Science, Service, Stewardship

Agenda Item F.1.b Supplemental NWFSC Presentation 1 November 2017

Groundfish Science Report

Michelle McClure Northwest Fisheries Science Center

November 16, 2017

NOAA FISHERIES SERVICE

- Seabird workshop
- California fishery risk assessment
- Science updates

Seabird Cable Strike Bycatch Mitigation Workshop

- Workshop was well attended by all groups (fishers, scientists and managers)
- 5 mitigation designs were vetted, showing good potential for field testing
- Data gaps were identified for further research

Exposure

Science Updates

Data needs and spatial structure considerations in stock assessments with regional differences in recruitment and exploitation

LaTreese S. Denson¹, David B. Sampson², and Andi Stephens³

¹Department of Fisheries and Wildlife, Oregon State University ²Coastal Oregon Marine Experiment Station and Department of Fisheries and Wildlife, Oregon State University ³Fisheries Resource and Monitoring Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration

Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74(11): 1918-1929

Simulation Analysis – Accuracy and Bias of Biomass estimates when Spatial Structure Exists

- Models with mis-matched spatial assumptions resulted in substantial negative bias
- Survey data reduces estimation bias in all scenarios
- Spatial fishing patterns can have a greater effect than environmentally-driven recruitment
- Modeling distinct spatial populations when they can be distinguished generally improves estimation

Accounting for spatio-temporal variation and fisher targeting when estimating abundance from multispecies fishery data

James T. Thorson^{1,*}, Robert Fonner², Melissa A. Haltuch¹, Kotaro Ono³, Henning Winker^{4,5}

¹ Fisheries Resource Assessment and Monitoring Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, USA

² Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, USA

³ School of Aquatic and Fishery Sciences. Box 355020, University of Washington, Seattle, WA98195-5020, USA

⁴ South African National Biodiversity Institute (SANBI), Kirstenbosch Research Centre, Claremont 7735, South Africa

⁵ Centre for Statistics in Ecology, Environment and Conservation (SEEC), Department of Statistical Sciences, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa

Canadian Journal of Fisheries and Aquatic Sciences (online)

Calculate index of abundance from multispecies fishery catch rates

- Uses spatio-temporal modeling to calculate density for both target and bycatch species
- Bycatch rates are used to account for fishery targeting
- Simulation shows improved performance from spatio-temporal model
- Case-study for winter Petrale-sole fishery off Oregon-Washington (on right) shows good match to survey index

Predicting life history parameters for all fishes worldwide

James Thorson¹, Steve Munch², Jason Cope¹, and Jin Gao³

1 FRAM , NWFSC
2 SWFSC
3 JISAO, University of Washington

Ecological Applications (2017) – available online

- Predicted life history parameters for >33,000 fishes worldwide
 - Growth
 - Size
 - Mortality
 - Maturity
- Incorporates two sources of information
 - Phylogeny (related fishes are similar)
 - Life history theory (parameters are correlated)

Fig. 2 – predictive interval for bony fishes (purple), Scorpionfish (blue), rockfishfamily (light-blue), Pacific rockfishes (green), and three rockfish species (green/yellow/red), for eight life-history parameters

- Can be used for data-poor species
- E.g.,
 - Big skate to the right

Testing of Two Selective Flatfish Sorting-Grid Bycatch Reduction Devices in the U.S. West Coast Groundfish Bottom Trawl Fishery

Mark J.M. Lomeli¹, W. Waldo Wakefield², Bent Herrmann³

¹Pacific States Marine Fisheries Commission, Newport, Oregon ²Northwest Fisheries Science Center, Fishery Resource Analysis and Monitoring Division, Newport, Oregon 97365, USA ³SINTEF Fisheries and Aquaculture, Hirtshals, Denmark

Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science

Design of Flexible Sorting Grid BRDs Tested

- Size-selection characteristics of two sorting-grid BRDs
- Mean flatfish retention (weight)
 - 89.3% for BRD-1
 - 81.7% for BRD-2.
- BRD-1 (smaller mesh)
 - improved the retention of flatfishes
 - reduced catches of nontarget and constraining rockfishes, sablefish, and halibut

BRD-1: 2.5 X 10 inch grid size BRD-2: 2.5 X 12 inch grid size

Size-selection Curves – Probability of Roundfish Retention

Questions?