Agenda Item G.2.a Supplemental CDFW/CWPA PPT November 2016

Southern California s Coastal Pelagic Species Aerial Survey

California Department of Fish and Wildlife California Wetfish Producers Association

Kirk Lynn, Dianna Porzio, Laura Ryley, Trung Nguyen

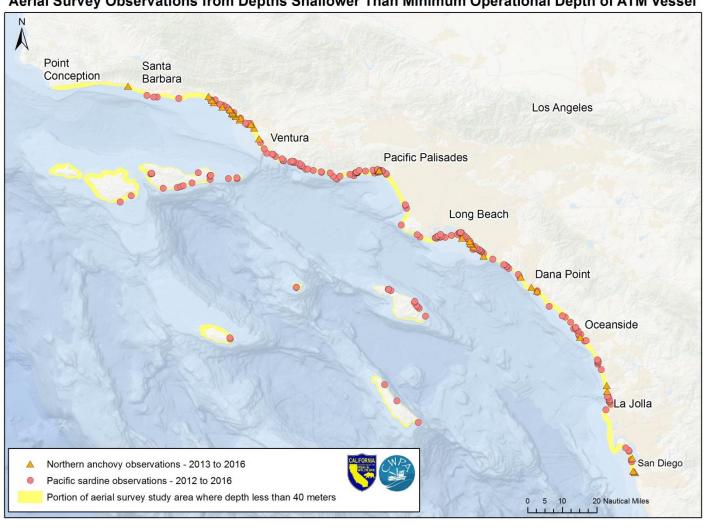
Pacific Fishery Management Council November 2016

Study Goals

- Project 1 Relative indices of nearshore abundance for sardine and anchovy
- 2) Project 2 Inshore Correction factor
 - Add to ATM biomass estimate
- 3) Validate observer species identifications
- 4) Collect biological samples
 - length, weight, age, maturity
- Field aerial transects, boat sampling
- Lab estimate calculations, mapping, process samples

Aerial Survey and CPS Management

Sardine stock assessment survey indices


Offshore waters

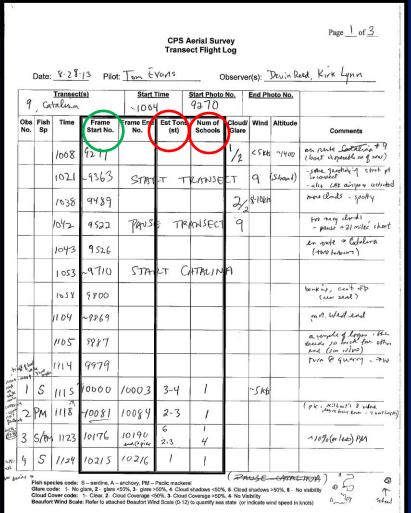
- CA nearshore sardine fishery
- CDFW-CWPA partnership
 - Summer 2012 present
 - Direct nearshore survey

Aerial Survey and CPS Management

Aerial Survey Observations from Depths Shallower Than Minimum Operational Depth of ATM Vessel

Methods – Design/Operations Project 1

- Coastal areas
- Survey conducted during spring and summer
- Summer 2012 –
 Summer 2016
- Flights dependent on weather and plane availability



Methods – Transects Project 1

- Verify species
- Get tonnage estimate
- Photo passes
- Frame/time noted
- Resume transect

Microsoft Excel - 20120731.xls																		
	<u>F</u> ile	<u>E</u> dit <u>V</u> iew	<u>I</u> nsert	Format <u>T</u>	ools <u>D</u> ata	<u>W</u> indo	w <u>F</u>	<u>t</u> elp	<u>A</u> SAP	Utilities	Ado <u>b</u> e	PDF						Type a ques
В	≥ [a 📆 🚄	B 🕒 💖	X Bar	Q - 🛷	KO + C4	+ 6	<u>.</u> [3	Σ	- ≜⊥	ZΙΣ	1	401	1 0	0% - [?		
		· ·		※ 略 @ → ダ い → ロ → () ● 図 Σ → 4														
Aria	al .		- 10 -	BII	ī 🖹 🛢	= 12	3 8	%	3	.00 +.0	#F #	· ## •	• 🤣 •	A	•			
	AD9	-	f _×															
	Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0	Р	Q	R
1	Туре	Time	Lat	Lon	RadAlt	Alt	Spd	Lens	OL	Mode	Interal	Count	GCB	GCF	GPSAlt	GPSMode	GPSSats	GPSSpeed 0
2	S	12:50:10																
3	Χ	12:51:25	33.8123	118.1536	1649.1	3000	130	24	1	1	5.46	C25	4500	3000	32	WAAS	9	0
4	С	13:44:17	33.8131	118.1532	2499.99	takeoff												
5	Χ	13:56:04	33.7283	118.4167	2499.99	2000	130	24	1	1	3.64	626	3000	2000	1983	WAAS	7	132.71
6	Χ	13:56:08	33.7295	118.419	1649.1	2000	130	24	1	1	3.64	627	3000	2000	1975	WAAS	6	132.18
7	Χ	13:56:11	33.7314	118.4205	1649.1	2000	130	24	1	1	3.64	628	3000	2000	1963	WAAS	7	131.06
8	Χ	13:56:15	33.7335	118.4208	1649.1	2000	130	24	1	1	3.64	629	3000	2000	1948	WAAS	8	129.13
9	Χ	13:56:19	33.7356	118.4202	1649.1	2000	130	24	1	1	3.64	630	3000	2000	1947	WAAS	7	124.96
10	Χ	13:56:22	33.7373	118.4187	1649.1	2000	130	24	1	1	3.64	631	3000	2000	1962	WAAS	8	120.83
11	Χ	13:56:26	33.7388	118.4171	1649.1	2000	130	24	1	1	3.64	632	3000	2000	1992	WAAS	9	119.11
12	Χ	13:56:30	33.7406	118.416	1649.1	2000	130	24	1	1	3.64	633	3000	2000	2018	WAAS	8	119.87
13	Χ	13:56:33	33.7426	118.4156	2499.99	2000	130	24	1	1	3.64	634	3000	2000	2020	WAAS	8	122.9
14	Χ	13:56:37	33.7446	118.4161	1649.1	2000	130	24	1	1	3.64	635	3000	2000	1995	WAAS	8	128.2
15	Χ	13:56:41	33.7467	118.4172	1649.1	2000	130	24	1	1	3.64	636	3000	2000	1962	WAAS	7	131.64
16	Χ	13:56:44	33.7486	118.4186	1649.1	2000	130	24	1	1	3.64	637	3000	2000	1942	WAAS	8	134.46
17	Υ	13:56:48	33.7504	118 4202	2/99 99	2000	130	24	1	1	3.64	638	3000	2000	1933	WAAS	8	135.8

Methods – Boat Sampling Project 1

- Conducted each season
- Boat directed by plane to fish school
- Aerial observer ID species
- Boat samples fish
 - tow camera (right) or diver video
 - Hook and line (sabiki rig), gillnet, purse seine
- Water temperature, clarity, salinity recorded

Methods – Analyses Project 1

Survey Photos

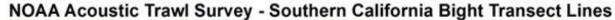
- Document observations
- Corroborate field logs

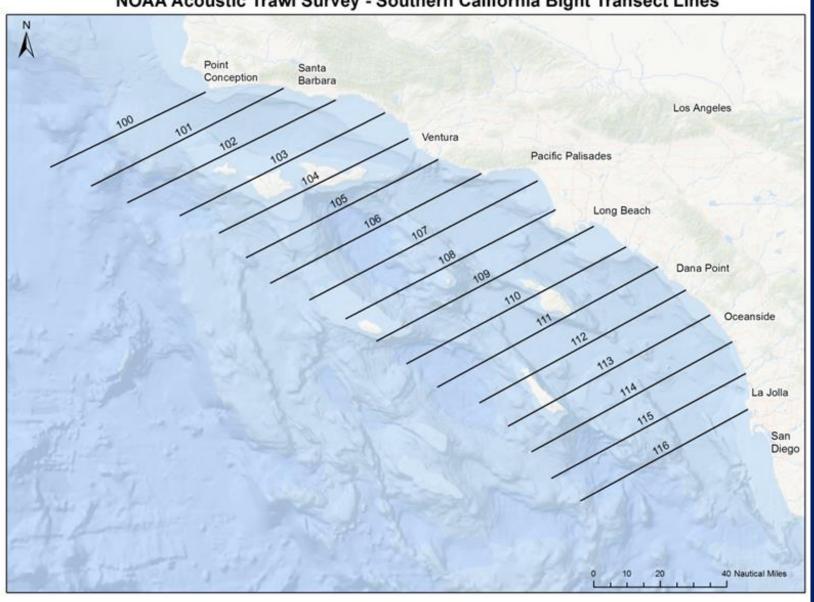
Species ID Validation - Boat

- Tow and diver video
- Hook and line sampling

Biological Samples

Age structure of population


Methods – Analyses Project 1


- Index of relative abundance = fish density
- Fish density (D) = all estimated observed tons (T_{obs}) / area surveyed (A):

$$D = T_{obs}/A$$

- Estimated observed tons adjusted for observer bias
- Area surveyed dependent on actual flight path and transect width

Methods - Project 2

Methods – Analyses Project 2

Goal: Total SCB estimate (offshore and inshore)

1. Combine ATM (offshore) and SCCPSS (inshore) estimates for SCB

$$T = T_{ATM} + T_{SCCPSS}$$

2. Combine ATM (offshore) and calculated tonnage (inshore) from SCCPSS and ATM data

$$T = T_A + (\Sigma T_C / \Sigma T_{Bp}) * T_{Bs}$$

Results - Project 2

CDFW Aerial Overflight Observations of NOAA Acoustic Trawl Survey Point Santa Conception Barbara Los Angeles Ventura Pacific Palisades Long Beach **Transect Lines** Dana Point NOAA survey summer 2016 Nearshore by CDFW plane only Oceanside CDFW plane over ship **Pacific Sardine Observations** 0.5 - 20 mt 21 - 100 mt La Jolla 101 - 500 mt 501 - 6,250 mt San Diego **Northern Anchovy Observations** 0.5 - 20 mt 21 - 60 mt 101 - 250 mt 501 - 13,700 mt 40 Nautical Miles

Future Work

- Continue boat sampling validate species ID, collect additional samples
- Collect more data for Project 2 inshore/offshore ratio
- Potential index of recruitment
- Continued CDFW and CWPA support

Summary

- Survey covers coastal nearshore areas of Southern California Bight
- Results useful for:
 - Index of nearshore abundance (Project 1)
 - Supplement to ATM offshore data to account for nearshore biomass (Project 2)
- Additional data stream for CPS stocks

- CDFW Warden-Pilots Tom Evans, Gary Schales, Kevin Kintz
- Observer Devin Reed (CWPA)
- CDFW Office of Spill Prevention and Response
 - Christian Corbo, Mark Crossland, Sean Moe, Sau Garcia
- CDFW biologist / analyst staff
 - Alex Kesaris, John Budrick, Joe Weinstein, Phil Law, Briana Brady, Chelsea Protasio, Dan Averbuj, Bill Miller, Paul Ton, Michelle Horeczko, Elizabeth Hellmers Mendoza, Kenin Greer, Mia Roberts, Julianne Taylor, Roy Kim, Kathryn Johnson, Jeannette Miller
- Collaborative Fisheries Research West