.8
SPR_{MSY}	0.514	0.512 - 0.516
Exploitation rate at MSY	0.032	0.031 - 0.032
MSY (mt)	1825.3	1290.4 - 2360.2

Table e: Summary of reference points and management quantities for the base case.

Management Performance

Exploitation rates on Pacific ocean perch exceeded MSY proxy target harvest rates during the 1960s and 1970s, resulting in sharp declines in the spawning output. Exploitation rates subsequently declined to rates at or below the management target in the late 1970s. Management restrictions imposed in the 1990s further reduced exploitation rates. An overfished declaration for Pacific ocean perch resulted in very low exploitation rates since 2001 with Annual Catch Limits (ACLs) being set far below the Overfishing Limit (OFL) and Acceptable Biological Catch (ABC) values.

Year	OFL (mt; ABC prior to 2011)	ABC (mt)	ACL (mt; OY prior to 2011)	Total Landings (mt)	Estimated Total Catch
				121	(mt)
2007	900		150	134	159
2008	911		150	92	135
2009	1,160		189	97	194
2010	$1,\!173$		200	99	183
2011	1,026	981	180	61	62
2012	1,007	962	183	59	60
2013	844	807	150	57	58
2014	838	801	153	54	56
2015	842	805	158	60	61
2016	850	813	164	68	68

Table f: Recent trend in total catch and landings (mt) relative to the management guidelines. Estimated total catch reflect the landings plus the model estimated discarded biomass.

Unresolved Problems and Major Uncertainties

- 1. The current data for Pacific ocean perch weighted according to the Francis weighting approach do not contain information regarding steepness. The estimated final status is highly dependent upon the assumed steepness value, as is typical for most US west coast groundfish assessments. The data available and the modeling approach applied in 2011 supported a steepness value of 0.40. However, the current data no longer support this value. Models the used the mean to the 2017 steepness prior (0.72) resulted in an estimated a stock size near unfished conditions leading to low survey catchability for the NWFSC shelf-slope survey which was deemed implausible by the Scientific and Statistical Committee (SSC). A steepness value in the final model was determined by calculating spawning output across a range of steepness values (0.25-0.95) which were considered equally likely. The expected (i.e. arithmetic mean) ending spawning output was calculated and the steepness value most closely associated with the expected value was identified, a value of 0.50. Additional research for alternative approaches for determining steepness values when traditional approaches do not seem appropriate should be identified.
- 2. Pacific ocean perch off the US west coast may be a fraction of a much large population extending into Canada or even Alaska. Modelling only a part of the total population might contribute to the lack of correspondence between the survey indices and other data sources, as seen in the $\ln(R0)$ profiles and age-structured production model diagnostics as well as some of the observation variability. While this comment is not intended to reflect badly on the STAT's capabilities, it is important to recognize that stock structure could potentially be a major source of uncertainty regarding the assessment results.
- 3. The indices of abundance used in the final base model provide almost no information on population scale, as demonstrated in the $\ln(R0)$ profiles examined during the review.

The Triennial survey was the only index that provided signal with respect to population scale. However, this survey was removed in the final base model due to concerns about the quality of the survey and conflicts with other data. There are large amounts of composition data in the model, with both age- and length-compositions being included for some fleets. The compositional data and catch are providing the majority of the information on the estimated and derived quantities.

4. Use of conditional-age-at-length composition data provides information on parameters beyond those of the length-at-age relationship. The conditional-age-at-length data are robust to length-based processes (Piner et al. 2016), however they are also influenced by age-based processes (Lee et al. 2017). No age-based processes were used in the assessment model as a link to the data, meaning that the conditional-age-at-length data were assumed to be unbiased with respect to the population. The conditional-ageat-length data were shown to be very influential on the estimated dynamics beyond growth estimates. More theoretical work in this area is needed to understand how to best the use this type of information and what potential systems or observation model processes could invalidate the assumption of randomness at length.

Decision Table

Model uncertainty has been described by the estimated uncertainty within the base model and by the sensitivities to different model structure. The results from the final base model were sensitivey to both the assumed steepness or natural mortality values. The STAT team and the STAR panel agreed to select natural mortality (M) as the main axis for uncertainty when projecting the population under alternative harvest strategies. The 12.5% and 87.5% quantiles based on spawning output uncertainty were used to determine the low and high values for M of 0.04725 and 0.0595 yr⁻¹.

Due to the sensitivity associated with the assessment given the assumed steepness value the assessment is classified as a Category 2 stock assessment. Therefore, the sigma for P^* to determine the catch reduction to account for scientific uncertainty is 0.72, since the estimated sigma in the assessment is less than this for current spawning biomass (0.27).

Year	OFL	ABC	Spawning Output	Relative
			(million eggs)	Depletion $(\%)$
2019	4753	4340	5741	83
2020	4632	4229	5745	83
2021	4499	4108	5723	83
2022	4364	3984	5666	82
2023	4230	3862	5586	81
2024	4105	3748	5494	80
2025	3991	3644	5395	78
2026	3889	3551	5292	77
2027	3797	3467	5188	75
2028	3712	3389	5084	74

Table g: Projections of potential OFL (mt) and ABC (mt) and the estimated spawning output and relative depletion based on ABC removals. The 2017 and 2018 removals are set at the harvest limits currently set by management of 281 mt per year.

Table h: Summary of 10-year projections beginning in 2019 for alternate states of nature based on an axis of uncertainty for the base model. The range of natural mortality values corresponded to the 12.5 and 87.5th quantile from the uncertainty around final spawning biomass. Columns range over low, mid, and high states of nature, and rows range over different assumptions of catch levels. The SPR50 catch stream is based on the equilibrium yield applying the SPR50 harvest rate.

					States	of nature		
			M =	= 0.04725	Μ	= 0.054	M =	= 0.0595
	Year	Catch	Spawning	Depletion $(\%)$	Spawning	Depletion $(\%)$	Spawning	Depletion (%)
			Output		Output		Output	
	2019	4340	3944	62.9	5741	83.3	7505	96.8
	2020	4229	3909	62.4	5745	83.4	7542	97.3
	2021	4108	3858	61.6	5723	83.1	7546	97.3
ABC	2022	3984	3784	60.4	5666	82.2	7503	96.8
	2023	3862	3695	59.0	5586	81.1	7427	95.8
	2024	3748	3600	57.4	5494	79.7	7332	94.6
	2025	3644	3502	55.9	5395	78.3	7226	93.2
	2026	3551	3404	54.3	5292	76.8	7113	91.8
	2027	3467	3308	52.8	5188	75.3	6996	90.3
	2028	3389	3213	51.3	5084	73.8	6879	88.7
	2019	1822	3944	62.9	5741	83.3	7505	96.8
	2020	1822	4022	64.2	5857	85.0	7654	98.7
	2021	1822	4083	65.1	5946	86.3	7768	100.2
SPR50	2022	1822	4117	65.7	5996	87.0	7830	101.0
	2023	1822	4131	65.9	6016	87.3	7852	101.3
	2024	1822	4133	65.9	6017	87.3	7848	101.2
	2025	1822	4125	65.8	6004	87.1	7824	100.9
	2026	1822	4110	65.6	5979	86.8	7786	100.4
	2027	1822	4090	65.3	5947	86.3	7736	99.8
	2028	1822	4067	64.9	5908	85.8	7679	99.1

Research and Data Needs

There are many areas of research that could be improved to benefit the understanding and assessment of Pacific ocean perch. Below, are issues that are considered of importance.

- 1. **Natural mortality**: Uncertainty in natural mortality translates into uncertain estimates of status and sustainable fishing levels for Pacific ocean perch. The collection of additional age data, re-reading of older age samples, reading old age samples that are unread, and improved understanding of the life history of Pacific ocean perch may reduce that uncertainty.
- 2. Steepness: The amount of stock resilience, steepness, dictates the rate at which a stock can rebuild from low stock sizes. Improved understating regarding the steepness parameter for US west coast Pacific ocean perch will reduce our uncertainty regarding current stock status.
- 3. Basin-wide understanding of stock structure, biology, connectivity, and distribution: This is a stock assessment for Pacific ocean perch off of the west coast of the US and does not consider data from British Columbia or Alaska. Further investigating and comparing the data and predictions from British Columbia and Alaska to determine if there are similarities with the US west coast observations would help to define the connectivity between Pacific ocean perch north and south of the US-Canada border.

2017	964	281					128529.0	5280	2407 - 8153	0.766	0.556 - 0.977	11253	3151 - 40194
2016	850	164	68	68	0.027	0.001	124995.0	4931	2231 - 7630	0.716	0.517 - 0.914	11016	3082 - 39382
2015	842	158	09	61	0.026	0.001	119187.0	4516	2021 - 7011	0.656	0.470 - 0.841	10661	2987 - 38052
2014	838	153	54	56	0.026	0.000	115075.0	4197	1857 - 6538	0.609	0.433 - 0.785	4630	1629 - 13160
2013	844	150	57	58	0.030	0.001	109254.0	4091	1797 - 6384	0.594	0.420 - 0.768	29027	13826 - 60941
2012	1,007	183	59	60	0.031	0.001	103709.0	4067	1780 - 6354	0.590	0.416 - 0.764	2101	879 - 5026
2011	1,026	180	61	62	0.032	0.001	98173.2	4032	1759 - 6305	0.585	0.412 - 0.759	15198	7730 - 29880
2010	1,173	200	66	183	0.092	0.002	86769.2	3976	1731 - 6221	0.577	0.405 - 0.749	7499	3650 - 15404
2009	1,160	189	26	194	0.097	0.002	86803.2	3885	1688 - 6083	0.564	0.395 - 0.733	4731	2047 - 10932
2008	911	150	92	135	0.072	0.002	86308.1	3745	1620 - 5870	0.544	0.380 - 0.708	116128	66566 - 202591
Quantity	OFL (mt)	ACL (mt)	Landings (mt)	Total Est. Catch (mt)	$(1-SPR)(1-SPR_{50\%})$	Exploitation rate	Age 3+ biomass (mt)	Spawning Output	95% CI	Relative Depletion	95% CI	Recruits	95% CI

summary.
results
model
Base
Table i:

Figure g: Equilibrium yield curve for the base case model. Values are based on the 2016 fishery selectivity and with steepness fixed at 0.50.