NOAA Fisheries Climate Science Strategy (NCSS)

Western Regional Action Plan (WRAP)
Draft version 22 March 2016

Northwest and Southwest Fisheries Science Centers http://www.nwfsc.noaa.gov/ and https://swfsc.noaa.gov/

ABSTRACT

The Western Regional Action Plan (WRAP) outlines efforts underway to increase the production, delivery, and use of the climate-related information required to fulfill our mission. As part of the NOAA Fisheries Climate Science Strategy (NCSS), the WRAP conforms to a nationally consistent framework that guides efforts by NOAA Fisheries and partners to address the agency's climate-related information needs. The WRAP identifies strengths, weaknesses, priorities, and actions to implement the Strategy on the U.S. West Coast over the next 3 - 5 years.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY	4
2. INTRODUCTION	7
2.1 THE CALIFORNIA CURRENT LARGE MARINE ECOSYSTEM	8
Expected Impacts of Climate Change in the CCLME	11
2.2 THE 2012-2015 "CLIMATE CHANGE STRESS TEST" FOR THE WEST COAST	11
3. ASSESSMENT AND ACTIONS - MEETING THE NCSS CHALLENGE	12
3.1 Strengths	12
Existing observations and time series (Objectives 6 and 7)	
Studies addressing or incorporating climate drivers (Objectives 5 and o	
Collaborations and relationships (Cross-cutting to all NCSS Objectives)	
3.2 WEAKNESSES	
Infrastructure – people (Objectives 4, 5, 7)	
Infrastructure – observations (Objectives 5, 6 and 7)Social science (Objectives 5 and 6)	
Determining mechanistic links at appropriate scales (Objectives 6 and	
Laboratory capacity (Objectives 5 and 7)	
"Random Acts of Kindness" approach (Cross-cutting to all NCSS Object.	
3.3 OPPORTUNITIES	
West Coast Climate Program Development (Cross-cutting to all NCSS (
Realign the workforce to confront change (Objectives 4, 5 and 7)	
Determining appropriate scales for science and management (Objectiv	es 4, 5 and 6)17
Evaluate our full suite of surveys for gaps; integrate and standardize (•
7)	
Indicator development and use (Objectives 1, 2 and 6)	
Data Management (Objectives 6 and 7)	
Meet the Needs of Policy-Makers and Natural Resource Managers (Obj	
4. ACTION PLAN - MEETING THE CHALLENGE OF THE NCSS	
Establish a NMFS West Coast Climate Committee and Program (Cross-	•
NCSS Objectives)	
Build scientific expertise (Objectives 4, 5, 6 and 7)	
Review, coordinate and standardize existing observational efforts (Obj	
7)Continue the development of the CCIEA (Objectives 1, 2, 3, and 6)	
Conduct Management Strategy Evaluations (MSEs) (Objectives 1, 2, 3 and 0)	
Disseminate new climate-related LMR science and information through	
Coast NOAA Fisheries communications efforts (Objectives 1, 2 and 3)	9
5. METRICS	35
6. OUTREACH AND ENGAGEMENT	
Ensure effective communication and collaboration within NMFS	
Nurture existing and initiate new scientific partnerships	
Deliver new climate science information to management partners	36
7. REFERENCES	38
8. WRAP ACRONYMS	41

Working Copy for Public Comment (Version: 22 March 2016)

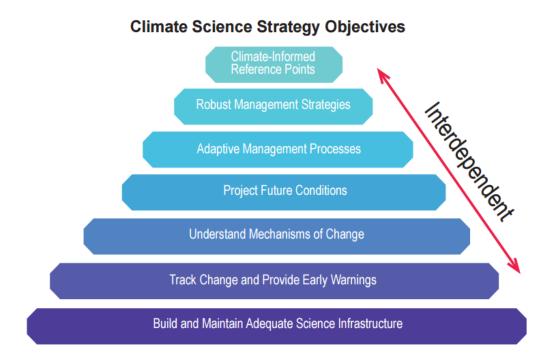
APPENDIX A	43
LEARNING FROM PAST EXTREMES IN THE CCLME	43
APPENDIX B	46
THE 2012-2015 "CLIMATE CHANGE STRESS TEST" FOR THE WEST COAST	
2012-2015 Drought impacts on West Coast salmon and salmon habitat	46
2014-15 exceptionally warm ocean conditions in the Northeast Pacific	
Near-term climate risks and impacts already in the pipeline for West Coast salmon	49
APPENDIX C	51
COASTAL-ZONE CHANGE IS EXPECTED TO COME ON MANY FRONTS	51
APPENDIX D	52
EXAMPLES OF SUCCESSFUL INTEGRATION OF PHYSICS AND ECOLOGY TO SUPPORT DECISION-MAKER	
The West Coast Region Climate Team (WCRCT):	52
The California Current Integrated Ecosystem Assessment (CCIEA):	53
APPENDIX E	54
WEST COAST REGIONAL OFFICE DRAFT PRIORITIES FOR REGIONAL ACTION PLAN TO IMPLEMENT	
NOAA FISHERIES' CLIMATE SCIENCE STRATEGY (DECEMBER 2015)	54
1) Science-Management Liaison Capacity	54
2) Periodic Updates on the State of Science about Expected Climate Effects on Protect	
and Managed Species and Habitats	54
3) Freshwater Ecosystem Information on Climate Effects	55
4) Marine Ecosystem Information on Climate Effects	

NMFS Climate Science Strategy (NCSS) Western Regional Action Plan (WRAP)

1. EXECUTIVE SUMMARY

The California Current Large Marine Ecosystem (CCLME) along the West Coast of the United States, Canada and Mexico is characterized by some of the most dramatic annual and inter-annual variability in basin-scale physical forcing and changes in marine food web structure in the world. These kinds of "boom/bust" cycles, associated with natural cycles of the Pacific Decadal Oscillation and El Niño-Southern Oscillation, have produced legendary cycles in the sardine and anchovy fishery, and Chinook salmon runs that have been documented for well over one hundred years. In recent years, however, NOAA and others have observed conditions that are notably anomalous even for this region. Like a "climate change stress test" these extremes are perhaps early signs of how more fundamental and permanent change to this large marine ecosystem will manifest, and how it will affect the humans and animals that depend on it.

Climate change is viewed by many as a slow process that may not affect society and the environment for 30 - 50 years into the future. However, the National Marine Fisheries Service (NOAA Fisheries/NMFS) has observed many challenges and changes to our managed species' population abundances, productivity and distribution resulting from impacts of recent climate variability in the CCLME¹. Climate-related changes in ocean, coastal, and freshwater ecosystems are already affecting our trust species (these include marine and andromous fish, marine mammals, sea turtles and seabirds) as well as the people, businesses, and communities that depend on them. As a result of the changes already observed there is rapidly growing demand for actionable information on how and when climate variability and change will impact the CCLME.


The Northwest (NWFSC) and Southwest Fisheries Science Center (SWFSC) – the Centers – acquire and communicate the scientific information necessary to fulfill the NMFS mission to sustain our trust species in watersheds, estuaries and the coastal ocean off the U.S. West Coast. To continue to fulfill their mission in the face of climate change, the Centers need to understand, prepare for, and respond to climate change effects on trust species. Our ultimate purpose is to explore and develop science-based strategies for sustaining these trust species and resource-dependent communities in a changing climate.

The Western Regional Action Plan (WRAP) outlines efforts underway to increase the production, delivery, and use of the climate-related information required to fulfill our mission. As part of the NOAA Fisheries Climate Science Strategy (NCSS²), the WRAP conforms to a nationally consistent framework that guides efforts by NOAA Fisheries and partners to address the agency's climate-related information needs. The WRAP identifies strengths, weaknesses, priorities, and actions to implement the Strategy on the U.S. West Coast over the next 3 - 5 years, and it

¹ See for example: http://www.calcofi.org/ccpublications/ccreports/calcofi-reports-toc/565-crtoc-vol-56-2015.html and http://www.noaa.gov/iea/regions/california-current-region/

² https://www.federalregister.gov/articles/2015/08/26/2015-21172/noaa-fisheries-climate-science-strategy

contributes to implementation of the Strategy by focusing on building regional capacity and partnerships to address the seven science objectives illustrated by the pyramid figure below.

As illustrated in the seven levels of the pyramid of objectives (above), the core elements of managing Living Marine Resources (LMRs) under changing conditions are the same throughout the nation. In our Action Plan we present an approach where we address the NCSS Objectives through six overarching elements in which we will:

- Establish a NMFS West Coast Climate Committee (WC³) and Program (WCCP). The Committee will advance the WCCP by coordinating scientific activities, engaging in a sustained discussion on climate-related changes along the US West Coast, refining our approaches to quantifying climate-related signals, and evaluating tools and products to advise management actions.
- Build scientific expertise to address the ongoing and expected changes in the coming
 decade in climate forcing of the CCLME. Climate will affect the species NOAA manages
 through changes in the environment, resulting in changes in their populations'
 distribution, abundance, and phenology.
- Review, coordinate and standardize existing data-collection efforts in response to
 changing climate and ocean conditions. We need to consider different survey approaches
 and we need to measure the physical and biological environments in more detail to better
 understand our changing environment and the response of the species and populations for
 which we are responsible.

- Conduct Management Strategy Evaluations (MSEs) that include multi-species, multifleet and spatial economics models. Through MSEs we will be able to identify specific policies that may be limiting under a changing climate. We have initially identified Pacific hake, sablefish and North Pacific albacore for MSEs with a focus on identifying mechanistic links, improving management strategies and developing reference points.
- Continue the development of the California Current Integrated Ecosystem Assessment
 (CCIEA) as a tool for implementing ecosystem-based fisheries management (EBFM)
 while also taking steps to support multi-sector ecosystem based management (EBM). Full
 implementation of the CCIEA will require research and modeling to understand the
 potential impacts of climate change on food chain structure, fisheries, protected species,
 ecosystem services, tourism and coastal communities.
- Disseminate new climate-related Living Marine Resources (LMR) science and information through existing U.S. West Coast NOAA Fisheries communications efforts and expertise. Our team will assist in delivering this information effectively to target audiences by partnering with active climate science communities.

For each of the six elements listed above, we provide details on plans for making progress under level funding and also with increased (e.g., an additional ~10%) support. Currently, our workforce is addressing the challenge of climate variability and change. However, recognizing we have gaps in expertise, we have the opportunity to re-orient work, provide training, and possibly recruit staff to fill those gaps. These gaps are noted throughout the Action Plan. Also, while we describe new activities we would implement with an increase in funding, it is important to recognize that with level funding we may only be able to take incremental steps to implement this plan with targeted personnel realignment and with some current activities suspended. Finally, we will assess results of our Action Plan through: (1) science quality and quantity, (2) the value of new research on management for sustainable fisheries and recovery of protected species, and (3) the strength of our science infrastructure.

2. INTRODUCTION

This document outlines the joint Climate Science Action Plan for the Northwest (NWFSC) and Southwest Fisheries Science Center (SWFSC) – the Centers – and describes how we will implement the NOAA Fisheries Climate Science Strategy (NCSS) in the California Current Large Marine Ecosystem (CCLME), including watersheds used by Pacific salmon and sturgeon. According to the NCSS, Regional Action Plans (RAPs) are intended to provide region-specific direction on executing the NCSS over the next 3 - 5 years.

This plan focuses on *present climate variability* and *future climate change* in the CCLME. The CCLME faces dynamic and interacting challenges from a changing climate, ranging from ecosystem services to navigation and security. Extending from Canada to Mexico, the CCLME supports extensive commercial, tribal, and recreational fisheries for finfish and invertebrates, including anchovy, hake, halibut, rockfish, salmon, sardine, squid, shrimp, tunas and Dungeness crab. Many protected species, including marine mammals and migratory birds, inhabit the CCLME. Highly migratory species from throughout the Pacific use the CCLME as a nursery area, migratory corridor, and/or feeding ground. It is used for recreation and commerce. Acknowledging the role the CCLME plays for higher trophic order organisms that range throughout the larger Pacific Ocean is key to understanding the potential effects of climate variability and change on our ecosystem.

Physical forcing of the CCLME varies on time scales of days to decades, including event-scale changes in winds, seasonal cycles, and longer scales associated with El Niño Southern Oscillation (ENSO) and warming-cooling cycles associated with the Pacific Decadal Oscillation (PDO) and spin-up/spin-down cycles of the Subarctic and North Pacific gyres, referred to as the North Pacific Gyre Oscillation (NPGO). Superimposed on this natural variability is anthropogenic climate change.

Ecosystems in the California Current respond strongly to changes in physical forcing. For example, sardine and anchovy populations have varied for millennia on the scale of ~60y, often out of phase with one another. In concert with the PDO, U.S. West Coast coho and Chinook salmon survival rates vary in parts of the CCLME over an order of magnitude between "good" and "poor" years. Market squid landings are closely associated with El Niño, plummeting during all moderate-to-large events, and then rebounding a year or two later. Also during El Niños and warming ocean conditions, Pacific hake migrate farther north, loggerhead turtle populations are more abundant, and subtropical species such as tunas, opah and wahoo, are more commonly found throughout the CCLME. Exploited and protected populations are important as predators and prey, affecting taxa ranging from plankton and forage fish to marine mammals and seabirds. As such, organisms of the CCLME affect biogeochemical cycles and, in turn, are affected by changes in ocean chemistry and climate. In essence, climate variability and change are strongly intertwined with the CCLME's health and services.

Some of the climate-driven changes that we believe are happening now or which will change in the future in the CCLME include: (a) increased variability in climate forcing, (b) changes in phenology – the timing of the physical and ecological events, (c) timing of the onset and strength

of coastal upwelling, (d) changes in atmospheric wind patterns that drive ocean circulation, including changes in transport in the California Current that affect the lower trophic level food chain, (e) increased water column stratification as observed during warming and El Niño events, (f) more frequent occurrences of hypoxia, (g) pH-related changes in aragonite saturation, which are likely to impact lower, middle, and upper trophic levels of the marine food web, (h) changes in coastal sea level, and (i) changes in freshwater and estuarine systems due to warming temperatures and altered stream flow timing and volume (driven by increased evaporation and the relative amounts and timing of snow-fed *vs.* rain-fed runoff), which are likely to affect salmon and sturgeon and the physical and food-chain dynamics of estuaries.

In this section, we first present a brief overview of the CCLME and broadly identify major climate-related pressures on our living marine resources. We briefly summarize the unusual warming event and extreme El Niño we experienced from 2012-2016. These events have provided us with insight into what the CCLME's response may be in the future under similar warming events. As such, this five-year "climate change stress test" (described in greater detail in Appendices A and B) will be used in framing our Action Plan. In Section 3, Assessment, we treat the seven NCSS objectives, describing our current capacity and efforts to conduct climate science supporting the management of our living marine resources as well as overarching strengths, weaknesses and opportunities. Section 4 outlines the comprehensive Action Plan for the next five years, assuming stable funding, as well as the scenario of a 10% increase in current funding levels. Finally, because science requires both collaboration and dissemination to be useful, we describe our overall Outreach and Engagement strategy in Section 6.

2.1 The California Current Large Marine Ecosystem

The CCLME is one of four globally highly productive eastern boundary upwelling systems, driven by equatorward winds (Fig. 1). It is characterized by significant seasonal, interannual and interdecadal fluctuations in climate that generate impacts in ocean biogeochemistry, marine food-webs, and fisheries (Strub et al. 2013). These upwelling systems are vulnerable to changes in

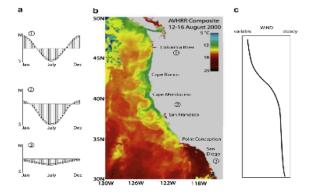


Figure 1. Winds and sea-surface temperature in the California Current System (CCS). (a) Seasonal variation of alongshore winds in three regions of the CCS; (b) sea-surface temperature from August 2000; (c) variability of wind forcing as a function of latitude. From Checkley and Barth (2009).

climate, fishing and other processes, including ocean acidification (OA), hypoxia, harmful algal blooms (HABs) and the dynamics and harvest of forage fishes and their predators and prey.

A host of fish, bird, and mammal species migrate annually to or through the productive waters of the CCLME (Fig. 2) feeding on the ecosystem's lipid-rich food chain. Migrants include $\sim 2M$

metric tons of hake and sardine from the waters off southern and Baja California, several hundred million juvenile salmon from U.S. West Coast rivers, millions of seabirds from as far as New Zealand (sooty shearwaters) and Hawaii (Laysan and black-footed albatrosses), and tens of thousands of grey whales from Baja California, millions of albacore tuna from the north Pacific, as well as humpback whales from the Eastern North Pacific. These feeding migrations allow species to load up on energy reserves as an aid to survival during their winter months in southern extremes of their distribution; thus, any physical process that disrupts the food web in shelf waters off the U.S. West Coast may result in declining growth and survival rates of these migrants.

Figure 2. The California Current Large Marine Ecosystem (CCLME) is a dynamic, diverse environment in the eastern North Pacific Ocean spanning nearly 3,000 km from southern British Columbia to Baja California and includes the U.S. Exclusive Economic Zone, the coastal land-sea interface, and adjacent terrestrial watersheds. Taken from http://ecosystems.noaa.gov/WhereIsEBMBeingUsed/WestCoast.aspx

While "climate change" is viewed by many as a slow process that may not affect society and the environment for 30-50 years into the future, the National Marine Fisheries Service (NMFS) has observed many challenges and changes to our managed species' population abundances, productivity and distribution resulting from impacts of recent climate variability in the CCLME (see Appendix A: Learning from past extremes in the CCLME). By "climate variability" we refer to seasonal, interannual, and decadal variability in physical forcings that drive biological responses associated with the basin-scale oscillations, such as the PDO, NPGO, and the ENSO; and the local-regional impacts from seasonal variability in upwelling, hypoxia, and ocean

acidification (e.g., see Fig. 3). Both climate change and climate variability have major, and only partly understood, impacts on marine food chains, fishery and protected resources, and the coastal communities that depend upon them.

Climate Connections from Mountain Summits to the Open Ocean

The climate patterns that cause changes in the CCLME also affect the climate and natural resources of terrestrial and marine ecosystems. Climate impacts on U.S. West Coast watersheds are especially important for anadromous fish (salmon, lamprey, eulachon and sturgeon). Habitats for these species include streams that begin in the Cascades and mountains of British Columbia and Idaho (Columbia and Snake Rivers), rivers from coastal and inland mountain ranges that flow through inland valleys and meet the sea in estuaries that range from large (San Francisco Bay Delta and Puget Sound) and smaller coastal estuaries, to short coastal lagoons that are seasonally closed by sand bars (especially found in California). In western States, the massive degradation and loss of freshwater and estuarine habitats, coupled with intensive human use of freshwater resources and floodplain habitats, has greatly increased the vulnerability of anadromous fishes to climate impacts.

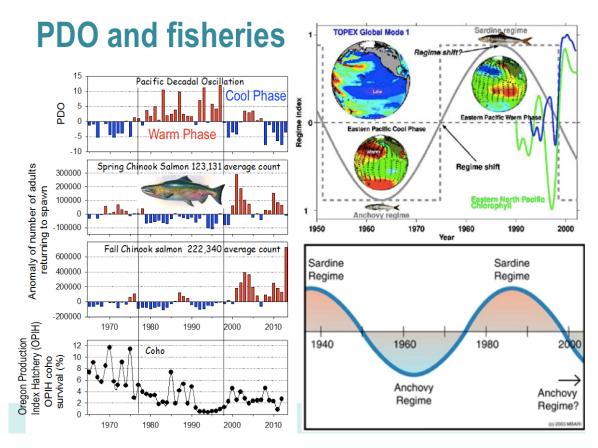


Figure 3. Pacific Decadal Oscillation (PDO) from the 1950s to present and its recent correlation to fluctuations with salmonid and small pelagics in the CCLME.

[Panels taken from Chavez et al. (2003), http://www3.mbari.org/news/news releases/2003/nr01-chavez.html, and http://www.nwfsc.noaa.gov/research/divisions/fe/estuarine/oeip/ca-pdo.cfm.]

The combined effects of climate impacts on rivers, streams, estuaries, and the ocean lead to cumulative impacts on the full life-cycle of anadromous fish populations. For instance, the warm phases of the PDO and ENSO typically bring warmer and drier winters to the Pacific Northwest, with reduced snow pack and stream flow that tends to reduce freshwater habitat productivity for salmon. Warm phases of the PDO and ENSO also favor a warmer, and a more subtropical marine food web that includes leaner and smaller zooplankton. This constitutes an overall less-favorable food web for Pacific salmon early marine growth and survival. In contrast, cold phases of ENSO and the PDO have been especially favorable for Pacific Northwest (PNW) salmon productivity and abundance because they favor high productivity in freshwater (cooler temperatures, more precipitation, abundant snow pack and an abundance of cold water in streams and estuaries) and marine habitats (colder, increased nutrients, and a more subarctic/boreal food web that includes larger lipid-rich zooplankton community that favors increased early marine growth and survival for Pacific salmon).

Expected Impacts of Climate Change in the CCLME

Longer-term (anthropogenic) climate change is likely to affect our ecosystem and fisheries through effects of increased temperature on organisms' metabolisms, northward shifts in isotherms leading to northward shifts in species' distribution, increased upper-ocean stratification that will tend to inhibit the upward transport of nutrients into the euphotic zone and the downward mixing of dissolved oxygen. Reduced nutrient concentrations alone will reduce plankton production. Decreased dissolved oxygen concentrations would affect respiration, potentially limiting the favorable habitat for finfish, shellfish and other benthic organisms on the continental shelf. A reduced aragonite saturation state (lower pH) would increase mortality of shell-forming mollusks. Potential changes in wind-driven upwelling would impact all of the biogeochemical processes described above. Near-term, observed climate variability is signaling that the climate is changing in sometimes surprising ways, such as delayed upwelling in summer 2005, the exceptional warming of large parts of the Northeast Pacific Ocean during 2014-15 (the so-called "warm blob"; Bond et al. 2015) that included widespread ecological impacts, including the largest harmful algal bloom ever recorded, and the extreme tropical El Niño in 2015-2016, the third such "Super El Niño" in 40 years. These events provide "natural experiments" which allow us to study their impact on food chains, ecosystem structure and fisheries.

Other important socio-economic changes will likely interact with the regional effects of anthropogenic climate change to shape the future of the CCLME (see Appendix C: Coastal-zone change is expected to come on many fronts).

2.2 The 2012-2015 "climate change stress test" for the West Coast

From 2012 to 2015, the Western US and northeast Pacific Ocean experienced climate extremes that may offer previews of anthropogenic climate change impacts projected for the latter part of the 21st century. The resulting extreme freshwater, estuary, and ocean conditions represent a climate change stress test on the living marine and anadromous resources (and their different habitats) managed by NMFS. We view this 'stress test' as a unique opportunity to better understand the impact of climate on the CCLME from summit to sea (see Appendix B: The 2012-2015 "climate change stress test" for the West Coast).

3. ASSESSMENT AND ACTIONS – MEETING THE NCSS CHALLENGE

The NCSS recommends that the Regional Action Plans highlight the strengths, weaknesses, opportunities, and challenges related to living marine resource (LMR) science and management in the face of climate change. The NCSS's seven objectives are:

- Objective 1: Identify appropriate, climate-informed reference points for managing LMRs.
- Objective 2: Identify robust strategies for managing LMRs under changing climate conditions.
- Objective 3: Design adaptive decision processes that can incorporate and respond to changing climate conditions.
- Objective 4: Identify future states of marine and coastal ecosystems, LMRs, and LMR dependent human communities in a changing climate.
- Objective 5: Identify the mechanisms of climate impacts on LMRs, ecosystems, and LMR dependent human communities.
- Objective 6: Track trends in ecosystems, LMRs and LMR-dependent human communities and provide early warning of change.
- Objective 7: Build and maintain the science infrastructure needed to fulfill NOAA Fisheries mandates with changing climate conditions.

Because they possess elements that are tightly inter-related and there is a strong interdependency between them, we assess our capabilities (in Section 3) and present our Action Plan (Section 4) in overarching terms. We point to specific NCSS objectives in Table 4.

3.1 Strengths

The Centers combine multiple strengths to address the challenges inherent in providing the scientific information necessary to manage LMRs in the California Current under a changing climate. Strengths range from existing infrastructure and information, to substantive steps taken in understanding the CCLME, including study of "natural experiments," or applying the "climate stress-test" that the 2012-2016 West Coast climate extremes offer. Scientists who work at our Centers are also working to address climate impacts and implement ecosystem-based fishery management (EBFM) in other ecosystems (e.g., in Antarctica), and their experience can be leveraged for application in the CCLME.

Existing observations and time series (Objectives 6 and 7)

The U.S. West coast is home not only to the longest fisheries-oceanographic time series in the nation, the California Cooperative Oceanic Fishery Investigations³ (CalCOFI), but also to a number of other long- and medium-term data collection efforts that sample many physical-chemical, oceanographic, biological, and socio-economic components of our system (Table 1). These studies underpin much of our understanding of how the CCLME and related ecosystem services function and respond to climate variability. In addition to the NOAA-led observations and time series, we also have the advantage of long-term monitoring efforts from other agencies, both state and federal. These tend to be relevant for the management of anadromous fishes and other species, and include time series of salmonid abundance, water quality, stream flow and

-

³ http://calcofi.org/index.php

temperature. In total, these data sets are the key elements of detecting trends in abundance and distribution of species, patterns of environmental conditions, and sustained changes in the human communities that depend on the CCLME and its constituent species.

This work is supported by a physical infrastructure that includes: modern research vessels; the exploration and use of advanced technologies, including satellite and airborne remote-sensing platforms, a range of animal tags and tag-detection systems, such as satellite-based, acoustic tags and receivers, passive integrative transponder 'PIT' tags and antennae arrays; glider arrays and moorings; and our state-of-the-art laboratories (molecular genetics, hormone assays, stable isotopes). Our infrastructure also includes rapidly developing and improving data management systems for the full range of data collected.

Finally, these data sets have supported the initial development of ecosystem indicators, through the California Current Integrated Ecosystem Assessment (CCIEA)⁴. These indicators span a range of ecosystem components, from oceanographic to harvest-related to predators of commercially-fished species, and are chosen to reflect areas that might be affected by a number of stressors to the system, including climate change. The indicators are presented to the Pacific Fishery Management Council (PFMC) on a regular basis within an annual ecosystem status report⁵.

Studies addressing or incorporating climate drivers (Objectives 5 and 6) One of the most active areas of climate-related research at the two Centers involves identifying the mechanisms by which climate affects the status of our LMRs (including anadromous fish) and anticipating the impacts of ongoing climate variability and change.

Mechanistic links between climate-related or environmental drivers and species or population responses have been found for planktonic species, pelagic fishes, some groundfish, salmonids and others (Table 2). Key to these studies has been the long-term data collection efforts (above and Section 6) that allow the evaluation of statistical associations between potential climate drivers and the conditions of species or the ecosystem; for example, the CCIEA is using statistical approaches to estimate the relative risks that climate drivers pose to LMRs and human systems, and to identify threshold values at which climate impacts increase drastically. In addition, we support active laboratory research into the mechanisms of climate-related water quality impacts (acidification, hypoxia, temperature) on marine and anadromous organisms, as well as genetics and genomics that will give us insight into adaptation to changing conditions.

In collaboration with other NOAA line offices and academic partners (see below) we are developing two types of knowledge required to make informed projections about the future of LMRs in the CCLME: (1) a mechanistic understanding of biophysical links; and (2) future scenarios (or projections) for properties of marine and freshwater habitats. We are also engaged in studies to integrate these two pieces in coupled biophysical models of varying complexity. At one end of the spectrum are expert-based rapid climate vulnerability assessments⁶ for protected

⁴ http://www.noaa.gov/iea/CCIEA-Report/

⁵ http://www.pcouncil.org/ecosystem-based-management/annual-state-of-the-california-current-ecosystem/

⁶ https://www.st.nmfs.noaa.gov/ecosystems/climate/tools/assessing-vulnerability-of-fish-stocks

species and Fishery Management Plan (FMP) species. Both of these research themes require enhanced modeling capabilities. At the other end of the spectrum are "end-to-end" models that link physics to fish and fisheries. Under the aegis of the CCIEA an effort is underway to use output from global climate models (GCMs), regional ocean modeling systems (ROMS), and ecosystem models, such as Atlantis, in order to project broad-scale biological and physical conditions in the California Current including the likely future suitability of habitat for salmonids, the frequency and intensity of HABs, and the fluctuations in forage biomass and the impacts of ocean acidification.

These types of studies provide one of the primary and most direct ways that management decisions can be informed by NOAA climate and fisheries science. In fact, the U.S. West Coast has the only temperature dependent fishery closure rule for the protection of an endangered species: to protect loggerhead turtles the closure of the swordfish drift gillnet fishery east of 120°W is triggered when surface temperature is anomalously high. And it has one of the only harvest control rules that include an explicit climate/environmental trigger, i.e., allowable Pacific sardine harvest rates are mediated by an ocean temperature consideration. Similar control or decision rules based on other types of observations (e.g., the successes or failures of key predator species) are presently being developed by our scientists working in other ecosystems, and the lessons learned from these efforts are likely transportable to the CCLME. We have conducted a variety of studies aimed at identifying the impact of direct anthropogenic activities on listed species under climate change, as well as studies identifying restoration activities that are most robust and effective under a changing climate (Table 3). This kind of work has underlain the recent policy guidance for incorporating climate change in Endangered Species Act (ESA) decision making. Finally, as an important contribution to developing more robust strategies for managing species under climate change, both Centers are engaged in expanding Management Strategy Evaluations (MSEs), with initial efforts focused on sablefish, hake and North Pacific albacore, under alternative climate scenarios.

Collaborations and relationships (Cross-cutting to all NCSS Objectives)

The Centers have robust collaborations and relationships with academics and others who use our science. In particular, the Cooperative Institute for Marine Ecosystems and Climate (CIMEC; a collaboration between NOAA and several California universities including Scripps Institution of Oceanography and the University of California at Santa Cruz) the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) based at the University of Washington and the Cooperative Institute for Marine Resource Studies (CIMRS) at Oregon State University, provide ready and critical access to a broad range of academic expertise relevant to climate change studies. Other collaborators include, San Diego State University and NOAA's Geophysical Fluid Dynamics Laboratory (GFDL), Earth System Research Laboratories (ESRL) and the Pacific Marine Environmental Laboratory (PMEL), among others. Similarly, cooperative efforts with Australia's CSIRO (Commonwealth Scientific and Industrial Research Organization), PICES (The North Pacific Marine Science Organization), have built our capacity to address ecosystem-relevant questions. In the U.S. West Coast region in general, climate, hydrologic, and oceanographic research is strong, with readily available climate (e.g., temperature, precipitation, stream flow and snow storage), oceanographic and biogeochemical characteristics (e.g., pH, O₂, nutrient levels) of

our freshwater, estuarine, and marine systems. Our established network of researchers will enable us to continue to move forward with climate-relevant research.

The Centers also have strong relationships with the West Coast Regional Office (WCRO), the PFMC, the Pacific States Marine Fisheries Commission, in matters of fisheries, and the International Whaling Commission (IWC), the US Marine Mammal Commission and the Pacific Scientific Review Group (PSRG) involving marine mammals. The existing West Coast Climate Team, consisting of representatives from the Regional Office and Science Centers, is a regular and robust forum for exchange of information bridging research and policy developments and science needs. The PFMC has been receptive to ecosystem approaches in general, including our CCIEA and supporting work, and is actively seeking input and engagement on ways to incorporate climate information into decision making. The ongoing communication channels and cooperation we have with these groups informs our research agenda on science needs, provides a venue to transmit information we develop, and ensures that our science and data products are used appropriately in management.

3.2 Weaknesses

While our Centers have many strengths and efforts aimed at climate research supporting management of NOAA trust resources, we also face a number of challenges in meeting the goals of the NCSS.

Infrastructure – people (Objectives 4, 5, 7)

Meeting the scientific challenges of the coming changes in climate while simultaneously fulfilling the full range of other obligations will tax our current human capacity. Designing studies, analyzing data, development of climate and regional ocean models, providing interpretations and working with policy makers to develop, implement and use the range of products and tools are a few of this effort's necessary human functions. **Our current staffing is not sufficient to fulfill the emerging needs of the decision-makers**⁷ **seeking scientific advice related to climate impacts and other changes in the CCLME**. In fact, we currently lack sufficient time and capacity to process samples that have already been collected or to mine the data from surveys that have already been conducted. We will continue to make progress in climate science for the CCLME, but our human capacity, which has declined since 2012, is already limiting the rate and extent of what we can do, and is exacerbated by the retirement of key personnel with expertise in ocean ecology at both Centers. CIMEC, CIMRS and JISAO are sources for highly qualified expertise, but additional funding is required for these collaborations.

Infrastructure – observations (Objectives 5, 6 and 7)

While the ship-based surveys and other data sets that we maintain are critical components of our current efforts, there are weaknesses as well as strengths in our work. First, several of our surveys (such as the Newport and Trinidad Head Oceanographic Lines) do not have stable funding, inhibiting our ability to count on these important data sources for the long-term. Second, many of our surveys and data collection efforts do not occur on spatial and temporal time scales that allow

⁷ Including the WCRO, PFMC, Tribes, IWC, SRGs, US Marine Mammal Commission, State and local resource agencies.

us to resolve links between climate drivers and species, population or ecosystem responses. Third, many of our key data sets for salmon in the watersheds are dependent on our state and tribal partners that have also experienced human capacity challenges. Additionally, we do not know the genetic or demographic population structure of many species, which limits our ability to determine response to stressors. Nearly all of our observation efforts were initiated and grew in response to a particular problem, and at different times, meaning that coordination and standardization between surveys is limited; fully compatible data collection efforts would increase our power to detect change, ascribe mechanistic causes and project the future. Finally, the vast majority of our observations stop at our national borders, while the ecosystem processes and species distributions in our system do not; we do not currently collect a comprehensive picture of the CCLME.

Social science (Objectives 5 and 6)

Social science is an essential element of managing natural resources in an ecosystem framework. While both Centers have begun to develop their social science capacity, there are not yet long-term data sets of human factors that would help us to identify links between coastal communities and the natural and regulatory environment. This limits our ability to conduct MSEs that include appropriate human responses, as well as to predict those likely responses. Overall, information about the interaction between climate drivers and human elements of the system, including patterns of hydropower generation, changes in aquaculture production or seafood pricing, agricultural demands for water and so forth, is needed to support management of our marine and anadromous resources.

Determining mechanistic links at appropriate scales (Objectives 6 and 7)

Determining how climate factors drive oceanographic, hydrographic and other environmental processes, and how these, in turn, drive biological, ecological and human responses is perhaps the single most important element for making progress on all the Objectives identified in the NCSS. We have made progress in some areas (Table 1); however, we do not fully understand which components of climate are tied to vital rates, species' distributions, ecosystem structure and more. The Centers need to enhance their modeling capability to fully investigate these linkages. Improving qualitative and quantitative descriptions of these interactions will be essential to model development, identifying appropriate biological reference points, and developing management strategies that will be effective in the face of our changing climate. The absence of quantitative understanding of mechanistic links – particularly under evolving climate conditions – also limits our predictive capacity. Hence, while the drought and warming conditions witnessed in the past four years (2012-2016) may be the norm decades in the future, without verified mechanisms of impact from climate to environment to ecology and biology, the uncertainties in our projections of the future CCLME will remain considerable.

Laboratory capacity (Objectives 5 and 7)

Our physical infrastructure to gather information about population structure, food habits and food web structure, and ecosystem structure is uneven, and in some areas insufficient to meet current or future needs. While the Centers enjoy state-of-the-art laboratory facilities in some locations, there are aging structures in others. As such, sample processing is limited in parts of the region.

"Random Acts of Kindness" approach (Cross-cutting to all NCSS Objectives)

The Centers have dedicated and talented personnel who are approaching the scientific issues around climate change with vigor. However, to date, most of our work has not been systematic, has been funded opportunistically (often by non-NOAA sources), and thus is dependent on individual interest, available resources and personally fostered collaborations. Obviously, these are important components of any research program. But, greater region-wide coordination could ensure that priority areas are treated more thoroughly, could direct resources more thoughtfully and could enhance our ability to deliver critical science. The present Western Regional Action Plan (WRAP), the Climate Vulnerability studies and the CCIEA are all steps toward a better-structured approach toward the consideration of climate factors in our mission.

3.3 Opportunities

This combination of strengths and weaknesses affords us a number of opportunities as we move forward:

West Coast Climate Program Development (Cross-cutting to all NCSS Objectives)

Treating our climate-relevant research as integral components of our programs affords us the opportunity for more targeted, coordinated efforts aimed at areas of particular scientific or management importance. It also provides the opportunity for more focused approaches to MSEs and the ability to more quantitatively integrate our understanding of the various ecosystem components end-to-end.

Realign the workforce to confront change (Objectives 4, 5 and 7)

Currently, our workforce is nobly attacking the challenge of climate variability and change. However, we suffer gaps of expertise, or too little capacity in some areas of expertise, and have the opportunity to re-orient work, provide training, and recruit, as possible, staff to fill those gaps. Particular areas of importance include the social sciences, modeling and statistics, and laboratory skills, including processing plankton samples, diet and similar secondary data collection efforts, as well as in developing and implementing novel methods in genetics, biotechnology and others. In addition, we can build collaborations across our Divisions, Centers, other NOAA line offices, agencies (state and federal) and international boundaries with the climate, ecological, socioeconomic and fisheries science communities.

Determining appropriate scales for science and management (Objectives 4, 5 and 6) Scientific exercises, such as finding statistical associations between climate drivers and a population's response, and management efforts, such as regulations intended to reduce impact to climate-sensitive species, need to be conducted at the "right" scale. To date, out of necessity, we conduct many of our scientific efforts at the scale of the coast or of political boundaries (e.g., states). However, many processes occur at more local or regional scales, others at ecosystem scales, and many fishes, marine mammals, sea turtles, and seabirds are likely to have population structures that do not correspond to our political or geographical boundaries. Ensuring that our efforts are targeted at appropriate scales will increase our efficiency and effectiveness.

Evaluate our full suite of surveys for gaps; integrate and standardize (Objectives 5, 6 and 7)

The strong data-collection efforts could be more cohesive and coordinated. A focus on climate variability and change affords us the opportunity to evaluate our surveys for the more comprehensive goals of understanding our ecosystem and detecting changes within it. Revising surveys, as appropriate, to provide some standardized data would give a more comprehensive picture of our system; and, identifying gaps helps prioritize where efforts should go in the future. The final aim would be a suite of observation approaches that would provide the most efficient detection of changes in ecosystem or species status and the drivers thereof. Ideally, these would be coordinated with Canada, Mexico, the Pacific Islands and Alaska as appropriate.

Indicator development and use (Objectives 1, 2 and 6)

Ultimately, managers use indicators – both quantitative and qualitative – to make and inform decisions. Through our CCIEA efforts, we have begun the development of ecosystem-level indicators and are engaged with the WCRO and the PFMC in identifying those indicators that they will use in management through their Fishery Ecosystem Plan (FEP). We are in a strong position to continue indicator development through ongoing analyses of observational data and statistical modeling of the ecosystem indicators. The NWFSC also provides salmon management advice through 15 ecological indicators that present a picture of ocean condition, in a given year, from the viewpoint of a juvenile salmon, and provide outlooks for good vs. poor salmon returns 1-2 years in the future. Finally, forecast capabilities will be pursued through various numerical models with the goal of building both near-real-time indicators and eventually informing Biological Reference Points.

Data Management (Objectives 6 and 7)

Ongoing effort to improve and enhance data management, including our efforts with implementing Public Access to Research Results⁸ (PARR), could provide increased ability to mine existing data sets and use our long-term data for the full range of scientific activities called for in the NCSS. Maintaining and upgrading the NW Center's bioinformatics computer cluster will allow it to be made available to researchers at both Centers and allow us to increase our efficiency in deciphering the bounty of information from genome sequencing; however, this will not be possible without an individual on staff with detailed knowledge and skills in bioinformatics. Similarly, we have bioinformatics expertise and access to compute clusters and supercomputers at UC Santa Cruz. Collaborations with their world-class bioinformatics and computer science people and labs should continue to be strengthened. Ongoing efforts to improve management of and access to other data collected by the Centers are also critical.

Meet the Needs of Policy-Makers and Natural Resource Managers (Objectives 1, 2 and 3)

In addition to strictly scientific activities, it is important that we work closely with those who rely upon the information we generate. (See Appendix D: Examples of successful integration of physics and ecology to support decision-makers and Appendix E: West Coast Regional Office

⁸ http://docs.lib.noaa.gov/noaa documents/NOAA Research Council/NOAA PARR Plan v5.04.pdf

Draft Priorities for Regional Action Plan to Implement the NOAA Fisheries Climate Science Strategy). In particular, we will need to work with a full range of stakeholders to ensure that our products and tools address questions of concern and relevance. Ensuring that we maintain capacity for liaison activities between science and management is critical; doing so will continue to keep regional office staff aware of new research and information, keep the Centers' staff aware of emerging climate-related management issues and related needs for scientific information, and to facilitate cooperative approaches to working on those issues. Similarly, ensuring that we can continue periodic updates about expected climate effects on all our trust resources, including habitats and human communities, is important ongoing guidance that both the WCRO and the PFMC have requested. Because our management obligations span marine, estuarine and freshwater systems, ensuring that targeted research continues in all three arenas, including integrated studies across all three habitats will also be important.

Working Copy for Public Comment (Version: 22 March 2016)

Table 1. NW and SWFSC observation efforts for tracking trends in the CCLME, its dependent LMRs and human communities.

		Data Types						
Effort	Scope	Fish Distribution	Fish Abundance	Biological Oceanography	Physical Oceanography	Socio- economic Information	Marine mammal	
West Coast Bottom Trawl Survey	Coastwide, annual (spring/summer summer/fall)	X	X	X	X			
Joint Hake/Sardine Survey	Coastwide, plus Canada, summer	X	X	X	X			
CalCOFI	Winter, spring 113 station survey, San Francisco to San Diego	X	X	X	X		X	
CalCOFI	Summer, fall 75 station survey, Southern California Bight	х	х	X	X		Х	
Coastal Pelagic Species	San Francisco to San Diego*, spring	х	х	X	X			
BPA Plume Ichthyoplankton survey	WA & OR, June (May, September)	х	х		х			
Newport hydrographic line	Bi-weekly off of Newport, OR			X	Х			
Trinidad hydrographic line	Monthly (similar to Newport survey)			X	X			
Rockfish recruitment and ecosystem assessment survey	Coastwide, annual, late spring	X	X	X	X		X	
Economic Data Collection Program	Groundfish IFQ program, annual					X		
West Coast Fishing Community Vulnerability Index	Every 5 years (2005-2015)					X		
Marine mammal surveys	US-Mexico to US-Canada border, seaward to 300 nautical miles; target frequency every 3-4 yrs			X	Х		Х	
Southern California Bight Hook and Line Survey	Southern California Bight, annual	х	х					
OCNMS subtidal surveys	SCUBA surveys in OCNMS, summer	х	х					
Elwha nearshore surveys	Beach seines in the Strait of Juan de Fuca, March-September	х	х		X			
Salmon tagging programs	North Pacific	X	X	X				
Puget Sound eelgrass community surveys	Quarterly SCUBA surveys	х	X					

^{*}Adaptive management was applied to the spring 2015 Coastal Pelagic Species cruise and sardine sampling was into Washington State.

Table 2. Examples of identified mechanisms of climate impacts in the California Current Ecosystem

Taxon	Mechanism of Impact	Selected References
Salmonids	Freshwater: flow and temperature are basin-scale drivers of juvenile survival, smolt survival and susceptibility of returning adults to disease; in addition, changing temperature and flow profiles are associated with adaptive change in life history traits Marine: marine survival and growth of juvenile salmonids are associated with climate variability affecting upwelling and zooplankton assemblages, including krill	Crozier et al. (2008) Zabel et al. (2006) Peterson (2009) Wells et al. (2012)
Invertebrates	Ocean acidification leads to changes in growth, survival, and calcification of invertebrates, especially calcifiers. Oceanographic conditions determine zooplankton assemblages	McElhany and Busch (submitted); Hooff and Peterson (2006); Fisher et al. (2015)
Sablefish	Oceanographic conditions drive recruitment strength.	Schirripa, and Colbert (2006)
Groundfish	Meta-analysis of common patterns and climate drivers of groundfish growth using commercial fishery composition data	Stawitz et al. (2015)
Groundfish	Meta-analysis of climate drivers of recruitment strength	Stachura et al. (2014)
Humboldt squid	Climate driven ecosystem interactions in the California Current	Stewart et al. (2014)
Groundfish	Estimation of common trends in recruitment for US West Coast groundfishes	Thorson et al. (2013)
Ecosystem	Spatial ecology of krill, micronekton and top predators in the central California Current: Implications for defining ecologically important areas	Santora et al. (2011, 2012)
Across Taxa	Relative magnitude of cohort, age, and year-effects on growth of exploited marine fishes (where year effects could be due to climate)	Thorson and Minte Vera (in press)
Groundfish	Estimation of common trends in recruitment for US West Coast groundfishes	Thorson et al. 2013
Rockfish	Variability in rockfish recruitment and ecosystem structure	Ralston et al. 2013. Wells et al. (2008)

Table 3. Examples of efforts providing advice about specific management activities that will be robust to climate variability and change impacts.

Taxon	Management Activity	Selected References
Salmonids	Water diversion – impacts of diversion become more intense under climate scenarios	Walters et al. (2013
	Habitat restoration plans – guidelines for accommodating climate change impacts on streamflow and temperature to habitat restoration activities	Beechie et al. (2013)
	Advice on salmon returns to the Columbia River based on 15 indicators of ocean conditions	Peterson et al. 2014. http://www.nwfsc.noaa.gov/research/divisions/fe/estuarine/oeip/
	Effects of flood control projects on salmon migration	Boughton et al (2013)
Protected species (marine mammals, turtles)	Bycatch avoidance under climate change	Lewison et al. (2015)
Sardines	Temperature dependent harvest control	Jacobson and McClatchie (2013) Lindegren and Checkley (2013)
Fishing Communities	Fisheries diversification reduces revenue volatility	Kasperski and Holland (2013)
Groundfish	Methods for calculation of reference points for groundfish given decadal scale variability in recruitment	Haltuch et al. (2009)

4. ACTION PLAN – MEETING THE CHALLENGE OF THE NCSS

For the first 3 to 5 year period of climate science efforts, the NCSS recommends that the Centers engage in the following activities:

- Maintain existing ocean observation programs
- Conduct climate vulnerability analyses for all managed LMRs
- Strengthen the Centers' ecosystem status report
- Develop capacity to conduct MSEs on the effects of climate change on management targets, priorities, and goals
- Identify climate-related issues of concern for species in our region
- Identify barriers to producing, delivering, and incorporating climate-related information into LMR management
- Identify major gaps in the research useful for generating data to inform LMR management under climate change
- Conduct regional assessments of strengths, weaknesses, opportunities, and challenges related to species science and management in the face of climate change
- Work internally and with academic, agency and tribal partners to continue developing the modeling capacity needed to generate state-of-the-art hindcasts, nowcasts, projections, and future scenarios for West Coast freshwater, estuary, and marine habitats
- Work internally and with academic and agency partners to continue developing coupled biophysical modeling systems needed for ecosystem forecasts and scenarios (from relatively simple single population models under altered climate conditions to state-of-the-art end-to-end physics to fish and fisheries modeling systems).

Below, we discuss how we can take on and make progress on these activities with level funding, largely by realigning existing programs and re-directing staff, and also with increased (e.g., an additional $\sim 10\%$) support. Specifically, this is a description of our approach to providing the important science needed for managing our Living Marine Resources under climate change. The general categories we identified as core and crosscutting are:

- Establish a West Coast Climate Committee
- Develop a West Coast Climate Program
- Build scientific expertise
- Review, coordinate, maintain and standardize existing observational efforts
- Continue the development of the CCIEA
- Conduct MSEs
- Disseminate new climate-related LMR science and information through existing U.S.
 West Coast NOAA Fisheries programs, e.g., climate vulnerability analyses and related communications efforts.

These approaches are complemented with additional details in relation to the seven NCSS objectives (Table 3).

Establish a NMFS West Coast Climate Committee and Program (Cross-cutting across NCSS Objectives)

We consider the development of a NMFS West Coast Climate Program (WCCP), steered by a West Coast Climate Committee (WC³), as essential to systematically address the critical needs for providing climate science in support of effective management of our LMRs and the human communities that depend upon them. Effective implementation of the WCCP will require an increase in resources, if the Centers are to be able to meet this challenge and to continue to conduct the full range of work that we currently do in support of fisheries management and protected species protection and recovery.

The WCCP will be steered by the WC³. The WC³ will be composed of the current membership of the existing West Coast Climate Team, which has membership from the Centers and the WCRO. The Committee will: 1) advance the WCCP and advance the scientific activities identified above, 2) engage in a sustained discussion on climate-related changes along the US West Coast, 3) refine our approaches to quantifying climate-related signals, and 4) evaluate tools and products to advise management actions. Three staff, one from each of the Centers and Region, will serve the additional role of liaison between the offices to ensure effective communication and coordination. The Committee will also periodically brief and consult with Center and Region leadership.

Because there are common or similar climate issues in neighboring regions and other ecosystems, the Committee will periodically coordinate with NMFS Science Centers in the Pacific Islands and Alaska and with Center staff that work in other ecosystems to share recent research findings and identify any areas for collaboration to increase efficiency or leverage capacities. Through the Committee and Center/Region leadership we will coordinate with the PFMC. Additionally, the Committee will engage other western region laboratories, e.g., PMEL (Pacific Marine Environmental Laboratory) and ESRL, from NOAA's OAR (Office of Atmospheric Research), other agencies including BOEM, USGS and NASA, as appropriate and as resources allow, to ensure broader discussion and inclusion of needed capabilities not available in NMFS.

- <u>Level funding</u>: the WC³ would be established from the existing Center/Region climate team and will serve to steer a NMFS WCCP. However, the development and implementation of programs and new research approaches would not be possible without realigning staff, thereby affecting existing programs negatively.
- Additional funding: the WC³ could direct yearly, staff-driven workshops (in the style of National Center for Ecological Analysis and Synthesis NCEAS workshops) targeted at making significant progress on one or more key and immediately relevant questions underlying the NCSS³ objectives. Themes could include topics such as changing ocean conditions (warming, acidification, hypoxia, HABs, changes in the watershed) and broader ENSO/PDO variability, climate vulnerability assessments for U.S. West Coast fishing communities, application of downscaled Earth System models to the CCLME, etc. Additional funding would also allow building capacity to enhance observations, modeling, laboratory studies of climate-related effects on vital rates and the production of additional products to better inform decision-making and climate change literacy of constituents, as noted below.

Build scientific expertise (Objectives 4, 5, 6 and 7)

It is safe to say that the coming decade will not be "business as usual" in most areas of our science and management. Climate variability and change will affect the species NOAA manages through changes in the environment, resulting in changes in their populations' distribution, abundance, and even at the organismal level in their phenology, their ability to adapt to the oceans evolving biogeochemistry, etc. As such, it will be necessary to increase our in-house capabilities.

- <u>Level funding</u>: we can redirect staff and change programs at the expense of existing efforts. Retraining would still be needed requiring modest investments. Attention could be given to mining existing data (as it would be unlikely that we can add new measurements/sensors in the field with level funding) to tease out trends, mechanistic drivers of population, species and ecosystems associated with past climate signals (e.g., from CalCOFI, the Newport Line, etc.).
- <u>Additional funding</u>: expertise will be built through new permanent hires together with added infrastructure to measure changes in the atmosphere and ocean and to investigate in controlled environments changes in the organisms' vital rates in our laboratories and aquaria. In concert, additional modeling and analytical capacity in will be implemented so that the updated vital rates can then be used in models thus more properly representing current and scenarios for future conditions. New hires would need to be added in a number of areas that could be prioritized according the Centers' existing capabilities and infrastructure with attention to minimize duplication and take advantage of two Centers working jointly.

Review, coordinate and standardize existing observational efforts (Objectives 4, 5, 6 and 7)

The recent oceanic conditions in the North Pacific and the CCLME were characterized by significant changes in population structure at every trophic level including previously unobserved zooplankton species, spatial and temporal shifts in highly migratory and forage species, turtles and cetaceans. It is clear that as we experience different conditions, our survey designs and protocols, as well as the variables we measure cannot remain static. We need to measure differently and we need to measure in more detail as we try to keep up and understand our changing environment and the response of the species and populations for which we are responsible.

• Level funding: we will periodically review our survey designs to allow adaptive sampling as the habitat of the species surveyed change in space and time. This will allow us to better determine the most appropriate suite of surveys to capture needed information for climate science. The CCLME spans waters from Mexico's BC (Baja California) peninsula to Canada's BC (British Columbia). We will improve cross-boundary collaborations (from BC-to-BC) with our Canadian and Mexican colleagues for surveys and other sampling strategies of transboundary species (e.g., through cross-training of personnel, ensuring interoperability of sampling protocols and datasets, etc.)

• Additional funding: our observational efforts need to be expanded with the advent of new instrumentation such as gliders, AUVs, UASs, and new sensors capable of taking advantage of novel (e.g., genetic) approaches, among others. Moreover, resources are already needed to sustain existing time series and expand observations into regions that have been historically under-sampled. Thus, new funding could be targeted in at least six areas: (i) maintaining existing time series that are not stably funded, (ii) acquisition of new instrumentation (either autonomous or ship-mounted), (iii) develop sensor capabilities in collaboration with industry and academia, (iv) hiring staff to develop inhouse capabilities to implement and refine new sampling approaches, (v) developing modeling capacity to conduct observing-system simulation experiments to refine survey design, and (vi) building scientific capacity to process and analyze data collected in these observational efforts.

Continue the development of the CCIEA (Objectives 1, 2, 3, and 6)

The CCIEA continues to mature as a tool for implementing ecosystem based fisheries management (EBFM) while also taking steps to also support multi-sector ecosystem based management (EBM) in the CCLME. The CCIEA collates, synthesizes and provides information on status and trends of the system (physical and biological), monitors leading physical and biological indicators, and assesses ecosystem vulnerabilities to human uses and natural perturbations. Under a changing climate, statistical trends cannot simply be extended beyond the initial range of conditions. Observations and models are essential to capture changing parameters. Although monitoring and modeling efforts exist across the CCLME, there exist shortfalls that limit our ability to monitor trends and provide early warning of change. Foremost among these are limited resources to sustain the existing observing network and to expand it to cover critical spatial and temporal gaps (see discussion above on the needs to build scientific **expertise**). At the same time, while the Centers have expertise in understanding physical and biological processes in the CCLME, expertise in evaluating the human dimensions of climate change is limited. Full implementation of the CCIEA, including ecosystem-based management of the CCLME will require research into understanding the potential impacts of climate change on the full range of ecosystem services from food provisioning to tourism to existence value.

- Level funding: the CCIEA will need to transition from a periodically produced document to more routine contributions through use of web-based tools that can be updated and monitored in near real-time, in order to respond to unexpected conditions or provide early warnings of ecosystem change. It is also essential that there be improved integration and synthesis of the multitude of monitoring efforts in the CCLME, including those from across NOAA, the Regional Associations of IOOS, state agencies, tribes and academic partners. The infrastructure exists to provide this framework and integration with partners, although full implementation may require new resources.
- <u>Additional funding</u>: continued improvement of tools for EBM, such as the CCIEA, will
 provide resource managers with the capacity to adaptively address climate variability and
 change. Additional resources would increase staff to enhance and improve modeling
 expertise within our Centers and in collaboration with CIMEC, CIMRS, JISAO, and
 OAR/GFDL/ESRL. The immediate impact could be a better understanding and improved

projections of climate-driven effects on the CCLME and thus better information to adapt policy to climate change. Such capabilities will improve communication with stakeholders (research, policy, NGOs, fishing communities and the general public) on climate change impacts in the CCLME.

Conduct Management Strategy Evaluations (MSEs) (Objectives 1, 2, 3 and 4)

Through MSEs that include multi-species and multi-fleet models, and spatial economics models, researchers can identify specific policies that are likely to be robust to surprises coming from a changing climate and ecosystem. Working with the PFMC we have initially identified Pacific hake, sablefish and North Pacific albacore for MSEs to identify sampling and management approaches that are robust to uncertainties in our understanding or quantification of mechanistic links, and improving management strategies and reference points.

- <u>Level funding</u>: we will be able to initiate MSEs for Pacific hake, sablefish and North Pacific Albacore. Support for two dedicated MSE experts (one at each Center) has been provided following the Centers' 2015 external review on stock assessment science.
- <u>Additional funding</u>: MSEs are likely to become *de facto* approaches that build on retrospective studies and process-oriented research to identify the mechanisms underlying recruitment variability or other responses (e.g., shifts in spatial distribution, growth, or phenology) to changing climate conditions. An increase in resources would be used to strengthen the Centers' capabilities that presently rely on the minimal dedicated staff mentioned above.

Disseminate new climate-related LMR science and information through existing U.S. West Coast NOAA Fisheries communications efforts (Objectives 1, 2 and 3)

NOAA Fisheries on the West Coast supports a strong cross-Center and regional office team of communications specialists. We will engage this communications expertise to disseminate the science information and products resulting from this action plan. This team will assist in delivering this information effectively to target audiences by partnering with active climate science communities. In particular, we will coordinate with existing West Coast climate networks like the North Pacific Landscape Conservation Cooperative (LCC), and the NOAA Regional Integrated Sciences and Assessment (RISA) programs. Possible communications strategies include website content, fact sheets or other print media, press releases and other media engagement, listsery announcements, and podcast or video production, or both.

- Level funding: We will emphasize science related to climate variability and change in our
 existing communications plans and activities to targeted audiences, as well as use new
 NMFS-supported web design features to create more integrated U.S. West Coast climate
 stories.
- Additional funding: We will employ innovative communications techniques such as a
 dedicated U.S. West Coast climate science web portal, advanced data visualizations,
 animation, and storytelling to deliver NMFS climate science to more audiences.

Table 4. WRAP Action Table and Timeline

Action Name	Funding Scenario	Time Frame	Action Description	POC (name)	Partners
Objective 1 – Climate Inf	ormed Refe	rence Points			
Conduct MSE analysis of reference points (Pacific hake, sablefish and North Pacific albacore)	Level	2017-2019	Stakeholders engaged in analysis of effect of alternative harvest (OFL, ABC, ACL) reference points based on long-term stock status under climate change for one species. (Also Obj. 2, 3)	Centers' MSE coordinators	PFMC; Industry and NGOs; academics; state agencies; tribes; climate modelers
Identify climate-relevant ecosystem-level thresholds.	Level	2016-2019	Use CCIEA and associated ecological efforts to identify ecosystem-level reference points. Communicate value of ecosystem reference points.	Centers' CCIEA leads	Industry, management entities, states, tribes, NGOs
Evaluate turtles and marine mammals, as climate reference points	Level	2017-2019	Use PR and ESA data to determine whether higher trophic level species provide robust reference points for climate indicators	SWFSC-MMTD	CCIEA
Evaluate recovery goals for 1-3 protected species	Level/ Increase	2017-2020	Assess appropriateness of established recovery goals, given likely impacts of climate change and results of Climate Vulnerability Analyses. (Also Obj. 2)	NWFSC, SWFSC Species in the Spotlight Teams	WCRO, stakeholders, climate modelers
Build socio-economic impact analysis of alternative harvest reference points	Increase	2017-2020	Build socio-economic capacity to evaluate socio-economic outcomes, and likely human behavioral response to alternative harvest reference points and stock trajectories under climate change. (Also relevant to Obj. 3)	CCIEA and WCRO	Industry, management entities, states, tribes, NGOs
Objective 2 – Robust Mar	nagement S	trategies			
Complete climate vulnerability analysis for ESA and MSA fish species	Level	2016	Identification of most climate-sensitive fish spp.; information to contribute to prioritization of research and management efforts. (Also relevant to Obj. 3, 4, 6)	Centers' climate vulnerability team	WCRO, external fed agency and academic scientists
Complete climate	Level	2017	Identification of most climate-sensitive	SWFSC-MMTD,	WCRO, external

vulnerability analysis for protected mammal and turtle species			marine mammal and turtle spp.; information to contribute to prioritization of research and management efforts. (Also relevant to Obj. 3, 4, 6)	-ERD	scientists
Evaluate resilience of restoration activities to climate change	Level	Ongoing	Conduct scientific investigations into the suitability, effectiveness and resilience of active restoration and other conservation efforts to climate change. (Also relevant to Obj. 3)	NWFSC-FED; SWFSC-FED	Academia, WCRO, PFMC, State and International partners
Evaluate surveys and other data collection efforts for ability to detect change	Level	Ongoing	Evaluate current suite of surveys for ability to detect range, abundance and phonological shifts. Identify gaps, build cooperative efforts with Canada and Mexico to fill gaps. (Also relevant to Obj. 1, 5, 6, 7)	NWFSC-FRAM; SWFSC-FRD, - MMTD	State and International partners
Conduct MSE of alternative harvest management strategies for one stock	Increase	2017-2019	Evaluate impact of alternative harvest strategies on stock status under projected climate impacts, engage stakeholders to develop and assess impacts of those strategies. (Also relevant to Obj. 1, 3, 4)	Centers' MSE coordinators	PFMC, Industry, academic partners, state mgmt. agencies, tribes, NGOs, climate modelers
Incorporate socio- economics into MSE and other analyses	Increase	2017-2020	Build socio-economic capacity to evaluate socio-economic outcomes, and likely human behavioral response to alternative harvest management strategies and stock trajectories under climate change; build similar evaluations for alternative protected resource management approaches. (Also relevant to Obj. 1, 3, 4, 7)	Centers' CCIEA teams	Industry, management entities, states, tribes, NGOs
Socio-economic analysis of impacts of water supply variability	Increase	2017-2021	Develop models of economic impacts of uncertainty in water supply.	SWFSC-FED	Academics, state agencies (CDFW), federal agencies (USBR)
Model alternative management approaches for achieving recovery of 3-5 protected species	Increase	2017-2021	Model likelihood and time frame of achieving recovery goals for listed species under alternative management scenarios given projected climate impacts. (Also relevant to Obj. 1, 3, 4)	NWFSC-FED; SWFSC-FED, - MMTD	WCRO, stakeholders, OAR, climate modelers

Evaluate effectiveness of	Level	2018	Scenarios of stock movement and	SWFSC-ERD, -	CCIEA, PFMC,
Dynamic Ocean			management alternatives in response to	MMTD; WCRO	Academics, CDFW,
Management			climate conditions rather than set areas.		US Coast Guard
			(Also relevant to Obj. 2, 4)		
Maintain scientific liaison	Level	Ongoing	Inform WCRO staff of new climate	SWFSC-FED;	WCRO
capacity			research and activities; ensure that	NWFSC-FED	
			Center staff are aware of WCRO		
			activities and information needs. (Also		
D 111	T	2019	relevant to Obj. 7)	NIWECO	DEMC HC DOD
Build capacity to support Ecosystem Based	Increase	2019	Staff positions to use the CCIEA products to create EAFM, EBFM and	NWFSC, SWFSC, CCIEA,	PFMC, U.S. BOR, CDWR, US ACE
Management			EBM capabilities. (Also Obsj. 4, 6)	and WCRO	CDWK, US ACE
West Coast Climate	Increase	2016-2021	The WC ³ will coordinate staff-driven	NWFSC,	CCIEA, PFMC,
Committee (WC ³) will	merease	2010 2021	workshops to advise on specific climate	SWFSC, PMEL,	Academics,
identify climate –relevant			variability topics, e.g. warming,	WCRO, ESRL,	WA/OR/CADFW,
workshops			hypoxia, HABs, air/ocean exchanges,	etc.	etc.
•			etc., that impact fishery management.		
			(Cross-cutting to all Objectives.)		
Objective 4 – Project Fu	ture Conditi	ons			
Examine climate-driven	Level	2017-2019	Using information from climate models	CCIEA leads	NMFS, OAR,
future scenarios for U.S.			(e.g., from GFDL) to downscale to		JSCOPE team,
West Coast fish stocks			regional models of ecosystem (ROMS		Academics, PICES
(forage, groundfish,			and Atlantis) to estimate the response of		
salmon), key predator			CCLME ecosystem components. (Also		
species and, HMS (N.			relevant to Obj. 1, 2)		
Pacific Albacore) and					
marine mammals and turtles Examine climate-driven	Level	2017-2019	IIi-ftif	CWECC EED.	DOI Climate
future scenarios for West	Level	2017-2019	Use information from partner organizations (e.g., the NOAA-RISA	SWFSC-FED; NWFSC-FED	Science Centers,
Coast hydrology and stream			and DOI-Climate Science Center	NWF5C-FED	RISAs, Cooperative
temperature from a			"Integrated Scenarios for Climate,		Institutes at UW an
freshwater salmon and			Hydrology, and Vegetation" in concert		UC
sturgeon habitat perspective			with USFS "NorWeST" stream		
2			temperature database) to evaluate future		
			habitat scenarios for Pacific salmon and		
	1		steelhead to 2100. (Also relevant to Obj.		1
			steemed to 2100. (Also relevant to Ob).		
			1, 2, 3) Use full life-cycle models that integrate		

impacts across the full life- cycle of selected Pacific salmon ESUs			vital rates (growth and survival rates) at multiple life stages with freshwater, estuary, and marine habitat conditions under future climate scenarios to 2100. (Also relevant to Obj. 1, 2)	NWFSC-FED	CIMEC, CIMRS, and JISAO
Develop models that characterize adaptive evolutionary and plastic responses to climate change impacts across the full life- cycle of selected Pacific salmon and steelhead ESUs	Increase	2017-2020	Apply Integrated Projection Models that integrate vital rates (growth and survival rates, population productivity) at multiple life stages with pedigree information and genetic and phenotypic changes in response to future climate scenarios. (Also relevant to Obj. 1, 2)	NWFSC- CBD	CIMEC, CIMRS, and JISAO
Develop targeted statistical models and numerical simulations to anticipate climate change impacts	Increase	2018-2021	Continue development of statistical tools to determine the impact of climate variability on targeted species Develop numerical simulations to test the statistical analyses	CCIEA leads from Centers, WCRO	CIMEC, CIMRS, and JISAO, Academics
Evaluate vulnerability of coastal communities to climate change	Increase	2017-2020	Examine vulnerability of coastal communities and fisheries to changes in abundance, distribution and phenology of LMRs and consequences of climate change. (Also relevant to Obj. 5, 6)	CCIEA leads, WCRO	PFMC, WA/OR/CA DFW, Tribes, etc.
Objective 5 – Understand	I the Mecha	nisms of Chai	nge		
Hold two workshops on responses of vital rates in selected marine species to changes in oxygen and pH levels	Level	2017-2018	Quantify range of variability in key vital rate information (respiration, growth, etc.) under expected ranges of climate variability; and use in models (ROMS/Atlantis). (Also relevant to Obj. 2, 3, 4)	Organizer	NMFS, Academics, State Agencies, West Coast OAH Panel
Develop functional response curves across a range of pH, dissolved oxygen, and sea water temperature for selected species/stocks (anadromous and marine) with changing marine and freshwater conditions	Increase	2016-2018	Lab studies to quantify physiological and behavioral responses in selected species/stocks across a range of pH, DO, and water temperature that spans the expected range of future conditions. (Also relevant to Obj. 4) Field studies to collect water	SWFSC-FED; NWFSC-EFSD, - CBD	CIMEC, CIMRS, and JISAO, Academics

			of selected species across a range of environmental conditions. (Also relevant to Obj. 4, 6, 7)		
Assess sublethal effects of multiple stressors and their population-level consequences	Increase	2018-2021	Quantify physiological, neurological and behavioral responses in selected salmon a range of water quality parameters and temperature and DO. (Also relevant to Obj. 4, 6, 7)	NWFSC-EFSD; SWFSC-FED, - FRD	Academics (WSU Puyallup), IMR (Norway)
Link changes in water supply and habitat protection actions to economic and social impacts	Level	2016-2019	Develop models of economic impacts and responses to protected fish actions (e.g., changes in water supply, dam removal/fish passage, habitat restoration)	SWFSC-FED	Academics; state agencies (CDFW, CDWR); federal agencies (USBR); WCR
Field, laboratory and modeling studies to identify likely invasive species and changes in species interactions with changing climate conditions	Increase	2017-2020	Identify likely changes in species composition and assemblages, including potential for invasive dynamics. Determine mechanisms by which changed species interactions would affect ecosystem structure and function as well as single species' vital rates.	NWFSC-FRAM, -FE and -CB SWFSC- FRD and -FED	Academics, state agencies,
Objective 6 – Track Char	nge and Pro	vide Early wa	rnings		
Update ecosystem indicators	Level	2016 - 2021	Build on the CCIEA to aggregate and display in near-real time on Centers' websites hydrographic and biogeochemical data from ships, gliders, buoys and remotely sensed data. (Also relevant to Obj. 5) Identify high temporal resolution hydrographic and biological data appropriate for analyzing seasonal and inter-annual ecosystem variability.	CCIEA leads	NMFS, CI, OAR, Academics
Improve marine and watershed monitoring	Level	2016 - 2020	Standardize measurement techniques and indices necessary for tracking watershed environmental and anthropogenic variability. (Also Obj. 7) Build watershed indices into the CCIEA	SWFSC-FED; NWFSC-FED, - CBD	CIMEC, CIMRS, and JISAO

		and outlooks on salmon returns to the		
		A similar set of indices for coastal and Central Valley runs	SWFSC (Trinidad Head Line)	
		Continue ongoing work to identify conditions most likely to lead to HAB development. (Also Objs. 4, 5)	NWFSC, CCIEA, Academics, State Agencies	
Increase	2018-2020	Staff positions to use the CCIEA products to create EAFM, EBFM and ultimately EBM capabilities. Staff positions to increase modeling capability, both in house and with other NOAA modeling centers. (Also relevant	CCIEA	CIMEC, CIMRS, and JISAO
		to Obj. 4, 5, 7)		
Level	2016-2019	Describe historical changes in commercial fishing activity at the community level; identify drivers of change and develop methods to forecast future changes	SWFSC, NWFSC	Industry, management entities, states
Increase	2016-2020	Monitor the critical environmental components of the ecosystem (Also relevant to Obj. 5, 7)	NWFS, SWFSC	NOAA
		Explore existing data sets and process existing samples to identify associations between environmental conditions and population responses or vital rates. (Also relevant to Obj. 6, 7)		
astructure	to Deliver Ac	tionable Information		
Level	2016-2019	Create a ship survey design review committee to evaluate current data collections, identify gaps, and if appropriate, develop new data collection protocols to detect and track changing environmental conditions within the	Survey team (to be formed)	NMFS and OMAO, Mexico
	Level Increase	Level 2016-2019 Increase 2016-2020 astructure to Deliver Ac	Columbia and Snake Rivers A similar set of indices for coastal and Central Valley runs Continue ongoing work to identify conditions most likely to lead to HAB development. (Also Objs. 4, 5) Increase 2018-2020 Staff positions to use the CCIEA products to create EAFM, EBFM and ultimately EBM capabilities. Staff positions to increase modeling capability, both in house and with other NOAA modeling centers. (Also relevant to Obj. 4, 5, 7) Level 2016-2019 Describe historical changes in commercial fishing activity at the community level; identify drivers of change and develop methods to forecast future changes Increase 2016-2020 Monitor the critical environmental components of the ecosystem (Also relevant to Obj. 5, 7) Explore existing data sets and process existing samples to identify associations between environmental conditions and population responses or vital rates. (Also relevant to Obj. 6, 7) astructure to Deliver Actionable Information Level 2016-2019 Create a ship survey design review committee to evaluate current data collections, identify gaps, and if appropriate, develop new data collection protocols to detect and track changing environmental conditions within the	Columbia and Snake Rivers A similar set of indices for coastal and Central Valley runs Continue ongoing work to identify conditions most likely to lead to HAB development. (Also Objs. 4, 5) Increase Z018-2020 Staff positions to use the CCIEA products to create EAFM, EBFM and ultimately EBM capabilities. Staff positions to increase modeling capability, both in house and with other NOAA modeling centers. (Also relevant to Obj. 4, 5, 7) Level Z016-2019 Describe historical changes in commercial fishing activity at the community level; identify drivers of change and develop methods to forecast future changes Increase Z016-2020 Monitor the critical environmental components of the ecosystem (Also relevant to Obj. 5, 7) Explore existing data sets and process existing samples to identify associations between environmental conditions and population responses or vital rates. (Also relevant to Obj. 6, 7) astructure to Deliver Actionable Information Level Z016-2019 Create a ship survey design review committee to evaluate current data collections, identify gaps, and if appropriate, develop new data collection protocols to detect and track changing

Maintain present observational monitoring capabilities	Level	2016-2021	Include examination of deployment of advanced technologies (autonomous vehicles and drones) in support of survey needs. (Also relevant to Obj. 6) Maintain existing ecosystem monitoring capabilities to ensure long-term data sets required for climate monitoring	NWFSC, SWFSC	OAR, NOS
Hold workshop on 'omics in future fisheries sampling.	Level	2017	Identification of pilot technologies and in-water sampling opportunities. (Also relevant to Obj. 6)	NWFSC, SWFSC, OAR	NMFS and OAR
Improve data management	Level	2017-2021	Increase integration and delivery of data for scientific and management purposes.	NOAA	
Increase laboratory and modeling capabilities	Increase	2017-2021	Enhance the Centers' capabilities by repurposing laboratory space with a focus toward improved quantification of organismal response to changing environmental conditions. Hire the personnel needed to staff new analyses programs, including 'omics and other identified laboratory studies.	NMFS	Academic, State, Private Institutions
Obtain advanced sampling systems.	Increase	2017-2019	Deploy autonomous systems to improve sampling capabilities. Standardize the use of drones and supported instruments. Observe timing and distribution latitudinal migration of CPS, Hake and HMS populations and examine possible abundance estimates. (Also relevant to Obj. 5, 6)	SWFSC; NWFSC	NMFS, PMEL, Academia, Mexico and Canada

5. METRICS

The following metrics will be used, but will be continuously evaluated for their value, in assessing the quality of the output and outcomes of the Action Plan. The metrics are categorized according to whether they assess the quality and quantity of the science, the value of the science to management or the effects on scientific infrastructure.

Science Quality and Quantity:

- a. Number of peer-review publications produced that address climate change and climate impacts.
- b. Completion of climate-vulnerability assessments.
- c. Species (or populations) for which we have climate-vital rate relationships.

Value of the science to management for sustainable fisheries and recovery of protected species:

- d. Number of stock assessments and Annual Catch Limits (ACLs) that are climate-informed.
- e. Number of National Environmental Policy Act (NEPA) and Endangered Species Act (ESA) analyses that are climate-informed.
- f. Number of CCIEA, State of the California Current Report, Stock Assessment and Fisheries Evaluation (SAFE) reports that incorporate climate information.
- g. Number of protected species recovery plan and critical habitat designation analyses that incorporate climate information.
- h. Adoption of indicator(s) to inform management.

Science Infrastructure

- i. Number of long-term monitoring time series maintained.
- j. Full-time equivalent (FTE) time (i.e., sum of partial and full FTEs) devoted to climate-related research.

6. OUTREACH AND ENGAGEMENT

The activities proposed in this plan cannot stand in isolation but will require coordination and communication within and outside NMFS. Through strategic engagement with science and management partners we can design approaches and solutions not realized otherwise, align goals and leverage resources to increase our impact. Management of natural resources on the U.S. West Coast enjoys strong technological knowledge and skills, an integrated network of partnerships, and collectively significant resources. One of the strengths we bring to this effort is a strong history of effective collaboration across the science-management field in living marine resources, as well as active collaborations with the top academic, management, and government institutions. As we strengthen and focus our climate science capabilities, we will need to bolster existing partnerships and strategically seek out new collaborations.

Our approach to engagement in support of this plan is three-fold: 1) ensure effective communication and collaboration within NMFS, including among U.S. West Coast Centers, the

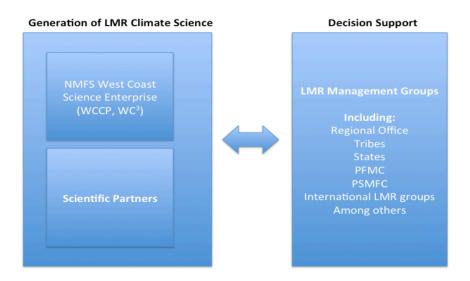
WCRO and with neighboring regions and headquarters offices, 2) strategically nurture existing and new scientific partnerships to advance the activities in this 3-5 year plan, and 3) employ effective communications strategies to deliver new climate science information to our management partners.

Ensure effective communication and collaboration within NMFS

Through recent coast-wide scientific collaborations such as the CCIEA program, NMFS has honed coordination across its organizational units. The WCCP and WC³ will build on these efforts by coordinating with ongoing research with potential to advance these goals (many already referenced in the Action Plan, above). The agency will also utilize or evolve existing mechanisms such as the West Coast Regional Climate team, CCIEA network, and monthly nationwide Ecosystem Management calls to facilitate information sharing, updates, and developments across these related groups.

Nurture existing and initiate new scientific partnerships

As highlighted in the strengths sections above, NMFS maintains strong and proven relationships with leading scientific institutions (academic, federal, state and international) that house some of the best programs and expertise on climate variability and living marine resources. This plan represents a new articulation of NMFS' direction and goals when it comes to climate science, and we will evaluate new partnerships as part of implementing this plan.


We will look to the significant climate science expertise within NOAA, including NOAA's National Centers for Environmental Information, OAR/ESRL/GFDL, NOS/Sanctuaries, the Western Region Climate Services Director, the three Integrated Ocean Observing Systems in the region (IOOS: CeNCOOS, NANOOS and SCCOOS), the National Center for Coastal Ocean Science (NCCOS) which produce biogeographic assessments, and many other NOAA climate assets across the line offices.

We will look to our all existing academic partners for synergistic partnerships to achieve the Action Plan activities (see 3.1 Strengths for an analysis of existing academic partnerships), but will also seek to partner with new organizations that have technologies and approaches that will advance our efforts.

Deliver new climate science information to management partners

Ultimately the scientific advances and new information generated must be delivered to users to implement in management decisions. The living marine resources under trust to NOAA are managed variously by our regional offices and fisheries management councils, co-managers including states and tribes, place-based groups like National Marine Sanctuaries and National Estuarine Research Reserves, and are impacted by activities of many groups including stranding networks, community environmental groups, environmental-NGOs, ocean users and ocean-based industries, and individuals. We will continue to maintain a two-way dialogue and feedback loop with key management partners to ensure science products and information are packaged and to best support management decisions.

Given the number of groups involved in living marine resource management, and limited staff time and resources, we must prioritize the key strategic partnerships most likely to result in the greatest impact. These are groups that have direct responsibility for managing the resource, are putting in place mechanisms to manage the resources adaptively, and incorporate science into their decision-making. We know the PFMC and Pacific States Marine Fisheries Commission will be among our key climate-science-management partners.

Several cross-government and cross-disciplinary groups have formed along the West Coast to inform management of natural resources under a changing climate. These groups can offer lessons learned as well as reach management groups. In particular, NOAA's RISAs and the Department of the Interior's LCCs build national capacity to prepare for and adapt to climate variability. RISAs focus primarily on connecting science and decision-makers and LCCs on landscape-scale science-informed management. State Sea Grant organizations also support development and use of climate information as it promotes responsible use of marine resources. All of these groups maintain a network of researchers, managers, and other climate and environmental expertise. The Centers and Regional Office can strengthen its partnerships with the two RISAs and two LCCs located in the western region by disseminating climate science goals, projects, and findings through and with these groups, which may bring insights across the marine-terrestrial-atmosphere divide.

Ecosystems and climate variability see no geopolitical boundaries and therefore we will continue to engage with a large number of international partners to improve climate-related information with specific focus on climate-informed biological reference points, climate-smart harvest control rules, MSEs for climate ready LMR management and climate-smart protected species and habitat consultations. Of particular concern are the species distribution changes that could be a result of climate change.

7. REFERENCES

Beechie T., et al. (2013) Restoring salmon habitat for a changing climate. *River Research and Applications* 29: 939-960

Bond, N.A. et al. (2015) Causes and Impacts of the 2014 Warm Anomaly in the NE Pacific. *Geophysical Research Letters*, 42. DOI: 10.1002/2015GL063306.

Boughton, D.A., and A.S. Pike (2013) Floodplain Rehabilitation as a Hedge against Hydroclimatic Uncertainty in a Migration Corridor of Threatened Steelhead. *Conservation Biology* 27(6): 1158–1168.

Chavez, F.P., Ryan, J., Lluch-Cota, S.E. and Ñiquen C.M. (2003) From anchovies to sardines and back: multidecadal change in the Pacific Ocean. *Science* 299: 217-221.

Checkley, D.M., and J.A. Barth (2009) Patterns and processes in the California Current System. *Prog. in Oceanogr.*, 83:49–64.

Crozier, L.G., Zabel, R.W., and Hamlet, A.F. (2008) Predicting differential effects of climate change at the population level with life-cycle models of spring Chinook salmon, *Global Climate Change Biology*, 14:236-249.

Fisher, J.L., W.T. Peterson, R.R. Rykaczewski (2015) The impact of El Niño events on the pelagic food chain in the northern California Current. *Global Change Biology*, 21(12):4401-4414.

Haltuch, M.A., A.E. Punt, M.W. Dorn (2009) Evaluating Fishery Management Reference Points in a Variable Environment. *Fisheries Research* 94 (3): 290-303.

Hooff, R.C. and W.T. Peterson (2006) Recent increases in copepod biodiversity as an indicator of changes in ocean and climate conditions in the northern California current ecosystem. *Limnol. Oceanogr.* 51:2042–2051.

Jacobson, L. and S. McClatchie (2013) Comment on temperature-dependent stock—recruit modeling for Pacific sardine (Sardinops sagax) in Jacobson and MacCall (1995), McClatchie et al. (2010), and Lindegren and Checkley (2013). *Can. J. of Fish. and Aquatic Sciences* 70: 1566-1569. dx.doi.org/10.1139/cjfas-2013-0128.

Kasperski, S. and D.S. Holland (2013) Income Diversification and Risk for Fishermen. *Proceedings of the National Academy of Science*. 100(6):2076-2081. doi: 10.1073/pnas.1212278110.

Keister, J.E., E. Di Lorenzo, C.A. Morgan, V. Combes, and W.T. Peterson (2011) Zooplankton species composition is linked to ocean transport in the northern California Current, *Global Change Biol.*, doi:10.1111/j.1365-2486.2010.02383.x.

Lewison, R., et al. (2015) Dynamic Ocean Management: Identifying the Critical Ingredients of Dynamic Approaches to Ocean Resource Management. *Bioscience* 65(5):486–498. http://bioscience.oxfordjournals.org/lookup/doi/10.1093/biosci/biv018

- Lindegren, M., and Checkley D.M. Jr. (2013) Temperature dependence of Pacific sardine (Sardinops sagax) recruitment in the California Current Ecosystem revisited and revised. *Can. J. Fish. Aquat. Sci.* 70(2): 245-252.
- McElhany and Busch. Meta-analysis of species sensitivity to carbonate chemistry for use in modeling ocean acidification effects in the California Current ecosystem". *PLOS ONE*, in review.
- Peterson, W.T. (2009) Copepod species richness as an indicator of long-term changes in the coastal ecosystem of the northern California Current. *California Cooperative Oceanic Fisheries Investigations (CalCOFI) Report* 50:73-81.
- Peterson, W. T., J. L. Fisher, J. O. Peterson, C. A. Morgan, B. J. Burke, K. L. Fresh. (2014) Applied fisheries oceanography: Ecosystem indicators of ocean conditions inform fisheries management in the California Current. *Oceanography*, 27(4):80-89. doi:http://dx.doi.org/10.5670/oceanog.2014.88
- Ralston, S., K.M. Sakuma and J.C. Field (2013) Interannual Variation in Pelagic Juvenile Rockfish Abundance–Going With the Flow. *Fisheries Oceanography* 22: 288–308.
- Santora, J.A., W.J. Sydeman, I.D. Schroeder, B.K. Wells, J.C. Field (2011) Mesoscale structure and oceanographic determinants of krill hotspots in the California Current: Implications for trophic transfer and conservation. *Progress in Oceanography*, 91:397-409.
- Santora J.A., Field J.C., Schroeder I.D., Sakuma K.M., Wells B.K., Sydeman W.J. (2012) Spatial ecology of krill, micro-nekton and top predators in the central California Current System: implications for defining ecologically important areas. *Prog. Oceanogr.* 106:154–174
- Schirripa M.J. and Colbert J.J. (2006) Interannual changes in sablefish (*Anoplopoma fimbria*) recruitment in relation to oceanographic conditions within the California Current System. *Fish. Oceanogr.* 2006;14:1-12.
- Stachura, M. M., N. J. Mantua, and M. D. Scheuerell. (2014) Oceanographic influences on patterns in North Pacific salmon abundance. *Can. J. of Fish. and Aquatic Sciences* 71(2):226-235
- Stawitz, C.C., T. E. Essington, T.A. Branch, M. A. Haltuch, A. B. Hollowed, P. D. Spencer. 2015. A state-space approach for detecting growth variation and application to North Pacific groundfish. Canadian Journal of Fisheries and Aquatic Sciences, 72(9): 1316-1328
- Stewart, J.S., Hazen, E.L., Bograd, S.J., Byrnes, J.E.K., Foley, D.G., Gilly, W.F., Robison, B.H. and Field, J.C. (2014) Combined climate- and prey-mediated range expansion of Humboldt squid (*Dosidicus gigas*), a large marine predator in the California Current System. *Global Change Biol*, 20: 1832–1843. doi:10.1111/gcb.12502.
- Strub et al. (2013) Currents and Processes along the Eastern Boundaries. In: *International Geophysics, Ocean Circulation and Climate, A 21st Century Perspective*, Volume 103, Edited by Siedler et al. http://dx.doi.org/10.1016/B978-0-12-391851-2.00014-3.
- Thorson J.T., Stewart I.J., Taylor I.G., Punt A.E. (2013) Using a recruitment-linked multispecies stock assessment model to estimate common trends in recruitment for US West Coast groundfishes. *Mar. Ecol. Prog. Ser.* 483:245-256.

Thorson, J.T. and C.V. Minte-Vera (in press). Relative magnitude of cohort, age and year effects on size and age of exploited marine fishes. *Fisheries Research*. doi:10.1016/j.fishres.2014.11.016

Walters A.W., Bartz K.K., McClure M.M. (2013) Interactive effects of water diversion and climate change for juvenile Chinook salmon in the Lemhi River basin (USA). *Conservation Biology* 27: 1179-1189.

Wells, B.K., J. Field, J. Thayer, C. Grimes, S. Bograd, W. Sydeman, F. Schwing, and R. Hewitt (2008) Untangling the relationships among climate, prey, and top predators in an ocean ecosystem. *Marine Ecology Progress Series*, 364:15-29

Wells, B.K., J.A. Santora, J.C. Field, R.B. MacFarlane, B.B. Marinovic, and W.J. Sydeman (2012) Population dynamics of Chinook salmon (Oncorhynchus tshawytscha) relative to prey availability in the central California coastal region. *Marine Ecology Progress Series*, 457:125-137

Zabel, R.W., M.D. Scheuerell, M.M. McClure, J.G. Williams (2006) The interplay between climate variability and density dependence in the population viability of Chinook salmon. *Conservation Biology*, 20(1):190-200.

8. WRAP Acronyms

Acronym	Representing				
ABC	Acceptable Biological Catch				
ACL	Annual Catch Limit				
AUV	Autonomous Underwater Vehicle				
BC to BC	British Columbia to Baja California				
BOEM	Bureau of Ocean Energy Management				
BPA	Bonneville Power Administration				
CalCOFI	California Cooperative Oceanic Fisheries Investigations				
CCIEA	California Current Integrated Ecosystem Assessment				
CCLME	California Current Large Marine Ecosystem California Current Large Marine Ecosystem				
CCS	California Current System California Current System				
CeNCOOS	Central and Northern California Ocean Observing System				
CIMEC	Cooperative Institute for Marine Ecosystems and Climate				
CIMRS	Cooperative Institute for Marine Ecosystems and Chinate Cooperative Institute for Marine Resources Studies				
CPS	Coastal Pelagic Species				
CSIRO	Constant relagic species Commonwealth Scientific and Research Organization				
EBFM	Ecosystem Based Fishery Management				
EBM	Ecosystem Based Pisnery Management Ecosystem Based Management				
ENSO	El Niño Southern Oscillation				
ESA	Endangered Species Act				
ESRL	Earth Systems Research Laboratories				
EWG	Ecosystem Working Group (PFMC subcommittee)				
FATE	Fisheries and the Environment				
FEP					
FMP	Fishery Ecosystem Plan				
FTE	Fishery Management Plan Full Time Equivalent				
GCM	General Circulation Model				
GFDL	Geophysical Fluid Dynamics Laboratory				
HABs	Harmful Algal Blooms				
IOOS	Integrated Ocean Observing Systems				
IWC	International Whaling Commission				
JISAO					
LCC	Joint Institute for the Study of the Atmosphere and Oceans Landscape Conservation Conservative				
LMR	Living Marine Resources				
MMPA	Marine Mammal Protection Act				
MSA	Magnuson-Stevens Fishery Conservation and Management Act				
MSE	Management Strategy Evaluation				
NANOOS	Northwest Association of Networked Ocean Observing Systems				
NASA	National Aeronautics and Space Administration				
NCCOS					
NCEAS	National Centers for Coastal Ocean Science				
NCSS	National Center for Ecological Analysis and Synthesis NOAA Fisheries Climate Science Strategy				
NEPA					
NGO	National Environmental Policy Act				
NMFS	Non-Governmental Organization National Marine Fisheries Service				
NOAA	National Oceanic and Atmospheric Administration				
NOS	National Ocean Service				
NPGO NPZ	North Pacific Gyre Oscillation				
NPZ	Nutrient Phytoplankton Zooplankton model				
NWFSC	Northwest Fisheries Science Center				
-CBD	-Conservation Biology Division				

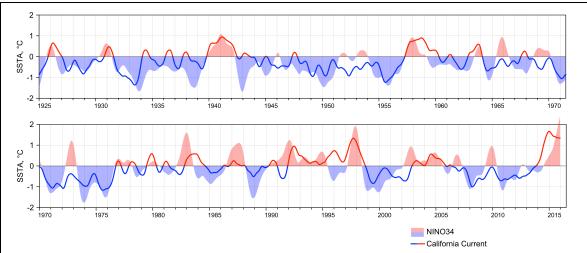
Working Copy for Public Comment (Version: 22 March 2016)

-EFSD	-Environmental and Fisheries Science Division				
-FRAMD	-Fishery Resource Analysis and Monitoring Division				
OA	Ocean Acidification				
OAR	Oceanic and Atmospheric Research				
OCNMS	Olympic Coast National Marine Sanctuary				
OFL	Overfishing Limit				
PARR	Public Access to Research Records				
PDO	Pacific Decadal Oscillation				
PFMC	Pacific Fishery Management Council				
PICES	The North Pacific Marine Science Organization				
PMEL	Pacific Marine Environmental Laboratory				
PNW	Pacific Northwest				
RAP	Regional Action Plan				
RISA	Regional Integrated Sciences and Assessments				
ROMS	Regional Ocean Modeling System				
SAFE	Stock Assessment and Fisheries Evaluation				
SCCOOS	Southern California Coastal Ocean Observing System				
SST	Sea Surface Temperature				
SWFSC	Southwest Fisheries Science Center				
-ERD	-Environmental Research Division				
-FED	-Fisheries Ecology Division				
-FRD	-Fisheries Resources Division				
-MMTD	-Marine Mammal and Turtle Division				
UAS	Unmanned Aerial System				
UME	Unusual Mortality Event				
USGS	U.S. Geological Survey				
WC ³ or WCCC	West Coast Climate Committee				
WCCP	West Coast Climate Program				
WCRCT	West Coast Region Climate Team				
WCRO	West Coast Regional Office				
WRAP	Western Regional Action Plan				

Appendix A

Learning from past extremes in the CCLME

Recent climate variability has provided a window into possible future states of the CCLME's marine, coastal and freshwater ecosystems. It is anticipated that future environmental changes will lead to both range shifts of existing marine fauna and changing ecological structure in terms of predator-prey interactions and food chain structure.


For example, increased water column stratification was observed during warm conditions like those following major El Niño winters of 1983 and 1998, and during the extended warming of 2014-2015. Observations collected during these and other warm periods provide insights into the likely impacts that future increases in stratification due to anthropogenic climate change might have on LMRs. Off Oregon vertical density gradients were so steep that upwelling winds (which in 2015 were among the strongest in at least the past 30 years) neither mixed the water column vertically, nor pushed surface waters very far offshore, thus the effects of coastal upwelling were limited to a very narrow band near the coast. Cold water was seen in outer shelf waters only in June 2015. Thus upwelling was not as biologically effective as one might expect.

More broadly, the CCLME is driven simultaneously by bottom up, middle-out, and top-down processes that respond strongly to wind-driven upwelling variations. In spring and summer, intense coastal upwelling and weaker but still important open ocean upwelling over the continental shelf bring cold, nutrient-rich water to the surface that stimulates high phytoplankton productivity in a relatively narrow and cold mid-latitude to sub-tropical oceanic region. The negative side of upwelling is the transport of deep offshore low oxygen and/or lower pH (undersaturated with respect to aragonite) waters into the productive upwelled surface waters. In extreme upwelling periods in the summers of 2002 and 2006, shelf-hypoxia was especially widespread in the northern California Current System (CCS), and the first record of anoxia in the northern CCS (over Heceta Bank) was documented. There is also evidence for longer-term declines in dissolved oxygen and aragonite saturation levels in the CCS.

Because of seasonal upwelling, there are sharp gradients in biochemical properties along the West Coast representing the seasonal development of neighboring sub-tropical and subarctic water masses. Variable ocean conditions in the CCS often include rapid shifts in the boundaries of these water masses, or intermediate mixtures of different water masses. Rapid shifts in ocean conditions are often accompanied by rapid range shifts in highly mobile species and plankton, and these can include major reorganizations in ocean food webs. For instance, in warm periods in the CCS, tropical/subtropical species can move inshore and poleward by hundreds of kilometers within a single season.

Historical records for the CCS date back to the late 1800s, and they highlight many examples of seasonal and year-to-year variations in the state of the CCS, and a few examples of multi-year to multi-decadal changes. For instance, in the period since 1920, there have been many one to multi-year periods with anomalously warm (cold) sea surface temperatures (SSTs) in the CCS, and

many of these warm periods were associated with tropical El Niño (La Niña) events (Figure A1). Notable warm events are 1940-41, 1957-58, 1982-83, 1986-87, 1990-94, 1997, 2003-05, and 2014-15. Extended cold periods include 1926-29, 1931-39, 1942-50, 1954-56, 1970-71, 1973-76, 1984-85, 1988-89, 1999-2002, 2007-08, and 2010-12. This variability reflects the combined influences of major basin scale climate modes (ENSO, PDO, and NPGO) and the influences of more regional atmospheric forcing.

Figure A1: CCS averaged (from the US-Canada border to US-Mexico border, from the coast to 500km offshore) sea surface temperature anomalies with the Nino3.4 index using a 12-month Lowess smoother on monthly data. Anomalies are calculated with respect to the 1981-2010 climatology using ERSST.v4 data. Figure provided by Paul Fiedler, NOAA/NMFS/SWFSC.

There is evidence for increased variability in climate forcing important for the CCS: the PDO is no longer as strongly decadal; since the late 1990s the PDO changed sign about every five years. Over the past 40 years, we have had three "El Niño events of the Century" (1982-83, 1997-98, and 2015-16). Similarly, there have been frequent environmental surprises in the CCS in recent years, including the Humboldt squid range expansion into the northeast Pacific (and CCS) from 2005-2009, widespread ecological impacts in the CCLME of a delay in the onset of the upwelling season in 2005, the record northeast Pacific Ocean heat wave in 2014-2015, and the coast-wide harmful algal bloom in 2015.

A synthesis of past CCS variations in relation to large-scale climate forcing supports a relatively simple conceptual model for a continuum of CCLME states moving between sub-arctic (cold) and sub-tropical (warm) extremes. The cold phases of the PDO and La Niña result in colder upper ocean temperatures, weaker stratification, increased nutrients, and northern copepod communities dominating the northern CCS. These copepod species are large in size and lipid-rich, thus when fed upon by mid-trophic level baitfish, provide a lipid-rich and bio-energetically enriched food chain that in turn sustains a host of upper-trophic level fishes (hake, sardines and salmon), seabirds (shearwaters and albatross) and mammals (California sea lions, gray and humpback whales) that migrate to the Northern California Current every spring to feed. The converse is true

during a warm ocean, associated with positive phase of the PDO, an El Niño, or warm extremes like the 2014-2015 "blob", that give rise to a stratified water column, reduced nutrients, and a prevalence of small, subtropical, lipid-poor copepods, and a less productive marine food-web that results in poor ocean growth and survival rates for salmon, and poor reproductive success years for sea birds. Warm periods in the CCLME have also brought changes in biogeography that include earlier seasonal migrations of whiting, sardines, highly migratory species (tuna, sharks, etc.) that extend farther north, even as far as Canadian waters. This was apparent in 2014 and 2015 in association with the warm conditions along the U.S. West Coast, and has been observed in many previous warm extremes in the CCS.

The negative and positive modes of the NPGO (weak and strong gyre circulation patterns) are associated with low and high nutrients and productivity-levels in the southern portion of the CCS. The cold and warm modes of the PDO affect alongshore transport and affect a predominance of sub-arctic waters from the north, or sub-tropical waters from the south.

While we have documented a large number of climate-induced changes over the past decades, there is a lack of understanding of the detailed mechanisms that couple physical forcing with biological responses. If we do not know 'rules' that govern ecosystem dynamics, we will not be able to bring climate variability in stock assessment models. There is a clear need for a better understanding of how the population structure and life history characteristics of LMR species will respond both to physical forcing and to within-community changes in predator-prey relationships and competitive interactions.

Appendix B

The 2012-2015 "climate change stress test" for the West Coast

2012-2015 Drought impacts on West Coast salmon and salmon habitat
California has experienced well below average precipitation in each of the past 4 water years
(2012, 2013, 2014 and 2015), record high surface air temperatures the past 2 water years (2014 and 2015), and record low snowpack in 2015. Some paleoclimate reconstructions suggest that the
2012 - 2015 drought was California's most extreme in the past 500 - 1000 years. Record high surface temperatures in 2014 and 2015 made this a "hot drought," in which high surface temperatures substantially amplified annual water deficits above what would have happened as a consequence of precipitation deficits alone. While the multi-year drought was mostly focused on California, water year 2015 (October 2014 - September 2015) was record warm for most of Western North America and brought exceptionally low springtime snow pack to most watersheds in Western North America (from Southeast Alaska to California).

In the PNW region, water year 2015 precipitation was near average, but a lack of spring precipitation and record-high surface temperatures led to record-low spring time snow packs. The combination of near-record high surface air temperatures and low snow-fed runoff led to extremely low spring and early summer stream flows and extremely high stream temperature. Record high stream temperatures in the lower Columbia Basin in 2015 contributed to high prespawn mortality for Willamette River and John Day River Spring Chinook salmon (June and July 2015, respectively), and upriver runs of sockeye salmon (July 2015). Approximately half the total 2015 Columbia River sockeye salmon run (250,000 adults) died from high water temperature related causes. On the other hand, returns of spring and fall Chinook came before and after the warming of river temperatures, thus those runs were not affected adversely.

For California, the combination of low precipitation, depleted reservoir storage, and record-high temperatures in both 2014 and 2015 caused exceptionally high stream temperatures in some watersheds. The lack of cold water stored behind Shasta Dam, in combination with water release decisions, led to a loss of stream temperature control below Shasta Dam in September 2014. Stream temperatures that exceeded the 56°F (13.3°C) target in Sacramento River Chinook salmon spawning areas are thought to have contributed to 95% mortality rates for eggs and fry produced by spawning Winter Run and Fall Run Chinook salmon in in 2014. Concerns over a high potential for fish kills in the Klamath Basin were also high in the summers of 2014 and 2015 because of high stream temperatures and elevated presence of pathogens detected in salmon; these concerns prompted emergency reservoir releases that were aimed at lowering downstream temperatures to alleviate those risks. In 2015, the lack of available cold water in Lake Shasta lead regulators to slightly raise the target water temperature for Winter Run Chinook salmon spawning and incubation period flows, and exceptionally low egg-to-fry survivals (~3 to 5%) happened again in 2015.

High stream temperatures and low stream flows in summer 2015 also had widespread adverse impacts on salmon hatcheries in Washington, Oregon and California, causing increased mortality

for rearing juveniles and forcing hatchery managers to release hundreds of thousands of juvenile salmon earlier than desired.

Record high temperatures, frequently in the low 70s °F (>21°C), in the Columbia River in 2015 contributed to extremely high pre-spawn mortality for upriver runs of sockeye salmon. For Redfish Lake sockeye only an estimated 440 adults survived the migration to the last dam encountered on the Snake River, which is about 10% (over 4,000 ESA-listed adult Redfish Lake sockeye) of the fish crossing the first dam encountered on the Columbia. Because of the low survival Idaho Fish and Game trapped and transported 101 migrating adults to their hatchery, and 587 mature Redfish Lake sockeye salmon adults from NOAA's captive broodstock program were released into Redfish and Pettit Lakes in Idaho's Stanley Basin to aid in offsetting the very low survival.

2014-15 exceptionally warm ocean conditions in the Northeast Pacific

Much of the northeast Pacific Ocean experienced an "ocean heat wave" that featured record high sea surface temperature anomalies from Alaska to Mexico in both 2014 and 2015. The record warming developed in several stages. First, unusually placid and persistent 2013 - 2014 fall/winter weather over the Gulf of Alaska caused a "warm blob" in the upper ocean in the Gulf of Alaska region and offshore of Oregon. Then in spring 2014, upper ocean temperatures became anomalously warm off the coast of Southern and Baja California, and this warming spread to the Central California coast in July 2014. In fall 2014, a shift in wind and ocean current patterns caused the offshore warming to spread onshore, and the entire northeast Pacific domain experienced exceptionally warm upper ocean temperatures the nearshore zone to several hundred kilometers offshore (See Fig. B1). While the broader northeast Pacific Ocean experienced warm SST anomalies though most of 2014 and 2015, nearshore waters from Vancouver Island south to San Francisco mostly experienced strong and at times above average coastal upwelling that created a relatively narrow band (~20 to 100 km wide) of near normal upper ocean temperatures during spring and summer in both 2014 and 2015, essentially holding the warm blobs at bay as long as upwelling winds and related currents were strong.

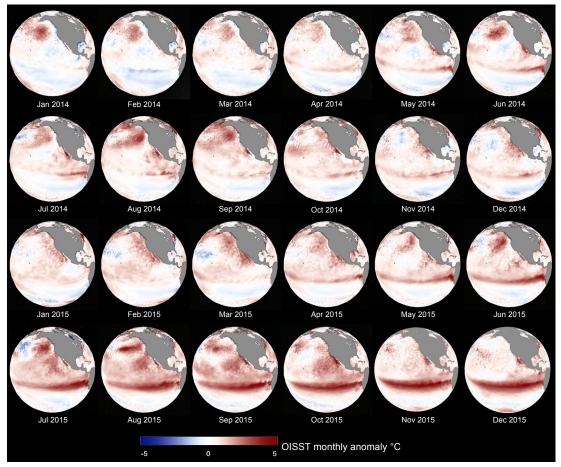


Figure B1. Observed monthly SST anomalies during the 2014-15 northeast Pacific Ocean heat have from OISST.v2 data using the 1981-2010 climatology. Image produced by P. Fiedler (NOAA/NMFS/SWFSC).

Ecological impacts of the 2014-15 "ocean heat wave" on many elements of the CCLME have been widespread and included:

- The largest and most intense HAB ever recorded off the West Coast in summer 2015, stretching from Santa Barbara (CA) to Southeast Alaska.
- The first recorded sighting of over 15 southern and offshore (tropical and subtropical) zooplankton species on the Newport, Oregon, hydrographic sampling line.
- An Unusual Mortality Event (UME) for California Sea Lions from 2013 2015, with three consecutive years of exceptionally high California sea lion strandings and reproductive failures.
- A UME for Guadalupe Fur Seals in 2015.
- An unusually high number of whale entanglements in crab fishing gear in the nearshore zone along the California coast.
- A northward and inshore range shift for many tropical/sub-tropical species into the
 coastal waters of the CCLME and Gulf of Alaska. This included unusually large
 numbers of bluefin tuna, yellowfin tuna, yellowtail, dorado, opah, and marlin in the
 waters of the Southern California Bight in 2014-15, as well as sunfish, pomfret,
 pompano and mackerels in the Gulf of Alaska.

- Northward shifts in California's market squid fishery in 2014 and 2015
- A massive Cassin's auklet die-off in fall 2014/winter 2015 on the PNW coast.
- Very poor Chinook salmon commercial troll fishery in CA in summer 2015.
- Prolonged shellfish fishery closures (for razor clams and Dungeness crab) in Washington, Oregon, and California as a consequence of the HAB that caused the toxin domoic acid to accumulate above regulatory limits.

While there were negative effects related to the warm conditions in the CCLME, some parts of the California Current in fact experienced positive signals:

- Juvenile rockfish numbers were extraordinarily high in 2014 and 2015 (2015 being highest of 33-year time series off Central California).
- Unprecedented numbers of loggerhead turtles in high densities in the southern California Bight and seaward.
- Increased sightings of previously rare cetaceans (or first-ever records) throughout the California Current.
- An indication of the return of short-finned pilot whale, *Globicephala macrorhynchus* (absent since the 1982-83 El Niño) to the southern California Bight.
- Increased sightings of tropical seabirds throughout the California Current (and northward), as well as high bird productivity for the Farallon Islands' cormorants and auklets.

Near-term climate risks and impacts already in the pipeline for West Coast salmon

Adult West Coast coho salmon returns in the fall 2015 were likely negatively impacted by poor
stream and ocean conditions in 2014 and 2015; coho salmon returns to the Columbia River and
Puget Sound in fall 2015 were well below recent run-size averages and pre-season forecasts.

West Coast coho salmon that will return in fall 2016/winter 2017 have also likely been negatively
impacted by poor stream and ocean conditions related to the 2015 "snow drought" and 2014 - 15
northeast Pacific Ocean heat waves, and poor ocean conditions associated with the warm blob.

Adult Chinook salmon (and steelhead) returns to California for the next 3 years (depending on
ocean residence times, for fish maturing in 2016, 2017 and 2018) have also likely been negatively
impacted by poor stream and ocean conditions in the CCLME. For Oregon and Washington
Chinook salmon and steelhead, brood years 2014 and 2015 were likely negatively impacted by
poor freshwater conditions in spring/summer 2015. Ocean migrants in 2014 likely experienced a
transition year from relatively good ocean conditions in spring/summer 2014, and poor ocean
conditions in fall 2014 through winter 2016.

The expected effects of the 2015/16 tropical El Niño in the CCLME are likely to favor a more coastally-oriented warming in the winter, spring and summer 2016. If this expectation is realized, spring 2016 ocean migrants from West Coast streams will likely encounter an ocean strongly influenced by (if not dominated by) a subtropical food-web that favors poor early marine growth and survival for both coho salmon and Chinook salmon, which would tend to favor reduced abundance for these year classes. In contrast, mid-winter snow pack and precipitation in fall 2015 and early winter 2016 have been near to well-above normal from the Sierras to British Columbia, and air temperatures have been near normal. If the rest of the 2016 water year stays on track for

abundant snow pack, stream flow, and stream temperatures, freshwater spawning and rearing conditions in 2016 will be much improved over those from 2015, and should favor increased freshwater productivity for West Coast salmon and steelhead (see Table B1). However, poor ocean conditions expected in 2016 may counteract the good freshwater conditions (providing another example of a "natural experiment.")

A climate timeline for West Coast salmon

2012	2013	2014	2015	2016
Year 1 CA drought	Year 2 CA drought	Year 3 CA drought	West Coast "snow drought" and record high temperatures	Abundant snow pack and streamflow?
Cold productive NE Pacific	Cold productive NE Pacific	NE Pacific in transition from good to bad ocean conditions	Record warm temperatures in NE Pacific; many signs of stress on "subarctic" species off the West Coast	A still warm and unproductive NE Pacific?
BY 2012 fall chinook	Smolt migration	Ocean year 2	Ocean year 3, majority maturing	
	BY 2013 fall chinook	Smolt migration	Ocean year 2	Ocean year 3, majority maturing
	BY 2013 coho	Smolt migration	Adult returns	

Table B1. Characterization of freshwater and ocean conditions for U.S. West Coast salmon, 2012-2016.

Appendix C

Coastal-zone change is expected to come on many fronts

There are also expectations for significant changes to human communities beyond those driven by climate. In the next 15-20 years, there will be secular trends in human demographics, technology and markets that are likely to significantly change coastal communities and their dependence on ocean resources. For example: (1) the population of fishermen is skewed toward older ages with relatively few young people, and in the next the next 10-15 years they may move out of fishing leaving a very different population of fishermen in terms of age distribution and culture; (2) Once fossil fuel prices increase again there may be renewed push for wind and tidal energy; (3) high fuel costs may make many fisheries unviable; and (4) decreasing relative cost of aquaculture fish may make it hard for wild fisheries to compete. Fisheries without farmed substitutes or very efficient fisheries may not survive. The highest value fisheries are managed by the States, not NMFS or the Council; with increased climate variability, these resources will shift and there will be greater need to collaborate between Federal and State regulatory entities. With each of these scenarios, there will be different impacts on communities. Small fishing communities, with fewer diversified resources, will probably be more impacted than larger communities that are less reliant on fishery income. These are just a few examples, some highly uncertain, of climate-induced pressures impacting humans.

Perhaps sea level rise will be among the most observable impacts of anthropogenic climate change in the CCLME, as it will visibly and structurally impact both coastal ecology and human communities. The loss of coastal pinniped haulout areas and other nursery grounds could force a number of marine mammal species to change their range. For humans, impacted harbor infrastructure, rapidly eroding coastal bluffs, and inundation of low lying areas pose the most immediate risk from sea level rise. Less visible, but potentially equally disruptive to the coastal ecology, will be the contraction and landward migration of estuarine environments that in many places are now bordered by hardened (i.e., developed properties protected by dikes, levees, riprap, etc.) shorelines. Changing productivity and distributions of various fish species will impact fishery dependent coastal communities. The species landed and relative dependence of communities on fishing will shift.

For human populations not involved in marine activities, the changing hydrologic patterns will impact hydropower generation, agricultural resources and domestic resources. Each of these will create secondary and tertiary stresses as well that have to be identified and considered in the context of the continually increasing human population in the western states and larger regional areas. Another consequence linking population movement and fisheries is that the anticipated warming may increase the human population living along the coast and thus increasing the demand for high-quality seafood.

Appendix D

Examples of successful integration of physics and ecology to support decision-makers

The Centers bring established strengths into this effort. We have a long history of collaborating with regional climate centers (e.g., the University of Washington's Climate Impact Group) on LMR-climate studies. Both California and the Pacific Northwest have a large cadre of climatologists who have worked actively to develop LMR-relevant climate products, including down-scaling, climate-informed hydrologic projections and more. Moreover, we have a variety of local projects and case studies that are already working to incorporate climate change. These include a variety of water- and temperature-related projections and analyses for salmon in Idaho, coastal California, the Central Valley, Puget Sound as well as efforts aimed at seafood safety (Harmful Algal Blooms), vulnerability analyses for managed fishery species, and changes in marine fishery (human) behavior. In addition, our CCIEA program is currently using downscaled climate model output to investigate potential ecosystem changes in the California Current. Our researchers are actively pursuing research into restoration efforts for salmonids that will be most effective and lasting under climate change. Finally, both Centers have a good deal of expertise in ecological and population modeling that could be used to develop realistic models and evaluate the efficacy of alternative management scenarios under likely future conditions.

Scientists at both Centers recognize the importance of developing Ecosystem Based Fishery Management (EBFM) strategies and have been addressing the issue in a variety of ways for a long time. In 1951 the California Cooperative Oceanic Fisheries Investigation (CalCOFI; calcofi.org) was initiated as a federal/state/academic joint effort between the SWFSC, the California Department of Fish and Wildlife, and the Scripps Institution of Oceanography to look for environmental triggers for sardine biomass fluctuations. The annual "CalCOFI State of the California Current" report is a valuable tool for expressing the impacts of short-term variability. Unfortunately, due to funding reductions at both the state and federal levels, the CalCOFI program now only covers the Southern California Bight. The NWFSC developed a single monitoring line extending out from Newport, OR that complement CalCOFI, Central California's Trinidad Head Line as all as other long term monitoring efforts providing broader coverage of the CCLMW. Additional programs have developed cruises for assessing both groundfish and coastal pelagic species and fishery scientists are improving the ability to compare data across the monitoring efforts. The two Centers collect large suites of environmental data, but often the biological data are very specific to the cruise objectives and not compatible between species monitoring objectives. Data from these assessment cruises are made available through ERD web services (http://coastwatch.pfeg.noaa.gov/erddap/index.html).

The West Coast Region Climate Team (WCRCT):

consisting of staff from the WCRO and the two science centers, the WCRCT enhances the dissemination of climate information across the NMFS offices. Monthly meetings and a monthly internal newsletter provide a forum for exchanging climate observations and understanding management issues that need climate consideration. Members of this group also participate in a larger NOAA Western Climate Working Group led by the National Weather Service. NMFS

scientists are making every effort to recognize climate variability and are trying to monitor the fishery stocks to evaluate the ways in which stock fluctuations are related to climate variability.

The California Current Integrated Ecosystem Assessment (CCIEA):
the NW and SW Fisheries Science Centers, the WCRO, the sanctuary office (NOS), OAR and the regional associations, have jointly developed the CCIEA. The goal of the CCIEA is to assemble environmental and ecosystem data to allow EBFM to replace single stock assessment management plans and provide integrated sanctuary management plans. The CCIEA has adopted protocols for assessing environmental, ecological and human activities to develop a suite of indicators that can be monitored to assess climate variability that impacts. For the past four years, the CCIEA has provided to the PFMC a "State of the California Current Ecosystem" report, which includes a review of critical indicators and provides a summary ecosystem report. In an important step toward bringing ecosystem consideration into stock management, the CCIEA team has been requested to work with the PFMC's Ecosystem Working Group (EWG) to develop a

standard protocol for including environmental and ecosystem indicators into the implementation

of the PFMC's FEP.

The main successes to date have been: (i) the development of mechanisms to bring the strong environmental science from throughout the CCLME into a much more cohesive structure that forms the basis of the CCIEA; (ii) the screening and ranking of hundreds of indicators of components, processes and ecosystem attributes ranging from physical forces to human dimensions; and (iii) the development of conceptual models, risk assessment methods, and MSE methods that are producing management-relevant products and publications, including many that relate to climate change and variability. Working with the PFMC EWG allows an extended evaluation of which indicators are most relevant for the fishery management decisions that require environmental consideration.

⁹ http://www.pcouncil.org/wp-content/uploads/2016/02/D1a_NMFS1_2016_IEA_SoCC_FINAL_MAR2016BB.pdf

Appendix E

West Coast Regional Office Draft Priorities for Regional Action Plan to Implement NOAA Fisheries' Climate Science Strategy (December 2015)

NOAA Fisheries' West Coast Region Office (WCRO) staff reviewed the August 2015 NOAA Fisheries Climate Science Strategy for potential links to our requirements for recovering species listed as threatened or endangered under the Endangered Species Act (ESA), for conserving and managing marine species under the Magnuson-Stevens Fishery Conservation and Management Act (MSA), and for protecting and recovering species managed under the Marine Mammal Protection Act (MMPA). The WCRO has significant ESA responsibilities for anadromous species; therefore, our climate science and information needs span freshwater and terrestrial areas as well as marine waters. Some of our initial ideas about high-level WCRO priorities for climate science fall into four categories of science needs, below. We look forward to further engagement with the Science Centers on developing management programs that appropriately respond to emerging climate science.

1) Science-Management Liaison Capacity.

The WCRO needs Science Centers (Northwest and Southwest) to continue to support at least one scientist each to serve on the WCRO Climate Team. Activities would include informing WCRO staff of new Center climate research and activities, while staying informed of WCRO climate change activities and information needs. These Science Center Climate Team members would also facilitate WCRO coordination with other Center scientists conducting research in marine and freshwater environments. The WCRO and Science Centers should also support liaison capacity to facilitate opportunities for a collaborative (i.e., regulatory and science center staff) approach to informing, developing, refining, and advocating for tools that are immediately useful for regulatory decision-making under conditions such as drought and changing climate. (Objective 7 - Build Capacity)

2) Periodic Updates on the State of Science about Expected Climate Effects on Protected and Managed Species and Habitats.

The WCRO needs ongoing guidance on the state of climate science and its applicability to protected and managed species. The Centers are working on useful climate change information relevant to most managed fish species, in the form of species narratives for fisheries vulnerability studies and 5-Year status reviews for listed salmonids. Presumably, when methods are completed, narratives for marine mammal and turtle vulnerability assessments relevant to the WCRO will be completed within the next couple of years. These products, along with other sources of available information will be helpful for properly considering climate change in our ESA, MMPA, MSA and international fisheries management activities. Our concern is that after these initial products are developed, there is no process or plan (except ESA 5-year status reviews) for updating the information. The WCRO needs the Centers to periodically update products that describe potential effects of climate and climate change on managed species throughout their life cycles. (Objective 6 - Track Trends in LMRs)

For MSA-managed species, we appreciate receiving, and will continue to need, the annual updates envisioned in Objective #6 of the National Climate Science Strategy for Ecosystem Status Reports. The Pacific Fishery Management Council currently receives annual ecosystem updates as part of its California Current Ecosystem Status Report. We look forward to continuing to work with the Centers on developing that report, as envisioned in the Council's Fishery Ecosystem Plan.

Many bilaterally or multi-nationally managed species are tied in with domestic management programs under the MSA or ESA, or with species groups managed domestically. We see an ongoing need for information on the potential effects of climate variability and climate change on the distribution and abundance of internationally-managed species.

- 3) Freshwater Ecosystem Information on Climate Effects.
- a. Continue to investigate the resiliency of restoration activities to climate change (e.g. Beechie et al. 2013 review of restoration activities that increase resilience to climate change, Boughton and Pike 2013 floodplain rehabilitation and climate uncertainty). (Objectives 2 and 7)
- b. Help identify: 1) landscape areas or watersheds that are likely to continue to be hydrologically "snow driven," or transitional, and thus continue to provide cool water temperatures in a warming climate; 2) areas where hyporheic flows are important to maintaining surface flows and cold water, and impacts of climate change on such flows; and 3) watersheds where cool water releases could be maximized based on geomorphology, hydrology, and vegetation downstream under likely climate scenarios. (Objectives 1, 2, 3, 5 and 7)
- c. Examine the link between geology/topography and sediment movement and the potential to reshape stream channels as a consequence of climate change-induced changes to hydrology (e.g., more extreme events). How would aquatic species, including salmonids, likely respond? Where might we expect most changes to occur? (Objectives 1, 3, 4, 5, 6, and 7)
- d. Assist the WCRO in developing the capacity to conduct ESA reviews of proposed actions that include time frames appropriate to the life span of the structure(s) being proposed. For example, WCRO engineers need aid from Center scientists in assessing whether we are using the right tools and methods to analyze whether a culvert will pass fish in flows throughout the design life of the culvert. We also need help developing site-specific tools to project hydrologic and geomorphologic changes likely in watersheds and to model potential impacts of new structures on species and habitats. (Objectives 2, 3, 4 and 7)
- e. Range shifts. Do we expect, or can we realistically project freshwater range shifts for any of our aquatic species that use freshwater ecosystems? If so, what might the timing be and what might future ranges look like? This information would be important for recovery planning and critical habitat designations, etc. (Objectives 2, 3, 4, 7)
- f. Unoccupied habitat, behind dams or otherwise not currently used: Can we identify which unoccupied freshwater habitats may become important for our listed species based on climate

change projections and what we know about regional and local weather, climate, and habitat conditions? This information would be important for recovery planning, critical habitat designations, and in guiding management initiatives such as responding to insufficient cool water releases for downstream fish needs during particularly hot or low-flow years (Objectives 2, 4)

- g. Ecological community changes, such as species invasions or losses: As climate changes and freshwater ecosystems respond, what may happen to freshwater ecological communities? What species may become prevalent? What species may dwindle or disappear? What should we be watching for? How might freshwater life stages of our listed species respond to changes in freshwater communities (density and occurrence of other species in the community). (Objectives 1 through 7)
- 4) Marine Ecosystem Information on Climate Effects.
- a. Are other agencies within and outside of NOAA assessing the vulnerability of coastal communities to the physical effects of climate change? Are NOAA Fisheries' analyses of the dependence of fishing communities on fisheries resources adequate to partner with other agencies to identify communities that could be negatively affected by *both* the physical effects of climate change (sea water rise, increased storms, flooding, etc.) *and* the economic effects of changes in availability of fishery resources? (Objectives 2, 3, 4, 5, and 7)
- b. When mapping coastal areas with expected sea-level rise, as discussed in 4a, we need to also coordinate with mapping efforts for pinniped haul-out areas. How do we expect sea-level rise to affect available haul-out space given the high-relief coastal areas prevalent along much of the U.S. West Coast? (Objectives 2, 3, 4, and 5)
- c. Marine species and shellfish managed with ESA recovery plans need updating with climate science so that we can assess whether changing climate conditions should trigger revisions to recovery plans and their implementing policies. Sea turtle recovery plans are particularly out of date; WCRO is uncertain about the potential effects of shifting climate conditions on sea turtle populations and needs climate science support to update recovery plans. The potential long-term effects of climate change on protected shellfish recovery are also unknown and may be compounded by changing ocean chemistry, as discussed in Item 4.i. (Objectives 2, 3, and 7)
- d. Sardine and anchovy populations appear to be shifting northward do we know whether this is likely a long-term shift, or a short-term fluctuation in distribution? If sardines are moving northward beyond our CalCOFI survey area, should we revise our survey methodology and harvest setting parameters to account for that shift in distribution? In 2-3 years, we might benefit from a workshop or forum to bring together scientists on adjusting stock assessments and harvest parameters in response to changing climate. (Objectives 1, 3, 4, 5, 6, and 7)
- e. The Centers are already working within the Pacific Fishery Management Council process to review relationships between the sablefish stock and its ecosystem, which the WCRO takes to include the potential effects of climate on sablefish abundance and distribution. We are interested in seeing similar work on Pacific whiting, but would defer to the Council's interests on which

groundfish species should follow sablefish in characterizing the relationships of groundfish species to their environment within stock assessments. Beyond these commercially-important species, is it possible to conduct a deeper assessment of the long-term effects of climate fluctuations and change on our longer- lived species, so that we can plan for healthy stock status for our rockfish and other long-lived species in the decades ahead? (Objectives 1, 2, 4, 5, 6, and 7).

- f. Managing ocean salmon fisheries and setting allowable harvest levels by seasons has been made more difficult by recent shifting temperature conditions. Can we improve what we know about how shifting ocean temperatures are likely to affect salmon ocean migration patterns and survival likelihoods, so that we can in turn better predict fisheries returns? The effects of temperature on ocean salmon are a concern both for U.S.-Canada bilateral management processes, and for U.S. West Coast fisheries management. (Objectives 2, 3, 4, 5 and 7).
- g. Do we know enough about the migratory patterns of highly migratory species like tunas, billfishes and sharks to predict: a) how those patterns might be affected by near-term climate shift and long-term climate change, and b) how those patterns might affect the abundance of harvestable highly migratory species within the U.S. West Coast Exclusive Economic Zone? Further, if abundance of lower trophic level species is affected by climatological changes, what indirect effects can we expect on higher trophic level highly migratory species? (Objectives 3, 4, 5, and 7).
- h. What annual, inter-annual, and longer-term changes are we expecting to see in the ranges of the resident and migratory marine mammals of the U.S. West Coast EEZ? How might shifting marine mammal ranges be related to: varying climatic and oceanic conditions, or to shifting ranges, abundance, and availability of prey species? WCRO is specifically concerned with:
 - i. Large whale distribution and migration related to shipping lanes and to entanglement in pot and trap fishing gear;
 - ii. How shifting ocean distribution of Chinook salmon (Item 4.f.) might affect Southern Resident Killer Whales;
 - iii. Availability of nearshore prey to pinnipeds, particularly those that use California's Channel Islands;
 - iv. Whether shifts in marine mammal ranges may affect between-population disease transmission.
 - (Objectives 2 through 7)
- i. Do we know enough about ocean acidification and hypoxia to identify geographic areas most likely to be affected by changing ocean chemistry? What do we know about the effects of ocean acidification on ESA-managed shellfish and their population recovery? For those managed species that are not shell-forming organisms, have we identified potential trophic effects of ocean acidification? (Objectives 4, 5, 6, and 7)