Indicators for the Habitat Ecosystem Component

Correigh Greene (NWFSC), Kelly Andrews (NWFSC), & Alison Collins (MWDSC)

Habitat indicator selection

SELECTING AND EVALUATING INDICATORS FOR HABITATS WITHIN THE CALIFORNIA CURRENT LARGE MARINE ECOSYSTEM

CCIEA PHASE III REPORT 2013: HABITAT

Correigh Greene¹, Kelly Andrews¹, Tim Beechie¹, Dan Bottom², Richard Brodeur², Lisa Crozier¹, Aimee Fullerton¹, Lyndal Johnson¹, Elliott Hazen³, Nate Mantua³, Charles Menza⁴, Mindi Sheer¹, Waldo Wakefield², Curt Whitmire², Mary Yoklavich³, and Juan Zwolinski⁵

<u>www.noaa.gov/iea/Assets/iea/california/Report/pdf/9.Habitat_2013.pdf</u> (Or just Google "CCIEA Habitat Indicators")

Conceptual model for habitat

Habitats mediate climate effects

Habitats mediate effects of human activities

Habitats mediate foodwebs

People share habitat benefits

Habitat-specific conceptual models

Summary of priority indicators

Macrohabitat	Indicator type	Mapping	Time series
Freshwater	Quantity	River discharge	River discharge
		Snowpack	Snowpack
		% of network accessible	
	Quality	Temperature	Temperature
		Riparian condition	
	Pressure	% agriculture	% agriculture
		% developed/impervious	% developed/impervious
			Number of dams
Estuary/	Quantity	SAV extent	SAV extent
nearshore		River discharge	River discharge
		Estuary wetland area	Sea level rise
		Benthic substrate extent	
	Quality	Temperature	Temperature
		Dissolved O ₂	Dissolved O ₂
		Nitrogen: Phosphorus	Nitrogen: Phosphorus
			Turbidity
			Chlorophyll a
	Pressure	% agriculture	% agriculture
		% developed/impervious	% developed/impervious
			Beach closures

Summary of priority indicators

Macrohabitat	Indicator type	Mapping	Time series
Pelagic	Quantity	Euphotic depth	Euphotic depth
		Thermocline depth	Thermocline depth
	Quality	Surface temperature	Surface temperature
		Turbidity	Turbidity
		Chlorophyll a	Chlorophyll a
			Dissolved O ₂
			Total forage fish biomass
			Marine survival of salmon
	Pressure	Atmospheric pollution	Atmospheric pollution
		Ship displacement volume	Ship displacement volume
			Commercial fishery landings
Seafloor	Quantity	Substratum types	
	Quality	Temperature	Temperature
		Dissolved O ₂	Dissolved O ₂
		Rugosity	
	Pressure	Disturbance from fishing gear	Disturbance from fishing gear

Examples of indicator gaps

Macrohabitat	Missing indicators
Freshwater	Amounts of large woody debris
	Indices of biotic integrity
Estuary/	Extent of salinity zones
nearshore	Establishment of nonnative organisms
Pelagic	Size of large river plumes
	Size and vectors of eddies
	Carbonate chemistry
Seafloor	Areal coverage of biogenic habitat
	Carbonate chemistry

Habitat-based spatial framework

- Estuary
 - Head of tide to marine waters
 - Watershed topographic breaks

Nearshore

- Water column and benthos in the photic zone
- Littoral drift cells
- Pelagic
 - Water column from nearshore to EEZ
 - Water column and bathymetric breaks

Seafloor

- Benthos from nearshore to EEZ
- Physiography
- (e.g., bathymetry, substrate type)

Habitat-based spatial framework – freshwater

- Six freshwater ecoregions based on biogeography of associated fishes
 - (Abell et al. 2008, BioScience)

Habitat-based spatial framework – freshwater

- Six freshwater ecoregions (Abell et al. 2008, BioScience)
- HUC8

Snow-water equivalent indicator

How does snowpack look this year?

NOHRSC Snow Depth (in) different from sites in the 2015 analysis Snowpack is currently much greater than at this time last year

12 Jan 2015

12 Jan 2016

1-day max anomaly trends vary across ecoregions

Negative 7-day min anomaly trends across most ecoregions

Summary of priority indicators

Macrohabitat	Indicator type	Mapping	Time series
Pelagic	Quantity	Euphotic depth	Euphotic depth
		Thermocline depth	Thermocline depth
	Quality	Surface temperature	Surface temperature
		Turbidity	Turbidity
		Chlorophyll a	Chlorophyll a
			Dissolved O ₂
			Total forage fish biomass
			Marine survival of salmon
	Pressure	Atmospheric pollution	Atmospheric pollution
		Ship displacement volume	Ship displacement volume
			Commercial fishery landings
Seafloor	Quantity	Substratum types	
	Quality	Temperature	Temperature
		Dissolved O ₂	Dissolved O ₂
		Rugosity	
	Pressure	Disturbance from fishing gear	Disturbance from fishing gear

Disturbance from fishing gear indicator

Disturbance from fishing gear

Next steps

- Additional climate sensitive habitat indicators
 - Dissolved oxygen across the water column
 - Mapping coastal systems sensitive to sea level rise
- Put human activities in spatial context

• Time series and maps for SAV

Questions?

What habitat indicators are most important to the Council?

What spatial scales are most relevant to the Council?

How should habitat indicators be vetted (SSC, HC, EWG input?)?

How specific should habitat indicators be to fished stocks?

How important are management-based indicators (e.g., number of EFH habitat consultations)?