Status of China rockfish off the U.S. Pacific ² Coast in 2015

3

	$\mathbf{F} \mathbf{L} \mathbf{Dick}^1$
4	Melissa Monk ¹
5	Ian Taylor ²
0	Molissa Haltuch ²
1	Tion Shui Tsou ³
8	Patrick Mirick ⁴
9	I durick Willick
10 11 12	¹ Southwest Fisheries Science Center, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 110 Shaffer Road, Santa Cruz, California 95060
13 14 15	² Northwest Fisheries Science Center, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, Washington 98112
16 17	$^3\mathrm{Washington}$ Department of Fish and Wildlife, 600 Capitol Way North, Olympia, Washington 98501
18	$^4 \mathrm{Oregon}$ Department of Fish and Wildlife, 2040 SE Marine Science Drive, Newport, OR 97365
19 20 21 22 23	DRAFT SAFE Disclaimer: This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by NOAA Fisheries. It does not represent and should not be construed to represent any agency determination or policy.
24	August 12, 2015

Status of China rockfish off the U.S. Pacific Coast in 2015

$_{27}$ Contents

28	Ex	ecuti	ive summary	1
29		Stocl	x	1
30		Catc	hes \ldots	1
31		Data	and assessment	5
32		Stocl	k biomass	5
33		Recr	uitment	11
34		Expl	oitation status	14
35		Ecos	ystem considerations	18
36		Refe	rence points	18
37		Mana	agement performance	22
38		Unre	solved problems and major uncertainties	23
39		Decis	sion Tables	23
40		Rese	arch and data needs	30
41	1	Intro	oduction	33
42		1.1	Basic Information and Life History	33
43			1.1.1 Early Life History	34
44		1.2	Map	34
45		1.3	Ecosystem Considerations	34
46		1.4	Fishery Information and Summary of Management History	35
47		1.5	Management Performance	36
48	2	Asse	essment	36
49		2.1	Data	36
50			2.1.1 Fishery-Dependent Data: Commercial Landings	37

51		2.1.2	Fishery-Dependent Data: Commercial Discards	39
52		2.1.3	Fishery-Dependent Data: Recreational Landings and Discards	40
53		2.1.4	Fishery-Dependent Data: Oregon Commercial Logbook	44
54		2.1.5	Fishery-Dependent Data: Recreational Dockside Surveys	46
55		2.1.6	Fishery-Dependent Data: Recreational Onboard Observer Surveys	51
56 57		2.1.7	Fishery-Independent Data: sources considered, but not used in assessment	55
58		2.1.8	Biological Data: Length and age compositions	55
59		2.1.9	Biological Data: Age structures	59
60		2.1.10	Biological Data: Aging precision and bias	61
61		2.1.11	Biological Data: Weight-Length	61
62		2.1.12	Biological Data: Maturity and Fecundity	61
63		2.1.13	Biological Data: Natural Mortality	62
64		2.1.14	Biological Data: Sex ratios	62
65	2.2	History	y of Modeling Approaches Used for this Stock	62
66		2.2.1	Previous assessments	62
67		2.2.2	Spatial stock structure	63
68		2.2.3	2013 Data Moderate Recommendations	66
69	2.3	Respon	nse to the 2015 STAR Panel Requests	69
70	2.4	Model	Description	77
71		2.4.1	Transition from the 2013 to 2015 stock assessment $\ldots \ldots \ldots \ldots$	77
72		2.4.2	Definition of fleets and areas	79
73		2.4.3	Summary of data for fleets and areas	80
74		2.4.4	Modeling software	80
75		2.4.5	Data weighting	80
76		2.4.6	Priors	80
77		2.4.7	General model specifications	81
78		2.4.8	Estimated and fixed parameters	81
79	2.5	Model	Selection and Evaluation	81
80		2.5.1	Key assumptions and structural choices	81
81		2.5.2	Alternate models explored	82

82			2.5.3	Convergence	
83		2.6	Base-N	Model(s) Results	
84		2.7	Uncert	ainty and Sensitivity Analyses	85
85			2.7.1	Retrospective analysis	88
86			2.7.2	Likelihood profiles	88
87	3	Refe	erence	Points	89
88	4	Har	vest P	rojections and Decision Tables	90
89	5	Reg	ional N	Management Considerations	92
90	6	Res	earch I	Needs	92
91	7	Ack	nowled	lgments	94
92	8	Tab	les		96
93	9	Figu	ires		147
94	A	open	dix A.	SS data file	A- 1
95	A	open	dix B.	SS control file	B-1
96	A	open	dix C.	SS starter file	C-1
97	A	open	dix D.	SS forecast file	D-1
98	A	opene	dix E.	Observed Angler Prediction	E-1
99	A	open	dix F.	Reef Delineation and Drift Selection Methodologies	F-1
100	A	open	dix G.	Commercial Regulations Histories	G-1
101	A	open	dix H.	Recreational Regulations Histories	H-1

102 **References**

¹⁰³ Executive summary

104 \mathbf{Stock}

This assessment reports the status of the China rockfish (Sebastes nebulosus) resource in 105 U.S. waters off the coast of the California, Oregon, and Washington using data through 2014. 106 China rockfish are modelled with three independent stock assessments to account for spatial 107 variation in exploitation history as well as regional differences in growth and size composition 108 of the catch. The northern area model is defined as Washington state Marine Catch Areas 109 (MCAs) 1-4. The central area model spans from the Oregon-Washington border to $40^{\circ}10'$ 110 N. latitude. The southern area model spans 40°10′ N. latitude to the U.S.-Mexico border. 111 However, very little catch of China rockfish occurs south of Point Conception, California 112 $(34^{\circ}27' \text{ N. latitude}).$ 113

114 Catches

China rockfish are most often caught by hook-and-line (both recreational and commercial 115 fisheries) as well as by traps in the commercial live-fish fishery. Although China rockfish 116 were not a major target species, the commercial rockfish fishery along the U.S. Pacific West 117 Coast developed in the late 1800s and early 1990s. Available estimates of China rockfish 118 catch in California begin in the early 1900s, along with small commercial catches in Oregon 119 until recreational landings began to increase in the early 1970s (Figures a-c). Reconstructed 120 recreational landings of China rockfish in the northern assessment begin in 1967. As of 121 1995, Washington has prohibited commercial nearshore fixed gear in state waters and does 122 not have a historical reconstruction of China rockfish commercial landings. The majority of 123 commercial removals of China rockfish are now landed by live-fish fisheries in California and 124 southern Oregon. The magnitude of total removals over the last 10 years peaked in 2009 125 (35.52 mt) and has been decreasing since then. In recent years, California has the largest 126 removals of the three states (dominated by the recreational fleet) with smallest removals 127 coming from the Oregon recreational fleet (Table a). 128

The nearshore live-fish fishery developed in California in the late 1980s and early 1990s and 129 extended into Oregon by the mid-1990s, driven by the market prices for live fish. Northern 130 Oregon (north of Florence) does not contribute significantly to the live-fish fishery (maximum 131 removal of 0.02 mt) as the market for this sector of the fishery is centered in California. 132 Catches from the live-fish fishery in southern Oregon (south of Florence) has composed the 133 majority of the catch in that state since 1999, and peaked in 2002. In California, the landings 134 of live fish begin exceeding the landings of dead fish south of $40^{\circ}10'$ N. latitude in 1998 and 135 north of $40^{\circ}10'$ N. latitude in 1999; and the pattern continues through 2014. 136

¹³⁷ The historical reconstruction of landings from the recreational fishery for China rockfish in

¹³⁸ California goes back to 1928, and the fishery began significantly increasing in the late 1940s.

¹³⁹ The recreational catches in California are significantly higher than the commercial catches,

and have decreased in the last five years (Table a). Recreational catches in California peaked 140 in 1987 at 53.29 mt and have declined to roughly 10-20 mt per year over the last 10 years. 141 The trend is opposite in Oregon, with the magnitude of the commercial landings greater than 142 the recreational landings. The historical landings from the recreational fleet in Oregon start 143 in 1973 at 0.86 mt, peak in 1983 at 6.07 mt and again in 1993 at 6.04 mt. The recreational 144 catches over the last 10 years in Oregon have ranged from 1.67 mt in 2014 to 3.66 mt in 2007. 145 Recreational landings in Washington peaked in 1992 (7.98 mt) and have remained between 146 2-4 mt from 2005-2014. 147

Figure a: China rockfish landings for Washington. Washington has does not have a commercial nearshore fishery.

Figure b: Stacked line plot of China rockfish landings history for Oregon by fleet (recreational and commercial).

Figure c: Stacked line plot of China rockfish landings history for California by fleet (recreational and commercial).

Year	Washington	Oregon	Oregon	California	California	Total
	recreational	commercial	recreational	$\operatorname{commercial}$	recreational	
2005	2.69	4.02	2.31	3.06	13.91	25.98
2006	2.31	4.64	3.07	3.00	11.35	24.37
2007	2.94	6.03	3.66	4.21	12.70	29.54
2008	3.16	7.76	3.22	4.15	13.82	32.12
2009	2.79	7.88	2.50	2.63	19.72	35.52
2010	3.68	4.84	2.85	2.11	17.85	31.34
2011	3.26	7.98	4.02	1.99	15.29	32.54
2012	2.96	8.76	4.14	1.83	13.80	31.49
2013	3.39	6.98	3.85	1.43	10.03	25.68
2014	3.03	4.38	1.67	1.69	10.32	21.08

Table a: Recent China rockfish landings (mt) by fleet.

¹⁴⁸ Data and assessment

¹⁴⁹ China rockfish was assessed as a data moderate stock in 2013 (Cope et al. 2015) using the ¹⁵⁰ XDB-SRA modeling framework. This assessment uses the newest version of Stock Synthesis ¹⁵¹ (3.24u). The model begins in 1900, and assumes the stock was at an unfished equilibrium ¹⁵² that year.

Data within the central and northern models were stratified as follows: central model north 153 and south of Florence, OR and the northern model groups MCAs 1-2 (southern WA) and 154 MCAs 3-4 (northern WA) (Figure d). Data for the management area south of $40^{\circ}10'$ N. 155 latitude are aggregated, in part because historical removals from the dominant fisheries 156 (recreational charter and private boat modes) prior to 2004 are not available at a finer spatial 157 The data used in the assessments includes commercial and recreational landings, scale. 158 Catch per Unit Effort (CPUE) indices from recreational and commercial fleets, and length 159 and age compositions. Discard data (total discards in mt and size compositions) from the 160 commercial live-fish fishery were modelled south of 40°10′ N. latitude. Where available, 161 age and length compositions for the recreational party/charter (CPFV) and private/rental 162 modes were developed separately. 163

¹⁶⁴ Stock biomass

Estimated spawning output in the northern area (Washington state) declined between the 1960s and 1990s but has been largely stable during the past two decades (Figure e and Table b). The estimated relative depletion level (spawning output relative to unfished spawning 168 output) of the northern stock in 2015 is 73.4% (~95% asymptotic interval: $\pm 63.6\% - 83.2\%$) (Figure f).

¹⁷⁰ The central area model for China rockfish estimates that spawning output is just above

Figure d: Map depicting the boundaries for the three base-case models, Southern model (south of $40^{\circ}10'$ N. latitude), Central model (south of $40^{\circ}10'$ N. latitude to the OR-WA border), and the Northern model (WA state MCAs 1-4).

the biomass target in 2015 (Figure e and Table c). The rate of spawning output decline is estimated to be steepest during the 1980s to 1990s and continued to decline from the early 2000s at a slower rate to an estimated minimum of 39.6% in 2014. The estimated relative depletion level of the central stock in 2015 is 61.5% (~95% asymptotic interval: \pm 53.8% -69.2%) (Figure f).

The assessment for the southern management area suggests that China rockfish were lightly, but steadily exploited since the early 1900s, with more rapid declines in spawning output beginning with development of the recreational fishery in the 1950s (Figure e and Table d). The estimated relative depletion level of the southern stock in 2015 is 29.6% (~95% asymptotic interval: $\pm 25.0\% - 34.3\%$) (Figure f). Although spawning output in the southern area is more depleted than the central and northern areas, it is the only area with an increasing trend over the past 15 years.

Table b: Recent trend in beginning of the year biomass and depletion for the northern China rockfish model.

Year	Spawning Output	$\sim 95\%$	Estimated	~ 95%
	(billion eggs)	confidence	depletion	confidence
		interval		interval
2006	17.942	(8.86-27.03)	0.734	(0.638-0.83)
2007	18.030	(8.94-27.12)	0.738	(0.642 - 0.833)
2008	18.044	(8.95 - 27.14)	0.738	(0.643 - 0.833)
2009	18.034	(8.93 - 27.13)	0.738	(0.642 - 0.833)
2010	18.062	(8.96 - 27.17)	0.739	(0.644 - 0.834)
2011	17.993	(8.89-27.1)	0.736	(0.64 - 0.833)
2012	17.971	(8.86 - 27.08)	0.735	(0.638 - 0.832)
2013	17.981	(8.87 - 27.09)	0.736	(0.639 - 0.833)
2014	17.944	(8.83 - 27.06)	0.734	(0.637 - 0.832)
2015	17.950	(8.83 - 27.07)	0.734	(0.637 - 0.832)

Year	Spawning Output	$\sim 95\%$	Estimated	~ 95%
	(billion eggs)	confidence	depletion	confidence
		interval		interval
2006	40.643	(27.6-53.68)	0.624	(0.551 - 0.697)
2007	40.851	(27.8-53.9)	0.627	(0.555-0.7)
2008	40.630	(27.57-53.69)	0.624	(0.551 - 0.698)
2009	40.313	(27.25-53.38)	0.619	(0.545 - 0.694)
2010	40.125	(27.05-53.2)	0.616	(0.541 - 0.692)
2011	40.380	(27.29-53.47)	0.620	(0.545 - 0.695)
2012	40.112	(27.01-53.21)	0.616	(0.54 - 0.692)
2013	39.706	(26.6-52.82)	0.610	(0.533 - 0.687)
2014	39.573	(26.45-52.7)	0.608	(0.53 - 0.686)
2015	40.033	(26.88-53.19)	0.615	(0.538 - 0.692)

Table c: Recent trend in beginning of the year biomass and depletion for the central (north of $40^{\circ}10'$ N. latitude to the OR-WA border) China rockfish model.

Table d: Recent trend in beginning of the year spawning output and depletion for the southern (south of $40^{\circ}10'$ N. latitude) China rockfish model.

Year	Spawning Output	~ 95%	Estimated	~ 95%
	(billion eggs)	confidence	depletion	confidence
		interval		interval
2006	14.430	(9.47-19.39)	0.217	(0.164-0.27)
2007	15.173	(10.01 - 20.34)	0.228	(0.174 - 0.283)
2008	15.819	(10.46 - 21.18)	0.238	(0.182 - 0.294)
2009	16.289	(10.77 - 21.81)	0.245	(0.187 - 0.303)
2010	16.361	(10.75 - 21.97)	0.246	(0.186 - 0.306)
2011	16.444	(10.73-22.16)	0.247	(0.186 - 0.309)
2012	16.758	(10.91-22.6)	0.252	(0.189 - 0.315)
2013	17.168	(11.18-23.15)	0.258	(0.193 - 0.323)
2014	17.899	(11.73-24.07)	0.269	(0.203 - 0.336)
2015	18.565	(12.23-24.9)	0.279	(0.211 - 0.347)

Figure e: Time series of spawning output trajectory (circles and line: median; light broken lines: 95% credibility intervals) for the three models of China rockfish (North=Washington state, Central = $40^{\circ}10'$ N. latitude to the OR/WA border, and South = south of $40^{\circ}10'$ N. latitude).

Figure f: Estimated relative depletion with approximate 95% asymptotic confidnce intervals (dashed lines) for the three base case assessment models.

183 Recruitment

Length and age composition data for China rockfish contain insufficient information to reliably resolve year-class strength. Therefore, all three base models assume that recruitment follows a deterministic Beverton-Holt stock-recruitment relationship, so trends in recruitment reflect trends in estimated spawning output. Given the assumed value of steepness and estimates of current stock status, estimated recruitment has remained fairly constant in the central and northern models, while the estimated biomass in the southern area has declined enough to impact spawning output (Figure g, Tables e, f and g).

Year	Estimated	~ 95%
	Recruitment	confidence
	(1,000s)	interval
2006	33.29	(21.33 - 45.24)
2007	33.30	(21.35 - 45.25)
2008	33.30	(21.35 - 45.26)
2009	33.30	(21.35 - 45.26)
2010	33.31	(21.35 - 45.26)
2011	33.30	(21.34 - 45.25)
2012	33.29	(21.33 - 45.25)
2013	33.29	(21.33 - 45.25)
2014	33.29	(21.33 - 45.25)
2015	33.29	(21.33 - 45.25)

Table e: Recent recruitment for the northern model (Washington state MCAs 1-4).

Lable I. Recent recrititment for the central model (40–10) N. Jatitude to the OR/WA porc	Table f	f: Recent	recruitment f	or the central	l model (40	°10′ N_1	latitude to	the OR/	/WA bore	ler)
--	---------	-----------	---------------	----------------	-------------	----------	-------------	---------	----------	------

Year	Estimated	~ 95%
	Recruitment	confidence
	(1,000s)	interval
2006	68.27	(54.59 - 81.94)
2007	68.31	(54.64 - 81.97)
2008	68.26	(54.59 - 81.94)
2009	68.20	(54.51 - 81.9)
2010	68.17	(54.47 - 81.87)
2011	68.22	(54.52 - 81.91)
2012	68.17	(54.46 - 81.87)
2013	68.09	(54.36 - 81.81)
2014	68.06	(54.32 - 81.8)
2015	68.15	(54.43 - 81.87)

Year	Estimated	~ 95%
	Recruitment	confidence
	(1,000s)	interval
2006	122.32	(105.92 - 138.73)
2007	123.93	(107.67 - 140.18)
2008	125.23	(109.07 - 141.39)
2009	126.13	(109.98 - 142.28)
2010	126.27	(109.96 - 142.57)
2011	126.42	(109.97 - 142.87)
2012	126.99	(110.52 - 143.46)
2013	127.71	(111.29 - 144.13)
2014	128.94	(112.72 - 145.15)
2015	129.99	(113.95 - 146.03)

Table g: Recent recruitment for the southern model (south of $40^\circ 10'$ N. latitude).

Figure g: Time series of estimated China rockfish recruitments for the three base-case models with 95% confidence or credibility intervals.

¹⁹¹ Exploitation status

Harvest rates estimated by the northern area model for Washington have never exceeded 192 management target levels (Table h and Figure h). Model results for the central area suggest 193 that harvest rates have briefly exceeded the current proxy MSY value around 2000, but has 194 remained below the management target in the last decade (Table i and Figure h). Historical 195 harvest rates for China rockfish rose steadily in the southern management area until the 196 mid-1990s and exceeded the target SPR harvest rate for several decades, and is just below 197 the target harvest rate as of 2013 (Table j and Figure h). A summary of China rockfish 198 exploitation histories for the northern, central, and southern areas is provided as Figure i. 199

Table h: Recent trend in spawning potential ratio and exploitation for the northern China rockfish model (Washington state MCAs 1-4). Fishing intensity is (1-SPR) divided by 50% (the SPR target) and exploitation is F divided by F_{SPR} .

Year	Fishing	$\sim 95\%$	Exploitation	$\sim 95\%$
	intensity	confidence	rate	confidence
		interval		interval
2005	0.44	(0.27-0.61)	0.32	(0.17 - 0.47)
2006	0.39	(0.24 - 0.55)	0.28	(0.15 - 0.4)
2007	0.47	(0.3-0.65)	0.35	(0.19 - 0.51)
2008	0.50	(0.32 - 0.68)	0.38	(0.2-0.55)
2009	0.45	(0.28-0.63)	0.33	(0.18 - 0.49)
2010	0.56	(0.36 - 0.76)	0.44	(0.24 - 0.64)
2011	0.51	(0.32 - 0.7)	0.39	(0.21 - 0.57)
2012	0.48	(0.3-0.66)	0.35	(0.19 - 0.52)
2013	0.53	(0.34 - 0.72)	0.41	(0.22 - 0.59)
2014	0.48	(0.3-0.67)	0.36	(0.19 - 0.53)
		. /		

Year	Fishing	$\sim 95\%$	Exploitation	$\sim 95\%$
	intensity	confidence	rate	confidence
		interval		interval
2005	0.55	(0.42 - 0.68)	0.40	(0.28-0.52)
2006	0.62	(0.49-0.76)	0.48	(0.34 - 0.62)
2007	0.78	(0.63-0.93)	0.68	(0.48 - 0.88)
2008	0.82	(0.66-0.97)	0.73	(0.52 - 0.95)
2009	0.78	(0.63 - 0.93)	0.68	(0.48 - 0.88)
2010	0.61	(0.48 - 0.75)	0.47	(0.33 - 0.61)
2011	0.80	(0.65 - 0.96)	0.72	(0.5 - 0.93)
2012	0.85	(0.69 - 1.01)	0.79	(0.55 - 1.02)
2013	0.77	(0.62 - 0.93)	0.67	(0.47 - 0.87)
2014	0.53	(0.4-0.66)	0.39	(0.27-0.5)

Table i: Recent trend in spawning potential ratio and exploitation for the central China rockfish model (40°10′ N. latitude to the OR/WA border). Fishing intensity is (1-SPR) divided by 50% (the SPR target) and exploitation is F divided by F_{SPR} .

Table j: Recent trend in spawning potential ratio and exploitation for the southern China rockfish model (south of $40^{\circ}10'$ N. latitude). Fishing intensity is (1-SPR) divided by 50% (the SPR target) and exploitation is F divided by F_{SPR} .

Year	Fishing	~ 95%	Exploitation	~ 95%
	intensity	confidence	rate	confidence
		interval		interval
2005	1.30	(1.16-1.45)	1.50	(1.15-1.85)
2006	1.18	(1.03-1.33)	1.19	(0.91 - 1.47)
2007	1.18	(1.03-1.33)	1.22	(0.93 - 1.51)
2008	1.23	(1.08-1.37)	1.35	(1.04 - 1.67)
2009	1.35	(1.21 - 1.48)	1.76	(1.34 - 2.17)
2010	1.34	(1.2-1.48)	1.70	(1.29-2.1)
2011	1.25	(1.1-1.4)	1.41	(1.06 - 1.75)
2012	1.20	(1.05 - 1.35)	1.27	(0.96 - 1.58)
2013	1.02	(0.86 - 1.18)	0.90	(0.68 - 1.12)
2014	1.04	(0.89-1.2)	0.96	(0.73 - 1.19)

Figure h: Estimated spawning potential ratio (SPR) for the northern, central, and southern base-case models. One minus SPR is plotted so that higher exploitation rates occur on the upper portion of the y-axis. The management target is plotted as a red horizontal line and values above this reflect harvests in excess of the overfishing proxy based on the SPR_{50%} harvest rate. The last year in the time series is 2014.

Figure i: Phase plot of estimated relative (1-SPR) vs. relative spawning biomass for the southern, central, and northern base case models. The relative (1-SPR) is (1-SPR) divided by 50% (the SPR target). Relative depletion is the annual spawning biomass divided by the unfished spawning biomass.

200 Ecosystem considerations

In this assessment, ecosystem considerations were not explicitly included in the analysis.
This is primarily due to a lack of relevant data and results of analyses (conducted elsewhere)
that could contribute ecosystem-related quantitative information for the assessment.

Recently available habitat information was used to select the data used in the onboard observer indices (see Appendix F, p.9).

²⁰⁶ Reference points

The management line for China rockfish is at 40°10′ N. latitude, with differing management guidelines north and south. From 2005-2010, the Nearshore Rockfish Complexes north and south of 40°10′ N. latitude were managed by a total catch Optimum Yield (OY). As of the Pacific Fishery Management Council (PFMC) 2011-12 management cycle, China rockfish has a component OFL and ABC within the northern and southern Nearshore Rockfish Complexes, based on the work by Dick and MacCall (2010).

This stock assessment estimates that China rockfish in the north are above the biomass 213 target. The spawning output of the stock declined between the 1960s and 1990s but has 214 largely been stable during the past few decades. The estimated relative depletion level in 215 2015 is 73.4% (~95% asymptotic interval: \pm 63.7% - 83.2%, corresponding to an unfished 216 spawning output of 24.4 billion eggs ($\sim 95\%$ asymptotic interval: 15.2 - 33.7 billion eggs) of 217 spawning output in the base model (Table k). Unfished age 5+ biomass was estimated to be 218 240.8 mt in the base case model. The target spawning output based on the biomass target 219 $(SB_{40\%})$ is 9.8 billion eggs, which gives a catch of 6.3 mt. Equilibrium yield at the proxy 220 F_{MSY} harvest rate corresponding to $SPR_{50\%}$ is 5.8 mt. 221

This stock assessment estimates that central area China rockfish are just above the biomass 222 target. The rate of spawning output decline is estimated to be steepest during the 1980s to 223 1990s and has continued to decline since the 1990s at a slower rate. The estimated relative 224 depletion level in 2015 is 61.5% (~95% asymptotic interval: $\pm 53.8\%$ - 69.2%), corresponding 225 to an unfished spawning output of 65.1 billion eggs ($\sim 95\%$ asymptotic interval: 51.8 - 78.4226 billion eggs) of spawning output in the base model (Table 1). Unfished age 5+ biomass was 227 estimated to be 591.5 mt in the base case model. The target spawning output based on the 228 biomass target $(SB_{40\%})$ is 26 billion eggs, which gives a catch of 15.7 mt. Equilibrium yield 229 at the proxy F_{MSY} harvest rate corresponding to $SPR_{50\%}$ is 14.5 mt. 230

This stock assessment estimates that China rockfish south of $40^{\circ}10'$ N. latitude are below the biomass target, but above the minimum stock size threshold, and have been increasing over the last 15 years. The estimated relative depletion level in 2015 is 27.9% (~95% asymptotic interval: $\pm 21.2\% - 34.7\%$), corresponding to an unfished spawning output of 66.5 billion eggs (~95% asymptotic interval: 49.6 - 83.4 billion eggs) of spawning output in the base model (Table m). Unfished age 5+ biomass was estimated to be 768.6 mt in the base case model.

- ²³⁷ The target spawning output based on the biomass target $(SB_{40\%})$ is 26.6 billion eggs, which
- $_{238}\,$ gives a catch of 21.1 mt. Equilibrium yield at the proxy F_{MSY} harvest rate corresponding

239 to $SPR_{50\%}$ is 19.5 mt.

Table k: Summary of reference points and management quantities for the northern (Washington state MCAs 1-4) base case model.

Quantity	Estimate	95% Confidence
		Interval
Unfished spawning output (billions of eggs)	24.4	(15.2-33.7)
Unfished age $5+$ biomass (mt)	240.8	(153 - 328.7)
Unfished recruitment (R0, thousands)	34.2	(22.3-46)
Spawning output (2015, billions of eggs)	17.9	(8.8-27.1)
Depletion (2015)	0.7344	(0.6369 - 0.8319)
Reference points based on $SB_{40\%}$		
Proxy spawning output $(B_{40\%})$	9.8	(6.1-13.5)
SPR resulting in $B_{40\%}$ ($SPR_{B40\%}$)	0.444	(0.444 - 0.444)
Exploitation rate resulting in $B_{40\%}$	0.0551	(0.0522 - 0.058)
Yield with $SPR_{B40\%}$ at $B_{40\%}$ (mt)	6.3	(4-8.5)
Reference points based on SPR proxy for MSY		
Spawning output	11.3	(7-15.5)
SPR_{proxy}	0.5	
Exploitation rate corresponding to SPR_{proxy}	0.0458	(0.0435 - 0.0482)
Yield with SPR_{proxy} at SB_{SPR} (mt)	5.8	(3.7-7.9)
Reference points based on estimated MSY values		
Spawning output at $MSY (SB_{MSY})$	5.6	(3.5-7.8)
SPR_{MSY}	0.2875	(0.2823 - 0.2927)
Exploitation rate at MSY	0.0924	(0.0863 - 0.0985)
MSY (mt)	7	(4.5-9.4)

Quantity	Estimate	95% Confidence
		Interval
Unfished spawning output (billions of eggs)	65.1	(51.8-78.4)
Unfished age $5+$ biomass (mt)	591.5	(473.7-709.3)
Unfished recruitment (R0, thousands)	71.3	(57.9 - 84.6)
Spawning output (2015, billions of eggs)	40	(26.9-53.2)
Depletion (2015)	0.6149	(0.5381 - 0.6918)
Reference points based on $SB_{40\%}$		
Proxy spawning output $(B_{40\%})$	26	(20.7-31.4)
SPR resulting in $B_{40\%}$ (SPR _{B40\%})	0.444	(0.444 - 0.444)
Exploitation rate resulting in $B_{40\%}$	0.0584	(0.0567 - 0.0602)
Yield with $SPR_{B40\%}$ at $B_{40\%}$ (mt)	15.7	(12.6-18.7)
Reference points based on SPR proxy for MSY		
Spawning output	30	(23.8-36.1)
SPR_{proxy}	0.5	
Exploitation rate corresponding to SPR_{proxy}	0.0484	(0.0469 - 0.0498)
Yield with SPR_{proxy} at SB_{SPR} (mt)	14.5	(11.7-17.3)
Reference points based on estimated MSY values		
Spawning output at MSY (SB_{MSY})	15.4	(12.2-18.6)
SPR_{MSY}	0.2925	(0.29-0.295)
Exploitation rate at MSY	0.098	(0.094 - 0.1019)
MSY (mt)	17.3	(14-20.7)

Table 1: Summary of reference points and management quantities for the central ($40^{\circ}10'$ N. latitude to the OR/WA border) base case model.

Quantity	Estimate	95% Confidence
		Interval
Unfished spawning output (billions of eggs)	66.5	(49.6-83.4)
Unfished age $5+$ biomass (mt)	768.6	(660.1-877)
Unfished recruitment (R0, thousands)	154.5	(141.5 - 167.4)
Spawning output $(2015, \text{ billions of eggs})$	18.6	(12.2-24.9)
Depletion (2015)	0.2791	(0.2113 - 0.3469)
Reference points based on $SB_{40\%}$		
Proxy spawning output $(B_{40\%})$	26.6	(19.8-33.4)
SPR resulting in $B_{40\%}$ (SPR _{B40\%})	0.444	(0.444 - 0.444)
Exploitation rate resulting in $B_{40\%}$	0.057	(0.0491 - 0.065)
Yield with $SPR_{B40\%}$ at $B_{40\%}$ (mt)	21.1	(19.9-22.3)
Reference points based on SPR proxy for MSY		
Spawning output	30.6	(22.8-38.4)
SPR_{proxy}	0.5	
Exploitation rate corresponding to SPR_{proxy}	0.0476	(0.041 - 0.0541)
Yield with SPR_{proxy} at SB_{SPR} (mt)	19.5	(18.4-20.6)
Reference points based on estimated MSY values		
Spawning output at MSY (SB_{MSY})	15.5	(11.2-19.9)
SPR_{MSY}	0.2898	(0.2832 - 0.2965)
Exploitation rate at MSY	0.0938	(0.0784 - 0.1092)
MSY (mt)	23.4	(22.1-24.8)

Table m: Summary of reference points and management quantities for the southern (south of $40^{\circ}10'$ N. latitude) base case model.

²⁴⁰ Management performance

China rockfish is managed in the northern and southern Nearshore Rockfish Complex (split at 241 40°10′ N. latitude. Since the 2011-2012 management cycle, China rockfish has a contribution 242 OFL and ACL within each the northern and southern Nearshore Rockfish Complexes (Table 243 n). The estimated catch of China rockfish north of 40°10′ N. latitude of Nearshore Rockfish 244 Complex has been above both the China rockfish contribution to the northern Nearshore 245 Rockfish Complex OFL and ACL in all years (2011-2014). The estimated catch of China 246 rockfish south of 40°10′ N. latitude of Nearshore Rockfish Complex has been below the China 247 rockfish contribution to the northern Nearshore Rockfish Complex OFL and ACL in all years 248 (2011-2014). A summary of these values as well as other base case summary results can be 249 found in Table s. 250

Table n: Recent trend in total catch and commercial landings (mt) relative to the management guidelines. Estimated total catch reflect the commercial landings plus the model estimated discarded biomass. Note: 2015 and 2016 ACLs are proposed and not yet in regulations

Year	Management	Nearshore	China	Estimated	Nearshore	e China Estima					
	guideline	rockfish	contrib.	catch	rockfish	contrib.	catch				
		north	north	north	south	south	south				
2005	ABC	na	na	10.10	na	na	16.70				
	Total Catch OY	122	na		615	na					
2006	ABC	na	na	11.30	na	na	13.60				
	Total Catch OY	122	na	na							
2007	ABC	na	na	15.80	na	na	14.20				
	Total Catch OY	142	na		564	na					
2008	ABC	na	na	16.90	na	na	16.00				
	Total Catch OY	142	na		564	na					
2009	ABC	na	na	15.40	na	na	21.00				
	Total Catch OY	155	na		650	na					
2010	ABC	na	na	12.40	na	na	19.30				
	Total Catch OY	155	na		650	na					
2011	\mathbf{OFL}	116	11.7	1156	19.8	16.20					
	ACL	99	9.8		1001	16.5					
2012	\mathbf{OFL}	116	11.7	17.50	1145	19.8	14.10				
	ACL	99	9.8		990	16.5					
2013	\mathbf{OFL}	110	9.8	15.60	1164	16.6	10.40				
	ACL	94	8.2		1005	13.8					
2014	\mathbf{OFL}	110	9.8	10.10	1160	16.6	11.80				
	ACL	94	8.2		1001	13.8					
2015	OFL	88	7.2		1313	55.2					
	ACL	69	50.4								
2016	\mathbf{OFL}	88	7.4	1288	52.7						
	ACL	69	6.8	1006	50.4						

²⁵¹ Unresolved problems and major uncertainties

As in most/all stock assessments, the appropriate value for stock-recruit steepness remains a major uncertainty for China rockfish. In this assessment a prior value was available from a meta-analysis, allowing bracketing of the uncertainty. Exploration of the southern model during the STAR panel meeting established that the range of uncertainty in current and projected biomass status provided by this bracketing was very similar to the range due to natural mortality, and that natural mortality alone would be used to bracket uncertainty in model results for management advice.

While the northern and the southern area models are able to estimate a plausible value of natural mortality with an apparently good level of precision, this was not possible with the central area model.

The fishery-dependent abundance indices used in the assessment are relatively noisy. There is no fishery-independent index. The assessments assume that trends in CPUE indices are representative of population trends.

Assessment results for the central and the northern area models are dependent on the method used for weighting the conditional age-at-length data. This is an area of active research and there is a lack of consensus on an agreed approach. A workshop is planned for later this year that might provide guidance. For this assessment, the Panel recommended use of harmonic mean method, because it is a well-understood and frequently applied method that provided intermediate results compared to other alternatives.

The current term of reference for stock assessment require development of a single decision table with states of nature ranging along the dominant axis of uncertainty. This presumes that uncertainty is consequential only for a single variable or estimated quantity, such as natural mortality, steepness, or ending biomass. This approach may fail to capture important elements of uncertainty that should be communicated to the Council and its advisory bodies. Additional flexibility in the development of decision tables is needed.

277 Decision Tables

The forecasts of stock abundance and yield were developed using the final base models. The total catches in 2015 and 2016 are set to the PFMC adopted China rockfish contribution ACLs in the northern and central models (Table n). The southern model total catches in 2015 and 2016 are set to the average annual catch from 2012-2014. The exploitation rate for 2017 and beyond is based upon an SPR harvest rate of 50%. The average of 2010-2014 catch by fleet was used to distribute catches in forecasted years. The forecasted projections of the OFL for each model are presented in Table o.

²⁸⁵ Uncertainty in the forecasts is based upon the three states of nature agreed upon at the STAR ²⁸⁶ panel and are based on a low value of M, 0.05, and a high value, 0.09. Current medium-term ²⁸⁷ forecasts based on the alternative states of nature project that the stock, under the current

control rule as applied to the base model, will decline towards the target stock size Table 288 p. The current control rule under the low state of nature results in a stock decline into 289 the precautionary zone, while the high state of nature maintains the stock at near unfished 290 levels. Removing the catches resulting from the low M state of nature, assuming the base 291 and high values of M both maintain the stock at well above the current target stock size, as 292 does removing the recent average catches under all states of nature. Removing the high M 293 catches under the base model M and high M states of nature results in the population going 294 to extremely low levels during the projection period, spawning biomass and stock depletion 295 values are not reported for years in which the stock goes to these very low levels. 296

Current medium-term forecasts based on the alternative states of nature for the central 297 model project that the stock, under the current control rule as applied to the base model, 298 will decline towards the target stock size Table q. The current control rule under the low 299 state of nature results in a stock in the precautionary zone, while the high state of nature 300 maintains the stock increasing from 40% to 50% depletion from 2017 - 2026. Removing the 301 catches resulting from the low M state of nature, assuming the base and high values of M 302 both maintain the stock at well above the current target stock size. Removing the high M 303 catches under the base model M and low M states of nature results in the population going 304 to extremely low levels during the projection period. Removing average catches under the 305 base M and high M states of nature result in the stock remaining above the current target 306 stock size, and an ending depletion of 37% in 2026 for the low M state of nature. 307

Assuming that catches in 2015 and 2016 equal recent average catch, and that catches beginning in 2017 follow the default ACL harvest control rule, projections of expected China spawning output from the southern base model suggest the stock will be at roughly 30% of unfished spawning output in 2017, and increase to 38% by 2026 (Table r). The stock is expected to remain below the target stock size (40% of unfished spawning output) in the base model and "low M" states of nature through 2026, and to exceed target size in the "high M" scenario, assuming stationarity in the stock-recruitment assumptions.

Table o: Projections of potential OFL (mt) for each model, using the base model forecast.

Year	North	Central	South	Total
2017	9.63	20.52	13.31	43.46
2018	9.29	20.05	13.84	43.18
2019	8.98	19.62	14.34	42.93
2020	8.69	19.21	14.80	42.71
2021	8.43	18.84	15.24	42.51
2022	8.20	18.50	15.63	42.33
2023	7.99	18.19	16.00	42.18
2024	7.80	17.91	16.34	42.05
2025	7.64	17.67	16.65	41.95
2026	7.49	17.45	16.93	41.87

Table p: Summary of 10-year projections beginning in 2017 for alternate states of nature based on an axis of uncertainty for the northern model. Columns range over low, mid, and high states of nature, and rows range over different assumptions of catch levels. An entry of '-' indicates that the stock is driven to very low abundance under the particular scenario.

					States o	f nature		
			Low N	M 0.05	Base 1	M 0.07	High I	M 0.09
	Year	Catch	Spawning	Depletion	Spawning	Depletion	Spawning	Depletion
			Output		Output		Output	
	2017	3.39	10.1	0.541	18.2	0.745	59.30	0.93
	2018	3.37	10.1	0.541	18.1	0.741	59.30	0.93
	2019	3.35	10	0.535	18.1	0.741	59.20	0.92
40-10 Rule,	2020	3.32	9.9	0.53	18.1	0.741	59.20	0.92
Low M	2021	3.30	9.9	0.53	18	0.736	59.20	0.92
	2022	3.29	9.8	0.525	18	0.736	59.10	0.92
	2023	3.27	9.8	0.525	18	0.736	59.10	0.92
	2024	3.25	9.7	0.519	18	0.736	59.10	0.92
	2025	3.23	9.7	0.519	17.9	0.732	59.10	0.92
	2026	3.22	9.6	0.514	17.9	0.732	59.10	0.92
	2017	8.82	10.1	0.541	18.2	0.745	59.30	0.93
	2018	8.49	9.5	0.509	17.6	0.72	58.70	0.92
	2019	8.22	8.8	0.471	17	0.696	58.10	0.91
40-10 Rule	2020	7.96	8.3	0.444	16.5	0.675	57.70	0.90
	2021	7.72	7.7	0.412	16	0.655	57.20	0.89
	2022	7.51	7.2	0.385	15.6	0.638	56.90	0.89
	2023	7.32	6.8	0.364	15.2	0.622	56.50	0.88
	2024	7.14	6.4	0.343	14.9	0.61	56.20	0.88
	2025	6.99	6	0.321	14.6	0.597	56.00	0.88
	2026	6.85	5.6	0.3	14.3	0.585	55.80	0.87
	2017	38.81	10.1	0.541	18.2	0.745	59.30	0.93
	2018	36.27	6.2	0.332	14.4	0.589	55.50	0.87
	2019	34.02	-	-	11	0.45	52.30	0.82
40-10 Rule,	2020	32.06	-	-	8	0.327	49.40	0.77
High M	2021	30.35	-	-	5.4	0.221	46.90	0.73
	2022	28.87	-	-	3.3	0.135	44.80	0.70
	2023	27.59	-	-	-	-	43.00	0.67
	2024	26.51	-	-	-	-	41.40	0.65
	2025	25.57	-	-	-	-	40.10	0.63
	2026	24.79	-	-	-	-	39.00	0.61
	2017	2.45	10	0.535	18.1	0.741	59.20	0.92
	2018	2.45	10.1	0.541	18.1	0.741	59.30	0.93
	2019	2.45	10.1	0.541	18.2	0.745	59.30	0.93
Average	2020	2.45	10.1	0.541	18.3	0.749	59.40	0.93
Catch	2021	2.45	10.2	0.546	18.3	0.749	59.40	0.93
	2022	2.45	10.2	0.546	18.4	0.753	59.50	0.93
	2023	2.45	10.2	0.546	18.4	0.753	59.50	0.93
	2024	2.45	10.3	0.551	18.5	0.757	59.60	0.93
	2025	2.45	10.3	0.551	18.5	0.757	59.60	0.93
	2026	2.45	10.3	0.551	18.6	0.761	59.70	0.93

Table q: Summary of 10-year projections beginning in 2017 for alternate states of nature based on an axis of uncertainty for the central model. Columns range over low, mid, and high states of nature, and rows range over different assumptions of catch levels. An entry of '-' indicates that the stock is driven to very low abundance under the particular scenario.

					States o	f nature		
			Low N	A 0.05	Base I	M 0.07	High I	0.09 M
	Year	Catch	Spawning	Depletion	Spawning	Depletion	Spawning	Depletion
			Output		Output		Output	
	2017	6.70	20.2	0.41	41.40	0.64	109.50	0.85
	2018	6.80	20.5	0.42	41.90	0.64	110.10	0.86
	2019	6.90	20.8	0.42	42.30	0.65	110.50	0.86
40-10 Rule,	2020	6.90	21	0.43	42.70	0.66	111.00	0.86
Low M	2021	7.00	21.2	0.43	43.00	0.66	111.40	0.87
	2022	7.10	21.4	0.43	43.40	0.67	111.70	0.87
	2023	7.10	21.5	0.44	43.70	0.67	112.10	0.87
	2024	7.20	21.7	0.44	43.90	0.67	112.30	0.87
	2025	7.20	21.8	0.44	44.20	0.68	112.60	0.88
	2026	7.30	22	0.45	44.40	0.68	112.90	0.88
	2017	18.80	20.2	0.41	41.40	0.64	109.50	0.85
	2018	18.40	19.2	0.39	40.50	0.62	108.70	0.85
	2019	18.00	18.2	0.37	39.70	0.61	107.90	0.84
40-10 Rule	2020	17.60	17.2	0.35	38.90	0.6	107.20	0.83
40-10 Rule	2021	17.20	16.3	0.33	38.10	0.59	106.60	0.83
	2022	16.90	15.4 0.31 37.50		0.58	106.10	0.83	
	2023	16.70	14.6	0.3	36.90	0.57	105.60	0.82
	2024	16.40	13.9	0.28	36.40	0.56	105.20	0.82
	2025	16.20	13.2	0.27	35.90	0.55	104.80	0.82
	2026	16.00	12.6	0.26	35.50	0.55	104.50	0.81
	2017	64.10	20.2	0.41	41.40	0.64	109.50	0.85
	2018	60.50	14.2	0.29	35.40	0.54	103.60	0.81
	2019	57.30	8.8	0.18	30.00	0.46	98.30	0.76
40-10 Rule,	2020	54.40	4.1	0.08	25.20	0.39	93.60	0.73
High M	2021	51.90	0.4	0.01	20.90	0.32	89.60	0.70
	2022	49.80	0	0	17.10	0.26	86.00	0.67
	2023	47.90	0	0	13.80	0.21	83.00	0.65
	2024	46.30	-	-	10.90	0.17	80.40	0.63
	2025	44.92	-	-	8.40	0.13	78.20	0.61
	2026	43.74	-	-	6.30	0.1	76.20	0.59
	2017	11.28	20.2	0.41	41.40	63.70%	109.50	0.85
	2018	11.28	20	0.41	41.40	63.50%	109.50	0.85
	2019	11.28	19.8	0.40	41.30	63.40%	109.50	0.85
Average	2020	11.28	19.5	0.40	41.20	63.30%	109.50	0.85
Catch	2021	11.28	19.3	0.39	41.10	63.10%	109.50	0.85
	2022	11.28	19	0.38	41.00	63.00%	109.50	0.85
	2023	11.28	18.7	$0.38 \qquad 40.90 \qquad 62.90\% \qquad 10$		109.40	0.85	
	2024	11.28	18.5	0.37	40.80	62.70%	109.40	0.85
	2025	11.28	18.3	0.37	40.80	62.60%	109.40	0.85
	2026	11.28	18	0.37	40.70	62.50%	109.40	0.85

Table r: Summary of 10-year projections beginning in 2017 for alternate states of nature based on an axis of uncertainty for the southern model. Columns range over low, mid, and high states of nature, and rows range over different assumptions of catch levels.

	States of nature										
			Low N	A 0.05	Base M	M 0.07	High M 0.09				
	Year	Catch	Spawning	Depletion	Spawning	Depletion	Spawning	Depletion			
			Output		Output		Output				
	2017	5.08	14.30	0.21	19.82	0.30	23.16	0.40			
	2018	5.73	15.25	0.22	21.05	0.32	24.44	0.42			
	2019	6.35	16.17	0.23	22.24	0.33	25.66	0.44			
40-10 Rule,	2020	6.96	17.06	0.25	23.37	0.35	26.80	0.46			
Low M	2021	7.54	17.91	0.26	24.44	0.37	27.86	0.48			
	2022	8.08	18.71	0.27	25.45	0.38	28.84	0.49			
	2023	8.60	19.47	0.28	26.39	0.40	29.74	0.51			
	2024	9.08	20.18	0.29	27.27	0.41	30.56	0.52			
	2025	9.54	20.85	0.30	28.09	0.42	31.31	0.54			
	2026	9.97	21.47	0.31	28.84	0.43	31.99	0.55			
	2017	10.81	14.30	0.21	19.82	0.30	23.16	0.40			
	2018	11.46	14.87	0.21	20.63	0.31	24.02	0.41			
	2019	12.07	15.40	0.22	21.38	0.32	24.81	0.42			
40-10 Rule	2020	12.64	15.90	0.23	22.09	0.33	25.53	0.44			
	2021	13.17	16.35	0.23	22.74	0.34	26.19	0.45			
	2022	13.65	16.76	0.24	23.34	0.35	26.79	0.46			
	2023	14.10	17.14	0.25	23.90	0.36	27.33	0.47			
	2024	14.51	17.48	0.25	24.40	0.37	27.81	0.47			
	2025	14.89	17.79	0.26	24.87	0.37	28.24	0.48			
	2026	15.23	18.08	0.26	25.30	0.38	28.63	0.49			
	2017	17.86	14.30	0.21	19.82	0.30	23.16	0.40			
	2018	18.18	14.40	0.21	20.10	0.30	23.50	0.40			
	2019	18.41	14.48	0.21	20.36	0.31	23.80	0.41			
40-10 Rule,	2020	18.62	14.54	0.21	20.59	0.31	24.07	0.41			
High M	2021	18.81	14.59	0.21	20.80	0.31	24.32	0.41			
	2022	18.99	14.62	0.21	20.99	0.32	24.55	0.42			
	2023	19.15	14.65	0.21	21.17	0.32	24.76	0.42			
	2024	19.30	14.67	0.21	21.34	0.32	24.96	0.43			
	2025	19.45	14.68	0.21	21.51	0.32	25.14	0.43			
	2026	19.58	14.70	0.21	21.67	0.33	25.32	0.43			
	2017	13.11	14.30	0.21	19.82	0.30	23.16	0.40			
	2018	13.11	14.72	0.21	20.45	0.31	23.85	0.41			
	2019	13.11	15.14	0.22	21.09	0.32	24.52	0.42			
Average	2020	13.11	15.56	0.22	21.71	0.33	25.17	0.43			
Catch	2021	13.11	15.98	0.23	22.33	0.34	25.80	0.44			
	2022	13.11	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		22.94	0.34	26.42	0.45			
	2023	13.11	16.81	0.24	23.53	0.35	27.01	0.46			
	2024	13.11	17.23	0.25	24.12	0.36	27.58	0.47			
	2025	13.11	17.64	0.25	24.70	0.37	28.13	0.48			
	2026	13.11	18.06	0.26	25.26	0.38	28.67	0.49			

2015			88	7.2	69	6.6			1,313	55.2	1,114	50.4			182.58	17.9	(8.83-27.07)	0.7	(0.637 - 0.832)	33.29	(21.33 - 45.25)			381.29	40	(26.88-53.19)	0.61	(0.538-0.692)	68.15	(54.43 - 81.87)			280.18	19	(12.23-24.9)	0.28	(0.211 - 0.347)	129.99	(113.95 -
2014	9.93	10.06	110	9.8	94	8.2	11.17	11.85	1,160	16.6	1,001	13.8	0.53	0.41	182.52	17.9	(8.83-27.06)	0.7	(0.637 - 0.832)	33.29	(21.33 - 45.25)	0.77	0.67	377.54	40	(26.45 - 52.7)	0.61	(0.53 - 0.686)	68.06	(54.32 - 81.8)	1.02	0.90	272.36	18	(11.73-24.07)	0.27	(0.203 - 0.336)	128.94	(112.72 -
2013	15.67	15.65	110	9.8	94	8.2	10.01	10.44	1,164	16.6	1,005	13.8	0.48	0.35	182.82	18.0	(8.87-27.09)	0.7	(0.639 - 0.833)	33.29	(21.33 - 45.25)	0.85	0.79	378.59	40	(26.6-52.82)	0.61	(0.533 - 0.687)	68.09	(54.36 - 81.81)	1.20	1.27	263.64	17	(11.18-23.15)	0.26	(0.193 - 0.323)	127.71	(111.29 -
2012	17.71	17.51	116	11.7	66	9.8	13.79	14.13	1,145	19.8	066	16.5	0.51	0.39	182.72	18.0	(8.86-27.08)	0.7	(0.638 - 0.832)	33.29	(21.33 - 45.25)	0.80	0.72	381.88	40	(27.01 - 53.21)	0.62	(0.54-0.692)	68.17	(54.46 - 81.87)	1.25	1.41	258.52	17	(10.91 - 22.6)	0.25	(0.189 - 0.315)	126.99	(110.52 -
2011	16.92	16.56	116	11.7	66	9.8	15.62	16.21	1,156	19.8	1,001	16.5	0.56	0.44	182.90	18.0	(8.89-27.1)	0.7	(0.64-0.833)	33.30	(21.34 - 45.25)	0.61	0.47	384.10	40	(27.29-53.47)	0.62	(0.545 - 0.695)	68.22	(54.52 - 81.91)	1.34	1.70	254.50	16	(10.73 - 22.16)	0.25	(0.186 - 0.309)	126.42	(109.97 -
2010	12.58	12.44			155		18.75	19.32			650		0.45	0.33	183.49	18.1	(8.96-27.17)	0.7	(0.644 - 0.834)	33.31	(21.35 - 45.26)	0.78	0.68	382.08	40	(27.05-53.2)	0.62	(0.541 - 0.692)	68.17	(54.47 - 81.87)	1.35	1.76	253.37	16	(10.75-21.97)	0.25	(0.186 - 0.306)	126.27	(109.96 -
2009	15.37	15.42			155		20.15	20.98			650		0.50	0.38	183.25	18.0	(8.93 - 27.13)	0.7	(0.642 - 0.833)	33.30	(21.35 - 45.26)	0.82	0.73	383.69	40	(27.25 - 53.38)	0.62	(0.545 - 0.694)	68.20	(54.51 - 81.9)	1.23	1.35	252.61	16	(10.77 - 21.81)	0.24	(0.187 - 0.303)	126.13	(109.98 -
2008	16.97	16.86			142		15.16	16.02			564		0.47	0.35	183.36	18.0	(8.95-27.14)	0.7	(0.643 - 0.833)	33.30	(21.35 - 45.26)	0.78	0.68	386.42	41	(27.57-53.69)	0.62	(0.551 - 0.698)	68.26	(54.59 - 81.94)	1.18	1.22	247.83	16	(10.46 - 21.18)	0.24	(0.182 - 0.294)	125.23	(109.07 -
2007	16.14	15.79			142		13.39	14.22			564		0.39	0.28	183.26	18.0	(8.94-27.12)	0.7	(0.642 - 0.833)	33.30	(21.35 - 45.25)	0.62	0.48	388.36	41	(27.8-53.9)	0.63	(0.555-0.7)	68.31	(54.64 - 81.97)	1.18	1.19	241.35	15	(10.01 - 20.34)	0.23	(0.174 - 0.283)	123.93	(107.67 -
2006	11.63	11.34			122		12.74	13.60			615		0.44	0.32	182.55	17.9	(8.86-27.03)	0.7	(0.638 - 0.83)	33.29	(21.33 - 45.24)	0.55	0.40	386.73	41	(27.6-53.68)	0.62	(0.551 - 0.697)	68.27	(54.59 - 81.94)	1.30	1.50	234.08	14	(9.47 - 19.39)	0.22	(0.164 - 0.27)	122.32	(105.92 -
Quantity	Landings (mt)	Total Est. Catch (mt)	Nearshore RF ABC/OFL	China contrib. ABC/OFL	Nearshore RF OY/ACL	China contrib. OY/ACL	Landings (mt)	Total Est. Catch (mt)	Nearshore RF ABC/OFL	China contrib. ABC/OFL	Nearshore RF OY/ACL	China contrib. OY/ACL	$(1-SPR)(1-SPR_{50\%})$	Exploitation rate	Age $5+$ biomass (mt)	Spawning Output	95% CI	Depletion	95% CI	Recruits	95% CI	$(1-SPR)(1-SPR_{50\%})$	Exploitation rate	Age $5+$ biomass (mt)	Spawning Output	95% CI	Depletion	95% CI	Recruits	95% CI	$(1-SPR)(1-SPR_{50\%})$	Exploitation rate	Age $5+$ biomass (mt)	Spawning Output	95% CI	Depletion	95% CI	Recruits	95% CI
Region	North of	$40^{\circ}10' \text{ N}$		0			South of	$40^{\circ}10' \text{ N}$		J			Northern	model								Central	model								Southern	model							

Table s: China rockfish base case results summary.

Figure j: Equilibrium yield curve for the base case models. Values are based on the 2014 fishery selectivity and with steepness fixed at 0.773.

Research and data needs 315

316	We recommend the following research be conducted before the next assessment:
317 318 319	1. The number of hours fished in Washington should be recorded for each dockside sample (vessel) so that future CPUE can be measured as angler hours rather than just number of anglers per trip. This will allow for a more accurate calculation of effort.
320 321 322	2. The number of hours fished in Oregon should be recorded for each dockside sample (vessel), instead of the start and end times of the entire trip. This will allow for a more accurate calculation of effort.
323 324	3. Compare the habitat-based methods used to subset data for the onboard observer indices to Stephens-MacCall and other filtering methods.
325 326	4. Explore the sensitivity of Stephens-MacCall when the target species is "rare" or not common encountered in the data samples.
327 328 329 330 331	5. A standardized fishery independent survey sampling nearshore rockfish in all three states would provide a more reliable index of abundance than the indices developed from catch rates in recreational and commercial fisheries. However, information value of such surveys would depend on the consistency in methods over time and space and would require many years of sampling before an informative index could be obtained.
332	6. A coastwide evaluation of genetic structure of China rockfish is a research priority.

- Genetic samples should be collected at sites spaced regularly along the coast throughout 333 the range of the species to estimate genetic differences at multiple spatial scales (i.e., 334 isolation by distance). 335
- 7. Difficulties were encountered when attempting to reconstruct historical recreational 336 catches at smaller spatial scales, and in distinguishing between landings from the pri-337 vate and charter vessels. Improved methods are needed to allocate reconstructed recre-338 ational catches to sub-state regions within each fishing mode. 339
- 8. There was insufficient time during the STAR Panel review to fully review the abun-340 dance indices used in the China rockfish assessments. Consideration should be given to 341 scheduling a data workshop prior to STAR Panel review for review of assessment input 342 data and standardization procedures for indices, potentially for all species scheduled 343 for assessment. The nearshore data workshop, held earlier this year, was a step in this 344 direction, but that meeting did not deal with the modeling part of index development. 345
- 9. The Marine Recreational Fisheries Statistics Survey (MRFSS) index in Oregon was 346 excluded from the assessment model because it was learned that multiple intercept 347 interviews were done for a single trip. Evaluate whether database manipulations or 348 some other approach can resolve this issue and allow these data to be used in the 349 assessment. 350

10. Many of the indices used in the China rockfish assessment model used the Stephens-MacCall (2004) approach to subset the CPUE data. Research is need to evaluate the performance of the method when there are changes in management restrictions and in relative abundance of different species. Examination of the characteristics of trips retained/removed should be a routine part of index standardization, such as an evaluation of whether there are time trends in the proportion of discarded trips.

11. Fishery-dependent CPUE indices are likely to be the only trend information for many nearshore species for the foreseeable future. Indices from a multi-species hook-and-line fishery may be influenced by regulatory changes, such as bag limits, and by interactions with other species (e.g., black rockfish) due to hook competition. It may be possible to address many of these concerns if a multi-species approach is used to develop the indices, allowing potential interactions and common forcing to be evaluated.

12. Consider the development of a fishery-independent survey for nearshore stocks. As
 the current base model structure has no direct fishery-independent measure of stock
 trends, any work to commence collection of such a measure for nearshore rockfish, or
 use of existing data to derive such an index would greatly assist with this assessment.

Basic life history research may help to resolve assessment uncertainties regarding appropriate values for natural mortality and steepness.

14. Examine length composition data of discarded fish from recreational onboard observer programs in California and Oregon. Consider modeling discarded catch using selectivity and retention functions in Stock Synthesis rather than combining retained and discarded catch and assuming they have identical size compositions. Another option would be to model discarded recreational catch as a separate fleet, similar to the way commercial discards were treated in the southern model.

Ageing data were influential in the China rockfish stock assessments. Collection and
 ageing of China rockfish otoliths should continue. Samples from younger fish not
 typically selected by the fishery are needed to better define the growth curve.

16. Consider evaluating depletion estimators of abundance using within season CPUE
 indices. This approach would require information on total removals on a reef-by-reef
 basis.

17. The extensive use of habitat information in index development is a strength of the
China rockfish assessment. Consideration should be given to how to further incorporate
habitat data into the assessment of nearshore species. The most immediate need seems
to be to increase the resolution of habitat maps for waters off Oregon and Washington,
and standardization of habitat data format among states.

18. Although all the current models for China rockfish estimated implausibly large recruit ment deviations when allowed to do so, particularly early in the modeled time period,

further exploration of available options in stock synthesis could produce acceptable results. In addition, this work may provide guidance on any additional options that could be added to stock synthesis to better handle this situation. For example, assuming different levels autocorrelation in the stock-recruit relationship for data-moderate stocks may help curb the tendency to estimate extreme recruitment with sparse datasets.

Research is needed on data-weighting methods in stock assessments. In particular,
 a standard approach for conditional age-at-length data is needed. The Center for
 the Advancement of Population Assessment Methodology (CAPAM) data weighting
 workshop, scheduled for later this year, should make important progress on this research
 need.