Agenda Item E.8 Attachment 7 September 2017

Status of Yellowtail Rockfish (*Sebastes flavidus*) Along the U.S. Pacific Coast in 2017

4	Andi Stephens ¹
5	Ian G. Taylor ²
6	¹ Northwest Fisheries Science Center, U.S. Department of Commerce, National Oceanic and
7	Atmospheric Administration, National Marine Fisheries Service, 2032 S.E. OSU Drive Newport,
8	Oregon 97365
9	² Northwest Fisheries Science Center, U.S. Department of Commerce, National Oceanic and
5	
10	Atmospheric Administration, National Marine Fisheries Service, 2725 Montlake Boulevard East,
11	Seattle, Washington 98112

3

Post-STAR DRAFT, August 11th, 2017
 Disclaimer: This information is distributed solely for the purpose of pre-dissemination peer review
 under applicable information quality guidelines. It has not been formally disseminated by NOAA
 Fisheries. It does not represent and should not be construed to represent any agency determination
 or policy.

Status of Yellowtail Rockfish (Sebastes flavidus) Along the U.S. Pacific Coast in 2017

¹⁹ Contents

20	Ex	cecuti	ve Sur	m	m	a	сy																													1
21		Stock	. 	•		•		•			•			•									•	•						•		•	•			1
22		Catch	nes	•		•		•			•			•	•								•	•						•		•	•			3
23		Data	and As	ss	\mathbf{es}	sn	ıer	nt	•		•												•	•						•		•	•			7
24		Stock	Bioma	as	s .	•																	•							•	•	•	•			7
25		Recru	uitment	t.		•		•			•			•									•	•						•		•	•			11
26		Explo	oitation	n s	ste	atι	ıs		•																					•	•		•			13
27		Ecosy	vstem C	Co	ons	sic	ler	ati	on	\mathbf{S}														•						•		•	•			16
28		Refere	ence Po	oi	nt	\mathbf{s}																	•							•	•	•	•			16
29		Mana	igement	nt	Pe	erf	or	na	nc	е														•						•		•	•			17
30		Unres	solved I	Pı	rol	ble	em	s A	and	d I	Mε	ijo	or	Ur	ice	erta	air	nti	es			•		•						•		•	•			19
31		Decisi	ion Tab	bl	\mathbf{es}																		•	•						•	•	•	•			20
32		Resea	arch An	nd	ΙI	Da	ta	Ne	ed	s														•						•						25
	1	Intro	ductic	~	•																															97
33	1		oductio																																	27
33 34	1	1.1	Basic I	In	foi																															27
	1	1.1		In	foi																															
34	1	1.1 1.2	Basic I	In: ist	foi ;or	y		•	•						•					•		•	•			•		•		•			• •		•	27
34 35	1	1.1 1.2 Ecosy	Basic I Life His	In: ist Cc	foi cor	y sic	ler	ati	on	s	•	 		•		 		•	•					•		•			 			•	• •			27 28
34 35 36	1	1.1 1 1.2 1 Ecosy 1.3 1	Basic I Life His vstem C	In: ist Cc y i	for ons	y sic Id	ler M	ati	on age	s em	len	 .t]	 Hi	sto	ory	· ·					 				 	•			 			•	•••	•		27 28 28
34 35 36 37	1	1.1 1 1.2 1 Ecosy 1.3 1.4 2	Basic I Life His vstem C Fishery	In: ist Co y : m	for cor an an	y sic d t	ler M His	ati ana	on age ry	· s em	len	 	 Hi	sto	ory	· ·					 			•	 			•	 			•	- ·	• •		27 28 28 29
34 35 36 37 38 39		1.1 1 1.2 1 Ecosy 1.3 1.4 1 1.5 1	Basic I Life His vstem C Fishery Assessn Fisherie	In: ist Co y : m	for cor an an	y sic d t	ler M His	ati ana	on age ry	· s em	len	 	 Hi	sto	ory	· ·					 			•	 			•	 			•	- ·	• •		 27 28 28 29 30 30
3435363738	1	1.1 1 1.2 1 Ecosy 1.3 1 1.4 1 1.5 1	Basic I Life His vstem C Fishery Assessn Fisherie	In ist Co m ies	for ons an en 5 c	y sic d t	M His Ca	ati ana sto ana	age ry ida	s a, <i>1</i>	.en Al:	 asl	Hi	sto , a	ory nd	 !/o	• • •		· · ·	· ·	· · ·	· ·	· · · ·	•	· ·	· ·		•	· ·	· · ·			• •	• •	•	 27 28 29 30 30 32
34 35 36 37 38 39		1.1 1 1.2 1 Ecosy 1.3 1 1.4 1 1.5 1	Basic I Life His vstem C Fishery Assessn Fisherie	In ist Co m ies	for ons an en 5 c	y sic d t	M His Ca	ati ana sto ana	age ry ida	s a, <i>1</i>	.en Al:	 asl	Hi	sto , a	ory nd	 !/o	• • •		· · ·	· ·	· · ·	· ·	· · · ·	•	· ·	· ·		•	· ·	· · ·			• •	• •	•	 27 28 28 29 30 30
 34 35 36 37 38 39 40 		1.1 1 1.2 1 Ecosy 1.3 1.4 1 1.5 1 Data 2.1 1	Basic I Life His vstem C Fishery Assess Fisheric Biologic	In: ist Co y : ies ica	for ons an en s c	y sic d t l off Pa	i M His Cara	ati ana sto ana	age ry ida	· s · ı, ·	Ala	 asl	 Hi ka	, a	ory nd	 ./o	r		· · · ·	· · · icc	· · ·	· · · · ·	· · · ·	• • •	· · ·	· · · · ·	· · ·	· · · ·	• • • •	• •	· · ·	· · ·	· · ·	• •		 27 28 29 30 30 32
 34 35 36 37 38 39 40 41 		1.1 1 1.2 1 Ecosy 1.3 1.3 1 1.4 2 1.5 1 Data 2.1 1	Basic I Life His vstem C Fishery Assess Fisheric Biologic 2.1.1	In: ist Cc y ies ica V	for ons an en 3 c al Ve	y sic d t ff Pa	· Ier M His Cara ara	ana sto ana	age ry .da ete ng	s em a, . rs	Ala	 asl	 Hi 	sto , a	ory nd	 7 . 			· · · ·	· · · icc	· · · · · · · · · · · · · · · · · · ·	· · · · ·	· · · · ·	· · · · · ·	· · ·	· · ·	· · ·	· · · · · ·	· · ·	· · ·	· · ·	· · ·	· · ·	• •		 27 28 29 30 30 32 32

45		2.1.4	Aging Precision And Bias	33
46	2.2	Biolog	ical Data and Indices	34
47	2.3	Northe	ern Model Data	34
48		2.3.1	Commercial Fishery Landings	34
49		2.3.2	Sport Fishery Removals	35
50		2.3.3	Estimated Discards	35
51		2.3.4	Abundance Indices	36
52		2.3.5	Fishery-Independent Data	36
53		2.3.6	Biological Samples	38
54	2.4	Southe	ern Model Data	39
55		2.4.1	Commercial Fishery Landings	39
56		2.4.2	Sport Fishery Removals	39
57		2.4.3	Estimated Discards	40
58		2.4.4	Abundance Indices	40
59		2.4.5	Fishery-Independent Data	41
60		2.4.6	Biological Samples	42
61		2.4.7	Environmental Or Ecosystem Data Included In The Assessment	44
_				
62 3				
		essmen		45
63	A 550 3.1		nt y Of Modeling Approaches Used For This Stock	45 45
63 64				
		Histor 3.1.1	y Of Modeling Approaches Used For This Stock	45
64	3.1	History 3.1.1 Model	y Of Modeling Approaches Used For This Stock	45 45
64 65	3.1	History 3.1.1 Model	y Of Modeling Approaches Used For This Stock	45 45 46
64 65 66	3.1	History 3.1.1 Model 3.2.1	y Of Modeling Approaches Used For This Stock	45 45 46 46
64 65 66 67	3.1	History 3.1.1 Model 3.2.1 3.2.2	y Of Modeling Approaches Used For This Stock	45 45 46 46 47
64 65 66 67 68	3.1	History 3.1.1 Model 3.2.1 3.2.2 3.2.3	y Of Modeling Approaches Used For This Stock	45 45 46 46 47 49
64 65 66 67 68 69	3.1	History 3.1.1 Model 3.2.1 3.2.2 3.2.3 3.2.4	y Of Modeling Approaches Used For This Stock	45 46 46 47 49 49
64 65 66 67 68 69 70	3.1	History 3.1.1 Model 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	y Of Modeling Approaches Used For This Stock Previous Assessment Recommendations Description Transition To The Current Stock Assessment Definition of Fleets and Areas Modeling Software Data Weighting Priors	45 46 46 47 49 49 49
64 65 66 67 68 69 70 71	3.1	History 3.1.1 Model 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7	y Of Modeling Approaches Used For This Stock	45 46 46 47 49 49 49 50
 64 65 66 67 68 69 70 71 72 	3.1	History 3.1.1 Model 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7	y Of Modeling Approaches Used For This Stock	45 46 46 47 49 49 49 50 50

76			3.3.3	Convergence	53
77		3.4	Respo	nse To The Current STAR Panel Requests	54
78		3.5	Life H	istory Results for both models	54
79		3.6	North	ern Model Base Case Results	54
80			3.6.1	Selectivities, Indices and Discards	55
81			3.6.2	Lengths	55
82			3.6.3	Ages	56
83			3.6.4	Northern Model Parameters	57
84			3.6.5	Northern Model Uncertainty and Sensitivity Analyses	57
85			3.6.6	Northern Model Likelihood Profiles	58
86			3.6.7	Northern Model Retrospective Analysis	59
87			3.6.8	Northern Model Reference Points	59
88		3.7	Final	Southern Model Results	60
89			3.7.1	Final Southern Model Selectivities, Indices and Discards	60
90			3.7.2	Final Southern Model Lengths	61
91			3.7.3	Final Southern Model Ages	62
92			3.7.4	Final Southern Model Parameters	62
93			3.7.5	Southern Model Uncertainty and Sensitivity Analyses	63
94			3.7.6	Final Southern Model Likelihood Profiles	64
95			3.7.7	Final Southern Model Retrospective Analysis	65
96			3.7.8	Final Southern Model Reference Points	65
97	4	Har	vest P	rojections and Decision Tables	65
98	5	Reg	ional I	Management Considerations	65
99	6	Res	earch a	and Data Needs	66
100	7	Ack	nowlee	dgments	67
101	8	Tab	les		68
102		8.1	North	ern Model Tables	68
103		8.2	South	ern Model Tables	89

104	9	Figu	ures		107
105		9.1	Life hi	story (maturity, fecundity, and growth) for both models \ldots .	110
106		9.2	Data a	and model fits for the Northern model $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	113
107			9.2.1	Selectivity, retention, and discards for Northern model $\ . \ . \ . \ .$	116
108			9.2.2	At-Sea Hake Bycatch Index	119
109			9.2.3	Fits to indices of abundance for Northern model	130
110			9.2.4	Length compositions for Northern model	131
111			9.2.5	Fits to age compositions for Northern model	153
112			9.2.6	Fits to conditional-age-at-length compositions for Northern model $\ . \ .$	162
113		9.3	Model	results for Northern model \hdots	170
114			9.3.1	Base model results for Northern model	170
115			9.3.2	Sensitivity analyses for Northern model	177
116			9.3.3	Likelihood profiles for Northern model	179
117			9.3.4	Retrospective analysis for Northern model \hdots	183
118			9.3.5	Forecasts for Northern model	184
119		9.4	Data a	and model fits for Southern model	185
120			9.4.1	Selectivity, retention, and discards for Southern model $\ . \ . \ . \ .$	187
121			9.4.2	Fits to indices of abundance for Southern model	189
122			9.4.3	Length compositions for Southern model \hdots	190
123			9.4.4	Age compositions for Southern model	205
124			9.4.5	Fits to conditional-age-at-length compositions for Southern model $\ . \ .$	212
125		9.5	Model	results for Southern model	224
126			9.5.1	Base model results for Southern model	224
127			9.5.2	Sensitivity analyses for Southern model	230
128			9.5.3	Likelihood profiles for Southern model $\ . \ . \ . \ . \ . \ . \ . \ .$	237
129			9.5.4	Retrospective analysis for Southern model \hdots	241
130			9.5.5	Forecasts for Southern model	241

131 10 References

¹³² Appendix A. Regulations history

Appendix B. Fishery-Dependent Indices withdrawn from the Northern Model

¹³⁵ Appendix C. Pre-recuit Index

¹³⁶ Appendix D. Responses to requests of the STAR Panel

137	10.1 Round 1 of Requests (Monday, July 10th)
138	10.2 Round 2 of requests (Wednesday, July 12th) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$

¹³⁹ Executive Summary

140 \mathbf{Stock}

¹⁴¹ This assessment reports the status of the Yellowtail Rockfish (*Sebastes flavidus*) resource in ¹⁴² U.S. waters off the coast of the California, Oregon, and Washington using data through 2016.

The Pacific Fishery Management Council (PFMC) manages the U.S. fishery as two stocks separated at Cape Mendocino, California (40° 10'N). The northern stock has long been assessed on its own; the southern stock is managed as part of the "Minor Shelf Rockfish" complex. This assessment analyzed each stock independently, with the southern stock extending southward to the U.S./Mexico border and the northern stock extending northward to the U.S./Canada border (Figure a).

The Southern model was not robust enough for management purposes, mainly due to lack of data. Therefore although the data and sensitivities investigated for the model are reported in this document, the results of any of those sensitivities should be interpreted with the recognition that the model is not considered suitable for management. We therefore report estimates and projections only for the Northern model.

The most recent fully integrated assessment (Wallace and Lai 2005), following the pattern of 154 prior assessments, included only the Northern stock which it divided into three assessment 155 areas with divisions at Cape Elizabeth (47° 20'N) and Cape Falcon (45° 46'N). The northern 156 stock was assessed most recently using a data-moderate assessment method in 2013 (Cope et 157 al. 2013). The southern stock was also analyzed using the data-moderate method but that 158 model was never reviewed or put forward for management. The contribution of the southern 159 stock to the overfishing limit (OFL) for the Southern Shelf Complex was determined using 160 Depletion-Based Stock Reduction Analysis (Dick and MacCall 2011). 161

Since the 2005 assessment, reconstruction of historical catch by Washington and Oregon 162 makes any border but the state line (roughly 46° N) incompatible with the data from those 163 states. Additionally, an unknown amount of the groundfish catch landed in northern Oregon 164 is believed to have been caught in Washington waters. This is not an issue that can be 165 resolved at present, and we have elected to address the stock in two areas consistent with the 166 management border at Cape Mendocino. This is consistent, as well, with a recent genetic 167 analysis (Hess et al. 2011) that found distinct stocks north and south of Cape Mendocino 168 but did not find stock differences within the northern area. 169

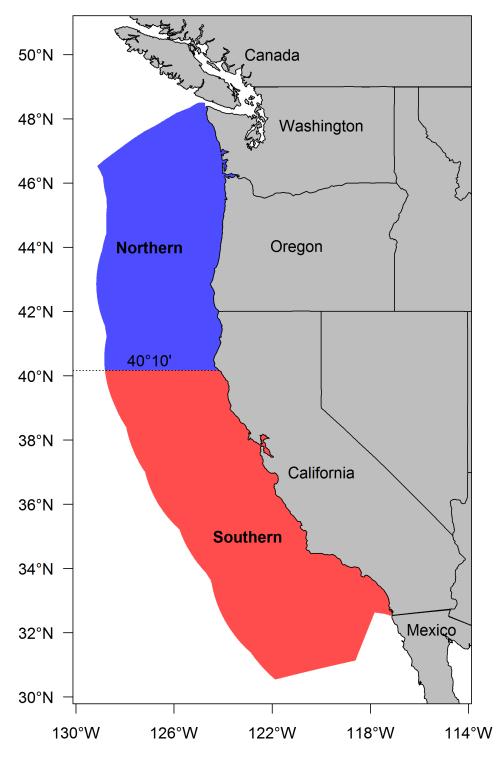


Figure a: Map depicting the boundaries for the base-case model.

170 Catches

Catches from the Northern stock (Figure b) were divided into four categories: commercial 171 catch, bycatch in the at-sea hake fishery, recreational catch in Oregon and California (north 172 of 40° 10'N), and recreational catch in Washington. The first three of these fleets were 173 entered in metric tons, but the recreational catch from Washington was entered in the model 174 as numbers of fish with the average weight calculated internally in the model from the 175 weight-length relationship and the estimated selectivity for this fleet (which is informed by 176 the length-compositions). Catches have been increasing over the past 10 years (Table a) but 177 remain well below the peak catch due to management measures, included lower catch limits 178 and closed areas. 179

Catches from the Southern stock (Figure c) were divided into two categories: commercial and recreational catch, both of which were entered as metric tons. Catches over the past 10 years have remained far below the peak levels, with the majority of recent catch coming from the Recreational fishery (Table b)

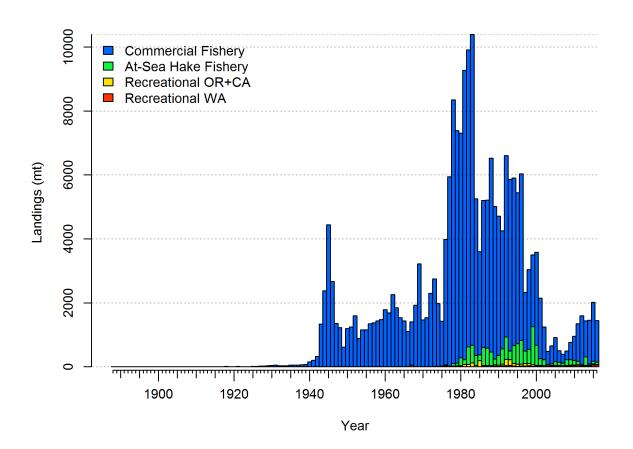


Figure b: Estimated catch history of Yellowtail Rockfish in the Northern model. Recreational catches in Washington are model estimates of total weight converted from input catch in numbers using model estimates of growth and selectivity.

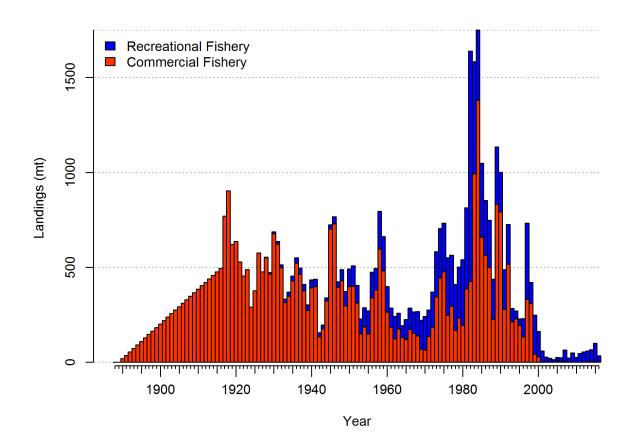


Figure c: Estimated catch history of Yellowtail Rockfish in the Southern model.

Year	Commercial	At-sea hake	Recreational	Recreational		
	(mt)	bycatch (mt)	OR+CA (mt)	WA $(1000s)$		
2006	358	109	23	14		
2007	276	79	18	15		
2008	276	175	24	18		
2009	539	176	17	28		
2010	754	150	12	38		
2011	1181	101	18	43		
2012	1509	43	20	19		
2013	1117	269	20	24		
2014	1366	42	16	33		
2015	1841	86	29	56		
2016	1308	62	14	60		

Table a: Recent Yellowtail Rockfish catch by fleet for the Northern model (north of $40^{\circ} 10$ 'N).

Table b: Recent Yellowtail Rockfish catch by fleet for the Southern model (south of $40^{\circ} 10$ 'N).

Year	Recreational (mt)	Commercial (mt)
2006	19	5
2007	60	4
2008	20	2
2009	48	1
2010	24	1
2011	45	1
2012	53	1
2013	56	4
2014	60	5
2015	96	4
2016	32	2

¹⁸⁴ Data and Assessment

Yellowtail Rockfish north of Cape Mendocino (40° 10'N) was most recently assessed as part of a 2013 data-moderate stock assessment (Cope et al. 2013) that did not include any length or age data. The northern stock was previously assessed in 2000 (Tagart et al. 2000) with that assessment updated in 2003 and 2005 (Lai et al. 2003, Wallace and Lai (2005)). The stock south of 40° 10'N has never been fully assessed due to the lack of data for this area.

Northern model landings are from one recreational and two commercial fisheries: the commercial trawl fishery and the bycatch of Yellowtail Rockfish in the Hake fishery. The Triennial
Trawl Survey and the NWFSC Shelf-Slope Survey provide fishery-independent information. A
research study and the West Coast Groundfish Observing Program provide data on discards.
Length and age samples are available from 1972 to the present (308,133 and 16,781 samples,
respectively).

Southern model landings are treated as one recreational and one commercial fishery. Two recreational surveys have been conducted onboard private fishing vessels, and a Hook and Line Survey conducted by the NWFSC provides fishery-independent survey data, although this survey is conducted mainly outside the range of the stock, and has only been sampling since 2004. No discard data are available for the Southern model. Biological sampling since 1980 provides 179,308 length samples, however age sampling was sparse (6,352 samples) and mainly covers the period 1980-1999.

Lack of data for the Southern model contributed heavily to its failure to meet standards for use in management.

This assessment uses Stock Synthesis version 3.30. The Northern model begins in 1889, as 205 does the Southern model. In both cases those starting years were chosen based on the first 206 year of the available catch data and the start of the estimated recruitment deviations was at 207 a later point, so both models were assumed to start at an unfished equilibrium. Steepness 208 was fixed in both models at 0.718. Natural mortality was estimated in the Northern model 209 for females with a male offset, and those estimated values from the Northern model were 210 used as fixed values in the Southern model. Growth parameters, selectivities, equilibrium 211 recruitment and recruitment deviations were estimated in both models. 212

213 Stock Biomass

The spawning output for the Northern model was estimated to have fallen below 40% of unfished equilibrium in the early 1980s, to a minimum of 29.3% in 1984 but has rebounded since to 75.2% in 2017 ($^{\circ}95\%$ asymptotic interval: \pm 61.2%-89.2%) (Figures d and e, Table c).

The spawning output and depletion from the final Southern model are shown in the same set of figures for comparison, although this model is not being put forward for management, however most variations of the Southern model explored during development and review
showed the stock to be healthy and well above management targets.

Year	Spawning Output	$\widetilde{}$ 95% confidence	Estimated	$\sim95\%$ confidence
	(trillion eggs)	interval	depletion	interval
2008	12.128	(7.86-16.39)	0.809	(0.604 - 1.013)
2009	12.569	(8.27-16.87)	0.838	(0.637 - 1.039)
2010	12.827	(8.53-17.12)	0.855	(0.66 - 1.051)
2011	12.846	(8.6-17.09)	0.857	(0.668 - 1.045)
2012	12.740	(8.6-16.88)	0.850	(0.67 - 1.029)
2013	12.472	(8.46 - 16.49)	0.832	(0.663 - 1.001)
2014	12.157	(8.28-16.04)	0.811	(0.651 - 0.97)
2015	11.841	(8.09-15.6)	0.790	(0.639 - 0.94)
2016	11.482	(7.83 - 15.14)	0.766	(0.621 - 0.91)
2017	11.278	(7.69-14.86)	0.752	(0.612 - 0.892)

Table c: Recent trend in beginning of the year spawning output and depletion for the Northern model for Yellowtail Rockfish.

Table d: Recent trend in beginning of the year spawning output and depletion for the Southern model for Yellowtail Rockfish.

Year	Spawning Output	$\widetilde{}$ 95% confidence	Estimated	$\widetilde{}$ 95% confidence
	(trillion eggs)	interval	depletion	interval
2008	2.801	(0-6.43)	0.636	(0.482 - 0.79)
2009	2.805	(0-6.41)	0.637	(0.492 - 0.783)
2010	2.841	(0-6.46)	0.645	(0.506 - 0.784)
2011	2.915	(0-6.6)	0.662	(0.527 - 0.797)
2012	3.019	(0-6.8)	0.686	(0.553 - 0.819)
2013	3.158	(0-7.09)	0.717	(0.583 - 0.852)
2014	3.316	(0-7.41)	0.753	(0.615 - 0.891)
2015	3.513	(0-7.83)	0.798	(0.653 - 0.943)
2016	3.767	(0-8.37)	0.856	(0.699 - 1.013)
2017	4.099	(0-9.08)	0.931	(0.756 - 1.106)

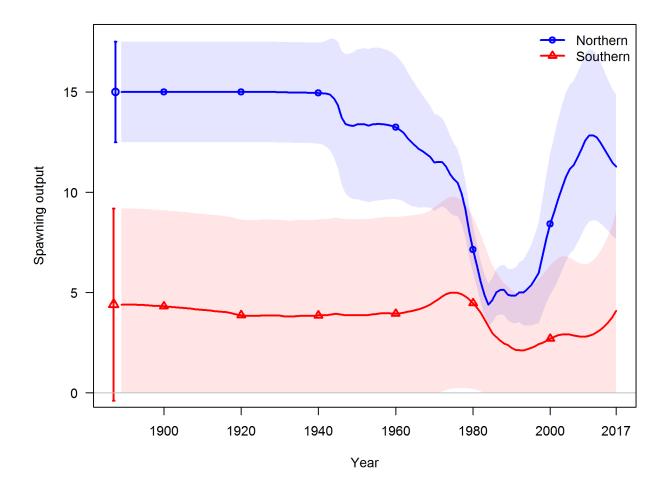


Figure d: Time series of spawning output trajectory (line: median; shaded areas: approximate 95% credibility intervals) for the base case Northern model and final Southern model.

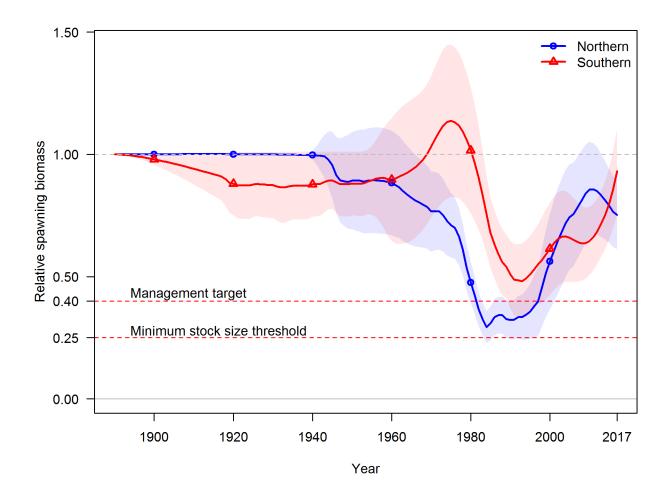


Figure e: Estimated relative depletion with approximate 95% asymptotic confidance intervals (dashed lines) for the base case Northern model and final Southern model.

222 Recruitment

The Northern model recruitments have ranged from roughly 21 million to 72 million since 224 2008, although with large uncertainty. Recruitments have shown remarkable consistency

²²⁵ since 2013.

Southern model recruitments have ranged from 21 million to 103 million. In 2008 and 2010 it estimates especially large recruitments and extra large recruitment deviations.

Year Estimated ~ 95% con Recruitment (millions) inter	nfidence
Decruitment (milliong) inter	
Recruitment (millions) inter	val
2008 66.69 (37.78 - 1	117.74)
2009 20.82 (9.86 - 4	43.95)
2010 72.38 (38.52 -	- 136)
2011 29.34 (12.68 -	67.92)
2012 38.43 (15.07 -	98.01)
2013 53.49 (19.02 - 1	150.45)
2014 50.06 (17.82 - 1	140.61)
2015 49.53 (18 - 13	36.34)
2016 49.20 (17.89 - 1	135.27)
2017 49.09 (17.86 - 1	134.94)

Table e: Recent recruitment for the Northern model.

Table f: Recent recruitment for the Southern model.

Year	Estimated	~ 95% confidence
	Recruitment (millions)	interval
2008	103.48	(31.51 - 339.77)
2009	58.70	(16.09 - 214.16)
2010	87.54	(25.05 - 305.87)
2011	51.00	(13.23 - 196.67)
2012	25.48	(6.62 - 97.99)
2013	42.54	(12.66 - 142.92)
2014	33.50	(9.71 - 115.53)
2015	30.74	(8.58 - 110.13)
2016	20.87	(4.91 - 88.65)
2017	25.39	(5.24 - 123.02)

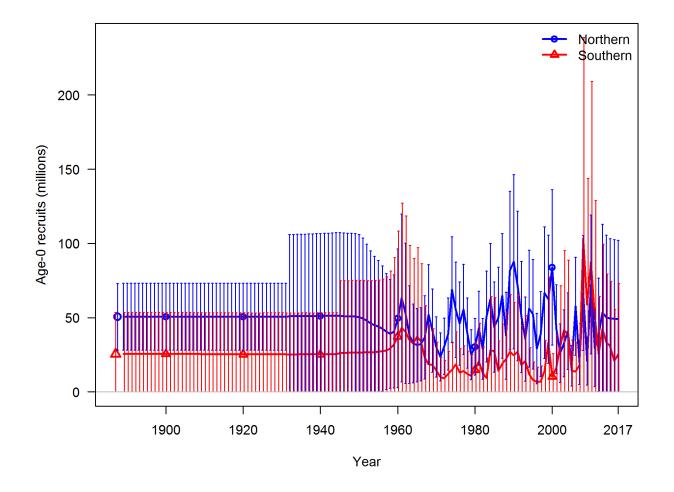


Figure f: Time series of estimated Yellowtail Rockfish recruitments for the base-case Northern model and final Southern Model with 95% confidence or credibility intervals.

228 Exploitation status

The Northern model is estimated to have experienced overfishing throughout the 1980s and 1990s relative to the current SPR-based harvest limits (Figure g). However, in recent years, the fishing intensity has been well within the management limits and exploitation rates (catch divided by age 4+ biomass) are estimated to have been less than 2% per year (Table g).

A summary of Yellowtail Rockfish exploitation histories for the Northern base model is provided as Figure h.

Table g: Recent trend in spawning potential ratio and exploitation for Yellowtail Rockfish in the Northern model. Fishing intensity is (1-SPR) divided by 50% (the SPR target) and exploitation is catch divided by age 4+ biomass.

Year	Fishing	$\widetilde{}$ 95% confidence	Exploitation	~ 95% confidence
	intensity	interval	rate	interval
2007	0.172	(0.04-0.3)	0.006	(0.001-0.011)
2008	0.108	(0.06-0.16)	0.004	(0.002 - 0.005)
2009	0.209	(0.11 - 0.31)	0.008	(0.004 - 0.012)
2010	0.292	(0.12 - 0.47)	0.012	(0.004 - 0.02)
2011	0.250	(0.16 - 0.35)	0.010	(0.007 - 0.014)
2012	0.293	(0.19-0.4)	0.012	(0.008-0.017)
2013	0.277	(0.18 - 0.38)	0.011	(0.007 - 0.015)
2014	0.284	(0.18 - 0.39)	0.011	(0.007 - 0.015)
2015	0.383	(0.25 - 0.51)	0.016	(0.01-0.022)
2016	0.294	(0.19-0.4)	0.012	(0.008-0.016)

Table h: Recent trend in spawning potential ratio and exploitation for Yellowtail Rockfish in the Southern model. Fishing intensity is (1-SPR) divided by 50% (the SPR target) and exploitation is catch divided by age 4+ biomass.

Year	Fishing	~ 95% confidence	Exploitation	~ 95% confidence
	intensity	interval	rate	interval
2007	0.038	(0-0.08)	0.001	(0-0.003)
2008	0.013	(0-0.03)	0.000	(0-0.001)
2009	0.027	(0-0.06)	0.001	(0-0.002)
2010	0.013	(0-0.03)	0.000	(0-0.001)
2011	0.021	(0-0.05)	0.001	(0-0.002)
2012	0.022	(0-0.05)	0.001	(0-0.002)
2013	0.022	(0-0.05)	0.001	(0-0.002)
2014	0.023	(0-0.05)	0.001	(0-0.002)
2015	0.032	(0-0.07)	0.001	(0-0.002)
2016	0.011	(0-0.02)	0.000	(0-0.001)

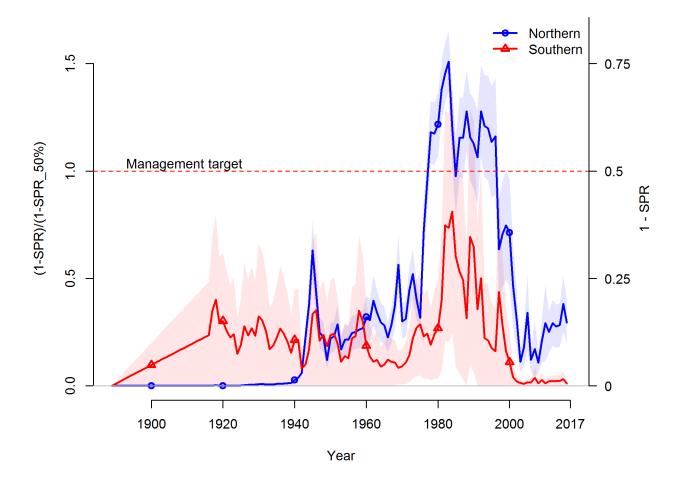


Figure g: Estimated spawning potential ratio (SPR) for the base-case Northern model and final Southern model. One minus SPR is plotted so that higher exploitation rates occur on the upper portion of the y-axis. The management target is plotted as a red horizontal line and values above this reflect harvests in excess of the overfishing proxy based on the SPR_{50%} harvest rate. The last year in the time series is 2016.

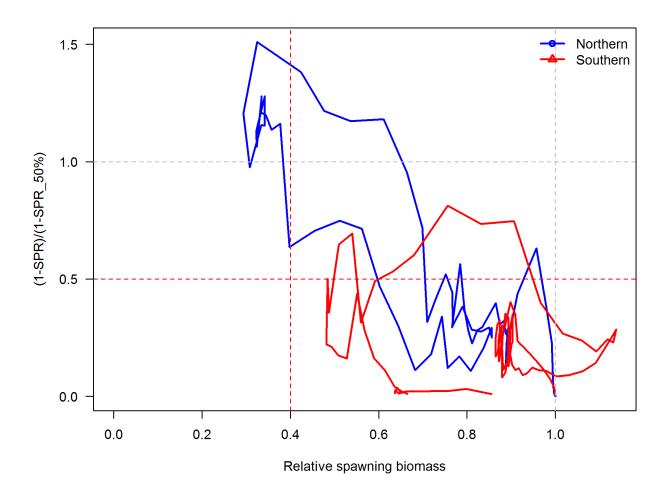


Figure h: Phase plot of estimated relative (1-SPR) vs. relative spawning biomass for the base case Northern model and final Southern model. The relative (1-SPR) is (1-SPR) divided by 50% (the SPR target). Relative depletion is the annual spawning biomass divided by the unfished spawning biomass.

235 Ecosystem Considerations

Rockfish in general are sensitive to the strength and timing of the upwelling cycle in the
Eastern Pacific, which affects where pelagic juveniles settle, and impacts the availability of
the zooplankton which the young require.

Yellowtail Rockfish feed mainly on pelagic animals, but are opportunistic, occasionally
eating benthic animals as well. Large juveniles and adults eat fish (small Pacific whiting,
Pacific herring, smelt, anchovies, lanternfishes, and others), along with squid, krill, and other
planktonic organisms. They are prey for Chinook Salmon, Lingcod, Cormorants, Pigeon
Guillemots and Rhinoceros Auklets. (Love 2011)

244 Reference Points

Yellowtail Rockfish are managed relative to biomass reference points at $B_{40\%}$ (the B_{MSY} proxy) and $B_{25\%}$ (the minimum stock-size threshold). Harvest rates are managed relative to an F_{MSY} proxy SPR = 50% which corresponds to a Relative Fishing Intensity, $(1-SPR)/(1-SPR_{50\%})$, of 100%. This assessment estimates the Northern stock to be above the $B_{40\%}$ threshold with Relative Fishing Intensity below 100% (SPR > 50% which means the Spawning Potential is greater than 50% of the unfished Spawning Potential).

The estimated relative depletion level for the Northern model in 2017 is 75.2% (~95% asymptotic interval: \pm 61.2%-89.2%, corresponding to an unfished spawning output of 11.3 trillion eggs (~95% asymptotic interval: 7.69-14.86 trillion eggs) of spawning output in the base model (Table i). Unfished age 4+ biomass was estimated to be 161.6 mt in the base case model. The target spawning output based on the biomass target ($SB_{40\%}$) is 6 trillion eggs, which gives a catch of 5434.5 mt. Equilibrium yield at the proxy F_{MSY} harvest rate corresponding to $SPR_{50\%}$ is 5115 mt.

²⁵⁸ Estimated equilibrium yield curves for the base-case Northern model is shown in Figure i.

Quantity	Estimate	95% Confidence
		Interval
Unfished spawning output (trillion eggs)	15	(12.5-17.5)
Unfished age $4+$ biomass (1000 mt)	161.6	(126.4-196.9)
Unfished recruitment (R0, millions)	50.6	(28.1-73.1)
Spawning output(2016 trillion eggs)	11.5	(7.8-15.1)
Relative Spawning Output (depletion)2016)	0.7656	(0.6212 - 0.9101)
Reference points based on $SB_{40\%}$		
Proxy spawning output $(B_{40\%})$	6	(5-7)
SPR resulting in $B_{40\%}$ (SPR _{B40\%})	0.4589	(0.4589 - 0.4589)
Exploitation rate resulting in $B_{40\%}$	0.0575	(0.0552 - 0.0598)
Yield with $SPR_{B40\%}$ at $B_{40\%}$ (mt)	5434.5	(4035.6-6833.3)
Reference points based on SPR proxy for MSY		
Spawning output	6.7	(5.6-7.8)
SPR_{proxy}	0.5	
Exploitation rate corresponding to SPR_{proxy}	0.051	(0.049 - 0.0531)
Yield with SPR_{proxy} at SB_{SPR} (mt)	5115	(3806.5 - 6423.5)
Reference points based on estimated MSY values		
Spawning output at MSY (SB_{MSY})	3.4	(2.8-4)
SPR_{MSY}	0.3043	(0.2984 - 0.3103)
Exploitation rate at MSY	0.0888	(0.0846 - 0.093)
MSY (mt)	6123.8	(4501.9-7745.6)

Table i: Summary of reference points and management quantities for the base case Northern model.

²⁵⁹ Management Performance

Total catch (including landings and discards) from the Northern stock has remained well below the management limits in recent years (Table j) and harvest specifications for 2017 and 2018 are set at values similar to the previous years.

Table j: Northern model recent total catch relative to the management guidelines. Estimated total catch includes estimated discarded biomass. Note: the OFL was termed the ABC prior to implementation of FMP Amendment 23 in 2011. The ABC was redefined to reflect the uncertainty in estimating the OFL under Amendment 23. Likewise, the ACL was termed the OY prior to 2011.

Year	OFL (mt;	ABC (mt)	ACL (mt; OY	Estimated
	ABC prior to		prior to 2011)	total catch
	2011)			(mt)
2007	4585	-	4585	856
2008	4510	-	4510	520
2009	4562	-	4562	1100
2010	4562	-	4562	1624
2011	4566	4364	4364	1350
2012	4573	4371	4371	1594
2013	4579	4378	4378	1433
2014	4584	4382	4382	1461
2015	7218	6590	6590	2017
2016	6949	6344	6344	1449
2017	6786	6196	6196	-
2018	6574	6002	6002	-

Table k: Southern model recent total catch relative to harvest specifications. The southern stock of yellowtail rockfish has been managed in the Southern Shelf Rockfish complex during this period. The values in this table represent the yellowtail harvest specification contributions to the complex and, as such, are not the reference limits used in managing fisheries catches. There were no harvest specifications for this stock prior to 2011.

Year	OFL (mt;	ABC (mt)	ACL (mt; OY	Estimated total catch
	ABC prior to 2011)		prior to 2011)	(mt)
2011	1248.90	1042.20	1042.20	45.9
2012	1248.90	1042.20	1042.20	53.7
2013	1064.40	887.70	887.70	59.9
2014	1064.40	887.70	887.70	65.4
2015	1064.40	887.70	887.70	99.3
2016	1064.40	887.70	887.70	33.6
2017	1064.40	887.70	887.70	-
2018	1064.40	887.70	887.70	-

²⁶³ Unresolved Problems And Major Uncertainties

At the STAR meeting the Northern model underwent a major change in that the two 264 fishery-dependent indices that had been included in the pre-STAR model were withdrawn. 265 Representatives of the Groundfish Advisory Panel and Washington Department of Fish and 266 Wildlife identified mistaken assumptions about the datasets used in developing these indices. 267 In the case of the commercial logbook index, this had to do with underestimating the impact 268 of changes in reporting the species and market categories which was occuring differently 269 among the three reporting states. The Hake by catch index was developed with inaccurate 270 information about the Hake fleet of the time, which was much more heterogeneous than 271 had been believed. These indices were removed because the biases introduced could not be 272 addressed within the time-frame of the review; however they were influential in the model, 273 and both merit further investigation. 274

In the past, the Northern stock has been modeled as three stocks assumed to have a latitudinal cline in growth. This was not addressed in the present model, in part because the Hess study (Hess et al. 2011) suggests there is no genetic basis for such a cline, and because of objections raised by Washington and Oregon over boundary assumptions made previously. Future research should examine the assumption that growth is invariant along the coast, and evaluate whether the Northern model is sensitive to alternate assumptions.

Another structural decision in the Northern model was in treating female natural mortality 281 as age-independent. This conflicts with prior assessments of Yellowtail Rockfish and with 282 recent assessments of other rockfish stocks. Sex ratios in the data change definitively with 283 age, and old females are conspicuous in their absence. Assessments have addressed this by 284 increasing female mortality after a certain age. One problem with this approach is in defining 285 the age at which such a change occurs. Another is that this assumes that the disappearance 286 of older females is not due to their retirement to habitat unavailable to the fishery. In any 287 case, this was not investigated during the present assessment, and may have provided further 288 insight had it been. 289

The Southern model unquestionably had insufficient data to support an age-structured model. 290 The ages were sparse and the period since 1999 was barely represented at all. The only 291 fishery-independent survey (the Hook and Line Survey) is conducted mostly outside of the 292 range of the species, and there is no discard data available for the Southern model. Attempting 293 this separate assessment of the Southern stock is useful in defining what constitutes sufficient 294 data, but also in that discussions engendered by the lack of data has identified an otolith 295 collection at the SWFSC that could be investigated, as well as otoliths collected in the Hook 296 and Line Survey that have not been aged. 297

A final problem common to all stocks caught in the midwater is the lack of a targeting survey. The STAR panel report accompanying this document suggests several avenues to approach this problem. Because depleted midwater stocks have impeded fishing for many species, the lack of such a survey is an ongoing financial burden on industry that deserves further attention.

303 Decision Tables

³⁰⁴ Potential OFL projections for the Northern model are shown in Table 1.

A decision table for the Northern model is provided in Table m. The initial catch streams chosen during the STAR panel with input from the GMT and GAP representatives are as follows.

Base catch stream. Annual catches for each fleet are calculated within Stock Synthesis
 for from the Base Model by applying the default SPR-based control rule with a 0.956
 adjustment from OFL to ACL associated with a P-star of 0.45 and the default 0.36
 Sigma for Category-1 stocks

 Historic target opportunity catch stream example. This is based on a calculation by the GMT of the based on an average attainment during a period when there was a mid-water fishery targing Yellowtail. It results in an total annual catch of approximately 4000 mt.

• Recent 5-year average. It results in an total annual catch of approximately 2000 mt.

³¹⁷ These are shown in the table in order of increasing average catch.

Allocation of catch among fleets for the years 2019 and beyond was based on an average ratio among fleets over the last 5 years as follows: Commercial, 89.6%; At-sea Hake Bycatch, 6.6%; Recreational Oregon and California, 1.2%; and Recreational Washington, 2.6%. For the years 2017 and 2018, the fleet-specific catches were based on the following calculations.

 Recreational catch of 620 mt in 2017 and 597 mt in 2018 based on the set-asides in the harvest specifications. These were divided among the two recreational fleets based based on the recent 5-year average split among them estimated as 35% to the Oregon and Northern California and 65% to Washington.

• At-sea Hake bycatch of 300 mt based on current set-aside.

• Commercial catch of 5276 and 5105 mt in 2017 and 2018 based on the difference between the ACLs for these two years (6196 and 6002 mt, respectively) and the values for the recreational and At-sea Hake fisheries noted above.

In all these calculations, the catch of the Washington Recreational fleet relative to the other fleets is based on the estimated catch in biomass, but the forecast catches for this fleet are input in numbers of fish to match the inputs of the historic catch in the model. The conversion of biomass to numbers in the forecast is based on an average weight of 1.056 kg calculated from the period since 2003 after the estimated change in selectivity of both recreational fleets. Minor discrepencies between this average and the average weight estimated within the model within the forecast period are the source of the small difference between the catch values shown in the decision table and the 2000 and 4000 mt values for two of the catch streams
as well as the difference between the 5979 mt catch for 2018 in these forecasts and the 6002
ACL for that year.

No decision table for the Southern model was developed because this model is not recommended for use in management.

Table 1: Projections of potential OFL (mt) for the Northern model, using the base model forecast.

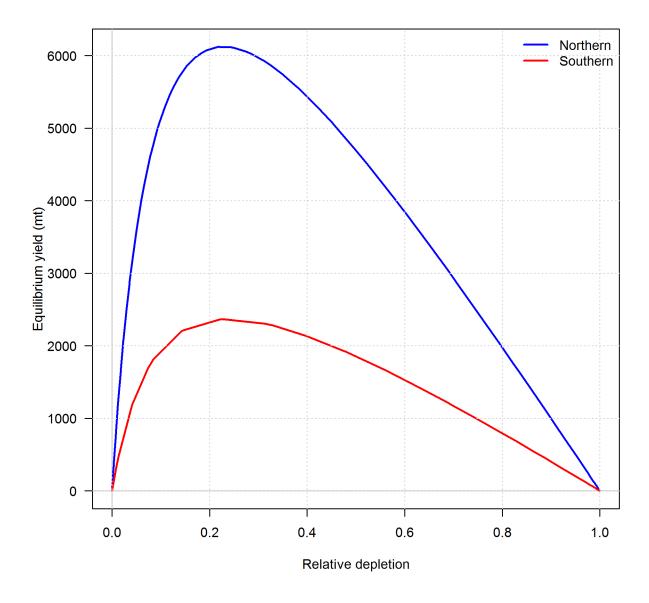


Figure i: Equilibrium yield curve for the base-case Northern model and final Southern model.

Table m: Summary of Spawning Output and Relative Spawning Output (Depletion) over 12-year projections for alternate states of nature based on an axis of uncertainty for the Northern model. Columns range over low, mid, and high states of nature, and rows range over different assumptions of catch levels. Projections for the years 2017/18 are shown in the first two rows and are used in all catch streams.

					States o						
			Low state (M = 0.122)	Base (M	= 0.174)	•	(M = 0.249)			
	Year	Catch	Spawning	Depletion	Spawning	Depletion	Spawning	Depletion			
			Output		Output		Output				
2017/18	2017	6196	8.30	0.50	11.30	0.75	17.90	0.82			
	2018	5979	7.60	0.46	10.50	0.70	16.60	0.76			
Recent 5-year	2019	1998	7.00	0.42	9.80	0.65	15.60	0.71			
average	2020	1997	7.00	0.42	9.80	0.65	15.40	0.70			
(approx. 2000 mt)	2021	1997	7.10	0.43	9.80	0.65	15.50	0.71			
	2022	1997	7.20	0.43	9.80	0.65	15.80	0.72			
	2023	1997	7.30	0.44	9.90	0.66	16.30	0.74			
	2024	1998	7.40	0.44	10.10	0.67	16.80	0.77			
	2025	1998	7.60	0.46	10.20	0.68	17.30	0.79			
	2026	1998	7.70	0.46	10.40	0.69	17.80	0.81			
	2027	1998	7.90	0.48	10.60	0.71	18.10	0.83			
	2028	1998	8.20	0.49	10.70	0.71	18.40	0.84			
Historic target	2019	3996	7.00	0.42	9.80	0.65	15.60	0.71			
opportunity catch	2020	3994	6.70	0.40	9.50	0.63	15.20	0.69			
stream example	2021	3994	6.50	0.39	9.20	0.61	15.00	0.68			
(approx. 4000 mt)	2022	3993	6.30	0.38	9.00	0.60	15.10	0.69			
	2023	3993	6.10	0.37	8.90	0.59	15.40	0.70			
	2024	3993	6.00	0.36	8.90	0.59	15.80	0.72			
	2025	3993	5.90	0.35	8.90	0.59	16.20	0.74			
	2026	3993	5.90	0.35	8.90	0.59	16.60	0.76			
	2027	3993	5.90	0.35	8.90	0.59	16.90	0.77			
	2028	3994	5.90	0.35	8.90	0.59	17.10	0.78			
Base catch	2019	6442	7.00	0.42	9.80	0.65	15.60	0.71			
stream	2020	6122	6.40	0.38	9.20	0.61	14.90	0.68			
	2021	5881	5.80	0.35	8.60	0.57	14.50	0.66			
	2022	5709	5.30	0.32	8.20	0.55	14.50	0.66			
	2023	5595	4.90	0.29	8.00	0.53	14.60	0.67			
	2024	5522	4.60	0.28	7.80	0.52	15.00	0.68			
	2025	5475	4.40	0.26	7.70	0.51	15.30	0.70			
	2026	5442	4.30	0.26	7.60	0.51	15.60	0.71			
	2027	5416	4.20	0.25	7.50	0.50	15.90	0.73			
	2028	5392	4.10	0.25	7.50	0.50	16.10	0.73			

2017			6786	6196			123.87	11.28	(7.69-14.86)	0.75	(0.612 - 0.892)	49.09	(17.86 - 134.94)			95.92	4.10	(0-9.08)	0.93	(0.756 - 1.106)	25.39	(5.24 - 123.02)
2016	1447.9	1448.9	6949	6344	0.294	0.012	125.63	11.48	(7.83 - 15.14)	0.77	(0.621 - 0.91)	49.20	(17.89 - 135.27)	0.011	0.000	94.23	3.77	(0-8.37)	0.86	(0.699 - 1.013)	20.87	(4.91 - 88.65)
2015	2015.4	2016.8	7218	6590	0.383	0.016	127.51	11.84	(8.09-15.6)	0.79	(0.639 - 0.94)											(8.58 - 110.13)
2014	1459.8	1460.8	4584	4382	0.284	0.011	125.70	12.16	(8.28-16.04)	0.81	(0.651 - 0.97)	50.06	(17.82 - 140.61)	0.023	0.001	75.29	3.32	(0-7.41)	0.75	(0.615 - 0.891)	33.50	(9.71 - 115.53)
2013	1432.5	1433.3	4579	4378	0.277	0.011	129.70	12.47	(8.46-16.49)	0.83	(0.663 - 1.001)	53.49	(19.02 - 150.45)	0.022	0.001	67.55	3.16	(0-7.09)	0.72	(0.583 - 0.852)	42.54	(12.66 - 142.92)
2012	1592.7	1593.8	4573	4371	0.293	0.012	129.32	12.74	(8.6-16.88)	0.85	(0.67 - 1.029)	38.43	(15.07 - 98.01)	0.022	0.001	53.68	3.02	(0-6.8)	0.69	(0.553 - 0.819)	25.48	(6.62 - 97.99)
2011	1348.8	1349.7	4566	4364	0.250	0.010	134.22	12.85	(8.6-17.09)	0.86	(0.668 - 1.045)	29.34	(12.68 - 67.92)	0.021	0.001	53.52	2.91	(0-0.6)	0.66	(0.527 - 0.797)	51.00	(13.23 - 196.67)
2010	957.7	1624.1	4562	4562	0.292	0.012	134.91	12.83	(8.53 - 17.12)	0.86	(0.66-1.051)	72.38	(38.52 - 136)	0.013	0.000	53.77	2.84	(0-6.46)	0.65	(0.506 - 0.784)	87.54	(25.05 - 305.87)
2009	762.7	1100.2	4562	4562	0.209	0.008	138.78	12.57	(8.27 - 16.87)	0.84	(0.637 - 1.039)	20.82	(9.86 - 43.95)	0.027	0.001	53.47	2.81	(0-6.41)	0.64	(0.492 - 0.783)	58.70	(16.09 - 214.16)
2008	494.2	520.2	4510	4510	0.108	0.004	139.69	12.13	(7.86 - 16.39)	0.81	(0.604 - 1.013)	66.69	(37.78 - 117.74)	0.013	0.000	49.35	2.80	(0-6.43)	0.64	(0.482 - 0.79)	103.48	(31.51 - 339.77)
Quantity	Landings (mt)	Total Est. Catch (mt)	OFL (mt)	ACL (mt)	$(1-SPR)(1-SPR_{50\%})$	Exploitation rate	Age $4+$ biomass (mt)	Spawning Output	95% CI	Depletion	95% CI	Recruits	95% CI	$(1-SPR)(1-SPR_{50\%})$	Exploitation rate	Age $4+$ biomass (mt)	Spawning Output	95% CI	Depletion	95% CI	Recruits	95% CI
Model Region	Northern Model				Northern Model	Base Case								Southern Model	Final Model							

_	
-	odel.
	õ
	п С
	erı
7	lth
-	0C
-	3
	lina
-	吕
	Lable n: Results summary for base-case Northern model and final Southern mode
-	e
	00
	Ξ
	ern
5	the
	or
2	
	ase
	с С
	ase
-	о л
ر	5
	ury
	m
	Ц
	S.
÷	ut:
	est
f	Ż
	п:
-	ole
Ē	Lat
L	

³⁴² Research And Data Needs

³⁴³ The following research will be valuable for future Yellowtail Rockfish assessments:

 A problem common to assessments of all stocks caught in the midwater is the lack of a targeting survey. Because limits on the take of depleted midwater stocks have impeded fishing for many species, the lack of such a survey is an ongoing financial burden on industry.

- 2. Research to determine whether old females of a variety of rockfish species actually have a mortality rate different than that of younger females. Assessments variously treat the discrepancies seen in sex ratios of older fish as either mortality-related or due unavailability to the fishery (e.g., ontogenetic movement offshore, or to rockier habitats). As these assumptions impact model outcomes very differently, resolving this issue would greatly improve confidence in the assessments.
- A hindrance to analysis of the commercial fishery is the inability to distinguish between
 midwater and trawl gear, particularly in data from the 1980s-1990s. Reliable recording
 of gear type will ensure that this does not continue to be problematic for future
 assessments.
- 4. We recommend that the next assessment of the Northern stock be an update to this assessment, unless fishing patterns change dramatically, or new sources of data are discovered.
- 5. For the next full assessment, we suggest the following:
- A commercial index in the North. This is by far the largest segment of the fishery, and the introduction of the trawl rationalization program should mean that an index can be developed for the current fishery when the next full assessment is performed.
- Further investigation into an index for the commercial logbook dataset from earlier periods.
- Further analysis of growth patterns along the Northern coast. The previous full assessment subdivided the Northern stock based on research showing differential growth along the coast, and although data for the assessment is no longer available along the INPFC areas used in that analysis, there may be some evidence of growth variability that would be useful to include in a future assessment.
- 6. The Southern stock cannot be evaluated with a full statistical catch-at-age model unless more data are made available. In particular, we feel that the following are minimally required:
- A longer timeseries of the juvenile rockfish CPUE in the south, which will of course only be available after several years have elapsed.

A timeseries of recent ages for the Southern model. The commercial age timeseries currently stops in 2002. Otoliths have been collected for all years in the Hook & Line survey, however only samples from 2004 have been aged. There may also be a collection otoliths associated with research at the SWFSC, and these should be investigated as well.