Pacific Coast Groundfish Fishery Management Plan # For the California, Oregon and Washington Groundfish Fishery # Appendix F Overfished Species Rebuilding Plans PACIFIC FISHERY MANAGEMENT COUNCIL 7700 NE AMBASSADOR PLACE, SUITE 101 PORTLAND, OR 97220 (503) 820-2280 (866) 806-7204 WWW.PCOUNCIL.ORG August 2016 #### 1.1 Introduction This appendix provides the rebuilding plans for the overfished species managed through the Pacific Coast Groundfish Fishery Management Plan consistent with Section 4.6 (Ending Overfishing and Rebuilding). This appendix contains 3 sections: 1) current rebuilding plans, including the rebuilding strategy and parameters and management measures used to limit the catch of each species; 2) a summary of past rebuilding plan parameters; and 3) a summary of the status of each stock at the time it was declared overfished as well as a detailed description of the rebuilding strategy and the communities affected by rebuilding restrictions for each species. As described in Section 4.6.3.4, if the numerical specification of the harvest control rule or target year for a given overfished species is changed, the new T_{TARGET} and the harvest control rule (type and numerical value) will be published in Federal groundfish regulations and revised in Section 1.2.1 of this appendix. In addition, subsequent SAFE documents or NEPA documents analyzing new harvest specifications and rebuilding plans may include updated values for the parameters listed in Section 4.6.3.3 and Table F-1 in this appendix. Through each biennial specifications and management measures process the Council may consider changes to rebuilding plans as necessary to respond to the best scientific information available. Any revisions to the rebuilding periods must be consistent with the MSA; rebuilding time periods must be as short as possible, taking into account the status and biology of the depleted species, the socioeconomic needs of west coast fishing communities, and the interaction of the depleted stocks within the marine ecosystem. Rebuilding plans were first addressed in this FMP through the implementation of Amendment 12 which established a framework for rebuilding plans. Amendment 16-1 was also implemented to address frameworking issues with rebuilding plans and Amendments 16-2 through 16-5 implemented the first rebuilding plans for overfished species. # 1.2 Overfished Species Rebuilding Plans #### 1.2.1 Current Rebuilding Plan Parameters and ACLs It is likely that over time the parameters listed in this section will change. Consistent with the specifications developed through the Council's biennial specifications and management measures process, the rebuilding parameters and ACLs in this section would be updated following final implementation by NMFS, usually through the publication of a final rule in the *Federal Register*. Further detail on ACLs can be found in the FEIS for 2015-2016 Harvest Specifications and Management Measures on the Council's website at http://www.pcouncil.org/, as well as the 2016 Stock Assessment and Fishery Evaluation document at http://www.pcouncil.org/wp-content/uploads/Groundfish_SAFE_August_2016.pdf. Table F-1. Current Rebuilding Parameters and ACLs for 2017 and beyond. | Species | $\mathbf{B_0}$ | $\mathbf{B}_{ ext{MSY}}$ | $T_{ m MIN}$ | $T_{F=0}$ | T _{MAX} | T _{TARGET} | 2017
Annual
Catch
Limit
(ACL) | Harvest
Control
Rule
Specification | |--------------|-----------------|--------------------------|--------------|-----------|------------------|---------------------|---|---| | Bocaccio | 6,363
B eggs | 3,022
mt | 2018 | 2016 | 2031 | 2022 | 790 mt | SPR 77.7% | | Cowcod | 1,549
mt | 620
mt | 2019 | 2019 | 2057 | 2020 | 10 mt;
4 mt
ACT | E = 0.007
(equivalent
to an SPR of
82.7%) | | Darkblotched | 3,203
M eggs | 1,474
M eggs | 2012 | 2016 | 2037 | 2025 | 641 mt | ACL=ABC
(P*=0.45) | | POP | 37,780
mt | 15,112
mt | 2017 | 2018 | 2071 | 2051 | 281 mt | 281 mt ACL
in 2017 and
2018; SPR
86.4%
thereafter | | Yelloweye | 994
M eggs | 389
M eggs | 2044 | 2047 | 2083 | 2074 | 20 mt | SPR 76% | ## 1.2.2 Rebuilding Strategy This section describes the rebuilding strategy for each species and the management measures used to attain rebuilding. #### 1.2.2.1 Bocaccio South of 40°10' N latitude The rebuilding strategy for bocaccio is a constant SPR harvest rate. Management measures used to limit the catch of bocaccio, such that projected impacts to the stock attain rebuilding objectives, include depth-based time and area closures for recreational fisheries and Groundfish Conservation Areas (GCAs) for commercial fisheries. GCAs enclose depth ranges where bycatch of overfished species is most likely to occur based on information retrieved from logbooks, the at-sea observer program, surveys, and other sources. The boundaries vary by season and fishery sector, and may be modified in response to new information about the geographic and seasonal distribution of bycatch. A large proportion of bocaccio catch occurs in recreational fisheries in central and southern California. Recreational depth closures that restrict fishing to shallow waters, bag limits, and seasonal closures have been used to reduce recreational bocaccio catches. ## 1.2.2.2 Canary Rockfish Canary rockfish was declared successfully rebuilt in 2016 based on a 2015 assessment (Thorson and Wetzel 2015) which indicated the stock was above the $B_{40\%}$ B_{MSY} threshold with a depletion of 55.5% at the start of 2015. #### 1.2.2.3 Cowcod South of 40°10' N latitude The rebuilding strategy for cowcod is a constant harvest rate (E = 0.007 calculated as catch/estimated age 11+ biomass). Management measures used to limit the catch of cowcod, such that projected impacts to the stock attain rebuilding objectives, include depth-based closed areas where bycatch of overfished species is most likely to occur, based on information retrieved from logbooks, the at-sea observer program, surveys, and other sources. The boundaries vary by season and fishery sector, and may be modified in response to new information about the geographic and seasonal distribution of bycatch. Because cowcod is a fairly sedentary species, establishment of two marine protected areas, considered two of the GCAs, is the key strategy for limiting cowcod fishing mortality. The Cowcod Conservation Areas (CCAs) in the Southern California Bight encompass two areas of greatest cowcod density as estimated in 2000, based on historical cowcod catch and catch rates in commercial and recreational fisheries. To aid in enforcement, the CCAs are bounded by straight lines enclosing simple polygons. Dick (2011) concluded that the CCAs have been effective in reducing bycatch to levels projected to allow stock rebuilding. Estimated fishery removals have been at levels sufficient to rebuild the stock, since the CCAs were implemented. Given the particular life history characteristics of cowcod, the Council will continue to use species-specific area closures to protect cowcod. As new information becomes available on cowcod behavior and fisheries interactions with cowcod, the boundaries or related regulations concerning the current CCAs may change, and additional CCAs may be established by regulation. #### 1.2.2.4 Darkblotched Rockfish The rebuilding strategy for darkblotched rockfish is a constant SPR harvest rate. Management measures used to limit the catch of darkblotched such that projected impacts to the stock attain rebuilding objectives, include depth-based closed areas for the trawl fishery (darkblotched rockfish are predominantly caught by trawl gear) where bycatch of overfished species is most likely to occur, based on information retrieved from logbooks, the at-sea observer program, surveys, and other sources. The boundaries vary by season and fishery sector, and may be modified in response to new information about the geographic and seasonal distribution of bycatch. To limit darkblotched rockfish bycatch, the outer boundary of the trawl GCA was set to shift fishing activity into deeper water, away from the depth range of higher abundance for this species. Periodically since 2003, this outer boundary was modified during the winter months to allow targeting of petrale sole and other flatfish species in shallower depths while still minimizing bycatch. Trawl IFQ allocations and accumulation limits, as well as total catch limits in the at-sea whiting fishery, are structured to minimize the incidental bycatch of darkblotched in trawl fisheries. #### 1.2.2.5 Lingcod The west coast lingcod stock was declared successfully rebuilt in 2005 after the 2005 assessment indicated the stock's spawning biomass was above the $B_{40\%}$ B_{MSY} threshold with a depletion of 64 percent of unfished biomass ($B_{64\%}$). # 1.2.2.6 Pacific Ocean Perch (POP) The rebuilding strategy for POP is a constant SPR harvest rate. Management measures used to limit the catch of POP, such that projected impacts to the stock attain rebuilding objectives, include depth-based closed areas where bycatch of overfished species is most likely to occur, based on information retrieved from logbooks, the at-sea observer program, surveys, and other sources. The boundaries vary by season and fishery sector, and may be modified in response to new information about the geographic and seasonal distribution of bycatch. Because POP tend to co-occur with darkblotched rockfish, management measures applicable to that species also serve to constrain catches of POP. These measures include configuring the outer boundary of the trawl GCA so that vessels fish in deeper water, where POP are less abundant. Trawl IFQ allocations and accumulation limits, as
well as total catch limits in the at-sea whiting fishery, are structured to minimize the incidental bycatch of POP in trawl fisheries. #### 1.2.2.7 Petrale Sole Petrale sole was declared successfully rebuilt in 2016 based on a 2015 update assessment (Stawitz, Hurtado-Ferro et al. 2015), which indicated the coastwide petrale sole stock was successfully rebuilt with a depletion of 31% at the start of 2015. #### 1.2.2.8 Widow Rockfish The west coast widow rockfish stock was declared successfully rebuilt in 2011 after the 2011 assessment indicated the stock's spawning biomass was above the $B_{40\%}$ B_{MSY} threshold with a depletion of 51 percent of unfished biomass ($B_{51\%}$). ### 1.2.2.9 Yelloweye Rockfish The rebuilding strategy for yelloweye rockfish is a constant SPR harvest rate. Management measures used to limit the catch of yelloweye rockfish, such that projected impacts to the stock attain rebuilding objectives, include depth-based closed areas where bycatch of overfished species is most likely to occur, based on information retrieved from logbooks, the at-sea observer program, surveys, and other sources. The boundaries vary by season and fishery sector, and may be modified in response to new information about the geographic and seasonal distribution of bycatch. Yelloweye rockfish impacts in commercial fisheries are managed by implementation of gear- and sector-specific GCAs. Also, trawl IFQ allocations and accumulation limits are structured to minimize the incidental bycatch of yelloweye rockfish in the groundfish bottom trawl fishery. In addition to the more general measures described above, which are intended to reduce bycatch of all overfished species, several Yelloweye Rockfish Conservation Areas (YRCAs) are in place that prevent recreational groundfish and halibut anglers from targeting this species in areas where they are concentrated. Recreational bag and size limits are also used to manage total yelloweye rockfish fishing mortality. Given the particular life history characteristics of yelloweye rockfish, the Council will continue to use a species-specific area closure or closures to protect yelloweye rockfish. As new information becomes available on yelloweye rockfish behavior and fisheries interactions with yelloweye rockfish, the boundaries or related regulations concerning the current YRCAs may change, and additional YRCAs may be established by regulation. #### 1.3 Rebuilding Plan History and Background This section contains previous rebuilding plan parameters as well as more detailed information on the history of each rebuilding plan since implementation. # 1.3.1 Previous Rebuilding Plan Parameters Table F-2. Specified rebuilding plan parameters at the time of plan adoption under Amendments 16-2 and 16-3. | Species | Year
Stock
Declared
Overfished | Year
Rebuilding
Plan
Adopted | $\mathbf{B_0}$ | $\mathbf{B}_{ ext{MSY}}$ | $T_{ m MIN}$ | T _{MAX} | P _{MAX} | \mathbf{T}_{TARGET} | Harvest
Control
Rule | |--------------|---|---------------------------------------|--|--|--------------|------------------|------------------|-----------------------|--------------------------------| | Bocaccio a/ | 1999 | 2004 | 13,387
B eggs in
2003 | 5,355
B eggs | 2018 | 2032 | 70% | 2023 | F=0.0498 | | Canary | 2000 | 2003 | 31,550 mt | 12,620 mt | 2057 | 2076 | 60% | 2074 | F=0.022 | | Cowcod | 2000 | 2004 | 3,367 mt | 1,350 mt | 2062 | 2099 | 60% | 2090 | F=0.009 | | Darkblotched | 2000 | 2003 | 29,044 mt | 11,618 mt | 2014 | 2047 | 80% | 2030 | F=0.027 | | Lingcod | 1999 | 2003 | 28,882 mt
N;
20,971 mt
S | 9,153 mt
N;
8,389 mt S | 2007 | 2009 | 60% | 2009 | F=0.0531
N;
F=0.061
S | | POP | 1999 | 2003 | 60,212
units of
spawning
output | 24,084
units of
spawning
output | 2012 | 2042 | 70% | 2027 | F=0.0082 | | Widow b/ | 2001 | 2004 | 43,580
M eggs | 17,432
M eggs | 2026 | 2042 | 60% | 2038 | F=0.0093 | | Yelloweye | 2002 | 2004 | 3,875 mt | 1,550 mt | 2027 | 2071 | 80% | 2058 | F=0.0153 | a/Based on the STATc base model in MacCall (MacCall 2003b). b/ Based on the Model 8 base model in He, et al. (He, et al. 2003b). Table F-3. Specified rebuilding plan parameters revised under Amendment 16-4. | Species | $\mathbf{B_0}$ | $\mathbf{B}_{ ext{MSY}}$ | T _{MIN} a/ | ${ m T_{MAX}}$ | T _{F=0} a/ | P _{MAX} | T _{TARGET} | Harvest
Control
Rule
(SPR
Harvest
Rate) | |--------------|--|---------------------------------------|---------------------|----------------|---------------------|------------------|---------------------|--| | Bocaccio | 13,402
B eggs in
2005 | 5,361
B eggs | 2018 | 2032 | 2021 | 77.7% | 2026 | 77.7% | | Canary | 34,155 mt | 13,662 mt | 2048 | 2071 | 2053 | 55.4% | 2063 | 88.7% | | Cowcod | 3,045 mt | 1,218 mt | 2035 | 2074 | 2035 | 90.6% | 2039 | 90.0% | | Darkblotched | 26,650
M eggs | 10,660
M eggs | 2009 | 2033 | 2010 | 100% | 2011 | 60.7% | | POP | 37,838
units of
spawning
output | 15,135 units
of spawning
output | 2015 | 2043 | 2015 | 92.9% | 2017 | 86.4% | | Widow | 49,678
M eggs | 19,871
M eggs | 2013 | 2033 | 2013 | 95.2% | 2015 | 95.0% | | Yelloweye | 3,322 mt | 1,328 mt | 2046 | 2096 | 2048 | 80% | 2084 | 71.9%
b/ | a/ T_{MIN} is the shortest time to rebuild from the onset of the rebuilding plan or from the first year of a rebuilding plan, which is usually the year after the stock was declared overfished. The shortest possible time to rebuild the stocks with rebuilding plans under consideration in Amendment 16-4 is $T_{F=0}$, which is the median time to rebuild the stock if all fishing-related mortality were eliminated beginning in 2007. b/ The yelloweye rebuilding plan specified a harvest rate ramp-down strategy before resuming a constant harvest rate in 2011. $F_{71.9\%}$ was the constant harvest rate beginning in 2011. Table F-4. Specified rebuilding plan parameters revised under Amendment 16-5. | Species | $\mathbf{B_0}$ | $\mathbf{B}_{ ext{MSY}}$ | $T_{ m MIN}$ | ${ m T_{F=0}}$ | T _{MAX} | T _{TARGET} | 2013
Annual
Catch
Limit
(ACL) | Harvest
Control
Rule
Specification | |--------------|-----------------|--------------------------|--------------|----------------|------------------|---------------------|---|---| | Bocaccio | 7,946
B eggs | 3,178
B eggs | 2018 | 2018 | 2031 | 2022 | 320 mt | SPR 77.7% | | Canary | 25,993
mt | 10,397
mt | 2024 | 2024 | 2050 | 2030 | 116 mt | SPR 88.7% | | Cowcod | 2,183
mt | 873
mt | 2059 | 2060 | 2097 | 2068 | 3 mt | SPR 82.7% | | Darkblotched | 32,800
mt | 13,112
mt | 2012 | 2016 | 2037 | 2025 | 317 mt | SPR 64.9% | | POP | 37,780
mt | 15,112
mt | 2017 | 2018 | 2071 | 2051 | 150 mt | SPR 86.4% | | Petrale sole | 25,334
mt | 6,334
mt | 2014 | 2014 | 2021 | 2016 | 2,592
mt | 25-5 Rule | | Yelloweye | 994
M eggs | 389
M eggs | 2044 | 2047 | 2083 | 2074 | 18 mt | SPR 76% | ### 1.3.2 Rebuilding Plan Background #### 1.3.2.1 Bocaccio Rockfish South of 40°10' N. Latitude # Status of the Bocaccio Stock and Fisheries Affected by Stock Rebuilding Measures at the Time of Rebuilding Plan Adoption (April 2004) Assessment scientists and managers have treated west coast bocaccio as independent stocks north and south of Cape Mendocino. The southern stock, which has been declared overfished, occurs south of Cape Mendocino and the northern stock north of 48 tūd\(\text{N.ihatiorthern Washington (off Cape Flattery)}\). The overfished southern bocaccio rockfish stock occurs in Central and Southern California waters, on the continental shelf and in nearshore areas, often in rocky habitat. They are caught in both commercial and recreational fisheries in approximately equal amounts. Commercial catches mainly occur in LE trawl fisheries. Bocaccio have long been an important component of California rockfish fisheries. Catches increased to high levels in the 1970s and early 1980s as relatively strong year-classes recruited to the stock. The Council began to recommend increasingly restrictive regulations after an assessment of the southern stock in 1990 (Bence and Hightower 1990) indicated that fishing rates were too high. The southern stock has been assessed six times (Bence and Hightower 1990; Bence and Rogers 1992; MacCall, *et al.* 1999; MacCall 2002; MacCall 2003b; Ralston, *et al.* 1996) and has suffered poor recruitment during the warm water conditions that have prevailed off Southern California since the late 1980s. The 1996 assessment (Ralston, *et al.* 1996) indicated the stock was in severe decline. NMFS formally declared the stock overfished in March 1999 after the groundfish FMP was amended to incorporate the tenets of the Sustainable Fisheries Act. MacCall et al. (MacCall, *et al.* 1999) confirmed the overfished status of bocaccio and estimated spawning output of the southern stock to be 2.1 percent of its unfished biomass and 5.1 percent of the MSY level. The northern stock of bocaccio has not been assessed. While previous assessments only used data from Central and Northern California, an assessment in 2002 (MacCall and He 2002) also included data for southern California. While relative abundance increased slightly from the last assessment (4.8 percent of unfished biomass), potential productivity appears lower than previously thought, making for a more pessimistic outlook. The Council assumed a medium recruitment scenario for the 1999 year class, which was not assessed (MacCall, *et al.* 1999). The 2002 assessment revealed the 1999 year class experienced relatively lower recruitment. Therefore, although the 1999 year class contributed a substantial quantity of
fish to the population, it did not contribute as much to rebuilding as was previously thought. The 2003 bocaccio assessment differs greatly from the 2002 assessment. It is driven by the strength of the incoming 1999 year class that had not recruited into the indices used for the 2002 assessment and by a revised lower estimate of natural mortality (MacCall 2003b). In addition to the 2001 Triennial Survey data, the 2003 assessment used larval abundance data from recent CalCOFI surveys as well as length and catch per unit effort (CPUE) data from recreational fisheries. In calculating the recreational CPUE information, a new method was used that identifies relevant fishing trips by species composition and adjusts the catch history for regulatory changes that affect the level of discard and avoidance. The results of these calculations suggest that recreational CPUE has increased dramatically in recent years and is at a record high level in Central California north of Pt. Conception. The Stock Assessment Review (STAR) Panel recommended the use of two assessment models as a means of bracketing uncertainty from the very different signals between the Triennial Survey and the recreational CPUE data. Following the STAR Panel meeting, MacCall presented a third "hybrid" model that incorporated the data from all of the indices. The SSC recommended, and the Council approved, the use of this third modeling approach. This resulted in modest improvement in estimated stock size, but significantly affected the estimated productivity of the stock. These results had substantial effects on the rebuilding outlook for bocaccio which, under the 2002 assessment, was not expected to rebuild within T_{MAX} even with no fishing-related mortality. Total mortality in 2003 fisheries was restricted to less than 20 mt as a means of conserving the stock while minimizing adverse socioeconomic impacts to communities. The current rebuilding analysis (MacCall 2003a), using the "hybrid" model, suggests the stock could rebuild to B_{MSY} within 25 years while sustaining an OY of approximately 300 mt in 2004. The Council adopted a rebuilding plan for bocaccio rockfish at its April 2004 meeting, as described by the parameter values listed in Table F-2. These values are based on a rebuilding analysis conducted by MacCall (2003b). Amendment 16-4, adopted by the Council at its June 2006 meeting, revised the rebuilding parameters for bocaccio, as listed in Table F-3. These values are based on a rebuilding analysis conducted by MacCall (2006) which had determined that the bocaccio stock was at 10.7 percent of its unfished level in 2005. Fisheries in central and southern California are affected by the bocaccio rebuilding plan because the overfished population occurs in these waters. Recreational and LE trawl fisheries in this region have accounted for the bulk of landings in recent years. #### **Methods Used to Calculate Stock Rebuilding Parameters** The methods used in the rebuilding analysis (MacCall 2003a) upon which the original rebuilding plan was based, and those used for the rebuilding plan revision under Amendment 16-4 (MacCall 2006) do not differ substantially from the approach described in Section 4.6.2. #### Rebuilding Parameter Values at the Time of Rebuilding Plan Adoption Table F-2 lists the numerical values for B_0 , B_{MSY} , T_{MIN} , T_{MAX} , P_{MAX} , T_{TARGET} and F. The values of B_0 , B_{MSY} , T_{MIN} , and T_{MAX} are derived from the rebuilding analysis used in formulating the rebuilding plan (MacCall 2003a). Using the STAT base model from the most recent stock assessment (MacCall 2003b), the Council chose a value of 70 percent for P_{MAX} , based on a harvest control rule of F = 0.0498. This results in a target year of 2023. #### Rebuilding Parameter Values from the Amendment 16-4 Rebuilding Plan Update Table F-3 lists the numerical values for B_0 , B_{MSY} , T_{MIN} , T_{MAX} , $T_{F=0}$, P_{MAX} , T_{TARGET} and an SPR harvest rate. The values of B_0 , B_{MSY} , T_{MIN} , $T_{F=0}$, and T_{MAX} are derived from the rebuilding analysis used in formulating the rebuilding plan (MacCall 2006). The Council chose a target rebuilding year of 2026. #### **Bocaccio Fishing Communities** Amendment 16-4 revised the Council's approach to rebuilding plans, requiring an analysis of the needs of fishing communities in relation to overfished species rebuilding times, in addition to the traditional analysis of rebuilding times in relation to the status and biology of the stock. For Amendment 16-4 and the 2007-2008 fisheries, fishing community needs are described and analyzed in an Environmental Impact Statement (EIS) (PFMC 2006). Chapter 7 of that EIS discusses the communities that make up the socio-economic environment of the Pacific Coast groundfish fisheries. In general, bocaccio is a continental shelf species that is most frequently taken south of 40°10' N. latitude in all of the groundfish fisheries, commercial and recreational. All groundfish fishing communities off the southern U.S. west coast are affected by bocaccio rebuilding measures. #### **Bocaccio Rockfish Rebuilding Strategy** As shown in Table F-2, at the inception of the rebuilding plan the harvest control rule for bocaccio rockfish was a fishing mortality rate of 0.0498. Based on the 2003 rebuilding analysis, this harvest rate is likely to rebuild the stock by the target year of 2023. This value is likely to change over time as stock size and structure changes. Any updated value will be published in Federal groundfish regulations. The fishing mortality rate is applied to the exploitable biomass estimate to determine the OY for a given fishing period. Management measures are implemented through the biennial harvest specification and management process described in Chapter 5. The types of management measures that may be implemented through this process are described in Chapter 6. In 2004, at the time of rebuilding plan adoption, measures intended to limit bycatch of overfished species included prohibiting retention of certain overfished species during some parts of the year, reducing landing limits (cumulative trip limits) on co-occurring species, establishing extensive time/area closures, and restricting the use of trawl nets equipped with large footropes. (By using large footropes with heavy roller gear, bottom trawlers can access rocky habitat on the continental shelf. This is the preferred habitat for some overfished species.) Beginning in 2002, time/area closures known as Groundfish Conservation Areas (GCAs) came into use as a way of decreasing bycatch of overfished species. GCAs enclose depth ranges where bycatch of overfished species is most likely to occur, based on information retrieved from logbooks and the at-sea observer program. The boundaries vary by season and fishery sector, and may be modified in response to new information about the geographic and seasonal distribution of bycatch. As noted, a large proportion of bocaccio catch occurs in recreational fisheries in Central and Southern California. Recreational depth closures, restricting fishing to shallow waters, bag limits, and seasonal closures have been used to reduce recreational bocaccio catches. The Council's rebuilding measures for 2007-2008, adopted at the same time as the Council's adoption of Amendment 16-4, continue the Council's strategy of constraining bocaccio total mortality by restricting fishing on co-occurring healthy stocks, particularly chilipepper rockfish, and preventing fishing in areas where bocaccio may be taken incidentally. #### 1.3.2.2 Cowcod # Status of the Cowcod and Fisheries Affected by Stock Rebuilding Measures at the Time of Rebuilding Plan Adoption (April 2004) Relatively little is known about cowcod, a species of large rockfish that ranges from Ranger Bank and Guadalupe Island in central Baja California to Usal, Mendocino County, California (Miller and Lea 1972), and may infrequently occur as far north as Newport, Oregon. Cowcod have been assessed only once (Butler, *et al.* 1999). Adult cowcod are primarily found over high relief rocky areas (Allen 1982). They are generally solitary, but occasionally aggregate (Love, *et al.* 1990). While cowcod are not a major component of the groundfish fishery, they are highly desired by both recreational and commercial fishers because of their bright color and large size. In recent years small amounts have been caught by LE trawl vessels and recreational anglers in Southern California. The cowcod stock south of Cape Mendocino has experienced a long-term decline. The cowcod stock in the Conception area was assessed in 1998 (Butler, *et al.* 1999). Abundance indices decreased approximately tenfold between the 1960s and the 1990s, based on commercial passenger fishing vessel logs (Butler, *et al.* 1999). Recreational and commercial catch also declined substantially from peaks in the 1970s and 1980s, respectively. B_0 was estimated to be 3,370 mt, and 1998 spawning biomass was estimated at 7 percent of B_0 , well below the 25 percent overfishing threshold. As a result, NMFS declared cowcod in the Conception and Monterey management areas overfished in January 2000. Large areas off Southern California (the Cowcod Conservation Areas [CCAs]) have been closed to fishing for cowcod. The stock's low productivity and declined spawning biomass also necessitates an extended rebuilding period, estimated at 62 years with no fishing-related mortality (T_{MIN}), to achieve a 1,350 mt B_{MSY} for the Conception management area. There is relatively little information about the cowcod stock, and there are major uncertainties in the one assessment that has been conducted. The assessment authors needed to make estimates of early landings based on more recent data and reported total landings of rockfish. Age and size composition of catches are poorly sampled, population structure is unknown, and the assessment
was restricted to Southern California waters. A cowcod rebuilding review was completed in 2003, which validated the assumption that non-retention regulations and area closures have been effective in constraining cowcod fishing mortality (Butler, *et al.* 2003). These results, although encouraging, are based on cowcod fishery-related removals from catch per fishing vessel observations and angler-reported discards. Non-retention regulations and limited observation data have increased the need for fishery independent population indices. The Council adopted a rebuilding plan for cowcod at its April 2004 meeting, as described by the parameter values listed in Table F-2. These values are based on a rebuilding analysis conducted by Butler and Barnes (Butler and Barnes 2000). Amendment 16-4, adopted by the Council at its June 2006 meeting, revised the rebuilding parameters for cowcod, as listed in Table F-3. These values are based on a rebuilding analysis conducted by Piner (2006) which had determined that the cowcod stock was between 14 percent and 21 percent of its unfished level in 2005. ## Methods Used to Calculate Stock Rebuilding Parameters The Cowcod rebuilding analysis (Butler and Barnes 2000) was completed before the SSC default rebuilding analysis methodology (Punt 2002), described in Section 4.6.2, had been developed. Instead, it uses a surplus production model using a log-normal distribution fitted to recruitment during 1951-1998. At the time of rebuilding plan adoption (2004) a new cowcod stock assessment and rebuilding analysis had not been completed. In April 2004 the SSC recommended that future cowcod stock assessments use a model whose output can be used in the default rebuilding analysis methodology. The methods in the rebuilding analysis (Piner 2006) used to develop the revised cowcod rebuilding plan under Amendment 16-4 do not differ substantially from the approach described in Section 4.6.2. #### Rebuilding Parameter Values at the Time of Rebuilding Plan Adoption Table F-2 lists the numerical values for B_0 , B_{MSY} , T_{MIN} , T_{MAX} , P_{MAX} , T_{TARGET} and F. The values of B_0 , B_{MSY} , T_{MIN} , and T_{MAX} are derived from the rebuilding analysis (Butler and Barnes 2000) used in formulating the rebuilding plan. The Council chose a value of 60 percent for P_{MAX} , based on a harvest control rule of F = 0.009. This results in a target year of 2090. #### Rebuilding Parameter Values from the Amendment 16-4 Rebuilding Plan Update Table F-3 lists the numerical values for B_0 , B_{MSY} , T_{MIN} , T_{MAX} , $T_{F=0}$, P_{MAX} , T_{TARGET} and an SPR harvest rate. The values of B_0 , B_{MSY} , T_{MIN} , $T_{F=0}$, and T_{MAX} are derived from the rebuilding analysis used in formulating the rebuilding plan (Piner 2006). The Council chose a target rebuilding year of 2039. #### **Cowcod Fishing Communities** Amendment 16-4 revised the Council's approach to rebuilding plans, requiring an analysis of the needs of fishing communities in relation to overfished species rebuilding times, in addition to the traditional analysis of rebuilding times in relation to the status and biology of the stock. For Amendment 16-4 and the 2007-2008 fisheries, fishing community needs are described and analyzed in an EIS (PFMC 2006). Chapter 7 of that EIS discusses the communities that make up the socio-economic environment of the Pacific Coast groundfish fisheries. In general, cowcod is a sedentary and site-loyal continental shelf species that is most frequently taken off southern California in commercial non-trawl and recreational fisheries. All groundfish fishing communities off the southern U.S. west coast are affected by cowcod rebuilding measures. #### **Cowcod Rebuilding Strategy** As shown in Table F-2, at the inception of the rebuilding plan the harvest control rule for cowcod was a fishing mortality rate of 0.009. Based on the 2000 cowcod rebuilding analysis (Butler and Barnes 2000), this harvest rate is likely to rebuild the stock by the target year of 2090. This value is likely to change over time as stock size and structure changes. Any updated value will be published in Federal groundfish regulations. The fishing mortality rate is applied to the exploitable biomass estimate to determine the OY for a given fishing period. Management measures are implemented through the biennial harvest specification and management process described in Chapter 5. The types of management measures that may be implemented through this process are described in Chapter 6. In 2004, at the time of rebuilding plan adoption, measures intended to limit bycatch of overfished species included prohibiting retention of certain overfished species during some parts of the year, reducing landing limits (cumulative trip limits) on co-occurring species, establishing extensive time/area closures, and restricting the use of trawl nets equipped with large footropes. (By using large footropes with heavy roller gear, bottom trawlers can access rocky habitat on the continental shelf. This is the preferred habitat for some overfished species.) Beginning in 2002, time/area closures known as GCAs came into use as a way of decreasing bycatch of overfished species. GCAs enclose depth ranges where bycatch of overfished species is most likely to occur, based on information retrieved from logbooks and the at-sea observer program. The boundaries vary by season and fishery sector, and may be modified in response to new information about the geographic and seasonal distribution of bycatch. Because cowcod is a fairly sedentary species, establishment of a marine protected area, considered one of the GCAs, is the key strategy for limiting cowcod fishing mortality. The CCAs in the Southern California Bight encompass two areas of greatest cowcod density, as estimated in 2000, based on historical cowcod catch and catch rates in commercial and recreational fisheries. To aid in enforcement, the CCAs are bounded by straight lines enclosing simple polygons. Butler, et al. (Butler, et al. 2003) concluded that the CCAs have been effective in reducing bycatch to levels projected to allow stock rebuilding. Estimated fishery removals have been at levels sufficient to rebuild the stock, since the CCAs were implemented, except in 2001 when 5.6 mt was caught in the Conception management area. Most of this catch occurred in the spot prawn trawl fishery, which subsequently has been phased out. Given the particular life history characteristics of cowcod, the Council will continue to use species-specific area closures to protect cowcod. As new information becomes available on cowcod behavior and fisheries interactions with cowcod, the boundaries or related regulations concerning the current CCAs may change, and additional CCAs may be established by regulation. The Council's rebuilding measures for 2007-2008, adopted at the same time as the Council's adoption of Amendment 16-4, continue the Council's strategy of constraining cowcod total mortality by restricting or eliminating fishing in areas where cowcod commonly occur and may be taken incidentally. #### 1.3.2.3 Darkblotched Rockfish # Status of the Darkblotched Stock and Fisheries Affected by Stock Rebuilding Measures at the Time of the Council's Rebuilding Plan Adoption (June 2003) Historically, darkblotched rockfish were managed as part of a coastwide Sebastes complex, which was later segregated into north and south management units divided at 40°30' N. latitude. As a result, fishery-dependent data from this period are generally unavailable. The first darkblotched rockfish stock assessment estimated the proxy MSY harvest rate and overfishing rate for the stock (Lenarz 1993). Rogers et al. (Rogers, *et al.* 2000) assessed darkblotched stock status in 2000 and determined the stock was at 14 percent to 31 percent of its unfished level. This range in biomass estimates encompasses the MSST threshold of 25 percent; uncertainty in past catches by foreign vessels, which targeted Pacific ocean perch and also caught darkblotched rockfish, was the most important contributor to this wide range for the biomass estimate. A larger unfished biomass (B₀) is computed using larger historic catch estimates. Since the MSST is expressed as a percent of unfished biomass, a larger B₀ increases the absolute value of this threshold, making an overfished determination more likely. Without definitive information on foreign catches, managers assumed darkblotched comprised 10 percent of this catch, leading to the conclusion that the spawning stock biomass was 22 percent of its unfished level. Because this is below the MSST, the stock was declared overfished in 2000. The Council adopted a rebuilding plan for darkblotched rockfish at its June 2003 meeting, as described by the parameter values listed in Table F-2. These values are based on a rebuilding analysis conducted by Methot and Rogers (Methot and Rogers 2001). Darkblotched rockfish occur on the outer continental shelf and continental slope, mainly north of Point Reyes. Because of this distribution, they are caught exclusively by commercial vessels. Most landings have been made by bottom trawl vessels targeting flatfish on the continental shelf, rockfish on the continental slope, and the Dover sole-thornyhead-sablefish complex, also on the slope. ### **Methods Used to Calculate Stock Rebuilding Parameters** The methods used in the rebuilding analysis (2001) upon which the original rebuilding plan was based, and those used for the rebuilding plan revision under Amendment 16-4 (2006), do not differ substantially from the approach described in Section 4.6.2. # Rebuilding Parameter Values at the Time of Rebuilding Plan Adoption Table F-2 lists the numerical values for B_0 , B_{MSY} , T_{MIN} , T_{MAX} , P_{MAX} , T_{TARGET} and F. The values of B_0 , B_{MSY} , T_{MIN} , and T_{MAX} are derived from the rebuilding analysis used in formulating
the rebuilding plan (Methot and Rogers 2001). The Council chose a value of 80 percent for P_{MAX} , based on a harvest control rule of F = 0.027. This results in a target year of 2030. # Rebuilding Parameter Values from the Amendment 16-4 Rebuilding Plan Update Table F-3 lists the numerical values for B_0 , B_{MSY} , T_{MIN} , T_{MAX} , $T_{F=0}$, P_{MAX} , T_{TARGET} and an SPR harvest rate. The values of B_0 , B_{MSY} , T_{MIN} , $T_{F=0}$, and T_{MAX} are derived from the rebuilding analysis used in formulating the rebuilding plan (Rogers 2006). The Council chose a target rebuilding year of 2011. #### **Darkblotched Rockfish Fishing Communities** Amendment 16-4 revised the Council's approach to rebuilding plans, requiring an analysis of the needs of fishing communities in relation to overfished species rebuilding times, in addition to the traditional analysis of rebuilding times in relation to the status and biology of the stock. For Amendment 16-4 and the 2007-2008 fisheries, fishing community needs are described and analyzed in an EIS (PFMC 2006). Chapter 7 of that EIS discusses the communities that make up the socio-economic environment of the Pacific Coast groundfish fisheries. In general, darkblotched rockfish is a continental slope species that is most frequently taken in the commercial trawl fisheries north of 38° N. latitude. Fishing communities that participate in the slope trawl fisheries of the northern U.S. west coast are most strongly affected by darkblotched rebuilding measures. #### **Darkblotched Rockfish Rebuilding Strategy** As shown in Table F-2, at the inception of the rebuilding plan the harvest control rule for darkblotched rockfish was a fishing mortality rate of 0.027. Based on the 2001 rebuilding analysis, this harvest rate is likely to rebuild the stock by the target year of 2030. This value is likely to change over time as stock size and structure changes. Any updated value will be published in Federal groundfish regulations. The fishing mortality rate is applied to the exploitable biomass estimate to determine the OY for a given fishing period. Management measures are implemented through the biennial harvest specification and management process described in Chapter 5. The types of management measures that may be implemented through this process are described in Chapter 6. In 2003, at the time of rebuilding plan adoption, measures intended to limit bycatch of overfished species included prohibiting retention of certain overfished species during some parts of the year, reducing landing limits (cumulative trip limits) on co-occurring species, establishing extensive time/area closures, and restricting the use of trawl nets equipped with large footropes. (By using large footropes with heavy roller gear, bottom trawlers can access rocky habitat on the continental shelf. This is the preferred habitat for some overfished species.) Beginning in 2002, time/area closures, referred to as GCAs, came into use as a way of decreasing bycatch of overfished species. GCAs enclose depth ranges where bycatch of overfished species is most likely to occur, based on information retrieved from log books and the at-sea observer program. The boundaries vary by season and fishery sector, and may be modified in response to new information about the geographic and seasonal distribution of bycatch. To limit darkblotched rockfish bycatch, an outer boundary of the GCA was set to move fishing activity into deeper water, away from the depth range of higher abundance for this species. In 2003 this outer boundary was modified during the winter months to allow targeting of petrale sole and other flatfish in shallower depths while still minimizing bycatch. The cumulative trip limits for minor slope rockfish north of Cape Mendocino, the species complex that darkblotched rockfish are managed under, and for splitnose rockfish, a co-occurring target species, were also lowered. Trip limits for other target species also may be adjusted to reduce darkblotched rockfish bycatch. The Council's rebuilding measures for 2007-2008, adopted at the same time as the Council's adoption of Amendment 16-4, continue the Council's strategy of constraining darkblotched rockfish total mortality by restricting fishing on co-occurring healthy stocks and preventing fishing in areas where darkblotched rockfish may be taken incidentally. Additionally, the Council has adopted darkblotched rockfish bycatch limits for the Pacific whiting fishery, which has some darkblotched rockfish incidental catch. #### 1.3.2.4 Pacific Ocean Perch # Status of the Pacific Ocean Perch Stock and Fisheries Affected by Stock Rebuilding Measures at the Time of the Council's Rebuilding Plan Adoption (June 2003) Pacific ocean perch (POP) were targeted by Soviet and Japanese factory trawlers between 1965 and 1975. Their large catches during this period substantially contributed to a decline in the west coast stock. In 1981, just before this FMP was implemented, the Council declared the POP stock depleted and recommended conservative harvest policies. Although management measures discouraged targeting POP while allowing continued fishing of other species, the stock did not recover, and the Council recommended still more restrictive measures. A 1998 stock assessment (Ianelli and Zimmerman 1998) estimated POP biomass was 13 percent of the unfished level, leading NMFS to declare the stock overfished in 1999. The Council adopted a rebuilding plan for POP at its June 2003 meeting, as described by the parameter values listed in Table F-2. These values are based on a 2000 stock assessment (Ianelli, *et al.* 2000) and subsequent rebuilding analysis (Punt and Ianelli 2001). A retrospective analysis of foreign fleet catches, underway at the time of rebuilding plan adoption, may change the rebuilding period estimates on which the rebuilding plan is based. Amendment 16-4, adopted by the Council at its June 2006 meeting, revised the rebuilding parameters for POP, as listed in Table F-3. These values are based on a rebuilding analysis conducted by Hamel (2006), which had determined that the POP stock was at 23.4 percent of its unfished level in 2005. POP tend to occur at similar depths as darkblotched rockfish, although they have a more northerly geographic distribution. As a result, POP are caught in similar fisheries as darkblotched rockfish, but only north of Cape Mendocino. At the time the rebuilding plan was adopted, LE trawl vessels targeting flatfish, including petrale sole and arrowtooth flounder, accounted for more than 90 percent of all POP landings. POP are not an important component of the recreational fishery. ## Methods Used to Calculate Stock Rebuilding Parameters The methods in the rebuilding analysis (Punt and Ianelli 2001) upon which the original rebuilding plan was based, and those used for the rebuilding plan revision under Amendment 16-4 (Hamel 2006), do not differ substantially from the approach described in Section 4.6.2. ## Rebuilding Parameter Values at the Time of Rebuilding Plan Adoption Table F-2 lists the numerical values for B_0 , B_{MSY} , T_{MIN} , T_{MAX} , P_{MAX} , T_{TARGET} and F. The values of B_0 , B_{MSY} , T_{MIN} , and T_{MAX} are derived from the rebuilding analysis used in formulating the rebuilding plan (Punt and Ianelli 2001). The Council chose a value of 70 percent for P_{MAX} , based on a harvest control rule of F = 0.0082. This results in a target year of 2027. # Rebuilding Parameter Values from the Amendment 16-4 Rebuilding Plan Update Table F-3 lists the numerical values for B_0 , B_{MSY} , T_{MIN} , T_{MAX} , $T_{F=0}$, P_{MAX} , T_{TARGET} and an SPR harvest rate. The values of B_0 , B_{MSY} , T_{MIN} , $T_{F=0}$, and T_{MAX} are derived from the rebuilding analysis used in formulating the rebuilding plan (Hamel 2006). The Council chose a target rebuilding year of 2017. ### **Pacific Ocean Perch Fishing Communities** Amendment 16-4 revised the Council's approach to rebuilding plans, requiring an analysis of the needs of fishing communities in relation to overfished species rebuilding times, in addition to the traditional analysis of rebuilding times in relation to the status and biology of the stock. For Amendment 16-4 and the 2007-2008 fisheries, fishing community needs are described and analyzed in an EIS (PFMC 2006). Chapter 7 of that EIS discusses the communities that make up the socio-economic environment of the Pacific Coast groundfish fisheries. In general, POP is a continental slope species that is most frequently taken in the commercial trawl fisheries north of 40° 10' N. latitude. Fishing communities that participate in the slope trawl fisheries of the northern U.S. west coast are most strongly affected by POP rebuilding measures. #### **Pacific Ocean Perch Rebuilding Strategy** As shown in Table F-2, at the inception of the rebuilding plan the harvest control rule for POP was a fishing mortality rate of 0.0082. Based on the 2001 POP rebuilding analysis (Punt and Ianelli 2001), this harvest rate is likely to rebuild the stock by the target year of 2027. This value is likely to change over time as stock size and structure changes. Any updated value will be published in Federal groundfish regulations. The fishing mortality rate is applied to the exploitable biomass estimate to determine the OY for a given fishing period. Management measures are implemented through the biennial harvest specification and management process described in Chapter 5. The types of management measures that may be implemented through this process are described in Chapter 6. In 2003, at the time of rebuilding plan adoption, measures intended to limit bycatch of overfished species included prohibiting retention of certain overfished species during some parts of the year, reducing landing limits (cumulative trip limits) on co-occurring species, establishing extensive time/area closures,
and restricting the use of trawl nets equipped with large footropes. (By using large footropes with heavy roller gear, bottom trawlers can access rocky habitat on the continental shelf. This is the preferred habitat for some overfished species.) Beginning in 2002 time/area closures, referred to as GCAs, came into use as a way of decreasing bycatch of overfished species. GCAs enclose depth ranges where bycatch of overfished species is most likely to occur, based on information retrieved from log books and the at-sea observer program. The boundaries vary by season and fishery sector, and may be modified in response to new information about the geographic and seasonal distribution of bycatch. Because POP tend to co-occur with darkblotched rockfish, management measures applicable to that species also serve to constrain catches of POP. These measures include configuring the outer boundary of the GCA so that vessels fish in deeper water, where POP are less abundant. A cumulative trip limit, which represents the maximum amount of an identified species or species group that may be landed within the cumulative limit period (in 2003, two months) is also established for this species. Trip limits for overfished species are intended to discourage targeting on them while permitting any incidental catch to be landed. (Bycatch discarded at sea is more difficult to monitor.) As with darkblotched rockfish, trip limits for target species also may be adjusted in order to minimize bycatch of overfished species. The Council's rebuilding measures for 2007-2008, adopted at the same time as the Council's adoption of Amendment 16-4, continue the Council's strategy of constraining POP total mortality by restricting fishing on co-occurring healthy stocks and preventing fishing in areas where POP may be taken incidentally. #### 1.3.2.5 Yelloweye Rockfish # Status of the Yelloweye Rockfish Stock and Fisheries Affected by Stock Rebuilding Measures at the Time of Rebuilding Plan Adoption (April 2004) Yelloweye rockfish are common from Central California northward to the Gulf of Alaska. They are bottom-dwelling, generally solitary, rocky reef fish, found either on or just over reefs (Eschmeyer, *et al.* 1983; Love 1991; Miller and Lea 1972; O'Connell and Funk 1986). Boulder areas in deep water (>180 m) are the most densely populated habitat type, and juveniles prefer shallow-zone broken-rock habitat (O'Connell and Carlile 1993). They also reportedly occur around steep cliffs and offshore pinnacles (Rosenthal, *et al.* 1982). The presence of refuge spaces is an important factor affecting their occurrence (O'Connell and Carlile 1993). Yelloweye rockfish are potentially caught in a range of both commercial and recreational fisheries. Because of their preference for rocky habitat, they are more vulnerable to hook-and-line gear. The first ever yelloweye rockfish stock assessment was conducted in 2001 (Wallace 2002). This assessment incorporated two area assessments: one from Northern California using CPUE indices constructed from Marine Recreational Fisheries Statistical Survey (MRFSS) sample data and California Department of Fish and Game (CDFG) data collected onboard commercial passenger fishing vessels, and the other from Oregon using Oregon Department of Fish and Wildlife (ODFW) sampling data. The assessment concluded current yelloweye rockfish stock biomass is about 7 percent of unexploited biomass in Northern California and 13 percent of unexploited biomass in Oregon. The assessment revealed a 30-year declining biomass trend in both areas with the last above average recruitment occurring in the late 1980s. The assessment's conclusion that yelloweye rockfish biomass was well below the 25 percent of unexploited biomass threshold for overfished stocks led to this stock being separated from the rockfish complexes in which it was previously listed. Until 2002, when yelloweye rockfish were declared overfished, they were listed in the remaining rockfish complex on the shelf in the Vancouver, Columbia, and Eureka management areas and the "other rockfish" complex on the shelf in the Monterey and Conception areas. As with the other overfished stocks, yelloweye rockfish harvest is now tracked separately. In June 2002 the SSC recommended that managers should conduct a new assessment incorporating Washington catch and age data. This recommendation was based on evidence that the biomass distribution of yelloweye rockfish on the west coast was centered in waters off Washington and that useable data from Washington were available. Based on that testimony, the Council recommended completing a new assessment in the summer of 2002, before a final decision was made on 2003 management measures. Methot et al. (Methot and Piner 2002b) did the assessment, which was reviewed by a STAR Panel in August 2002. The assessment result was much more optimistic than the one prepared by Wallace (Wallace 2002), largely due to the incorporation of Washington fishery data. While the overfished status of the stock was confirmed (24 percent of unfished biomass), Methot et al. (Methot and Piner 2002b) provided evidence of higher stock productivity than originally assumed. The assessment also treated the stock as a coastwide assemblage. This assessment was reviewed and approved by the SSC and the Council at the September 2002 Council meeting. Methot and Piner (2002) prepared a rebuilding analysis based on this assessment. The Council adopted a rebuilding plan for yelloweye rockfish at its April 2004 meeting, as described by the parameter values listed in Table F-2. These values are based on a rebuilding analysis conducted by Methot and Piner (Methot and Piner 2002a). Amendment 16-4, adopted by the Council at its June 2006 meeting, revised the rebuilding parameters for yelloweye rockfish, as listed in Table F-3. These values are based on a rebuilding analysis conducted by Tsou and Wallace (2006) which had determined that the yelloweye rockfish stock was at 17.7 percent of its unfished level in 2006. Because yelloweye rockfish prefer rocky reef habitat on the continental shelf, they are most vulnerable to recreational and commercial fixed gear fisheries. In the past, the groundfish trawl sector has accounted for a large proportion of the catch: from 1990 to 1997, trawlers took an average of 46 percent of the catch coastwide (although most catches occur in Washington and Oregon waters). (This discussion is based on data in the table on page 3 of Methot, *et al.* 2003). Trip limit reductions after 1997 and the imposition of restrictions on large footrope trawl gear in 2000 have substantially diminished the amount of yelloweye rockfish caught by the trawl sector. (Large footrope gear had made it possible for trawlers to access the rocky habitat where yelloweye live.) Trawl vessels accounted for only 14 percent of the catch on average from 1998 to 2001. Commercial fixed gear catches have also taken a significant share of the catch, 38 percent in the years 1990-1997. However, the implementation of the non-trawl RCA, which encloses much yelloweye habitat, has resulted in their share falling also. Open access directed groundfish fisheries and the Pacific halibut longline fleet also catch small amounts of yelloweye rockfish. Recreational catches have become more significant with the reduction in commercial catches. Comparing the 1990-1997 and 1998-2001 periods, their share of the total coastwide catch almost doubled to 30 percent, although actual average catches declined slightly. Most recreational catches occur in Washington State waters. #### **Methods Used to Calculate Stock Rebuilding Parameters** The methods used in the rebuilding analysis (Methot and Piner 2002a) upon which the original rebuilding plan was based, and those used for the rebuilding plan revision under Amendment 16-4 (Tsou and Wallace 2006), do not differ substantially from the approach described in Section 4.6.2. #### Rebuilding Parameter Values at the Time of Rebuilding Plan Adoption Table F-2 lists the numerical values for B_0 , B_{MSY} , T_{MIN} , T_{MAX} , P_{MAX} , T_{TARGET} , and F. The values of B_0 , B_{MSY} , T_{MIN} , and T_{MAX} are derived from the rebuilding analysis used in formulating the rebuilding plan (Methot and Piner 2002a). The Council chose a value of 80 percent for P_{MAX} , based on a harvest control rule of F = 0.0153. This results in a target year of 2058. ## Rebuilding Parameter Values from the Amendment 16-4 Rebuilding Plan Update Table F-3 lists the numerical values for B_0 , B_{MSY} , T_{MIN} , T_{MAX} , $T_{F=0}$, P_{MAX} , T_{TARGET} and an SPR harvest rate. The values of B_0 , B_{MSY} , T_{MIN} , $T_{F=0}$, and T_{MAX} are derived from the rebuilding analysis used in formulating the rebuilding plan (Tsou and Wallace 2006). The Council chose a target rebuilding year of 2084. # **Yelloweye Rockfish Fishing Communities** Amendment 16-4 revised the Council's approach to rebuilding plans, requiring an analysis of the needs of fishing communities in relation to overfished species rebuilding times, in addition to the traditional analysis of rebuilding times in relation to the status and biology of the stock. For Amendment 16-4 and the 2007-2008 fisheries, fishing community needs are described and analyzed in an EIS (PFMC 2006). Chapter 7 of that EIS discusses the communities that make up the socio-economic environment of the Pacific Coast groundfish fisheries. In general, yelloweye rockfish is a site-loyal continental shelf species that is most frequently taken in recreational and commercial hook-and-line fisheries north of 40°10' N. latitude. Measures to rebuild yelloweye rockfish by eliminating its directed harvest and preventing its incidental catch affect all hook-and-line groundfish fishing off the northern U.S. west coast. ## Yelloweye Rockfish Rebuilding Strategy As shown in Table F-2, at the inception of the rebuilding plan the harvest
control rule for canary rockfish was a fishing mortality rate of 0.0153. Based on the 2002 rebuilding analysis (Methot and Piner 2002), this harvest rate is likely to rebuild the stock by the target year of 2058. This value is likely to change over time as stock size and structure changes. Any updated value will be published in Federal groundfish regulations. The fishing mortality rate is applied to the exploitable biomass estimate to determine the OY for a given fishing period. Management measures are implemented through the biennial harvest specification and management process described in Chapter 5. The types of management measures that may be implemented through this process are described in Chapter 6. In 2004, at the time of rebuilding plan adoption, measures intended to limit bycatch of overfished species included prohibiting retention of certain overfished species during some parts of the year, reducing landing limits (cumulative trip limits) on co-occurring species, establishing extensive time/area closures, and restricting the use of trawl nets equipped with large footropes. (By using large footropes with heavy roller gear, bottom trawlers can access rocky habitat on the continental shelf. This is the preferred habitat for some overfished species.) Beginning in 2002, time/area closures known as GCAs came into use as a way of decreasing bycatch of overfished species. GCAs enclose depth ranges where bycatch of overfished species is most likely to occur, based on information retrieved from logbooks and the at-sea observer program. The boundaries vary by season and fishery sector, and may be modified in response to new information about the geographic and seasonal distribution of bycatch. In addition to the more general measures described above, which are intended to reduce bycatch of all overfished species, the Yelloweye Rockfish Conservation Area (YRCA), a C-shaped closed area off the Washington coast, near Cape Flattery, prevents recreational groundfish and halibut anglers from targeting this species in an area where they are concentrated. Recreational bag and size limits are also used to manage total yelloweye rockfish fishing mortality. Given the particular life history characteristics of yelloweye rockfish, the Council will continue to use a species-specific area closure or closures to protect yelloweye rockfish. As new information becomes available on yelloweye rockfish behavior and fisheries interactions with yelloweye rockfish, the boundaries or related regulations concerning the current YRCA may change, and additional YRCAs may be established by regulation. The Council's rebuilding measures for 2007-2008, adopted at the same time as the Council's adoption of Amendment 16-4, continue the Council's strategy of constraining yelloweye rockfish total mortality by restricting fishing on co-occurring healthy stocks and preventing fishing in areas where yelloweye rockfish may be taken incidentally. Additionally, the Council has adopted yelloweye rockfish rebuilding measures in the Pacific halibut fisheries and new YRCAs for the commercial groundfish and salmon fisheries operating off the northern U.S. west coast. The Council recognized the need to restrict the fisheries based on the new yelloweye rockfish assessment, but also took into account the potentially widespread negative effects of an immediate reduction in OY and recommended an OY ramp-down strategy over a 5-year period (see the footnote to Table F-3). The ramp-down strategy provides time to collect much-needed additional data that could better inform new management measures for greater yelloweye rockfish protection, and reduces the immediate adverse impacts to fishing communities while altering the rebuilding period by less than one year. #### 1.4 Literature Cited Stawitz, C. C., F. Hurtado-Ferro, et al. (2015). Stock Assessment Update: Status of the U.S. petrale sole resource in 2014. Portland, OR, Pacific Fishery Management Council. Thorson, J. T. and C. Wetzel (2015). The status of canary rockfish (*Sebastes pinniger*) in the California Current on 2015. Portland, OR, Pacific Fishery Management Council.