Risk assessment and application of indicators to decision making

Jameal Samhouri (NWFSC) Elliott Hazen (SWFSC)

Overview of presentation

- 1. Risk assessment and contextual indicators
- 2. Near-term context and decision making

Assessing multiple risks in a dynamic ocean

3. Long-term planning for climate change

Vulnerability of coastal pelagic fisheries

Contextual indicators

Example: SST provides context for sardine management

VS.

Risk and vulnerability assessments

the chance, within a timeframe, of an adverse event with specific consequences

Risk and vulnerability assessments

the chance, within a timeframe, of an adverse event with specific consequences

English Sole Risk

Abbr.	Stressor
A	Aquaculture
С	Coastal engineering
D	Atmospheric deposition
1	Invasive species
lp	Inorganic pollution
N	Nutrient input
0	Offshore oil activities
OA	Ocean acidification
Obp	Ocean-based pollution
Ор	Organic pollution
Р	Power plants
Sd	Sediment decrease
Sh	Shipping activity
Si	Sediment increase
SST	Sea surface temperature
Т	Trash/Coastal waste
UV	UV radiation

Overview of presentation

1. Risk assessment and contextual indicators

2. Near-term context and decision making

Assessing multiple risks in a dynamic ocean

3. Long-term planning for climate change

Vulnerability of coastal pelagic fisheries

Cumulative risks

Multiple risks:

- ship strikes
- bycatch / entanglement,
- noise
- climate change

 Use satellite data to model species and risk in near real time

130° W 128° W 126° W 124° W 122° W 120° W 118° W 116° W 130° W 128° W 126° W 124° W 122° W 120° W 118° W 116° W30° W 128° W 124° W 122° W 120° W 118° W 116° W

Dynamic Ocean Management

Management that changes in space and time, at scales relevant for animal movement and human use.

Maxwell et al. 2013

Hobday et al. 2014, Lewison et al. 2015, Maxwell et al. 2015

Dynamic Ocean Management

Scales et al. 2014 J Appl Ecol

2011

WhaleWatch - Objective

- Use satellite telemetry and oceanographic data to develop habitat-based models of the probability of occurrence and densities of blue whales in the California Current System.
- This will assist management efforts to mitigate against human impacts, such as ship strikes and entanglements. Working closely with NOAA/NMFS Southwest Regional Office.

Seasonal Predictions

Fisheries applications (in development)

1.0

0.8

0.6

0.4

0.2

0.0

Overview of presentation

1. Risk assessment and contextual indicators

2. Near-term context and decision making

Assessing multiple risks in a dynamic ocean

3. Long-term planning for climate change

Vulnerability of coastal pelagic fisheries

How vulnerable are marine forage species in the California Current to climate change?

Samhouri et al. 2014

Anchovies, O Nikontiger/iStockphoto.com.

A vulnerability framework for assessing potential climate change impacts

Sensitivity

Higher vulnerability

Lower vulnerability

Exposure

Exposure

0.8

Translate ecological vulnerability to social exposure

Translate ecological vulnerability to social exposure

Fish vulnerability

Translate ecological vulnerability to social exposure: fisheries

Translate ecological vulnerability to social exposure: fisheries

VULNERABILITY OF FORAGE FISH FISHERIES TO CLIMATE CHANGE

VULNERABILITY OF FORAGE FISH FISHERIES TO CLIMATE CHANGE

Also see Barange et al. 2014, Ekstrom et al. 2014, Mathis et al 2015

Fish vulnerability

Fishery vulnerability

Samhouri et al. in prep

Is a vulnerable fish a vulnerable fishery?

Squid: the gilded seine?

Samhouri et al. in prep

Horizons

1. Scaling up and down

2. Closing data gaps

- Fisheries participation networks twl_3 net_2 twl_1 pot_1 tws_1 tls_2 pot_5 tls_1
- 3. Event-based assessments?

What hasn't been covered

- 1. Human activities indicators
- 2. Ecosystem-based reference points for environmental drivers and non-fisheries human activities
- 3. Climate change vulnerability for HMS and protected species
- 4. Management strategy evaluation

"We've considered every potential risk except the risks of avoiding all risks,"

WHAT CAN RISK DO FOR YOU?