Agenda Item F.2.a Supplemental NMFS PowerPoint (Haltuch) March 2017 **Oceanographic drivers sablefish recruitment in** the Northern California Current

Tolimieri N¹, Haltuch MA¹, Qi L², Jacox M³, and Bograd S³

¹NOAA-Fisheries, NWFSC, Seattle, WA, USA.
 ²University of Washington, SAFS, Seattle, WA, USA
 ³ NOAA-Fisheries, SWFSC, Monterey, CA, USA

Applications

Leading recruitment indicator

Now-cast and/or short term forecasting applications for management advice.

Recruitment hindcasting

What could recruitment have looked like during periods without length- and age- composition data?

Decrease the uncertainty in estimates of B0 by providing information on past recruitments rather than using recruitments off the stock-recruitment curve.

Management Strategy Evaluation

Evaluate control rule performance to potential long-term changes productivity

US GLOBEC: The horizontal-advection bottom-up forcing paradigm

Large-scale climate forcing drives regional changes in alongshore and crossshelf ocean transport, directly impacting the transport of nutrients, water masses, and organisms.

US GLOBEC: The horizontal-advection bottom-up forcing paradigm

Climate variability alters sea surface height (SSH), zooplankton community structure, and sablefish recruitment

SSH explains ~35-40% of the variance in recruitment (Schirripa)

Problem: needs to explain >50% of the variability in recruitment to inform stock assessment

Goal: develop stronger environmental index of recruitment

Conceptual life-history Make hypotheses Fit a bunch of models (glms) Model selection with AICc Model testing

Literature search

Conceptual life-history Make hypotheses Fit a bunch of models (glms) Residuals = Intercept + various predictors Model selection with AICc Model testing

Make stage specific & spatially specific hypotheses

- Do not use generalized climate indices like NOI or PDO
- Use ROMS output for oceanic drivers
- Include some biological drivers
 - Predator and prey density
- Include Sea surface height (SSH)
- <u>NO</u> Spawning stock biomass (SSB)

Conceptual life-history Make hypotheses Fit a bunch of models (glms) **Residuals** = Intercept + various predictors Model selection with AICc Model testing

Remove known Beverton-Holt stock recruitment relationship from assessment

Asserted Stockrecruitment relationship in the assessment

```
Conceptual life-history
      Make hypotheses
Fit a bunch of models (glms)
Residuals = Intercept + various
          predictors
  Model selection with AICc
        Model testing
```

Models

Basic glms

- Identity link
- Normal distribution
- Min predictors = 0
- Max predictors = 5
- Covariates with r > 0.75 excluded from the same model

Conceptual life-history model:

Preconditioning to benthic juveniles

Life-history stage	Time period	Depth	Sablefish location
Preconditioning	Jun - Dec (Yr 0)	50-1200m with highest occurrence between 150 - 400 m	Bottom
Spawning	Dec (Yr 0)- Mar (Yr 1)	300-500 m	Bottom
Eggs	Jan-Apr	200-825 m with highest occurrence between 240 and 480 m, may rise has high as 200-300 m	Open water
Early Development	Feb-May	1000-1200 m	Open water
.arvae (start Feeding)		Surface waters	Open water
Pelagic juveniles	Apr-Nov	Surface waters	Open water
Benthic Juvenile (Age-0)	Aug-Nov	0 - 250 m	Bottom

Conceptual life-history model:

Preconditioning to benthic juveniles

Life-history stage	Time period	Depth	Sablefiish location
Preconditioning	Jun - Dec (Yr 0)	50-1200m with highest occurre between 150 - 400 p	nce Bottom m
Spawning	Dec (Yr 0)- Mar (Yr 1)	(Yr 0)- Mar (Yr 1) 300-500 m	
Eggs	Look at	: one stage	nce) m, Open water 0-300
Early Development			Open water
Larvae (start feeding)			Open water
Pelagic juveniles	Apr-Nov	Surface waters	Open water
Benthic Juvenile (Age-0)	Aug-Nov	0 - 250 m	Bottom

Conceptual life-history model:

Preconditioning to benthic juveniles

Lat: 40-50 °N Years: 1980-2010

	Life-history stage	Time period		Depth	
-	Pelagic juveniles	Apr-Nov		Surface waters	Open water
	Hypothesis	Covariates	Depth extent	Longitudinal extent	Data source
T h	ransport to settlement abitat affects recruitment	Net long-shore transport	Surface waters	0-150 nautical nmi	ROMS
T h	ransport to settlement abitat affects recruitment	Net cross-shelf transport	Surface waters	0-150 nautical nmi	ROMS
G h	rowth/Predation ypothesis:				
G W P	rowth rate is faster in varm water leading to educed time vulnerable to redators etc	Degree days	Surface waters	0-150 nautical nmi	ROMS

One model with $\triangle AICc < 2.0$

Model		R2 ΔAIC
Model 1	DD_{pre} CST_{egg} DD_{egg} LST_{ed} DD	0 _{larv} 0.57 0
<u>One model v</u>	with $\Delta AICc < 2.0$ $r^2 = 0.$.57
Degree days – p	preconditioning	bottom, 150 – 400 m
Cross-shelf trai	n sport – egg stage	500 m off shore to 170 nmi 300-825 m
Degree days – egg stage		500 m off shore to 170 nmi 300-825 m
Long-shelf tran	sport – early development	1000 m off shore to 170 nmi 1000 – 1200 m
Degree days – I	arvae	surface waters out to 150 nmi

One model with $\triangle AICc < 2.0$

(-) DD_{pre}- cold water = more food; lower metabolic costs and more energy for reproduction

Degree Days precond

(-) DD_{pre}- cold water = more food; lower metabolic costs and more energy for reproduction

Degree Days precond

CST - eggs (m/s)

(+) CST_{edev}- onshore transport = retention near settlement habitat

(-) DD_{pre}- cold water = more food; lower metabolic costs and more energy for reproduction

Degree Days egg

- (+) CST_{edev}- onshore transport = retention near settlement habitat
- (+) DD_{egg}- warm water = faster development

- (-) DD_{pre}- cold water = more food; lower metabolic costs and more energy for reproduction
- (b) 10000 10000 Partial residual Partial residual 0 -10000 20000 -1 2 3 -2.0 -1.0 0.0 1.0 Degree Days precond CST - eggs (m/s) 20000 (d) 20000 (C) Partial residual Partial residual 0 0 20000 20000 -0.5 2 -1.5 0.5 1.5 Degree Days egg LST - early dev (m/s)
- (+) CST_{edev}– onshore transport = retention near settlement habitat
- (+) DD_{egg}- warm water = faster development
- (+) LST_{edev}– northerly transport = transported north to food

- (-) DD_{pre} cold water = more food; lower metabolic costs and more energy for reproduction
- Partial residual 20000
- (+) CST_{edev}- onshore transport = retention near settlement habitat
- (+) DD_{egg} warm water = faster development

(-) DD_{larv}– warm water = starvation overcomes faster growth rate

2

Degree Days - larvae

-2

Update with 2011 – 2014 data?

→ Current data span 1980 – 2010

→ 2011 – 2014 ROMs data available from a different model

Oceanographic Modeling Issues

Inconsistent inputs from different products

Surface forcing (heat flux, wind)

Ocean boundary conditions

Models are consistent for well observed variables

SST, SSH, MLD

Not possible to validate many sub-surface predictors between models

New time series are short

Back to Applications

What to do about physical time series?

Need a single reconstruction extending as far back as possible and that can be updated into the future

Leading recruitment indicators

Now-cast based on current year environment

Short-term forecasting depends upon forecasting important covariates - JSCOPE?

Recruitment hindcasting

Depends upon historical oceanographic data

Management Strategy Evaluation

Requires stakeholder input

Assumes stationarity

