Science, Service, Stewardship

Agenda Item I.1.a
Supplemental NWFSC PowerPoint 2
(Electronic Only)
November 2015

Groundfish Science Report

Michelle McClure and Mark Strom Northwest Fisheries Science Center

November 16, 2015

NOAA FISHERIES SERVICE

Overview

- NMFS efforts climate change
- Winter hake survey
- Even-year science
- Quota market description
- Groundfish mortality report

California Current Fisheries Climate Vulnerability Assessment:

An application of the NMFS Climate Vulnerability Protocol

NOAA FISHERIES SERVICE

Climate Vulnerability Assessment Process

1 Scoping and Planning

Engage with partners and stakeholders

Define scope:

Study Area

Stocks

Identify regional climate factors

Identify and task leaders, staff, and experts

2 Assessment Preparation

Compile:

Species profiles

Climate projections

Distributional information

3 Scoring

Train experts (webinar)

Perform preliminary scoring (individuals)

Compile preliminary results

Discuss results (workshop)

Complete final scoring

4 Results

Compile:

Tables and figures

Sensitivity analysis

Draft Reports

Species vulnerability narratives

Submit to internal and peer review

5 Communication

Engage with stakeholders

Identify key climate vulnerability drivers

Identify important data gaps

Develop science priorities

Investigate management options

Develop adaptation strategies

Update assessment as needed

Current Status

- Groundfish, salmon, CPS, HMS, protected species/ stocks selected
- Climate factors selected
- Species profiles complete or near complete
- Compilation of climate information underway
- Planning expert workshop for scoring each species

Methodology Framework

Stock Vulnerability

Exposure

Sensitivity

Sea surface temperature
Air temperature
Salinity
Ocean acidification (pH)
Precipitation
Currents
Sea level rise
** Exposure factors will vary

depending on the region

- Habitat Specificity
- Prey Specificity
- Sensitivity to Ocean Acidification
- Sensitivity to Temperature
- Stock Size/Status
- Other Stressors
- Adult Mobility
- Spawning Cycle

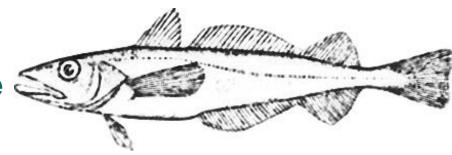
- Complexity in Reproductive Strategy
- Early Life History Survival and Settlement Requirements
- Population Growth Rate
- Dispersal of Early Life Stages

Western Regional Action Plan for Climate Science

- California Current and associated watersheds
- Aimed at identifying a few, attainable science actions to inform fisheries and PR management, given climate change
- Expect stakeholder engagement in 2016
- Final due October 2016

2016 Winter Hake Survey

Bell M. Shimada


- Leg 1: 1/9 1/23
 Newport to San Francisco
- Leg 2: 1/26 2/9
 San Francisco to Newport

NOAA FISHERIES SERVICE

To evaluate feasibility, and inform design, of future spawning biomass survey

The 2016 winter survey will characterize:

- Distribution of spawning hake (N-S, nearshore-offshore)
- Spawning aggregations (size, extent)
- Hake within spawning aggregations (length, weight, sex, age, maturity, genetics)

Survey Rationale

Many migratory stocks around world surveyed during spawning

- Population in smaller area, so less survey effort.
- Greater accuracy in biomass estimates.

In summer, hake are spread BC (or AK) to CA

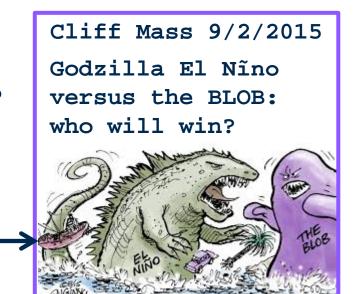
- Current survey takes 80 (U.S.) + 30 (Canada) days at sea.
- Migration during survey and potential biases in estimates unknown.

Long-running discussion of West Coast hake spawning survey

- Could we survey a smaller area and get a better estimate?
- Many unknowns about hake during spawning.

2016 Winter Hake Survey

What we know


- CalCOFI egg & larvae data
- WCGOP bottom trawl hake presence (Jan-Feb)
- Anecdotal & industry/research observations
- Consultation with outside experts

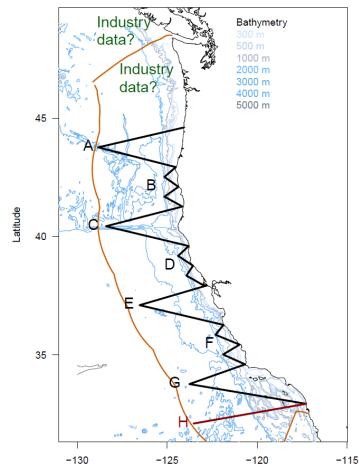
2016 Winter Hake Survey

What we know we don't know

- Where are spawning hake?
- Are there 2 spawning typologies (nearshore, offshore)?
- What is the population structure?
- Will hake spawn early because of El Nîno?
- Once spawned, what do hake do?
- Where will age-1 and age-2 fish be?
- Will low autumn 2015 hake catches shimada on winter survey?
- How bad will the weather be?

Draft Design and Sampling Plan

- On hake aggregations for size, extent
- Stationary dawn/dusk above aggregations


Midwater trawling

- Are these hake?
- Are they spawning?
- Are aggregations heterogeneous?

Oceanographic sampling

- Zooplankton tows (summer 2015 locations)
- CTD casts
- Sensors on midwater trawls
- Underway sensors (temperature, etc.)
- ADCP continuously for currents

24-hour acoustic & wet lab operations

Lonaitude

Overview of NMFS Even-year Groundfish Science Priorities

Michelle McClure and Jim Hastie

NOAA FISHERIES SERVICE

Categories of Research We Do

- Conceptually
 - Understanding our system drivers and responses
 - Improving our data
 - Improving assessment methods
- Drivers
 - National mandates and priorities
 - Council priorities
 - Assessment- and review-driven needs
 - Feasibility

Council Advisory Body Priority Research Areas

- Historical landings time series workshop [SSC, GMT, GAP]
 - Dependent on time series availability
- Bmsy proxies and related topics workshop [SSC, GMT, GAP]
 - Key need: SSC develop work products
- 3. Recreational CPUE methods, and data [SSC, GMT, GAP]
- Exploration of data-moderate assessment methods [GMT]
- Data weighting workshop [SSC]
 - CAPAM held recent workshop

NMFS Must-Dos

- Stock assessment prioritization -- collate data for proposed standard approach
- 2. Improvements to assessment modeling/software (Stock Synthesis)
- Fishery Climate Vulnerability Analysis and Regional Action Plan
- 4. Program Review of Ecosystem Science and IEA Update
- 5. Evaluate impact of input levels on assessment output
- 6. Hake Assessment

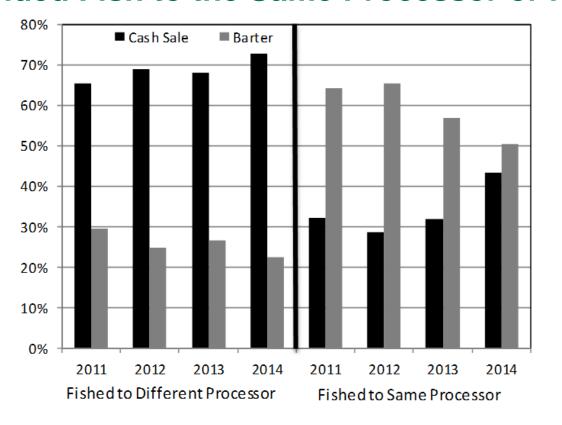
Additional Research Areas

- Management strategy evaluations
- Age-determinations
- Coding (R4SS, etc.) improvements
- Fishery CPUE indices
- Spatial methods
- Evaluation of change in variance in projected biomass with time

The Anatomy of a Multispecies Individual Fishing Quota (IFQ) "Market" in Development

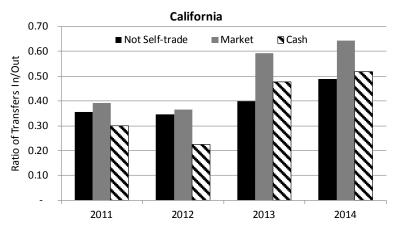
Dan Holland and Karma Norman
Northwest Fisheries Science Center

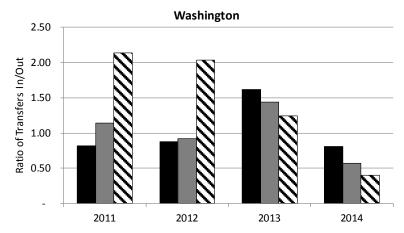
NOAA FISHERIES SERVICE

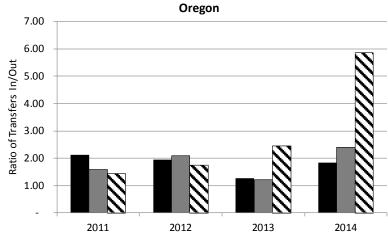


Transfer Activity In Pacific Groundfish Trawl IFQ Quota Pounds Market 2011-2014

Transfer	20	2011		012	20	013	2014		
Type	Single	Multi	Single	Multi	Single	Multi	Single	Multi	
Cash Sale	292	101	340	67	384	63	411	62	
Barter	223	66	275	48	262	35	191	37	
Cash and Barter	23	11	37	11	48	12	31	9	
Other	409	201	606	260	663	400	596	360	
Self-Trade	423	408	512	308	641	327	528	326	
All Transfers	21	2157		2464		335	2551		




Percent of Annual Cash and/or Barter
Transfers that were Cash Sales vs. Barter
Depending on Whether the Parties Involved
Landed Fish to the Same Processor or Not



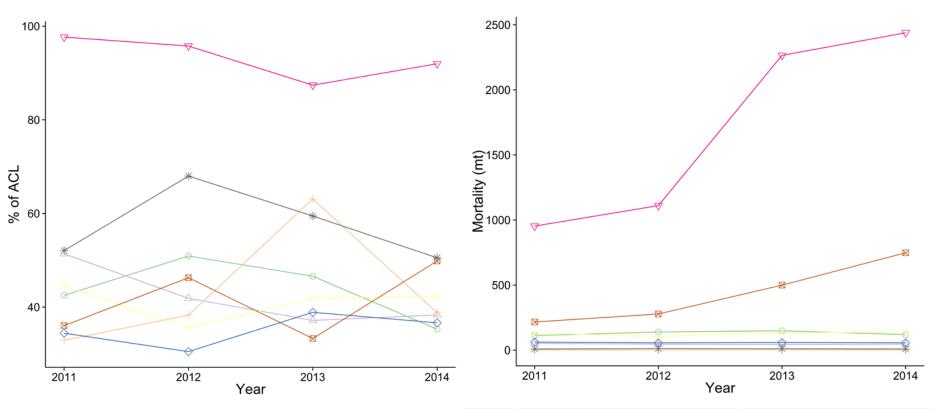
Ratio of Transfers INTO a State over Transfers OUT OF the State by Type of Transfer for Transfers occurring in the Years 2011-2013

Prices, Price Dispersion, and Counts for Cash Sales of Quota Pounds

	2011		2012		2013		2014			Average Pounds				
OPTIMAL_YIELD_CATEGORY	Price	C.V.	Count	F	rice	C.V.	Count	Price	C.V.	Count	Price	C.V.	Count	Tranferred
Bocaccio rockfish South of 40°10′ N.		42%	3			0%	1	\$ 0.20	17%	4		15%	7	1,449
Canary rockfish		18%	4	\$	1.49	57%	15	\$ 3.09	26%	12	\$2.12	35%	17	300
Cowcod South of 40°10' N.		10%	2			101%	2		54%	4		35%	2	13
Darkblotched rockfish	\$ 0.40	119%	4	\$	0.22	49%	6	\$ 0.53	51%	10	\$1.08	22%	10	1,947
Pacific halibut (IBQ) North of 40°10′ N.	\$ 1.31	45%	5	\$	1.19	19%	10	\$ 1.76	51%	21	\$0.58	64%	15	1,007
Pacific ocean perch North of 40°10' N.		69%	3			56%	3	\$ 0.75	45%	14	\$0.98	44%	15	1,073
Widow rockfish	\$ 0.44	62%	6	\$	0.34	57%	9	\$ 0.53	45%	10	\$0.23	45%	34	6,933
Yelloweye rockfish		105%	4	\$	21.76	33%	9	\$ 29.58	53%	11	\$27.07	10%	12	10
Pacific whiting	\$ 0.02	70%	29	\$	0.04	31%	65	\$ 0.04	43%	54	\$0.03	47%	29	179,150
Petrale sole	\$ 0.34	29%	38	\$	0.40	12%	20	\$ 0.25	32%	50	\$0.28	16%	58	10,448
Sablefish North of 36° N.	\$ 1.06	41%	58	\$	1.04	36%	47	\$ 0.88	17%	66	\$1.00	26%	62	10,303
Sablefish South of 36° N.	\$ 0.76	54%	62	\$	1.05	9%	31	\$ 0.26	31%	8	\$0.16	37%	22	6,922

Conclusions

- The quota pounds market is thin with relatively few market transactions for all but a few major target species.
- Few cash transactions make price discovery difficult (hard to know what to charge and what to pay).
- Barter is more common than cash trades when individuals fish to the same processor.
- Quota pounds are flowing into Oregon from other states.
- The study suggests the market is not efficient yet.


Estimated Discard and Catch of Groundfish Species in the 2014 US West Coast Fisheries

Kayleigh A. Somers, Jason Jannot, Yong-Woo Lee, Neil Riley, Vanessa Tuttle, Jon McVeigh
November 2015

2014 Mortality Estimates

- California scorpionfish south of 34°27' N. latitude was the only species to exceed OFL harvest goals (103%).
 - 98% of mortality occurred in the California Recreational fishery.
- Estimated fishing mortality of 3 additional species was >80% of ACL:
 - petrale sole (91%)
 - sablefish, north of 36° N. latitude (88%)
 - black rockfish, south of 46°16' N. latitude (86%)
- 28 FMP-listed groundfish species or complexes (67%) had fishing mortality estimates <50% of 2014 ACL harvest goals.

Species

- → BOCACCIO ROCKFISH (SOUTH OF 40°10' N. LAT.)
- riangle Canary rockfish
- + COWCOD ROCKFISH (SOUTH OF 40°10' N. LAT.)
- → DARKBLOTCHED ROCKFISH
- → PACIFIC OCEAN PERCH (NORTH OF 40°10' N. LAT.)
- → Petrale sole
- ₩ Widow rockfish
- *** YELLOWEYE ROCKFISH**