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BACKGROUND 

To model fisheries with minimum size limit regulations, the Chinook Fishery Regulation Assessment Model (FRAM) 
is parameterized with growth functions for computing mean length (fork length, FL, in mm) by age and model time 
step, as well as supplementary inputs (coefficients of variation, CVs) for characterizing variability around these 
predictions. This report summarizes the data and analysis details associated with the growth parameters that were 
estimated in support of the 2015 Chinook FRAM Base Period Project. The objectives of this effort were to: (1) 
Estimate parameters for stock-specific von Bertalanffy growth functions (VBGFs), inclusive of an assessment of 
model fit diagnostics, etc.; and (2) Estimate stock-specific CVs associated with VBGF mean length-at-age 
predictions.  

The approach taken differs from what has been done for prior base period (BP) calibrations in two important ways. 
Firstly, whereas past BPs included separate ‘mature’ (~terminal) and ‘mixed-maturity’ (~pre-terminal) VBGFs, a 
single pre-terminal model was deemed appropriate for contemporary modeling due to the lack of minimum size 
limits in terminal fisheries. Secondly, the estimation approach employed here addressed the fact that the data 
used to fit VBGFs (i.e., fishery recoveries) may be positively biased due to the release of sublegal/undersized (i.e., 
smaller than the minimum size limit) fish in fisheries with minimum size limit regulations. 

DATA DESCRIPTION 

This analysis is based on length observations associated with the coded-wire tag (CWT) recovery dataset selected 
for general base period calibration (i.e., exploitation rate estimation/cohort reconstruction) purposes, which is 
documented in other base period documents (i.e., stock profiles). Dataset details include: 

• CWT recoveries for brood years 2005-2008 were included for all stocks. Additional CWT data were added to 
expand the sample size used to estimate VBGFs for the Washington Coast regional aggregate, as well as for 
the Sacramento/Central Valley stock; broods 2001-2004 were included for these two groups, as well as 
additional facilities for Washington Coast (Grays Harbor, Quinault, and Tsoo-Yess). 

• Length data for CWTs processed via the CAS loading and FRAMBuilder mapping process were included in the 
analysis; ‘anomalous’ length data, such as from high-seas fisheries and/or research trawls, were excluded. 

• Data collected in freshwater or extreme terminal fisheries, within which maturation-related changes in 
morphometry were expected to be well under way, were excluded from all analyses. Thus, although >90% of 
the dataset used here consists of pre-terminal recoveries, some terminal marine net recoveries were used in 
the final analysis. 

• For cases in which CWT lengths were not reported in fork length (FL), conversions were made using the 
conversion equations of Conrad and Gutman (1996; total length) and Pahlke (1989; other length types). 

• Data were combined across brood years and grouped into coarser regional aggregates (Table 1) in order to 
facilitate VBGF estimation (described below); aggregates were selected based on those used during the 
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estimation of growth parameters during the last Chinook FRAM calibration groupings and based on knowledge 
of stock relationships. 

• The final analysis used data from 658 CWT codes and N = 27,535 marine recoveries (25,606 pre-terminal; 
1,929 marine terminal net).    

 

ESTIMATING GROWTH CURVE PARAMETERS 

We used a two-stage approach to estimate growth functions for the Chinook FRAM Base Period project. In the first 
step, we estimated mean (𝜇𝜇𝑠𝑠𝑠𝑠) and SD (𝜎𝜎𝑠𝑠𝑠𝑠) length-at-age individual stock aggregate–month (sm) combinations 
using the method of Satterthwaite et al. (2012). In brief, this approach treats individual length observations as 
samples from a truncated normal distribution, wherein the truncation point is governed by the minimum size limit 
of a fishery; accordingly, it returns mean/SD maximum likelihood estimates (MLEs) consistent with both the 
observed and unobserved portions of the underlying probability distribution. Thus, the probability of observing an 
individual length l i in a fishery with minimum length limit msli is 

Equation 1.  𝑝𝑝(𝑙𝑙𝑖𝑖|𝜇𝜇𝑠𝑠𝑠𝑠,𝜎𝜎𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚𝑙𝑙𝑖𝑖) = φ(𝑙𝑙𝑖𝑖|𝜇𝜇𝑠𝑠𝑠𝑠,𝜎𝜎𝑠𝑠𝑠𝑠2 )
1-Φ(𝑠𝑠𝑠𝑠𝑙𝑙𝑖𝑖|𝜇𝜇𝑠𝑠𝑠𝑠,𝜎𝜎𝑠𝑠𝑠𝑠2 )

 

and the probability for observing the length dataset as a whole (𝑙𝑙) given the collective of size regulations (𝑚𝑚𝑚𝑚𝑙𝑙� ) is 
simply the product of individual likelihoods, i.e., 

Equation 2.   𝑝𝑝�𝑙𝑙�𝜇𝜇𝑠𝑠𝑠𝑠,𝜎𝜎𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚𝑙𝑙� � = ∏ 𝑝𝑝(𝑙𝑙𝑖𝑖|𝜇𝜇𝑠𝑠𝑠𝑠,𝜎𝜎𝑠𝑠𝑠𝑠 ,𝑚𝑚𝑚𝑚𝑙𝑙𝑖𝑖)𝑁𝑁
𝑖𝑖=1  

MLEs (𝜇𝜇𝑠𝑠𝑠𝑠,𝜎𝜎𝑠𝑠𝑠𝑠) were generated using this joint likelihood function and the ‘bbmle’ package in R. For estimation 
purposes, we pooled data across brood years and did not attempt to estimate 𝜇𝜇𝑠𝑠𝑠𝑠 and 𝜎𝜎𝑠𝑠𝑠𝑠 unless there were at 
least 20 observations per month–stock aggregate estimation stratum. The 𝜇𝜇𝑠𝑠𝑠𝑠 and 𝜎𝜎𝑠𝑠𝑠𝑠 estimates generated 
through analysis stage 1 are provided in Appendix A. With the exception of two suspected outliers, the MLEs were 
consistent with the expected growth pattern for Chinook salmon and differed in the manner expected relative to 
values estimated in the absence of size limit considerations.     

In our second estimation stage, we estimated the parameters of stock-specific von Bertalanffy growth functions 
(VBGFs) that best described variation in mean length-at-age estimates generated during stage one (i.e., 𝜇𝜇𝑠𝑠𝑠𝑠). To do 
this, we employed an approach wherein VGBF parameters were modeled to be stock-varying realizations from a 
common distribution of VBGF parameters (i.e., 𝐿𝐿∞, k, t0): 

Equation 3.  𝜇𝜇𝑠𝑠𝑠𝑠 = 𝐿𝐿∞𝑠𝑠[1 − 𝑒𝑒(−𝑘𝑘𝑠𝑠[𝑡𝑡−𝑡𝑡0𝑠𝑠])] + 𝜀𝜀𝑠𝑠𝑠𝑠 

Parameters were estimated using Bayesian methods in WinBUGS with uniformative priors (see Appendix B for 
code, priors, and initial values). The final values proposed for inclusion in the Chinook FRAM BP are medians from a 
1-in-50 sample of N = 31,000 MCMC iterations on each of three chains, less an N = 5,000 iteration burn-in period 
(i.e., N = 26K total per chain; Table 2). The fitted curves appear to describe well the variability in MLEs (stage 1 
results), as well as raw length observations, on both a stock-by-stock (Figure 1) and overall (Figure 2) basis. Finally,  
we explored the sensitivity of stock-specific VBGF parameters to the inclusion/exclusion of two outliers (i.e., mean 
FL at age 21 and 29 months was lower than anticipated for Sacramento/CV stock; Appendix A). The omission of 
these points caused a small increase in the length-at-age prediction (fitted curve) for young Sacramento/Central 
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Valley fish and negligibly affected other stocks (Figure 1); the final VBGF parameters recommended for use in base 
period development exclude these two points. 

In addition to mean length-at-age predictions, FRAM’s size limit algorithm requires an estimate of distributional 
spread around means. We considered two approaches towards fulfilling this BP information need: (1) a constant 
CV approach, or (2) an age-varying CV approach. An inspection of stage 1 results (i.e., 𝜇𝜇𝑠𝑠𝑠𝑠,𝜎𝜎𝑠𝑠𝑠𝑠)  revealed that the 
latter method best captured patterns in the data (Figure 3). Thus, we used ANCOVA to assess the relationship 
between CV(FL) and age (in months) and then used the resulting model to compute CV(FL) on January 1 for age-2 
to age-5 Chinook for use in modeling. ANCOVA results indicated that CV decreased significantly with increasing age 
overall (P < 0.001) and offered strong support for stock-specific intercepts (P < 0.001) but not slopes (P > 0.05). 
Thus, CV(FL) was computed, by age, for each regional aggregate based on an ‘equal slopes’ ANCOVA model 
(Appendix A). 

FUTURE WORK 

While the inputs proposed here for use in Chinook FRAM BP calibration are robust descriptors of length-at-age 
patterns for Chinook FRAM’s model stocks, future work may consider improving on the present analysis in at least 
three ways. First, the estimation framework employed here necessitated that we group related stocks into larger 
regional aggregates, as was the case for previous base period calibrations. Although groupings were made with 
some consideration of stock relationships, a more objective approach guided by evidence in the length-at-age 
dataset may be preferable. This may, however, require an approach that avoids the two-stage analysis that 
introduced data restrictions here. Secondly, it may be possible to improve model accuracy, precision, and/or 
realism through the use of an alternative growth curve parameterization (e.g., with seasonally varying growth; 
O’Farrell et al. 2012). Although this may necessitate minor changes to FRAM algorithms, it may be beneficial, 
particularly if future changes alter FRAM’s temporal structure. Lastly, whereas the curves reported here describe 
well the length-at-age patterns Chinook ages relevant to FRAM (i.e., ages 2 to 5), their utility in describing growth 
patterns for younger fish remains uncertain. If future FRAM applications necessitate prediction for younger ages, 
other length observations (e.g., length at release, for age-1 research trawl recoveries, etc.) should either be 
included in the analysis or used to corroborate predictions. We suggest that improvements such as these be given 
consideration during the phase II of the Chinook FRAM base period calibration.  
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Table 1. Summary of data used to fit growth functions for FRAM model stock aggregates. Counts are based on 
marine fishery recoveries for brood years 2005-2008 for all stocks except for Washington Coast and 
Sacramento/Central Valley, which include additional recoveries, and non-model stock CWT codes, for brood years 
2001-2004. 

Regional Aggregate 
Region 

Abbreviation 

N observations by age 

Stocks included Age 2 Age 3 Age 4 Age 5+ 
Columbia River tule stocks ColRTule 102 1,037 265 26 Lower River hatchery and natural tules, 

Bonneville Pool tules 

Columbia River bright stocks ColRUpriver 36 1,307 2,883 590 All Columbia River bright stocks (URB, 
upper Col. R summers, Lower R. wild) 

Fraser Early FraserEarly 1 225 385 7 Fraser Early all 

Fraser Late FraserLate 33 729 321 5 Fraser Late all 

Lower Columbia R. spring LColRSpr 5 192 580 156 Lower Columbia (Cowlitz, Kalama, Lewis) 
and Willamette spring stocks 

Lower Georgia Strait LGS 51 315 220 9 Lower Georgia Strait hatchery/natural fall 
stocks 

North Puget Sound spring NPSSprng 14 265 229 21 Skagit, Nooksack spring stocks 

Oregon Coast ORCoast 3 215 992 407 Oregon Coast fall stocks (NOC/MOC) 

Puget Sound/Hood Canal 
summer/fall fingerling 

PSHCfng 156 3,024 2,196 74 All Puget Sound/Hood Canal summer/fall 
fingerling stocks 

Puget Sound/Hood Canal 
summer/fall yearling 

PSHCyrl 4 226 349 24 All Puget Sound/Hood Canal summer/fall 
yearling stocks 

Sacramento/Central Valley Sacramento 234 3,313 296 2 Sacramento/Central Valley stocks 

Washington Coast WACoast 13 229 2,901 2,253 Willapa Bay, Grays Harbor, WA North 
Coast, etc. 

West Coast Vancouver Island WCVI 7 79 414 115 West Coast Vancouver Island 
hatchery/natural (Robertson stock) 
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Table 2.  Estimates of VBGF parameters by regional stock aggregate. Estimates are median values (95% credible 
intervals in parentheses) from a 1-in-50 sample of N = 26K MCMC iterations (i.e., 31K less 5K burn-in period) on 
each of three chains. Final parameter estimates are based on an analysis that excludes Sacramento outliers (See 
App A). 

Regional 
Aggregate 𝐿𝐿∞ k t0 

ColRTule 
942 

 (845-1101) 
0.049 

 (0.031-0.077) 
6.5 

 (1.3-10.8) 

ColRUpriver 
966 

 (881-1121) 
0.036 

 (0.024-0.051) 
6.9 

 (1.3-12.8) 

FraserEarly 
934 

 (832-1109) 
0.048 

 (0.029-0.072) 
5.3 

 (-2-10.7) 

FraserLate 
1072 

 (949-1300) 
0.038 

 (0.024-0.058) 
6.5 

 (1.1-12) 

LColRSpr 
945 

 (853-1106) 
0.053 

 (0.032-0.082) 
3.9 

 (-2.4-8.7) 

LGS 
920 

 (839-1056) 
0.048 

 (0.031-0.068) 
4.9 

 (-0.9-9.2) 

NPSSprng 
978 

 (853-1219) 
0.038 

 (0.024-0.058) 
6.9 

 (1.7-12.6) 

ORCoast 
940 

 (878-1042) 
0.043 

 (0.03-0.059) 
6.1 

 (-0.3-11.6) 

PSHCfng 
952 

 (859-1079) 
0.04 

 (0.029-0.057) 
5.3 

 (1.6-8.7) 

PSHCyrl 
1013 

 (857-1485) 
0.035 

 (0.018-0.055) 
7.4 

 (2-14.6) 

Sacramento 
1010 

 (923-1170) 
0.047 

 (0.03-0.068) 
5.3 

 (0.3-9.1) 

WACoast 
988 

 (923-1100) 
0.041 

 (0.028-0.057) 
6.6 

 (0.4-12.7) 

WCVI 
934 

 (849-1071) 
0.045 

 (0.03-0.066) 
5.6 

 (-1.5-11.1) 
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Figure 1. Growth functions for regional aggregates of FRAM model stocks. In each figure, white circles represent 
individual observations whereas red triangles are monthly means for (min. month N = 20). Note, monthly means 
were estimated via maximum likelihood assuming that tags recovered in fisheries with minimum size restrictions 
are a truncated sample (see ‘Stage 1 analysis’ in text for details). The dashed line in each figure reflects the VBGF 
parameterization resulting from withholding two Sacramento outliers. 
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Figure 2. VBGF-predicted vs. observed fork length by stock-month observation. A posterior predictive check 
indicated good correspondence between the model and data (Bayesian P-value = 0.52). 

 

Figure 3. Coefficient of variation associated with monthly length-at-age estimates.  
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APPENDIX A. LENGTH-AT-AGE DISTRIBUTION PARAMETERS 

Table A1. Stage 1 analysis results. Maximum likelihood estimates of the mean, SD, and CV of fork length (FL, mm) 
by age (in months) for stock-time estimation strata for which sufficient records occurred to estimate distributional 
parameters (N = 20). Note, the two suspected outliers that were included in VBGF estimation but not in the CV 
function analysis are denoted by ‘**’; columns ‘Age’ and ‘Mean FL (cm)’ are the values used for fitting VBGFs.  

Region 
Age 

(months) N 
Mean 

FL (cm) SD CV(FL) 
 ColRTule 21 23 47.9 7.3 15.3% 

 ColRTule 22 48 44.9 8.5 18.9% 
 ColRTule 31 170 68.3 6.5 9.5% 
 ColRTule 32 423 70.8 7.8 11.1% 
 ColRTule 33 206 73.7 7.5 10.2% 
 ColRTule 34 154 73.3 7.5 10.3% 
 ColRTule 35 23 68.0 6.9 10.2% 
 ColRTule 43 44 74.5 6.1 8.2% 
 ColRTule 44 70 75.4 8.4 11.1% 
 ColRTule 45 81 79.7 8.7 10.9% 
 ColRTule 46 38 82.4 7.3 8.8% 
 ColRUpriver 31 41 61.9 4.8 7.7% 
 ColRUpriver 32 194 54.3 8.4 15.5% 
 ColRUpriver 33 338 52.8 7.7 14.7% 
 ColRUpriver 34 461 57.5 8.0 13.9% 
 ColRUpriver 35 65 60.8 6.1 10.0% 
 ColRUpriver 42 95 71.9 6.7 9.3% 
 ColRUpriver 43 555 69.9 5.6 8.0% 
 ColRUpriver 44 806 70.3 6.3 9.0% 
 ColRUpriver 45 595 73.0 6.1 8.4% 
 ColRUpriver 46 599 73.6 6.2 8.5% 
 ColRUpriver 47 74 70.4 8.0 11.4% 
 ColRUpriver 53 31 81.7 5.4 6.6% 
 ColRUpriver 54 58 78.3 4.9 6.3% 
 ColRUpriver 55 133 79.9 7.5 9.4% 
 ColRUpriver 56 154 78.9 6.2 7.9% 
 ColRUpriver 57 97 79.9 6.0 7.5% 
 ColRUpriver 58 49 80.4 6.3 7.8% 
 FraserEarly 33 141 69.2 5.9 8.5% 
 FraserEarly 34 41 70.3 7.7 10.9% 
 FraserEarly 42 40 77.9 5.5 7.1% 
 FraserEarly 43 47 75.3 7.6 10.1% 
 FraserEarly 44 127 77.3 7.8 10.0% 
 FraserEarly 45 142 80.3 7.7 9.6% 
 FraserLate 31 72 64.7 6.5 10.0% 
 FraserLate 32 194 66.5 7.2 10.9% 
 FraserLate 33 184 68.0 8.4 12.4% 
 FraserLate 34 147 70.9 8.3 11.8% 
 FraserLate 35 90 71.7 7.7 10.8% 
 FraserLate 43 56 76.7 6.5 8.4% 
 FraserLate 44 67 80.5 7.4 9.2% 
 FraserLate 45 88 81.9 8.8 10.7% 
 FraserLate 46 63 86.2 8.3 9.6% 
 FraserLate 47 21 88.1 6.6 7.5% 
 LColRSpr 21 56 54.1 6.9 12.8% 
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Region 
Age 

(months) N 
Mean 

FL (cm) SD CV(FL) 
 LColRSpr 22 73 60.7 5.2 8.5% 

 LColRSpr 29 26 73.8 5.3 7.2% 
 LColRSpr 30 53 72.0 3.5 4.9% 
 LColRSpr 31 113 71.5 5.9 8.3% 
 LColRSpr 32 130 73.8 6.0 8.2% 
 LColRSpr 33 99 72.3 5.7 7.9% 
 LColRSpr 34 106 74.9 4.9 6.5% 
 LColRSpr 41 22 82.0 5.5 6.7% 
 LColRSpr 42 30 81.4 5.1 6.2% 
 LColRSpr 43 35 80.3 6.6 8.3% 
 LGS 23 29 54.2 4.3 8.0% 
 LGS 31 40 65.6 4.0 6.1% 
 LGS 32 72 64.2 7.6 11.8% 
 LGS 33 67 67.8 8.4 12.5% 
 LGS 34 52 71.2 6.1 8.6% 
 LGS 35 42 71.5 6.2 8.7% 
 LGS 42 20 74.4 7.9 10.6% 
 LGS 43 26 75.0 9.9 13.2% 
 LGS 44 43 76.1 8.0 10.5% 
 LGS 45 32 79.8 9.3 11.6% 
 LGS 46 36 81.9 8.9 10.9% 
 LGS 47 22 78.5 7.5 9.6% 
 NPSSprng 31 33 63.2 4.0 6.4% 
 NPSSprng 32 48 55.6 6.9 12.4% 
 NPSSprng 33 51 59.6 9.1 15.3% 
 NPSSprng 34 47 63.3 8.8 13.9% 
 NPSSprng 35 24 64.1 8.5 13.3% 
 NPSSprng 40 46 70.1 7.0 10.0% 
 NPSSprng 41 25 71.3 6.7 9.4% 
 NPSSprng 42 24 75.0 6.0 8.0% 
 NPSSprng 43 20 74.4 6.2 8.4% 
 NPSSprng 45 23 75.0 9.6 12.8% 
 ORCoast 33 57 63.3 7.3 11.6% 
 ORCoast 34 101 66.7 5.2 7.7% 
 ORCoast 35 33 67.2 6.3 9.4% 
 ORCoast 42 22 75.4 4.6 6.1% 
 ORCoast 43 51 71.2 5.9 8.3% 
 ORCoast 44 137 75.0 4.6 6.1% 
 ORCoast 45 366 76.8 4.6 6.0% 
 ORCoast 46 331 78.9 5.1 6.5% 
 ORCoast 47 46 79.3 4.3 5.5% 
 ORCoast 48 57 81.5 5.1 6.3% 
 ORCoast 49 30 79.3 5.1 6.5% 
 ORCoast 56 48 81.8 5.8 7.0% 
 ORCoast 57 111 82.9 4.9 6.0% 
 ORCoast 58 75 84.4 5.1 6.1% 
 ORCoast 61 24 85.0 5.4 6.3% 
 PSHCfng 21 25 47.7 4.9 10.2% 
 PSHCfng 22 36 45.8 6.1 13.2% 
 PSHCfng 23 48 54.0 4.3 8.0% 
 PSHCfng 25 20 48.3 8.3 17.2% 
 PSHCfng 27 20 51.0 7.5 14.7% 
 PSHCfng 29 46 57.5 7.1 12.4% 
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Region 
Age 

(months) N 
Mean 

FL (cm) SD CV(FL) 
 PSHCfng 30 25 59.8 7.1 11.9% 

 PSHCfng 31 165 63.7 5.2 8.1% 
 PSHCfng 32 469 62.8 7.2 11.4% 
 PSHCfng 33 627 62.8 8.5 13.6% 
 PSHCfng 34 1,038 69.6 7.0 10.0% 
 PSHCfng 35 427 72.7 6.5 9.0% 
 PSHCfng 36 43 65.9 5.9 8.9% 
 PSHCfng 37 53 65.0 7.1 11.0% 
 PSHCfng 38 40 67.6 5.9 8.7% 
 PSHCfng 39 54 68.2 7.6 11.2% 
 PSHCfng 40 112 70.7 5.5 7.8% 
 PSHCfng 41 87 70.6 6.5 9.1% 
 PSHCfng 42 65 74.1 7.2 9.7% 
 PSHCfng 43 225 73.7 5.4 7.3% 
 PSHCfng 44 317 73.9 7.7 10.4% 
 PSHCfng 45 346 78.5 7.8 9.9% 
 PSHCfng 46 616 80.1 6.8 8.5% 
 PSHCfng 47 215 80.5 6.4 8.0% 
 PSHCyrl 33 65 57.0 7.0 12.4% 
 PSHCyrl 34 100 59.0 6.5 11.0% 
 PSHCyrl 37 22 64.6 4.4 6.8% 
 PSHCyrl 39 20 67.8 5.3 7.9% 
 PSHCyrl 40 36 69.0 6.0 8.7% 
 PSHCyrl 41 21 68.7 6.9 10.0% 
 PSHCyrl 42 20 69.8 6.0 8.5% 
 PSHCyrl 43 22 69.1 5.9 8.5% 
 PSHCyrl 44 39 74.1 7.6 10.3% 
 PSHCyrl 45 84 76.1 7.6 9.9% 
 PSHCyrl 46 57 75.3 6.9 9.2% 
 Sacramento 20 29 52.2 4.3 8.2% 
 Sacramento 21 76 22.8 14.2 62.1% ** 

Sacramento 22 62 52.2 6.5 12.5% 
 Sacramento 29 42 41.2 9.9 24.1% ** 

Sacramento 30 276 69.5 4.6 6.6% 
 Sacramento 31 760 71.3 5.8 8.1% 
 Sacramento 32 772 73.6 5.7 7.8% 
 Sacramento 33 786 76.2 6.3 8.2% 
 Sacramento 34 454 78.0 6.8 8.7% 
 Sacramento 35 140 72.7 6.2 8.5% 
 Sacramento 43 90 81.5 6.7 8.2% 
 Sacramento 44 53 84.4 6.7 8.0% 
 Sacramento 45 67 87.2 5.9 6.7% 
 Sacramento 46 29 87.7 7.7 8.8% 
 Sacramento 47 29 85.3 7.7 9.0% 
 WACoast 33 42 62.8 6.8 10.9% 
 WACoast 34 134 65.7 6.7 10.3% 
 WACoast 35 20 69.8 6.3 9.1% 
 WACoast 42 57 75.6 3.8 5.0% 
 WACoast 43 66 75.6 6.8 9.0% 
 WACoast 44 397 78.6 5.4 6.9% 
 WACoast 45 1,276 78.4 5.2 6.6% 
 WACoast 46 965 80.9 6.1 7.5% 
 WACoast 47 116 82.3 5.8 7.0% 
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Region 
Age 

(months) N 
Mean 

FL (cm) SD CV(FL) 
 WACoast 54 102 83.2 4.8 5.8% 

 WACoast 55 58 83.4 6.0 7.1% 
 WACoast 56 369 85.2 6.3 7.4% 
 WACoast 57 936 85.2 5.8 6.8% 
 WACoast 58 615 88.0 6.5 7.4% 
 WACoast 59 74 89.4 6.5 7.2% 
 WCVI 34 38 68.6 8.8 12.8% 
 WCVI 42 41 74.0 3.2 4.3% 
 WCVI 43 21 74.4 4.3 5.7% 
 WCVI 44 103 75.0 7.4 9.9% 
 WCVI 45 110 78.8 6.7 8.5% 
 WCVI 46 113 80.9 8.0 9.9% 
 WCVI 57 24 83.8 7.4 8.9% 
 WCVI 58 20 88.0 8.9 10.1% 
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APPENDIX B. WINBUGS CODE FOR FITTING GROWTH FUNCTIONS 
 
##WinBUGS code for VB Growth fxn  ##### 
### Specs for FRAM VBGF parameter estimation:  
## N = 3 chains, thinned to 1 in 50 
## N = 31k total interations (1k initial, 30k thereafter, summarize 5001+) 
model  
{ 
 # priors 
 mu.a0~dnorm(0, 0.001) # Mean hyperparameter for a0 
 mu.Linf~dnorm(0, 0.001) # Mean hyperparameter for Linf 
 mu.k~dnorm(0, 0.001) # Mean hyperparameter for k 
 sigma.a0~dunif(0, 10000) # SD hyperparameter for a0 
 sigma.Linf~dunif(0, 10000) # SD hyperparameter for Linf 
 sigma.k~dunif(0, 10000) # SD hyperparameter for k 
 sigma~dunif(0, 10000) # Residual standard deviation 
 tau.a0 <- 1/(sigma.a0*sigma.a0) 
 tau.Linf <- 1/(sigma.Linf*sigma.Linf) 
 tau.k <- 1/(sigma.k*sigma.k) 
 tau <- 1/(sigma*sigma) # Residual precision 
 
 # hierarchical parmeters 
 for (i in 1:P) { 
     Linf[i]~dnorm(mu.Linf, tau.Linf)  
     k[i]~dnorm(mu.k, tau.k)#I(0,) 
     a0[i]~dnorm(mu.a0, tau.a0)  
 } 
 
 # likelihood 
 for (i in 1:N) { 
  li[i] ~ dnorm(Lai[i],tau) 
  Lai[i]<-Linf[pop[i]]*(1-exp(-k[pop[i]]*(ai[i]-a0[pop[i]])))   
  # Observation-level GOF calcs 
  pred[i] <- Lai[i] 
  rep_li[i] ~ dnorm(pred[i], tau)   #simulate perfect dataset 
  rep_resid[i] <- rep_li[i]-pred[i]   #calc resid for simulated data 
  resid[i] <- li[i] - pred[i]   #calc resid for actual data 
  sq[i] <- pow(resid[i],2)  #calc squared resids for actual data      
  sq_new[i] <- pow(rep_resid[i],2)   #calc squared resids for simulated data 
 } 
 # Dataset-level GOF calcs 
 fit<-sum(sq[]) #sum squared resids for actual data 
 fit_new<-sum(sq_new[]) #sum squared resids for simulated data 
 test<-step(fit_new-fit) #determine which is greater (0s and 1s) 
 bpvalue<-mean(test) #mean of 0,1 gives Bayesian P-value 
}  
 
# inits 
list(a0=c(-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5), k=c(0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03), 
Linf=c(950,950,950,950,950,950,950,950,950,950,950,950,950),mu.a0=-
5,mu.k=0.03,mu.Linf=950,sigma.a0=1,sigma.Linf=1,sigma.k=1,sigma=1) 
 
#data -- also must load secondary data file (Appendix A) with stock-month means 
list(N=164, P=13) #n is 165 observations (0 indexed) and 13 stock aggregates 
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