

# NOAA FISHERIES SERVICE

Pacific Halibut Bycatch in US West Coast Fisheries (2002-2015)



Jason Jannot Kayleigh Somers Neil Riley Vanessa Tuttle Jon McVeigh

Publication date: August 2016

This document should be cited as follows:

Jannot, J.E., Somers, K., Riley, N.B., Tuttle, V., McVeigh, J. 2016. Pacific halibut bycatch in the U.S. west coast fisheries (2002-2015). NOAA Fisheries, NWFSC Observer Program, 2725 Montlake Blvd E., Seattle, WA 98112.



NWFSC Observer Program
National Marine Fisheries Service
Northwest Fisheries Science Center
Fishery Resource Analysis and Monitoring Division
2725 Montlake Blvd. E.
Seattle, WA 98112



# Pacific Halibut Bycatch in U.S. West Coast Groundfish Fisheries (2002-2015)

Jason E. Jannot, Kayleigh Somers, Neil B. Riley, Vanessa Tuttle, Jon McVeigh August 18, 2016

NWFSC Observer Program Fishery Resource Analysis and Monitoring Division National Marine Fisheries Service Northwest Fisheries Science Center 2725 Montlake Blvd. E. Seattle, WA 98112

# Contents

| 1 | EXECUTIVE SUMMARY                                                                                                                                                                                                                                                                  | 6                                            |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 2 | INTRODUCTION  2.1 West Coast Groundfish Fishery                                                                                                                                                                                                                                    | 12                                           |
| 3 | METHODS                                                                                                                                                                                                                                                                            | 13                                           |
|   | 3.1 Data Sources 3.2 Shore-based IFQ Fishery 3.2.1 Pacific Halibut Data Collection in the Shore-based IFQ Fishery 3.2.2 Shore-based IFQ fishery Bycatch Estimation 3.2.3 Viability Analysis 3.2.4 Length Frequencies 3.3 Non-nearshore Fixed Gear Fishery 3.3.1 Discard Estimation | 13<br>14<br>14<br>15<br>17<br>17<br>18<br>18 |
|   | 3.3.2 Discard Mortality Rates                                                                                                                                                                                                                                                      | 20                                           |
|   | 3.4 Observed State Fisheries                                                                                                                                                                                                                                                       |                                              |
| 4 | RESULTS                                                                                                                                                                                                                                                                            | 21                                           |
| • | 4.1 IFQ Fishery                                                                                                                                                                                                                                                                    | 21<br>22                                     |
| 5 | SUMMARY & CONCLUSIONS                                                                                                                                                                                                                                                              | 23                                           |
|   | 5.1 IFQ Fishery                                                                                                                                                                                                                                                                    | 23                                           |
| 6 | ACKNOWLEDGEMENTS                                                                                                                                                                                                                                                                   | 23                                           |
| 7 | REFERENCES                                                                                                                                                                                                                                                                         | 24                                           |
| 8 | TABLES                                                                                                                                                                                                                                                                             | <b>2</b> 6                                   |
| 9 | FIGURES                                                                                                                                                                                                                                                                            | 61                                           |

<sup>\*</sup>jason.jannot@noaa.gov

LIST OF TABLES

LIST OF TABLES

test

| 10 | API  | PENDICES                                                                                                | 68 |
|----|------|---------------------------------------------------------------------------------------------------------|----|
|    | 10.1 | Appendix A                                                                                              | 68 |
|    | 10.2 | Appendix B: Pacific Halibut IBQ Expansions for In-Season Management, Special Cases                      | 79 |
|    |      | 10.2.1 In season reporting to the Vessel Account System                                                 | 79 |
|    |      | 10.2.2 In season IBQ Weight Calculations for Bottom Trawl Gear                                          | 79 |
|    |      | ·                                                                                                       | 80 |
|    |      | 10.2.4 In season IBQ Weight Calculations for Hook-&-Line Gear                                           |    |
|    |      | ·                                                                                                       | 81 |
|    |      |                                                                                                         | 85 |
|    |      | Appendix D: Data flow                                                                                   |    |
|    | 10.5 | Appendix E: Non-Nearshore Hook and Line Viability Analysis Comparison                                   | 87 |
| Li | st   | of Tables                                                                                               |    |
|    | 1    | Pacific halibut discard mortality estimates by sector                                                   | ۶  |
|    | 2    | Comparison of VAS IBQ with final P. halibut estimates                                                   |    |
|    | 3    | Percent of legal-sized P. halibut bycatch for the IFQ Bottom Trawl fishery north of 40°10′ N. lat.      | Ć  |
|    | 4    |                                                                                                         | 15 |
|    | 5    |                                                                                                         | 15 |
|    | 6    | · · · · · · · · · · · · · · · · · · ·                                                                   | 15 |
|    | 7    | IFQ bottom trawl coverage and P. halibut catch                                                          | 27 |
|    | 8    | IFQ midwater trawl coverage and P. halibut catch                                                        | 28 |
|    | 9    | IFQ fixed gear coverage and P. halibut catch                                                            | 29 |
|    | 10   | IFQ discard ratios for unsampled catch on bottom trawl vessels                                          | 30 |
|    | 11   | IFQ discard ratios for unsampled catch on midwater trawl vessels                                        | 31 |
|    | 12   | IFQ discard ratios for unsampled catch on fixed gear vessels                                            | 32 |
|    | 13   | IFQ P. halibut viabilities by gear and year                                                             | 33 |
|    | 14   | IFQ gross discard and discard mortality                                                                 | 36 |
|    | 15   | IFQ legal-sized (82 cm) mortality                                                                       | 38 |
|    | 16   | IFQ bottom trawl P. halibut monthly bycatch                                                             | 40 |
|    | 17   | Physical measurements of P. halibut length (cm) for IFQ bottom trawl and pot vessels (2011-2015) .      | 41 |
|    | 18   | Visual estimates of P. halibut lengths (cm) from IFQ vessels using bottom trawl, pot, and hook and      |    |
|    |      | line gear (2011-2015)                                                                                   | 42 |
|    | 19   | Number of observed vessels, trips, and sets by year and gear type in the LE Sablefish Endorsed fishery. | 43 |
|    | 20   | Number of observed vessels, trips, and sets by year and gear type in the LE Sablefish NonEndorsed       |    |
|    |      | fishery. The number of observed pot vessels in this fishery is too small to meet confidentiality and    |    |
|    |      | thus not reported                                                                                       | 43 |
|    | 21   | Number of observed vessels, trips, and sets by year and gear type in the OA Fixed Gear fishery. OA      |    |
|    |      | Fixed Gear fishery was not observed until 2003                                                          | 44 |
|    | 22   | Expansion factors and discard rates for Non-Nearshore Fixed Gear fishery                                | 44 |
|    | 23   | Expansion factors used in the non-nearshore fishery                                                     | 45 |
|    | 24   | Percent of observed trips that caught Pacific halibut in non-nearshore fishery                          | 46 |
|    | 25   | Estimated gross discard (mt) and discard mortality (mt) in the non-nearshore fishery                    | 47 |
|    | 26   | Estimated P. halibut discard mortality (mt, with 16% or 18% rate applied) from each sector of the       |    |
|    |      | non-nearshore fixed gear fishery by year                                                                | 48 |
|    | 27   | Physical measurements of P. halibut length (cm) from LE Sablefish Endorsed vessels (2002-2015)          | 49 |
|    | 28   | Physical measurements of P. halibut length (cm) from LE Sablefish Non-Endorsed vessels (2002-2015)      | 50 |
|    | 29   | Physical measurements of P. halibut length (cm) from OA Fixed Gear vessels (2002-2015)                  | 51 |
|    | 30   | Visual estimates of P. halibut lengths (cm) from Non-Nearshore fixed gear vessels (2002-2015)           | 52 |
|    | 31   | Legal (82 cm) versus sub-legal actual and visual length frequencies                                     | 52 |
|    | 32   | Nearshore fishery coverage and P. halibut bycatch                                                       | 53 |
|    | 33   | Pink Shrimp fishery coverage and P. halibut bycatch                                                     | 54 |
|    | 34   | California halibut fishery coverage and P. halibut bycatch                                              | 55 |
|    | 35   |                                                                                                         | 56 |
|    | 36   | · · · · · · · · · · · · · · · · · · ·                                                                   | 57 |
|    | 37   | IFQ coverage and P. halibut bycatch on electronic monitoring EFP vessels                                | ΟČ |

<u>LIST OF FIGURES</u>

<u>LIST OF FIGURES</u>

| 38       | P. halibut catch on EFP vessels                                                                        | 58 |
|----------|--------------------------------------------------------------------------------------------------------|----|
| 39       | P. halibut catch from non-groundfish fisheries not observed by the NWFSC Observer Program              | 59 |
| 40       | Discard estimates for all fishery sectors                                                              | 60 |
| 41       | Weighted length frequency distributions for bottom trawl and pot vessels in the IFQ fishery            | 69 |
| 42       | Percentage of weighted length measurements in each viability category, for IFQ bottom trawl vessels    | 70 |
| 43       | Table 42 continued for IFQ bottom trawl vessels                                                        | 71 |
| 44       | Percentage of weighted length measurements in each viability category for IFQ pot vessels              | 72 |
| 45       | Table 44 continued for IFQ pot vessels                                                                 | 73 |
| 46       | Weighted length frequency distributions for Pacific halibut in the limited entry bottom trawl fishery, |    |
|          | 2002-10                                                                                                | 74 |
| 47       | Percentage of weighted length measurements in each condition category for the limited entry bottom     |    |
|          | trawl fishery, 2002-10                                                                                 | 75 |
| 48       | Continuation of Table 47                                                                               | 76 |
| 49       | Number of dead P. halibut in each length bin, summed across viability categories, for IFQ bottom       |    |
|          | trawl vessels                                                                                          | 77 |
| 50       |                                                                                                        | 78 |
| 51       | Number of dead P. halibut in each length bin for Shoreside Hake vessels 2011-14                        | 79 |
| 52       | VAS alternative P. halibut expansion statistics                                                        | 82 |
| 53       | VAS calculations for unsampled P. halibut                                                              | 84 |
| 54       | ·                                                                                                      | 87 |
| 55       |                                                                                                        | 88 |
| 56       |                                                                                                        | 88 |
| 57       |                                                                                                        | 89 |
| 58       | Estimated gross discard (mt) for longline or hook-&-line vessels in the non-nearshore fishery          | 89 |
| 59       | Estimated discard mortality (mt) for longline or hook-&-line vessels in the non-near<br>shore fishery  | 90 |
|          |                                                                                                        |    |
| List     | of Figures                                                                                             |    |
|          |                                                                                                        |    |
| 1        | Total estimated P. halibut discard mortality from all sectors                                          | 10 |
| <b>2</b> | Number of vessels by month for IFQ bottom trawl vessels in 2015                                        |    |
| 3        | Number of tows by month for IFQ bottom trawl vessels in 2015                                           |    |
| 4        |                                                                                                        | 63 |
| 5        |                                                                                                        | 64 |
| 6        | Length frequency distribution of Pacific halibut in the Non-Nearshore Fixed Gear fishery               | 65 |
| 7        |                                                                                                        | 66 |
| 8        |                                                                                                        | 67 |
| 9        |                                                                                                        | 85 |
| 10       | IFO groundfish fishery data flow                                                                       | 86 |

#### 1 EXECUTIVE SUMMARY

Pacific halibut mortality estimates are provided for the years 2002 through 2015 from all fishery sectors observed by the Northwest Fishery Science Center Groundfish Observer Program. These include:

- Individual Fishing Quota (IFQ) fisheries (2011-2015)
- Limited entry (LE) bottom trawl (2002-2010)
- Non-nearshore fixed gear targeting groundfish (2002-2015)
- Nearshore fixed gear (2003-2015)
- Pink shrimp trawl (2004-2015)
- California halibut trawl (2002-2015)
- At-sea Pacific hake (2002-2015)

In addition, we also provide P. halibut bycatch estimates for observed vessels with an exempted fishing permit (EFP) targeting groundfish (2002-2015), including the IFQ electronic monitoring (EM) EFP (2015). For completeness, we also include the P. halibut landed catch from PacFIN fish tickets reported by non-groundfish fisheries that are not observed by the NWFSC Observer Program for the period 2002-2015.

Final estimates of observed fishery sectors plus the 2015 IFQ EM EFP are shown in Table 1, which is equivalent to Table 40 in the report. We include in these two tables (and elsewhere in the report), the small amount of P. halibut landed and subsequently discarded at the dock by IFQ bottom and midwater trawl vessels. These landed and then discarded at the dock amounts are listed by strata in Tables 7 and 8 of the report. In addition, we report the P. halibut catch from IFQ vessels fishing under an EM EFP. IFQ EM EFP P. halibut catch is included in the summaries found in Tables 1, 37 and 40. In 2015, the IFQ bottom trawl sector constituted the largest source of discard mortality of P. halibut among the sectors analyzed, with the majority of this bycatch between Pt. Chehalis, WA and 40°10′ N. lat., fishing depths greater than 60 fathoms. Limited Entry Sablefish Endorsed vessels fishing longline gear caught the next most P. halibut. These two sectors comprised approximately 90% of the 2015 P. halibut discard mortality in U.S. west coast groundfish fisheries.

The 2015 IFQ fishery estimate of P. halibut discard mortality, coastwide, was 34.82 mt not including the 0.88 mt caught by IFQ EM EFP vessels (see Table 37 which is included in the IFQ estimate in Tables 1 and 40). The IFQ total (IFQ + IFQ EM EFP: 35.70 mt) is 8.7 mt greater than the 2014 estimate (27.03 mt, see Table 1) but, as in past years, well below the IBQ¹ allocation (84.50 mt). As in prior years, bottom trawl gear produced the largest component of IFQ discard mortality, followed in decreasing magnitude by hook-&-line, pot, and midwater trawl gear. Note that in 2015, all P. halibut caught by IFQ pot vessels fishing north of Pt. Chehalis, WA were EFP vessels carrying EM technologies.

Following historical patterns, nearly all of 2015 non-nearshore fixed gear estimated P. halibut discard mortality occurred in the limited entry (LE) sablefish endorsed component (20.09 mt), which consists of federally permitted vessels fishing sablefish tier quota during the primary season (April-October). Specifically, discard mortality for the non-nearshore fixed gear sector were highest on LE sablefish endorsed vessels fishing with longline gear in the area north of Pt. Chehalis, WA (13.7 mt). A smaller amount of P. halibut mortality also occurred on LE sablefish endorsed vessels fishing longline gear south of Pt. Chehalis (6.11 mt) and open access (OA) vessels targeting non-nearshore groundfish species with hook-&-line gear (1.69 mt).

Pacific halibut discard in the nearshore fixed gear, pink shrimp trawl, California halibut trawl, and at-sea Pacific hake fisheries combined represents a very small component of total P. halibut mortality (Figure 1).

The methods in this report are unchanged from the last report. However, there are other important changes that are worth noting.

 $<sup>^{1}</sup>$ IBQ = Individual Bycatch Quota, which is used for P. halibut North of  $40^{\circ}10^{'}$  N. lat.

- Changes to reporting of the IFQ fishery include:
  - 1. Definitions of IFQ midwater trawl sectors are now consistent with Federal Register (80 Fed.Reg. 239 77267, [2016]) which defines IFQ Midwater Hake trips as any trip with more than 50% of the landings as Pacific hake and IFQ Midwater Rockfish as any trip with less than 50% landed P. hake.
  - 2. A summary of the P. halibut catch on IFQ vessels carrying electronic monitoring compliance technology under an exempted fishing permit (EFP).
  - 3. The definition of unsampled tows in the IFQ fishery is now consistent with our quality control practice. This change is retrospective for the IFQ fishery.
- In the Non-Nearshore Fixed Gear fishery, we include for the first time, a comparison of the current 16% mortality rate to mortality rates applied using a viability analysis based on observer viability condition of P. halibut on vessels fishing with longline or hook-and-line gear (Appendix E 10.5; see also: Kaimmer & Trumble 1998, Trumble et al. 2000). This analysis is provided for comparison purposes only and was requested by the IPHC. Mortality estimates using this method are quite variable and, depending on the year and sector, some are much lower than using 16% whereas other estimates are similar to the 16% method or only slightly larger.
- In our coverage statistics, for all sectors, we now include trips and hauls where an observer was present, but the vessel did not catch any fish. This will will have the effect of an apparent increase in the number of trips, hauls, or both covered in some fisheries. Note that this has no effect on P. halibut estimates.
- We include, for the first time in this report, summaries of the P. halibut bycatch and landings from vessels fishing exempted fishing permits as well as vessels fishing in non-groundfish sectors that are not observed by the NWFSC Observer Program.

The NWFSC Observer Program data used in this report has been updated to include the most recent data available (2002-2015). Pacific Fisheries Information Network (PacFIN) data used in this report were accessed April 2016. The estimates for all sectors and years (except LE Trawl 2002-2010) have been recalculated based on these base data. In all other respects, this 2016 report uses the same methods as reported in Jannot et al. (2015).

Table 1: Pacific halibut discard mortality estimates (mt, including a small amount discarded at the dock in IFQ Bottom Trawl, Midwater Rockfish, and Midwater Hake fisheries) for all sectors observed by the NWFSC Groundfish Observer Program. Mortality rates of less than 100% were applied in the bottom trawl fisheries (LE and IFQ), IFQ hook and line, IFQ pot, and non-IFQ, non-nearshore fixed gear sectors, for which some information regarding gear specific survivorship was available. For all other sectors, a 100% mortality rate was applied because gear specific survivorship information is not available. Rounding of values might mask very small weights in some categories and are presented here as zero (0). Tables with unrounded values are provided on the NOAA/NWFSC/FOS website. All weights are estimated based on whole fish (a.k.a. 'round weight', not head-&-gut). \*=confidential data, less than 3 vessels observed; - = no observer coverage.

|      |                              |        | IFQ Fisher | ту 2011-г | present | 9        |                         | Non-Nears | hore fixe | d gear |                         |                     |                        |                   |         | Totals   |          |
|------|------------------------------|--------|------------|-----------|---------|----------|-------------------------|-----------|-----------|--------|-------------------------|---------------------|------------------------|-------------------|---------|----------|----------|
| Year | LE bottom                    | Bottom | LE CA      | Hook      | $Pot^9$ | Midwater | Midwater                | LE        | LE        | OA     | Nearshore               | Pink                | $\mathbf{C}\mathbf{A}$ | At-sea            | All     | <100%    | 100%     |
|      | trawl                        | Trawl  | Halibut    | &Line     |         | Rockfish | Hake <sup>2,3,5,9</sup> | Endorsed  | Non-      |        | Fixed Gear <sup>3</sup> | Shrimp <sup>3</sup> | Halibut                | Hake <sup>3</sup> | sectors | mortal-  | mortal-  |
|      | 2002-10                      | 1,2,9  | 1,3        |           |         | 3,4,9    |                         |           | Endors    | ed     |                         |                     | 3,6                    |                   |         | ity rate | ity rate |
|      |                              |        |            |           |         |          |                         |           |           |        |                         |                     |                        |                   |         | 7        | 8        |
|      | Total Discard Mortality (mt) |        |            |           |         |          |                         |           |           |        |                         |                     |                        |                   |         |          |          |
| 2002 | 344.82                       |        |            |           |         |          |                         | 22.71     | 0.00      | -      | -                       | -                   | -                      | 1.14              | 368.67  | 367.53   | 1.14     |
| 2003 | 124.43                       |        |            |           |         |          |                         | 30.20     | 0.03      | -      | 0.00                    | -                   | 0.00                   | 2.65              | 157.31  | 154.66   | 2.65     |
| 2004 | 133.12                       |        |            |           |         |          |                         | 38.42     | 0.00      | -      | 1.00                    | 0.00                | 0.70                   | 1.13              | 174.37  | 172.24   | 2.13     |
| 2005 | 286.52                       |        |            |           |         |          |                         | 35.53     | 0.00      | -      | 2.19                    | 0.04                | 0.03                   | 1.97              | 326.28  | 322.08   | 4.20     |
| 2006 | 242.47                       |        |            |           |         |          |                         | 104.30    | 0.01      | -      | 0.54                    | -                   | -                      | 0.83              | 348.15  | 346.78   | 1.37     |
| 2007 | 208.81                       |        |            |           |         |          |                         | 20.43     | 0.28      | 3.48   | 0.09                    | 0.21                | 0.06                   | 1.18              | 234.54  | 233.06   | 1.48     |
| 2008 | 207.81                       |        |            |           |         |          |                         | 41.68     | 0.48      | 6.48   | 0.36                    | 0.00                | 0.31                   | 3.98              | 261.10  | 256.76   | 4.34     |
| 2009 | 251.1                        |        |            |           |         |          |                         | 52.10     | 0.04      | 5.58   | 1.30                    | 0.00                | 0.00                   | 0.33              | 310.45  | 308.82   | 1.63     |
| 2010 | 180.97                       |        |            |           |         |          |                         | 22.22     | 0.06      | 5.20   | 0.08                    | 0.00                | 0.00                   | 1.57              | 210.10  | 208.45   | 1.65     |
| 2011 |                              | 31.28  | 0          | 0.97      | 0.89    | *        | 0.03                    | 21.99     | 3.44      | 2.13   | 3.08                    | 0.19                | 0.00                   | 0.61              | 64.61   | 60.70    | 3.91     |
| 2012 |                              | 36.06  | *          | 2.34      | 0.51    | 0.0      | 0.00                    | 24.50     | 2.59      | 3.84   | 2.27                    | 0.00                | 0.00                   | 0.64              | 72.75   | 69.84    | 2.91     |
| 2013 |                              | 32.24  | $see^1$    | 0.48      | 0.21    | 0.0      | 0.05                    | 3.56      | 0.00      | 0.28   | 1.37                    | 0.00                | 0.00                   | 1.06              | 39.25   | 36.77    | 2.48     |
| 2014 |                              | 26.23  | $see^1$    | 0.61      | 0.08    | 0.0      | 0.11                    | 27.74     | 0.00      | 0.55   | 0.97                    | 0.00                | 0.00                   | 0.37              | 56.66   | 55.21    | 1.45     |
| 2015 |                              | 33.31  | $see^1$    | 1.52      | 0.38    | 0.0      | 0.56                    | 20.09     | 0.07      | 1.69   | 1.48                    | 0.01                | 0.00                   | 0.06              | 59.17   | 57.06    | 2.11     |

<sup>&</sup>lt;sup>1</sup>Starting in 2013, LE CA Halibut estimates are combined with IFQ Bottom Trawl estimates.

Note: For summaries of P. halibut catch from Exempted Fishing Permits see Table 38; for Non-Groundfish Fisheries not observed by WCGOP see Table 39

 $<sup>^2 {\</sup>rm Includes}$  a small amount landed and discarded at the dock.

 $<sup>^3100\%</sup>$  mortality rate

<sup>&</sup>lt;sup>4</sup>from 2011-14, 'Midwater Trawl'

<sup>&</sup>lt;sup>5</sup>from 2011-14, 'Shoreside Hake'

<sup>&</sup>lt;sup>6</sup>Starting in 2011, this sector only includes OA CA halibut

<sup>&</sup>lt;sup>7</sup>LE Bottom Trawl, IFQ Bottom Trawl, IFQ hook and line, IFQ pot, LE and OA CA Halibut, Non-Nearshore Fixed Gear

<sup>&</sup>lt;sup>8</sup>IFQ Midwater Rockfish, Midwater Hake, Nearshore fixed gear, Pink Shrimp, At-sea Hake

<sup>&</sup>lt;sup>9</sup>Includes P. halibut catch from IFQ electronic monitoring EFP

Table 2: A comparison of P. halibut IBQ (mt, north of 40°10′ N. lat.; mortality rates applied) between the Vessel Account System (VAS) and the NWFSC Observer Program final estimation (includes a small amount discarded at the dock). The two systems use different approaches (see Methods and Appendix B) to estimate P. halibut mortality.

|      | Total IBQ mortality of P. halibut (mt) |          |  |  |  |  |  |  |  |
|------|----------------------------------------|----------|--|--|--|--|--|--|--|
| Year | VAS                                    | Observer |  |  |  |  |  |  |  |
|      |                                        | Program  |  |  |  |  |  |  |  |
| 2011 | 32.14                                  | 33.17    |  |  |  |  |  |  |  |
| 2012 | 45.65                                  | 38.91    |  |  |  |  |  |  |  |
| 2013 | 32.98                                  | 32.98    |  |  |  |  |  |  |  |
| 2014 | 27.49                                  | 27.03    |  |  |  |  |  |  |  |
| 2015 | 35.93                                  | 35.77    |  |  |  |  |  |  |  |

Table 3: Percent of legal-sized P. halibut bycatch, by weight (mt) in the IFQ Bottom Trawl fishery north of 40 °10′ N. lat. (mortality rate applied).

| Year | % legal-sized P. halibut in IFQ bottom trawl north of $40^{\circ}10^{'}$ N. lat. |
|------|----------------------------------------------------------------------------------|
| 2011 | 67%                                                                              |
| 2012 | 67%                                                                              |
| 2013 | 64%                                                                              |
| 2014 | 60%                                                                              |
| 2015 | 68%                                                                              |

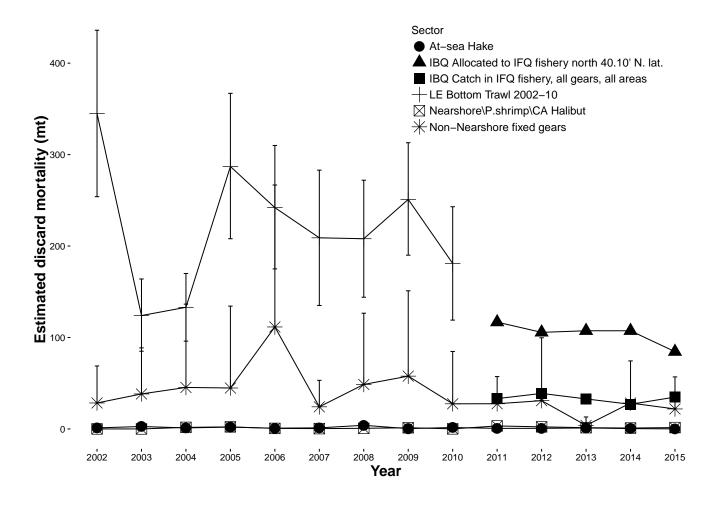



Figure 1: Total estimated P. halibut discard mortality (mt  $\pm$  1 SE, with mortality rates applied if applicable) from all sectors observed by the NWFSC Groundfish Observer Program. Estimates are not included for sectors and years where there were insufficient observer data. IBQ observations include all IFQ sectors and gears except At-sea Hake which is shown separately. Values are reported in Table 1

# 2 INTRODUCTION

Pacific halibut (*Hippoglossus stenolepis*) is found in coastal waters throughout the North Pacific. Off the west coast of the United States, it inhabits continental shelf areas (<150 fm) from Washington to central California (Clark and Hare 1998). Pacific halibut has long supported a directed commercial fishery in the U.S. and Canada, but it is also caught as bycatch in other fisheries that target demersal species inhabiting similar depths and seafloor habitat types (Chastain 2012). The objective of this report is to provide estimates of P. halibut bycatch in the U.S. west coast groundfish fisheries from 2002-2015.

# 2.1 West Coast Groundfish Fishery

The west coast groundfish fishery is a multi-species fishery that utilizes a variety of gear types. The fishery harvests species designated in the Pacific Coast Groundfish Fishery Management Plan (FMP; PFMC 2011) and is managed by the Pacific Fishery Management Council (PFMC). Over 90 species are listed in the groundfish FMP, including a variety of rockfish, flatfish, roundfish, skates, and sharks. These species are found in both federal (>4.8 km offshore t the EEZ) and state waters (0-4.8 km). Groundfish are both targeted and caught incidentally by trawl nets, hook-&-line gears, and fish pots. Under the FMP, the groundfish fishery consists of four management components:

- The Limited Entry (LE) component encompasses all commercial fisheries who hold a federal limited entry permit. The total number of limited entry permits available is restricted. Vessels with an LE permit are allocated a larger portion of the total allowable catch for commercially desirable species than vessels without an LE permit.
- The Open Access (OA) component encompasses commercial fishers who do not hold a federal LE permit. Some states require fishers to carry a state issued permit for certain OA sectors.
- The Recreational component includes recreational anglers who target or incidentally catch groundfish species. Estimate of P. halibut bycatch in recreational fisheries are compiled by the IPHC and are not covered by this report.
- The Tribal component includes native tribal commercial fishers in Washington state that have treaty rights to fish groundfish. Estimates of P. halibut bycatch from tribal fisheries are compiled by the IPHC and are not included in this report, with the exception of the observed tribal at-sea Pacific hake sector which are included as part of the "At-sea hake" values included in Tables 1 and 40.

These four components can be further subdivided into sectors based on gear type, target species, permits and other regulatory factors. This report includes data from the following sectors:

- IFQ fishery (formerly LE bottom trawl 2002-2010): This sector is subdivided into the following components due to differences in gear type and target strategy:
  - Bottom trawl: Bottom trawl nets are used to catch a variety of non-hake groundfish species. Catch is delivered to shore-based processors.
  - Midwater rockfish trawl: Midwater trawl nets are used to target mid-water non-hake species, typically rockfish and landings of Pacific hake are less than 50% (by weight) of total trip landings. Catch is delivered to shore-based processors. From 2011-14, reported as IFQ non-hake Midwater Trawl.
  - Pot: Pot gear is used to target groundfish species, primarily sablefish. Catch is delivered to shore-based processors.
  - Hook-and-Line: Longlines are primarily used to target groundfish species, mainly sablefish. Catch is delivered to shore-based processors.
  - LE California halibut trawl: Bottom trawl nets are used to target California halibut by fishers holding a state California halibut permit and an LE federal trawl groundfish permit. Catch is delivered to shore-based processors.
  - Midwater hake trawl: Midwater trawl nets are used to catch Pacific hake and more than 50% (by weight) of the total trip landings is P. hake. Catch is delivered to shore-based processors. From 2011-14, reported as Shoreside Hake.
  - At-sea motherships: Midwater trawl nets are used to catch Pacific hake. Catcher vessels deliver unsorted catch to a mothership. The catch is sorted and processed aboard the mothership.

- At-sea catcher-processors: Midwater trawl nets are used to catch and process Pacific hake at sea.
- At-sea tribal: Midwater trawl nets are used to catch and process Pacific hake at sea by Native American tribes. The tribes must operate within defined boundaries in waters off northwest Washington.
- OA pink shrimp trawl: Trawl nets are used to target pink shrimp on vessels carrying a state pink shrimp permit. Catch is delivered to shore-based processors.
- OA California halibut trawl: Trawl nets are used to target California halibut by fishers holding a state California halibut permit. Catch is delivered to shore-based processors.
- LE fixed gear (non-nearshore): This sector is subdivided into two components based on differences in permitting and management:
  - LE sablefish endorsed: Longlines and pots are used to target sablefish. Catch is generally delivered to shore-based processors.
  - LE sablefish non-endorsed: Longlines and pots are used to target groundfish, primarily sablefish and thornyheads, by LE sablefish vessels that have caught their sablefish quota limit and are fishing outside the normal LE sablefish season. Catch is delivered to shore-based processors or sold alive.
- OA fixed gear (non-nearshore): Fixed gear, including longlines, pots, fishing poles, stick gear, etc. is used to target non-nearshore groundfish. Catch is delivered to shore-based processors.
- Nearshore fixed gear: A variety of fixed gear, including longline, pots, fishing poles, stick gear, etc. are used
  to target nearshore rockfish and other nearshore species managed by state permits in Oregon and California.
  Catch is delivered to shore-based processors or sold live.

# 2.2 NW Fisheries Science Center (NWFSC) Groundfish Observer Program

The NWFSC Groundfish Observer Program observes commercial sectors that target or take groundfish as bycatch. The observer program has two units: the West Coast Groundfish Observer Program (WCGOP) and the At-Sea Hake Observer Program (A-SHOP).

The WCGOP program was established in May 2001 by NOAA Fisheries (a.k.a., National Marine Fisheries Service, NMFS) in accordance with the Pacific Coast Groundfish Fishery Management Plan (50 CFR Part 660) (50 FR 20609). This regulation requires all vessels that catch groundfish in the U.S. EEZ from 4.8-322 km offshore carry an observer when notified to do so by NMFS or its designated agent. Subsequent state rule-making has extended NMFS's ability to require vessels fishing in the 0-4.8 km state territorial zone to carry observers.

The A-SHOP has conducted observations of the west coast at-sea hake (a.k.a. Pacific whiting, henceforth referred to as hake) fishery since 2001. Prior to 2001, observer coverage of the west coast at-sea hake fishery was conducted by the North Pacific Groundfish Observer Program. Current A-SHOP program information and documentation on data collection methods can be found in the A-SHOP observer manual (NWFSC 2016b). The at-sea hake fishery has mandatory observer coverage, with each vessel over 38 meters carrying two observers. Beginning in 2011, under IFQ/Co-op Program management, all catcher vessels that deliver catch to motherships are required to carry WCGOP observers or use electronic monitoring equipment.

The NWFSC Groundfish Observer Program's goal is to improve estimates of total catch and discard by observing groundfish fisheries along the U.S. west coast. The WCGOP and A-SHOP observe distinct sectors of the groundfish fishery. The WCGOP observes multiple sectors of the groundfish fishery, including: IFQ shoreside delivery of groundfish and Pacific hake, at-sea mothership catcher-vessels fishing for Pacific hake, LE and OA fixed gear, and state-permitted nearshore fixed gear sectors. The WCGOP also observes several fisheries that incidentally catch groundfish, including the California halibut trawl and pink shrimp trawl fisheries. The A-SHOP observes the fishery that catches and delivers Pacific hake at-sea including non-tribal catcher-processor and mothership vessels.

# 2.3 Pacific Halibut Management and Fishery Interaction

The International Pacific Halibut Commission (IPHC), a body founded through treaty agreement between the U.S. and Canada, sets the P. halibut annual total allowable catch (TAC) for IPHC Area 2A, the collective U.S. waters

off the states of Washington, Oregon and California. The TAC is based on bycatch mortality, which takes into account potential survival after being discarded. Regulations for IPHC Area 2A are set by NOAA Fisheries West Coast Regional Office. Pacific halibut catch in Area 2A is divided between tribal and non-tribal fisheries, between commercial and recreational fisheries, and between recreational fisheries in different states (Washington, Oregon and California). The Pacific Fishery Management Council describes this P. halibut catch division each year in a catch-sharing plan. In 2015, the LE fixed gear sablefish endorsed sector was allowed to retain and land P. halibut north of Pt. Chehalis, WA. The IFQ midwater Pacific hake fishery is a maximized-retention fishery. Under this fishery, small amounts of incidental P. halibut take are allowed to be landed and subsequently donated to food banks or destroyed. In all other West Coast commercial groundfish fishery sectors, P. halibut must be discarded at-sea. However, small amounts of P. halibut are, on rare occasions, mixed with target species and accidentally landed. These individuals are subsequently donated or destroyed as in the IFQ Midwater hake fishery.

In 2011, the limited entry (LE) bottom trawl sector of the U.S. west coast groundfish fishery began fishing under an Individual Fishing Quota (IFQ) management program. An IFQ is defined as a federal permit under a limited access system to harvest a quantity of fish, representing a portion of the total allowable catch of a fishery that can be received or held for exclusive use by a person (MSA 16 UlC 1802(23)). The implementation of the IFQ management program in 2011 resulted in changes to the method used for estimating fishing mortality, including the mandate that vessels must carry NMFS observers on all IFQ fishing trips. A full list of changes to the fishery can be found in Jannot et al. 2012.

Under the IFQ program, P. halibut is managed at the permit level, through Individual Bycatch Quota (IBQ) pounds. An IBQ accounts for bycatch mortality including any potential survivorship after capture. Currently, this is the only species managed under IBQ for the west coast groundfish IFQ fishery. Each federal groundfish permit with a trawl endorsement is allocated IBQ pounds for P. halibut caught north of 40°10′ N. latitude. Pacific halibut caught south of 40°10′ N. latitude are not managed by an IBQ quota but are reported here under the IFQ fishery.

Data collection and reporting for this fishery is described in section 3.2.1 by gear type. The shore-based IFQ fishery includes all IFQ fishery components with the exception of at-sea motherships and catcher-processors. Motherships and catcher-processors have a bycatch quota for P. halibut, but it is not accounted for at the permit level.

With the exception of the IFQ fishery, P. halibut bycatch mortality is accounted for at the fishery sector level only. P. halibut is regularly caught as bycatch in the LE sablefish endorsed fixed gear, LE sablefish non-endorsed fixed gear, and OA fixed gear sectors.

# 3 METHODS

#### 3.1 Data Sources

Data sources for this analysis include on-board observer data (from the WCGOP and A-SHOP), landing receipt data (referred to as fish tickets, obtained from PacFIN) and data generated from vessels carrying electronic monitoring (a.k.a. EM) equipment. Currently only vessels in the IFQ sector fishing on an exempted fishing permit (EFP) carry EM equipment. EM data are obtained from Pacific States Marine Fisheries Commission. To date, observer data is the sole source for discard estimation in the IFQ sectors, except for vessels using EM under an EFP, as stated above. All other sectors use a combination of observer and PacFIN data to estimate discard mortality. A list of fisheries, coverage priorities and data collection methods employed by WCGOP in each observed fishery can be found in the WCGOP manuals (NWFSC 2016b). A-SHOP program information, documentation and data collection methods can be found in the A-SHOP observer manual (NWFSC 2016b).

The sampling protocol employed by the WCGOP is primarily focused on the discarded portion of catch. To ensure that the recorded weights for the retained portion of the observed catch are accurate, haul-level retained catch weights recorded by observers are adjusted based on trip-level fish ticket records. This process is described in further detail on the WCGOP Data Processing webpage (NWFSC 2016a) and was conducted prior to the analyses presented in this report. All weights of P. halibut presented in this report are round weights, that is, whole fish. IPHC converts these weights to dressed weight (i.e., head and organs removed).

For data processing purposes, species and species groups were defined based on management (NWFSC 2016c). A complete listing of groundfish species is defined in the Pacific Coast Groundfish Fishery Management Plan (PFMC 2011).

Fish ticket landing receipts are completed by fish-buyers in each port for each delivery of fish by a vessel. Fish tickets are trip-aggregate sales receipts for market categories that may represent single or multiple species. Fish tickets are issued to fish-buyers by a state agency and must be returned to the agency for processing. Fish ticket and species-composition data are submitted by state agencies to the PacFIN regional database. Annual fish ticket landings data were retrieved from the PacFIN database (April 2016) and subsequently divided into various sectors of the groundfish fishery as indicated in Figure 8 and in further detail online (NWFSC 2016c).

# 3.2 Shore-based IFQ Fishery

The methods used to report in-season IBQ estimates via the Vessel Account System (VAS) are separate from those methods used to estimate final fleet-wide P. halibut mortality. Methods for in-season IBQ estimation are discussed in Appendix B 10.2. Results obtained by methods described here resulted in fleet-wide estimates of P. halibut mortality that are very close to those reported by the VAS (Table 2).

#### 3.2.1 Pacific Halibut Data Collection in the Shore-based IFQ Fishery

The WCGOP discard sampling methodologies ensure that P. halibut mortality can be estimated, regardless of the limitations imposed by the vessel, catch composition, or catch quantity. Three pieces of information are necessary to estimate P. halibut mortality (also see Table 4):

- 1. A count of individual P. halibut in the haul or sample
- 2. Actual or visual length measurements (cm)
- 3. A viability obtained by physical assessment of individual P. halibut using IPHC designed dichotomous keys that relate the physical condition of the fish to a viability code (NWFSC 2016b). A unique key is used for each gear type (trawl, longline, pot).

Observers could sample all or a subset of P. halibut caught in a haul/set. The proportion of P. halibut sampled is based on the number of P. halibut caught in the haul/set, the level of assistance provided by the crew, as well as other variables (e.g., physical space, weather). Sampling and assessment of P. halibut is dependent on crew assistance and cooperation. Regulations prohibit vessel crew from discarding any P. halibut without first notifying the observer. The vessel crew must comply with requests by the observer to ensure proper P. halibut sampling, including but not limited to: modifying P. halibut sorting procedure, assisting the observer by delivering the P. halibut to the observer, and modifying operations to ensure P. halibut sampling is completed. Table 4 describes the P. halibut data obtained on IFQ-permitted vessels fishing different gear types.

On vessels fishing fixed gear (pot or hook-&-line), observers must sample at least 50% of the gear per set. Actual length measurements are obtained on bottom trawl, midwater trawl, and pot vessels, but only visual length estimates are made on vessels fishing hook-&-line gear. Visual estimates are in 10 cm increments (55-64 cm, 65-74 cm, etc.).

The crew's cooperation is vital to the observer's sampling success during hook-&-line fishing. When an observer samples for P. halibut, the crew are not permitted to shake loose or discard any P. halibut before the observer can estimate the fish length, nor can they restrict the observer's view of the line as it comes out of the water. If requested by the observer, the crew is required to physically hand an individual fish to the observer or slow the gear retrieval.

Viability is assessed at the point of fish release when returned to sea. On vessels using "resuscitation boxes" or other techniques to increase the likelihood of survival, condition sampling is performed prior to the fish being returned to sea. Observations of several condition characteristics are used to assign each fish to one of three viability categories for trawl and pot gear: Excellent, Poor, or Dead (NWFSC 2016; Williams and Chen 2004). Observer field estimates of viability for P. halibut discarded in the IFQ fishery by vessels fishing bottom trawl or pot gear are used to compute the total estimated mortality of discarded P. halibut. IBQ weight (or simply IBQ) refers to the

Table 4: Data collected from P. halibut caught on IFQ vessels using different types of gear.

| Gear                        | Count                  | Length Measurement    | Viability |
|-----------------------------|------------------------|-----------------------|-----------|
|                             |                        |                       |           |
| Bottom trawl                | all in the haul        | actual, all or subset | yes       |
| Midwater trawl <sup>1</sup> | all in the sample      | actual, all or subset | yes       |
| Pot                         | all in sampled portion | actual, all or subset | yes       |
| Hook -and- line             | all in sampled portion | visual, all or subset | no        |
|                             |                        |                       |           |

<sup>&</sup>lt;sup>1</sup>Applies only to Catcher Processors and Mothership Catcher Vessels. Shoreside midwater trawl hauls are dumped directly into the hold and any P. halibut are delivered to the dock for discard or donation.

estimated mortality of discarded P. halibut, with the appropriate mortality rate applied based on viability (Tables 2 & 3). If no viability data or mortality rates are available, we assume 100% mortality.

Viability categories are used to assign mortality rates to P. halibut. Mortality rates for vessels fishing bottom trawl gear are based on mortality data collected by Hoag (1975), who found some survivorship among fish in the dead condition category. Mortality rates for vessels fishing pot gear are based on conservative assumptions of likely survival from pot-induced injuries (Williams and Wilderbuer 1995). Because of the difficulties of collecting P. halibut viability on hook-and-line vessels, we used a discard mortality rate (DMR) of 0.16, which represents an average of DMRs over all years for the Bering Sea/Aleutian region longline fishery (Williams 2008). Discard mortality was assumed to be 100% for all midwater trawl bycatch estimates.

Table 5: Mortality rates used for each of the condition categories  $(m_c)$  for IFQ bottom trawl vessels (Clark et al. 1992).

| $m_c$      | Rate |
|------------|------|
| $m_{exc}$  | 0.20 |
| $m_{poor}$ | 0.55 |
| $m_{dead}$ | 0.90 |

Table 6: Mortality rates used for each of the condition categories  $(m_c)$  for IFQ pot gear vessels (IPHC, 2011).

| $m_c$      | Rate |
|------------|------|
| $m_{exc}$  | 0.00 |
| $m_{poor}$ | 1.00 |
| $m_{dead}$ | 1.00 |

# 3.2.2 Shore-based IFQ fishery Bycatch Estimation

We stratified IFQ P. halibut bycatch data based on sector (shoreside non-hake groundfish, shoreside Pacific hake, at-sea Pacific hake, and LE California halibut) and gear (bottom trawl, midwater trawl, pot, hook-&-line). LE California halibut tows were separated from IFQ bottom trawl tows in 2011-12, but have been combined with IFQ bottom trawl since 2013 to maintain confidentiality. Within the shoreside non-hake groundfish sector, we further stratified using area and depth within each gear type. We maintained area and depth strata that were applied to bottom trawl, hook-&-line, and pot gear in previous reports (see Table 4 of this report for specific strata; Heery et al. 2010, Jannot et al. 2011, 2012, 2013) because prior work demonstrated that these variables were correlated

with P. halibut by catch (Heery et al. 2010). Observations from IFQ vessels fishing midwater trawl gear targeting Pacific hake or other midwater target species were not post-stratified. In addition to the strata described above, we also provide by catch estimates north and south of the groundfish management line (40°10′ N. lat.) for each sector and gear type.

Despite the 100% observer coverage mandate since 2011, there were some rare occasions (e.g., observer illness) when tows or sets were either only partially sampled or not sampled. We used ratio estimators to apportion unsampled weight to P. halibut, within each stratum. To obtain the estimated weight of P. halibut ( $\hat{W}$ ) when the entire haul or set was unsampled, the unsampled discard weight, summed across unsampled hauls within the stratum, was multiplied by the ratio of the weight of P. halibut discard (summed across fully sampled hauls within a stratum) divided by the total discard weight of all species in all fully sampled hauls within a stratum:

$$\hat{W}_{u,s} = \sum_{u} x_{u,s} \times \frac{\sum w_{f,s}}{\sum x_{f,s}} \tag{1}$$

where, for each stratum:

s = stratum, which includes sector and year and could include, area, depth, gear

u = unsampled haul

f = fully sampled haul

x = weight of discarded catch

 $\hat{W}$  = estimated weight of unsampled P. halibut in the stratum

w = sampled weight of P. halibut

The unsampled weight of partially sampled hauls or sets was categorized into weight of non-IFQ species (NIFQ) or IFQ species. Unsampled IFQ species weight was further categorized into IFQ flatfish (IFQFF), IFQ rockfish (IFQRF), IFQ roundfish (IFQRD) and IFQ mixed species (IFQM). For the purposes of this report, we assume that unsampled P. halibut would only occur in NIFQ (south of 40°10′ N. lat. only), IFQM, or IFQFF unsampled categories. Thus, those are the only categories for which P. halibut is estimated. IFQM included all 2015 IFQ managed species (see 76 FR 27508 for a listing of IFQ species). NIFQ included all species encountered that were not designated as an IFQ managed species. IFQFF included all IFQ flatfish species managed as a complex under the groundfish FMP. North of the 40°10′ north latitude groundfish management line, P. halibut would be included in unsampled IFQFF or IFQM categories. South of the groundfish management line, P. halibut would only be included in the unsampled NIFQ category.

To obtain the estimated weight of P. halibut  $(\hat{W})$  in partially sampled hauls or sets, the unsampled discard weight, summed across partially sampled hauls within the stratum, was multiplied by the ratio of the weight of P. halibut (summed across fully sampled hauls within a stratum) divided by the total discard weight of all species occurring within a category (NIFQ, IFQFF, IFQM) in all fully sampled hauls within a stratum. Estimated P. halibut weight was summed across unsampled categories.

$$\hat{W}_{p,s} = \sum_{y} \left( \sum_{p} x_{p,y,s} \times \frac{\sum w_{f,s}}{\sum x_{f,y,s}} \right)$$
 (2)

where, for each stratum:

s = stratum, which includes year and sector, and could include, area, depth, gear

y = unsampled category (either NIFQ, IFQFF, or IFQM)

p = partially sampled haul

f = fully sampled haul

x = weight of discarded catch

 $\hat{W} = \text{estimated weight of unsampled P. halibut in the stratum}$ 

w = sampled weight of P. halibut

Expanded weights of P. halibut obtained using the equations above for unsampled or partially sampled hauls were then added to the sampled weight of P. halibut within each stratum to obtain the total P. halibut weight per stratum.

#### 3.2.3 Viability Analysis

We used observer field estimates of viability for P. halibut discarded in the IFQ fishery by vessels fishing bottom or pot gear to compute the total estimated mortality of discarded P. halibut by IFQ gear/sector and stratum.

To account for the impact of fish size on survivorship, we computed a weighted mortality rate for each condition category. Length measurements associated with each viability record were converted to weight based on the IPHC length-weight table provided in Appendix C 10.3.

A discard mortality rate for each condition category was then computed as the proportion of P. halibut sampled weight in a viability category multiplied by the viability category-specific mortality rate (see Tables 5 and 6 above):

$$DMR_{csj} = m_c \times P_{csj} \tag{3}$$

where:

s =stratum, which could include, area, depth, gear, and sector

c = viability condition (Excellent, Poor, Dead)

i = vear

m = mortality rate

P = proportion of sampled P. halibut weight (w)

DMR = discard mortality rate

Discard mortality rates for each condition category c and stratum s were then multiplied by gross discard estimates to compute total estimated discard mortality for each gear type separately:

$$\hat{F}_{sj} = \sum_{c} \left( B_{sj} \times DMR_{sj} \right) \tag{4}$$

where:

s =stratum, which could include, area, depth, gear, and sector

c = viability condition (Excellent, Poor, Dead)

i = year

F = total estimated discard mortality

B = gross estimated discard weight

DMR = discard mortality rate

Viability data are collected from only a sub-sample of the P. halibut that observers encounter. Based on previous evaluations by Wallace and Hastie (2009), we expect that survivorship of P. halibut in bottom trawl tows are most directly affected by the length of the tow and the amount of catch that fills the net. These variables are not part of the bycatch ratio stratification process (above), and their use in stratifying viability data would make it difficult to then apply discard mortality rates to initial gross estimates of bycatch. We found that tow duration was directly related to depth, one of the variables used to stratify discard ratios and initial gross discard estimates for bottom trawl gear. Because depth and tow duration appeared to co-vary, we used depth and area to stratify IFQ viability data collected from bottom trawl gear. For IFQ viability data collected from pot gear, only area is used to stratify the data. For longline gear, we used a discard morality rate of 16%, which represents an average of DMRs over all years for the Bering Sea/Aleutian region longline fishery (Williams 2008).

Final estimates of P. halibut bycatch and discard mortality are also presented in the context of the estimated mortality of legal-sized halibut. This was computed by applying the proportion of sampled P. halibut weighed in each depth stratum that was from legal-sized fish (82 cm or larger) to initial estimates. Viabilities were then applied to gross legal-sized discard estimates in the same manner as described above.

#### 3.2.4 Length Frequencies

The length frequency distribution for P. halibut in the 2011-2015 IFQ fishery is provided in Table 17. Pacific halibut pose unique challenges for observer sampling. Observers typically measure the length of P. halibut and then convert the measurement to weight using the IPHC length-weight conversion table (Table 9 in 10.3).

Occasionally, observers weigh individual fish. Sometimes crew members presort the catch by removing P. halibut and immediately return them to sea. Vessel crews presort P. halibut to increase the likelihood of survival of the discarded fish. Presorting is prevalent on vessels fishing with hook-&-line gear. Fishers have raised concerns regarding crew safety when landing large P. halibut. In addition, hook-&-line fishers are concerned that P. halibut individuals would be injured during landing because of their interaction with the vessel 'crucifer' (gear used to strip the bait and any catch off of the hook and ganglion line). Therefore, shake-offs prior to the crucifier (a form of pre-sorting) is almost universal on IFQ hook-&-line vessels. Another case of pre-sorting can occur when halibut are too heavy and/or awkward to weigh in observer baskets. In all cases of pre-sorting, random samples are not available. Therefore, observers visually estimate the length of the halibut in ten-centimeter units (40cm, 50cm, 60cm, etc.), which are later converted to weight using the IPHC length-weight conversion table (Table 9 in Appendix C 10.3).

Table 41 (Appendix A 10.1) provides the actual observed length frequency distributions of discarded P. halibut for vessels fishing IFQ using bottom trawl or pot gear. These length frequencies have been weighted based on the ratio of total estimated P. halibut discard weight to the weight of P. halibut that was measured in each stratum (see Appendix A 10.1 for further details). We have summarized the proportion of length measurements in each condition category (Excellent, Poor, and Dead) in Tables 42 and 44 (Appendix A 10.1) to inform size-specific modeling of mortality. The frequency of sampled fish within each condition category was weighed in the same manner as length frequency distributions and then summarized for each 2 cm length bin. In addition, we also provide a count of the number of dead individuals in each 2 cm length bin (Appendix A 10.1, Tables 49, 50 & 51). These values were obtained by multiplying the number of individuals in a length bin within a viability category, by the condition specific mortality rate (Tables 5 & 6; or 1.0 in the case of midwater trawl) and summed these values across viabilities to obtain the number of dead per length bin. This method assumes there is no size-specific mortality.

# 3.3 Non-nearshore Fixed Gear Fishery

The WCGOP samples each non-nearshore fixed gear sector through separate random selection processes, with the limited entry (LE) sablefish endorsed season permits receiving the highest level of coverage, then LE sablefish non-endorsed permits, and open access (OA) fixed gear the lowest. LE sablefish endorsed vessels that fish outside of the primary season or that have reached their tier quota in the primary season are not randomly chosen for observation. Given this sampling structure and anticipated differences in variance from one sector to the next, we chose to maintain sector as a stratification variable in our analysis. Testing of alternative stratification schemes (Heery et al. 2010) indicated that latitude and gear type were the most important variables with respect to P. halibut bycatch in the non-nearshore fixed gear groundfish fishery. Bycatch estimates were produced separately for each sector and gear combination. Two latitudinal strata were applied to the LE sablefish endorsed longline sector (north and south of Pt. Chehalis, WA = 46°53.30′ N. lat.) because previous modeling demonstrated that these strata significantly improved the fit of predicted by catch amounts to the amounts observed (Heery et al. 2010). Pt. Chehalis, WA was used in previous estimates of P. halibut bycatch in the LE sablefish endorsed season longline sector because of its relevance to groundfish management and its apparent ability to split out higher by catch rates off the northern coast of Washington (Heery and Bellman 2009). Evaluations of latitudinal strata for the other fixed gear sectors did not improve the fit of models to an extent that justified their use. Thus, we maintained previous stratifications for the other groundfish fixed gear sectors (Heery and Bellman 2009, Heery et al. 2010, Jannot et al. 2011, 2012, 2013).

#### 3.3.1 Discard Estimation

A deterministic approach was used to estimate P. halibut discard for all sectors of the non-nearshore groundfish fixed gear fishery. Discard ratios were computed from observer data as the discarded weight of P. halibut divided by the retained weight (Table 23). Retained weight varies by sector in this fishery and can be either sablefish or all FMP groundfish (except Pacific hake, see Table 22 for type of retained used; for list of FMP groundfish species, see: NWFSC 2016c). Ratio denominators were identified for each sector of the non-nearshore fixed gear fishery based on the targeting behavior of that sector. Discard ratios were then multiplied by the total sector landed weight of either sablefish or FMP groundfish (except Pacific hake), corresponding to the denominator used to compute the observed discard ratio for each sector. This provided an expanded gross estimate of P. halibut discard for each sector. A discard mortality rate (discussed below) was then applied to compute estimated discard mortality.

Total landed weights for each sector are obtained from fish ticket landing receipts. Fish tickets for fixed gear that included recorded weights for sablefish were included in the non-nearshore fixed gear sector. Commercial fixed gear fish tickets with recorded nearshore species weight were not used in this portion of the fixed gear analysis, regardless of whether they included recorded weights for sablefish (Figure 8). In addition, fixed gear fish tickets without recorded sablefish or nearshore species were included in the non-nearshore fixed gear sectors only if groundfish landings were greater than non-groundfish landings based on a unique vessel and landing date.

Fish tickets from the non-nearshore fixed gear sector were partitioned into the three commercial fixed-gear sectors (LE sablefish endorsed season, LE sablefish non-endorsed, and OA fixed gear) through the following process. Commercial fixed-gear fish tickets were first divided out by whether the vessel had a federal groundfish permit (limited entry) or no federal groundfish permit (open access). OA fish tickets were placed in the OA fixed gear groundfish sector. Next, LE fish tickets were separated based on whether the vessel's federal groundfish permit(s) had a sablefish endorsement with tier quota for the primary season or if it was not endorsed (also referred to as 'zero' tier). Fish tickets for all LE sablefish vessels with tier endorsements that were operating within this period and within their allotted tier quota were placed in the LE sablefish endorsed sector. If LE sablefish endorsed vessels fished outside of the primary season (November through March) or made trips within the season after they had reached their tier quota, the fish tickets were placed in the LE sablefish non-endorsed sector. In addition, fish tickets from non-endorsed LE vessels were also placed in the LE sablefish non-endorsed sector.

Further processing of fish tickets identified and removed the directed commercial P. halibut fishery landings from the non-nearshore fixed gear analysis. The directed P. halibut fishery occurs for only a few days each year, during 10-hour openings that are designated by the IPHC. LE and OA fixed gear vessels that typically target groundfish can participate in the directed fishery. For most fixed gear vessels, (other than LE sablefish endorsed vessels north of Pt. Chehalis) this is the only time during which they are allowed to land P. halibut. Fish tickets that included P. halibut landings on or within the 2 days after a directed fishery opening were considered to be part of the directed fishery and not part of the non-nearshore fixed gear fishery targeting federal FMP groundfish. These fish tickets were removed prior to our analysis. This approach may have resulted in the removal of some non-directed fishery landings north of Pt. Chehalis, but any bias introduced by this step is considered to be extremely small given the short time period across which fish tickets were removed.

WCGOP observer data were stratified according to sector and gear type (longline and pot/trap). As previously described, one additional latitudinal stratum at Pt. Chehalis, WA (46°53.30′ N. lat.) was used for the LE sablefish endorsed longline sector. Some retention of P. halibut was allowed in the LE sablefish endorsed season in the area north of Pt. Chehalis. The Pt. Chehalis line was the only latitudinal stratification incorporated into this portion of the analysis and was only applied to the LE sablefish endorsed sector. Discard amounts provided for the other two field gear sectors represent coast-wide estimates.

The number of observed trips, sets, and vessels are summarized for each sector, gear type, and area (where applicable) (Tables 19, 20 & 21). The landed weight of sablefish and FMP groundfish (excluding Pacific hake) is used as a measure for expanding discard from observed trips to the entire fleet (Tables 22 & 23). Observed discard ratios were calculated by sector, gear type and area based on the following equation:

$$\hat{D}_s = \frac{\sum_t d_s}{\sum_t r} \times F_s \tag{5}$$

s = stratum, including gear, sector, gear type, and area

t = observed sets

d =observed discard (mt) of P. halibut

r =observed retained weight (mt) of sablefish or all FMP groundfish except Pacific hake

F = weight (mt) of retained sable fish or all FMP groundfish excluding Pacific hake recorded on fish tickets in strata s

 $D_s = \text{discard estimate for stratum } s$ 

For all strata except the LE sablefish non-endorsed longline and the OA sectors, discard ratios were calculated by dividing the stratum discard weight of P. halibut by the retained catch weight of sablefish. Retained groundfish was used as the ratio denominator for the LE sablefish non-endorsed longline and the OA sectors because these sectors target a wider range of groundfish species. A broader denominator was therefore necessary to effectively capture the level of fishing effort in these sectors.

Where FMP groundfish (excluding Pacific hake) was used to compute discard ratios, retained weights recorded by the observer not appearing on fish tickets were excluded from the denominator. This prevents double-counting associated with differences in the species codes used by observers and processors. For instance, while observers may record rockfish catch at the species level, various species of rockfish are often grouped, weighed, and recorded together on the fish ticket by the processor under a grouped market category, e.g., northern unspecified scope rockfish. In some cases, this difference in species coding prevents observer and fish ticket weights from being marched and adjusted properly. Species coding on fish tickets varies considerably between processors and over time, and it is not possible to make assumptions regarding which individual observer-recorded species likely coincide with species grouping codes on fish tickets. By using only the retained groundfish weight from fish tickets in discard ratio denominators, we prevent double-counting of retained weights. This is not a factor when using a single species in the denominator, such as sablefish, as any retained weights in observer and fish ticket data that share the same species code will match and adjust properly.

The expansion factors for each fishery sector and gear type can be found in Table 23. The discard rate multiplied by the expansion factor yielded an expanded gross P. halibut discard estimate for each stratum (Table 25). If landings were made by a fixed gear sector for which there were zero or very few WCGOP observations, the most appropriate observed discard ratio was selected and applied to those landings based on similarities in the fishery management structure, fishing and discard behavior, and the gear fished. The LE sablefish endorsed vessels fishing outside of the primary season with pot gear often land a small amount of groundfish; however, this portion of the fleet is not observed by the WCGOP program. Given similarities in gear type and catch composition, OA fixed gear pot observations were selected as the most appropriate source of information for an observed discard rate (Table 22).

#### 3.3.2 Discard Mortality Rates

Once an initial gross P. halibut discard weight was estimated, this value was multiplied by a discard mortality rate (Table 25) to generate final discard mortality estimates (Tables 25 & 26, Figure 5). Ideally, discard mortality would be approximated based on viabilities in a manner similar to the approach used for IFQ bottom trawl and pot gear. WCGOP observers have systematically recorded viability condition as P. halibut are discarded from non-nearshore longline vessels since 2011 (see Appendix E 10.5). Discard mortality estimates using viability assessments from hook-and-line vessels are presented in Appendix E (10.5) alongside the 16% rate values. Viabilities from pot gear would be appropriate to use in estimating discard mortality, however bycatch of P. halibut in pot gear is infrequent and the sample size is too small to utilize in this analysis.

Consistent with past reports, we relied on discard mortality rates (DMR) computed for Alaska groundfish fisheries (Williams 2008). An 18% DMR was applied to estimates for pot gear, coinciding with the DMR used for the sablefish pot CDQ fishery in Alaska. For longline gear, we used a discard mortality rate of 16%, which represents an average of DMRs over all years for the Bering Sea/Aleutian region longline fishery (Williams 2008). We note that, in future reports, the analysis in Appendix E (10.5) can help inform the best DMR for use with U.S. west coast vessels fishing longline gear.

For additional context, we present the length frequency distribution of P. halibut from visual length estimates and physically measured lengths in non-nearshore fixed gear sectors (Tables 27, 28, 29, & 30) and the proportion of sampled P. halibut discard of legal (>82 cm) and sub-legal (<82 cm) sizes in non-nearshore fixed gear sectors (Table 31). The majority of P. halibut lengths recorded in these fisheries were visual estimate of length, rounded to the nearest 10 cm. In other words, specimens that are 76 cm and 82 cm are both visually estimated to be 80 cm. With this level of resolution, it was not possible to compute the exact proportion of sub-legal versus legal P. halibut from visually estimated lengths. Visual estimates were instead summarized in the manner in which they are recorded; with sub-legal and legal sized halibut falling within the 75-84 cm length bin.

#### 3.4 Observed State Fisheries

Pacific halibut bycatch was also observed in the Oregon and California nearshore groundfish fixed gear sectors (Table 32), the Washington, Oregon, and California pink shrimp trawl fisheries (Table 33), and the OA California halibut trawl fishery (Table 34) The LE California halibut fishery is covered under the IFQ fishery. Bycatch

estimates for these three fishery sectors were computed within each fishery based on the following equation:

$$\hat{B} = \frac{\sum_{t} b}{\sum_{t} r} \times F \tag{6}$$

b = observed discard (mt) of P. halibut on set/haul t

t = observed sets

r = observed retained weight (mt) of target species on set/haul t

F = weight (mt) of retained target species

 $\hat{B} = \text{Discard estimate of P. halibut (mt)}$ 

The nearshore fixed gear fishery targets a variety of groundfish and state managed nearshore species that inhabit areas less than 50 fathoms deep. All species included in the nearshore target group as listed in the WCGOP data processing appendix (NWFSC 2016c) were included in the denominator when calculating bycatch ratios for the nearshore fixed gear sector. Pink shrimp and California halibut were considered the target species in their respective fisheries. Discard mortality rates are not available for California halibut and pink shrimp fisheries due to a lack of information regarding survivorship. To maintain confidentiality, the Nearshore fisheries cannot be split out by gear type (hook-and-line vs. pot). For these reasons, we assumed 100% mortality in the Nearshore, Pink Shrimp, and CA halibut fisheries.

# 3.5 Exempted Fishing Permits

Occasionally, the WCGOP observes vessels fishing under an exempted fishing permit (EFP). EFPs directed toward groundfish species have been required to carry observers on 100% of trips. Thus to obtain the catch from EFPs, we sum the at-sea discards and landed P. halibut catch. To provide non-confidential data, we aggregate across EFPs within years and, across years when necessary. In 2015, vessels in the IFQ fishery could participate in an electronic monitoring (EM) EFP. To obtain the catch from the 2015 EM EFP, we sum the P. halibut catch from the electronic monitoring data supplied to NWFSC Observer Program by the Pacific States Marine Fisheries Commission. Unlike the normal IFQ program, IFQ vessels fishing under an EM EFP are not required to carry an observer on every fishing trip because EM is used to ensure compliance with the IFQ program.

# 3.6 Non-groundfish Fisheries Not Observed by NWFSC

Pacific halibut bycatch is also recorded in non-groundfish fisheries that are not observed by the NWFSC Observer Program. Data from these fisheries are only available to the NWFSC Observer Program from PacFIN fish ticket records. We provide a summary of landed P. halibut from these fisheries by year.

# 4 RESULTS

# 4.1 IFQ Fishery

All participating vessels carry an observer on all fishing trips under IFQ management (100% trips observed,) except those participating in the EM EFP (see below for EM EFP results). For all 2015 strata, 99% or more of the observed IFQ tows or sets were sampled (Tables 7, 8, & 9). Mixed IFQ species represented the largest portion of unsampled catch (Table 10; see NWFSC 2016b for IFQ sampling protocols).

The total estimated weight of P. halibut from unsampled tows or sets in 2015 represents a small fraction (0.67 mt, or 0.8%) of the total 2015 IFQ gross discard weight of P. halibut (Tables 10, 11 & 12). Eighty-eight percent of the estimated gross discard weight (0.59 mt) came from unsampled IFQM, whereas the remainder (0.08 mt) came from unsampled hauls (Tables 10, 11 & 12, see also Table 40).

Gross bycatch estimates and total discard mortality estimates were largest for vessels fishing bottom trawl gear, north of the 40°10′ N. latitude management line in depths greater than 60 fathoms (Table 14). This gear-area-depth stratum accounts for 75% of the 2015 P. halibut discard mortality in the IFQ fishery. The next largest fraction (16%) of total IFQ discard mortality was found in the same gear-area combination in shallow waters (<60 fm). Together, bottom trawl gear fishing north of the 40°10′ N. latitude management line accounts for 90% of the 2015 P. halibut discard mortality in the IFQ fishery (Table 14).

In terms of viability, the majority of individuals were classified as either excellent or dead, depending on the stratum (Table 13). The majority of individuals caught with bottom trawl were in excellent condition in the area north of Pt. Chehalis and in shallow depths between 40°10′ N. latitude and Pt. Chehalis (Table 13). In deeper depths between 40°10′ N. latitude and Pt. Chehalis individuals were more evenly split between excellent and dead (Table 13).

Estimated P. halibut discard mortality from all sectors and gears of the 2015 IFQ fishery is almost exactly the average for the past 4 years (2011-14 mean = 34.76 mt, 2015 = 34.82 mt, not including IFQ EM EFP). The 2015 IFQ discard mortality estimate is 7.8 mt greater than last year's estimate which was a historic low (27.03 mt).

The 2015 IFQ estimated P. halibut discard mortality for all gears is 80% less than the estimated discard morality from the 2010 LE bottom trawl fishery (Figure 1) and 83% less than the average mortality in the LE bottom trawl fishery over the years 2002-2010 (220 mt). The changes in the fishery could explain this decrease in P. halibut catch. First, IBQs for P. halibut might have increased fisher incentives to avoid P. halibut bycatch and thereby changed fisher behavior (i.e., changing fishing grounds or gear). Second, testing and use of gear to exclude P. halibut from the catch became general practice in much of the trawl fleet under IFQ, which enabled fishermen to increase fishing activity without additional risk to quota.

Estimated bycatch weight of P. halibut from the At-sea hake component of the 2015 IFQ fishery decreased to a near historic low (0.06 mt, Tables 35 & 40), in part, because there was no fishing in the Tribal sector. At-sea hake P. halibut length frequencies are given in Table 36.

# 4.2 Non-Nearshore Fixed Gear Fishery

The 2015 estimated discard mortality of P. halibut in the longline portion of the LE sablefish endorsed sector decreased from 2014 (Table 25). Compared to 2014, the 2015 observed discard ratio decreased north of Pt. Chehalis (Table 23). This lower discard ratio north of Pt. Chehalis appears to drive the lower discard mortality, even though south of Pt. Chehalis discard ratios (Table 23) and encounters (Table 24) both increased in 2015 over 2014. It appears that, because the northern discard ratio is so much larger than the southern discard ratio (Table 23), and there was a decrease in the northern ratio, the coastwide mortality decreased from 2014. In 2015, fleet-wide landings of sablefish increased over 2014 (Table 23), again suggesting that even as effort increased, the lower discard ratio drove lower discard mortality. Gross estimated discard of P. halibut from the pot portion of the LE sablefish endorsed sector was similar to 2014, and still relatively low compared to longline gears (Table 25).

Discard of P. halibut among the sablefish non-endorsed fixed gear sectors (LE and OA) during 2015 increased in both sectors relative to 2014. In both 2013 and 2014, estimated discard mortality in the LE and OA sablefish non-endorsed longline/hook-&-line sectors were at or near historical lows relative to previous years (Table 25). Effort in the LE sablefish non-endorsed sector decreased in 2015 (Table 23), but encounters increased from 2014 (Table 24). OA longline and pot effort increased relative to 2014 (Table 23) and there is an increase in P. halibut discards on OA longline vessels compared to last year (Table 25). The estimated discard mortality for OA pot gear vessels declined to zero from 2014 (Table 25), due to no observed encounters (Table 24).

The comparison of using a single mortality rate (16%) versus a viability method for calculating mortality rate on Non-Nearshore Fixed Gear hook and line vessels is reported in Appendix 10.5. The viability method for calculating mortality rates results in P. halibut mortality estimates that are more variable than using a single 16% rate (Table 59). The most frequent outcome of using viability was to reduce the mortality estimate relative to the mortality estimate calculated with a 16% rate. However, the specific effect of viability on mortality estimates varied among years and areas and was highly dependent on the exact proportion of individuals in each viability category. For example, in the 2011 LE Sablefish Endorsed sector north of Pt. Chehalis, the viability method gave a considerably lower mortality estimate than the 16% method (16% = 17.1 mt versus viability method = 6.2 mt, Table 59) because the majority of P. halibut were categorized as having minor or moderate injuries (Table 55). This resulted in an effective mortality rate of approximately 6%. Contrast that result with the mortality estimate using the viability method on 2011 LE Sablefish Endorsed vessels fishing south of Pt. Chehalis (Table 59). For these vessels, there were more seriously injured and dead P. halibut (Table 55) which resulted in an effective mortality rate of approximately 19% and a mortality estimate only slightly higher than using 16% (Table 59).

#### 4.3 Observed State Fisheries, EFPs and Non-Groundfish Fisheries

Very small amounts of P. halibut bycatch were recorded in state managed observed fisheries. Even assuming 100% mortality, bycatch estimates for the nearshore groundfish fixed gear sector, pink shrimp trawl fishery, and the OA sector of the California halibut trawl fishery made up a minor portion of the 2015 total mortality estimate for P. halibut (Tables 32, 33, & 34).

Pacific halibut bycatch by year, from EFP IFQ vessels carrying electronic monitoring technologies are given in Table 37. Estimated P. halibut discard mortality from the 2015 IFQ Electronic Monitoring Exempted Fishing Permit was 0.16 mt from bottom trawl vessels, 0.16 mt from pot vessels, and 0.56 mt discarded at the dock by midwater trawl vessels.

Pacific halibut bycatch by year, from non-EM EFP vessels has been zero since 2011 (Table 38). Pacific halibut landings from non-groundfish fisheries not observed by NWFSC Observer Program were approximately 51 mt in 2015 and have varied from about 25 mt (2011) to 106 mt (2002) depending on the year (Table 39).

# 5 SUMMARY & CONCLUSIONS

# 5.1 IFQ Fishery

- Estimated P. halibut discard mortality from the 2015 IFQ fishery is almost identical to the 2011-14 average for this fishery and 80% lower than the 2010 LE bottom trawl fishery estimate.
- P. halibut discard from the at-sea Pacific hake fishery in 2015 decreased relative to 2014, to the low end of the historical range (2002-2014).
- P. halibut discard mortality reported from the 2015 IFQ Electronic Monitoring Exempted Fishing Permit
  was 0.16 mt from bottom trawl vessels, 0.16 mt from pot vessels, and and 0.56 mt discarded at the dock by
  midwater trawl vessels.

#### 5.2 Non-IFQ Fisheries

- The 2015 estimates of P. halibut discard morality in the LE sablefish endorsed sector was down from 2014. Decreased encounter rates probably drive the decrease in discard mortality estimates. Discard ratios north of Pt. Chehalis were lower than in 2014 despite increases in fishing effort in this sector. However, the source of decreased encounter rates remains unclear at this point. Pacific halibut mortality estimates increased over 2014 on LE sablefish non-endorsed and OA fixed gear hook-and-line vessels. This was likely due to increases in encounters relative to 2014. Pot vessels in LE sablefish non-endorsed and OA fixed gear continued to report zero P. halibut bycatch.
- Mortality rates using the viability method for hook and line vessels are provided in Appendix 10.5.
   Mortality estimates using this method are quite variable and, depending on the year and sector, some are much lower than using 16% whereas other estimates are similar to the 16% method or only slightly larger.
- Estimated P. halibut mortality in all other non-IFQ observed fisheries remain low relative to the IFQ and Non-Nearshore sectors, and are within the range observed in previous years.

#### 6 ACKNOWLEDGEMENTS

The authors gratefully acknowledge the hard work and dedication of observers from the Northwest Fisheries Science Center Fisheries Observation Science Program, Ryan Shama for answering questions regarding WCGOP sampling strategies, and all the FOS program staff for their hard work and dedication. In addition, thanks to Ian Stewart (IPHC), Claude Dykstra (IPHC) and members of the PFMC's Groundfish Management Team (GMT) who have generously provided suggestions and comments that significantly improved this report.

# 7 REFERENCES

Clark, W. G., and S. R. Hare. 1998. Accounting for bycatch in management of the Pacific halibut fishery. Journal of Fisheries Management 18:809-821.

Clark, W. G., S. H. Hoag, R. J. Trumble, and G. H. Williams. 1992. Re-estimation of survival for trawl caught halibut released in different condition factors. International Pacific Halibut Commission, Report of Assessment and Research Activities 1992:197-206.

Heery, E., and M. Bellman. 2009. Observed and Estimated Total Discard of Pacific Halibut in the 2002-2008 U.S. West Coast Groundfish Non-Nearshore Fixed Gear Fishery. http://www.nwfsc.noaa.gov/research/divisions/fram/observation/data\_products/datareport/docs/pacifichalibut\_fgtotalmortality0208\_final.pdf

Heery, E., M. Bellman, and J. Majewski. 2010. Pacific halibut bycatch in the U.S. west coast groundfish fishery from 2002 through 2009. West Coast Groundfish Observer Program. http://www.nwfsc.noaa.gov/research/divisions/fram/observation/data\_products/datareport/docs/pacifichalibut\_totalmortality\_2010.pdf

Hoag, S. H. 1975. Survival of Halibut Released after Capture By Trawls. International Pacific Halibut Commission, Scientific Report No. 57. 18 p.

IPHC Staff and Chastain, E. 2012. International Pacific Halibut Commission Annual Report 2011. International Pacific Halibut Commission, Seattle, WA, USA. http://www.iphc.int/publications/annual/ar2011.pdf

Jannot, J. E., A. W. Al-Humaidhi, M. A. Bellman, N. B. Riley, and J. Majewski. 2012. Pacific halibut bycatch in the U.S. west coast IFQ groundfish fishery (2011) and the non-IFQ groundfish fisheries (2002-2011). NWFSC Observer Program. http://www.nwfsc.noaa.gov/research/divisions/fram/observation/pdf/pacifichalibut\_2002\_2011.pdf

Jannot, J. E., M. Bellman, and J. Majewski. 2011. Pacific Halibut Bycatch in the U.S. West Coast Groundfish Fishery, 2002-2010. West Coast Groundfish Observer Program. NWFSC, 2725 Montlake Blvd E., Seattle, WA 98112. http://www.nwfsc.noaa.gov/research/divisions/fram/observation/pdf/pacifichalibut\_totalmortality\_2010.pdf

Jannot, J. E., M. A. Bellman, M. Mandrup, N. Riley, and J. McVeigh. 2013. Pacific halibut bycatch in the US west coast groundfish fisheries (2002-2012). NOAA Fisheries, NWFSC Observer Program, 2725 Montlake Blvd. E., Seattle, WA 98112. http://www.nwfsc.noaa.gov/research/divisions/fram/observation/pdf/pacifichalibut\_2002\_2012.pdf

Jannot, J. E., K. Somers, N. Riley, and J. McVeigh. 2013. Pacific halibut bycatch in the US west coast groundfish fisheries (2002-2013). NOAA Fisheries, NWFSC Observer Program, 2725 Montlake Blvd. E., Seattle, WA 98112. http://www.nwfsc.noaa.gov//research/divisions/fram/observation/pdf/Phalibut\_2002\_2013\_102014.pdf

Kaimmer, S. M., and R. J. Trumble. 1998. Injury, condition, and mortality of Pacific halibut bycatch following careful release of Pacific cod and sablefish longline fisheries. Fisheries Research 38:131-144.

NWFSC. 2016a. FOS Observer Program Data Processing. http://www.nwfsc.noaa.gov/research/divisions/fram/observation/data\_processing.cfm

NWFSC. 2016b. FOS Observer Program Manuals.

http://www.nwfsc.noaa.gov/research/divisions/fram/observation/data\_collection/training.cfm

NWFSC. 2016c. WCGOP Data Processing Appendix. https://www.nwfsc.noaa.gov/research/divisions/fram/observation/xls/Data\_Processing\_Appendix\_2015Data\_2016-06-10.xlsx

PFMC. 2011. Pacific Groundfish Fishery Management plan for the California, Oregon, and Washington Groundfish Fishery. http://www.pcouncil.org/wp-conrent/uploads/GF\_FMP\_FINAL\_Dec2011.pdf

Trumble, R. J., S. M. Krimmer, and G. H. Williams. 2000. Estimation of discard mortality rates for Pacific halibut bycatch in groundfish longline fisheries. North American Journal of Fisheries Management 20:931-939.

Wallace, J., and J. Hastie. 2009. Pacific halibut by catch in IPHC Area 2A in the 2008 groundfish bottom trawl fishery. NWFSC, 2725 Montlake Blvd E., Seattle, WA 98112.

Williams, G. H. 2008. Pacific halibut discard mortality rates in the 2006 open access and CDQ groundfish fisheries, and recommendations for discard mortality rates needed for monitoring halibut bycatch in 2008 CDQ fisheries. International Pacific Halibut Commission, Seattle, WA.

Williams, G. H., and D. Chen. 2004. Pacific halibut discard mortality rates in the 1990-2002 Alaskan groundfish fisheries, with recommendations tor monitoring in 2004 International Pacific Halibut Commission. Report of Assessment and Research Activities 2003:227-244.

Williams, G. H., and T. K. Wilderbuer. 1995. Discard mortality rates of Pacific halibut bycatch: Fishery differences and trends during 1990-1993. *in Proceedings of the International Symposium on North Pacific flatfish*. Alaska Sea Grant College Program Report. University of Alaska Fairbanks.

# 8 TABLES

Table 7: Number of vessels, trips, and tows observed and metric tons of sampled Pacific halibut discarded at-sea and the P. halibut landed and discarded at the dock (from PacFIN fish tickets) in the IFQ bottom trawl fishery. All participating vessels carry an observer on all fishing trips under IFQ management (100% observed). For clarity, the number of hauls with unsampled catch categories is provided. Some tows are completely unsampled. See Table 37 for bottom trawl vessles fishing under the Electronic Monitoring EFP. (\*) confidential data, (-) not applicable.

Bottom Trawl

|                         |          |                   |               |         | Botton  | n Trawl  |        |             |         |       |          |          |           |         |
|-------------------------|----------|-------------------|---------------|---------|---------|----------|--------|-------------|---------|-------|----------|----------|-----------|---------|
| Area                    |          |                   |               |         |         |          |        |             |         | Unsam | pled cat | tegories | Sampled   | Rate    |
| Depth (                 | fm)      |                   |               |         |         |          |        |             |         |       |          |          |           |         |
|                         | Year     | No. of            | No.           | No.     | No. un- |          |        | edDiscarded |         | IFQFF | IFQM     |          | %tows     | % tow   |
|                         |          | vessels           | of            | sampled | sampled | tow      | tow    | at sea      | at dock |       |          | IFQ      | sampled   | hrs.    |
|                         |          |                   | $_{ m trips}$ | tows    | tows    | hours    | hours  | (mt)        | (mt)    |       |          |          |           | sampled |
| N. of Pt. C             | Chehalis |                   |               |         |         |          |        |             |         |       |          |          |           |         |
| 0-60                    | 1        |                   |               |         | _       |          |        |             |         |       | _        |          |           |         |
|                         | 2011     | 13                | 46            | 296     | 3       | 804.25   | 11.25  | 7.28        | 0.00    | 2     | 5        | 10       | 99.00%    | 98.62%  |
|                         | 2012     | 14                | 66            | 312     | 5       | 662.80   | 6.80   | 4.35        | 0.00    | 0     | 1        | 10       | 98.42%    | 98.98%  |
|                         | 2013     | 11                | 94            | 448     | 1       | 1124.53  | 3.05   | 5.35        | 0.00    | 1     | 0        | 19       | 99.78%    | 99.73%  |
|                         | 2014     | 10                | 32            | 184     | 1       | 387.28   | 3.00   | 1.96        | 0.00    | 0     | 3        | 4        | 99.46%    | 99.23%  |
|                         | 2015     | 8                 | 56            | 278     | 0       | 577.36   | 0.00   | 3.89        | 0.00    | 0     | 0        | 0        | 100.00%   | 100.00% |
| >60                     | 0011     | 00                | 1.45          | 070     | _       | 0050.00  | 07.70  | 10.05       | 0.01    |       | 0        | 100      | I 00 1007 | 00.0007 |
|                         | 2011     | 22                | 145           | 973     | 5       | 3870.62  | 27.73  | 18.07       | 0.01    | 3     | 8        | 138      | 99.49%    | 99.29%  |
|                         | 2012     | 19                | 167           | 1292    | 10      | 4933.33  | 39.21  | 28.60       | 0.03    | 0     | 20       | 58       | 99.23%    | 99.21%  |
|                         | 2013     | 17                | 200           | 1657    | 4       | 6013.21  | 15.70  | 28.90       | 0.14    | 2     | 3        | 54       | 99.76%    | 99.74%  |
|                         | 2014     | 13                | 147           | 1195    | 10      | 4834.45  | 32.22  | 24.45       | 0.08    | 0     | 3        | 19       | 99.17%    | 99.34%  |
| . ,                     | 2015     | 16                | 147           | 1006    | 1       | 3467.43  | 4.50   | 23.76       | 0.01    | 0     | 4        | 54       | 99.90%    | 99.87%  |
| $40^{\circ}10^{'}$ to I | Pt. Chel | nalis             |               |         |         |          |        |             |         |       |          |          |           |         |
| 0-60                    |          |                   |               |         |         |          |        |             |         |       |          |          |           |         |
|                         | 2011     | 21                | 139           | 1059    | 19      | 2004.60  | 36.72  | 9.71        | 0.00    | 12    | 2        | 65       | 98.24%    | 98.20%  |
|                         | 2012     | 21                | 152           | 947     | 8       | 1864.09  | 18.51  | 7.33        | 0.00    | 3     | 6        | 29       | 99.16%    | 99.02%  |
|                         | 2013     | 20                | 204           | 933     | 2       | 2167.95  | 5.25   | 8.31        | 0.00    | 0     | 8        | 23       | 99.79%    | 99.76%  |
|                         | 2014     | 19                | 198           | 1059    | 9       | 2391.97  | 30.43  | 9.92        | 0.00    | 0     | 17       | 29       | 99.16%    | 98.74%  |
|                         | 2015     | 15                | 190           | 1034    | 5       | 2241.72  | 17.33  | 10.00       | 0.00    | 0     | 8        | 30       | 99.52%    | 99.23%  |
| >60                     |          |                   |               |         |         |          |        |             |         |       |          |          |           |         |
|                         | 2011     | 56                | 751           | 4984    | 28      | 25758.16 | 143.25 | 20.16       | 0.01    | 5     | 14       | 178      | 99.44%    | 99.45%  |
|                         | 2012     | 54                | 703           | 4450    | 26      | 23012.24 | 99.87  | 19.37       | 0.04    | 2     | 27       | 137      | 99.42%    | 99.57%  |
|                         | 2013     | 54                | 743           | 4883    | 15      | 24709.66 | 72.51  | 19.88       | 0.02    | 1     | 19       | 165      | 99.69%    | 99.71%  |
|                         | 2014     | 50                | 623           | 3783    | 10      | 19466.22 | 31.34  | 16.85       | 0.01    | 0     | 8        | 88       | 99.74%    | 99.84%  |
|                         | , 2015   | 49                | 591           | 3685    | 4       | 17621.28 | 18.34  | 29.32       | 0.04    | 0     | 11       | 72       | 99.89%    | 99.90%  |
| S. of 40°10             | N. lat.  | •                 |               |         |         |          |        |             |         |       |          |          |           |         |
| 0-60                    |          |                   |               |         |         |          |        |             |         |       |          |          |           |         |
|                         | 2011     | 3                 | 21            | 63      | 0       | 157.17   | 0.00   | 0.17        | 0.00    | 3     | 0        | 1        | 100.00%   | 100.00% |
|                         | 2012     |                   |               |         | *       | *        | *      | *           | *       | -     |          |          | *         | *       |
|                         | 2013‡    | 4                 | 56            | 171     | 0       | 453.42   | 0.00   | 0.03        | 0.00    | 0     | 0        | 0        | 100.00%   | 100.00% |
|                         | 2014‡    | 5                 | 16            | 39      | 1       | 76.54    | 2.08   | 0.00        | 0.00    | 0     | 0        | 1        | 97.50%    | 97.35%  |
|                         | 2015‡    | 5                 | 29            | 75      | 0       | 143.22   | 0.00   | 0.00        | 0.00    | 0     | 0        | 0        | 100.00%   | 100.00% |
| >60                     |          |                   |               |         |         |          |        |             |         |       |          |          |           |         |
|                         | 2011     | 15                | 240           | 1357    | 3       | 5838.74  | 12.07  | 0.16        | 0.00    | 3     | 0        | 34       | 99.78%    | 99.79%  |
|                         | 2012     | 13                | 255           | 1587    | 3       | 5881.45  | 4.08   | 0.75        | 0.00    | 1     | 1        | 69       | 99.81%    | 99.93%  |
|                         | 20131    | 14                | 277           | 1727    | 2       | 6423.88  | 2.75   | 0.88        | 0.00    | 0     | 2        | 69       | 99.88%    | 99.96%  |
|                         | 2014‡    | 14                | 277           | 1877    | 12      | 6318.95  | 50.11  | 0.56        | 0.00    | 1     | 0        | 35       | 99.36%    | 99.21%  |
|                         | 2015‡    | 11                | 186           | 1231    | 3       | 4198.51  | 5.80   | 0.33        | 0.00    | 0     | 0        | 14       | 99.76%    | 99.86%  |
| LE CA Ha                |          | of 40°10′         | N. lat.       |         |         |          |        |             |         |       |          |          |           |         |
| All dep                 |          |                   |               |         |         |          |        |             |         |       |          |          |           |         |
|                         | 2011     | 3                 | 63            | 155     | 0       | 507.17   | 0.00   | 0.00        | 0.00    | 0     | 0        | 2        | 100.00%   | 100.00% |
|                         | 2012     | *<br>CA Holibut b | *             | *       | *       | *        | *      | *           | *       | *     | *        | *        | *         | *       |

‡Combined IFQ and LE CA Halibut bottom trawl.

Table 8: Number of vessels, trips, and tows observed and metric tons of sampled Pacific halibut discarded at-sea and the P. halibut landed and discarded at the dock (from PacFIN fish tickets) in the IFQ midwater trawl fisheries. All participating vessels carry an observer on all fishing trips under IFQ management (100% observed). For clarity the number of hauls with unsampled catch categories is provided. Some tows are completely unsampled. Note that starting in 2015, sector names have changed such that trips with P. hake comprising less than 50% of the total landings are renamed Midwater Rockfish whereas trips with P. hake greater than 50% of landings are renamed Midwater Hake. (\*) confidential data, (-) not applicable.

|                                 |         | _             |                  |                 |                | /              | ,           | ( /       | *     |          |                |                 |                 |
|---------------------------------|---------|---------------|------------------|-----------------|----------------|----------------|-------------|-----------|-------|----------|----------------|-----------------|-----------------|
| Midwater Trawl                  |         |               |                  |                 |                |                |             |           |       |          |                |                 |                 |
| Gear                            |         |               |                  |                 |                |                |             |           | Unsam | pled cat | egories        | Sampled         | l Rate          |
| Sector-Area                     |         |               |                  |                 |                |                |             |           |       |          |                |                 |                 |
| Year                            | No. of  | No.           | No.              | No. un-         | Sampled        | l Unsampl      | edDiscarded | Discarded | IFQFF | IFQM     | Non-           | % tows          | % tow           |
|                                 | vessels | $\mathbf{of}$ | $_{\rm sampled}$ | $_{ m sampled}$ | $\mathbf{tow}$ | $\mathbf{tow}$ | at sea      | at dock   |       |          | $\mathbf{IFQ}$ | $_{ m sampled}$ | hrs.            |
|                                 |         | $_{ m trips}$ | tows             | $\mathbf{tows}$ | hours          | $_{ m hours}$  | (mt)        | (mt)      |       |          |                |                 | $_{ m sampled}$ |
| Non-hake Shoreside              | •       |               |                  |                 |                |                |             |           |       |          |                |                 |                 |
| North of $40^{\circ}10^{'}$     |         |               |                  |                 |                |                |             |           |       |          |                |                 |                 |
| 2011                            | *       | *             | *                | *               | *              | *              | *           | *         | *     | *        | *              | *               | *               |
| 2012                            | 4       | 9             | 35               | 0               | 72.96          | 0.00           | 0.00        | 0.00      | 0     | 0        | 0              | 100.00%         | 100.00%         |
| 2013                            | 6       | 22            | 77               | 0               | 137.49         | 0.00           | 0.00        | 0.00      | 0     | 0        | 1              | 100.00%         | 100.00%         |
| 2014                            | 9       | 34            | 133              | 0               | 268.46         | 0.00           | 0.00        | 0.00      | 0     | 0        | 0              | 100.00%         | 100.00%         |
| Midwater Rockfish               |         |               |                  |                 |                |                |             |           |       |          |                |                 |                 |
| North of $40^{\circ}10^{'}$     |         |               |                  |                 |                |                |             |           |       |          |                |                 |                 |
| 2015                            | 7       | 43            | 146              | 0               | 243.97         | 0.00           | 0.00        | 0.00      | 0     | 0        | 1              | 100.00%         | 100.00%         |
| Shoreside Hake                  |         |               |                  |                 |                |                |             |           |       |          |                |                 |                 |
| North of $40^{\circ}10^{'}$     |         |               |                  |                 |                |                |             |           |       |          |                |                 |                 |
| 2011                            | 27      | 914           | 1715             | 0               | 3971.49        | 0.00           | 0.03        | 0.33      | 0     | 0        | 2              | 100.00%         | 100.00%         |
| 2012                            | 24      | 721           | 1598             | 0               | 5948.46        | 0.00           | 0.00        | 0.62      | 0     | 0        | 3              | 100.00%         | 100.00%         |
| 2013                            | 24      | 942           | 1732             | 0               | 4621.83        | 0.00           | 0.05        | 1.28      | 0     | 0        | 2              | 100.00%         | 100.00%         |
| 2014                            | 25      | 957           | 1718             | 1               | 4716.14        | 1.25           | 0.11        | 1.25      | 0     | 0        | 7              | 99.94%          | 99.97%          |
| Midwater Hake                   |         |               |                  | -               |                |                |             |           |       |          |                | -               | -               |
| North of $40  {}^{\circ}10^{'}$ |         |               |                  |                 |                |                |             |           |       |          |                |                 |                 |
| 2015                            | 5       | 126           | 286              | 0               | 1159.49        | 0.00           | 0.00        | 0.14      | 0     | 0        | 3              | 100.00%         | 100.00%         |
|                                 |         |               |                  |                 |                |                |             |           |       |          |                |                 |                 |

| Gear                                       |                     |                   |                               |                   |                    |                             |                              | Unsam | pled cat | egories     | Coverage<br>Rate |
|--------------------------------------------|---------------------|-------------------|-------------------------------|-------------------|--------------------|-----------------------------|------------------------------|-------|----------|-------------|------------------|
| <b>Area</b><br>Year                        |                     | No. of<br>vessels | No. No. of sampled trips sets |                   | No. unsampled sets | discarded<br>at sea<br>(mt) | discarded<br>at dock<br>(mt) | IFQFF | IFQM     | Non-<br>IFQ | %sets<br>sampled |
| Hook and Line                              |                     |                   |                               |                   |                    | ,                           | ( )                          |       |          |             |                  |
| North of 40°10′ N. lat.                    |                     |                   |                               |                   |                    |                             |                              |       |          |             |                  |
|                                            | 2011                | 6                 | 21                            | 408               | 1                  | 6.03                        | 0.00                         | 0     | 0        | 0           | 99.76%           |
| South of $40^{\circ}10^{'}$ N. lat.        | 2011                | 0                 |                               | 212               | 0                  | 0.00                        | 0.00                         |       | 0        |             | 100 000          |
| Coastwide                                  | 2011                | 6                 | 71                            | 212               | 0                  | 0.00                        | 0.00                         | 0     | 0        | 1           | 100.00%          |
| Coastwide                                  | 2012                | 8                 | 32                            | 506               | 0                  | 14.66                       | 0.00                         | 0     | 0        | 0           | 100.00%          |
|                                            | 2012                | 8                 | 32<br>29                      | 215               | 0                  | 3.00                        | 0.00                         | 0     | 0        | 0           | 100.00%          |
|                                            | $\frac{2013}{2014}$ | 8                 | 31                            | $\frac{213}{227}$ | 32                 | 3.43                        | 0.00                         | 0     | 0        | 0           | 87.64%           |
|                                            | 2014                | 5                 | 16                            | 185               | 0                  | 9.49                        | 0.00                         | 0     | 0        | 0           | 100.00%          |
| Pot                                        | 2010                |                   | 10                            | 100               | 0                  | 3.43                        | 0.00                         | 0     | - 0      | 0           | 100.0070         |
| North of Pt. Chehalis                      |                     |                   |                               |                   |                    |                             |                              |       |          |             |                  |
|                                            | 2011                | 3                 | 12                            | 75                | 0                  | 1.03                        | 0.00                         | 0     | 0        | 0           | 100.00%          |
|                                            | 2012                | 5                 | 45                            | 418               | 0                  | 1.27                        | 0.00                         | 0     | 0        | 7           | 100.00%          |
|                                            | 2013                | 3                 | 12                            | 167               | 0                  | 0.22                        | 0.00                         | 0     | 0        | 1           | 100.00%          |
| Pt. Chehalis to $40^{\circ}10^{'}$ N. lat. | '                   |                   |                               |                   |                    |                             |                              |       |          | '           |                  |
|                                            | 2011                | 8                 | 76                            | 719               | 18                 | 2.30                        | 0.00                         | 0     | 0        | 1           | 97.56%           |
|                                            | 2012                | 9                 | 60                            | 470               | 0                  | 0.62                        | 0.00                         | 0     | 0        | 0           | 100.00%          |
|                                            | 2013                | 5                 | 40                            | 504               | 0                  | 0.76                        | 0.00                         | 0     | 0        | 2           | 100.00%          |
|                                            | 2015                | 6                 | 39                            | 363               | 0                  | 1.31                        | 0.01                         | 0     | 0        | 0           | 100.00%          |
| South of $40^{\circ}10^{'}$ N. lat.        |                     |                   |                               |                   |                    |                             |                              |       |          |             |                  |
|                                            | 2011                | 11                | 148                           | 737               | 0                  | 0.00                        | 0.00                         | 0     | 0        | 2           | 100.00%          |
|                                            | 2012                | 13                | 167                           | 812               | 0                  | 0.00                        | 0.00                         | 0     | 0        | 1           | 100.00%          |
|                                            | 2013                | 6                 | 41                            | 409               | 0                  | 0.00                        | 0.00                         | 0     | 0        | 2           | 100.00%          |
|                                            | 2015                | 3                 | 18                            | 220               | 0                  | 0.00                        | 0.00                         | 0     | 0        | 0           | 100.00%          |
| Coastwide                                  |                     |                   |                               |                   |                    |                             |                              |       |          |             |                  |
|                                            | 2014                | 14                | 113                           | 1278              | 0                  | 0.32                        | 0.00                         | 0     | 0        | 9           | 100.00%          |

Table 10: Values used to calculate the expanded weight of Pacific halibut (PHLB) from each unsampled category in the U.S. west coast groundfish IFQ bottom trawl fisheries by year. Unsampled catch weight could be assigned to one of four categories: IFQ flatfish species, IFQ mixed species, non-IFQ species, or unsorted (a mix of both IFQ and non-IFQ species). The sampled weight, discard ratio, unsampled weight and estimated P. halibut gross discard are presented within each category, as a function of sector, management area, depth, and area north or south of Pt. Chehalis, WA. The sum of expanded weight is the sum of the estimated gross P. halibut discard across categories. The sampled discarded PHLB weight is the sum of sampled PHLB. The total discard (gross) is the sum of the PHLB in unsampled hauls plus the sampled PHLB. All weights are metric tons (mt). (\*) confidential data. Note that adding values across columns might give slightly different results because values are rounded to two decimals for reporting.

| A                 |            |                 |         |                   | Во                   | ttom Tra        | awı       |                   |                      |                 |         |                   |                      |                 |      |                     |                      |                                     |                        |                  |
|-------------------|------------|-----------------|---------|-------------------|----------------------|-----------------|-----------|-------------------|----------------------|-----------------|---------|-------------------|----------------------|-----------------|------|---------------------|----------------------|-------------------------------------|------------------------|------------------|
| Area<br>Depth     | (fm)       | II              | IFO     | Q Flatfish        |                      | ll v            | lixed IFC | ) species         |                      | II .            | Non-IFQ | Species           |                      | II              | U    | nsorted             |                      | II                                  |                        |                  |
| Берин             | Year       | Samp.<br>Weight | Discard | Unsamp.<br>Weight | Est.<br>Dis-<br>card | Samp.<br>Weight | Discard   | Unsamp.<br>Weight | Est.<br>Dis-<br>card | Samp.<br>Weight | Discard | Unsamp.<br>Weight | Est.<br>Dis-<br>card | Samp.<br>Weight |      | l Unsamp.<br>Weight | Est.<br>Dis-<br>card | Sum of<br>Exp.<br>Discard<br>Weight | Samp. Dis- carded PHLB | Total<br>Discard |
| N. of Pt.         | Chehalis   | ;               |         |                   |                      | "               |           |                   |                      | "               |         |                   |                      | "               |      |                     |                      |                                     |                        |                  |
| 0-60              |            |                 |         |                   |                      |                 |           |                   |                      |                 |         |                   |                      |                 |      |                     |                      |                                     |                        |                  |
|                   | 2011       | 60.53           | 0.12    | 0.16              | 0.02                 | 80.81           | 0.09      | 5.22              | 0.48                 | 55.65           | 0.00    | 2.66              | 0.00                 | 136.46          | 0.05 | 2.29                | 0.12                 | 0.62                                | 7.36                   | 7.98             |
|                   | 2012       | 50.77           | 0.09    | 0.00              | 0.00                 | 56.29           | 0.08      | 0.05              | 0.00                 | 45.51           | 0.00    | 1.02              | 0.00                 | 101.80          | 0.05 | 0.56                | 0.03                 | 0.03                                | 4.77                   | 4.80             |
|                   | 2013       | 104.68          | 0.05    | 0.07              | 0.00                 | 114.61          | 0.05      | 0.00              | 0.00                 | 92.99           | 0.00    | 2.00              | 0.00                 | 207.60          | 0.03 | 0.91                | 0.02                 | 0.03                                | 5.43                   | 5.46             |
|                   | 2014       | 26.44           | 0.07    | 0.00              | 0.00                 | 32.70           | 0.06      | 1.62              | 0.10                 | 27.58           | 0.00    | 0.85              | 0.00                 | 60.28           | 0.03 | 0.02                | 0.00                 | 0.10                                | 1.97                   | 2.07             |
|                   | 2015       | 32.67           | 0.12    | 0.00              | 0.00                 | 38.76           | 0.10      | 0.00              | 0.00                 | 32.66           | 0.00    | 0.00              | 0.00                 | 71.42           | 0.05 | 0.00                | 0.00                 | 0.00                                | 3.89                   | 3.89             |
| >60               | 1          |                 |         |                   |                      |                 |           |                   |                      |                 |         |                   |                      | 0               |      |                     |                      |                                     |                        |                  |
|                   | 2011       | 114.16          | 0.19    | 1.03              | 0.20                 | 142.47          | 0.15      | 1.01              | 0.15                 | 207.64          | 0.00    | 15.03             | 0.00                 | 350.11          | 0.06 | 4.79                | 0.30                 | 0.64                                | 21.65                  | 22.29            |
|                   | 2012       | 84.84           | 0.36    | 0.00              | 0.00                 | 122.87          | 0.25      | 2.42              | 0.59                 | 268.93          | 0.00    | 6.84              | 0.00                 | 391.80          | 0.08 | 24.85               | 1.90                 | 2.49                                | 30.18                  | 32.67            |
|                   | 2013       | 185.79          | 0.16    | 0.20              | 0.03                 | 227.34          | 0.13      | 1.07              | 0.14                 | 241.41          | 0.00    | 5.38              | 0.00                 | 468.75          | 0.06 | 1.39                | 0.08                 | 0.25                                | 29.66                  | 29.91            |
|                   | 2014       | 192.81          | 0.13    | 0.00              | 0.00                 | 233.86          | 0.11      | 0.87              | 0.09                 | 293.94          | 0.00    | 1.81              | 0.00                 | 527.80          | 0.05 | 29.12               | 0.61                 | 0.70                                | 24.88                  | 25.58            |
| . ,               | 2015       | 108.65          | 0.22    | 0.00              | 0.00                 | 134.93          | 0.18      | 2.84              | 0.51                 | 129.24          | 0.00    | 3.76              | 0.00                 | 264.18          | 0.09 | 0.16                | 0.01                 | 0.53                                | 24.34                  | 24.86            |
| 40°10′ to         | Pt. Che    | halis           |         |                   |                      |                 |           |                   |                      |                 |         |                   |                      |                 |      |                     |                      |                                     |                        |                  |
| 0-60              |            |                 |         |                   |                      |                 |           |                   |                      |                 |         |                   |                      |                 |      |                     |                      |                                     |                        |                  |
|                   | 2011       | 96.63           | 0.11    | 0.97              | 0.11                 | 117.73          | 0.09      | 2.40              | 0.21                 | 188.16          | 0.00    | 6.76              | 0.00                 | 305.90          | 0.03 | 5.71                | 0.20                 | 0.52                                | 10.48                  | 11.00            |
|                   | 2012       | 72.35           | 0.11    | 0.45              | 0.05                 | 86.10           | 0.09      | 2.35              | 0.21                 | 142.99          | 0.00    | 2.56              | 0.00                 | 229.09          | 0.03 | 1.95                | 0.07                 | 0.33                                | 7.73                   | 8.06             |
|                   | 2013       | 109.66          | 0.08    | 0.00              | 0.00                 | 120.95          | 0.07      | 0.86              | 0.06                 | 138.52          | 0.00    | 1.84              | 0.00                 | 259.47          | 0.03 | 0.41                | 0.01                 | 0.07                                | 8.47                   | 8.55             |
|                   | 2014       | 176.72          | 0.06    | 0.00              | 0.00                 | 194.45          | 0.05      | 6.19              | 0.32                 | 204.11          | 0.00    | 4.48              | 0.00                 | 398.56          | 0.03 | 21.62               | 0.17                 | 0.48                                | 10.05                  | 10.54            |
|                   | 2015       | 158.17          | 0.06    | 0.00              | 0.00                 | 192.63          | 0.05      | 0.35              | 0.02                 | 193.08          | 0.00    | 2.01              | 0.00                 | 385.71          | 0.03 | 1.71                | 0.05                 | 0.06                                | 10.16                  | 10.22            |
| >60               |            |                 |         |                   |                      |                 |           |                   |                      |                 |         |                   |                      |                 |      |                     |                      |                                     |                        |                  |
|                   | 2011       | 190.48          | 0.12    | 0.78              | 0.09                 | 352.51          | 0.06      | 4.00              | 0.25                 | 753.78          | 0.00    | 18.25             | 0.00                 | 1106.30         | 0.02 | 7.54                | 0.15                 | 0.49                                | 22.02                  | 22.51            |
|                   | 2012       | 180.33          | 0.11    | 0.06              | 0.01                 | 369.70          | 0.05      | 6.92              | 0.37                 | 641.16          | 0.00    | 12.38             | 0.00                 | 1010.86         | 0.02 | 7.26                | 0.14                 | 0.52                                | 19.94                  | 20.46            |
|                   | 2013       | 229.39          | 0.09    | 0.07              | 0.01                 | 401.78          | 0.05      | 9.72              | 0.49                 | 709.89          | 0.00    | 11.56             | 0.00                 | 1111.67         | 0.02 | 9.68                | 0.14                 | 0.63                                | 20.44                  | 21.08            |
|                   | 2014       | 335.56          | 0.05    | 0.00              | 0.00                 | 501.00          | 0.03      | 3.02              | 0.10                 | 506.72          | 0.00    | 4.08              | 0.00                 | 1007.72         | 0.02 | 24.90               | 0.09                 | 0.18                                | 16.96                  | 17.14            |
|                   | 2015       | 323.18          | 0.09    | 0.00              | 0.00                 | 466.24          | 0.06      | 0.93              | 0.06                 | 548.36          | 0.00    | 4.48              | 0.00                 | 1014.61         | 0.03 | 2.95                | 0.02                 | 0.08                                | 29.67                  | 29.75            |
| S. of 40°1        | .0' N. lat |                 |         |                   |                      |                 |           |                   |                      |                 |         |                   |                      |                 |      |                     |                      |                                     |                        |                  |
| 0-60              |            |                 |         |                   |                      |                 |           |                   |                      |                 |         |                   |                      |                 |      |                     |                      |                                     |                        |                  |
|                   | 2011       | 4.60            | 0.00    | 0.04              | 0.00                 | 5.04            | 0.00      | 0.00              | 0.00                 | 11.75           | 0.01    | 0.01              | 0.00                 | 16.79           | 0.01 | 0.00                | 0.00                 | 0.00                                | 0.17                   | 0.17             |
|                   | 2012       | *               | *       | *                 | *                    | *               | *         | *                 | *                    | *               | *       | *                 | *                    | *               | *    | *                   | *                    | *                                   | *                      | *                |
|                   | 20131      | 4.55            | 0.00    | 0.00              | 0.00                 | 6.65            | 0.00      | 0.00              | 0.00                 | 66.93           | 0.00    | 0.00              | 0.00                 | 73.58           | 0.00 | 0.00                | 0.00                 | 0.00                                | 0.03                   | 0.03             |
|                   | 20141      | 0.86            | 0.00    | 0.00              | 0.00                 | 2.38            | 0.00      | 0.00              | 0.00                 | 4.45            | 0.00    | 0.45              | 0.00                 | 6.84            | 0.00 | 0.02                | 0.00                 | 0.00                                | 0.00                   | 0.00             |
|                   | 2015‡      | 6.11            | 0.00    | 0.00              | 0.00                 | 17.97           | 0.00      | 0.00              | 0.00                 | 7.47            | 0.00    | 0.00              | 0.00                 | 25.44           | 0.00 | 0.00                | 0.00                 | 0.00                                | 0.00                   | 0.00             |
| >60               |            |                 |         |                   |                      |                 |           |                   |                      |                 |         |                   |                      |                 |      |                     |                      |                                     |                        |                  |
|                   | 2011       | 155.01          | 0.00    | 0.10              | 0.00                 | 275.06          | 0.00      | 0.00              | 0.00                 | 223.70          | 0.00    | 2.86              | 0.00                 | 498.76          | 0.00 | 1.36                | 0.00                 | 0.00                                | 0.16                   | 0.16             |
|                   | 2012       | 80.42           | 0.00    | 0.01              | 0.00                 | 266.50          | 0.00      | 0.03              | 0.00                 | 222.92          | 0.00    | 7.14              | 0.03                 | 489.41          | 0.00 | 1.93                | 0.00                 | 0.03                                | 0.81                   | 0.84             |
|                   | 2013‡      | 119.64          | 0.00    | 0.00              | 0.00                 | 364.86          | 0.00      | 0.07              | 0.00                 | 296.89          | 0.00    | 7.47              | 0.02                 | 661.75          | 0.00 | 0.23                | 0.00                 | 0.02                                | 0.88                   | 0.90             |
|                   | 20141      | 169.03          | 0.00    | 0.03              | 0.00                 | 363.29          | 0.00      | 0.00              | 0.00                 | 341.56          | 0.00    | 1.22              | 0.00                 | 704.84          | 0.00 | 5.64                | 0.00                 | 0.01                                | 0.56                   | 0.57             |
|                   | 20151      | 93.62           | 0.00    | 0.00              | 0.00                 | 233.85          | 0.00      | 0.00              | 0.00                 | 173.60          | 0.00    | 0.44              | 0.00                 | 407.45          | 0.00 | 12.71               | 0.00                 | 0.00                                | 0.33                   | 0.33             |
| LE CA H<br>All de |            | of 40°10        | N. lat  | ; <b>.</b>        |                      |                 |           |                   |                      |                 |         |                   |                      |                 |      |                     |                      |                                     |                        |                  |
|                   | 2011       | 0.73            | 0.00    | 0.00              | 0.00                 | 0.74            | 0.00      | 0.00              | 0.00                 | 75.42           | 0.00    | 0.01              | 0.00                 | 76.16           | 0.00 | 0.00                | 0.00                 | 0.00                                | 0.00                   | 0.00             |
|                   | 2012       | *               | *       | *                 | *                    | *               | *         | *                 | *                    | *               | *       | *                 | *                    | *               | *    | *                   | *                    | *                                   | *                      | *                |
|                   |            | CA Halibut      | 1       | 1                 |                      | Ш               |           |                   |                      | ш               |         |                   |                      | Ш               |      |                     |                      | 11                                  | 1                      |                  |

‡Combined IFQ and LE CA Halibut bottom trawl

Table 11: Values used to calculate the expanded weight of Pacific halibut (PHLB) from each unsampled category in the U.S. west coast groundfish IFQ midwater trawl fisheries by year. Unsampled catch weight could be assigned to one of four categories: IFQ flatfish species, IFQ mixed species, non-IFQ species, or unsorted (a mix of both IFQ and non-IFQ species). The sampled weight, discard ratio, unsampled weight and estimated P. halibut gross discard are presented within each category, as a function of sector. All midwater trawling occurs north of 40°10' and all depths are included in the summaries. The sum of expanded weight is the sum of the estimated gross P. halibut discard across categories. The sampled discarded PHLB weight is the sum of sampled PHLB. The total discard (gross) is the sum of the PHLB in unsampled hauls plus the sampled PHLB. All weights are metric tons (mt). (\*) confidential data.

|                   |            |              |          |        | ]         | Midwate   | r Trawl |        |         |         |      |        |         |          |      |         |        |         |
|-------------------|------------|--------------|----------|--------|-----------|-----------|---------|--------|---------|---------|------|--------|---------|----------|------|---------|--------|---------|
| Area              |            |              |          |        |           |           |         |        |         |         |      |        |         |          |      |         |        |         |
| Depth (fm)        |            | IFQ Flatfish |          | l M    | lixed IFC | 2 species |         |        | Non-IFQ | Species |      |        | τ       | Jnsorted |      |         |        |         |
| Year              | SampDiscar | d Unsan      | np. Est. | Samp.  | Discard   | Unsamp.   | Est.    | Samp.  |         | Unsamp. | Est. | Samp.  | Discard | Unsamp.  | Est. | Sum of  | Samp.  | Total   |
|                   | WeighRatio | Weigh        | t Dis-   | Weight | Ratio     | Weight    | Dis-    | Weight | Ratio   | Weight  | Dis- | Weight | Ratio   | Weight   | Dis- | Exp.    | Dis-   | Discard |
|                   |            |              | card     |        |           |           | card    |        |         |         | card |        |         |          | card | Discard | carded |         |
| L                 |            |              |          |        |           |           |         |        |         |         |      |        |         |          |      | Weight  | PHLB   |         |
| Non-hake Shoresic | de         |              |          |        |           |           |         |        |         |         |      |        |         |          |      |         |        |         |
| 2011              | *          | * *          | *        | *      | *         | *         | *       | *      | *       | *       | *    | *      | *       | *        | *    | *       | *      | *       |
| 2012              | 0.00       | .00 0.00     | 0.00     | 0.00   | 0.00      | 0.00      | 0.00    | 0.05   | 0.00    | 0.00    | 0.00 | 0.06   | 0.00    | 0.00     | 0.00 | 0.00    | 0.00   | 0.00    |
| 2013              | 0.00       | .00 0.00     | 0.00     | 0.01   | 0.00      | 0.00      | 0.00    | 0.05   | 0.00    | 0.02    | 0.00 | 0.06   | 0.00    | 0.00     | 0.00 | 0.00    | 0.00   | 0.00    |
| 2014              | 0.00       | .00 0.00     | 0.00     | 0.02   | 0.00      | 0.00      | 0.00    | 0.73   | 0.00    | 0.00    | 0.00 | 0.75   | 0.00    | 0.00     | 0.00 | 0.00    | 0.00   | 0.00    |
| Midwater Rockfish | h          |              |          |        |           |           |         |        |         |         |      |        |         |          |      |         |        |         |
| 2015              | 0.00       | .00 0.00     | 0.00     | 3.79   | 0.00      | 0.00      | 0.00    | 16.37  | 0.00    | 0.05    | 0.00 | 20.15  | 0.00    | 0.00     | 0.00 | 0.00    | 0.00   | 0.00    |
| Shoreside Hake    |            |              |          |        |           |           |         |        |         |         |      |        |         |          |      |         |        |         |
| 2011              | 0.03       | .99 0.00     | 0.00     | 521.49 | 0.00      | 0.00      | 0.00    | 3.82   | 0.00    | 1.37    | 0.00 | 525.31 | 0.00    | 0.00     | 0.00 | 0.00    | 0.03   | 0.03    |
| 2012              | 0.00       | .00 0.00     | 0.00     | 128.31 | 0.00      | 0.00      | 0.00    | 8.19   | 0.00    | 0.36    | 0.00 | 136.50 | 0.00    | 0.00     | 0.00 | 0.00    | 0.00   | 0.00    |
| 2013              | 0.05       | .00 0.00     | 0.00     | 460.78 | 0.00      | 0.00      | 0.00    | 7.24   | 0.00    | 0.27    | 0.00 | 468.03 | 0.00    | 0.00     | 0.00 | 0.00    | 0.05   | 0.05    |
| 2014              | 0.16       | .71 0.00     | 0.00     | 498.24 | 0.00      | 0.00      | 0.00    | 13.04  | 0.00    | 0.23    | 0.00 | 511.28 | 0.00    | 0.05     | 0.00 | 0.00    | 0.11   | 0.11    |
| Midwater Hake     |            |              |          |        |           |           |         |        |         |         |      |        |         |          |      |         |        |         |
| 2015              | 0.00       | .00 0.00     | 0.00     | 43.76  | 0.00      | 0.00      | 0.00    | 4.47   | 0.00    | 0.12    | 0.00 | 48.23  | 0.00    | 0.00     | 0.00 | 0.00    | 0.00   | 0.00    |

Table 12: Values used to calculate the expanded weight of Pacific halibut (PHLB) from each unsampled category in the U.S. west coast groundfish IFQ fixed gear fisheries by year. Unsampled catch weight could be assigned to one of four categories: IFQ flatfish species, IFQ mixed species, non-IFQ species, or unsorted (a mix of both IFQ and non-IFQ species). The sampled weight, discard ratio, unsampled weight and estimated P. halibut gross discard are presented within each category, as a function of gear, management area, and, for pot gear, by areas north and south of Point Chehalis, WA. All depths fished are included in the summaries. The sum of expanded weight is the sum of the estimated gross P. halibut discard across categories. The sampled discarded PHLB weight is the sum of sampled PHLB. The total discard (gross) is the sum of the PHLB in unsampled sets plus the sampled PHLB. All weights are metric tons (mt). (\*) confidential data.

| Area               |                     |              |                   |                      |                 |             |                   |                      |                 |         |                   |                      |                 |             |                   |                      |      |                                     |                        |   |                  |
|--------------------|---------------------|--------------|-------------------|----------------------|-----------------|-------------|-------------------|----------------------|-----------------|---------|-------------------|----------------------|-----------------|-------------|-------------------|----------------------|------|-------------------------------------|------------------------|---|------------------|
| Depth (fm)         |                     | IFQ Fla      | tfish             |                      | l M             | lixed IFC   | 2 species         |                      |                 | Non-IFC | Species           |                      |                 | τ           | Jnsorted          |                      |      |                                     |                        |   |                  |
| Year               | Samp. D<br>Weight R |              | Unsamp.<br>Weight | Est.<br>Dis-<br>card | Samp.<br>Weight |             | Unsamp.<br>Weight | Est.<br>Dis-<br>card | Samp.<br>Weight |         | Unsamp.<br>Weight | Est.<br>Dis-<br>card | Samp.<br>Weight |             | Unsamp.<br>Weight | Est.<br>Dis-<br>card | ]    | Sum of<br>Exp.<br>Discard<br>Weight | Samp. Dis- carded PHLB |   | Total<br>Discard |
|                    | II                  |              |                   |                      |                 |             | Hook an           | d Line               |                 |         |                   |                      |                 |             |                   |                      |      | 11018110                            | 11122                  |   |                  |
| North of 40°10′ N  | I. lat.             |              |                   |                      |                 |             |                   |                      |                 |         |                   |                      |                 |             |                   |                      |      |                                     |                        |   |                  |
| 2011               | 7.19                | 0.84         | 0.00              | 0.00                 | 22.01           | 0.28        | 0.00              | 0.00                 | 56.74           | 0.00    | 0.00              | 0.00                 | 78.76           | 0.08        | 0.00              | 0.00                 | Ш    | 0.00                                | 6.06                   | 1 | 6.06             |
| South of 40°10′ N  |                     |              |                   |                      | 11              |             |                   |                      | "               |         |                   |                      |                 |             |                   |                      |      |                                     | 1                      |   |                  |
| 2011               | 0.18                | 0.00         | 0.00              | 0.00                 | 3.72            | 0.00        | 0.00              | 0.00                 | 21.06           | 0.00    | 0.00              | 0.00                 | 24.78           | 0.00        | 0.00              | 0.00                 | Ш    | 0.00                                | 0.00                   | 1 | 0.00             |
| Coastwide          |                     |              |                   |                      | "               |             |                   |                      | "               |         |                   |                      | "               |             |                   |                      | 11   |                                     | 1                      | ' |                  |
| 2012               | 19.31               | 0.76         | 0.00              | 0.00                 | 36.87           | 0.40        | 0.00              | 0.00                 | 97.36           | 0.00    | 0.00              | 0.00                 | 134.24          | 0.11        | 0.00              | 0.00                 |      | 0.00                                | 14.66                  |   | 14.66            |
| 2013               | 5.10                | 0.59         | 0.00              | 0.00                 | 8.29            | 0.36        | 0.00              | 0.00                 | 27.60           | 0.00    | 0.00              | 0.00                 | 35.88           | 0.08        | 0.00              | 0.00                 | - II | 0.00                                | 3.00                   |   | 3.00             |
| 2014               | 5.37                | 0.64         | 0.00              | 0.00                 | 8.41            | 0.41        | 0.00              | 0.00                 | 35.36           | 0.00    | 0.00              | 0.00                 | 43.76           | 0.08        | 9.85              | 0.38                 |      | 0.38                                | 3.43                   |   | 3.80             |
| 2015               | 10.76               | 0.88         | 0.00              | 0.00                 | 16.49           | 0.58        | 0.00              | 0.00                 | 38.39           | 0.00    | 0.00              | 0.00                 | 54.88           | 0.17        | 0.00              | 0.00                 |      | 0.00                                | 9.49                   |   | 9.49             |
|                    |                     |              |                   |                      |                 |             | Po                | t                    |                 |         |                   |                      |                 |             |                   |                      |      |                                     |                        |   |                  |
| North of Pt. Chel  |                     |              |                   |                      |                 |             |                   |                      |                 |         |                   |                      |                 |             |                   |                      |      |                                     |                        |   |                  |
| 2011               | 1.05                | 0.98         | 0.00              | 0.00                 | 1.56            | 0.66        | 0.00              | 0.00                 | 0.26            | 0.00    | 0.00              | 0.00                 | 1.82            | 0.57        | 0.00              | 0.00                 |      | 0.00                                | 1.03                   |   | 1.03             |
| 2012               | 2.46                | 0.52         | 0.00              | 0.00                 | 9.15            | 0.14        | 0.00              | 0.00                 | 2.27            | 0.00    | 0.01              | 0.00                 | 11.42           | 0.11        | 0.00              | 0.00                 |      | 0.00                                | 1.27                   |   | 1.27             |
| 2013               |                     | 0.79         | 0.00              | 0.00                 | 1.08            | 0.20        | 0.00              | 0.00                 | 0.66            | 0.00    | 0.01              | 0.00                 | 1.73            | 0.13        | 0.00              | 0.00                 | Ш    | 0.00                                | 0.22                   |   | 0.22             |
| Pt. Chehalis to 40 |                     |              | 0.00              | 0.00                 | II = 00         | 0.00        | 0.00              | 0.00                 | II o o=         | 0.00    | 0.00              | 0.00                 | II 11.00        | 0.00        | 0.10              | 0.00                 | п    | 0.00                                | 1 0.00                 |   | 0.00             |
| 2011<br>2012       | 2.45                | 0.94         | 0.00              | 0.00                 | 7.92            | 0.29        | 0.00              | 0.00                 | 3.37            | 0.00    | 0.00              | 0.00                 | 11.29           | 0.20        | 3.18              | 0.02                 |      | 0.02                                | 2.30<br>0.62           |   | 2.33             |
| 2012               | 1.22<br>1.23        | 0.51<br>0.62 | 0.00              | 0.00                 | 3.86<br>6.77    | 0.16 $0.11$ | 0.00              | 0.00                 | 6.03<br>10.90   | 0.00    | 0.00              | 0.00                 | 9.88<br>17.67   | 0.06 $0.04$ | 0.00              | 0.00                 |      | 0.00                                | 0.62                   |   | 0.62 $0.76$      |
| 2015               | 1.78                | 0.02         | 0.00              | 0.00                 | 7.90            | 0.11        | 0.00              | 0.00                 | 7.52            | 0.00    | 0.00              | 0.00                 | 15.42           | 0.04        | 0.00              | 0.00                 |      | 0.00                                | 1.31                   |   | 1.31             |
| South of 40 °10′ N | 11                  | 0.14         | 0.00              | 0.00                 | 1.30            | 0.11        | 0.00              | 0.00                 | 1.02            | 0.00    | 0.00              | 0.00                 | 10.42           | 0.00        | 0.00              | 0.00                 | Ш    | 0.00                                | 1.51                   | 1 | 1.01             |
| 2011               | 0.30                | 0.00         | 0.00              | 0.00                 | 6.49            | 0.00        | 0.00              | 0.00                 | 6.91            | 0.00    | 0.00              | 0.00                 | 13.41           | 0.00        | 0.00              | 0.00                 | Ш    | 0.00                                | 0.00                   | 1 | 0.00             |
| 2012               | 0.52                | 0.00         | 0.00              | 0.00                 | 4.21            | 0.00        | 0.00              | 0.00                 | 4.59            | 0.00    | 0.00              | 0.00                 | 8.80            | 0.00        | 0.00              | 0.00                 |      | 0.00                                | 0.00                   |   | 0.00             |
| 2013               | 0.02                | 0.00         | 0.00              | 0.00                 | 3.01            | 0.00        | 0.00              | 0.00                 | 3.62            | 0.00    | 0.00              | 0.00                 | 6.64            | 0.00        | 0.00              | 0.00                 |      | 0.00                                | 0.00                   |   | 0.00             |
| 2015               | 0.01                | 0.00         | 0.00              | 0.00                 | 1.46            | 0.00        | 0.00              | 0.00                 | 8.65            | 0.00    | 0.00              | 0.00                 | 10.12           | 0.00        | 0.00              | 0.00                 |      | 0.00                                | 0.00                   |   | 0.00             |
| Coastwide          |                     |              |                   |                      | 11              |             |                   |                      | 11              |         |                   |                      | 11              |             |                   |                      | 11   |                                     | 1                      | ' |                  |
| 2014               | 0.58                | 0.55         | 0.00              | 0.00                 | 11.53           | 0.03        | 0.00              | 0.00                 | 16.58           | 0.00    | 0.01              | 0.00                 | 28.11           | 0.01        | 0.00              | 0.00                 |      | 0.00                                | 0.32                   |   | 0.32             |
|                    |                     |              |                   |                      |                 |             |                   |                      |                 |         |                   |                      | -11             |             |                   |                      |      |                                     |                        |   |                  |

Table 13: Pacific halibut viabilities in the U.S. west coast ground-fish IFQ fishery by gear, management area, area north and south of Point Chehalis, WA, depth (bottom trawl only), and year. The condition of sampled P. halibut was identified as Excellent (Exc), Poor, or Dead (see Appendices in WCGOP manual), consistent with IPHC protocol. The number of fish in each category was weighted based on the length-weight relationship as described in the Methods. In addition, all years combined are also shown. (‡) combined IFQ and LE CA Halibut, (\*) confidential data, (-) no estimate provided, see text for explanation.

| Area              |          |         |        |          |       |         |                         |         |
|-------------------|----------|---------|--------|----------|-------|---------|-------------------------|---------|
| Depth             | (fm)     |         | Number |          |       |         | ed percen<br>.ch catego |         |
|                   | Year     | Exc     | Poor   | Dead     | Total | Exc     | Poor                    | Dead    |
|                   |          |         | Bot    | tom Traw | ·l    | LI.     |                         |         |
| North of 1        | Pt. Cheh | nalis   |        |          |       |         |                         |         |
| 0-60              |          |         |        |          |       |         |                         | 1       |
|                   | 2011     | 517     | 137    | 308      | 962   | 57.34%  | 14.21%                  | 28.45%  |
|                   | 2012     | 314     | 156    | 299      | 769   | 45.94%  | 20.28%                  | 33.78%  |
|                   | 2013     | 327     | 114    | 464      | 905   | 41.06%  | 13.61%                  | 45.33%  |
|                   | 2014     | 252     | 27     | 26       | 305   | 85.12%  | 8.02%                   | 6.86%   |
|                   | 2015     | 349     | 51     | 90       | 490   | 71.79%  | 12.54%                  | 15.67%  |
|                   | All      | 1759    | 485    | 1187     | 3431  | 56.27%  | 14.49%                  | 29.23%  |
| >60               |          |         |        |          |       |         |                         |         |
|                   | 2011     | 1063    | 439    | 927      | 2429  | 46.75%  | 18.24%                  | 35.01%  |
|                   | 2012     | 1299    | 709    | 1368     | 3376  | 40.36%  | 20.82%                  | 38.82%  |
|                   | 2013     | 2100    | 534    | 984      | 3618  | 62.12%  | 14.22%                  | 23.65%  |
|                   | 2014     | 1669    | 595    | 1055     | 3319  | 52.59%  | 16.97%                  | 30.43%  |
|                   | 2015     | 1529    | 404    | 679      | 2612  | 59.53%  | 14.33%                  | 26.14%  |
|                   | All      | 7660    | 2681   | 5013     | 15354 | 52.15%  | 16.99%                  | 30.86%  |
| 40°10′ to<br>0-60 | Pt. Chel | halis   |        |          |       |         |                         |         |
|                   | 2011     | 1076    | 169    | 199      | 1444  | 80.30%  | 9.53%                   | 10.17%  |
|                   | 2012     | 791     | 175    | 229      | 1195  | 67.68%  | 13.89%                  | 18.44%  |
|                   | 2013     | 659     | 238    | 260      | 1157  | 59.12%  | 21.69%                  | 19.19%  |
|                   | 2014     | 1095    | 229    | 307      | 1631  | 68.69%  | 13.72%                  | 17.59%  |
|                   | 2015     | 778     | 232    | 426      | 1436  | 59.35%  | 15.05%                  | 25.60%  |
|                   | All      | 4399    | 1043   | 1421     | 6863  | 67.38%  | 14.53%                  | 18.10%  |
| >60               | 11       |         |        |          | ı     | 11      |                         |         |
| •                 | 2011     | 967     | 554    | 1188     | 2709  | 37.57%  | 20.22%                  | 42.22%  |
|                   | 2012     | 850     | 446    | 1201     | 2497  | 35.47%  | 17.55%                  | 46.97%  |
|                   | 2013     | 753     | 404    | 1100     | 2257  | 34.57%  | 18.55%                  | 46.88%  |
|                   | 2014     | 765     | 363    | 865      | 1993  | 42.04%  | 17.22%                  | 40.74%  |
|                   | 2015     | 1402    | 556    | 1513     | 3471  | 41.39%  | 17.07%                  | 41.54%  |
|                   | All      | 4737    | 2323   | 5867     | 12927 | 38.44%  | 18.07%                  | 43.48%  |
| South of 4        | . 11     |         |        |          |       | 11 , ,  |                         | / -     |
| 0-60              | 10 10 11 | . 10101 |        |          |       |         |                         |         |
|                   | 2011     | 0       | 0      | 10       | 10    | 0.00%   | 0.00%                   | 100.00% |
|                   | 2012     | *       | *      | *        | *     | *       | *                       | *       |
|                   | 2013‡    | 2       | 0      | 0        | 2     | 100.00% | 0.00%                   | 0.00%   |
|                   | 2014‡    | 0       | 0      | 0        | 0     | 0.00%   | 0.00%                   | 0.00%   |
|                   | 2015‡    | 0       | 0      | 0        | 0     | 0.00%   | 0.00%                   | 0.00%   |
|                   | All‡     | *       | *      | *        | *     | *       | *                       | *       |
| >60               |          |         |        |          |       | II      |                         | I       |
| ,                 | 2011     | 7       | 1      | 6        | 14    | 48.21%  | 6.06%                   | 45.73%  |

| 2012                                         | 35             | 7                    | 36      | 78       | 49.26%  | 9.18%              | 41.56%             |
|----------------------------------------------|----------------|----------------------|---------|----------|---------|--------------------|--------------------|
| 2013‡                                        | 27             | 14                   | 51      | 92       | 32.05%  | 16.05%             | 51.90%             |
| 2014‡                                        | $\frac{1}{24}$ | 9                    | 14      | 47       | 63.47%  | 13.76%             | 22.76%             |
| 2015‡                                        | 10             | 3                    | 15      | 28       | 54.15%  | 9.94%              | 35.91%             |
| All‡                                         | 103            | 34                   | 122     | 259      | 47.18%  | 12.25%             | 40.58%             |
| LE CA Halibut S.                             |                |                      | 122     | 200      | 11.1070 | 12.2070            | 10.9070            |
| All depths                                   | 01 40 10       | in. lat.             |         |          |         |                    |                    |
| 2011                                         | 0              | 0                    | 0       | 0        | 0.00%   | 0.00%              | 0.00%              |
| $\begin{vmatrix} 2011 \\ 2012 \end{vmatrix}$ | *              | *                    | *       | *        | *       | 0.007 <sub>0</sub> | 0.007 <sub>0</sub> |
|                                              | *              | *                    | *       | *        | *       | *                  | *                  |
| All                                          | '              | •                    | Midwate | •        | _ '     | <u> </u>           | •                  |
| Non-hake Shoresic                            | 1              |                      | Midwate | er irawi |         |                    |                    |
|                                              |                |                      |         |          |         |                    |                    |
| North of 40°10′ N                            | l. lat.        |                      |         |          |         |                    |                    |
| All depths                                   | ما ا           | ala.                 | .1.     | .1.      | l de    | ala.               | ala.               |
| 2011                                         | *              | *                    | *       | *        | *       | *                  | *                  |
| 2012                                         | 0              | 0                    | 0       | 0        | 0.00%   | 0.00%              | 0.00%              |
| 2013                                         | 0              | 0                    | 0       | 0        | 0.00%   | 0.00%              | 0.00%              |
| 2014                                         | 0              | 0                    | 0       | 0        | 0.00%   | 0.00%              | 0.00%              |
| All                                          | *              | *                    | *       | *        | *       | *                  | *                  |
| Midwater Rockfis                             |                |                      |         |          |         |                    |                    |
| North of $40^{\circ}10^{'}$ N                | I. lat.        |                      |         |          |         |                    |                    |
| All depths                                   |                |                      |         |          |         |                    |                    |
| 2015                                         | 0              | 0                    | 0       | 0        | 0.00%   | 0.00%              | 0.00%              |
| All                                          | 0              | 0                    | 0       | 0        | 0.00%   | 0.00%              | 0.00%              |
| Shoreside Hake                               | I              |                      |         |          |         |                    |                    |
| North of 40°10′ N                            | I. lat.        |                      |         |          |         |                    |                    |
| All depths                                   |                |                      |         |          |         |                    |                    |
| 2011                                         | 0              | 1                    | 2       | 3        | 0.00%   | 46.01%             | 53.99%             |
| 2012                                         | 0              | 0                    | 0       | 0        | 0.00%   | 0.00%              | 0.00%              |
| 2013                                         | $\frac{1}{2}$  | 0                    | 1       | 3        | 91.76%  | 0.00%              | 8.24%              |
| 2014                                         | 6              | $\overset{\circ}{2}$ | 0       | 8        | 89.99%  | 10.01%             | 0.00%              |
| All                                          | 8              | 3                    | 3       | 14       | 78.15%  | 12.12%             | 9.73%              |
| Midwater Hake                                |                |                      |         | 11       | 10.1070 | 12.12/0            | 0.1070             |
| North of $40^{\circ}10^{'}$ N                | I lot          |                      |         |          |         |                    |                    |
|                                              | ı. ıaı.        |                      |         |          |         |                    |                    |
| All depths                                   | 1 0            | 0                    | 0       | 0        | 0.0007  | 0.0007             | 0.0007             |
| 2015                                         | 0              | 0                    | 0       | 0        | 0.00%   | 0.00%              | 0.00%              |
| All                                          | 0              | 0                    | 0       | 0        | 0.00%   | 0.00%              | 0.00%              |
|                                              |                |                      | Hook a  | nd Line  |         |                    |                    |
| North of 40°10′ N                            | l. lat.        |                      |         | المتار   | ıı.     |                    |                    |
| 2011                                         | -              | -                    | -       | 902      | -       | -                  | -                  |
| All                                          | -              | -                    | -       | 902      | -       | -                  | -                  |
| South of 40°10′ N                            | lat.           |                      |         |          |         |                    |                    |
| 2011                                         | -              | -                    | -       | 0        | -       | -                  | -                  |
| All                                          | -              | -                    | -       | 0        | -       | -                  | -                  |
| Coastwide                                    |                |                      |         |          |         |                    |                    |
| 2012                                         | -              | -                    | -       | 1271     | -       | -                  | -                  |
| 2013                                         | -              | -                    | -       | 404      | -       | -                  | -                  |
| 2014                                         | _              | -                    | -       | 698      | -       | -                  | -                  |
| 2015                                         | _              | -                    | -       | 963      | -       | -                  | -                  |
| All                                          | -              | -                    | -       | 3336     | -       | -                  | -                  |
|                                              |                |                      |         | Pot      |         |                    |                    |
| North of Pt. Chel                            | nalis          |                      |         |          |         |                    |                    |
| 2011                                         | 53             | 3                    | 19      | 75       | 83.58%  | 2.14%              | 14.27%             |
| 2012                                         | 103            | 21                   | 24      | 148      | 66.34%  | 16.72%             | 16.94%             |
| 2013                                         | 18             | 1                    | 11      | 30       | 60.78%  | 1.83%              | 37.39%             |
| 9                                            | -              |                      |         | - 1      |         |                    | - , ,              |

| All                | 174      | 25   | 54 | 253 | 71.77% | 10.11% | 18.12% |
|--------------------|----------|------|----|-----|--------|--------|--------|
| Pt. Chehalis to 40 | 0°10′ N. | lat. |    |     |        |        |        |
| 2011               | 149      | 10   | 65 | 224 | 69.06% | 4.57%  | 26.37% |
| 2012               | 58       | 4    | 3  | 65  | 86.97% | 7.77%  | 5.27%  |
| 2013               | 76       | 7    | 8  | 91  | 83.18% | 6.94%  | 9.88%  |
| 2015               | 145      | 7    | 17 | 169 | 83.65% | 4.47%  | 11.88% |
| All                | 428      | 28   | 93 | 549 | 77.71% | 5.29%  | 17.00% |
| South of 40°10′ N  | lat.     |      |    |     |        |        |        |
| 2011               | 0        | 0    | 0  | 0   | 0.00%  | 0.00%  | 0.00%  |
| 2012               | 0        | 0    | 0  | 0   | 0.00%  | 0.00%  | 0.00%  |
| 2013               | 0        | 0    | 0  | 0   | 0.00%  | 0.00%  | 0.00%  |
| 2015               | 0        | 0    | 0  | 0   | 0.00%  | 0.00%  | 0.00%  |
| All                | 0        | 0    | 0  | 0   | 0.00%  | 0.00%  | 0.00%  |
| Coastwide          |          |      |    |     |        |        |        |
| 2014               | 24       | 0    | 8  | 32  | 73.71% | 0.00%  | 26.29% |
| All                | 24       | 0    | 8  | 32  | 73.71% | 0.00%  | 26.29% |
|                    |          |      |    |     |        |        |        |
| '                  |          |      |    |     |        |        |        |

Table 14: Estimated Pacific halibut gross discard (mt) and discard mortality (mt) in the U.S. west coast groundfish IFQ fishery by gear type, management area, area north or south of Pt. Chehalis, WA, depth (bottom trawl only), and year. Estimates were allocated to three condition categories based on information presented in Table 13. DMR=Discard Mortality Rate. (‡) combined IFQ and LE CA Halibut, (\*) confidential data, (-) no estimate, see text for explanation.

| Area<br>Depth ( | (fm)     | Estima  | ted Gross Dis | scard (mt) |             | Estimat | ed Discar | d Mortalit  | v          | DMR      |
|-----------------|----------|---------|---------------|------------|-------------|---------|-----------|-------------|------------|----------|
| P V             | Year     | Exc     | Poor          | Dead       | Total       | m(Exc)  |           |             | ) m(Total) |          |
| Bottom Tr       |          | 1       |               |            |             |         | ,         |             | / / /      |          |
| North of F      | t. Cheh  | alis    |               |            |             |         |           |             |            |          |
| 0-60            |          |         |               |            |             |         |           |             |            |          |
|                 | 2011     | 4.58    | 1.13          | 2.27       | 7.98        | 0.92    | 0.62      | 2.04        | 3.58       | 44.89%   |
|                 | 2012     | 2.21    | 0.97          | 1.62       | 4.80        | 0.44    | 0.54      | 1.46        | 2.44       | 50.74%   |
|                 | 2013     | 2.24    | 0.74          | 2.47       | 5.46        | 0.45    | 0.41      | 2.23        | 3.08       | 56.50%   |
|                 | 2014     | 1.76    | 0.17          | 0.14       | 2.07        | 0.35    | 0.09      | 0.13        | 0.57       | 27.61%   |
|                 | 2015     | 2.79    | 0.49          | 0.61       | 3.89        | 0.56    | 0.27      | 0.55        | 1.37       | 35.36%   |
| >60             |          |         |               |            |             |         |           |             |            |          |
|                 | 2011     | 10.42   | 4.07          | 7.80       | 22.29       | 2.08    | 2.24      | 7.02        | 11.34      | 50.89%   |
|                 | 2012     | 13.19   | 6.80          | 12.68      | 32.67       | 2.64    | 3.74      | 11.42       | 17.79      | 54.46%   |
|                 | 2013     | 18.58   | 4.25          | 7.07       | 29.91       | 3.72    | 2.34      | 6.37        | 12.42      | 41.54%   |
|                 | 2014     | 13.45   | 4.34          | 7.78       | 25.58       | 2.69    | 2.39      | 7.00        | 12.08      | 47.24%   |
|                 | 2015     | 14.80   | 3.56          | 6.50       | 24.86       | 2.96    | 1.96      | 5.85        | 10.77      | 43.31%   |
| 40°10′ to       | Pt. Chel | halis   |               |            |             |         |           |             |            |          |
| 0-60            |          |         |               |            |             |         |           |             |            |          |
|                 | 2011     | 8.83    | 1.05          | 1.12       | 11.00       | 1.77    | 0.58      | 1.01        | 3.35       | 30.46%   |
|                 | 2012     | 5.45    | 1.12          | 1.49       | 8.06        | 1.09    | 0.62      | 1.34        | 3.04       | 37.77%   |
|                 | 2013     | 5.05    | 1.85          | 1.64       | 8.55        | 1.01    | 1.02      | 1.48        | 3.51       | 41.03%   |
|                 | 2014     | 7.24    | 1.45          | 1.85       | 10.54       | 1.45    | 0.80      | 1.67        | 3.91       | 37.12%   |
|                 | 2015     | 6.07    | 1.54          | 2.62       | 10.22       | 1.21    | 0.85      | 2.35        | 4.41       | 43.19%   |
| >60             |          |         |               |            |             |         |           |             |            |          |
|                 | 2011     | 8.46    | 4.55          | 9.50       | 22.51       | 1.69    | 2.50      | 8.55        | 12.75      | 56.63%   |
|                 | 2012     | 7.26    | 3.59          | 9.61       | 20.46       | 1.45    | 1.98      | 8.65        | 12.08      | 59.02%   |
|                 | 2013     | 7.29    | 3.91          | 9.88       | 21.08       | 1.46    | 2.15      | 8.89        | 12.50      | 59.31%   |
|                 | 2014     | 7.20    | 2.95          | 6.98       | 17.14       | 1.44    | 1.62      | 6.28        | 9.35       | 54.55%   |
|                 | 2015     | 12.31   | 5.08          | 12.36      | 29.75       | 2.46    | 2.79      | 11.12       | 16.38      | 55.05%   |
| South of 4      | 0°10′ N  | . lat.  |               |            |             |         |           |             |            |          |
| 0-60            | 2044     | 0.00    | 0.00          | 0.4=       | 0.4=        | II 0 00 | 0.00      |             | 0.47       | 00 000   |
|                 | 2011     | 0.00    | 0.00          | 0.17       | $0.17 \\ *$ | 0.00    | 0.00      | $0.15 \\ *$ | 0.15       | 90.00%   |
|                 | 2012     |         |               | *          |             |         |           |             |            | *        |
|                 | 2013     | 0.03    | 0.00          | 0.00       | 0.03        | 0.01    | 0.00      | 0.00        | 0.01       | 20.00%   |
|                 | 2014     | 0.00    | 0.00          | 0.00       | 0.00        | 0.00    | 0.00      | 0.00        | 0.00       | 0.00%    |
|                 | 2015     | 0.00    | 0.00          | 0.00       | 0.00        | 0.00    | 0.00      | 0.00        | 0.00       | 0.00%    |
| >60             | 0011     | 0.00    | 0.01          | 0.00       | 0.10        | II 0.00 | 0.01      | 0.07        | 0.00       | F 4 1007 |
|                 | 2011     | 0.08    | 0.01          | 0.08       | 0.16        | 0.02    | 0.01      | 0.07        | 0.09       | 54.13%   |
|                 | 2012     | 0.41    | 0.08          | 0.35       | 0.84        | 0.08    | 0.04      | 0.31        | 0.44       | 52.31%   |
|                 | 2013     | 0.29    | 0.14          | 0.47       | 0.90        | 0.06    | 0.08      | 0.42        | 0.56       | 61.95%   |
|                 | 2014     | 0.36    | 0.08          | 0.13       | 0.57        | 0.07    | 0.04      | 0.12        | 0.23       | 40.75%   |
|                 | 2015     | 0.18    | 0.03          | 0.12       | 0.33        | 0.04    | 0.02      | 0.11        | 0.16       | 48.62%   |
| LE CA Ha        |          | of 40°1 | 0 N. lat.     |            |             |         |           |             |            |          |
| All dep         |          | 0.00    | 0.00          | 0.00       | 0.00        | II 0.00 | 0.00      | 0.00        | 0.00       | 0.0004   |
|                 | 2011     | 0.00    | 0.00          | 0.00       | 0.00        | 0.00    | 0.00      | 0.00        | 0.00       | 0.00%    |
|                 | 2012     | 7       | Ψ             | Ψ          | Φ           | **      | Ψ         | Ψ           | 77         | Ψ        |

| Midwater Trawl     |        |      |      |       |      |      |      |      |           |
|--------------------|--------|------|------|-------|------|------|------|------|-----------|
| Non-hake Shoresid  | le     |      |      |       |      |      |      |      |           |
| North of 40°10' N  | . lat. |      |      |       |      |      |      |      |           |
| All depths         |        |      |      |       |      |      |      |      |           |
| 2011               | *      | *    | *    | *     | *    | *    | *    | *    | *         |
| 2012               | 0.00   | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00%     |
| 2013               | 0.00   | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00%     |
| 2014               | 0.00   | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00%     |
| Midwater Rockfish  | 1      |      |      | II.   |      |      |      |      |           |
| North of 40°10' N  | . lat. |      |      |       |      |      |      |      |           |
| All depths         |        |      |      |       |      |      |      |      |           |
| 2015               | 0.00   | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00%     |
| Shoreside Hake     |        |      |      | II.   |      |      |      |      |           |
| North of 40°10' N  | . lat. |      |      |       |      |      |      |      |           |
| All depths         | . 1000 |      |      |       |      |      |      |      |           |
| 2011               | 0.00   | 0.01 | 0.01 | 0.03  | 0.00 | 0.00 | 0.00 | 0.03 | 100.00%   |
| 2012               | 0.00   | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00%     |
| 2013               | 0.05   | 0.00 | 0.00 | 0.05  | 0.00 | 0.00 | 0.00 | 0.05 | 100.00%   |
| 2014               | 0.10   | 0.01 | 0.00 | 0.11  | 0.00 | 0.00 | 0.00 | 0.11 | 100.00%   |
| Midwater Hake      |        |      |      | II.   |      |      |      |      |           |
| North of 40°10' N  | . lat. |      |      |       |      |      |      |      |           |
| All depths         | . 1000 |      |      |       |      |      |      |      |           |
| 2015               | 0.00   | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00%     |
| Hook and Line      |        |      |      |       |      |      |      |      |           |
| North of 40 °10 N  | lat    |      |      |       |      |      |      |      |           |
| 2011               |        | _    | _    | 6.06  | _    | _    | _    | 0.97 | 16.00%    |
| South of 40°10′ N  |        |      |      | 0.00  |      |      |      | 0.01 | 10.0070   |
| 2011               | -      | _    | _    | 0.00  | _    | _    | _    | 0.00 | 0.00%     |
| Coastwide          |        |      |      | 0.00  |      |      |      | 0.00 | 0.0070    |
| 2012               | _      | _    | _    | 14.66 | _    | _    | _    | 2.34 | 16.00%    |
| 2013               | _      | _    | _    | 3.00  | _    | _    | _    | 0.48 | 16.00%    |
| 2014               | _      | _    | _    | 3.80  | _    | _    | _    | 0.61 | 16.00%    |
| 2015               | _      | _    | _    | 9.49  | _    | _    | _    | 1.52 | 16.00%    |
| Pot                |        |      |      | 0.10  |      |      |      | 1.02 | 10.0070   |
| North of Pt. Cheh  | alis   |      |      |       |      |      |      |      |           |
| 2011               | 0.86   | 0.02 | 0.15 | 1.03  | 0.00 | 0.02 | 0.15 | 0.17 | 16.42%    |
| 2012               | 0.84   | 0.21 | 0.21 | 1.27  | 0.00 | 0.21 | 0.21 | 0.43 | 33.66%    |
| 2013               | 0.13   | 0.00 | 0.08 | 0.22  | 0.00 | 0.00 | 0.08 | 0.09 | 39.22%    |
| Pt. Chehalis to 40 |        |      |      |       | - 77 | - 00 |      |      | 11        |
| 2011               | 1.61   | 0.11 | 0.61 | 2.33  | 0.00 | 0.11 | 0.61 | 0.72 | 30.94%    |
| 2012               | 0.54   | 0.05 | 0.03 | 0.62  | 0.00 | 0.05 | 0.03 | 0.08 | 13.03%    |
| 2013               | 0.63   | 0.05 | 0.07 | 0.76  | 0.00 | 0.05 | 0.07 | 0.13 | 16.82%    |
| 2015               | 1.10   | 0.06 | 0.16 | 1.31  | 0.00 | 0.06 | 0.16 | 0.21 | 16.35%    |
| South of 40°10′ N  |        |      |      | Ш     |      |      |      |      | 11        |
| 2011               | 0.00   | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00%     |
| 2012               | 0.00   | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00%     |
| 2013               | 0.00   | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00%     |
| 2015               | 0.00   | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00%     |
| Coastwide          |        |      |      |       |      |      |      |      | 11 - 00,0 |
| Coastwide          |        |      |      |       |      |      |      |      |           |
| 2014               | 0.23   | 0.00 | 0.08 | 0.32  | 0.00 | 0.00 | 0.08 | 0.08 | 26.29%    |

Table 15: Estimated Pacific halibut discard (mt), discard mortality (mt), legal-sized (82 cm) mortality (mt), and percent of legal-sized discard by weight in the U.S. west coast groundfish IFQ fisheries by gear, management area, area north and south of Pt. Chehalis WA, depth (bottom trawl only) and year. The proportion of legal-sized P. halibut in the non-hake IFQ bottom trawl sector north of 40 °10′ N. lat. is 67.68%. (‡) combined IFQ and LE CA Halibut, (\*) confidential data, (-) no estimate, see text for explanation.

Area Depth (fm)

| Year              | Total discard (mt) | Total discard<br>mortality (mt) | Estimated legal-sized mortality (mt) | Estimated %<br>legal-size<br>discarded by<br>weight |
|-------------------|--------------------|---------------------------------|--------------------------------------|-----------------------------------------------------|
| Bottom Trawl      | II                 |                                 | II                                   |                                                     |
| North of Pt. Chel | nalis              |                                 |                                      |                                                     |
| 0-60              |                    |                                 |                                      |                                                     |
| 2011              | 7.98               | 3.58                            | 1.96                                 | 54.66%                                              |
| 2012              | 4.80               | 2.44                            | 1.14                                 | 46.94%                                              |
| 2013              | 5.46               | 3.08                            | 1.23                                 | 39.75%                                              |
| 2014              | 2.07               | 0.57                            | 0.27                                 | 47.56%                                              |
| 2015              | 3.89               | 1.37                            | 0.95                                 | 68.79%                                              |
| >60               | I                  | I                               | I                                    |                                                     |
| 2011              | 22.29              | 11.34                           | 8.00                                 | 70.52%                                              |
| 2012              | 32.67              | 17.79                           | 12.31                                | 69.19%                                              |
| 2013              | 29.91              | 12.42                           | 7.96                                 | 64.07%                                              |
| 2014              | 25.58              | 12.08                           | 6.46                                 | 53.50%                                              |
| 2015              | 24.86              | 10.77                           | 6.96                                 | 64.63%                                              |
| 40°10′ to Pt. Che |                    | l                               | I                                    |                                                     |
| 0-60              |                    |                                 |                                      |                                                     |
| 2011              | 11.00              | 3.35                            | 2.08                                 | 62.17%                                              |
| 2012              | 8.06               | 3.04                            | 1.61                                 | 53.02%                                              |
| 2013              | 8.55               | 3.51                            | 2.18                                 | 62.10%                                              |
| 2014              | 10.54              | 3.91                            | 1.92                                 | 49.16%                                              |
| 2015              | 10.22              | 4.41                            | 2.54                                 | 57.52%                                              |
| >60               | 10.22              | 1.11                            | 2.01                                 | 01.0270                                             |
| 2011              | 22.51              | 12.75                           | 8.78                                 | 68.87%                                              |
| 2012              | 20.46              | 12.08                           | 8.51                                 | 70.44%                                              |
| 2013              | 21.08              | 12.50                           | 8.81                                 | 70.48%                                              |
| 2014              | 17.14              | 9.35                            | 6.91                                 | 73.89%                                              |
| 2015              | 29.75              | 16.38                           | 11.84                                | 72.32%                                              |
| South of 40°10′ N |                    | 10.00                           | 11.01                                | 12.02/0                                             |
| 0-60              | . 1au.             |                                 |                                      |                                                     |
| 2011              | 0.17               | 0.15                            | 0.15                                 | 100.00%                                             |
| 2012              | *                  | *                               | *                                    | *                                                   |
| 2012              | 0.03               | 0.01                            | 0.01                                 | 100.00%                                             |
| 2014‡             | 0.00               | 0.00                            | 0.00                                 | 0.00%                                               |
| 2014‡             |                    | 0.00                            | 0.00                                 | 0.00%                                               |
| >60               | 0.00               | 0.00                            | 0.00                                 | 0.0070                                              |
| 2011              | 0.16               | 0.09                            | 0.09                                 | 96.93%                                              |
| 2011              | 0.10               | 0.44                            | $0.09 \\ 0.38$                       | 86.31%                                              |
| 2012              | 0.90               | 0.44 $0.56$                     | 0.35                                 | 80.25%                                              |
| 2014‡             | 0.90 $0.57$        | 0.30                            | 0.45                                 | 90.96%                                              |
| 2014;   2015;     | 0.37 $0.33$        | 0.25                            | 0.21                                 | 88.19%                                              |
| TECA Halibut C    | of 40 °10′ N lot   | 0.10                            | 0.14                                 | 00.19/0                                             |

LE CA Halibut S. of  $40^{\circ}10^{'}$  N. lat.

| All depths $2011 \parallel$                  | 0.00    |      |        |         |
|----------------------------------------------|---------|------|--------|---------|
|                                              | 0.00    | 0.00 | 0.00   | 0.00%   |
| 2012                                         | *       | *    | *      | *       |
| Midwater Trawl                               |         |      |        |         |
| Non-hake Shoreside                           |         |      |        |         |
| North of $40^{\circ}10^{'}$ N. lat.          |         |      |        |         |
| All depths                                   | *       | *    | *      | *       |
| 2011                                         |         |      |        |         |
| 2012                                         | 0.00    | 0.00 | 0.00   | 0.00%   |
| 2013                                         | 0.00    | 0.00 | 0.00   | 0.00%   |
| Midwater Rockfish                            | 0.00    | 0.00 | 0.00   | 0.00%   |
| North of $40^{\circ}10^{'}$ N. lat.          |         |      |        |         |
| All depths                                   |         |      |        |         |
| 2015                                         | 0.00    | 0.00 | 0.00   | 0.00%   |
| Shoreside Hake                               | 0.00    | 0.00 | 0.00   | 0.0070  |
| North of $40^{\circ}10^{'}$ N. lat.          |         |      |        |         |
| All depths                                   |         |      |        |         |
| 2011                                         | 0.03    | 0.03 | 0.02   | 76.44%  |
| $\frac{2011}{2012}$                          | 0.00    | 0.00 | 0.02   | 0.00%   |
| $\begin{vmatrix} 2012 \\ 2013 \end{vmatrix}$ | 0.05    | 0.05 | 0.00   | 91.55%  |
| $\frac{2013}{2014}$                          | 0.11    | 0.05 | 0.10   | 90.18%  |
| Midwater Hake                                | 0.11    | 0.11 | 0.10   | 00.1070 |
| North of $40^{\circ}10^{'}$ N. lat.          |         |      |        |         |
| All depths                                   |         |      |        |         |
| 2015                                         | 0.00    | 0.00 | 0.00   | 0.00%   |
| Hook and Line                                |         |      |        | 3,00,0  |
| North of 40°10′ N. lat.                      |         |      |        |         |
| 2011                                         | 6.06    | 0.97 | 0.43   | 44.66%  |
| South of $40^{\circ}10^{'}$ N. lat.          |         |      | 11     | , ,     |
| 2011                                         | 0.00    | 0.00 | 0.00   | 0.00%   |
| Coastwide                                    |         |      |        |         |
| 2012                                         | 14.66   | 2.34 | 1.81   | 76.99%  |
| 2013                                         | 3.00    | 0.48 | 0.24   | 49.73%  |
| 2014                                         | 3.80    | 0.61 | 0.30   | 49.87%  |
| 2015                                         | 9.49    | 1.52 | 0.65   | 42.61%  |
| Pot                                          |         |      |        |         |
| North of Pt. Chehalis                        |         |      |        |         |
| 2011                                         | 1.03    | 0.17 | 0.13   | 77.00%  |
| 2012                                         | 1.27    | 0.43 | 0.34   | 80.73%  |
| 2013                                         | 0.22    | 0.09 | 0.07   | 77.82%  |
| Pt. Chehalis to $40^{\circ}10^{'}$           | N. lat. |      |        |         |
| 2011                                         | 2.33    | 0.72 | 0.54   | 74.48%  |
| 2012                                         | 0.62    | 0.08 | 0.06   | 73.97%  |
| 2013                                         | 0.76    | 0.13 | 0.09   | 70.53%  |
| 2015                                         | 1.31    | 0.21 | 0.16   | 73.94%  |
| South of $40^{\circ}10^{'}$ N. lat.          |         |      |        |         |
| 2011                                         | 0.00    | 0.00 | 0.00   | 0.00%   |
| 2012                                         | 0.00    | 0.00 | 0.00   | 0.00%   |
| 2013                                         | 0.00    | 0.00 | 0.00   | 0.00%   |
| 2015                                         | 0.00    | 0.00 | 0.00   | 0.00%   |
| Coastwide                                    | 0.00    | 0.0- | 11 000 | 0.0.04  |
| 2014                                         | 0.32    | 0.08 | 0.07   | 84.94%  |
| II                                           |         |      |        |         |

Table 16: Pacific halibut by catch by month for vessels fishing bottom trawl gear in the 2015 IFQ fishery. We present coastwide estimates across all depths to maintain confidentiality. Note that adding values across columns might give slightly different results because values are rounded to two decimals for reporting.

| Month                | Expanded Discard (mt) | Sampled Discard (mt) | Total Bycatch (mt) |
|----------------------|-----------------------|----------------------|--------------------|
| Jan                  | 0.00                  | 8.79                 | 8.79               |
| Feb                  | 0.10                  | 5.70                 | 5.80               |
| Mar                  | 0.02                  | 8.71                 | 8.72               |
| $\operatorname{Apr}$ | 0.00                  | 7.05                 | 7.05               |
| May                  | 0.00                  | 5.58                 | 5.58               |
| $\operatorname{Jun}$ | 0.48                  | 7.49                 | 7.97               |
| $\operatorname{Jul}$ | 0.05                  | 6.17                 | 6.23               |
| Aug                  | 0.01                  | 2.81                 | 2.83               |
| $\operatorname{Sep}$ | 0.00                  | 2.71                 | 2.71               |
| $\operatorname{Oct}$ | 0.00                  | 7.33                 | 7.33               |
| Nov                  | 0.00                  | 3.76                 | 3.76               |
| Dec                  | 0.00                  | 2.28                 | 2.28               |

Table 17: Physical measurements of P. halibut length (cm) in the U.S. west coast groundfish IFQ fishery (2011-2015) for vessels using bottom trawl gear and pot gear. Total represents the total number of individuals measured. The number of dead individuals was obtained by multiplying the number of measured individuals of a given condition category (Excellent, Poor, Dead) by the corresponding gear-specific mortality rate. See text for mortality rates. Length bins include the lower bound and exclude the upper bound.

|                    | No. Bot<br>Traw<br>Individ | rl   | No. P<br>Individ |      |                    | No. Bot<br>Traw<br>Individ | vl   | No. Pot<br>Individuals |      |
|--------------------|----------------------------|------|------------------|------|--------------------|----------------------------|------|------------------------|------|
| Length bin<br>(cm) | Total                      | Dead | Total            | Dead | Length bin<br>(cm) | Total                      | Dead | Total                  | Dead |
| 18-20              | 1                          | 0    | 0                | 0    | 106-108            | 384                        | 168  | 12                     | 4    |
| 22-24              | 1                          | 0    | 0                | 0    | 108-110            | 334                        | 158  | 6                      |      |
| 30-32              | 3                          | 1    | 0                | 0    | 110-112            | 307                        | 132  | 6                      |      |
| 32-34              | 4                          | 2    | 0                | 0    | 112-114            | 251                        | 117  | 2                      | (    |
| 34-36              | 4                          | 1    | 0                | 0    | 114-116            | 192                        | 88   | 6                      | :    |
| 36-38              | 4                          | 1    | 0                | 0    | 116-118            | 134                        | 60   | 3                      |      |
| 38-40              | 13                         | 4    | 0                | 0    | 118-120            | 115                        | 51   | 3                      |      |
| 40-42              | 17                         | 8    | 0                | 0    | 120-122            | 83                         | 39   | 2                      | (    |
| 42-44              | 19                         | 8    | 0                | 0    | 122-124            | 88                         | 36   | 3                      | (    |
| 44-46              | 11                         | 6    | 1                | 0    | 124-126            | 60                         | 27   | 0                      |      |
| 46-48              | 20                         | 8    | 1                | 0    | 126-128            | 40                         | 22   | 0                      |      |
| 48-50              | 34                         | 13   | 0                | 0    | 128-130            | 36                         | 13   | 1                      |      |
| 50-52              | 33                         | 21   | 1                | 0    | 130-132            | 20                         | 7    | 2                      |      |
| 52-54              | 45                         | 24   | 0                | 0    | 132-134            | 19                         | 6    | 0                      |      |
| 54-56              | 74                         | 39   | 4                | 1    | 134-136            | 14                         | 5    | 1                      |      |
| 56-58              | 100                        | 56   | 1                | 0    | 136-138            | 13                         | 4    | 1                      |      |
| 58-60              | 263                        | 155  | 4                | 1    | 138-140            | 6                          | 4    | 1                      |      |
| 60-62              | 546                        | 299  | 10               | 3    | 140-142            | 9                          | 6    | 0                      |      |
| 62-64              | 953                        | 507  | 10               | 5    | 142-144            | 9                          | 5    | 0                      |      |
| 64-66              | 1369                       | 729  | 10               | 3    | 144-146            | 5                          | 2    | 0                      |      |
| 66-68              | 1669                       | 861  | 6                | 1    | 146-148            | 8                          | 2    | 0                      |      |
| 68-70              | 2003                       | 1025 | 19               | 4    | 148-150            | 7                          | 2    | 0                      |      |
| 70-72              | 2402                       | 1215 | 29               | 10   | 150-152            | 3                          | 2    | 0                      |      |
| 72-74              | 2600                       | 1342 | 46               | 7    | 152-154            | 1                          | 0    | 0                      |      |
| 74-76              | 2624                       | 1346 | 38               | 8    | 154-156            | 1                          | 1    | 0                      |      |
| 76-78              | 2502                       | 1313 | 28               | 10   | 160-162            | 1                          | 1    | 0                      |      |
| 78-80              | 2378                       | 1227 | 55               | 14   | 162-164            | 1                          | 0    | 0                      |      |
| 80-82              | 2294                       | 1138 | 74               | 16   | 164-166            | 1                          | 0    | 0                      |      |
| 82-84              | 2186                       | 1125 | 81               | 23   | 166-168            | 0                          | 0    | 1                      |      |
| 84-86              | 2006                       | 1018 | 71               | 17   | 168-170            | 3                          | 1    | 0                      |      |
| 86-88              | 1676                       | 856  | 55               | 13   | 170-172            | 1                          | 0    | 0                      |      |
| 88-90              | 1520                       | 764  | 53               | 9    | 172-174            | 4                          | 1    | 0                      |      |
| 90-92              | 1472                       | 730  | 49               | 12   | 174-176            | 1                          | 1    | 0                      |      |
| 92-94              | 1313                       | 641  | 30               | 9    | 178-180            | 1                          | 1    | 0                      |      |
| 94-96              | 1041                       | 506  | 28               | 7    | 180-182            | 1                          | 0    | 0                      |      |
| 96-98              | 864                        | 416  | 29               | 11   | 182-184            | 2                          | 1    | 0                      |      |
| 98-100             | 767                        | 376  | 13               | 3    | 184-186            | 2                          | 1    | 0                      |      |
| 100-102            | 744                        | 333  | 16               | 2    | 186-188            | 2                          | 2    | 0                      |      |
| 102-104            | 615                        | 295  | 12               | 2    | 192-194            | 1                          | 0    | 0                      |      |
| 104-106            | 509                        | 238  | 9                | 3    | 198-200            | 1                          | 0    | 0                      |      |
| 104-100            | 909                        | 200  | 9                | 3    | 200-202            | 0                          | 0    | 1                      |      |

Table 18: Visual estimates of P. halibut lengths (cm) from the U.S. west coast groundfish IFQ fishery (2011-2015) for vessels using bottom trawl, pot, and hook and line gear. Length bins include the lower bound and exclude the upper bound.

| Length bin (cm) | No. Bottom           | No. Pot     | No. Hook<br>and Line    |
|-----------------|----------------------|-------------|-------------------------|
|                 | Trawl<br>Individuals | Individuals | and Line<br>Individuals |
| 25-34           | 0                    | 1           | 25                      |
| 35-44           | 2                    | 2           | 137                     |
| 45-54           | 3                    | 1           | 278                     |
| 55-64           | 8                    | 2           | 694                     |
| 65-74           | 30                   | 4           | 1071                    |
| 75-84           | 28                   | 13          | 819                     |
| 85-94           | 36                   | 8           | 535                     |
| 95-104          | 24                   | 7           | 322                     |
| 105-114         | 7                    | 1           | 179                     |
| 115-124         | 8                    | 2           | 98                      |
| 125-134         | 6                    | 1           | 29                      |
| 135-144         | 4                    | 0           | 13                      |
| 145-154         | 4                    | 0           | 2                       |
| 155-164         | 1                    | 0           | 1                       |
| 165 - 174       | 0                    | 0           | 2                       |
| 175-184         | 2                    | 0           | 1                       |

Table 19: Number of observed vessels, trips, and sets by year and gear type in the LE Sablefish Endorsed fishery.

|      | LE Sablefish Endorsed |                        |      |         |                        |      |         |                        |      |  |  |
|------|-----------------------|------------------------|------|---------|------------------------|------|---------|------------------------|------|--|--|
|      |                       |                        | Long | gline   |                        |      |         | Pot                    |      |  |  |
|      | I                     | North                  |      | Ç       | South                  |      |         |                        |      |  |  |
| Year | vessels               | $\operatorname{trips}$ | sets | vessels | $\operatorname{trips}$ | sets | vessels | $\operatorname{trips}$ | sets |  |  |
| 2002 | 9                     | 23                     | 210  | 18      | 47                     | 182  | 6       | 23                     | 249  |  |  |
| 2003 | 8                     | 25                     | 204  | 9       | 26                     | 160  | 6       | 35                     | 370  |  |  |
| 2004 | 6                     | 13                     | 126  | 13      | 35                     | 207  | 3       | 13                     | 140  |  |  |
| 2005 | 10                    | 31                     | 403  | 18      | 73                     | 278  | 7       | 39                     | 495  |  |  |
| 2006 | 9                     | 31                     | 299  | 10      | 34                     | 161  | 7       | 39                     | 291  |  |  |
| 2007 | 9                     | 36                     | 386  | 14      | 40                     | 138  | 4       | 31                     | 158  |  |  |
| 2008 | 6                     | 17                     | 195  | 13      | 60                     | 348  | 6       | 24                     | 330  |  |  |
| 2009 | 3                     | 12                     | 177  | 6       | 34                     | 113  | 3       | 27                     | 67   |  |  |
| 2010 | 5                     | 18                     | 253  | 20      | 127                    | 535  | 7       | 43                     | 316  |  |  |
| 2011 | 7                     | 18                     | 284  | 20      | 84                     | 391  | 3       | 22                     | 228  |  |  |
| 2012 | 5                     | 7                      | 47   | 16      | 86                     | 488  | 5       | 19                     | 355  |  |  |
| 2013 | 6                     | 12                     | 135  | 14      | 49                     | 218  | 3       | 15                     | 49   |  |  |
| 2014 | 5                     | 12                     | 247  | 13      | 74                     | 249  | 4       | 16                     | 195  |  |  |
| 2015 | 6                     | 15                     | 174  | 24      | 87                     | 458  | 9       | 35                     | 299  |  |  |

Table 20: Number of observed vessels, trips, and sets by year and gear type in the LE Sablefish NonEndorsed fishery. The number of observed pot vessels in this fishery is too small to meet confidentiality and thus not reported.

| LE S | LE Sablefish Non-Endorsed |          |      |  |  |  |  |
|------|---------------------------|----------|------|--|--|--|--|
|      |                           | Longline | е    |  |  |  |  |
| Year | vessels                   | trips    | sets |  |  |  |  |
| 2002 | 4                         | 11       | 22   |  |  |  |  |
| 2003 | 17                        | 130      | 220  |  |  |  |  |
| 2004 | 14                        | 62       | 130  |  |  |  |  |
| 2005 | 11                        | 35       | 60   |  |  |  |  |
| 2006 | 21                        | 121      | 201  |  |  |  |  |
| 2007 | 36                        | 158      | 305  |  |  |  |  |
| 2008 | 32                        | 122      | 221  |  |  |  |  |
| 2009 | 34                        | 138      | 273  |  |  |  |  |
| 2010 | 38                        | 226      | 474  |  |  |  |  |
| 2011 | 38                        | 201      | 427  |  |  |  |  |
| 2012 | 26                        | 128      | 252  |  |  |  |  |
| 2013 | 22                        | 124      | 248  |  |  |  |  |
| 2014 | 18                        | 77       | 154  |  |  |  |  |
| 2015 | 21                        | 65       | 144  |  |  |  |  |

Table 21: Number of observed vessels, trips, and sets by year and gear type in the OA Fixed Gear fishery. OA Fixed Gear fishery was not observed until 2003.

|      | OA Fixed Gear |         |      |         |       |      |  |  |  |  |
|------|---------------|---------|------|---------|-------|------|--|--|--|--|
|      | Lo            | ongline |      | Pot     |       |      |  |  |  |  |
| Year | vessels       | trips   | sets | vessels | trips | sets |  |  |  |  |
| 2002 | _             | _       | _    | _       | _     | _    |  |  |  |  |
| 2003 | 13            | 41      | 49   | 7       | 16    | 50   |  |  |  |  |
| 2004 | 14            | 42      | 52   | 17      | 96    | 185  |  |  |  |  |
| 2005 | 10            | 34      | 37   | 14      | 43    | 50   |  |  |  |  |
| 2006 | 7             | 10      | 11   | 15      | 38    | 39   |  |  |  |  |
| 2007 | 25            | 51      | 67   | 21      | 46    | 75   |  |  |  |  |
| 2008 | 33            | 58      | 68   | 20      | 55    | 75   |  |  |  |  |
| 2009 | 34            | 69      | 104  | 18      | 30    | 45   |  |  |  |  |
| 2010 | 37            | 70      | 106  | 26      | 40    | 71   |  |  |  |  |
| 2011 | 41            | 70      | 102  | 29      | 61    | 85   |  |  |  |  |
| 2012 | 24            | 34      | 53   | 19      | 35    | 70   |  |  |  |  |
| 2013 | 14            | 23      | 30   | 17      | 25    | 48   |  |  |  |  |
| 2014 | 21            | 28      | 39   | 21      | 41    | 63   |  |  |  |  |
| 2015 | 20            | 38      | 54   | 17      | 49    | 64   |  |  |  |  |

Table 22: Expansion factors and WCGOP observed discard rate by gear type for limited entry (LE) and open access (OA) non-nearshore fixed gear sectors used to expand discard estimates of *Pacific halibut* to the entire fleet.

| Sector                    | $\mathbf{Gear}$ | Expansion Factor | Sector and Gear Type Rate Applied        |
|---------------------------|-----------------|------------------|------------------------------------------|
| LE Sablefish Endorsed     | Longline        | Sablefish        | LE Sablefish Endorsed Longline           |
| LE Sablefish Endorsed     | Longline        | Sablefish        | LE Sablefish Endorsed Pot                |
| LE Sablefish Non-Endorsed | Longline        | Groundfish       | LE Sablefish Non-Endorsed Longline       |
| LE Sablefish Non-Endorsed | Pot             | Sablefish        | OA Fixed Gear <sup>1</sup> Pot           |
| OA Fixed Gear             | Hook and Line   | Groundfish       | OA Fixed Gear <sup>1</sup> Hook and Line |
| OA Fixed Gear             | Pot             | Groundfish       | OA Fixed Gear <sup>1</sup> Pot           |

 $<sup>^{1}</sup>$ A coastwide discard ratio and coastwide discard estimate could not be computed in the OA fixed gear sector for 2002-06 because the WCGOP only covered OA vessels in California during this time

Table 23: Total sablefish or groundfish landings (mt) and observed discard ratios (1SE) for each sector and gear type in the non-nearshore fixed gear fishery. Sablefish landings were used as the expansion factor in all cases except for the LE Sablefish Non-Endorsed and the OA Fixed Gear sectors, where target species include a variety of groundfish species.

| North of   Pt.   Pt.   Chehalis   Chehalis | species. | LE Sabl | efish Endorse | d             | LE Sab<br>Non-Enc |     | OA Fixe       | d Gear        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|---------------|---------------|-------------------|-----|---------------|---------------|
| North of Pt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Year     | Long    | line          | Pot           | Longline          | Pot |               | Pot           |
| Pt.   Chehalis   Che |          | N       | C+1f          |               |                   |     | Line          |               |
| Chehalis   Chehalis   Chehalis   Expansion Factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |         |               |               |                   |     |               |               |
| Expansion Factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |         |               |               |                   |     |               |               |
| 2002         382         407         352         627         7         388         109           2003         458         571         604         548         7         548         186           2004         653         653         620         400         11         474         186           2005         619         674         615         554         3         626         379           2006         660         717         582         469         30         485         443           2007         472         609         428         519         2         264         258           2008         394         701         433         654         3         408         241           2009         435         1012         489         761         7         647         372           2010         266         1039         504         1001         17         754         318           2011         223         930         372         1249         24         434         256           2012         202         873         286         814         9         322         127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Euron    | 1       | Chenans       |               |                   |     |               |               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |         | 407           | 252           | 697               | 7   | 900           | 100           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |         |               |               |                   |     |               |               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |         |               |               |                   |     |               |               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |         |               |               |                   |     |               |               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |         |               |               |                   |     |               |               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |         |               |               |                   |     |               |               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |         |               |               |                   |     |               |               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |         |               |               |                   |     |               |               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |         |               |               |                   |     |               |               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |         |               |               |                   |     |               |               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |         |               |               |                   |     |               |               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |         |               |               |                   |     |               |               |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |         |               |               |                   |     |               |               |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |         |               |               |                   |     |               |               |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |         | 000           | 300           | 112               | J   | 301           | 241           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |         | 0.0202 (0.01) | 0.0114 (0.00) |                   |     |               |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |         | ( /           | \ /           |                   |     |               |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |         | \ /           | \ /           | ` /               |     |               |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | ( /     | ( /           | , ,           |                   |     |               |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | ,       |               | \ /           |                   |     |               |               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |         |               | , ,           |                   |     | 0.0785 (0.02) | 0.0035 (0.00) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |         |               | , ,           | , ,               |     | , ,           | ' '           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |         |               | , ,           | \ /               |     | , ,           | ( /           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | ` '     | ' '           | , ,           | ` '               |     | , ,           | ' '           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | ,       | ( /           | , ,           | \ /               |     | ( /           | \ /           |
| 2013 0.0871 (0.02) 0.0063 (0.00) 0.0000 (0.00) 0.0089 (0.00) 0.0008 (0.00)<br>2014 0.8892 (0.13) 0.0177 (0.00) 0.0060 (0.00) 0.0152 (0.00) 0.0011 (0.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | ( /     | \ /           | \ /           | \ /               |     | \ /           |               |
| $2014  0.8892 \ (0.13)  0.0177 \ (0.00)  0.0060 \ (0.00)  \qquad \qquad \qquad \qquad 0.0152 \ (0.00)  0.0011 \ (0.00)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | ` '     | ' '           | , ,           | ` /               |     | , ,           |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | ` '     | ' '           | \ /           |                   |     | , ,           |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | ( /     | ( /           | \ /           |                   |     | \ /           |               |

Table 24: Percent of observed trips that caught Pacific halibut by sector, gear, and area (where applicable). Observed average, minimum and maximum annual catch and discard weights and the percent of P. halibut catch weight discarded by year. n.o.c. No observed catch of P. halibut and thus a % discard calculation is not possible.

- No WCGOP observers were deployed for the sector-year-gear type combination.

| TIO WOOG   |          | were deployed f<br>ablefish Endor |          | LE Sab   |     | OA Fixed  | 1 Coor |
|------------|----------|-----------------------------------|----------|----------|-----|-----------|--------|
|            | LE S     | abiensn Endor                     | sea      |          |     | OA Fixed  | ı Gear |
| <b>V</b>   | Т        | 1:                                | D-4      | Non-End  |     | Hook-and- | D-4    |
| Year       | Lo       | ngline                            | Pot      | Longline | Pot |           | Pot    |
|            | North of | C41f                              | ]        |          |     | Line      |        |
|            | Pt.      | South of<br>Pt.                   |          |          |     |           |        |
|            | Chehalis |                                   |          |          |     |           |        |
| 07 - 6 - 1 |          | Chehalis                          | D 1-121- | -4       |     |           |        |
|            |          | os that caught                    |          |          | I   | 0.007     | 0.007  |
| 2002       | 95.7%    | 46.8%                             | 17.4%    | 0.0%     | _   | 0.0%      | 0.0%   |
| 2003       | 100.0%   | 50.0%                             | 8.6%     | 0.8%     | _   | 0.0%      | 0.0%   |
| 2004       | 100.0%   | 71.4%                             | 38.5%    | 0.0%     | _   | 0.0%      | 0.0%   |
| 2005       | 96.8%    | 58.9%                             | 33.3%    | 0.0%     | _   | 0.0%      | 0.0%   |
| 2006       | 100.0%   | 76.5%                             | 56.4%    | 0.0%     | _   | 10.0%     | 0.0%   |
| 2007       | 94.4%    | 47.5%                             | 32.3%    | 1.9%     | _   | 25.5%     | 6.5%   |
| 2008       | 100.0%   | 78.3%                             | 83.3%    | 3.3%     | _   | 34.5%     | 5.5%   |
| 2009       | 91.7%    | 35.3%                             | 33.3%    | 0.7%     | _   | 37.7%     | 10.0%  |
| 2010       | 83.3%    | 47.2%                             | 51.2%    | 1.3%     | _   | 21.4%     | 2.5%   |
| 2011       | 88.9%    | 42.9%                             | 45.5%    | 6.0%     | _   | 30.0%     | 6.6%   |
| 2012       | 71.4%    | 58.1%                             | 31.6%    | 7.0%     | _   | 32.4%     | 8.6%   |
| 2013       | 83.3%    | 26.5%                             | 20.0%    | 0.0%     | _   | 13.0%     | 4.0%   |
| 2014       | 100.0%   | 24.3%                             | 56.2%    | 0.0%     | _   | 25.0%     | 9.8%   |
| 2015       | 100.0%   | 49.4%                             | 60.0%    | 1.5%     | _   | 34.2%     | 4.1%   |
|            |          | catch (mt) of                     |          |          | 1   |           |        |
| Mean       | 40.3     | 10.7                              | 1.8      | 0.3      | _   | 0.7       | 0.0    |
| Min        | 8.0      | 0.7                               | 0.1      | 0.0      | _   | 0.0       | 0.0    |
| Max        | 118.4    | 36.6                              | 5.4      | 1.4      | _   | 1.6       | 0.0    |
|            |          | discard (mt) o                    |          |          | 1   |           |        |
| Mean       | 35.6     | 10.7                              | 1.8      | 0.3      | _   | 0.7       | 0.0    |
| Min        | 5.5      | 0.7                               | 0.1      | 0.0      | _   | 0.0       | 0.0    |
| Max        | 109.6    | 36.6                              | 5.4      | 1.4      | _   | 1.6       | 0.0    |
|            |          | tch that was                      |          | 1        |     |           |        |
| 2002       | 77.6%    | 95.5%                             | 100.0%   | n.o.c.   | _   | n.o.c.    | n.o.c. |
| 2003       | 80.1%    | 99.4%                             | 100.0%   | 0.0%     | _   | n.o.c.    | n.o.c. |
| 2004       | 76.3%    | 97.3%                             | 100.0%   | n.o.c.   | _   | n.o.c.    | n.o.c. |
| 2005       | 82.7%    | 100.0%                            | 100.0%   | n.o.c.   | _   | n.o.c.    | n.o.c. |
| 2006       | 92.6%    | 97.5%                             | 100.0%   | n.o.c.   | _   | 100.0%    | n.o.c. |
| 2007       | 78.0%    | 100.0%                            | 100.0%   | 0.0%     | _   | 100.0%    | 100.0% |
| 2008       | 87.4%    | 100.0%                            | 100.0%   | 0.0%     | _   | 100.0%    | 100.0% |
| 2009       | 100.0%   | 100.0%                            | 100.0%   | 0.0%     | _   | 100.0%    | 100.0% |
| 2010       | 100.0%   | 100.0%                            | 100.0%   | 0.0%     | _   | 100.0%    | 100.0% |
| 2011       | 100.0%   | 100.0%                            | 100.0%   | 0.0%     | _   | 100.0%    | 100.0% |
| 2012       | 96.6%    | 100.0%                            | 100.0%   | 0.0%     | _   | 100.0%    | 100.0% |
| 2013       | 69.0%    | 100.0%                            | 0.0%     | 0.0%     | _   | 100.0%    | 100.0% |
| 2014       | 95.7%    | 100.0%                            | 100.0%   | 0.0%     | _   | 100.0%    | 100.0% |
| 2015       | 95.5%    | 100.0%                            | 100.0%   | 0.0%     | _   | 100.0%    | 0.0%   |

Table 25: Estimated gross discard (mt) and discard mortality (mt) in the limited entry (LE) sablefish endorsed, LE sablefish non-endorsed, and open access (OA) fixed gear sectors. Estimated discard mortality (mt) was computed by applying a 16 % (longline) or 18% (pot) discard mortality rate to gross discard estimates.

| v 11 v  | LE Sablefish Endorsed |          |            | our a more           | LE Sablefish<br>Non-Endorsed |          | OA Fixed Gear |             |
|---------|-----------------------|----------|------------|----------------------|------------------------------|----------|---------------|-------------|
| Year    | Lo                    | ngline   |            | Pot                  | Longline                     | Pot      | Hook-and-     | Pot         |
| rear    | LO.                   | ngime    |            | FOL                  | Longine                      | FOL      | Line          | FOL         |
|         | North of              | South of | Coastwide  |                      |                              |          | Line          |             |
|         | Pt.                   | Pt.      | Coastwide  |                      |                              |          |               |             |
|         | Chehalis              | Chehalis |            |                      |                              |          |               |             |
| Cross 1 | Discard Est           |          |            |                      |                              |          |               |             |
| 2002    | 125.90                | 11.50    | 137.40     | 4.03                 | 0.00                         | [0.02] * | [35.25] *     | [0.23] *    |
| 2002    | 161.77                | 26.66    | 188.43     | 0.30                 | 0.00                         | [0.02]   | [49.78] *     | [0.23] *    |
| 2003    | 154.74                | 48.68    | 203.42     | 32.60                | 0.00                         | [0.01]   | [43.06] *     | [0.39] *    |
| 2004    | 205.46                | 13.68    | 219.13     | $\frac{32.00}{2.62}$ | 0.00                         | [0.02]   | [56.85] *     | [0.39] *    |
| 2006    | 516.79                | 117.34   | 634.13     | 15.79                | 0.00                         | [0.06] * | [44.00] *     | [0.79] *    |
| 2007    | 102.98                | 20.27    | 123.25     | 3.94                 | 1.73                         | 0.01     | 20.75         | 0.89        |
| 2008    | 146.34                | 106.73   | 253.07     | 6.62                 | 2.99                         | 0.00     | 40.25         | 0.23        |
| 2009    | 282.86                | 41.82    | 324.68     | 0.85                 | 0.24                         | 0.01     | 34.60         | 0.23 $0.27$ |
| 2010    | 66.99                 | 66.19    | 133.18     | 5.07                 | 0.24                         | 0.03     | 31.96         | 0.50        |
| 2010    | 106.73                | 26.11    | 132.85     | 4.08                 | 21.48                        | 0.01     | 13.21         | 0.06        |
| 2011    | 91.52                 | 54.87    | 146.39     | 5.99                 | 16.15                        | 0.03     | 23.52         | 0.41        |
| 2012    | 18.86                 | 3.39     | 22.25      | 0.00                 | 0.00                         | 0.01     | 1.69          | 0.06        |
| 2013    | 161.09                | 10.01    | 171.10     | 2.03                 | 0.00                         | 0.00     | 3.26          | 0.16        |
| 2014    | 85.60                 | 38.18    | 123.78     | 1.61                 | 0.45                         | 0.00     | 10.59         | 0.10        |
|         |                       |          | (16% or 18 |                      | 0.40                         | 0.00     | 10.00         | 0.00        |
| 2002    | 20.14                 | 1.84     | 21.98      | 0.73                 | 0.00                         | _ *      | _ *           | _ *         |
| 2002    | 25.88                 | 4.27     | 30.15      | 0.05                 | 0.03                         | _ *      | _ *           | _ *         |
| 2004    | 24.76                 | 7.79     | 32.55      | 5.87                 | 0.00                         | _ *      | _ *           | _ *         |
| 2005    | 32.87                 | 2.19     | 35.06      | 0.47                 | 0.00                         | _ *      | _ *           | _ *         |
| 2006    | 82.69                 | 18.77    | 101.46     | 2.84                 | 0.00                         | _ *      | _ *           | _ *         |
| 2007    | 16.48                 | 3.24     | 19.72      | 0.71                 | 0.28                         | 0.00     | 3.32          | 0.16        |
| 2008    | 23.41                 | 17.08    | 40.49      | 1.19                 | 0.48                         | 0.00     | 6.44          | 0.04        |
| 2009    | 45.26                 | 6.69     | 51.95      | 0.15                 | 0.04                         | 0.00     | 5.54          | 0.05        |
| 2010    | 10.72                 | 10.59    | 21.31      | 0.10                 | 0.04                         | 0.00     | 5.11          | 0.09        |
| 2011    | 17.08                 | 4.18     | 21.26      | 0.73                 | 3.44                         | 0.00     | 2.11          | 0.01        |
| 2012    | 14.64                 | 8.78     | 23.42      | 1.08                 | 2.58                         | 0.00     | 3.76          | 0.07        |
| 2013    | 3.02                  | 0.54     | 3.56       | 0.00                 | 0.00                         | 0.00     | 0.27          | 0.01        |
| 2014    | 25.77                 | 1.60     | 27.38      | 0.37                 | 0.00                         | 0.00     | 0.52          | 0.03        |
| 2015    | 13.70                 | 6.11     | 19.80      | 0.29                 | 0.07                         | 0.00     | 1.69          | 0.00        |

<sup>\*</sup>The LE sablefish non-endorsed pot sector has not been observed by the WCGOP and therefore estimates are based on discard rates from observed OA fixed gear pot vessels. OA fixed gear vessels were not observed coastwide until 2007 and thus 2002-06 estimates are based on the 2007-08 coastwide discard rate, shown in brackets.

Table 26: Estimated P. halibut discard mortality (mt, with 16% or 18% rate applied) from each sector of the non-nearshore fixed gear fishery by year.

|      | Estimated discard mortality (mt) |                        |                 |             |  |  |  |  |  |
|------|----------------------------------|------------------------|-----------------|-------------|--|--|--|--|--|
|      | LE                               | $\mathbf{L}\mathbf{E}$ | OA Fixed        | All Sectors |  |  |  |  |  |
|      | Sablefish                        | Sablefish              | $\mathbf{Gear}$ |             |  |  |  |  |  |
|      | Endorsed                         | Non-                   |                 |             |  |  |  |  |  |
|      |                                  | Endorsed               |                 |             |  |  |  |  |  |
| 2002 | 22.71                            | 0.00                   | 0.00            | 22.71       |  |  |  |  |  |
| 2003 | 30.20                            | 0.03                   | 0.00            | 30.23       |  |  |  |  |  |
| 2004 | 38.42                            | 0.00                   | 0.00            | 38.42       |  |  |  |  |  |
| 2005 | 35.53                            | 0.00                   | 0.00            | 35.53       |  |  |  |  |  |
| 2006 | 104.30                           | 0.00                   | 0.00            | 104.30      |  |  |  |  |  |
| 2007 | 20.43                            | 0.28                   | 3.48            | 24.19       |  |  |  |  |  |
| 2008 | 41.68                            | 0.48                   | 6.48            | 48.64       |  |  |  |  |  |
| 2009 | 52.10                            | 0.04                   | 5.58            | 57.73       |  |  |  |  |  |
| 2010 | 22.22                            | 0.06                   | 5.20            | 27.49       |  |  |  |  |  |
| 2011 | 21.99                            | 3.44                   | 2.13            | 27.55       |  |  |  |  |  |
| 2012 | 24.50                            | 2.59                   | 3.84            | 30.93       |  |  |  |  |  |
| 2013 | 3.56                             | 0.00                   | 0.28            | 3.84        |  |  |  |  |  |
| 2014 | 27.74                            | 0.00                   | 0.55            | 28.29       |  |  |  |  |  |
| 2015 | 20.09                            | 0.07                   | 1.69            | 21.86       |  |  |  |  |  |

Table 27: Physical measurements of P. halibut length (cm) from the U.S. west coast LE Sablefish Endorsed fishery (2002-2015) for vessels using hook and line or pot gear. Length bins include the lower bound and exclude the upper bound.

|                 | No. Ho               |                      | No. Pot              |                      |  |
|-----------------|----------------------|----------------------|----------------------|----------------------|--|
|                 | and Li<br>Individ    |                      | Individ              | uals                 |  |
| Length bin (cm) | Total                | Dead                 | Total                | Dead                 |  |
| 40-42           | 1                    | 1                    | 0                    | 0                    |  |
| 42-44           | 2                    | $\frac{1}{2}$        | 0                    | 0                    |  |
| 44-46           | 2                    | 2                    | 0                    | 0                    |  |
| 48-50           | 4                    | 4                    | 0                    | 0                    |  |
| 50-52           | 6                    | 6                    | 0                    | 0                    |  |
| 52-54           | 5                    | 5                    | 0                    | 0                    |  |
| 54-56           | 3                    | 3                    | 0                    | 0                    |  |
| 56-58           | 15                   | 15                   | 0                    | 0                    |  |
| 58-60           | 14                   | 14                   | 1                    | 0                    |  |
| 60-62           | 25                   | 25                   | 5                    | 1                    |  |
| 62-64           | 35                   | 35                   | $\overset{\circ}{2}$ | 1                    |  |
| 64-66           | 53                   | 53                   | 8                    | 0                    |  |
| 66-68           | 62                   | 62                   | 7                    | 1                    |  |
| 68-70           | 117                  | 117                  | 8                    | 1                    |  |
| 70-72           | 160                  | 160                  | 23                   | 1                    |  |
| 72-74           | 176                  | 176                  | 26                   | 4                    |  |
| 74-76           | 221                  | 221                  | 50                   | 5                    |  |
| 76-78           | $\frac{221}{225}$    | $\frac{221}{225}$    | 40                   | 6                    |  |
| 78-80           | 266                  | 266                  | 50                   | 6                    |  |
| 80-82           | 225                  | 225                  | 46                   | 8                    |  |
| 82-84           | 234                  | 234                  | 46                   | 10                   |  |
| 84-86           | 229                  | 229                  | 51                   | 6                    |  |
| 86-88           | 209                  | 209                  | 51                   | 12                   |  |
| 88-90           | 169                  | 169                  | 38                   | 5                    |  |
| 90-92           | 174                  | 174                  | $\frac{33}{22}$      | 5                    |  |
| 92-94           | 174                  | 174                  | 19                   | $\overset{\circ}{2}$ |  |
| 94-96           | 152                  | 152                  | $\frac{13}{24}$      | 5                    |  |
| 96-98           | 133                  | 133                  | 16                   | $\frac{3}{2}$        |  |
| 98-100          | 102                  | 102                  | 11                   | 4                    |  |
| 100-102         | 88                   | 88                   | 8                    | 3                    |  |
| 102-104         | 79                   | 79                   | 6                    | 2                    |  |
| 104-106         | 57                   | 57                   | 4                    | 1                    |  |
| 106-108         | 50                   | 50                   | 4                    | 0                    |  |
| 108-110         | 47                   | 47                   | 4                    | 1                    |  |
| 110-112         | 30                   | 30                   | 4                    | 1                    |  |
| 112-114         | 34                   | 34                   | 0                    | 0                    |  |
| 114-116         | 29                   | 29                   | 1                    | 0                    |  |
| 116-118         | 19                   | 19                   | $\frac{1}{2}$        | 1                    |  |
| 118-120         | 13                   | 13                   | 1                    | 0                    |  |
| 120-122         | 12                   | 12                   | 0                    | 0                    |  |
| 122-124         | 5                    | 5                    | 5                    | $\overset{\circ}{2}$ |  |
| 124-126         | 9                    | 9                    | 0                    | 0                    |  |
| 126-128         | 6                    | 6                    | 0                    | 0                    |  |
| 128-130         | $\overset{\circ}{2}$ | $\overset{\circ}{2}$ | 0                    | 0                    |  |
| 130-132         | 1                    | 1                    | 1                    | 0                    |  |
| 132-134         | 2                    | $\frac{1}{2}$        | 0                    | 0                    |  |
| 134-136         | 1                    | 1                    | 0                    | 0                    |  |
| 136-138         | 1                    | 1                    | 0                    | 0                    |  |
| 146-148         | 0                    | 0                    | 1                    | 0                    |  |

Table 28: Physical measurements of P. halibut length (cm) from the U.S. west coast LE Sablefish Non-Endorsed fishery (2002-2015) for vessels using hook and line gear. The number of observed pot vessels in this fishery is too small to meet confidentiality and thus not reported. Length bins include the lower bound and exclude the upper bound.

|                   | LE Sable<br>Non-Endorse<br>and Lin | ed Hook |
|-------------------|------------------------------------|---------|
| Length bin $(cm)$ | Total                              | Dead    |
| 66-68             | 1                                  | 1       |
| 68-70             | 3                                  | 3       |
| 72-74             | 4                                  | 4       |
| 74-76             | 4                                  | 4       |
| 76-78             | 6                                  | 6       |
| 78-80             | 4                                  | 4       |
| 80-82             | 3                                  | 3       |
| 82-84             | 3                                  | 3       |
| 84-86             | 2                                  | 2       |
| 86-88             | 5                                  | 5       |
| 88-90             | 6                                  | 6       |
| 90-92             | 5                                  | 5       |
| 92-94             | 4                                  | 4       |
| 94-96             | 2                                  | 2       |
| 96-98             | 3                                  | 3       |
| 98-100            | 3                                  | 3       |
| 100-102           | 1                                  | 1       |
| 102-104           | 2                                  | 2       |
| 104-106           | 2                                  | 2       |
| 106-108           | 2                                  | 2       |
| 110-112           | 1                                  | 1       |
| 112-114           | 3                                  | 3       |
| 118-120           | 2                                  | 2       |
| 122-124           | 1                                  | 1       |
| 134-136           | 1                                  | 1       |

Table 29: Physical measurements of P. halibut length (cm) from the U.S. west coast OA Fixed Gear fishery (2002-2015) for vessels using hook and line or pot gear. Length bins include the lower bound and exclude the upper bound.

|                 | No. Hook a<br>Individ |                   | No. Pot Individuals |      |  |
|-----------------|-----------------------|-------------------|---------------------|------|--|
| Length bin (cm) | Total                 | Dead              | Total               | Dead |  |
| 34-36           | 1                     | 1                 | 0                   | 0    |  |
| 44-46           | $\stackrel{-}{2}$     | $\stackrel{-}{2}$ | 0                   | 0    |  |
| 48-50           | 1                     | 1                 | 0                   | 0    |  |
| 50-52           | 1                     | 1                 | 0                   | 0    |  |
| 54-56           | 1                     | 1                 | 0                   | 0    |  |
| 58-60           | 1                     | 1                 | 0                   | 0    |  |
| 60-62           | 1                     | 1                 | 0                   | 0    |  |
| 62-64           | 3                     | 3                 | 0                   | 0    |  |
| 64-66           | 7                     | 7                 | 0                   | 0    |  |
| 66-68           | 2                     | 2                 | 1                   | 1    |  |
| 68-70           | 4                     | 4                 | 0                   | 0    |  |
| 70-72           | 4                     | 4                 | 2                   | 0    |  |
| 72-74           | 10                    | 10                | 0                   | 0    |  |
| 74-76           | 15                    | 15                | 1                   | 0    |  |
| 76-78           | 7                     | 7                 | 1                   | 0    |  |
| 78-80           | 8                     | 8                 | 1                   | 0    |  |
| 80-82           | 10                    | 10                | 1                   | 1    |  |
| 82-84           | 8                     | 8                 | 0                   | 0    |  |
| 84-86           | 16                    | 16                | 1                   | 0    |  |
| 86-88           | 11                    | 11                | 2                   | 0    |  |
| 88-90           | 4                     | 4                 | 0                   | 0    |  |
| 90-92           | 9                     | 9                 | 0                   | 0    |  |
| 92-94           | 7                     | 7                 | 0                   | 0    |  |
| 94-96           | 6                     | 6                 | 0                   | 0    |  |
| 96-98           | 8                     | 8                 | 0                   | 0    |  |
| 98-100          | 3                     | 3                 | 0                   | 0    |  |
| 100-102         | 4                     | 4                 | 0                   | 0    |  |
| 102-104         | 2                     | 2                 | 0                   | 0    |  |
| 104-106         | 4                     | 4                 | 0                   | 0    |  |
| 106-108         | 3                     | 3                 | 0                   | 0    |  |
| 108-110         | 4                     | 4                 | 1                   | 0    |  |
| 110-112         | 3                     | 3                 | 0                   | 0    |  |
| 112-114         | 1                     | 1                 | 0                   | 0    |  |
| 114-116         | 3                     | 3                 | 0                   | 0    |  |
| 118-120         | 1                     | 1                 | 0                   | 0    |  |
| 120-122         | 1                     | 1                 | 0                   | 0    |  |
| 122-124         | 1                     | 1                 | 0                   | 0    |  |

Table 30: Visual estimates of P. halibut lengths (cm) from the U.S. west coast groundfish Non-Nearshore fixed gear fisheries (2002-2015) for vessels using hook and line gear and pot gear. Numbers are the numbers of individuals caught with each gear type. The WCGOP does not observe LE Non-Endorsed Sablefish vessels fishing with pot gear. Length bins include the lower bound and exclude the upper bound.

|            | LE Sable | fish                | LE Sablefish | OA Fixed Gear |         |  |
|------------|----------|---------------------|--------------|---------------|---------|--|
|            | Endorse  | ed                  | Non-         |               |         |  |
|            |          |                     | Endorsed     |               |         |  |
| Length bin | No. Hook | No. Hook<br>No. Pot |              | No. Hook      | No. Pot |  |
| (cm)       | and Line | No. Pot             | and Line     | and Line      | No. Pot |  |
| 15-24      | 0        | 0                   | 0            | 0             | 0       |  |
| 25-34      | 33       | 0                   | 0            | 0             | 0       |  |
| 35-44      | 105      | 1                   | 0            | 1             | 0       |  |
| 45-54      | 478      | 5                   | 2            | 3             | 0       |  |
| 55-64      | 3657     | 43                  | 11           | 13            | 0       |  |
| 65-74      | 6975     | 104                 | 28           | 26            | 0       |  |
| 75-84      | 8054     | 83                  | 37           | 47            | 2       |  |
| 85-94      | 6434     | 73                  | 23           | 31            | 0       |  |
| 95-104     | 3822     | 37                  | 14           | 15            | 0       |  |
| 105-114    | 1284     | 16                  | 8            | 6             | 0       |  |
| 115-124    | 438      | 9                   | 9            | 2             | 0       |  |
| 125-134    | 123      | 2                   | 4            | 1             | 0       |  |
| 135-144    | 26       | 2                   | 0            | 0             | 0       |  |
| 145-154    | 6        | 0                   | 0            | 0             | 0       |  |
| 155-164    | 1        | 0                   | 0            | 1             | 0       |  |
| 165-174    | 0        | 0                   | 0            | 0             | 0       |  |

Table 31: Pacific halibut physically measured lengths and visual estimates of lengths approximating legal (82 cm>) versus sublegal defintions (IPHC), collected by the WCGOP in the IFQ fishery (2011-present), Non-Nearshore fixed gear fisheries (LE sablefish endorsed, LE non-endorsed, OA fixed gear; 2002-present), and the At-sea Hake sectors (2002-present). Note that visual length estimates are not taken in the At-sea Hake sectors.

| Fishery                  | Type of Measurement | Length bin (cm) | No. of individuals | Percentage of Total |
|--------------------------|---------------------|-----------------|--------------------|---------------------|
| Non-Nearshore Fixed Gear | actual              | 0-82.0          | 1993               | 44.1%               |
| Non-Nearshore Fixed Gear | actual              | 82.0>           | 2531               | 55.9%               |
| Non-Nearshore Fixed Gear | visual              | 0-74.0          | 13106              | 36.9%               |
| Non-Nearshore Fixed Gear | visual              | 75.0-84.0       | 8917               | 25.1%               |
| Non-Nearshore Fixed Gear | visual              | 84.0>           | 13486              | 38.0%               |
| Catch Shares             | actual              | 0-82.0          | 22323              | 56.2%               |
| Catch Shares             | actual              | 82.0>           | 17371              | 43.8%               |
| Catch Shares             | visual              | 0-74.0          | 2258               | 51.2%               |
| Catch Shares             | visual              | 75.0-84.0       | 860                | 19.5%               |
| Catch Shares             | visual              | 84.0>           | 1293               | 29.3%               |
| At-sea Hake              | actual              | 0-82.0          | 193                | 28.0%               |
| At-sea Hake              | actual              | 82.0>           | 496                | 72.0%               |

| State      |                              |                               |                                 | $\operatorname{erved}$     |                                          |                            |                    |                                                      |                            | Estimated                       |                                 |
|------------|------------------------------|-------------------------------|---------------------------------|----------------------------|------------------------------------------|----------------------------|--------------------|------------------------------------------------------|----------------------------|---------------------------------|---------------------------------|
| Year       | Fleet observer coverage rate | Number of<br>observed<br>sets | % of sets<br>with P.<br>halibut | P. halibut<br>bycatch (mt) | Nearshore<br>species<br>retained<br>(mt) | P. halibut<br>bycatch rate | SE bycatch<br>rate | Total fleet<br>catch of<br>nearshore<br>species (mt) | P. halibut<br>bycatch (mt) | Bycatch<br>lower 95%<br>CI (mt) | Bycatch<br>upper 95%<br>CI (mt) |
| Oregon     |                              |                               |                                 |                            |                                          |                            |                    | 1 ( )                                                | 1                          |                                 |                                 |
| 2002       | $not\ observed$              | _                             | _                               | _                          | _                                        | _                          | _                  | 278.68                                               | _                          | _                               | _                               |
| 2003       | $not\ observed$              | _                             | _                               | _                          | _                                        | _                          | _                  | 207.78                                               | _                          | _                               | _                               |
| 2004       | 4.87%                        | 211                           | 1.90%                           | 0.05                       | 10.21                                    | 0.00                       | 0.00               | 209.81                                               | 1.005                      | 0.441                           | 1.569                           |
| 2005       | 6.37%                        | 170                           | 0.59%                           | 0.03                       | 11.50                                    | 0.00                       | 0.00               | 180.52                                               | 0.510                      | 0.409                           | 0.611                           |
| 2006       | 11.59%                       | 385                           | 1.30%                           | 0.06                       | 19.47                                    | 0.00                       | 0.00               | 167.94                                               | 0.542                      | 0.281                           | 0.804                           |
| 2007       | 8.77%                        | 248                           | 0.40%                           | 0.01                       | 15.93                                    | 0.00                       | 0.00               | 181.61                                               | 0.088                      | 0.074                           | 0.103                           |
| 2008       | 7.55%                        | 185                           | 0.54%                           | 0.03                       | 14.29                                    | 0.00                       | 0.00               | 189.15                                               | 0.360                      | 0.296                           | 0.425                           |
| 2009       | 6.17%                        | 225                           | 2.22%                           | 0.08                       | 13.85                                    | 0.01                       | 0.00               | 224.37                                               | 1.298                      | 0.755                           | 1.841                           |
| 2010       | 7.68%                        | 213                           | 0.47%                           | 0.01                       | 13.26                                    | 0.00                       | 0.00               | 172.77                                               | 0.080                      | 0.066                           | 0.094                           |
| 2011       | 8.13%                        | 245                           | 2.04%                           | 0.09                       | 15.87                                    | 0.01                       | 0.00               | 195.12                                               | 1.102                      | 0.403                           | 1.801                           |
| 2012       | 10.39%                       | 290                           | 1.38%                           | 0.11                       | 20.53                                    | 0.01                       | 0.00               | 197.50                                               | 1.081                      | 0.327                           | 1.836                           |
| 2013       | 7.69%                        | 264                           | 0.76%                           | 0.02                       | 16.08                                    | 0.00                       | 0.00               | 209.21                                               | 0.294                      | 0.199                           | 0.389                           |
| 2014       | 8.10%                        | 196                           | 2.04%                           | 0.08                       | 16.64                                    | 0.00                       | 0.00               | 205.39                                               | 0.973                      | 0.558                           | 1.387                           |
| 2015       | 8.27%                        | 237                           | 1.69%                           | 0.12                       | 18.43                                    | 0.01                       | 0.00               | 222.77                                               | 1.480                      | 0.101                           | 2.860                           |
| California |                              |                               |                                 |                            |                                          |                            |                    |                                                      | •                          |                                 |                                 |
| 2002       | $not\ observed$              | -                             | _                               | _                          | _                                        | -                          | _                  | 381.26                                               | _                          | _                               | _                               |
| 2003       | 3.17%                        | 209                           | 0.00%                           | 0.00                       | 8.11                                     | 0.00                       | 0.00               | 256.15                                               | 0.000                      | 0.000                           | 0.000                           |
| 2004       | 7.97%                        | 434                           | 0.00%                           | 0.00                       | 23.24                                    | 0.00                       | 0.00               | 291.67                                               | 0.000                      | 0.000                           | 0.000                           |
| 2005       | 4.74%                        | 219                           | 0.91%                           | 0.08                       | 13.29                                    | 0.01                       | 0.00               | 280.28                                               | 1.676                      | 0.003                           | 3.503                           |
| 2006       | 3.22%                        | 161                           | 0.00%                           | 0.00                       | 8.33                                     | 0.00                       | 0.00               | 258.51                                               | 0.000                      | 0.000                           | 0.000                           |
| 2007       | 4.41%                        | 227                           | 0.00%                           | 0.00                       | 12.10                                    | 0.00                       | 0.00               | 274.58                                               | 0.000                      | 0.000                           | 0.000                           |
| 2008       | 2.22%                        | 89                            | 0.00%                           | 0.00                       | 6.53                                     | 0.00                       | 0.00               | 294.15                                               | 0.000                      | 0.000                           | 0.000                           |
| 2009       | 2.58%                        | 123                           | 0.00%                           | 0.00                       | 6.71                                     | 0.00                       | 0.00               | 260.61                                               | 0.000                      | 0.000                           | 0.000                           |
| 2010       | 3.22%                        | 117                           | 0.00%                           | 0.00                       | 7.07                                     | 0.00                       | 0.00               | 219.58                                               | 0.000                      | 0.000                           | 0.000                           |
| 2011       | 3.91%                        | 214                           | 0.47%                           | 0.08                       | 8.47                                     | 0.01                       | 0.00               | 216.63                                               | 1.976                      | 1.540                           | 2.412                           |
| 2012       | 5.92%                        | 239                           | 1.26%                           | 0.07                       | 11.91                                    | 0.01                       | 0.00               | 201.00                                               | 1.192                      | 0.174                           | 2.209                           |
| 2013       | 5.30%                        | 193                           | 1.55%                           | 0.06                       | 11.67                                    | 0.00                       | 0.00               | 220.00                                               | 1.073                      | 0.562                           | 1.584                           |
| 2014       | 4.58%                        | 182                           | 0.00%                           | 0.00                       | 11.43                                    | 0.00                       | 0.00               | 249.52                                               | 0.000                      | 0.000                           | 0.000                           |
| 2015       | 6.96%                        | 277                           | 0.00%                           | 0.00                       | 22.98                                    | 0.00                       | 0.00               | 330.05                                               | 0.000                      | 0.000                           | 0.000                           |

Table 33: Coverage information, bycatch rates, and bycatch estimates for Pacific halibut in the state pink shrimp fisheries by state and year. The WCGOP began observing the OR and CA state pink shrimp fisheries in 2004, but was unable to observe these fisheries in 2006. The WA state pink shrimp fishery was added for observation in 2010. Mortality rates are not applied to P. halibut bycatch in these fisheries because mortality rates for pink shrimp trawl gear have not been estimated. Coverage rate in the pink shrimp fisheries is defined as the proportion of pink shrimp landings that were observed. (\*) = Confidential data; (-) = not observed.

| State      | ик зигиир trav<br> | c shrimp trawl fishery Observed |           |              |               |              |            |               |              | Estimated |           |  |
|------------|--------------------|---------------------------------|-----------|--------------|---------------|--------------|------------|---------------|--------------|-----------|-----------|--|
| Year       | Fleet              | Number of                       | % of sets | P. halibut   | Pink shrimp   | P. halibut   | SE bycatch | Total fleet   | P. halibut   | Bycatch   | Bycatch   |  |
| rear       | observer           | observed                        | with P.   | bycatch (kg) | retained (kg) | bycatch rate | rate       | catch of pink | bycatch (mt) | lower 95% | upper 95% |  |
|            | coverage           | sets                            | halibut   | bycatch (kg) | retained (kg) | bycatch rate | 1400       | shrimp (mt)   | byeaten (me) | CI (mt)   | CI (mt)   |  |
|            | rate               | 5005                            | nanoat    |              |               |              |            | Similip (me)  |              | CI (IIIt) | OI (IIII) |  |
| Washington |                    |                                 |           |              |               |              |            |               |              |           |           |  |
| 2010       | 9.60%              | 341                             | 0.00%     | 0.00         | 412351        | 0.00000      | 0.00000    | 4296          | 0.00         | 0.00      | 0.00      |  |
| 2011       | 16.17%             | 579                             | 0.17%     | 7.66         | 697238        | 0.00001      | 0.00000    | 4312          | 0.05         | 0.04      | 0.05      |  |
| 2012       | 14.77%             | 522                             | 0.00%     | 0.00         | 625952        | 0.00000      | 0.00000    | 4239          | 0.00         | 0.00      | 0.00      |  |
| 2013       | 10.18%             | 386                             | 0.00%     | 0.00         | 626823        | 0.00000      | 0.00000    | 6158          | 0.00         | 0.00      | 0.00      |  |
| 2014       | 7.07%              | 404                             | 0.00%     | 0.00         | 980854        | 0.00000      | 0.00000    | 13876         | 0.00         | 0.00      | 0.00      |  |
| 2015       | 11.43%             | 1459                            | 0.00%     | 0.00         | 2151088       | 0.00000      | 0.00000    | 18814         | 0.00         | 0.00      | 0.00      |  |
| Oregon     | 11.40/0            | 1400                            | 0.0070    | 0.00         | 2101000       | 0.00000      | 0.00000    | 10014         | 0.00         | 0.00      | 0.00      |  |
| 2002       | $not\ observed$    | _                               | _         | _            | _             | _            | _          | 18898         | _            | _         | _         |  |
| 2003       | $not\ observed$    | _                               | _         | _            | _             | _            | _          | 9328          | _            | _         | _         |  |
| 2004       | 7.72%              | 765                             | 0.00%     | 0.00         | 427212        | 0.00000      | 0.00000    | 5537          | 0.00         | 0.00      | 0.00      |  |
| 2005       | 5.63%              | 534                             | 0.19%     | 2.27         | 402886        | 0.00001      | 0.00000    | 7159          | 0.04         | 0.04      | 0.05      |  |
| 2006       | $not\ observed$    | -                               | -         |              | -             | -            | -          | 5532          | _            | -         | -         |  |
| 2007       | 7.12%              | 932                             | 0.21%     | 15.26        | 649983        | 0.00002      | 0.00001    | 9129          | 0.21         | 0.03      | 0.39      |  |
| 2008       | 5.81%              | 787                             | 0.00%     | 0.00         | 672491        | 0.00000      | 0.00000    | 11576         | 0.00         | 0.00      | 0.00      |  |
| 2009       | 7.48%              | 675                             | 0.00%     | 0.00         | 751198        | 0.00000      | 0.00000    | 10049         | 0.00         | 0.00      | 0.00      |  |
| 2010       | 11.93%             | 1233                            | 0.00%     | 0.00         | 1705447       | 0.00000      | 0.00000    | 14290         | 0.00         | 0.00      | 0.00      |  |
| 2011       | 13.63%             | 1892                            | 0.11%     | 19.33        | 2985964       | 0.00001      | 0.00000    | 21915         | 0.14         | 0.05      | 0.24      |  |
| 2012       | 13.52%             | 2126                            | 0.00%     | 0.00         | 3014219       | 0.00000      | 0.00000    | 22292         | 0.00         | 0.00      | 0.00      |  |
| 2013       | 10.74%             | 1403                            | 0.00%     | 0.00         | 2313243       | 0.00000      | 0.00000    | 21538         | 0.00         | 0.00      | 0.00      |  |
| 2014       | 9.72%              | 1464                            | 0.00%     | 0.00         | 2291345       | 0.00000      | 0.00000    | 23573         | 0.00         | 0.00      | 0.00      |  |
| 2015       | 9.42%              | 1990                            | 0.00%     | 0.00         | 2282089       | 0.00000      | 0.00000    | 24226         | 0.00         | 0.00      | 0.00      |  |
| California |                    |                                 |           |              |               |              |            |               |              |           |           |  |
| 2002       | $not\ observed$    | -                               | _         | _            | -             | _            | _          | 1853          | _            | _         |           |  |
| 2003       | $not\ observed$    | -                               | _         | -            |               | _            | _          | 978           | _            | _         | _         |  |
| 2004       | *                  | *                               | *         | *            | *             | *            | *          | 997           | *            | *         | *         |  |
| 2005       | *                  | *                               | *         | *            | *             | *            | *          | 861           | *            | *         | *         |  |
| 2006       | $not\ observed$    | -                               | _         | _            | -             | _            | _          | 64            | _            | _         |           |  |
| 2007       | *                  | *                               | *         | *            | *             | *            | *          | 289           | *            | *         | *         |  |
| 2008       | *                  | *                               | *         | *            | *             | *            | *          | 945           | *            | *         | *         |  |
| 2009       | *                  | *                               | *         | *            | *             | *            | *          | 1184          | *            | *         | *         |  |
| 2010       | 14.99%             | 137                             | 0.00%     | 0.00         | 265531        | 0.00000      | 0.00000    | 1771          | 0.00         | 0.00      | 0.00      |  |
| 2011       | 12.62%             | 203                             | 0.00%     | 0.00         | 420595        | 0.00000      | 0.00000    | 3333          | 0.00         | 0.00      | 0.00      |  |
| 2012       | 12.46%             | 175                             | 0.00%     | 0.00         | 347598        | 0.00000      | 0.00000    | 2791          | 0.00         | 0.00      | 0.00      |  |
| 2013       | 9.19%              | 194                             | 0.00%     | 0.00         | 359770        | 0.00000      | 0.00000    | 3915          | 0.00         | 0.00      | 0.00      |  |
| 2014       | 15.54%             | 339                             | 0.00%     | 0.00         | 597530        | 0.00000      | 0.00000    | 3845          | 0.00         | 0.00      | 0.00      |  |
| 2015       | 9.69%              | 335                             | 0.30%     | 0.91         | 334660        | 0.00000      | 0.00000    | 3453          | 0.01         | 0.01      | 0.01      |  |

Table 34: Coverage information, bycatch rates, and bycatch estimates for Pacific halibut in the state California halibut trawl fishery by sector and year. The WCGOP recognizes two sectors; a limited entry sector and an open access sector. In 2010, the LE and OA sectors are combined to maintain confidentiality. Beginning in 2011, the limited entry sector is observed under the IFQ groundfish fishery and estimates for this sector are included in the IFQ tables (above). Mortality rates are not applied to P. halibut bycatch in these fisheries because mortality rates for CA halibut trawl gear have not been estimated. Coverage rate in the CA halibut fishery is defined as the proportion of CA halibut landings that were observed.

| Calif        | California halibut trawl fishery |           |           |              |                  |                   |            |              |              |              |              |
|--------------|----------------------------------|-----------|-----------|--------------|------------------|-------------------|------------|--------------|--------------|--------------|--------------|
| Sector       |                                  | -         | Obse      | erved        |                  |                   |            |              | E            | Estimated    |              |
| Year         | Fleet                            | Number of | % of tows | P. halibut   | CA halibut       | P. halibut        | SE bycatch | Total fleet  | P. halibut   | Bycatch      | Bycatch      |
|              | observer                         | observed  | with P.   | bycatch (kg) | retained (kg)    | bycatch rate      | rate       | catch of CA  | bycatch (mt) | lower $95\%$ | upper $95\%$ |
|              | coverage                         | tows      | halibut   |              |                  |                   |            | halibut (mt) |              | CI (mt)      | CI (mt)      |
|              | rate                             |           |           |              |                  |                   |            |              |              |              |              |
| Limited Ent  | try Sector                       |           |           |              |                  |                   |            |              |              |              |              |
| 2002         | 3.41%                            | 52        | 0.00%     | 0.000        | 3590             | 0.00000           | 0.00000    | 105          | 0.000        | 0.000        | 0.000        |
| 2003         | 18.10%                           | 207       | 0.00%     | 0.000        | 19105            | 0.00000           | 0.00000    | 106          | 0.000        | 0.000        | 0.000        |
| 2004         | 23.10%                           | 171       | 0.58%     | 3.493        | 31488            | 0.00011           | 0.00001    | 136          | 0.015        | 0.012        | 0.018        |
| 2005         | 16.16%                           | 235       | 0.43%     | 4.717        | 30514            | 0.00015           | 0.00001    | 189          | 0.029        | 0.024        | 0.034        |
| 2006         | 11.95%                           | 224       | 0.89%     | 2.903        | 14286            | 0.00020           | 0.00007    | 120          | 0.024        | 0.007        | 0.042        |
| 2007         | 13.90%                           | 81        | 1.23%     | 8.119        | 5447             | 0.00149           | 0.00023    | 39           | 0.058        | 0.041        | 0.076        |
| 2008         | 26.48%                           | 118       | 8.47%     | 82.605       | 9637             | 0.00857           | 0.00162    | 36           | 0.312        | 0.196        | 0.428        |
| 2009         | 6.14%                            | 29        | 0.00%     | 0.000        | 2898             | 0.00000           | 0.00000    | 47           | 0.000        | 0.000        | 0.000        |
| LE & OA S    | ectors combine                   |           |           |              |                  |                   |            |              |              |              |              |
| 2010         | 7.10%                            | 153       | 0.00%     | 0.000        | 8772             | 0.00000           | 0.00000    | 124          | 0.000        | 0.000        | 0.000        |
| 2011-present |                                  |           |           | O.           | bserved under II | FQ fisheries, see | Table 14   |              |              |              |              |
| Open Acces   | s Sector                         |           |           |              |                  |                   |            |              |              |              |              |
| 2002         | $not\ observed$                  | _         | _         | _            | _                | _                 | _          | 36           | _            | _            | _            |
| 2003         | 7.68%                            | 110       | 0.00%     | 0.000        | 1977             | 0.00000           | 0.00000    | 26           | 0.000        | 0.000        | 0.000        |
| 2004         | 7.20%                            | 244       | 1.64%     | 49.351       | 5100             | 0.00968           | 0.00334    | 71           | 0.685        | 0.221        | 1.149        |
| 2005         | 11.61%                           | 362       | 0.00%     | 0.000        | 7489             | 0.00000           | 0.00000    | 65           | 0.000        | 0.000        | 0.000        |
| 2006         | $not\ observed$                  | _         | -         | -            | _                | _                 | -          | 55           | _            | _            | -            |
| 2007         | 6.88%                            | 227       | 0.00%     | 0.000        | 2694             | 0.00000           | 0.00000    | 39           | 0.000        | 0.000        | 0.000        |
| 2008         | 5.03%                            | 199       | 0.00%     | 0.000        | 2610             | 0.00000           | 0.00000    | 52           | 0.000        | 0.000        | 0.000        |
| 2009         | 0.77%                            | 30        | 0.00%     | 0.000        | 634              | 0.00000           | 0.00000    | 82           | 0.000        | 0.000        | 0.000        |
| 2011         | 15.57%                           | 204       | 0.00%     | 0.000        | 12446            | 0.00000           | 0.00000    | 80           | 0.000        | 0.000        | 0.000        |
| 2012         | 6.40%                            | 78        | 0.00%     | 0.000        | 3541             | 0.00000           | 0.00000    | 55           | 0.000        | 0.000        | 0.000        |
| 2013         | 6.25%                            | 81        | 0.00%     | 0.000        | 4305             | 0.00000           | 0.00000    | 69           | 0.000        | 0.000        | 0.000        |
| 2014         | 22.27%                           | 145       | 0.00%     | 0.000        | 18139            | 0.00000           | 0.00000    | 81           | 0.000        | 0.000        | 0.000        |
| 2015         | 33.26%                           | 339       | 0.00%     | 0.000        | 30615            | 0.00000           | 0.00000    | 92           | 0.000        | 0.000        | 0.000        |

Table 35: Coverage information, and Pacific halibut by catch in the At-sea Pacific hake fisheries by sector and year. Tribal At-sea P. hake fishery has not operated since 2012. Gear specific mortality rates cannot be applied to P. halibut by catch in this fishery because mortality rates have not been determined for midwater trawl gear. (\*) confidential

| Sector                        |                               |                         |                           |                               |
|-------------------------------|-------------------------------|-------------------------|---------------------------|-------------------------------|
| Year                          | Fleet<br>observer<br>coverage | Number of observed sets | % of sets with P. halibut | P. halibut<br>bycatch<br>(mt) |
| Tribal Sector                 |                               |                         |                           | ,                             |
| 2002                          | 100%                          | 633                     | 0.32%                     | 0.079                         |
| 2003                          | 100%                          | 540                     | 0.00%                     | 0.000                         |
| 2004                          | 100%                          | 632                     | 0.00%                     | 0.000                         |
| 2005                          | 100%                          | 633                     | 0.79%                     | 0.182                         |
| 2006                          | 100%                          | 160                     | 3.12%                     | 0.192                         |
| 2007                          | 100%                          | 156                     | 0.64%                     | 0.053                         |
| 2008                          | 100%                          | 382                     | 7.33%                     | 1.280                         |
| 2009                          | 100%                          | 404                     | 0.99%                     | 0.064                         |
| 2010                          | 100%                          | 516                     | 3.49%                     | 0.349                         |
| 2011                          | 100%                          | 228                     | 0.88%                     | 0.034                         |
| 2012                          | 100%                          | *                       | *                         | *                             |
| Catcher-                      | 10070                         |                         |                           |                               |
| Processor                     |                               |                         |                           |                               |
| 2002                          | 100%                          | 559                     | 3.22%                     | 1.013                         |
| 2002                          | 100%                          | 768                     | 4.04%                     | 2.619                         |
| 2004                          | 100%                          | 1501                    | 1.07%                     | 0.806                         |
| 2004                          | 100%                          | 1337                    | 1.72%                     | 1.217                         |
| 2006                          | 100%                          | 1497                    | 0.27%                     | 0.111                         |
| 2007                          | 100%                          | 1577                    | 1.65%                     | 0.504                         |
| 2007                          | 100%                          | 1886                    | $\frac{1.05\%}{5.51\%}$   | $\frac{0.504}{2.070}$         |
|                               |                               |                         |                           |                               |
| 2009                          | 100%                          | 868                     | 0.12%                     | 0.014                         |
| 2010                          | 100%                          | 1068                    | 0.47%                     | 0.143                         |
| 2011                          | 100%                          | 1549                    | 1.48%                     | 0.488                         |
| 2012                          | 100%                          | 1107                    | 2.35%                     | 0.542                         |
| 2013                          | 100%                          | 1459                    | 1.30%                     | 0.667                         |
| 2014                          | 100%                          | 1696                    | 0.06%                     | 0.039                         |
| 2015                          | 100%                          | 1519                    | 0.07%                     | 0.012                         |
| Mothership<br>Catcher Vessels |                               |                         |                           |                               |
| 2002                          | 100%                          | 574                     | 0.17%                     | 0.048                         |
| 2003                          | 100%                          | 536                     | 0.37%                     | 0.035                         |
| 2004                          | 100%                          | 571                     | 1.23%                     | 0.323                         |
| 2005                          | 100%                          | 1040                    | 1.25%                     | 0.567                         |
| 2006                          | 100%                          | 1283                    | 1.95%                     | 0.532                         |
| 2007                          | 100%                          | 1147                    | 2.01%                     | 0.621                         |
| 2008                          | 100%                          | 1349                    | 2.82%                     | 0.629                         |
| 2009                          | 100%                          | 600                     | 3.50%                     | 0.255                         |
| 2010                          | 100%                          | 908                     | 3.41%                     | 1.080                         |
| 2011                          | 100%                          | 1248                    | 0.48%                     | 0.085                         |
| 2012                          | 100%                          | 949                     | 0.43%                     | 0.099                         |
| 2012                          | 100%                          | 1256                    | 2.15%                     | 0.098 $0.397$                 |
| 2013                          | 100%                          | 1308                    | 1.22%                     | 0.332                         |
| $\frac{2014}{2015}$           | 100%                          | 640                     | 0.31%                     | 0.049                         |

Table 36: Physical P. halibut length frequencies (cm) collected by ASHOP observers in the At-sea hake fishery (2002-present). Length bins include the lower bound and exclude the upper bound.

|            | At-sea Hake   |                                        |                                          |                                             |  |  |  |  |  |  |
|------------|---------------|----------------------------------------|------------------------------------------|---------------------------------------------|--|--|--|--|--|--|
| Length bin | No. of        | No. of                                 | No. of                                   | No. of                                      |  |  |  |  |  |  |
| (cm)       | Excellent     | Poor                                   | Dead                                     | Unknown                                     |  |  |  |  |  |  |
| 58-60      | 0             | 0                                      | 2                                        | 0                                           |  |  |  |  |  |  |
| 60-62      | 0             | 1                                      | $\frac{2}{3}$                            | 0                                           |  |  |  |  |  |  |
| 62-64      | 0             | 0                                      | $\frac{3}{2}$                            | 0                                           |  |  |  |  |  |  |
| 64-66      | 0             | $\frac{0}{2}$                          | 6                                        | 0                                           |  |  |  |  |  |  |
| 66-68      | 0             | $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ | 9                                        | 0                                           |  |  |  |  |  |  |
| 68-70      | 1             | 0                                      | 10                                       | 0                                           |  |  |  |  |  |  |
| 70-72      | 0             | 1                                      | 19                                       | 0                                           |  |  |  |  |  |  |
| 72-74      | 1             | 0                                      | 20                                       | 0                                           |  |  |  |  |  |  |
| 74-76      | 0             | 1                                      | 19                                       | 0                                           |  |  |  |  |  |  |
| 76-78      | 1             | 1                                      | 20                                       | $\begin{array}{c c} & 0 \\ 1 & \end{array}$ |  |  |  |  |  |  |
| 78-80      | 0             | 0                                      | $\frac{20}{26}$                          | 0                                           |  |  |  |  |  |  |
| 80-82      | 1             | 0                                      | 45                                       | $\begin{array}{c c} & 0 \\ 1 & \end{array}$ |  |  |  |  |  |  |
| 82-84      | 2             | 0                                      | $\begin{vmatrix} 45 \\ 21 \end{vmatrix}$ | 0                                           |  |  |  |  |  |  |
| 84-86      | 0             | 0                                      | 29                                       | 0                                           |  |  |  |  |  |  |
| 86-88      | 0             | $\frac{0}{2}$                          | $\begin{array}{c} 29 \\ 27 \end{array}$  | 0                                           |  |  |  |  |  |  |
| 88-90      | $\frac{0}{2}$ | $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ | 39                                       | $\frac{0}{2}$                               |  |  |  |  |  |  |
| 90-92      | 0             | 0                                      | 35                                       | $\begin{array}{c c} & z \\ 1 & \end{array}$ |  |  |  |  |  |  |
| 92-94      | 0             | 0                                      | 29                                       | 0                                           |  |  |  |  |  |  |
| 94-96      | 1             | $\frac{0}{2}$                          | 36                                       | 0                                           |  |  |  |  |  |  |
| 96-98      | 0             | $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ | 21                                       | 0                                           |  |  |  |  |  |  |
| 98-100     | 0             | 0                                      | 28                                       | 0                                           |  |  |  |  |  |  |
| 100-102    | 0             | $\frac{6}{4}$                          | $\frac{26}{32}$                          | 0                                           |  |  |  |  |  |  |
| 102-104    | 1             | 1                                      | $\frac{32}{20}$                          | 0                                           |  |  |  |  |  |  |
| 104-106    | 0             | 1                                      | $\frac{20}{22}$                          | 0                                           |  |  |  |  |  |  |
| 106-108    | 0             | 0                                      | 23                                       | 0                                           |  |  |  |  |  |  |
| 108-110    | $\frac{3}{2}$ | 1                                      | $\frac{23}{22}$                          | 1                                           |  |  |  |  |  |  |
| 110-112    | 1             | 0                                      | 17                                       | 0                                           |  |  |  |  |  |  |
| 112-114    | 1             | 0                                      | 8                                        | 0                                           |  |  |  |  |  |  |
| 114-116    | 0             | 0                                      | 8                                        | 0                                           |  |  |  |  |  |  |
| 116-118    | 0             | 1                                      | 10                                       | 1                                           |  |  |  |  |  |  |
| 118-120    | 0             | 0                                      | 7                                        | 0                                           |  |  |  |  |  |  |
| 120-122    | 0             | 0                                      | 6                                        | 0                                           |  |  |  |  |  |  |
| 122-124    | 0             | 0                                      | 7                                        | 0                                           |  |  |  |  |  |  |
| 124-126    | 0             | 0                                      | 4                                        | 0                                           |  |  |  |  |  |  |
| 126-128    | 0             | 1                                      | 1                                        | 0                                           |  |  |  |  |  |  |
| 128-130    | 0             | 0                                      | 4                                        | 0                                           |  |  |  |  |  |  |
| 130-132    | 0             | 0                                      | 5                                        | 0                                           |  |  |  |  |  |  |
| 132-134    | 0             | 0                                      | $\stackrel{\circ}{2}$                    | 0                                           |  |  |  |  |  |  |
| 136-138    | 0             | 0                                      | 2                                        | 0                                           |  |  |  |  |  |  |
| 138-140    | 0             | 0                                      | 1                                        | 0                                           |  |  |  |  |  |  |
| 140-142    | 0             | 0                                      | $\frac{1}{2}$                            | 0                                           |  |  |  |  |  |  |
| 142-144    | 0             | 0                                      | 1                                        | 0                                           |  |  |  |  |  |  |
| 154-156    | 0             | 0                                      | 1                                        | 0                                           |  |  |  |  |  |  |

Table 37: Number of vessels, trips, and tows (or sets) and gross metric tons of Pacific halibut discarded at-sea, P. halibut discarded at sea with mortality rate applied (bottom trawl = 0.90; pot = 0.18) and the P. halibut landed and discarded at the dock (mortality rate = 1.0) under the IFQ Electronic Monitoring Exempted Fishing Permit (EFP). All participating vessels carry electronic monitoring equipment on all fishing trips. Data are summarized from the EM program administered by Pacific States Marine Fisheries Commission

| Area                                           |      |                   | Monitorii       |             |                                                                                     |                                                                           |                                                                           |
|------------------------------------------------|------|-------------------|-----------------|-------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Depth (fm)                                     |      | i.                |                 |             |                                                                                     |                                                                           |                                                                           |
|                                                | Year | No. of<br>vessels | No. of<br>trips | No. of sets | $\begin{array}{c} {\rm discarded} \\ {\rm at~sea} \\ {\rm (gross,~mt)} \end{array}$ | $egin{array}{l} 	ext{discard} \ 	ext{mortality} \ 	ext{(mt)} \end{array}$ | $egin{array}{l} 	ext{discarded} \ 	ext{at dock} \ 	ext{(mt)} \end{array}$ |
|                                                |      |                   | Botton          | ı Trawl     |                                                                                     |                                                                           |                                                                           |
| North of Pt. Chehalis<br>All depths            |      |                   |                 |             |                                                                                     |                                                                           |                                                                           |
|                                                | 2015 | 0                 | 0               | 0           | 0.00                                                                                | 0.00                                                                      | 0.00                                                                      |
| South of Pt. Chehalis All depths               |      |                   |                 |             |                                                                                     |                                                                           |                                                                           |
|                                                | 2015 | 5                 | 23              | 140         | 0.18                                                                                | 0.16                                                                      | 0.00                                                                      |
|                                                |      |                   | P               | ot          |                                                                                     |                                                                           |                                                                           |
| North of $40^{\circ}10^{'}$ N. lat. All depths | •    |                   |                 |             |                                                                                     |                                                                           |                                                                           |
| -                                              | 2015 | 3                 | 32              | 300         | 0.89                                                                                | 0.16                                                                      | 0.00                                                                      |
| South of $40^{\circ}10^{'}$ N. lat. All depths |      |                   |                 |             |                                                                                     |                                                                           |                                                                           |
| •                                              | 2015 | 5                 | 26              | 400         | 0.00                                                                                | 0.00                                                                      | 0.00                                                                      |
|                                                |      | I                 | Midwater 1      | Hake Trav   | vl                                                                                  |                                                                           |                                                                           |
| North of 40°10′ N. lat.                        |      |                   |                 |             |                                                                                     |                                                                           |                                                                           |
|                                                | 2015 | 17                | 454             | 1197        | 0.00                                                                                | 0.00                                                                      | 0.56                                                                      |
|                                                |      | M                 | idwater Ro      | ockfish Tra | awl                                                                                 |                                                                           |                                                                           |
| North of 40°10' N. lat.                        |      |                   |                 |             |                                                                                     |                                                                           |                                                                           |
|                                                | 2015 | 8                 | 26              | 87          | 0.00                                                                                | 0.00                                                                      | 0.00                                                                      |
|                                                |      |                   |                 |             |                                                                                     |                                                                           |                                                                           |

Table 38: Metric tons of Pacific halibut discarded at sea and landed and discarded at the dock on observed Exempted Fishing Permit (EFP) vessels. Note: This does not contain the Catch Shares Electronic Monitoring EFP data, see Table 37 for those data.

|                                            |        |             | Observed  | l         |            |            |
|--------------------------------------------|--------|-------------|-----------|-----------|------------|------------|
| $\mathbf{Y}\mathbf{e}\mathbf{a}\mathbf{r}$ | Sector | No. vessels | No. trips | No. hauls | P. halibut | P. halibut |
|                                            |        |             |           |           | discarded  | landed     |
|                                            |        |             |           |           | (mt)       | (mt)       |
| 2002                                       | EFP    | 7           | 38        | 279       | 53.36      | 0.10       |
| 2003                                       | EFP    | 12          | 156       | 1491      | 50.79      | 0.20       |
| 2004                                       | EFP    | 6           | 59        | 427       | 30.68      | 0.55       |
| 2005                                       | EFP    | 0           | 0         | 0         | 0.00       | 0.00       |
| 2006                                       | EFP    | 8           | 47        | 78        | 0.00       | 2.71       |
| 2007                                       | EFP    | 0           | 0         | 0         | 0.00       | 0.00       |
| 2008                                       | EFP    | 3           | 29        | 162       | 0.00       | 0.00       |
| 2009                                       | EFP    | 5           | 83        | 141       | 0.00       | 0.13       |
| 2010                                       | EFP    | 6           | 136       | 389       | 0.00       | 0.03       |
| 2011                                       | EFP    | 0           | 0         | 0         | 0.00       | 0.00       |
| 2013                                       | EFP    | 2           | 5         | 166       | 0.00       | 0.00       |
| 2014                                       | EFP    | 3           | 11        | 21        | 0.00       | 0.00       |
| 2015                                       | EFP    | 1           | 3         | 4         | 0.00       | 0.00       |

Table 39: Metric tons of Pacific halibut landed in non-groundfish fisheries that are not observed by the NWFSC Observer Program. Data are summarized from the PacFIN fish tickets and do not include any P. halibut landed under the IPHC P. halibut directed fishery.

| Year | Sector                         | P. halibut landings (mt) |
|------|--------------------------------|--------------------------|
| 2002 | Other Non-Groundfish Fisheries | 105.93                   |
| 2003 | Other Non-Groundfish Fisheries | 74.40                    |
| 2004 | Other Non-Groundfish Fisheries | 49.49                    |
| 2005 | Other Non-Groundfish Fisheries | 43.56                    |
| 2006 | Other Non-Groundfish Fisheries | 33.87                    |
| 2007 | Other Non-Groundfish Fisheries | 29.42                    |
| 2008 | Other Non-Groundfish Fisheries | 27.21                    |
| 2009 | Other Non-Groundfish Fisheries | 26.50                    |
| 2010 | Other Non-Groundfish Fisheries | 45.88                    |
| 2011 | Other Non-Groundfish Fisheries | 25.30                    |
| 2012 | Other Non-Groundfish Fisheries | 49.29                    |
| 2013 | Other Non-Groundfish Fisheries | 37.28                    |
| 2014 | Other Non-Groundfish Fisheries | 49.20                    |
| 2015 | Other Non-Groundfish Fisheries | 50.94                    |

Table 40: Discard estimates for all fishery sectors observed by the NWFSC Groundfish Observer Program, 2002-2015. Total discard mortality estimates are also provided where discard mortality rates were applied.

|      |           | IFQ Fishery 2011-present <sup>7</sup> |         |       |         |          |                         | Non-Nears     | hore fixe  | d gear |                         |                     |                        |                   |         |
|------|-----------|---------------------------------------|---------|-------|---------|----------|-------------------------|---------------|------------|--------|-------------------------|---------------------|------------------------|-------------------|---------|
| Year | LE bottom | Bottom                                | LE CA   | Hook  | $Pot^7$ | Midwater | Midwater                | $\mathbf{LE}$ | $_{ m LE}$ | OA     | Nearshore               | Pink                | $\mathbf{C}\mathbf{A}$ | At-sea            | Total   |
|      | trawl     | Trawl                                 | Halibut | and   |         | Rockfish | Hake <sup>2,3,5,7</sup> | Endorsed      | Non-       |        | Fixed Gear <sup>3</sup> | Shrimp <sup>3</sup> | Halibut                | Hake <sup>3</sup> |         |
|      | 2002-10   | 1,2,7                                 | 1,3     | Line  |         | 3,4,7    |                         |               | Endors     | ed     |                         |                     | 3,6                    |                   |         |
|      |           |                                       |         |       |         |          | Gross Discar            | rd Estimates  |            |        |                         |                     |                        |                   |         |
| 2002 | 524.41    |                                       |         |       |         |          |                         | 141.43        | 0.02       | -      | -                       | -                   | -                      | 1.14              | 667.00  |
| 2003 | 186.65    |                                       |         |       |         |          |                         | 188.73        | 0.19       | -      | 0.00                    | -                   | 0.00                   | 2.65              | 378.22  |
| 2004 | 212.43    |                                       |         |       |         |          |                         | 236.02        | 0.02       | -      | 1.00                    | 0.00                | 0.70                   | 1.13              | 451.30  |
| 2005 | 460.35    |                                       |         |       |         |          |                         | 221.75        | 0.01       | -      | 2.19                    | 0.04                | 0.03                   | 1.97              | 686.34  |
| 2006 | 390.91    |                                       |         |       |         |          |                         | 649.91        | 0.06       | -      | 0.54                    | -                   | -                      | 0.83              | 1042.25 |
| 2007 | 294.38    |                                       |         |       |         |          |                         | 127.19        | 1.74       | 21.64  | 0.09                    | 0.21                | 0.06                   | 1.18              | 446.49  |
| 2008 | 305.21    |                                       |         |       |         |          |                         | 259.68        | 3.00       | 40.48  | 0.36                    | 0.00                | 0.31                   | 3.98              | 613.02  |
| 2009 | 385.24    |                                       |         |       |         |          |                         | 325.53        | 0.25       | 34.87  | 1.30                    | 0.00                | 0.00                   | 0.33              | 747.52  |
| 2010 | 265.08    |                                       |         |       |         |          |                         | 138.25        | 0.40       | 32.46  | 0.08                    | 0.00                | 0.00                   | 1.57              | 437.84  |
| 2011 |           | 64.12                                 | 0       | 6.06  | 3.36    | *        | 0.03                    | 136.92        | 21.48      | 13.28  | 3.08                    | 0.19                | 0.00                   | 0.61              | 249.13  |
| 2012 |           | 67.06                                 | *       | 14.66 | 1.89    | 0.0      | 0.00                    | 152.38        | 16.18      | 23.93  | 2.27                    | 0.00                | 0.00                   | 0.64              | 279.01  |
| 2013 |           | 65.92                                 | $see^1$ | 3.00  | 0.98    | 0.0      | 0.05                    | 22.25         | 0.01       | 1.75   | 1.37                    | 0.00                | 0.00                   | 1.06              | 96.39   |
| 2014 |           | 55.88                                 | $see^1$ | 3.80  | 0.32    | 0.0      | 0.11                    | 173.13        | 0.00       | 3.42   | 0.97                    | 0.00                | 0.00                   | 0.37              | 238.00  |
| 2015 |           | 69.22                                 | $see^1$ | 9.49  | 2.20    | 0.0      | 0.56                    | 125.39        | 0.45       | 10.59  | 1.48                    | 0.01                | 0.00                   | 0.06              | 219.45  |
|      |           |                                       |         |       |         |          | Total Discar            | d Mortality   | (mt)       |        |                         |                     |                        |                   |         |
| 2002 | 344.82    |                                       |         |       |         |          |                         | 22.71         | 0.00       | -      | -                       | -                   | -                      | 1.14              | 368.67  |
| 2003 | 124.43    |                                       |         |       |         |          |                         | 30.20         | 0.03       | -      | 0.00                    | -                   | 0.00                   | 2.65              | 157.31  |
| 2004 | 133.12    |                                       |         |       |         |          |                         | 38.42         | 0.00       | -      | 1.00                    | 0.00                | 0.70                   | 1.13              | 174.37  |
| 2005 | 286.52    |                                       |         |       |         |          |                         | 35.53         | 0.00       | -      | 2.19                    | 0.04                | 0.03                   | 1.97              | 326.28  |
| 2006 | 242.47    |                                       |         |       |         |          |                         | 104.30        | 0.01       | -      | 0.54                    | -                   | -                      | 0.83              | 348.15  |
| 2007 | 208.81    |                                       |         |       |         |          |                         | 20.43         | 0.28       | 3.48   | 0.09                    | 0.21                | 0.06                   | 1.18              | 234.54  |
| 2008 | 207.81    |                                       |         |       |         |          |                         | 41.68         | 0.48       | 6.48   | 0.36                    | 0.00                | 0.31                   | 3.98              | 261.10  |
| 2009 | 251.1     |                                       |         |       |         |          |                         | 52.10         | 0.04       | 5.58   | 1.30                    | 0.00                | 0.00                   | 0.33              | 310.45  |
| 2010 | 180.97    |                                       |         |       |         |          |                         | 22.22         | 0.06       | 5.20   | 0.08                    | 0.00                | 0.00                   | 1.57              | 210.10  |
| 2011 |           | 31.28                                 | 0       | 0.97  | 0.89    | *        | 0.03                    | 21.99         | 3.44       | 2.13   | 3.08                    | 0.19                | 0.00                   | 0.61              | 64.61   |
| 2012 |           | 36.06                                 | *       | 2.34  | 0.51    | 0.0      | 0.00                    | 24.50         | 2.59       | 3.84   | 2.27                    | 0.00                | 0.00                   | 0.64              | 72.75   |
| 2013 |           | 32.24                                 | $see^1$ | 0.48  | 0.21    | 0.0      | 0.05                    | 3.56          | 0.00       | 0.28   | 1.37                    | 0.00                | 0.00                   | 1.06              | 39.25   |
| 2014 |           | 26.23                                 | $see^1$ | 0.61  | 0.08    | 0.0      | 0.11                    | 27.74         | 0.00       | 0.55   | 0.97                    | 0.00                | 0.00                   | 0.37              | 56.66   |
| 2015 |           | 33.31                                 | $see^1$ | 1.52  | 0.38    | 0.0      | 0.56                    | 20.09         | 0.07       | 1.69   | 1.48                    | 0.01                | 0.00                   | 0.06              | 59.17   |

<sup>&</sup>lt;sup>1</sup>Starting in 2013, LE CA Halibut estimates are combined with IFQ Bottom Trawl estimates.

Note: For summaries of P. halibut catch from Exempted Fishing Permits see Table 38; for Non-Groundfish Fisheries not observed by WCGOP see Table 39

 $<sup>^2 {\</sup>rm Includes}$  a small amount landed and discarded at the dock.

 $<sup>^3100\%</sup>$  mortality rate

 $<sup>^4 {\</sup>rm from}~2011\text{-}14, \, {\rm 'Midwater~Trawl'}$ 

<sup>&</sup>lt;sup>5</sup>from 2011-14, 'Shoreside Hake'

 $<sup>^6\</sup>mathrm{Starting}$  in 2011, this sector only includes OA CA halibut

 $<sup>^7 \</sup>mathrm{Includes}$  P. halibut catch from IFQ electronic monitoring EFP

## 9 FIGURES

Figure 2: Number of vessels by month for IFQ bottom trawl vessels in 2015 (solid line) and averaged over the 2011-15 period (dotted line). Grey ribbon represents the monthly maximum and minimum across 2011-2015.

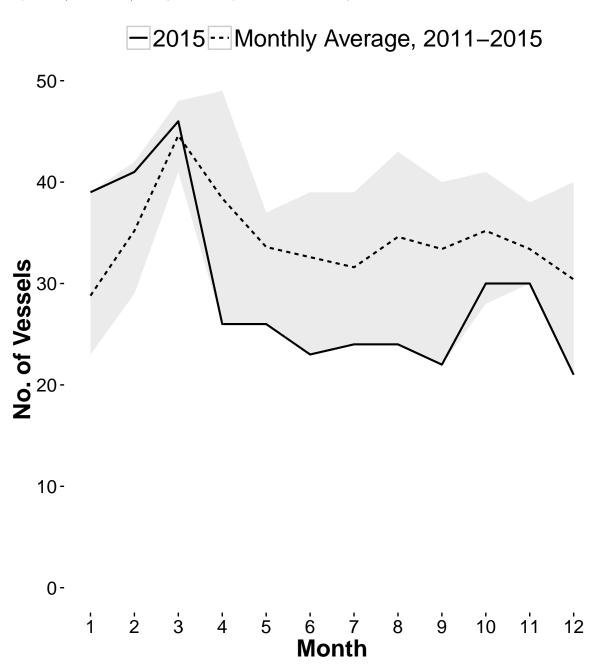



Figure 3: Number of tows by month for IFQ bottom trawl vessels in 2015 (solid line) and averaged over the 2011-15 period (dotted line). Grey ribbon represents the monthly maximum and minimum across 2011-2015.

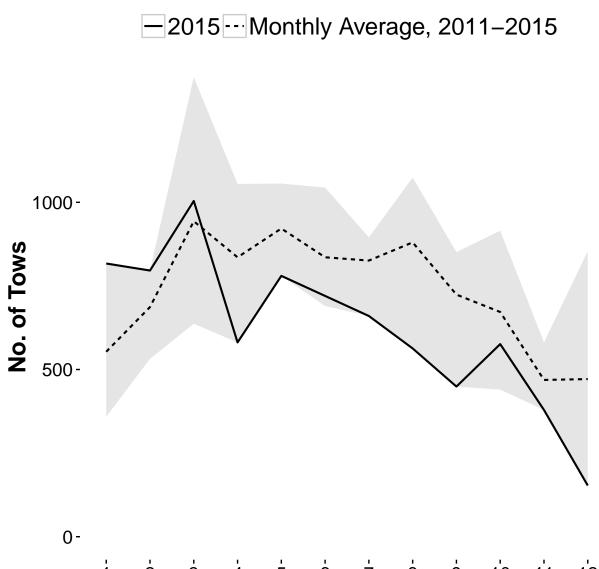



Figure 4: Tow hours by month for IFQ bottom trawl vessels in 2015 (solid line) and averaged over the 2011-15 period (dotted line). Grey ribbon represents the monthly maximum and minimum across 2011-2015.

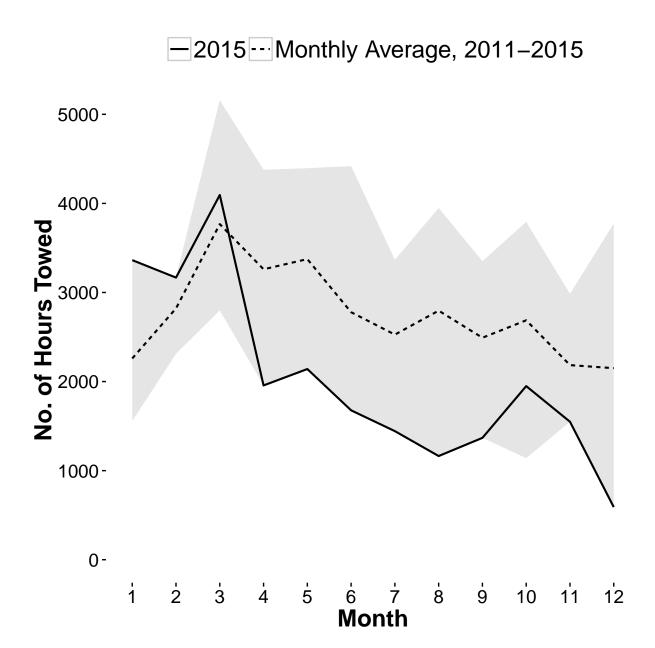



Figure 5: Estimated discard mortality of P. halibut in the non-nearshore fixed gear fishery by sector and year. The OA fixed gear fishery was only observed from 2003-06 in California and was not observed at all in 2002. Therefore, we apply a fixed average discard rate from 2007-08 data to generate 2002-06 discard estimates for the OA sector. The 'Other fixed gear sectors' includes LE sablefish non-endorsed and OA fixed gear vessels fishing with pot gear. The inset is an expanded view of each of the sectors, except LE sablefish endorsed longline gear, during years with very small bycatch.

## Non-IFQ Fixed Gear Estimated Discard Mortality of Pacific halibut

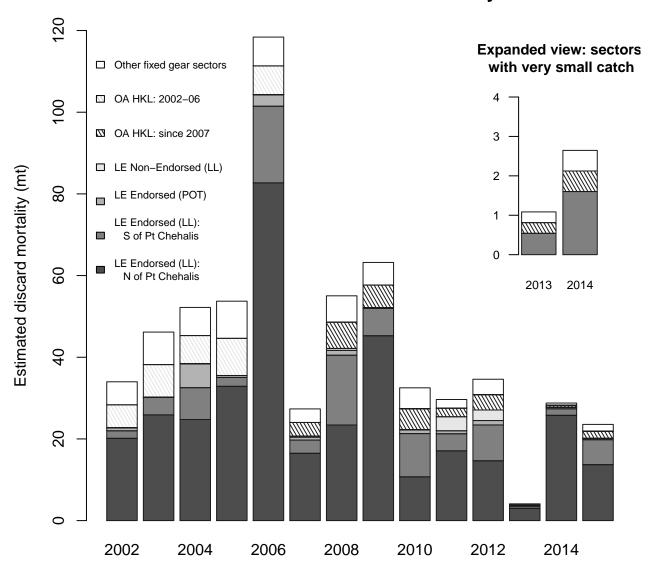



Figure 6: Length frequency distribution of discarded Pacific halibut on WCGOP observed Non-Nearshore Fixed Gear limited entry (LE) and open access (OA) groundfish vessels from September 2003 through December 2015. The majority of P. halibut lengths collected in this fishery were visual estimates (grey bars) which are only estimated in 10 cm bins.

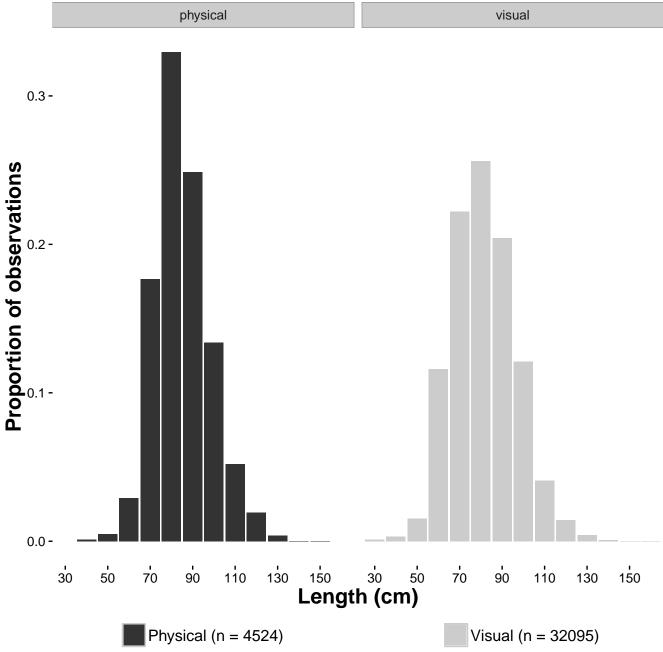



Figure 7: Spatial distribution of Pacific halibut bycatch (mt/km²) observed by West Coast Groundfish Observer Program (2002-2015), off the U.S. west coast. Gear types observed by the WCGOP include bottom trawl, midwater trawl, shrimp trawl, fixed gear hook-&-line and pot gear. The five catch classifications were defined by excluding any 0 values and then applying the Jenks natural breaks classification method. Cells (200 sq. km) with less than 3 vessels were omitted from the map to maintain confidentiality.

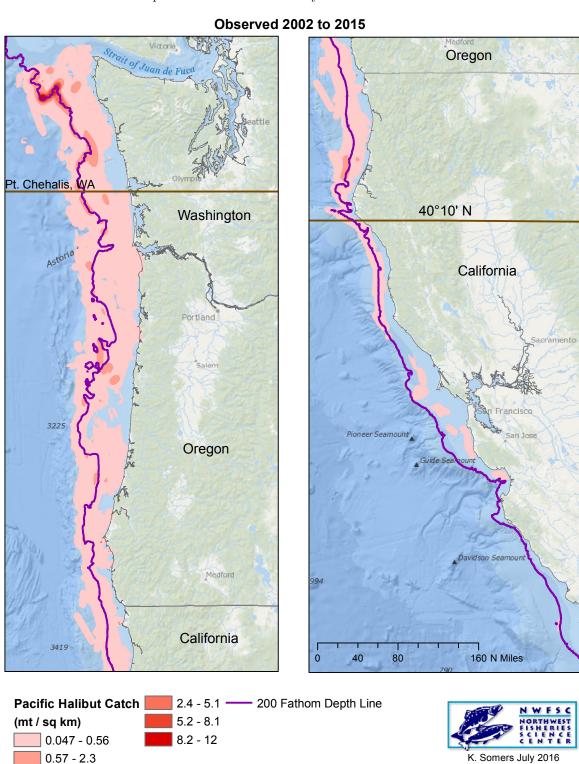
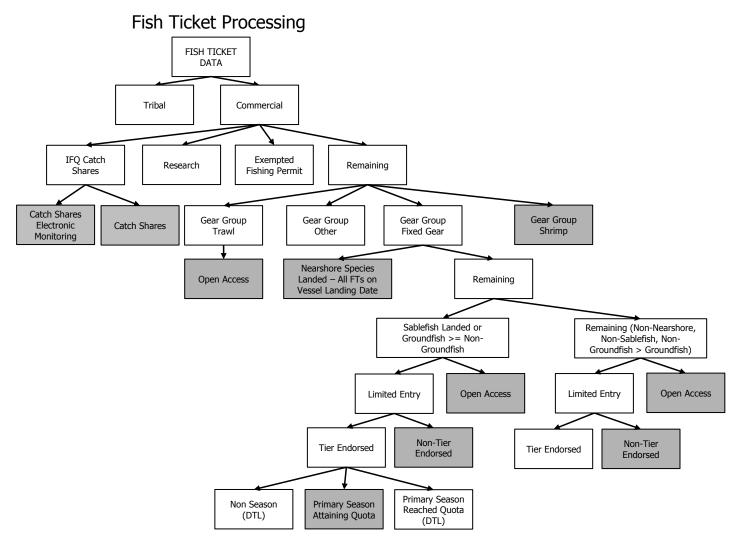




Figure 8: Fish ticket data processing for division into 2015 groundfish fishery sectors after retrieval from the Pacific Fisheries Information Network (PacFIN) database. Grey boxes indicate sectors for which federal observer data is available. Fish ticket processing methods are updated annually, thus, this figure might differ from similar figures in previous reports.



## 10 APPENDICES

## 10.1 Appendix A

Weighted catch composition data from the IFQ fishery for bottom trawl and pot gears. The frequency within each length bin was weighted based on the following equation:

$$n_{wghtd_l} = n_l \times \frac{W_{st}}{\sum_l w_{stl}} \times \frac{\sum_t W_{st}}{W_{st}} \times \frac{\hat{W}_s}{\sum_t W_{st}} = n_l \times \frac{\hat{W}_s}{\sum_l w_{stl}}$$
(7)

where:

s = stratum

t = tow

l = length bin

n = number of measured fish

w = total weight of fish, as determined through the IPHC length-weight relationship (Table 9 in Appendix C 10.3)

W =total observed discard weight of Pacific halibut

 $\hat{W}$  = estimated total discard weight of P. halibut

Table 41: Weighted length frequency distributions for Pacific halibut in the IFQ fishery for bottom trawl and pot gears, by year. Length bins are inclusive of the bin value (lower) and exclude the upper value, e.g., 10 = lengths 10.0 to 11.99 cm. Since 2013, IFQ bottom trawl lengths could also include lengths taken on both IFQ and LE California halibut bottom trawl fisheries.

|              | Bottom Trawl Pot |        |        |        |        |        |        |        |        | D      | ottom Tr    | onul   |        |        | Pot             |                 |        |                 |                 |        |        |
|--------------|------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------------|--------|--------|--------|-----------------|-----------------|--------|-----------------|-----------------|--------|--------|
| T amouth him | l                |        |        | 2014   | 2015   | 2011   |        | 2012   | 2014   | 2015   | Tanath him  | l .    |        |        | 2014            | 2015            | 2011   |                 | 2012            | 2014   | 2015   |
| Length bin   | 2011             | 2012   | 2013   | 2014   | 2015   | 2011   | 2012   | 2013   | 2014   | 2015   | Length bin  | 2011   | 2012   | 2013   | 2014            | 2015            | 2011   | 2012            | 2013            | 2014   | 2015   |
| (cm)         | 0.0000           | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (cm)<br>102 | 0.0070 | 0.0075 | 0.0067 | 0.0047          | 0.0072          | 0.0025 | 0.0085          | 0.0103          | 0.0519 | 0.0027 |
| 2            | 0.0000           | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 102         | 0.0070 | 0.0073 | 0.0051 | 0.0047          | 0.0072          | 0.0023 | 0.0054          | 0.0103          | 0.0019 | 0.0027 |
| 4            | l                | 0.0000 | 0.0000 | 0.0000 | 0.0000 |        | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 104         |        | 0.0045 | 0.0031 | 0.0119 $0.0025$ | 0.0062          | 0.0024 | 0.0034 $0.0137$ | 0.0045 $0.0170$ | 0.0000 | 0.0100 |
| 6            | 0.0000           | 0.0000 | 0.0000 | 0.0000 |        | 0.0000 |        |        |        |        | 108         | 0.0039 | 0.0030 |        |                 | 0.0045 $0.0037$ | 0.0000 | 0.0137          | 0.0000          | 0.0000 | 0.0025 |
|              | 0.0000           |        |        |        | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | l .         | 0.0030 |        | 0.0089 | 0.0020          |                 |        |                 |                 |        |        |
| 8            | 0.0000           | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 110         | 0.0025 | 0.0033 | 0.0041 | 0.0293          | 0.0158          | 0.0014 | 0.0011          | 0.0045          | 0.0138 | 0.0021 |
| 10           | 0.0000           | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 112         | 0.0021 | 0.0021 | 0.0158 | 0.0091          | 0.0024          | 0.0013 | 0.0010          | 0.0000          | 0.0000 | 0.0000 |
| 12           | 0.0000           | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 114         | 0.0017 | 0.0015 | 0.0011 | 0.0009          | 0.0145          | 0.0028 | 0.0020          | 0.0000          | 0.0123 | 0.0000 |
| 14           | 0.0000           | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 116         | 0.0011 | 0.0012 | 0.0009 | 0.0005          | 0.0137          | 0.0005 | 0.0000          | 0.0000          | 0.0233 | 0.0000 |
| 16           | 0.0000           | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 118         | 0.0009 | 0.0007 | 0.0007 | 0.0004          | 0.0009          | 0.0011 | 0.0009          | 0.0028          | 0.0000 | 0.0000 |
| 18           | 0.0065           | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 120         | 0.0005 | 0.0008 | 0.0062 | 0.0003          | 0.0243          | 0.0015 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 20           | 0.0000           | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 122         | 0.0005 | 0.0005 | 0.0005 | 0.0004          | 0.0006          | 0.0029 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 22           | 0.0000           | 0.0108 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 124         | 0.0006 | 0.0003 | 0.0002 | 0.0133          | 0.0111          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 24           | 0.0000           | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 126         | 0.0003 | 0.0004 | 0.0001 | 0.0062          | 0.0002          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 26           | 0.0000           | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 128         | 0.0003 | 0.0000 | 0.0001 | 0.0002          | 0.0003          | 0.0008 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 28           | 0.0000           | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 130         | 0.0001 | 0.0000 | 0.0000 | 0.0057          | 0.0002          | 0.0004 | 0.0000          | 0.0000          | 0.0000 | 0.0012 |
| 30           | 0.0000           | 0.0076 | 0.0037 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 132         | 0.0002 | 0.0001 | 0.0000 | 0.0001          | 0.0001          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 32           | 0.0000           | 0.0061 | 0.0030 | 0.0028 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 134         | 0.0000 | 0.0000 | 0.0001 | 0.0053          | 0.0000          | 0.0007 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 34           | 0.0000           | 0.0101 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 136         | 0.0001 | 0.0000 | 0.0000 | 0.0000          | 0.0001          | 0.0007 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 36           | 0.0000           | 0.0043 | 0.0000 | 0.0000 | 0.0009 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 138         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0003 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 38           | 0.0000           | 0.0109 | 0.0000 | 0.0000 | 0.0027 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 140         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0001          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 40           | 0.0014           | 0.0053 | 0.0019 | 0.0014 | 0.0091 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 142         | 0.0001 | 0.0000 | 0.0000 | 0.0000          | 0.0001          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 42           | 0.0023           | 0.0110 | 0.0000 | 0.0000 | 0.0057 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 144         | 0.0001 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 44           | 0.0000           | 0.0024 | 0.0000 | 0.0000 | 0.0061 | 0.0248 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 146         | 0.0000 | 0.0000 | 0.0000 | 0.0039          | 0.0000          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 46           | 0.0003           | 0.0073 | 0.0006 | 0.0004 | 0.0023 | 0.0000 | 0.0000 | 0.0556 | 0.0000 | 0.0000 | 148         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0001          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 48           | 0.0029           | 0.0064 | 0.0028 | 0.0011 | 0.0044 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 150         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 50           | 0.0034           | 0.0071 | 0.0032 | 0.0000 | 0.0030 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0255 | 152         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 52           | 0.0046           | 0.0072 | 0.0048 | 0.0021 | 0.0010 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 154         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 54           | 0.0079           | 0.0057 | 0.0424 | 0.0044 | 0.0052 | 0.0129 | 0.0000 | 0.0441 | 0.0000 | 0.0212 | 156         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 56           | 0.0074           | 0.0062 | 0.0074 | 0.0050 | 0.0069 | 0.0054 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 158         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 58           | 0.0194           | 0.0148 | 0.0319 | 0.0141 | 0.0120 | 0.0151 | 0.0000 | 0.0000 | 0.0000 | 0.0337 | 160         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 60           | 0.0324           | 0.0294 | 0.0286 | 0.0305 | 0.0186 | 0.0672 | 0.0000 | 0.0074 | 0.0934 | 0.0151 | 162         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 62           | 0.0441           | 0.0428 | 0.0553 | 0.0551 | 0.0334 | 0.0538 | 0.0000 | 0.0000 | 0.0000 | 0.0264 | 164         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 64           | 0.0565           | 0.0529 | 0.0615 | 0.0740 | 0.0472 | 0.0217 | 0.0377 | 0.0000 | 0.0000 | 0.0238 | 166         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0004 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 66           | 0.0589           | 0.0542 | 0.0710 | 0.0777 | 0.0626 | 0.0136 | 0.0113 | 0.0052 | 0.0000 | 0.0221 | 168         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 68           | 0.0571           | 0.0623 | 0.0979 | 0.1397 | 0.0770 | 0.0215 | 0.0308 | 0.0266 | 0.0000 | 0.0584 | 170         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 70           | 0.0762           | 0.0711 | 0.1225 | 0.0897 | 0.0817 | 0.0745 | 0.0239 | 0.0396 | 0.0000 | 0.0628 | 172         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 72           | 0.0737           | 0.0708 | 0.0815 | 0.0848 | 0.0841 | 0.0908 | 0.0608 | 0.1317 | 0.0546 | 0.0490 | 174         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 74           | 0.0858           | 0.0678 | 0.0720 | 0.1064 | 0.1153 | 0.0541 | 0.0595 | 0.1028 | 0.1001 | 0.0299 | 176         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 76           | 0.0669           | 0.0629 | 0.0556 | 0.0660 | 0.0698 | 0.0183 | 0.0295 | 0.0699 | 0.0459 | 0.0482 | 178         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 78           | 0.0561           | 0.0536 | 0.0506 | 0.0591 | 0.0656 | 0.0744 | 0.0907 | 0.0737 | 0.0421 | 0.0631 | 180         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 80           | 0.0571           | 0.0486 | 0.0691 | 0.0492 | 0.0538 | 0.1017 | 0.0891 | 0.0643 | 0.1135 | 0.1052 | 182         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 82           | 0.0478           | 0.0469 | 0.0462 | 0.1270 | 0.0528 | 0.0631 | 0.1473 | 0.1080 | 0.0703 | 0.0862 | 184         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 84           | 0.0460           | 0.0376 | 0.0394 | 0.0344 | 0.1143 | 0.0543 | 0.1230 | 0.0470 | 0.0995 | 0.0745 | 186         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 86           | 0.0309           | 0.0302 | 0.0331 | 0.1097 | 0.0710 | 0.0411 | 0.0636 | 0.0379 | 0.1218 | 0.0556 | 188         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 88           | 0.0284           | 0.0255 | 0.0259 | 0.0214 | 0.0300 | 0.0372 | 0.0659 | 0.0496 | 0.0275 | 0.0514 | 190         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 90           | 0.0258           | 0.0237 | 0.0241 | 0.0743 | 0.0267 | 0.0473 | 0.0399 | 0.0358 | 0.0000 | 0.0476 | 192         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 92           | 0.0213           | 0.0214 | 0.0208 | 0.0162 | 0.0205 | 0.0217 | 0.0337 | 0.0189 | 0.0238 | 0.0295 | 194         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 94           | 0.0167           | 0.0160 | 0.0152 | 0.0117 | 0.0524 | 0.0187 | 0.0260 | 0.0150 | 0.0461 | 0.0172 | 196         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 96           | 0.0134           | 0.0110 | 0.0385 | 0.0304 | 0.0116 | 0.0153 | 0.0259 | 0.0235 | 0.0208 | 0.0161 | 198         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 98           | 0.0096           | 0.0097 | 0.0095 | 0.0077 | 0.0109 | 0.0123 | 0.0016 | 0.0000 | 0.0201 | 0.0091 | 200         | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000          | 0.0001 | 0.0000          | 0.0000          | 0.0000 | 0.0000 |
| 100          | 0.0086           | 0.0084 | 0.0058 | 0.0075 | 0.0430 | 0.0163 | 0.0062 | 0.0047 | 0.0188 | 0.0056 |             |        |        |        |                 |                 |        |                 |                 |        |        |

Table 42: Percentage of weighted length measurements in each viability category, for IFQ bottom trawl vessels by year. Length bins are inclusive of the bin value (lower) and exclude the upper value, e.g., 10 = lengths 10.0 to 11.99 cm. Since 2013, IFQ bottom trawl lengths could also include lengths taken on both IFQ and LE California halibut bottom trawl fisheries.

|            | Bottom Trawl  |               |               |               |                         |              |              |                         |             |               |                 |                  |                |               |             |
|------------|---------------|---------------|---------------|---------------|-------------------------|--------------|--------------|-------------------------|-------------|---------------|-----------------|------------------|----------------|---------------|-------------|
|            |               | Excelle       | ent           |               |                         |              | Po           |                         |             |               |                 | Dea              |                |               |             |
| Length bin | 2011          | 2012          | 2013          | 2014          | 2015                    | 2011         | 2012         | 2013                    | 2014        | 2015          | 2011            | 2012             | 2013           | 2014          | 2015        |
| (cm)       |               |               |               |               |                         |              |              |                         |             |               |                 |                  |                |               |             |
| 0          | 0.0%          | 0.0%          | 0.0%          | 0.0%          | 0.0%                    | 0.0%         | 0.0%         | 0.0%                    | 0.0%        | 0.0%          | 0.0%            | 0.0%             | 0.0%           | 0.0%          | 0.0%        |
| 2          | 0.0%          | 0.0%          | 0.0%          | 0.0%          | 0.0%                    | 0.0%         | 0.0%         | 0.0%                    | 0.0%        | 0.0%          | 0.0%            | 0.0%             | 0.0%           | 0.0%          | 0.0%        |
| 4          | 0.0%          | 0.0%          | 0.0%          | 0.0%          | 0.0%                    | 0.0%         | 0.0%         | 0.0%                    | 0.0%        | 0.0%          | 0.0%            | 0.0%             | 0.0%           | 0.0%          | 0.0%        |
| 6          | 0.0%          | 0.0%          | 0.0%          | 0.0%          | 0.0%                    | 0.0%         | 0.0%         | 0.0%                    | 0.0%        | 0.0%          | 0.0%            | 0.0%             | 0.0%           | 0.0%          | 0.0%        |
| 8          | 0.0%          | 0.0%          | 0.0%          | 0.0%          | 0.0%                    | 0.0%         | 0.0%         | 0.0%                    | 0.0%        | 0.0%          | 0.0%            | 0.0%             | 0.0%           | 0.0%          | 0.0%        |
| 10         | 0.0%          | 0.0%          | 0.0%          | 0.0%          | 0.0%                    | 0.0%         | 0.0%         | 0.0%                    | 0.0%        | 0.0%          | 0.0%            | 0.0%             | 0.0%           | 0.0%          | 0.0%        |
| 12         | 0.0%          | 0.0%          | 0.0%          | 0.0%          | 0.0%                    | 0.0%         | 0.0%         | 0.0%                    | 0.0%        | 0.0%          | 0.0%            | 0.0%             | 0.0%           | 0.0%          | 0.0%        |
| 14         | 0.0%          | 0.0%          | 0.0%          | 0.0%          | 0.0%                    | 0.0%         | 0.0%         | 0.0%                    | 0.0%        | 0.0%          | 0.0%            | 0.0%             | 0.0%           | 0.0%          | 0.0%        |
| 16         | 0.0%          | 0.0%          | 0.0%          | 0.0%          | 0.0%                    | 0.0%         | 0.0%         | 0.0%                    | 0.0%        | 0.0%          | 0.0%            | 0.0%             | 0.0%           | 0.0%          | 0.0%        |
| 18         | 100.0%        | 0.0%          | 0.0%          | 0.0%          | 0.0%                    | 0.0%         | 0.0%         | 0.0%                    | 0.0%        | 0.0%          | 0.0%            | 0.0%             | 0.0%           | 0.0%          | 0.0%        |
| 20         | 0.0%          | 0.0%          | 0.0%          | 0.0%          | 0.0%                    | 0.0%         | 0.0%         | 0.0%                    | 0.0%        | 0.0%          | 0.0%            | 0.0%             | 0.0%           | 0.0%          | 0.0%        |
| 22         | 0.0%          | 100.0%        | 0.0%          | 0.0%          | 0.0%                    | 0.0%         | 0.0%         | 0.0%                    | 0.0%        | 0.0%          | 0.0%            | 0.0%             | 0.0%           | 0.0%          | 0.0%        |
| 24         | 0.0%          | 0.0%          | 0.0%          | 0.0%          | 0.0%                    | 0.0%         | 0.0%         | 0.0%                    | 0.0%        | 0.0%          | 0.0%            | 0.0%             | 0.0%           | 0.0%          | 0.0%        |
| 26         | 0.0%          | 0.0%          | 0.0%          | 0.0%          | 0.0%                    | 0.0%         | 0.0%         | 0.0%                    | 0.0%        | 0.0%          | 0.0%            | 0.0%             | 0.0%           | 0.0%          | 0.0%        |
| 28         | 0.0%          | 0.0%          | 0.0%          | 0.0%          | 0.0%                    | 0.0%         | 0.0%         | 0.0%                    | 0.0%        | 0.0%          | 0.0%            | 0.0%             | 0.0%           | 0.0%          | 0.0%        |
| 30         | 0.0%          | 100.0%        | 0.0%          | 0.0%          | 0.0%                    | 0.0%         | 0.0%         | 0.0%                    | 0.0%        | 0.0%          | 0.0%            | 0.0%             | 100.0%         | 0.0%          | 0.0%        |
| 32         | 0.0%          | 50.0%         | 0.0%          | 100.0%        | 0.0%                    | 0.0%         | 0.0%         | 0.0%                    | 0.0%        | 0.0%          | 0.0%            | 50.0%            | 100.0%         | 0.0%          | 0.0%        |
| 34         | 0.0%          | 100.0%        | 0.0%          | 0.0%          | 0.0%                    | 0.0%         | 0.0%         | 0.0%                    | 0.0%        | 0.0%          | 0.0%            | 0.0%             | 0.0%           | 0.0%          | 0.0%        |
| 36         | 0.0%          | 100.0%        | 0.0%          | 0.0%          | 100.0%                  | 0.0%         | 0.0%         | 0.0%                    | 0.0%        | 0.0%          | 0.0%            | 0.0%             | 0.0%           | 0.0%          | 0.0%        |
| 38         | 0.0%          | 82.7%         | 0.0%          | 0.0%          | 92.7%                   | 0.0%         | 15.1%        | 0.0%                    | 0.0%        | 0.0%          | 0.0%            | 2.2%             | 0.0%           | 0.0%          | 7.3%        |
| 40         | 0.0%          | 82.2%         | 22.2%         | 0.0%          | 32.3%                   | 100.0%       | 0.0%         | 0.0%                    | 0.0%        | 38.4%         | 0.0%            | 17.8%            | 77.8%          | 100.0%        | 29.3%       |
| 42         | 47.9%         | 68.0%         | 0.0%          | 0.0%          | 56.6%                   | 52.1%        | 23.6% $0.0%$ | 0.0%                    | 0.0% $0.0%$ | 19.7%         | 0.0%            | 8.5%             | 0.0%           | 0.0%          | 23.7%       |
| 44         | 0.0%          | 46.8%         | 0.0%          | 0.0%          | 50.6%                   | 0.0%<br>0.0% |              | 0.0%                    |             | 14.3%         | 0.0%            | 53.2%            | 0.0%           | 0.0% $100.0%$ | 35.1%       |
| 46<br>48   | 0.0%<br>24.9% | 83.4% $96.4%$ | 0.0% $34.3%$  | 0.0% $100.0%$ | 83.1% $78.4%$           | 24.9%        | 16.6% $0.0%$ | 0.0% $29.0%$            | 0.0% $0.0%$ | 16.9% $21.6%$ | 100.0%<br>50.1% | $0.0\% \\ 3.6\%$ | 100.0% $36.7%$ | 0.0%          | 0.0% $0.0%$ |
| 48<br>50   | 24.9%         | 66.0%         | 20.7%         | 0.0%          | 2.8%                    | 0.0%         | 10.4%        | $\frac{29.0\%}{22.1\%}$ | 0.0%        | 0.0%          | 70.1%           | 23.6%            | 57.2%          | 0.0%          | 97.2%       |
| 50<br>52   | 29.9%         | 52.4%         | 20.7% $29.7%$ | 30.1%         | $\frac{2.8\%}{100.0\%}$ | 42.3%        | 15.3%        | $\frac{22.1\%}{22.4\%}$ | 11.6%       | 0.0%          | 34.6%           | 32.3%            | 48.0%          | 58.3%         | 0.0%        |
| 54         | 15.6%         | 59.9%         | 40.3%         | 50.1%         | 55.2%                   | 43.2%        | 29.4%        | 18.2%                   | 0.0%        | 34.6%         | 41.2%           | 10.7%            | 41.5%          | 49.2%         | 10.3%       |
| 56         | 21.0%         | 44.2%         | 54.8%         | 35.4%         | 38.1%                   | 45.5%        | 13.9%        | 1.9%                    | 0.8%        | 17.6%         | 33.5%           | 41.9%            | 43.2%          | 63.7%         | 44.3%       |
| 58         | 19.8%         | 41.0%         | 36.5%         | 32.9%         | 38.4%                   | 31.2%        | 10.0%        | 23.0%                   | 31.2%       | 23.4%         | 48.9%           | 49.0%            | 40.5%          | 35.8%         | 38.2%       |
| 60         | 32.8%         | 36.8%         | 39.5%         | 38.7%         | 52.4%                   | 24.3%        | 21.8%        | 8.3%                    | 23.6%       | 9.5%          | 42.9%           | 41.4%            | 52.1%          | 37.7%         | 38.1%       |
| 62         | 37.8%         | 39.9%         | 43.4%         | 43.4%         | 52.1%                   | 22.7%        | 21.0%        | 18.7%                   | 20.1%       | 13.4%         | 39.6%           | 39.1%            | 37.9%          | 36.5%         | 34.6%       |
| 64         | 39.6%         | 32.2%         | 46.1%         | 45.0%         | 47.9%                   | 18.7%        | 20.9%        | 17.6%                   | 19.7%       | 12.4%         | 41.7%           | 46.9%            | 36.3%          | 35.3%         | 39.7%       |
| 66         | 36.7%         | 35.9%         | 45.1%         | 48.9%         | 44.1%                   | 21.0%        | 22.3%        | 14.3%                   | 23.7%       | 20.3%         | 42.3%           | 41.9%            | 40.6%          | 27.5%         | 35.6%       |
| 68         | 42.6%         | 35.1%         | 50.5%         | 46.7%         | 47.7%                   | 12.0%        | 21.5%        | 12.3%                   | 20.8%       | 16.3%         | 45.3%           | 43.4%            | 37.2%          | 32.5%         | 35.9%       |
| 70         | 41.6%         | 39.6%         | 45.2%         | 53.6%         | 46.1%                   | 20.8%        | 19.5%        | 17.1%                   | 17.8%       | 16.5%         | 37.7%           | 40.9%            | 37.7%          | 28.6%         | 37.4%       |
| 72         | 38.6%         | 32.2%         | 48.6%         | 50.8%         | 49.3%                   | 20.9%        | 18.8%        | 16.9%                   | 18.4%       | 14.0%         | 40.5%           | 49.0%            | 34.5%          | 30.8%         | 36.7%       |
| 74         | 40.0%         | 32.5%         | 47.4%         | 53.7%         | 52.4%                   | 17.4%        | 21.9%        | 19.1%                   | 14.8%       | 14.2%         | 42.6%           | 45.7%            | 33.5%          | 31.6%         | 33.5%       |
| 76         | 45.5%         | 36.9%         | 45.0%         | 44.0%         | 47.1%                   | 17.0%        | 17.2%        | 17.8%                   | 18.2%       | 13.2%         | 37.5%           | 45.9%            | 37.2%          | 37.7%         | 39.7%       |
| 78         | 41.1%         | 33.3%         | 44.6%         | 52.3%         | 47.0%                   | 19.0%        | 24.6%        | 16.0%                   | 17.9%       | 17.0%         | 39.9%           | 42.1%            | 39.5%          | 29.8%         | 35.9%       |
| 80         | 45.7%         | 38.8%         | 53.9%         | 50.1%         | 47.4%                   | 16.0%        | 18.5%        | 13.1%                   | 16.6%       | 16.7%         | 38.3%           | 42.7%            | 33.0%          | 33.3%         | 35.9%       |
| 82         | 45.8%         | 36.6%         | 45.4%         | 50.6%         | 46.3%                   | 19.9%        | 20.9%        | 18.3%                   | 11.3%       | 13.5%         | 34.3%           | 42.5%            | 36.3%          | 38.1%         | 40.3%       |
| 84         | 50.1%         | 38.5%         | 50.6%         | 45.6%         | 45.4%                   | 14.8%        | 18.9%        | 14.5%                   | 13.3%       | 14.3%         | 35.1%           | 42.6%            | 34.9%          | 41.1%         | 40.3%       |
| 86         | 44.6%         | 36.4%         | 55.6%         | 48.8%         | 42.0%                   | 14.6%        | 21.7%        | 15.5%                   | 18.1%       | 20.1%         | 40.8%           | 41.8%            | 28.9%          | 33.2%         | 37.8%       |
| 88         | 41.7%         | 39.2%         | 52.9%         | 43.5%         | 51.2%                   | 16.1%        | 21.5%        | 15.2%                   | 22.0%       | 14.8%         | 42.2%           | 39.3%            | 31.9%          | 34.5%         | 34.0%       |
| 90         | 48.3%         | 40.9%         | 57.9%         | 43.1%         | 46.9%                   | 17.0%        | 18.9%        | 13.8%                   | 18.7%       | 16.6%         | 34.7%           | 40.1%            | 28.4%          | 38.2%         | 36.6%       |
| 92         | 46.6%         | 41.0%         | 58.4%         | 50.6%         | 49.1%                   | 17.3%        | 20.2%        | 14.7%                   | 14.0%       | 19.5%         | 36.1%           | 38.9%            | 26.9%          | 35.4%         | 31.3%       |
| 94         | 51.2%         | 46.4%         | 54.6%         | 49.4%         | 44.5%                   | 20.1%        | 14.3%        | 15.6%                   | 17.6%       | 17.3%         | 28.7%           | 39.3%            | 29.8%          | 33.1%         | 38.2%       |
| 96         | 49.4%         | 40.5%         | 58.5%         | 57.5%         | 50.5%                   | 14.6%        | 16.9%        | 12.5%                   | 14.7%       | 12.4%         | 36.0%           | 42.6%            | 29.0%          | 27.9%         | 37.1%       |
| 98         | 50.0%         | 39.7%         | 52.5%         | 43.5%         | 50.5%                   | 18.2%        | 17.8%        | 19.6%                   | 23.2%       | 16.8%         | 31.8%           | 42.4%            | 27.9%          | 33.3%         | 32.7%       |
| 100        | 53.8%         | 43.8%         | 60.9%         | 57.2%         | 60.4%                   | 18.2%        | 21.0%        | 14.8%                   | 5.6%        | 13.0%         | 28.0%           | 35.2%            | 24.3%          | 37.2%         | 26.6%       |
| 102        | 47.3%         | 51.1%         | 58.6%         | 52.1%         | 46.7%                   | 16.1%        | 16.5%        | 14.3%                   | 13.3%       | 16.9%         | 36.7%           | 32.4%            | 27.1%          | 34.5%         | 36.4%       |
| 104        | 53.0%         | 44.5%         | 55.6%         | 60.8%         | 54.6%                   | 18.9%        | 10.3%        | 14.3%                   | 17.8%       | 12.1%         | 28.1%           | 45.2%            | 30.1%          | 21.4%         | 33.3%       |

Table 43: Table 42 continued for IFQ bottom trawl vessels. Length bins are inclusive of the bin value (lower) and exclude the upper value, e.g., 10 = lengths 10.0 to 11.99 cm.

|            | Bottom Trawl |         |        |        |        |        |        |        |       |        |       |        |       |       |        |  |
|------------|--------------|---------|--------|--------|--------|--------|--------|--------|-------|--------|-------|--------|-------|-------|--------|--|
|            |              | Excelle | ent    |        |        |        | Poo    | r      |       |        | Dead  |        |       |       |        |  |
| Length bin | 2011         | 2012    | 2013   | 2014   | 2015   | 2011   | 2012   | 2013   | 2014  | 2015   | 2011  | 2012   | 2013  | 2014  | 2015   |  |
| (cm)       |              |         |        |        |        |        |        |        |       |        |       |        |       |       |        |  |
| 106        | 54.2%        | 39.6%   | 71.7%  | 66.2%  | 50.6%  | 18.4%  | 26.6%  | 12.7%  | 9.1%  | 19.4%  | 27.3% | 33.8%  | 15.6% | 24.6% | 30.0%  |  |
| 108        | 53.4%        | 44.3%   | 58.5%  | 62.6%  | 45.3%  | 20.3%  | 16.4%  | 14.1%  | 23.2% | 18.9%  | 26.3% | 39.3%  | 27.4% | 14.2% | 35.8%  |  |
| 110        | 56.5%        | 51.4%   | 56.2%  | 60.9%  | 62.0%  | 11.2%  | 14.2%  | 26.9%  | 16.0% | 12.9%  | 32.3% | 34.4%  | 16.9% | 23.1% | 25.1%  |  |
| 112        | 56.6%        | 54.4%   | 58.0%  | 53.5%  | 30.3%  | 22.5%  | 22.4%  | 20.7%  | 14.9% | 26.9%  | 20.9% | 23.2%  | 21.3% | 31.6% | 42.8%  |  |
| 114        | 49.8%        | 43.9%   | 68.4%  | 64.8%  | 52.7%  | 25.2%  | 22.7%  | 12.7%  | 12.9% | 12.0%  | 25.0% | 33.4%  | 18.9% | 22.3% | 35.3%  |  |
| 116        | 60.6%        | 42.8%   | 59.7%  | 42.6%  | 57.3%  | 13.5%  | 20.0%  | 20.0%  | 37.1% | 15.2%  | 25.9% | 37.1%  | 20.2% | 20.3% | 27.5%  |  |
| 118        | 55.8%        | 58.4%   | 62.9%  | 62.3%  | 54.5%  | 9.6%   | 6.4%   | 17.3%  | 29.2% | 21.4%  | 34.5% | 35.2%  | 19.8% | 8.5%  | 24.2%  |  |
| 120        | 47.6%        | 20.3%   | 79.4%  | 81.7%  | 58.1%  | 28.1%  | 16.5%  | 18.8%  | 0.0%  | 16.4%  | 24.3% | 63.2%  | 1.8%  | 18.3% | 25.4%  |  |
| 122        | 54.3%        | 58.9%   | 59.0%  | 80.1%  | 56.7%  | 8.0%   | 31.2%  | 14.5%  | 0.0%  | 7.6%   | 37.7% | 9.9%   | 26.5% | 19.9% | 35.7%  |  |
| 124        | 39.8%        | 39.0%   | 47.7%  | 73.5%  | 29.7%  | 21.8%  | 48.5%  | 16.1%  | 16.0% | 35.1%  | 38.4% | 12.5%  | 36.1% | 10.5% | 35.1%  |  |
| 126        | 42.1%        | 29.4%   | 100.0% | 0.0%   | 34.9%  | 19.0%  | 30.6%  | 0.0%   | 37.8% | 0.0%   | 38.9% | 40.1%  | 0.0%  | 62.2% | 65.1%  |  |
| 128        | 52.6%        | 96.4%   | 49.5%  | 85.0%  | 84.6%  | 35.7%  | 0.0%   | 50.5%  | 0.0%  | 3.9%   | 11.7% | 3.6%   | 0.0%  | 15.0% | 11.5%  |  |
| 130        | 75.4%        | 0.0%    | 77.8%  | 100.0% | 82.5%  | 24.6%  | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 100.0% | 22.2% | 0.0%  | 17.5%  |  |
| 132        | 45.2%        | 100.0%  | 22.2%  | 100.0% | 100.0% | 18.6%  | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 36.2% | 0.0%   | 77.8% | 0.0%  | 0.0%   |  |
| 134        | 79.3%        | 100.0%  | 67.0%  | 100.0% | 25.6%  | 20.7%  | 0.0%   | 33.0%  | 0.0%  | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 74.4%  |  |
| 136        | 25.2%        | 100.0%  | 100.0% | 100.0% | 100.0% | 49.5%  | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 25.2% | 0.0%   | 0.0%  | 0.0%  | 0.0%   |  |
| 138        | 0.0%         | 8.2%    | 0.0%   | 0.0%   | 0.0%   | 100.0% | 55.9%  | 100.0% | 0.0%  | 0.0%   | 0.0%  | 35.9%  | 0.0%  | 0.0%  | 100.0% |  |
| 140        | 49.7%        | 0.0%    | 0.0%   | 0.0%   | 4.4%   | 50.3%  | 0.0%   | 0.0%   | 0.0%  | 46.5%  | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 49.0%  |  |
| 142        | 25.1%        | 0.0%    | 0.0%   | 0.0%   | 10.3%  | 24.8%  | 100.0% | 0.0%   | 0.0%  | 59.5%  | 50.1% | 0.0%   | 0.0%  | 0.0%  | 30.1%  |  |
| 144        | 59.4%        | 0.0%    | 0.0%   | 59.9%  | 0.0%   | 40.6%  | 0.0%   | 0.0%   | 40.1% | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 0.0%   |  |
| 146        | 100.0%       | 100.0%  | 0.0%   | 0.0%   | 100.0% | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 0.0%   |  |
| 148        | 50.2%        | 0.0%    | 0.0%   | 0.0%   | 100.0% | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 49.8% | 0.0%   | 0.0%  | 0.0%  | 0.0%   |  |
| 150        | 0.0%         | 0.0%    | 0.0%   | 0.0%   | 45.5%  | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 100.0% | 0.0%  | 0.0%  | 54.5%  |  |
| 152        | 0.0%         | 100.0%  | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 0.0%   |  |
| 154        | 0.0%         | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 100.0% | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 0.0%   |  |
| 156        | 0.0%         | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 0.0%   |  |
| 158        | 0.0%         | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 0.0%   |  |
| 160        | 0.0%         | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 100.0% | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 0.0%   |  |
| 162        | 0.0%         | 0.0%    | 0.0%   | 0.0%   | 100.0% | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 0.0%   |  |
| 164        | 0.0%         | 0.0%    | 0.0%   | 0.0%   | 100.0% | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 0.0%   |  |
| 166        | 0.0%         | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 0.0%   |  |
| 168        | 0.0%         | 0.0%    | 0.0%   | 0.0%   | 91.0%  | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 9.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 0.0%   |  |
| 170        | 0.0%         | 0.0%    | 0.0%   | 0.0%   | 100.0% | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 0.0%   |  |
| 172        | 0.0%         | 0.0%    | 0.0%   | 0.0%   | 91.8%  | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 8.2%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 0.0%   |  |
| 174        | 0.0%         | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 100.0% |  |
| 176        | 0.0%         | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 0.0%   |  |
| 178        | 0.0%         | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 100.0% |  |
| 180        | 0.0%         | 0.0%    | 0.0%   | 0.0%   | 100.0% | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 0.0%   |  |
| 182        | 0.0%         | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 100.0% | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 0.0%   |  |
| 184        | 0.0%         | 0.0%    | 0.0%   | 0.0%   | 45.1%  | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 54.9%  |  |
| 186        | 0.0%         | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 100.0% |  |
| 188        | 0.0%         | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 0.0%   |  |
| 190        | 0.0%         | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 0.0%   |  |
| 192        | 0.0%         | 0.0%    | 0.0%   | 0.0%   | 100.0% | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 0.0%   |  |
| 194        | 0.0%         | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 0.0%   |  |
| 196        | 0.0%         | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 0.0%   |  |
| 198        | 0.0%         | 0.0%    | 0.0%   | 0.0%   | 100.0% | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 0.0%   |  |
| 200        | 0.0%         | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 0.0%   |  |
| 202        | 0.0%         | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%   | 0.0%  | 0.0%  | 0.0%   |  |

Table 44: Percentage of weighted length measurements in each viability category, for IFQ pot vessels by year. Length bins are inclusive of the bin value (lower) and exclude the upper value, e.g., 10 = lengths 10.0 to 11.99 cm. Since 2013, IFQ bottom trawl lengths could also include lengths taken on both IFQ and LE California halibut bottom trawl fisheries.

|                    | Pot            |             |             |             |             |       |                  |                  |                  |             |              |             |             |             |                  |
|--------------------|----------------|-------------|-------------|-------------|-------------|-------|------------------|------------------|------------------|-------------|--------------|-------------|-------------|-------------|------------------|
|                    |                | Excell      | ent         |             |             |       | Pe               | oor              |                  |             |              | Dea         | ad          |             |                  |
| Length bin<br>(cm) | 2011           | 2012        | 2013        | 2014        | 2015        | 2011  | 2012             | 2013             | 2014             | 2015        | 2011         | 2012        | 2013        | 2014        | 2015             |
| 0                  | 0.0%           | 0.0%        | 0.0%        | 0.0%        | 0.0%        | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 0.0%         | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 2                  | 0.0%           | 0.0%        | 0.0%        | 0.0%        | 0.0%        | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 0.0%         | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 4                  | 0.0%           | 0.0%        | 0.0%        | 0.0%        | 0.0%        | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 0.0%         | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 6                  | 0.0%           | 0.0%        | 0.0%        | 0.0%        | 0.0%        | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 0.0%         | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 8                  | 0.0%           | 0.0%        | 0.0%        | 0.0%        | 0.0%        | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 0.0%         | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 10                 | 0.0%           | 0.0%        | 0.0%        | 0.0%        | 0.0%        | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 0.0%         | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 12                 | 0.0%           | 0.0%        | 0.0%        | 0.0%        | 0.0%        | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 0.0%         | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 14                 | 0.0%           | 0.0%        | 0.0%        | 0.0%        | 0.0%        | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 0.0%         | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 16                 | 0.0%           | 0.0%        | 0.0%        | 0.0%        | 0.0%        | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 0.0%         | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 18                 | 0.0%           | 0.0%        | 0.0%        | 0.0%        | 0.0%        | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 0.0%         | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 20                 | 0.0%           | 0.0%        | 0.0%        | 0.0%        | 0.0%        | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 0.0%         | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 22                 | 0.0%           | 0.0%        | 0.0%        | 0.0%        | 0.0%        | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 0.0%         | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 24                 | 0.0%           | 0.0%        | 0.0%        | 0.0%        | 0.0%        | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 0.0%         | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 26                 | 0.0%           | 0.0%        | 0.0%        | 0.0%        | 0.0%        | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 0.0%         | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 28                 | 0.0%           | 0.0%        | 0.0%        | 0.0%        | 0.0%        | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 0.0%         | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 30                 | 0.0%           | 0.0%        | 0.0%        | 0.0%        | 0.0%        | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 0.0%         | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 32                 | 0.0%           | 0.0%        | 0.0%        | 0.0%        | 0.0%        | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 0.0%         | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 34                 | 0.0%           | 0.0%        | 0.0%        | 0.0%        | 0.0%        | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 0.0%         | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 36                 | 0.0%           | 0.0%        | 0.0%        | 0.0%        | 0.0%        | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 0.0%         | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 38                 | 0.0%           | 0.0%        | 0.0%        | 0.0%        | 0.0%        | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 0.0%         | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 40                 | 0.0%           | 0.0%        | 0.0%        | 0.0%        | 0.0%        | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 0.0%         | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 42                 | 0.0%<br>100.0% | 0.0%        | 0.0% $0.0%$ | 0.0% $0.0%$ | 0.0%        | 0.0%  | $0.0\% \\ 0.0\%$ | $0.0\% \\ 0.0\%$ | $0.0\% \\ 0.0\%$ | 0.0% $0.0%$ | 0.0%<br>0.0% | 0.0% $0.0%$ | 0.0% $0.0%$ | 0.0% $0.0%$ | $0.0\% \\ 0.0\%$ |
| 44                 | 0.0%           | 0.0% $0.0%$ | 100.0%      | 0.0%        | 0.0% $0.0%$ | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 0.0%         | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 46<br>48           | 0.0%           | 0.0%        | 0.0%        | 0.0%        | 0.0%        | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 0.0%         | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 50                 | 0.0%           | 0.0%        | 0.0%        | 0.0%        | 100.0%      | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 0.0%         | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 52                 | 0.0%           | 0.0%        | 0.0%        | 0.0%        | 0.0%        | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 0.0%         | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 54                 | 0.0%           | 0.0%        | 100.0%      | 0.0%        | 100.0%      | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 100.0%       | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 56                 | 100.0%         | 0.0%        | 0.0%        | 0.0%        | 0.0%        | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 0.0%         | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 58                 | 68.0%          | 0.0%        | 0.0%        | 0.0%        | 100.0%      | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 32.0%        | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 60                 | 57.3%          | 0.0%        | 100.0%      | 100.0%      | 100.0%      | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 42.7%        | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 62                 | 38.1%          | 0.0%        | 0.0%        | 0.0%        | 100.0%      | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 61.9%        | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 64                 | 34.6%          | 100.0%      | 0.0%        | 0.0%        | 100.0%      | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 65.4%        | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 66                 | 50.0%          | 100.0%      | 100.0%      | 0.0%        | 100.0%      | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 50.0%        | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 68                 | 69.8%          | 100.0%      | 36.2%       | 0.0%        | 66.4%       | 0.0%  | 0.0%             | 63.8%            | 0.0%             | 33.6%       | 30.2%        | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 70                 | 62.3%          | 100.0%      | 77.9%       | 0.0%        | 86.1%       | 3.4%  | 0.0%             | 10.8%            | 0.0%             | 0.0%        | 34.3%        | 0.0%        | 11.3%       | 0.0%        | 13.9%            |
| 72                 | 77.3%          | 85.9%       | 96.9%       | 100.0%      | 100.0%      | 0.0%  | 14.1%            | 0.0%             | 0.0%             | 0.0%        | 22.7%        | 0.0%        | 3.1%        | 0.0%        | 0.0%             |
| 74                 | 69.2%          | 93.6%       | 64.1%       | 100.0%      | 100.0%      | 9.1%  | 6.4%             | 12.0%            | 0.0%             | 0.0%        | 21.7%        | 0.0%        | 23.9%       | 0.0%        | 0.0%             |
| 76                 | 43.1%          | 49.7%       | 50.0%       | 100.0%      | 100.0%      | 0.0%  | 37.8%            | 33.1%            | 0.0%             | 0.0%        | 56.9%        | 12.4%       | 16.9%       | 0.0%        | 0.0%             |
| 78                 | 59.1%          | 63.3%       | 100.0%      | 100.0%      | 90.2%       | 7.8%  | 14.6%            | 0.0%             | 0.0%             | 0.0%        | 33.1%        | 22.2%       | 0.0%        | 0.0%        | 9.8%             |
| 80                 | 57.6%          | 100.0%      | 95.5%       | 65.8%       | 88.7%       | 1.7%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 40.7%        | 0.0%        | 4.5%        | 34.2%       | 11.3%            |
| 82                 | 86.4%          | 54.9%       | 61.6%       | 100.0%      | 87.5%       | 5.6%  | 9.6%             | 16.8%            | 0.0%             | 0.0%        | 8.0%         | 35.5%       | 21.6%       | 0.0%        | 12.5%            |
| 84                 | 59.3%          | 73.6%       | 100.0%      | 100.0%      | 79.8%       | 6.0%  | 13.2%            | 0.0%             | 0.0%             | 6.8%        | 34.7%        | 13.2%       | 0.0%        | 0.0%        | 13.4%            |
| 86                 | 85.3%          | 76.6%       | 87.9%       | 25.2%       | 75.0%       | 7.4%  | 7.6%             | 0.0%             | 0.0%             | 8.4%        | 7.4%         | 15.8%       | 12.1%       | 74.8%       | 16.6%            |
| 88                 | 92.4%          | 79.3%       | 91.4%       | 100.0%      | 75.5%       | 0.0%  | 6.8%             | 0.0%             | 0.0%             | 8.2%        | 7.6%         | 13.9%       | 8.6%        | 0.0%        | 16.4%            |
| 90                 | 70.5%          | 68.2%       | 100.0%      | 0.0%        | 75.4%       | 0.0%  | 21.4%            | 0.0%             | 0.0%             | 0.0%        | 29.5%        | 10.5%       | 0.0%        | 0.0%        | 24.6%            |
| 92                 | 55.8%          | 59.0%       | 100.0%      | 0.0%        | 100.0%      | 22.1% | 23.5%            | 0.0%             | 0.0%             | 0.0%        | 22.1%        | 17.4%       | 0.0%        | 100.0%      | 0.0%             |
| 94                 | 52.1%          | 100.0%      | 88.9%       | 50.0%       | 79.6%       | 23.9% | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 23.9%        | 0.0%        | 11.1%       | 50.0%       | 20.4%            |
| 96                 | 45.5%          | 80.2%       | 47.1%       | 0.0%        | 80.3%       | 13.4% | 13.2%            | 0.0%             | 0.0%             | 19.7%       | 41.1%        | 6.7%        | 52.9%       | 100.0%      | 0.0%             |
| 98                 | 53.1%          | 100.0%      | 0.0%        | 100.0%      | 100.0%      | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 46.9%        | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 100                | 77.6%          | 100.0%      | 100.0%      | 100.0%      | 100.0%      | 0.0%  | 0.0%             | 0.0%             | 0.0%             | 0.0%        | 22.4%        | 0.0%        | 0.0%        | 0.0%        | 0.0%             |
| 102                | 100.0%         | 34.1%       | 100.0%      | 100.0%      | 100.0%      | 0.0%  | 33.0%            | 0.0%             | 0.0%             | 0.0%        | 0.0%         | 33.0%       | 0.0%        | 0.0%        | 0.0%             |
| 104                | 100.0%         | 0.0%        | 100.0%      | 0.0%        | 74.6%       | 0.0%  | 50.0%            | 0.0%             | 0.0%             | 25.4%       | 0.0%         | 50.0%       | 0.0%        | 0.0%        | 0.0%             |

Table 45: Table 44 continued for IFQ pot vessels. Length bins are inclusive of the bin value (lower) and exclude the upper value, e.g., 10 = lengths 10.0 to 11.99 cm.

|            |        |         |        |        |        |      |        | Pot   |      |      |        |        |       |        |        |
|------------|--------|---------|--------|--------|--------|------|--------|-------|------|------|--------|--------|-------|--------|--------|
|            |        | Excelle | ent    |        |        |      | Pe     | oor   |      |      |        | Dead   | d     |        |        |
| Length bin | 2011   | 2012    | 2013   | 2014   | 2015   | 2011 | 2012   | 2013  | 2014 | 2015 | 2011   | 2012   | 2013  | 2014   | 2015   |
| (cm)       |        |         |        |        |        |      |        |       |      |      |        |        |       |        |        |
| 106        | 0.0%   | 45.4%   | 76.4%  | 0.0%   | 100.0% | 0.0% | 54.6%  | 23.6% | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 108        | 18.4%  | 100.0%  | 0.0%   | 0.0%   | 100.0% | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 81.6%  | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 110        | 100.0% | 100.0%  | 23.1%  | 100.0% | 100.0% | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 76.9% | 0.0%   | 0.0%   |
| 112        | 100.0% | 100.0%  | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 114        | 57.4%  | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 42.6%  | 100.0% | 0.0%  | 100.0% | 0.0%   |
| 116        | 0.0%   | 0.0%    | 0.0%   | 100.0% | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 100.0% | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 118        | 0.0%   | 0.0%    | 100.0% | 0.0%   | 0.0%   | 0.0% | 100.0% | 0.0%  | 0.0% | 0.0% | 100.0% | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 120        | 100.0% | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 122        | 100.0% | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 124        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 126        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 128        | 100.0% | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 130        | 100.0% | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 100.0% |
| 132        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 134        | 100.0% | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 136        | 100.0% | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 138        | 100.0% | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 140        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 142        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 144        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 146        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 148        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 150        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 152        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 154        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 156        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 158        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 160        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 162        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 164        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 166        | 100.0% | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 168        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 170        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 172        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 174        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 176        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 178        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 180        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 182        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 184        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 186        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 188        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 190        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 190<br>192 | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 192        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 194        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 196        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
|            | 1      |         |        |        |        |      |        |       | 0.0% |      | l .    |        |       |        |        |
| 200        | 100.0% | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  |      | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |
| 202        | 0.0%   | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0% | 0.0%   | 0.0%  | 0.0% | 0.0% | 0.0%   | 0.0%   | 0.0%  | 0.0%   | 0.0%   |

Table 46: Weighted length frequency distributions for Pacific halibut in the limited entry bottom trawl fishery, 2002-10. Length bins are inclusive of the bin value (lower) and exclude the upper value, e.g., 10 = lengths 10.0 to 11.99 cm.

|          | Cherage |        | nted length |        |        |        |        |          |        | Weiahted I | ength freq | uencv dist | ribution |        |        |
|----------|---------|--------|-------------|--------|--------|--------|--------|----------|--------|------------|------------|------------|----------|--------|--------|
| Length   |         |        |             |        | ,      |        |        | Length   |        |            |            |            |          |        |        |
| bin (cm) | 2004    | 2005   | 2006        | 2007   | 2008   | 2009   | 2010   | bin (cm) | 2004   | 2005       | 2006       | 2007       | 2008     | 2009   | 2010   |
| 22       | 0.0000  | 0.0000 | 0.0000      | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 94       | 0.0169 | 0.0108     | 0.0099     | 0.0148     | 0.0164   | 0.0151 | 0.0053 |
| 24       | 0.0000  | 0.0000 | 0.0000      | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 96       | 0.0062 | 0.0052     | 0.0066     | 0.0089     | 0.0143   | 0.0087 | 0.0066 |
| 26       | 0.0000  | 0.0125 | 0.0000      | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 98       | 0.0034 | 0.0058     | 0.0066     | 0.0091     | 0.0110   | 0.0103 | 0.0067 |
| 28       | 0.0000  | 0.0000 | 0.0000      | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 100      | 0.0089 | 0.0045     | 0.0025     | 0.0053     | 0.0080   | 0.0088 | 0.0023 |
| 30       | 0.0000  | 0.0000 | 0.0000      | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 102      | 0.0060 | 0.0034     | 0.0029     | 0.0036     | 0.0061   | 0.0069 | 0.0018 |
| 32       | 0.0000  | 0.0000 | 0.0000      | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 104      | 0.0065 | 0.0023     | 0.0027     | 0.0041     | 0.0083   | 0.0062 | 0.0021 |
| 34       | 0.0000  | 0.0000 | 0.0000      | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 106      | 0.0043 | 0.0029     | 0.0032     | 0.0031     | 0.0059   | 0.0028 | 0.0013 |
| 36       | 0.0000  | 0.0000 | 0.0000      | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 108      | 0.0016 | 0.0014     | 0.0019     | 0.0018     | 0.0027   | 0.0025 | 0.0014 |
| 38       | 0.0000  | 0.0000 | 0.0000      | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 110      | 0.0048 | 0.0015     | 0.0004     | 0.0017     | 0.0018   | 0.0021 | 0.0009 |
| 40       | 0.0048  | 0.0000 | 0.0000      | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 112      | 0.0015 | 0.0007     | 0.0020     | 0.0010     | 0.0016   | 0.0024 | 0.0013 |
| 42       | 0.0000  | 0.0044 | 0.0000      | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 114      | 0.0020 | 0.0010     | 0.0007     | 0.0007     | 0.0020   | 0.0017 | 0.0001 |
| 44       | 0.0025  | 0.0012 | 0.0057      | 0.0000 | 0.0000 | 0.0010 | 0.0000 | 116      | 0.0026 | 0.0006     | 0.0002     | 0.0000     | 0.0010   | 0.0005 | 0.0005 |
| 46       | 0.0037  | 0.0000 | 0.0094      | 0.0000 | 0.0000 | 0.0009 | 0.0000 | 118      | 0.0007 | 0.0004     | 0.0003     | 0.0002     | 0.0004   | 0.0002 | 0.0002 |
| 48       | 0.0000  | 0.0034 | 0.0046      | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 120      | 0.0013 | 0.0005     | 0.0002     | 0.0002     | 0.0005   | 0.0003 | 0.0002 |
| 50       | 0.0027  | 0.0068 | 0.0092      | 0.0000 | 0.0007 | 0.0010 | 0.0000 | 122      | 0.0008 | 0.0003     | 0.0000     | 0.0004     | 0.0003   | 0.0003 | 0.0002 |
| 52       | 0.0021  | 0.0069 | 0.0080      | 0.0041 | 0.0001 | 0.0053 | 0.0000 | 124      | 0.0010 | 0.0002     | 0.0001     | 0.0000     | 0.0003   | 0.0002 | 0.0003 |
| 54       | 0.0156  | 0.0076 | 0.0164      | 0.0042 | 0.0025 | 0.0004 | 0.0000 | 126      | 0.0000 | 0.0001     | 0.0002     | 0.0001     | 0.0001   | 0.0002 | 0.0002 |
| 56       | 0.0138  | 0.0211 | 0.0242      | 0.0071 | 0.0022 | 0.0019 | 0.0000 | 128      | 0.0002 | 0.0000     | 0.0002     | 0.0000     | 0.0000   | 0.0002 | 0.0000 |
| 58       | 0.0187  | 0.0331 | 0.0322      | 0.0293 | 0.0027 | 0.0091 | 0.0022 | 130      | 0.0003 | 0.0002     | 0.0001     | 0.0002     | 0.0000   | 0.0002 | 0.0000 |
| 60       | 0.0400  | 0.0431 | 0.0670      | 0.0593 | 0.0169 | 0.0175 | 0.0056 | 132      | 0.0005 | 0.0001     | 0.0001     | 0.0000     | 0.0000   | 0.0000 | 0.0000 |
| 62       | 0.0329  | 0.0719 | 0.0751      | 0.0638 | 0.0285 | 0.0275 | 0.0121 | 134      | 0.0006 | 0.0000     | 0.0001     | 0.0000     | 0.0001   | 0.0001 | 0.0000 |
| 64       | 0.0428  | 0.0783 | 0.1001      | 0.0932 | 0.0614 | 0.0545 | 0.0155 | 136      | 0.0001 | 0.0001     | 0.0002     | 0.0000     | 0.0000   | 0.0001 | 0.0000 |
| 66       | 0.0532  | 0.0807 | 0.0979      | 0.1150 | 0.0705 | 0.0606 | 0.0185 | 138      | 0.0000 | 0.0001     | 0.0000     | 0.0000     | 0.0000   | 0.0001 | 0.0000 |
| 68       | 0.0757  | 0.0845 | 0.0870      | 0.0000 | 0.0599 | 0.0835 | 0.0256 | 140      | 0.0000 | 0.0000     | 0.0000     | 0.0000     | 0.0001   | 0.0001 | 0.0000 |
| 70       | 0.0672  | 0.0851 | 0.0986      | 0.1022 | 0.0871 | 0.0971 | 0.0154 | 142      | 0.0000 | 0.0000     | 0.0000     | 0.0000     | 0.0001   | 0.0001 | 0.0000 |
| 72       | 0.0774  | 0.0882 | 0.0478      | 0.1029 | 0.0973 | 0.0972 | 0.0314 | 144      | 0.0000 | 0.0000     | 0.0000     | 0.0000     | 0.0000   | 0.0000 | 0.0000 |
| 74       | 0.0998  | 0.0746 | 0.0588      | 0.0840 | 0.1023 | 0.0941 | 0.0383 | 146      | 0.0001 | 0.0000     | 0.0000     | 0.0000     | 0.0000   | 0.0001 | 0.0000 |
| 76       | 0.0890  | 0.0538 | 0.0461      | 0.0710 | 0.0743 | 0.0697 | 0.0284 | 148      | 0.0000 | 0.0000     | 0.0000     | 0.0000     | 0.0000   | 0.0000 | 0.0000 |
| 78       | 0.0658  | 0.0506 | 0.0423      | 0.0539 | 0.0688 | 0.0744 | 0.0349 | 150      | 0.0001 | 0.0000     | 0.0001     | 0.0000     | 0.0000   | 0.0000 | 0.0000 |
| 80       | 0.0586  | 0.0427 | 0.0372      | 0.0460 | 0.0599 | 0.0527 | 0.0298 | 152      | 0.0002 | 0.0000     | 0.0000     | 0.0000     | 0.0000   | 0.0000 | 0.0000 |
| 82       | 0.0486  | 0.0320 | 0.0258      | 0.0325 | 0.0443 | 0.0434 | 0.0239 | 154      | 0.0001 | 0.0000     | 0.0000     | 0.0000     | 0.0000   | 0.0000 | 0.0000 |
| 84       | 0.0337  | 0.0255 | 0.0186      | 0.0316 | 0.0428 | 0.0335 | 0.0227 | 156      | 0.0000 | 0.0000     | 0.0000     | 0.0000     | 0.0000   | 0.0000 | 0.0000 |
| 86       | 0.0221  | 0.0166 | 0.0130      | 0.0000 | 0.0300 | 0.0290 | 0.0141 | 158      | 0.0000 | 0.0000     | 0.0000     | 0.0000     | 0.0000   | 0.0000 | 0.0000 |
| 88       | 0.0235  | 0.0115 | 0.0120      | 0.0154 | 0.0263 | 0.0290 | 0.0122 | 160      | 0.0000 | 0.0000     | 0.0000     | 0.0000     | 0.0000   | 0.0000 | 0.0000 |
| 90       | 0.0193  | 0.0127 | 0.0115      | 0.0168 | 0.0225 | 0.0263 | 0.0100 | 162      | 0.0000 | 0.0000     | 0.0000     | 0.0000     | 0.0000   | 0.0000 | 0.0000 |
| 92       | 0.0157  | 0.0092 | 0.0101      | 0.0122 | 0.0179 | 0.0204 | 0.0094 | 164      | 0.0000 | 0.0000     | 0.0000     | 0.0000     | 0.0000   | 0.0000 | 0.0000 |

Table 47: Percentage of weighted length measurements in each condition category for the limited entry bottom trawl fishery, 2002-10. Length bins are inclusive of the bin value (lower) and exclude the upper value, e.g., 10 = lengths 10.0 to 11.99 cm.

| Length     |                | 2004           |                |                | 2005           |                | 140, 0.5       | 2006           | - 10115        | Length     |                | 2007          |                |                | 2008           |                 |                | 2009           |                |
|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------------|----------------|---------------|----------------|----------------|----------------|-----------------|----------------|----------------|----------------|
| bin (cm)   | Exc            | Poor           | Dead           | Exc            | Poor           | Dead           | Exc            | Poor           | Dead           | bin (cm)   | Exc            | Poor          | Dead           | Exc            | Poor           | Dead            | Exc            | Poor           | Dead           |
| 22         | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 22         | 0.0%           | 0.0%          | 0.0%           | 0.0%           | 0.0%           | 0.0%            | 0.0%           | 0.0%           | 0.0%           |
| 24         | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 24         | 0.0%           | 0.0%          | 0.0%           | 0.0%           | 0.0%           | 0.0%            | 0.0%           | 0.0%           | 0.0%           |
| 26         | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 100.0%         | 0.0%           | 0.0%           | 0.0%           | 26         | 0.0%           | 0.0%          | 0.0%           | 0.0%           | 0.0%           | 0.0%            | 0.0%           | 0.0%           | 0.0%           |
| 28         | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 28         | 0.0%           | 0.0%          | 0.0%           | 0.0%           | 0.0%           | 0.0%            | 0.0%           | 0.0%           | 0.0%           |
| 30         | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 30         | 0.0%           | 0.0%          | 0.0%           | 0.0%           | 0.0%           | 0.0%            | 0.0%           | 0.0%           | 0.0%           |
| 32<br>34   | 0.0%<br>0.0%   | 0.0%           | 0.0%           | 0.0%<br>0.0%   | 0.0%           | 0.0%           | 0.0%<br>0.0%   | 0.0%           | 0.0%           | 32<br>34   | 0.0%           | 0.0%          | 0.0%           | 0.0%<br>0.0%   | 0.0%           | 0.0%<br>100.0%  | 0.0%<br>0.0%   | 0.0%           | 0.0%           |
| 36         | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 36         | 0.0%           | 0.0%          | 0.0%           | 0.0%           | 0.0%           | 0.0%            | 0.0%           | 0.0%           | 0.0%           |
| 38         | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 38         | 0.0%           | 0.0%          | 0.0%           | 0.0%           | 0.0%           | 0.0%            | 0.0%           | 0.0%           | 0.0%           |
| 40         | 0.0%           | 0.0%           | 100.0%         | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 40         | 0.0%           | 0.0%          | 0.0%           | 0.0%           | 0.0%           | 0.0%            | 0.0%           | 0.0%           | 0.0%           |
| 42         | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 88.4%          | 11.6%          | 0.0%           | 0.0%           | 0.0%           | 42         | 0.0%           | 0.0%          | 0.0%           | 0.0%           | 0.0%           | 0.0%            | 0.0%           | 0.0%           | 0.0%           |
| 44         | 0.0%           | 0.0%           | 100.0%         | 0.0%           | 70.8%          | 29.2%          | 0.0%           | 0.0%           | 100.0%         | 44         | 0.0%           | 0.0%          | 0.0%           | 0.0%           | 0.0%           | 0.0%            | 0.0%           | 0.0%           | 100.0%         |
| 46         | 0.0%           | 0.0%           | 100.0%         | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 100.0%         | 46         | 0.0%           | 0.0%          | 0.0%           | 0.0%           | 0.0%           | 0.0%            | 100.0%         | 0.0%           | 0.0%           |
| 48         | 0.0%           | 0.0%           | 0.0%           | 22.4%          | 0.0%           | 77.6%          | 0.0%           | 0.0%           | 100.0%         | 48         | 0.0%           | 0.0%          | 0.0%           | 0.0%           | 0.0%           | 0.0%            | 0.0%           | 0.0%           | 0.0%           |
| 50         | 0.0%           | 0.0%           | 100.0%         | 61.1%          | 9.9%           | 29.0%          | 0.0%           | 0.0%           | 100.0%         | 50         | 0.0%           | 0.0%          | 0.0%           | 0.0%           | 100.0%         | 0.0%            | 100.0%         | 0.0%           | 0.0%           |
| 52         | 100.0%         | 0.0%           | 0.0%           | 23.6%          | 31.3%          | 45.2%          | 0.0%           | 0.0%           | 100.0%         | 52         | 33.4%          | 0.0%          | 66.6%          | 100.0%         | 0.0%           | 0.0%            | 99.5%          | 0.5%           | 0.0%           |
| 54<br>56   | 75.5%<br>12.6% | 11.9%<br>37.9% | 12.6%<br>49.5% | 10.0%<br>25.1% | 20.8%<br>12.7% | 69.2%<br>62.2% | 16.9%<br>22.0% | 0.0%<br>15.2%  | 83.1%<br>62.8% | 54<br>56   | 35.6%<br>33.9% | 0.0%          | 64.4%<br>66.1% | 0.0%<br>0.0%   | 4.4%<br>0.0%   | 95.6%<br>100.0% | 42.3%<br>15.7% | 57.7%<br>65.3% | 0.0%<br>19.0%  |
| 58         | 21.4%          | 25.6%          | 53.0%          | 15.1%          | 29.5%          | 55.4%          | 4.1%           | 20.2%          | 75.7%          | 58         | 9.4%           | 6.8%          | 83.8%          | 3.3%           | 3.3%           | 93.3%           | 51.0%          | 4.4%           | 44.6%          |
| 60         | 58.6%          | 14.4%          | 27.0%          | 18.2%          | 21.0%          | 60.8%          | 12.9%          | 25.5%          | 61.6%          | 60         | 5.3%           | 7.4%          | 87.2%          | 9.0%           | 14.3%          | 76.8%           | 28.7%          | 21.9%          | 49.4%          |
| 62         | 40.0%          | 21.6%          | 38.4%          | 18.5%          | 23.7%          | 57.8%          | 27.3%          | 22.3%          | 50.4%          | 62         | 20.8%          | 9.5%          | 69.7%          | 6.1%           | 15.7%          | 78.2%           | 19.3%          | 19.5%          | 61.2%          |
| 64         | 33.4%          | 18.4%          | 48.2%          | 25.2%          | 28.4%          | 46.4%          | 31.5%          | 21.0%          | 47.5%          | 64         | 18.9%          | 5.3%          | 75.8%          | 17.3%          | 7.5%           | 75.2%           | 38.0%          | 9.4%           | 52.6%          |
| 66         | 23.9%          | 24.7%          | 51.4%          | 20.9%          | 26.7%          | 52.3%          | 29.6%          | 17.3%          | 53.0%          | 66         | 9.1%           | 12.5%         | 78.4%          | 25.8%          | 8.9%           | 65.4%           | 26.7%          | 19.7%          | 53.6%          |
| 68         | 38.2%          | 21.9%          | 39.9%          | 17.0%          | 27.5%          | 55.5%          | 35.5%          | 18.8%          | 45.7%          | 68         | 54.5%          | 45.5%         | 0.0%           | 17.4%          | 13.2%          | 69.4%           | 30.1%          | 17.5%          | 52.4%          |
| 70         | 29.5%          | 18.9%          | 51.6%          | 20.1%          | 30.3%          | 49.5%          | 30.2%          | 16.6%          | 53.2%          | 70         | 16.0%          | 7.6%          | 76.4%          | 13.1%          | 14.0%          | 73.0%           | 27.4%          | 17.5%          | 55.1%          |
| 72         | 22.9%          | 17.9%          | 59.2%          | 20.3%          | 27.1%          | 52.6%          | 37.2%          | 21.1%          | 41.8%          | 72         | 14.8%          | 9.1%          | 76.0%          | 19.1%          | 13.7%          | 67.2%           | 22.9%          | 18.3%          | 58.8%          |
| 74         | 23.8%          | 25.5%          | 50.7%          | 24.5%<br>26.8% | 23.4%          | 52.1%          | 39.6%          | 13.9%          | 46.5%          | 74         | 17.6%          | 16.9%         | 65.5%          | 24.8%          | 13.8%          | 61.3%           | 27.7%          | 14.8%          | 57.5%          |
| 76<br>78   | 24.0%<br>18.8% | 23.2%<br>18.4% | 52.8%<br>62.9% | 18.1%          | 29.1%<br>23.5% | 44.1%<br>58.4% | 31.2%<br>35.0% | 19.2%<br>21.2% | 49.6%<br>43.8% | 76<br>78   | 14.0%<br>15.5% | 9.9%<br>13.4% | 76.1%<br>71.2% | 21.9%<br>24.7% | 11.5%<br>10.4% | 66.6%<br>64.9%  | 26.2%<br>18.5% | 16.6%<br>12.1% | 57.2%<br>69.4% |
| 80         | 19.1%          | 19.6%          | 61.3%          | 23.1%          | 27.9%          | 49.0%          | 34.3%          | 15.4%          | 43.6%<br>50.2% | 80         | 14.7%          | 11.6%         | 73.6%          | 24.7%          | 11.4%          | 67.4%           | 20.5%          | 14.1%          | 65.3%          |
| 82         | 14.4%          | 26.1%          | 59.5%          | 30.4%          | 25.1%          | 44.6%          | 31.7%          | 27.8%          | 40.5%          | 82         | 14.6%          | 3.0%          | 82.4%          | 21.5%          | 16.1%          | 62.4%           | 16.3%          | 18.5%          | 65.2%          |
| 84         | 21.7%          | 9.5%           | 68.9%          | 27.0%          | 18.9%          | 54.0%          | 30.1%          | 13.2%          | 56.7%          | 84         | 17.9%          | 7.0%          | 75.1%          | 15.9%          | 22.8%          | 61.3%           | 17.0%          | 12.0%          | 71.0%          |
| 86         | 32.4%          | 24.0%          | 43.6%          | 35.5%          | 24.7%          | 39.8%          | 31.3%          | 15.0%          | 53.7%          | 86         | 56.6%          | 43.4%         | 0.0%           | 17.6%          | 22.5%          | 59.8%           | 18.6%          | 15.5%          | 65.9%          |
| 88         | 27.8%          | 14.8%          | 57.5%          | 31.2%          | 27.8%          | 41.0%          | 22.9%          | 12.4%          | 64.7%          | 88         | 12.3%          | 10.5%         | 77.1%          | 18.1%          | 18.8%          | 63.1%           | 20.1%          | 17.2%          | 62.8%          |
| 90         | 30.2%          | 34.6%          | 35.2%          | 28.0%          | 16.6%          | 55.4%          | 23.8%          | 18.7%          | 57.5%          | 90         | 6.3%           | 3.7%          | 90.0%          | 23.9%          | 17.1%          | 59.0%           | 18.6%          | 13.6%          | 67.8%          |
| 92         | 40.2%          | 28.1%          | 31.7%          | 42.5%          | 21.7%          | 35.9%          | 43.7%          | 10.7%          | 45.6%          | 92         | 20.7%          | 8.4%          | 70.9%          | 20.9%          | 25.1%          | 54.0%           | 25.3%          | 11.8%          | 62.9%          |
| 94         | 26.1%          | 33.3%          | 40.6%          | 33.4%          | 16.3%          | 50.3%          | 35.3%          | 7.1%           | 57.6%          | 94         | 17.0%          | 18.4%         | 64.6%          | 18.8%          | 13.3%          | 67.9%           | 15.2%          | 18.4%          | 66.4%          |
| 96         | 19.9%          | 30.0%          | 50.1%          | 34.6%          | 19.2%          | 46.2%          | 16.5%          | 13.9%          | 69.6%          | 96         | 16.7%          | 3.6%          | 79.7%          | 15.4%          | 21.3%          | 63.4%           | 27.6%          | 19.6%          | 52.8%          |
| 98         | 33.8%          | 28.4%          | 37.8%          | 32.3%          | 22.8%          | 44.9%          | 16.8%          | 13.0%          | 70.2%          | 98         | 10.4%          | 8.2%          | 81.4%          | 28.4%          | 29.4%          | 42.3%           | 20.2%          | 16.9%          | 62.9%          |
| 100<br>102 | 14.6%<br>16.0% | 26.9%<br>49.3% | 58.5%<br>34.7% | 28.1%<br>43.1% | 17.4%<br>6.9%  | 54.5%<br>50.0% | 48.5%<br>13.7% | 9.6%<br>0.0%   | 41.9%<br>86.3% | 100<br>102 | 15.4%<br>40.3% | 23.2%<br>9.2% | 61.4%<br>50.6% | 15.0%<br>27.6% | 19.4%<br>28.4% | 65.6%<br>44.1%  | 13.4%<br>24.8% | 25.5%<br>23.8% | 61.1%<br>51.4% |
| 102        | 19.0%          | 47.5%          | 33.5%          | 36.4%          | 16.2%          | 47.4%          | 49.6%          | 6.4%           | 44.0%          | 102        | 16.7%          | 15.8%         | 67.5%          | 36.6%          | 11.7%          | 51.7%           | 28.0%          | 8.4%           | 63.7%          |
| 106        | 23.6%          | 22.6%          | 53.9%          | 58.4%          | 11.9%          | 29.7%          | 10.4%          | 22.8%          | 66.8%          | 106        | 30.7%          | 20.1%         | 49.2%          | 34.8%          | 7.7%           | 57.6%           | 24.0%          | 13.5%          | 62.5%          |
| 108        | 27.6%          | 3.0%           | 69.4%          | 28.6%          | 22.6%          | 48.8%          | 42.2%          | 15.1%          | 42.6%          | 108        | 29.0%          | 2.3%          | 68.7%          | 19.4%          | 14.2%          | 66.4%           | 18.2%          | 27.7%          | 54.1%          |
| 110        | 25.4%          | 12.6%          | 62.0%          | 22.7%          | 28.1%          | 49.2%          | 32.0%          | 3.1%           | 64.9%          | 110        | 11.7%          | 45.1%         | 43.2%          | 40.2%          | 8.0%           | 51.9%           | 29.6%          | 10.4%          | 60.0%          |
| 112        | 95.8%          | 1.2%           | 3.0%           | 16.2%          | 0.0%           | 83.8%          | 7.2%           | 14.1%          | 78.7%          | 112        | 26.9%          | 23.3%         | 49.8%          | 25.1%          | 9.2%           | 65.7%           | 14.7%          | 17.4%          | 67.9%          |
| 114        | 0.0%           | 26.2%          | 73.8%          | 24.4%          | 4.9%           | 70.7%          | 38.9%          | 0.0%           | 61.1%          | 114        | 20.1%          | 0.0%          | 79.9%          | 22.4%          | 22.7%          | 54.9%           | 31.2%          | 7.4%           | 61.5%          |
| 116        | 58.7%          | 6.9%           | 34.4%          | 69.4%          | 0.0%           | 30.6%          | 77.8%          | 0.0%           | 22.2%          | 116        | 0.0%           | 0.0%          | 100.0%         | 41.6%          | 4.8%           | 53.6%           | 79.5%          | 0.5%           | 20.0%          |
| 118        | 2.7%           | 7.5%           | 89.9%          | 44.9%          | 35.0%          | 20.1%          | 33.8%          | 31.5%          | 34.7%          | 118        | 0.0%           | 0.0%          | 100.0%         | 25.5%          | 38.6%          | 35.9%           | 40.9%          | 4.4%           | 54.6%          |
| 120        | 5.7%           | 26.2%          | 68.0%          | 9.5%           | 28.7%          | 61.8%          | 0.0%           | 0.0%           | 100.0%         | 120        | 85.1%          | 0.0%          | 14.9%          | 65.5%          | 34.5%          | 0.0%            | 48.0%          | 0.7%           | 51.2%          |
| 122<br>124 | 40.8%<br>70.3% | 40.3%<br>14.8% | 18.9%<br>14.8% | 1.5%<br>79.9%  | 15.2%<br>0.0%  | 83.4%<br>20.1% | 50.0%<br>15.6% | 50.0%<br>0.0%  | 0.0%<br>84.4%  | 122<br>124 | 0.0%           | 0.0%          | 100.0%<br>0.0% | 0.0%<br>0.0%   | 0.0%<br>70.9%  | 100.0%<br>29.1% | 34.7%<br>26.1% | 0.0%<br>37.0%  | 65.3%<br>37.0% |
| 124        | 0.0%           | 100.0%         | 0.0%           | 79.9%<br>89.0% | 11.0%          | 0.0%           | 47.1%          | 0.0%           | 52.9%          | 124        | 49.4%          | 0.0%          | 50.6%          | 0.0%           | 0.0%           | 100.0%          | 59.2%          | 40.8%          | 0.0%           |
| 128        | 82.0%          | 9.0%           | 9.0%           | 18.7%          | 0.0%           | 81.3%          | 89.8%          | 0.0%           | 10.2%          | 128        | 0.0%           | 0.0%          | 0.0%           | 0.0%           | 0.0%           | 0.0%            | 55.7%          | 1.0%           | 43.3%          |
| 130        | 13.5%          | 0.0%           | 86.5%          | 4.9%           | 47.6%          | 47.6%          | 0.0%           | 0.0%           | 100.0%         | 130        | 13.8%          | 0.0%          | 86.2%          | 0.0%           | 0.0%           | 0.0%            | 35.0%          | 65.0%          | 0.0%           |
| 132        | 100.0%         | 0.0%           | 0.0%           | 20.2%          | 63.3%          | 16.5%          | 0.0%           | 100.0%         | 0.0%           | 132        | 0.0%           | 0.0%          | 0.0%           | 0.0%           | 100.0%         | 0.0%            | 0.0%           | 0.0%           | 100.0%         |
| 134        | 80.0%          | 0.0%           | 20.0%          | 100.0%         | 0.0%           | 0.0%           | 22.2%          | 0.0%           | 77.8%          | 134        | 0.0%           | 0.0%          | 0.0%           | 94.7%          | 0.0%           | 5.3%            | 100.0%         | 0.0%           | 0.0%           |
| 136        | 0.0%           | 0.0%           | 100.0%         | 10.5%          | 16.1%          | 73.4%          | 0.0%           | 0.0%           | 100.0%         | 136        | 0.0%           | 0.0%          | 0.0%           | 0.0%           | 0.0%           | 100.0%          | 100.0%         | 0.0%           | 0.0%           |
| 138        | 0.0%           | 0.0%           | 0.0%           | 15.2%          | 0.0%           | 84.8%          | 0.0%           | 0.0%           | 0.0%           | 138        | 100.0%         | 0.0%          | 0.0%           | 0.0%           | 0.0%           | 0.0%            | 100.0%         | 0.0%           | 0.0%           |
| 140        | 100.0%         | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 100.0%         | 100.0%         | 0.0%           | 0.0%           | 140        | 0.0%           | 0.0%          | 0.0%           | 100.0%         | 0.0%           | 0.0%            | 100.0%         | 0.0%           | 0.0%           |
| 142        | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 142        | 0.0%           | 0.0%          | 0.0%           | 100.0%         | 0.0%           | 0.0%            | 100.0%         | 0.0%           | 0.0%           |
| 144        | 0.0%           | 100.0%         | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 144        | 0.0%           | 0.0%          | 100.0%         | 0.0%           | 0.0%           | 0.0%            | 0.0%           | 0.0%           | 0.0%           |
| 146        | 100.0%         | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 100.0%         | 0.0%           | 0.0%           | 0.0%           | 146        | 0.0%           | 0.0%          | 0.0%           | 0.0%           | 0.0%           | 0.0%            | 100.0%         | 0.0%           | 0.0%           |
| 148        | 0.0%           | 100.0%         | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%<br>0.0%   | 0.0%           | 0.0%           | 148<br>150 | 0.0%           | 0.0%          | 100.0%         | 100.0%         | 0.0%           | 0.0%            | 0.0%           | 0.0%           | 0.0%           |
| 150<br>152 | 0.0%<br>100.0% | 100.0%<br>0.0% | 0.0%           | 100.0%         | 0.0%<br>100.0% | 0.0%           | 0.0%           | 0.0%           | 100.0%<br>0.0% | 150<br>152 | 0.0%           | 0.0%          | 0.0%           | 0.0%<br>0.0%   | 0.0%           | 0.0%<br>0.0%    | 100.0%<br>0.0% | 0.0%           | 0.0%           |
| 154        | 0.0%           | 0.0%           | 100.0%         | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 154        | 0.0%           | 0.0%          | 0.0%           | 0.0%           | 0.0%           | 0.0%            | 100.0%         | 0.0%           | 0.0%           |
| 156        | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 156        | 0.0%           | 0.0%          | 0.0%           | 0.0%           | 0.0%           | 0.0%            | 0.0%           | 0.0%           | 0.0%           |
| 158        | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 158        | 0.0%           | 0.0%          | 0.0%           | 0.0%           | 0.0%           | 0.0%            | 100.0%         | 0.0%           | 0.0%           |
| 160        | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 160        | 0.0%           | 0.0%          | 0.0%           | 0.0%           | 0.0%           | 0.0%            | 0.0%           | 0.0%           | 0.0%           |
| 162        | 100.0%         | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 162        | 0.0%           | 0.0%          | 0.0%           | 0.0%           | 0.0%           | 0.0%            | 0.0%           | 0.0%           | 0.0%           |
| 164        | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 0.0%           | 164        | 0.0%           | 0.0%          | 0.0%           | 0.0%           | 0.0%           | 0.0%            | 0.0%           | 0.0%           | 0.0%           |

Table 48: Continuation of Table 47. Length bins are inclusive of the bin value (lower) and exclude the upper value, e.g., 10 = lengths 10.0 to 11.99 cm.

| Length   |      | 2010   |      | Length |        | 2010  |       | Length |        | 2010   |        |
|----------|------|--------|------|--------|--------|-------|-------|--------|--------|--------|--------|
| bin (cm) | Exc  | Poor   | Dead | bin    | Exc    | Poor  | Dead  | bin    | Exc    | Poor   | Dead   |
| 10       | 0.0% | 100.0% | 0.0% | 58     | 100.0% | 0.0%  | 0.0%  | 106    | 2.4%   | 0.0%   | 97.6%  |
| 12       | 0.0% | 0.0%   | 0.0% | 60     | 33.4%  | 0.0%  | 66.6% | 108    | 0.0%   | 20.1%  | 79.9%  |
| 14       | 0.0% | 0.0%   | 0.0% | 62     | 15.7%  | 29.4% | 54.9% | 110    | 14.2%  | 58.8%  | 27.0%  |
| 16       | 0.0% | 0.0%   | 0.0% | 64     | 30.1%  | 21.2% | 48.7% | 112    | 39.9%  | 0.0%   | 60.1%  |
| 18       | 0.0% | 0.0%   | 0.0% | 66     | 17.8%  | 15.4% | 66.8% | 114    | 0.0%   | 0.0%   | 100.0% |
| 20       | 0.0% | 0.0%   | 0.0% | 68     | 15.0%  | 10.3% | 74.8% | 116    | 50.0%  | 0.0%   | 50.0%  |
| 22       | 0.0% | 0.0%   | 0.0% | 70     | 22.2%  | 7.4%  | 70.4% | 118    | 0.0%   | 100.0% | 0.0%   |
| 24       | 0.0% | 0.0%   | 0.0% | 72     | 23.6%  | 17.4% | 59.0% | 120    | 0.0%   | 0.0%   | 100.0% |
| 26       | 0.0% | 0.0%   | 0.0% | 74     | 13.5%  | 24.8% | 61.7% | 122    | 0.0%   | 0.0%   | 100.0% |
| 28       | 0.0% | 0.0%   | 0.0% | 76     | 20.1%  | 16.9% | 63.0% | 124    | 100.0% | 0.0%   | 0.0%   |
| 30       | 0.0% | 0.0%   | 0.0% | 78     | 17.0%  | 17.4% | 65.7% | 126    | 0.0%   | 100.0% | 0.0%   |
| 32       | 0.0% | 0.0%   | 0.0% | 80     | 10.6%  | 22.8% | 66.6% | 128    | 0.0%   | 0.0%   | 0.0%   |
| 34       | 0.0% | 0.0%   | 0.0% | 82     | 18.9%  | 19.9% | 61.2% | 130    | 0.0%   | 0.0%   | 0.0%   |
| 36       | 0.0% | 0.0%   | 0.0% | 84     | 21.9%  | 25.3% | 52.8% | 132    | 0.0%   | 0.0%   | 0.0%   |
| 38       | 0.0% | 0.0%   | 0.0% | 86     | 14.9%  | 16.4% | 68.7% | 134    | 0.0%   | 0.0%   | 0.0%   |
| 40       | 0.0% | 0.0%   | 0.0% | 88     | 24.8%  | 17.8% | 57.4% | 136    | 100.0% | 0.0%   | 0.0%   |
| 42       | 0.0% | 0.0%   | 0.0% | 90     | 25.8%  | 24.2% | 50.1% | 138    | 0.0%   | 0.0%   | 0.0%   |
| 44       | 0.0% | 0.0%   | 0.0% | 92     | 5.0%   | 9.9%  | 85.1% | 140    | 0.0%   | 0.0%   | 0.0%   |
| 46       | 0.0% | 0.0%   | 0.0% | 94     | 26.1%  | 29.2% | 44.7% | 142    | 0.0%   | 0.0%   | 0.0%   |
| 48       | 0.0% | 0.0%   | 0.0% | 96     | 17.4%  | 39.9% | 42.7% | 144    | 0.0%   | 0.0%   | 0.0%   |
| 50       | 0.0% | 0.0%   | 0.0% | 98     | 14.3%  | 23.3% | 62.4% | 146    | 0.0%   | 0.0%   | 0.0%   |
| 52       | 0.0% | 0.0%   | 0.0% | 100    | 2.2%   | 31.0% | 66.8% | 148    | 0.0%   | 0.0%   | 0.0%   |
| 54       | 0.0% | 0.0%   | 0.0% | 102    | 21.7%  | 20.6% | 57.8% | 150    | 0.0%   | 0.0%   | 0.0%   |
| 56       | 0.0% | 0.0%   | 0.0% | 104    | 18.3%  | 37.2% | 44.6% | 152    | 0.0%   | 100.0% | 0.0%   |
|          |      |        |      |        |        |       |       | 154    | 0.0%   | 0.0%   | 0.0%   |

10.1 Appendix A 10 APPENDICES

Table 49: Number of dead P. halibut in each length bin, summed across viability categories, for IFQ bottom trawl vessels by year. Length bins are inclusive of the bin value (lower) and exclude the upper value, e.g., 10 = lengths 10.0 to 11.99 cm. Since 2013, IFQ bottom trawl lengths could also include lengths taken on both IFQ and LE California halibut bottom trawl fisheries. This analysis assumes that there is no size-dependent mortality within viability categories.

| y_caregor |      |      |      |      | I    | Bottom Tra | wl   |      |      |      |      |
|-----------|------|------|------|------|------|------------|------|------|------|------|------|
| Length    | 2011 | 2012 | 2013 | 2014 | 2015 | Length     | 2011 | 2012 | 2013 | 2014 | 2015 |
| (cm)      |      |      |      |      |      | (cm)       |      |      |      |      |      |
| 14        | 0    | 0    | 0    | 0    | 0    | 104        | 4    | 177  | 2    | 153  | 94   |
| 16        | 0    | 0    | 0    | 0    | 0    | 106        | 129  | 26   | 118  | 137  | 5    |
| 18        | 1    | 0    | 0    | 0    | 0    | 108        | 167  | 1    | 26   | 1    | 114  |
| 20        | 0    | 0    | 0    | 0    | 0    | 110        | 107  | 134  | 5    | 2    | 2    |
| 22        | 0    | 1    | 0    | 0    | 0    | 112        | 24   | 90   | 22   | 44   | 85   |
| 24        | 0    | 0    | 0    | 0    | 0    | 114        | 1    | 2    | 21   | 4    | 35   |
| 26        | 0    | 0    | 0    | 0    | 0    | 116        | 17   | 64   | 4    | 22   | 69   |
| 28        | 0    | 0    | 0    | 0    | 0    | 118        | 33   | 72   | 15   | 54   | 2    |
| 30        | 0    | 1    | 1    | 0    | 0    | 120        | 92   | 4    | 74   | 80   | 36   |
| 32        | 0    | 2    | 1    | 1    | 0    | 122        | 68   | 1    | 85   | 4    | 1    |
| 34        | 0    | 1    | 0    | 0    | 0    | 124        | 77   | 1    | 32   | 63   | 70   |
| 36        | 0    | 1    | 0    | 0    | 1    | 126        | 1    | 23   | 63   | 34   | 74   |
| 38        | 0    | 3    | 0    | 0    | 2    | 128        | 1    | 66   | 2    | 71   | 1    |
| 40        | 1    | 2    | 2    | 1    | 5    | 130        | 28   | 59   | 17   | 48   | 47   |
| 42        | 1    | 5    | 0    | 0    | 4    | 132        | 41   | 32   | 39   | 1    | 71   |
| 44        | 0    | 1    | 0    | 0    | 3    | 134        | 1    | 51   | 2    | 55   | 44   |
| 46        | 5    | 1    | 3    | 1    | 1    | 136        | 52   | 1    | 31   | 39   | 1    |
| 48        | 1    | 3    | 3    | 4    | 3    | 138        | 2    | 44   | 58   | 0    | 37   |
| 50        | 1    | 4    | 6    | 0    | 7    | 140        | 3    | 0    | 0    | 0    | 44   |
| 52        | 5    | 1    | 7    | 7    | 9    | 142        | 2    | 8    | 0    | 0    | 19   |
| 54        | 8    | 3    | 1    | 12   | 11   | 144        | 13   | 0    | 0    | 24   | 0    |
| 56        | 1    | 4    | 9    | 5    | 1    | 146        | 3    | 14   | 0    | 17   | 28   |
| 58        | 5    | 1    | 13   | 13   | 10   | 148        | 25   | 0    | 0    | 0    | 1    |
| 60        | 12   | 2    | 44   | 37   | 12   | 150        | 0    | 1    | 0    | 0    | 44   |
| 62        | 26   | 1    | 23   | 4    | 70   | 152        | 0    | 3    | 0    | 0    | 0    |
| 64        | 77   | 1    | 75   | 1    | 57   | 154        | 0    | 0    | 0    | 0    | 31   |
| 66        | 1    | 44   | 6    | 103  | 116  | 156        | 0    | 0    | 0    | 0    | 0    |
| 68        | 109  | 1    | 83   | 173  | 1    | 158        | 0    | 0    | 0    | 0    | 0    |
| 70        | 129  | 2    | 175  | 175  | 236  | 160        | 0    | 0    | 0    | 0    | 1    |
| 72        | 1    | 31   | 177  | 239  | 9    | 162        | 0    | 0    | 0    | 0    | 46   |
| 74        | 1    | 270  | 2    | 90   | 47   | 164        | 0    | 0    | 0    | 0    | 31   |
| 76        | 6    | 102  | 239  | 271  | 262  | 166        | 0    | 0    | 0    | 0    | 0    |
| 78        | 310  | 3    | 262  | 211  | 4    | 168        | 0    | 0    | 0    | 0    | 19   |
| 80        | 53   | 1    | 1    | 294  | 334  | 170        | 0    | 0    | 0    | 0    | 24   |
| 82        | 3    | 325  | 4    | 1    | 3    | 172        | 0    | 0    | 0    | 0    | 26   |
| 84        | 100  | 306  | 55   | 94   | 10   | 174        | 0    | 0    | 0    | 0    | 20   |
| 86        | 2    | 286  | 88   | 46   | 1    | 176        | 0    | 0    | 0    | 0    | 0    |
| 88        | 38   | 195  | 89   | 174  | 7    | 178        | 0    | 0    | 0    | 0    | 1    |
| 90        | 14   | 264  | 7    | 161  | 212  | 180        | 0    | 0    | 0    | 0    | 34   |
| 92        | 70   | 187  | 45   | 264  | 10   | 182        | 0    | 0    | 0    | 0    | 41   |
| 94        | 10   | 237  | 2    | 164  | 173  | 184        | 0    | 0    | 0    | 0    | 1    |
| 96        | 177  | 41   | 5    | 4    | 121  | 186        | 0    | 0    | 0    | 0    | 29   |
| 98        | 33   | 123  | 4    | 5    | 71   | 188        | 0    | 0    | 0    | 0    | 0    |
| 100       | 199  | 40   | 168  | 187  | 4    | 190        | 0    | 0    | 0    | 0    | 0    |
| 102       | 121  | 1    | 136  | 5    | 155  | 192        | 0    | 0    | 0    | 0    | 1    |
| 104       | 4    | 177  | 2    | 153  | 94   | 194        | 0    | 0    | 0    | 0    | 0    |
|           |      |      |      |      |      | 196        | 0    | 0    | 0    | 0    | 0    |

10.1 Appendix A 10 APPENDICES

Table 50: Number of dead P. halibut in each length bin, summed across viability categories, for IFQ pot vessels by year. Length bins are inclusive of the bin value (lower) and exclude the upper value, e.g., 10 = lengths 10.0 to 11.99 cm. This analysis assumes that there is no size-dependent mortality within viability categories.

|        | 1    | 0.000 0.000 |      |      |      | Pot    |      | )    | viasiii, | , earege |      |
|--------|------|-------------|------|------|------|--------|------|------|----------|----------|------|
| Length | 2011 | 2012        | 2013 | 2014 | 2015 | Length | 2011 | 2012 | 2013     | 2014     | 2015 |
| (cm)   |      |             |      |      |      | (cm)   |      |      |          |          |      |
| 40     | 0    | 0           | 0    | 0    | 0    | 118    | 6    | 83   | 220      | 0        | 0    |
| 42     | 0    | 0           | 0    | 0    | 0    | 120    | 83   | 0    | 0        | 0        | 0    |
| 44     | 0    | 0           | 0    | 0    | 0    | 122    | 220  | 0    | 0        | 0        | 0    |
| 46     | 0    | 0           | 0    | 0    | 0    | 124    | 0    | 0    | 0        | 0        | 0    |
| 48     | 0    | 0           | 0    | 0    | 0    | 126    | 0    | 0    | 0        | 0        | 0    |
| 50     | 0    | 0           | 0    | 0    | 0    | 128    | 1    | 0    | 0        | 0        | 0    |
| 52     | 0    | 0           | 0    | 0    | 0    | 130    | 259  | 0    | 0        | 0        | 5    |
| 54     | 1    | 0           | 1    | 0    | 1    | 132    | 0    | 0    | 0        | 0        | 0    |
| 56     | 0    | 0           | 0    | 0    | 0    | 134    | 263  | 0    | 0        | 0        | 0    |
| 58     | 0    | 0           | 0    | 0    | 0    | 136    | 1    | 0    | 0        | 0        | 0    |
| 60     | 0    | 0           | 2    | 1    | 1    | 138    | 308  | 0    | 0        | 0        | 0    |
| 62     | 1    | 0           | 0    | 0    | 1    | 140    | 0    | 0    | 0        | 0        | 0    |
| 64     | 1    | 5           | 0    | 0    | 1    | 142    | 0    | 0    | 0        | 0        | 0    |
| 66     | 4    | 3           | 0    | 0    | 2    | 144    | 0    | 0    | 0        | 0        | 0    |
| 68     | 4    | 1           | 2    | 0    | 0    | 146    | 0    | 0    | 0        | 0        | 0    |
| 70     | 1    | 1           | 2    | 0    | 3    | 148    | 0    | 0    | 0        | 0        | 0    |
| 72     | 2    | 3           | 0    | 3    | 5    | 150    | 0    | 0    | 0        | 0        | 0    |
| 74     | 6    | 5           | 0    | 6    | 8    | 152    | 0    | 0    | 0        | 0        | 0    |
| 76     | 8    | 8           | 3    | 0    | 1    | 154    | 0    | 0    | 0        | 0        | 0    |
| 78     | 14   | 11          | 0    | 3    | 8    | 156    | 0    | 0    | 0        | 0        | 0    |
| 80     | 4    | 0           | 5    | 0    | 15   | 158    | 0    | 0    | 0        | 0        | 0    |
| 82     | 14   | 11          | 9    | 11   | 1    | 160    | 0    | 0    | 0        | 0        | 0    |
| 84     | 49   | 38          | 38   | 13   | 28   | 162    | 0    | 0    | 0        | 0        | 0    |
| 86     | 0    | 23          | 3    | 72   | 78   | 164    | 0    | 0    | 0        | 0        | 0    |
| 88     | 0    | 71          | 61   | 0    | 57   | 166    | 1    | 0    | 0        | 0        | 0    |
| 90     | 0    | 38          | 5    | 0    | 104  | 168    | 0    | 0    | 0        | 0        | 0    |
| 92     | 117  | 135         | 107  | 0    | 76   | 170    | 0    | 0    | 0        | 0        | 0    |
| 94     | 3    | 143         | 0    | 178  | 126  | 172    | 0    | 0    | 0        | 0        | 0    |
| 96     | 172  | 155         | 0    | 119  | 1    | 174    | 0    | 0    | 0        | 0        | 0    |
| 98     | 176  | 0           | 0    | 191  | 0    | 176    | 0    | 0    | 0        | 0        | 0    |
| 100    | 200  | 172         | 0    | 69   | 174  | 178    | 0    | 0    | 0        | 0        | 0    |
| 102    | 1    | 162         | 0    | 240  | 1    | 180    | 0    | 0    | 0        | 0        | 0    |
| 104    | 51   | 197         | 51   | 0    | 197  | 182    | 0    | 0    | 0        | 0        | 0    |
| 106    | 0    | 227         | 140  | 0    | 227  | 184    | 0    | 0    | 0        | 0        | 0    |
| 108    | 140  | 2           | 0    | 0    | 227  | 186    | 0    | 0    | 0        | 0        | 0    |
| 110    | 7    | 236         | 0    | 266  | 2    | 188    | 0    | 0    | 0        | 0        | 0    |
| 112    | 269  | 84          | 0    | 0    | 0    | 190    | 0    | 0    | 0        | 0        | 0    |
| 114    | 269  | 84          | 0    | 191  | 0    | 192    | 0    | 0    | 0        | 0        | 0    |
| 116    | 6    | 0           | 0    | 191  | 0    | 194    | 0    | 0    | 0        | 0        | 0    |
| 118    | 6    | 83          | 220  | 0    | 0    | 196    | 0    | 0    | 0        | 0        | 0    |
|        |      |             |      |      |      | 198    | 0    | 0    | 0        | 0        | 0    |

Table 51: Number of dead P. halibut in each length bin for Shoreside Hake vessels 2011-14. Length bins are inclusive of the bin value (lower) and exclude the upper value, e.g., 10 = lengths 10.0 to 11.99 cm. This analysis assumes 100% mortality of all individuals because viability has not been determined for P. halibut caught with midwater trawl nets. Starting in 2015, Shoreside Hake trips were sorted into Midwater Hake or Midwater Rockfish depending on landing amount of P. hake.

|             |      |      |      |      | Shoreside Ha | ke   |      |      |      |
|-------------|------|------|------|------|--------------|------|------|------|------|
| Length (cm) | 2011 | 2012 | 2013 | 2014 | Length (cm)  | 2011 | 2012 | 2013 | 2014 |
| 68          | 0    | 0    | 0    | 0    | 99           | 0    | 0    | 0    | 0    |
| 69          | 0    | 0    | 0    | 0    | 100          | 0    | 0    | 0    | 4    |
| 70          | 0    | 0    | 0    | 0    | 101          | 0    | 0    | 0    | 0    |
| 71          | 0    | 0    | 0    | 0    | 102          | 0    | 0    | 0    | 0    |
| 72          | 0    | 0    | 1    | 0    | 103          | 0    | 0    | 0    | 0    |
| 73          | 0    | 0    | 0    | 0    | 104          | 0    | 0    | 2    | 2    |
| 74          | 0    | 0    | 0    | 1    | 105          | 0    | 0    | 0    | 0    |
| 75          | 0    | 0    | 0    | 0    | 106          | 0    | 0    | 0    | 8    |
| 76          | 0    | 0    | 0    | 0    | 107          | 0    | 0    | 0    | 0    |
| 77          | 0    | 0    | 0    | 0    | 108          | 0    | 0    | 0    | 0    |
| 78          | 0    | 0    | 0    | 0    | 109          | 0    | 0    | 0    | 0    |
| 79          | 0    | 0    | 0    | 0    | 110          | 0    | 0    | 0    | 5    |
| 80          | 2    | 0    | 0    | 1    | 111          | 0    | 0    | 0    | 0    |
| 81          | 0    | 0    | 0    | 0    | 112          | 0    | 0    | 0    | 0    |
| 82          | 0    | 0    | 0    | 0    | 113          | 0    | 0    | 0    | 0    |
| 83          | 0    | 0    | 0    | 0    | 114          | 0    | 0    | 0    | 0    |
| 84          | 0    | 0    | 0    | 0    | 115          | 0    | 0    | 0    | 0    |
| 85          | 0    | 0    | 0    | 0    | 116          | 0    | 0    | 0    | 0    |
| 86          | 2    | 0    | 0    | 0    | 117          | 0    | 0    | 0    | 0    |
| 87          | 0    | 0    | 0    | 0    | 118          | 0    | 0    | 0    | 0    |
| 88          | 0    | 0    | 0    | 0    | 119          | 0    | 0    | 0    | 0    |
| 89          | 0    | 0    | 0    | 0    | 120          | 0    | 0    | 0    | 0    |
| 90          | 0    | 0    | 0    | 0    | 121          | 0    | 0    | 0    | 0    |
| 91          | 0    | 0    | 0    | 0    | 122          | 0    | 0    | 0    | 0    |
| 92          | 0    | 0    | 0    | 0    | 123          | 0    | 0    | 0    | 0    |
| 93          | 0    | 0    | 0    | 0    | 124          | 0    | 0    | 0    | 0    |
| 94          | 0    | 0    | 0    | 1    | 125          | 0    | 0    | 0    | 0    |
| 95          | 0    | 0    | 0    | 0    | 126          | 0    | 0    | 0    | 0    |
| 96          | 0    | 0    | 0    | 0    | 127          | 0    | 0    | 0    | 0    |
| 97          | 0    | 0    | 0    | 0    | 128          | 0    | 0    | 0    | 1    |
| 98          | 1    | 0    | 0    | 0    | 129          | 0    | 0    | 0    | 0    |
| 99          | 0    | 0    | 0    | 0    | 130          | 0    | 0    | 0    | 0    |
|             |      |      |      |      | 131          | 0    | 0    | 0    | 0    |

# 10.2 Appendix B: Pacific Halibut IBQ Expansions for In-Season Management, Special Cases

#### 10.2.1 In season reporting to the Vessel Account System

The Vessel Account System (VAS) is a NOAA, West Coast Region database that allows fishers to manage their IFQ quota pounds. On a weekly basis, the WCGOP provides trip-level estimates of discarded P. halibut IBQ to the Pacific States Marine Fisheries Commission (PSMFC). The PSMFC then uploads the data to the VAS. Occasionally, special circumstances required alternative calculations of P. halibut IBQ. Alternative calculations of P. halibut IBQ were identified by observer program staff and incorporated into the VAS. Scenarios triggering an alternative calculation and the equations used for those calculations are given in Table 53 below.

The WCGOP database calculates IBQ weight at the haul-level when the observer collects all the required data elements. The calculation is dependent on the gear fished.

#### 10.2.2 In season IBQ Weight Calculations for Bottom Trawl Gear

The sampled P. halibut lengths are converted to weight using the IPHC length-weight conversion table (Table 9 in Appendix C 10.3). The total weight of P. halibut in the haul is calculated as:

$$W = \frac{w}{n} \times N \tag{8}$$

where, for each haul:

W = total weight of P. halibut w = sampled weight of P. halibutn = sampled number of P. halibut N = total number of P. halibut

IBQ weight for each haul is then calculated as:

$$W_{IBQ} = \sum_{c} \left( \frac{w_c}{\sum_{c} w_c} \times W \times m_c \right) \tag{9}$$

where, for each haul:

c = viability condition category

 $W_{IBQ} = IBQ$  weight (mortality rate applied) of P. halibut

W = total weight of P. halibut in haul

w = sampled weight of P. halibut

m = mortality rate (Table 5)

### 10.2.3 In season IBQ Weight Calculations for Pot Gear

The sampled P. halibut lengths are converted to weight using the IPHC length-weight conversion table (Table 9 in Appendix C 10.3). Observers are not always able to sample 100% of all gear units due to time constraints and logistics, therefore sample weights need to be expanded to the haul/set level. The total weight of P. halibut in the set is calculated as:

$$W = \left(\frac{w}{n} \times N\right) \times \left(\frac{P}{p}\right) \tag{10}$$

where, for each set:

W = total weight of P. halibut

w = sampled weight of P. halibut

n = sampled number of P. halibut

N = total number of P. halibut

P = total number of pots fished

p =sampled number of pots

IBQ weight for each haul is then calculated as:

$$W_{IBQ} = \sum_{c} \left( \frac{w_c}{\sum_{c} w_c} \times W \times m_c \right) \tag{11}$$

where, for each set:

c = viability condition category

 $W_{IBO} = IBQ$  weight (mortality rate applied) of P. halibut

W = total weight of P. halibut in set

w = sampled weight of P. halibut

m = mortality rate (Table 6)

## 10.2.4 In season IBQ Weight Calculations for Hook-&-Line Gear

The visual estimates of Pacific halibut length (10 cm increments) are converted to weight using the IPHC length-weight conversion table (Table 9 in Appendix C 10.3). Observers are not always able to sample 100% of all gear units due to time constraints and logistics, therefore sample weights need to be expanded to the haul/set level. The total weight of P. halibut in the set is calculated as:

$$W_{IBQ} = \left(\frac{H}{h} \times w\right) \times 0.16 \tag{12}$$

where, for each set:

 $W_{IBQ} = IBQ$  weight (mortality rate applied) of P. halibut

w= sampled weight of P. halibut H= total number or hooks fished h= sampled number of hooks 0.16= IPHC mortality rate applied to hook-&-line gear

#### 10.2.5 In season IBQ Weight Alternative Calculation Scenarios

The most prevalent causes for alternative IBQ calculations were due to pre-sorting of P. halibut by the crew and improper sampling. In these scenarios, observer program staff reviewed the trip and calculated IBQ weight manually.

To determine the most appropriate method to calculate IBQ weight, the observer program data management team consulted with the IPHC. For bottom trawl and pot gear, the IPHC preferred the use of manually measured fish from other properly sampled hauls within the same trip, rather than the use of visually estimated lengths from the haul. All calculations utilized data from the same trip or a different trip from the same vessel. In other words, there was never a circumstance where data from Vessel A was used to calculate IBQ weight for Vessel B.

In addition to scenarios where the observer did not collect all required data, there were also instances of hauls where P. halibut was not sampled by the observer or all the gear was lost. In these instances, properly sampled hauls were used to estimate IBQ weight for the unsampled haul. Methods for expanding P. halibut weight to unsampled or partially sampled hauls varied by gear type.

To calculate P. halibut IBQ weight for unsampled trawl hauls, the sum of all IBQ weight from other properly sampled hauls is divided by the sum of tow duration (hours) from sampled hauls and multiplied by tow duration of the unsampled haul.

 $W_{IBQ} = \left(\frac{\sum_{t} w_{IBQ}}{\sum_{t} d}\right) \times D \tag{13}$ 

where, for each tow:

t = tow

 $W_{IBQ}$ = unsampled IBQ weight (mortality rate applied) of P. halibut  $w_{IBQ}$ = sampled IBQ weight (mortality rate applied) of P. halibut

d = tow duration (hr) of sampled haul

D = tow duration (hr) of unsampled haul

To calculate P. halibut IBQ weight when trawl gear is lost (i.e., entire net or codend is lost), the sum of all P. halibut expanded species weight from other properly sampled hauls is divided by the sum of tow durations prom sampled hauls, multiplied by the tow duration of the unsampled haul. For lost trawl gear, a mortality rate for the "dead" P. halibut viability condition (0.90) is applied.

$$W_{IBQ} = \left(\frac{\sum_{t} w}{\sum_{t} d}\right) \times D \times 0.90 \tag{14}$$

where, for each tow with lost gear:

t = tow

 $W_{IBQ}$  = unsampled IBQ weight (mortality rate applied) of P. halibut

 $w_{IBQ}$  = sampled IBQ weight (mortality rate applied) of P. halibut

d = tow duration (hr) of sampled haul

D = tow duration (hr) of unsampled haul

To calculate P. halibut IBQ weight in unsampled fixed gear sets, the sum of all P. halibut IBQ weight from sets with similar properties (i.e., date, depth, target, gear type, area; determined by WCGOP data managers) is divided by the sum of the number of gear units sampled, and the result is multiplied by the total number of gear units fished from the unsampled set.

 $W_{IBQ} = \left(\frac{\sum_{t} w_{IBQ}}{\sum_{t} g}\right) \times G \tag{15}$ 

where, for each set:

t = tow

 $W_{IBQ}$ = unsampled IBQ weight (mortality rate applied) of P. halibut  $w_{IBQ}$ = sampled IBQ weight (mortality rate applied) of P. halibut g= number of sampled gear units (e.g., hooks, pots)

G= total number of gear units (e.g., hooks, pots) fished in the unsampled set

To calculate P. halibut IBQ weight when fixed gear is lost, the sum of P. halibut weight from the sampled portion of the set, or, if all gear is lost, from sets with similar properties is divided by the sum of units sampled, and the result is multiplied by the total hooks from the unsampled set. For any lost fixed gear, a mortality rate for the "dead" P. halibut viability condition (1.0) is applied.

$$W_{IBQ} = \left(\frac{\sum_{t} w_{IBQ}}{\sum_{t} g}\right) \times G \times 1.0 \tag{16}$$

where, for each set with lost gear:

t = tow

 $W_{IBQ}$ = unsampled IBQ weight (mortality rate applied) of P. halibut  $w_{IBQ}$ = sampled IBQ weight (mortality rate applied) of P. halibut g= number of sampled gear units (e.g., hooks, pots) G= total number of gear units (e.g., hooks, pots) fished in the unsampled set

Table 52: The number of vessels and trips that required alternative expansions of P. halibut IBQ weight in the 2013 U.S. west coast groundfish IFQ fishery. All values are counts unless otherwise stated. \*Note that "Total" represents vessels or trips with at least one instance of an alternative expansion. Multiple instances within a vessel or trip are ignored.

|                 |            |                      |                      | Lost  | Gear  |        |           |                   |
|-----------------|------------|----------------------|----------------------|-------|-------|--------|-----------|-------------------|
| $\mathbf{Unit}$ | Year       | P. halibut Scenarios | Unsampled trawl tows | Trawl | Fixed | Total* | IFQ Total | % of Total        |
| Vessels         | 2011       | 13                   | 16                   | 4     | 1     | 24     | 108       | $22.2^{\ddagger}$ |
|                 | 2012       | 9                    | 10                   | 4     | 4     | 22     | 105       | 21.0              |
|                 | $2013^{2}$ | 8                    | 8                    | 3     | 9     | 12     | 103       | 11.7              |
|                 | 2014       | 6                    | 2                    | 3     | 12    | 22     | 107       | 20.6              |
|                 | 2015       | 8                    | 8                    | 3     | 7     | 19     | 76        | 25.0              |
| Trips           | 2011       | 19                   | 21                   | 4     | 3     | 38     | 2443      | 1.6               |
|                 | 2012       | 10                   | 24                   | 4     | $7^1$ | 32     | 2181      | 1.5               |
|                 | $2013^{2}$ | 16                   | 23                   | 3     | 36    | 46     | 2335      | 2.0               |
|                 | 2014       | 7                    | 7                    | 3     | 38    | 53     | 2206      | 2.4               |
|                 | 2015       | 9                    | 13                   | 3     | 20    | 41     | 1144      | 3.6               |

<sup>‡</sup>Percentage of vessels with manually calculated discard may be included in one or more categories.

Scenario 1: Total count of P. halibut exists with no length or viability data.

Resolution: Determine an average mortality weight per individual P. halibut in the trip from all sampled hauls. Multiply that average by the total count of P. halibut to determine an IBQ.

**Scenario 2:** Total count of P. halibut exists with actual lengths and no viability data.

Resolution: Determine catch weight for P. halibut using the lengths in the haul and then apply that to the total count for a total weight. Determine CATCH\_WEIGHT\_MORT for all viabilities (E, P, D) from all other properly sampled hauls in the trip and apply to the CATCH\_WEIGHT for IBQ estimate.

**Scenario 3:** Total count of P. halibut exists with visual estimates of P. halibut lengths and no viabilities. Resolution: The use of visual lengths was discouraged by the IPHC so the most appropriate method is to determine an average IBQ per individual P. halibut in the trip from all sampled hauls. Multiply that average by the total count of P. halibut to determine an IBQ.

**Scenario 4:** Total count of P. halibut exists with visual estimates of P. halibut lengths and proper in-hand viabilities.

 $<sup>^{1}\</sup>mathrm{Partial}$  gear loss for fixed gear trips was not reported in 2012.

<sup>&</sup>lt;sup>2</sup>Manual calculations due to unsampled or lost gear were performed in 2013. All discard for these events were reported via the automated load process.

Resolution: The use of visual lengths was discouraged by the IPHC, so the most appropriate method here would be to determine an average IBQ per individual P. halibut in the trip from all sampled hauls. Multiply that average by the total count of P. halibut to determine an IBQ.

Scenario 5: P. halibut not sampled or only visual estimates of length are available.

Resolution: Confirm P. halibut was present in the haul, and no data was collected on them. Determine an average IBQ per haul for all sampled hauls in the trip. This scenario is unlikely and, to date, has never occurred.

Scenario 6: Total count of P. halibut does not exist with length and no viability data.

Resolution: Catch weight of the haul will be determined by taking the measured P. halibut sample, converted to weight, divided by the number of fish sampled, multiplied by the average number of P. halibut for all sampled hauls in the trip. Then the average mortality rates from the sampled hauls are applied to the calculated P. halibut weight and, to date, has never occurred.

Scenario 7: Total count of P. halibut does not exist with length and viability data.

Resolution: P. halibut catch weight for the haul will be determined by taking the length of the P. halibut sample, converted to weight, divided by the number of fish sampled, multiplied by the average number of P. halibut for all sampled hauls in the trip. Because viabilities and lengths exist, IBQ can be determined using normal protocols and the calculated catch weight and, to date, has never occurred.

**Scenario 8**: Total count of P. halibut does not exist with visual length and viability data. Resolution: Determine an average IBQ per haul for all sampled hauls in the trip and apply to the unsampled haul(s).

Scenario 9: Observer encounters predated fish that are dead and badly damaged so that accurate biological data cannot be collected.

Resolution: If properly sampled P. halibut exist in the haul they can be used to determine the portion of the catch weight attributed to the predated and non-predated fish. The IBQ for the P. halibut not predated would be calculated separately using the data collected in the haul. The IBQ for the predated fish would be the portion of the P. halibut catch weight attributed to the predated fish multiplied by the mortality rate for "dead" from the IPHC viability tables for that gear.

If all P. halibut in the haul are heavily predated then a catch weight for the haul will need to be determined. This can be done by taking the total count of P. halibut in the haul times an average catch weight (not IBQ estimates) per P. halibut from other hauls in the trip (or like "sets" if P. halibut doesn't exist in any other hauls). The estimated catch weight will then be multiplied by the mortality rate for "dead" from the IPHC viability tables for that gear to determine IBQ. In 2011, there were two instances where a P. halibut IBQ was manually calculated due to sand flea predation.

Table 53: Calculations used by the Vessel Account System (VAS) to determine Pacific halibut IBQ weight for unsampled or partially sampled fishing events in the U.S. west coast groundfish IFQ fishery. The calculated values,  $\hat{w}_{IBQ_{u,p}}$ , are added to the sampled P. halibut to obtain total IBQ weight. Note that these calculations differ slightly from the methods used in this report. Comparisons between this report and the VAS can be found in Table 2.

## Scenario(s) Calculation

1,3,4 
$$\hat{w}_{IBQ_{u}} = \left(\frac{\sum_{h,v} (l_{h,v} \times r_{v})}{\sum_{h} c_{h}}\right) \times c_{u}$$
2 
$$\hat{w}_{IBQ_{u}} = \left(\frac{\sum_{h,v} l_{h,v}}{\sum_{h} l_{h}} \times r_{v}\right) \times \left(\frac{\sum_{f} l_{f}}{\sum_{f} c_{f}}\right)$$
6,7 
$$\hat{w}_{IBQ_{u}} = \left[\left(\frac{\sum_{f} l_{f}}{\sum_{f} c_{f}} \times r_{v}\right) \times \frac{\sum_{h} c_{h}}{h}\right] \times \left(\frac{\sum_{h,v} l_{h,v}}{\sum_{h} l_{h}}\right)$$
5,8 
$$\hat{w}_{IBQ_{u}} = \frac{\sum_{h} w_{IBQ_{h}}}{\sum_{h} t_{h}} \times \sum_{u} t_{u}$$
9 
$$\hat{w}_{IBQ_{p}} = \frac{\sum_{h} l_{h}}{\sum_{h} c_{h}} \times c_{p}$$

#### where:

c = count of P. halibut

w = weight of P. halibut

l = length of P. halibut, converted to weight via IPHC length-weight table

v = viability of P. halibut, Excellent, Poor, or Dead

r = mortality rate applied for a given viability and gear combination, see Tables 5 & 6

h = sampled hauls

u = unsampled hauls

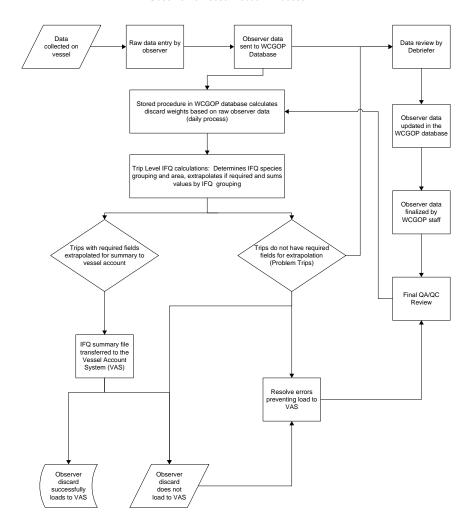
f = individual sampled P. halibut

t = tow time

p = predated fish

# 10.3 Appendix C: IPHC Length-Weight Table

Figure 9: IPHC length-weight conversion table for Pacific halibut.


| Centimeter | Pounds       | Kilograms    | Centimeter | Pounds         | Kilograms      | Centimeter | Pounds           | Kilograms      | Centimeter | Pounds           | Kilograms        |
|------------|--------------|--------------|------------|----------------|----------------|------------|------------------|----------------|------------|------------------|------------------|
| 10         | 0.02         | 0.01         | 71         | 9.19           | 4.17           | 131        | 66.82            | 30.31          | 191        | 226.70           | 102.83           |
| 11         | 0.02         | 0.01         | 72         | 9.61           | 4.36           | 132        | 68.48            | 31.06          | 192        | 230.56           | 104.58           |
| 12         | 0.02         | 0.01         | 73         | 10.05          | 4.56           | 133        | 70.17            | 31.83          | 193        | 234.48           | 106.36           |
| 13         | 0.04         | 0.02         | 74         | 10.49          | 4.76           | 134        | 71.89            | 32.61          | 194        | 238.45           | 108.16           |
| 14         | 0.04         | 0.02         | 75         | 10.98          | 4.98           | 135        | 73.66            | 33.41          | 195        | 242.44           | 109.97           |
| 15         | 0.07         | 0.03         | 76         | 11.44          | 5.19           | 136        | 75.44            | 34.22          | 196        | 246.50           | 111.81           |
| 16         | 0.07         | 0.03         | 77         | 11.95          | 5.42           | 137        | 77.25            | 35.04          | 197        | 250.60           | 113.67           |
| 17         | 0.09         | 0.04         | 78<br>70   | 12.46          | 5.65           | 138        | 79.08            | 35.87          | 198        | 255.74           | 116.00           |
| 18<br>19   | 0.11<br>0.13 | 0.05<br>0.06 | 79<br>80   | 12.99<br>13.51 | 5.89<br>6.13   | 139<br>140 | 80.95<br>82.87   | 36.72<br>37.59 | 199<br>200 | 258.93<br>263.17 | 117.45           |
| 20         | 0.15         | 0.06         | 81         | 14.07          | 6.38           | 140        | 84.79            | 38.46          | 200        | 267.46           | 119.37<br>121.32 |
| 21         | 0.13         | 0.07         | 82         | 14.64          | 6.64           | 141        | 86.75            | 39.35          | 201        | 271.79           | 123.28           |
| 22         | 0.10         | 0.08         | 83         | 15.23          | 6.91           | 143        | 88.76            | 40.26          | 203        | 276.17           | 125.27           |
| 23         | 0.24         | 0.11         | 84         | 15.83          | 7.18           | 144        | 90.79            | 41.18          | 204        | 280.60           | 127.28           |
| 24         | 0.26         | 0.12         | 85         | 16.45          | 7.46           | 145        | 92.84            | 42.11          | 205        | 285.10           | 129.32           |
| 25         | 0.31         | 0.14         | 86         | 17.09          | 7.75           | 146        | 94.93            | 43.06          | 206        | 289.62           | 131.37           |
| 26         | 0.35         | 0.16         | 87         | 17.75          | 8.05           | 147        | 97.05            | 44.02          | 207        | 294.21           | 133.45           |
| 27         | 0.40         | 0.18         | 88         | 18.41          | 8.35           | 148        | 99.21            | 45.00          | 208        | 298.84           | 135.55           |
| 28         | 0.46         | 0.21         | 89         | 19.09          | 8.66           | 149        | 101.39           | 45.99          | 209        | 303.51           | 137.67           |
| 29         | 0.51         | 0.23         | 90         | 19.80          | 8.98           | 150        | 103.62           | 47.00          | 210        | 308.25           | 139.82           |
| 30         | 0.57         | 0.26         | 91         | 20.53          | 9.31           | 151        | 105.87           | 48.02          | 211        | 313.03           | 141.99           |
| 31         | 0.62         | 0.28         | 92         | 21.25          | 9.64           | 152        | 108.16           | 49.06          | 212        | 317.86           | 144.18           |
| 32         | 0.71         | 0.32         | 93         | 22.02          | 9.99           | 153        | 110.50           | 50.12          | 213        | 322.73           | 146.39           |
| 33         | 0.77         | 0.35         | 94         | 22.80          | 10.34          | 154        | 112.83           | 51.18          | 214        | 327.67           | 148.63           |
| 34         | 0.84         | 0.38         | 95         | 23.59          | 10.70          | 155        | 115.24           | 52.27          | 215        | 332.65           | 150.89           |
| 35         | 0.93         | 0.42         | 96         | 24.41          | 11.07          | 156        | 117.66           | 53.37          | 216        | 337.70           | 153.18           |
| 36         | 1.01         | 0.46         | 97         | 25.24          | 11.45          | 157        | 120.13           | 54.49          | 217        | 342.79           | 155.49           |
| 37         | 1.10         | 0.50         | 98         | 26.08          | 11.83          | 158        | 122.62           | 55.62          | 218        | 347.93           | 157.82           |
| 38         | 1.21         | 0.55         | 99         | 26.96          | 12.23          | 159        | 125.16           | 56.77          | 219        | 353.13           | 160.18           |
| 39         | 1.32         | 0.60         | 100        | 27.87          | 12.64          | 160        | 127.71           | 57.93          | 220        | 358.38           | 162.56           |
| 40         | 1.43         | 0.65         | 101        | 28.77          | 13.05          | 161        | 130.32           | 59.11          | 221        | 363.69           | 164.97           |
| 41         | 1.59         | 0.72         | 102        | 29.70          | 13.47          | 162        | 132.96           | 60.31          | 222        | 369.05           | 167.40           |
| 42         | 1.68         | 0.76         | 103        | 30.67          | 13.91          | 163        | 135.65           | 61.53          | 223        | 374.45           | 169.85           |
| 43         | 1.81         | 0.82         | 104        | 31.64          | 14.35          | 164        | 138.36           | 62.76          | 224        | 379.92           | 172.33           |
| 44<br>45   | 1.94<br>2.09 | 0.88<br>0.95 | 105<br>106 | 32.63<br>33.64 | 14.80<br>15.26 | 165        | 141.12<br>143.90 | 64.01          | 225<br>226 | 385.45<br>391.03 | 174.84<br>177.37 |
| 46         | 2.09         | 1.02         | 106        | 34.68          | 15.73          | 166<br>167 | 146.72           | 65.27<br>66.55 | 227        | 396.67           | 179.93           |
| 47         | 2.43         | 1.10         | 107        | 35.74          | 16.21          | 168        | 149.54           | 67.83          | 228        | 402.36           | 182.51           |
| 48         | 2.58         | 1.17         | 109        | 36.84          | 16.71          | 169        | 152.49           | 69.17          | 229        | 408.09           | 185.11           |
| 49         | 2.76         | 1.25         | 110        | 37.94          | 17.21          | 170        | 155.45           | 70.51          | 230        | 413.91           | 187.75           |
| 50         | 2.95         | 1.34         | 111        | 39.07          | 17.72          | 171        | 158.42           | 71.86          | 231        | 419.76           | 190.40           |
| 51         | 3.15         | 1.43         | 112        | 40.21          | 18.24          | 172        | 161.44           | 73.23          | 232        | 425.69           | 193.09           |
| 52         | 3.35         | 1.52         | 113        | 41.38          | 18.77          | 173        | 164.51           | 74.62          | 233        | 431.66           | 195.80           |
| 53         | 3.57         | 1.62         | 114        | 42.59          | 19.32          | 174        | 167.60           | 76.02          | 234        | 437.68           | 198.53           |
| 54         | 3.79         | 1.72         | 115        | 43.81          | 19.87          | 175        | 170.75           | 77.45          | 235        | 443.76           | 201.29           |
| 55         | 4.01         | 1.82         | 116        | 45.06          | 20.44          | 176        | 173.92           | 78.89          | 236        | 449.91           | 204.08           |
| 56         | 4.25         | 1.93         | 117        | 46.32          | 21.01          | 177        | 177.14           | 80.35          | 237        | 456.13           | 206.90           |
| 57         | 4.52         | 2.05         | 118        | 47.62          | 21.60          | 178        | 180.40           | 81.83          | 238        | 462.39           | 209.74           |
| 58         | 4.76         | 2.16         | 119        | 48.94          | 22.20          | 179        | 183.71           | 83.33          | 239        | 468.72           | 212.61           |
| 59         | 5.05         | 2.29         | 120        | 50.29          | 22.81          | 180        | 187.06           | 84.85          | 240        | 475.09           | 215.50           |
| 60         | 5.31         | 2.41         | 121        | 51.65          | 23.43          | 181        | 190.46           | 86.39          | 241        | 481.55           | 218.43           |
| 61         | 5.62         | 2.55         | 122        | 53.07          | 24.07          | 182        | 193.87           | 87.94          | 242        | 488.05           | 221.38           |
| 62         | 5.93         | 2.69         | 123        | 54.48          | 24.71          | 183        | 197.36           | 89.52          | 243        | 494.60           | 224.35           |
| 63         | 6.24         | 2.83         | 124        | 55.93          | 25.37          | 184        | 200.86           | 91.11          | 244        | 501.24           | 227.36           |
| 64         | 6.57         | 2.98         | 125        | 57.41          | 26.04          | 185        | 204.43           | 92.73          | 245        | 507.92           | 230.39           |
| 65         | 6.90         | 3.13         | 126        | 58.91          | 26.72          | 186        | 208.03           | 94.36          | 246        | 514.66           | 233.45           |
| 66         | 7.25         | 3.29         | 127        | 60.43          | 27.41          | 187        | 211.67           | 96.01          | 247        | 521.48           | 236.54           |
| 67         | 7.61         | 3.45         | 128        | 61.99          | 28.12          | 188        | 214.71           | 97.39          | 248        | 528.36           | 239.66           |
| 68         | 7.98         | 3.62         | 129        | 63.56          | 28.83          | 189        | 218.50           | 99.11          | 249        | 535.28           | 242.80           |
| 69         | 8.38         | 3.80         | 130        | 65.17          | 29.56          | 190        | 222.89           | 101.10         | 250        | 542.29           | 245.98           |
| 70         | 8.77         | 3.98         |            |                |                |            |                  |                |            |                  |                  |

## 10.4 Appendix D: Data flow

Figure 10: IFQ groundfish fishery data flow from the Northwest Fisheries Science Center Observer Program to the Vessel Account System (VAS) of the NMFS Western Regional Office.

# IFQ Fishery Data Flow:

Observer to Vessel Account Process



## 10.5 Appendix E: Non-Nearshore Hook and Line Viability Analysis Comparison

We used observer field estimates of discarded P. halibut viability on Non-Nearshore Fixed Gear vessels fishing longline or hook-and-line gear to estimate mortality of discarded P. halibut. We used these estimates to compare with the current method of using a single mortality rate for all bycatch (16%). Observers have systematically collected viability data on hook-and-line vessels in the Non-Nearshore Fixed Gear sector since 2011. Current methods require observers to collect a length and viability on the first 5 P. halibut observed in each set on these vessels and to ignore any injuries incurred during landing when assessing viability. Note that this current analysis does not cover IFQ vessels fishing with hook-and-line gear as observers currently do not take viability of P. halibut caught on hook-and-line IFQ vessels.

Table 54: Mortality rates used for each of the condition categories  $(m_c)$  for Non-Nearshore hook-and-line vessels (Trumble et al. 2000).

| $m_c$        | Rate  |
|--------------|-------|
| $m_{minor}$  | 0.035 |
| $m_{mod}$    | 0.363 |
| $m_{severe}$ | 0.662 |
| $m_{dead}$   | 1.00  |

Methods used in this analysis to calculate discard mortality based on viability condition are almost identical to those methods currently accepted for use with IFQ bottom trawl and pot vessels (see subsection 3.2.3). To account for the impact of fish size on survivorship, we computed a weighted mortality rate for each condition category. Length measurements associated with each viability record were converted to weight based on the IPHC length-weight table provided in Appendix C 10.3.

A discard mortality rate for each condition category was then computed as the proportion of P. halibut sampled weight in a viability category multiplied by the viability category-specific mortality rate (Table 54 above):

$$DMR_{csj} = m_c \times P_{csj} \tag{17}$$

where:

s= stratum, which could include, area and sector c= viability condition (Minor, Moderate, Severe, Dead) j= year m= mortality rate t= proportion of sampled P. halibut weight (w) DMR= discard mortality rate

Discard mortality rates for each condition category c and stratum s were then multiplied by gross discard estimates to compute total estimated discard mortality for each sub-sector separately :

$$\hat{F}_{sj} = \sum_{c} (B_{sj} \times DMRsj) \tag{18}$$

where:

s= stratum, which could include, area and sector c= viability condition ((Minor, Moderate, Severe, Dead) j= year F= total estimated discard mortality B= gross estimated discard weight DMR= discard mortality rate

Table 55: Pacific halibut viabilities caught by longline vessels in the U.S. west coast Limited Entry Sablefish Endorsed fishery by year and area north and south of Point Chehalis, WA. The condition of sampled P. halibut was identified as Minor (Mi), Moderate (Mo), Serious (Ser) or Dead (see Appendix in WCGOP manual), consistent with IPHC protocol. The number of fish in each category was weighted based on the length-weight relationship as described in the Methods.

|      |       |          |         |      |       |          |         |      |       |          | Lim | ited Ent | ry Sable | efish    |          |       |       |          |          |       |       |          |      |       |
|------|-------|----------|---------|------|-------|----------|---------|------|-------|----------|-----|----------|----------|----------|----------|-------|-------|----------|----------|-------|-------|----------|------|-------|
| ĺ    |       |          |         |      |       | no. o    | f fish  |      |       |          |     |          |          |          |          |       |       | weigh    | ted %    |       |       |          |      |       |
| Year | North | of Pt. C | hehalis |      | South | of Pt. C | hehalis |      | C     | Coastwid | e   |          | North    | of Pt. 0 | Chehalis |       | South | of Pt. C | Chehalis |       | (     | Coastwic | ile  |       |
| Ì    | Mi    | Mo       | Ser     | Dead | Mi    | Mo       | Ser     | Dead | Mi    | Mo       | Ser | Dead     | Mi       | Mo       | Ser      | Dead  | Mi    | Mo       | Ser      | Dead  | Mi    | Mo       | Ser  | Dead  |
| 2011 | 4839  | 103      | 62      | 92   | 1869  | 197      | 36      | 255  | 6708  | 300      | 98  | 347      | 96.3%    | 1.4%     | 1.0%     | 1.2%  | 78.8% | 7.7%     | 1.1%     | 12.4% | 91.4% | 3.2%     | 1.1% | 4.3%  |
| 2012 | 810   | 37       | 0       | 124  | 5918  | 764      | 166     | 417  | 6728  | 801      | 166 | 541      | 83.3%    | 3.7%     | 0.0%     | 13.0% | 79.0% | 11.2%    | 2.8%     | 7.1%  | 79.5% | 10.2%    | 2.4% | 7.8%  |
| 2013 | 2774  | 314      | 0       | 209  | 518   | 9        | 16      | 49   | 3292  | 323      | 16  | 258      | 83.4%    | 9.5%     | 0.0%     | 7.1%  | 89.8% | 0.4%     | 4.2%     | 5.6%  | 84.6% | 7.7%     | 0.8% | 6.8%  |
| 2014 | 7453  | 301      | 153     | 953  | 1569  | 258      | 60      | 238  | 9022  | 559      | 213 | 1191     | 83.2%    | 3.3%     | 1.9%     | 11.6% | 71.1% | 12.2%    | 3.3%     | 13.4% | 80.5% | 5.3%     | 2.2% | 12.0% |
| 2015 | 7180  | 169      | 121     | 141  | 9381  | 653      | 286     | 239  | 16561 | 822      | 407 | 380      | 94.3%    | 2.1%     | 1.7%     | 1.9%  | 88.5% | 6.2%     | 2.8%     | 2.5%  | 91.0% | 4.4%     | 2.3% | 2.2%  |

Table 56: Pacific halibut viabilities caught by longline vessels in the U.S. west coast Limited Entry Sablefish Non-Endorsed fishery, coastwide by year. The condition of sampled P. halibut was identified as Minor (Mi), Moderate (Mo), Serious (Ser) or Dead (see Appendix in WCGOP manual), consistent with IPHC protocol. The number of fish in each category was weighted based on the length-weight relationship as described in the Methods.

|                  |     | Lin   | nited En | itry Sabl | efish No | n-Endors | $\operatorname{sed}$   |      |
|------------------|-----|-------|----------|-----------|----------|----------|------------------------|------|
| $\mathbf{Y}$ ear |     | no. o | f fish   |           |          | weigh    | $\operatorname{ted}\%$ |      |
| ·                | Mi  | Mo    | Ser      | Dead      | Mi       | Mo       | Ser                    | Dead |
| 2011             | 407 | 186   | 0        | 0         | 63.6%    | 36.4%    | 0.0%                   | 0.0% |
| 2012             | 368 | 14    | 0        | 0         | 97.6%    | 2.4%     | 0.0%                   | 0.0% |
| 2013             | 0   | 0     | 0        | 0         | 0.0%     | 0.0%     | 0.0%                   | 0.0% |
| 2014             | 0   | 0     | 0        | 0         | 0.0%     | 0.0%     | 0.0%                   | 0.0% |
| 2015             | 24  | 0     | 0        | 0         | 100.0%   | 0.0%     | 0.0%                   | 0.0% |

Table 57: Pacific halibut viabilities caught by hook-&-line vessels in the U.S. west coast Open Access fixed gear fishery, coastwide by year. The condition of sampled P. halibut was identified as Minor (Mi), Moderate (Mo), Serious (Ser) or Dead (see Appendix in WCGOP manual), consistent with IPHC protocol. The number of fish in each category was weighted based on the length-weight relationship as described in the Methods.

|                  | Open Access Fixed Gear |       |        |      |            |       |      |      |  |
|------------------|------------------------|-------|--------|------|------------|-------|------|------|--|
| $\mathbf{Y}$ ear |                        | no. o | f fish |      | weighted % |       |      |      |  |
|                  | Mi                     | Mo    | Ser    | Dead | Mi         | Mo    | Ser  | Dead |  |
| 2011             | 284                    | 74    | 30     | 6    | 72.4%      | 17.3% | 9.8% | 0.5% |  |
| 2012             | 466                    | 36    | 0      | 17   | 91.3%      | 8.4%  | 0.0% | 0.3% |  |
| 2013             | 53                     | 0     | 0      | 0    | 100.0%     | 0.0%  | 0.0% | 0.0% |  |
| 2014             | 104                    | 15    | 0      | 0    | 80.7%      | 19.3% | 0.0% | 0.0% |  |
| 2015             | 472                    | 23    | 0      | 0    | 97.2%      | 2.8%  | 0.0% | 0.0% |  |

Table 58: Estimated gross discard (mt) for longline or hook-&-line vessels in the limited entry (LE) sablefish endorsed, LE sablefish non-endorsed, and open access (OA) fixed gear sectors. Systematic collection of viability for P. halibut bycatch on hook-and-line vessels in the Non-Nearshore fixed gear fishery began in 2011.

|       | LE           | Sablefish En | dorsed    | LE Sablefish | OA Fixed Gear Hook-and-Line |  |  |
|-------|--------------|--------------|-----------|--------------|-----------------------------|--|--|
|       |              |              |           | Non-Endorsed |                             |  |  |
| Year  |              | Longline     |           | Longline     |                             |  |  |
|       | North of     | South of     | Coastwide | Coastwide    | Coastwide                   |  |  |
|       | Pt.          | Pt.          |           |              |                             |  |  |
|       | Chehalis     | Chehalis     |           |              |                             |  |  |
| Gross | Discard Esti | mates        |           |              |                             |  |  |
| 2011  | 106.73       | 26.11        | 132.85    | 21.48        | 13.21                       |  |  |
| 2012  | 91.52        | 54.87        | 146.39    | 16.15        | 23.52                       |  |  |
| 2013  | 18.86        | 3.39         | 22.25     | 0.00         | 1.69                        |  |  |
| 2014  | 161.09       | 10.01        | 171.10    | 0.00         | 3.26                        |  |  |
| 2015  | 85.60        | 38.18        | 123.78    | 0.45         | 10.59                       |  |  |

This document was processed by KnitR version 1.13 of 2016-05-09 on R version 3.2.1 (2015-06-18). It was generated by  $jjannot@nwctantalus.nmfs.local\ running\ CentOS\ release\ 6.8\ (Final)\ with\ Intel(R)\ Xeon(R)\ CPU\ X7550\ @\ 2.00GHz\ and\ GB\ of\ RAM.$  Processing was completed 2016-08-18 11:42:51.

Table 59: Estimated discard mortality (mt) of longline vessels in the limited entry (LE) sablefish endorsed, LE sablefish non-endorsed, and open access (OA) fixed gear sectors. Estimated discard mortality (mt) was computed by two methods. The first, historical method, was by applying a 16 % discard mortality rate to gross discard estimates. The second method was to apply discard mortality rates based on the viability categories assigned to individuals. The injury condition of sampled P. halibut was identified as Minor (Mi, 3.5%), Moderate (Mo, 36.3%), Serious (Ser, 66.2%), or Dead (100%) (see: Trumble, Kaimmer, & Williams (2000) and Appendices in WCGOP manual), consistent with IPHC protocol. The number of fish in each category was weighted based on the length-weight relationship as described in the Methods. Systematic collection of viability for P. halibut bycatch on hook-and-line vessels in the Non-Nearshore fixed gear fishery began in 2011.

|      |                 | LE Sablefish Endorsed |          |       |      |           |       | LE Sablefish<br>Non-Endorsed |      | OA Fixed Gear |      |
|------|-----------------|-----------------------|----------|-------|------|-----------|-------|------------------------------|------|---------------|------|
|      |                 | Longline              |          |       |      |           |       | Longline                     |      | Hook-and-Line |      |
| Year | '               | North of              |          | South | of   | Coastwide |       | Coastwide                    |      | Coastwide     |      |
|      | Pt.<br>Chehalis |                       |          | Pt.   |      |           |       |                              |      |               |      |
|      |                 |                       | Chehalis |       |      |           |       |                              |      |               |      |
|      | Rate            | 16%                   | viab     | 16%   | viab | 16%       | viab  | 16%                          | viab | 16%           | viab |
| 2011 |                 | 17.08                 | 6.20     | 4.18  | 4.87 | 21.26     | 11.07 | 3.44                         | 3.31 | 2.11          | 2.09 |
| 2012 |                 | 14.64                 | 15.77    | 8.78  | 8.63 | 23.42     | 24.39 | 2.58                         | 0.69 | 3.76          | 1.54 |
| 2013 |                 | 3.02                  | 2.54     | 0.54  | 0.40 | 3.56      | 2.94  | 0.00                         | 0.00 | 0.27          | 0.06 |
| 2014 |                 | 25.77                 | 27.33    | 1.60  | 2.25 | 27.38     | 29.59 | 0.00                         | 0.00 | 0.52          | 0.32 |
| 2015 |                 | 13.70                 | 6.08     | 6.11  | 3.69 | 19.80     | 9.77  | 0.07                         | 0.02 | 1.69          | 0.47 |