Status of the darkblotched rockfish resource off the continental U.S. Pacific Coast in 2013

by
Vladlena V. Gertseva and James T. Thorson

U.S. Department of Commerce
National Oceanic and Atmospheric Administration
National Marine Fisheries Service
Northwest Fisheries Science Center
2725 Montlake Boulevard East
Seattle, Washington 98112-2097

Table of Contents

Executive Summary 4
Stock 4
Catches 4
Data and assessment 6
Stock spawning output 7
Recruitment 8
Reference points 9
Exploitation status 10
Ecosystem considerations 14
Management performance 14
Unresolved problems and major uncertainties 15
Decision table 16
Research and data needs 17
1 Introduction 23
1.1 Basic Information 23
1.2 Life History 23
1.3 Ecosystem Considerations 24
1.4 Fishery Information and Summary of Management History 24
1.5 Management Performance 27
1.6 Fisheries off Canada, Alaska, and/or Mexico 27
2 Assessment 28
2.1 Data 28
2.1.1 Fishery-dependent data 28
2.1.1.1 Domestic commercial landings 28
2.1.1.1.1 Washington 29
2.1.1.1.2 Oregon 29
2.1.1.1.3 California 30
2.1.1.2 Discard 30
2.1.1.3 Bycatch in the foreign POP fishery 31
2.1.1.4 Bycatch in the at-sea Pacific hake fishery 32
2.1.1.5 Fishery biological data 32
2.1.1.5.1 Length composition data 32
2.1.1.5.2 Age composition data 34
2.1.1.5.3 Average weight of discarded fish 35
2.1.2 Fishery-independent data 35
2.1.2.1 Surveys used in the assessment 35
2.1.2.2 Survey abundance indices 36
2.1.2.3 Length composition data 38
2.1.2.4 Age composition data 39
2.1.3 Biological parameters 40
2.1.3.1 Weight-length relationship 40
2.1.3.2 Maturity schedule 40
2.1.3.3 Fecundity 41
2.1.3.4 Natural mortality 41
2.1.3.5 Ageing bias and imprecision 42
2.2 History of Modeling Approaches Used for this Stock 43
2.2.1 Previous assessments 43
2.2.2 Responses to 2007 STAR panel recommendation 46
2.3 Model Description 49
2.3.1 Changes made from the last assessment 49
2.3.2 Modeling software 53
2.3.3 General model specifications 53
2.3.4 Estimated and fixed parameters 54
2.3.4.1 Life history parameters 54
2.3.4.2 Stock recruitment parameters 55
2.3.4.3 Selectivity parameters 56
2.4 Model Selection and Evaluation 58
2.4.1 Key assumptions and structural choices 58
2.4.2 Changes made during the STAR Panel meeting 59
2.4.3 Evidence of search for global best estimates 59
2.4.4 Convergence criteria 59
2.5 Base-Model Results 59
2.6 Uncertainty and Sensitivity Analyses 62
2.6.1 Sensitivity Analyses 62
2.6.1.1 Alternative assumptions about fishery removals 62
2.6.1.2 Alternative assumptions about life history parameters 63
2.6.1.3 Alternative assumptions about selectivity parameters 64
2.6.2 Retrospective analysis 64
2.6.3 Likelihood profile analyses 64
3 Reference Points 65
4 Harvest Projections and Decision Table 66
5 Regional Management Considerations 67
6 Research Needs 67
7 Literature Cited 69
8 Tables 73
9 Figures 96
Appendix A. Management shifts related to West Coast groundfish species 261
Appendix B. Assessment model files 263
Appendix B.1. SS data file 264
Appendix B.2. SS control file 343
Appendix B.3. SS starter file 349
Appendix B.4. SS forecast file 350

Executive Summary

Stock

Darkblotched rockfish (Sebastes crameri) in the Northeast Pacific Ocean occur from the southeastern Bering Sea and Aleutian Islands to near Santa Catalina Island in southern California. This species is most abundant from off British Columbia to Central California. Commercially important concentrations are found from the Canadian border through Northern California. This assessment focuses on the portion of the population that occurs in coastal waters of the western United States, off Washington, Oregon and California, the area bounded by the U.S.-Canada border on the north and U.S.-Mexico border on the south. The population within this area is treated as a single coastwide stock, due to the lack of biological and genetic data supporting the presence of multiple stocks.

Catches

Darkblotched rockfish has always been caught primarily with commercial trawl gear, as part of a complex of slope rockfish, which includes Pacific ocean perch (Sebastes alutus), splitnose rockfish (Sebastes diploproa), yellowmouth rockfish (Sebastes reedi), and sharpchin rockfish (Sebastes zacentrus). Catches taken with non-trawl gear over the years comprised less than 2% of the total coastwide domestic catch. This species has not been taken recreationally.

Catch of darkblotched rockfish first became significant in the mid-1940s when balloon trawl nets (efficient in taking rockfish) were introduced, and due to increased demand during World War II. The largest removals of the species occurred in the 1960s, when foreign trawl fleets from the former Soviet Union, Japan, Poland, Bulgaria and East Germany came to the Northeast Pacific Ocean to target large aggregations of Pacific ocean perch, a species that co-occurs with darkblotched rockfish. In 1966 the removals of darkblotched rockfish reached 4,220 metric tons. By the late-1960s, the foreign fleet had more or less abandoned the fishery. Domestic landings of darkblotched rockfish rose again between the late-1970s and the late-1980s, peaking in 1987 with landings of 2,415 metric tons. In 2000, the species was declared overfished, and landings substantially decreased due to management regulations. During the last decade the average landings of darkblotched rockfish made by the domestic trawl fishery was around 120 metric tons. Since the mid-1970s, a small amount of darkblotched rockfish has been also taken as bycatch in the at-sea Pacific hake fishery, with a maximum annual removal of 49 metric tons that occurred in 1995.

In this assessment, removals are divided between two fleets, which include the domestic trawl fishery and bycatch in foreign Pacific ocean perch and at-sea Pacific hake fisheries. Reconstructed removals of darkblotched rockfish bycatch in the Pacific ocean perch and at-sea hake fisheries represent total catch that includes both retained and discarded catch. Discards in the domestic trawl fishery were explicitly modeled in the assessment; total catches were estimated simultaneously with other model parameters and derived quantities of management interest.

Figure ES-1: Darkblotched rockfish landings history between 1915 and 2012 by fleet (TWL = domestic trawl fleet, BYCATCH = darkblotched rockfish bycatch in Pacific ocean perch and at-sea Pacific hake fisheries).

Table ES-1: Recent darkblotched rockfish landings (mt) by component that comprised two fleets used in the assessment (domestic trawl removals by all three states were combined into TWL fleet and bycatch in foreign POP and at-sea hake fisheries were combined into BYCATCH fleet).

Year	Domestic trawl California	Domestic trawl Oregon	Domestic trawl Washington	Bycatch in foreign POP fishery	Bycatch in at-sea hake fishery	Total
2003	11	62	2	0	4	80
2004	39	136	7	0	7	189
2005	18	68	1	0	11	98
2006	23	71	2	0	11	107
2007	41	87	3	0	12	144
2008	34	74	3	0	6	117
2009	47	89	2	0	0	138
2010	17	152	7	0	8	184
2011	3	87	14	0	12	117
2012	7	70	15	0	2	94

Data and assessment

The last full assessment of darkblotched rockfish was conducted in 2007. The 2007 full assessment was subsequently updated in 2009 and 2011. This assessment uses the Stock Synthesis modeling framework developed by Dr. Richard Methot at the NWFSC. The most recent version (SSv3.24o, distributed on April 10, 2013) was used, since it included improvements in the output statistics for producing assessment results and several corrections to older versions.

The data used in the assessment include landings, length and age compositions from the retained commercial catch and, in recent years, discard ratios, length and age compositions as well as mean individual body weight of the discards. Also, data from four National Marine Fisheries Service (NMFS) bottom trawl surveys are used to estimate indices of relative stock abundance and generate length and age frequency distributions for each survey. The Northwest Fisheries Science Center (NWFSC) shelfslope survey covers the period between 2003 and 2012 and provides information on the current trend of the stock. Three other surveys (which are discontinued) include the NWFSC slope survey (1999-2002), the AFSC slope survey (1997-2001), and the AFSC shelf triennial survey (1980-2004).

The modeling period in the assessment begins in 1916, assuming that in 1915 the stock was in an unfished equilibrium condition. Females and males are treated separately to account for sexual dimorphism in growth exhibited by the species. Growth is assumed to follow the von Bertalanffy growth model, and the assessment explicitly estimates most parameters describing growth for both sexes. Externally estimated life history parameters, including those defining the weight-length relationship, female fecundity and maturity schedule, have been revised since the last assessment using the newest data available.

Recruitment dynamics are assumed to follow the Beverton-Holt stock-recruit function. Natural mortality is fixed at the value of $0.05 \mathrm{yr}^{-1}$ for females and estimated for males.

Stock spawning output

The darkblotched rockfish assessment uses a non-proportional egg-to-weight relationship, and the spawning output is reported in the number of eggs. The unexploited level of spawning stock output is estimated to be 3,358 million eggs (95% confidence interval: 2,603-4,114 million eggs). At the beginning of 2013, the spawning stock output is estimated to be 1,214 million eggs (95\% confidence interval: 414-2,013 million eggs), which represents 36% of the unfished spawning output level.

The spawning output of darkblotched rockfish started to decline in the 1940s, during World War II, but exhibited a sharp decline in in the 1960s during the time of the intense foreign fishery targeting Pacific ocean perch. Between 1965 and 1975, spawning output dropped from 89% to less than 57% of its unfished level. Spawning output continued to decline throughout the 1980s and 1990s and in 1999 reached its lowest estimated level of 13% of its unfished state. Since 2000, the spawning output has been slowly increasing, which corresponds to decreased removals due to management regulations.

Table ES-2: Recent trends in estimated darkblotched rockfish spawning biomass, recruitment and relative depletion.

	Spawning stock output (million eggs)	$\sim 95 \%$ Year interval	Estimated recruitment $(1000$ s)	$\sim 95 \%$ confidence interval	Estimated depletion	$\sim 95 \%$ confidence interval
2004	583	$234-932$	3,265	$1,180-5,350$	17%	$9-26 \%$
2005	648	$253-1,044$	3,004	$1,042-4,966$	19%	$9-29 \%$
2006	738	$286-1,189$	2,061	$650-3,471$	22%	$11-33 \%$
2007	818	$312-1,324$	1,434	$383-2,486$	24%	$12-37 \%$
2008	879	$325-1,433$	6,674	$2,159-11,190$	26%	$12-40 \%$
2009	937	$338-1,536$	1,216	$206-2,226$	28%	$13-43 \%$
2010	996	$349-1,642$	1,800	$220-3,380$	29%	$13-46 \%$
2011	1,054	$357-1,751$	2,858	$0-6,154$	31%	$14-49 \%$
2012	1,131	$384-1,879$	870	$0-2,117$	33%	$15-53 \%$
2013	1,214	$414-2,013$	2,254	$0-5,691$	36%	$16-56 \%$

Figure ES-2: Estimated spawning biomass time-series (1915-2013) for the base-case model (circles) with ~ 95\% interval (dashed lines).

Recruitment

Recruitment dynamics are assumed to follow a Beverton-Holt stock-recruit function. The level of virgin recruitment is estimated in order to assess the magnitude of the initial stock size. 'Main' recruitment deviations were estimated for modeled years that had information about recruitment, between 1960 and 2011 (as determined from the biascorrection ramp). We additionally estimated 'early' deviations between 1870 and 1959 so that age-structure in the initial modeled year (1915) would deviate from the stable agestructure. The Beverton-Holt steepness parameter (h) is fixed in the assessment at the value of 0.779 , which is the mean of steepness prior probability distribution, derived from this year's meta-analysis of Tier 1 rockfish assessments.

Figure ES-3: Time series of estimated darkblotched rockfish recruitments for the basecase model (solid line) with ~95\% intervals (vertical lines).

Reference points

Unfished spawning stock output for darkblotched rockfish was estimated to be 3,358 million eggs (95% confidence interval: 2,603-4,114 million eggs). The stock is declared overfished if the current spawning output is estimated to be below 25% of unfished level. The management target for darkblotched rockfish is defined as 40% of the unfished spawning output ($\mathrm{SB}_{40 \%}$), which is estimated by the model to be 1,343 million eggs (95% confidence interval: 1,041-1,646), which corresponds to an exploitation rate of 0.0402. This harvest rate provides an equilibrium yield of 675 mt at $\mathrm{SB}_{40 \%}$ (95% confidence interval: 526-824 mt). The model estimate of maximum sustainable yield (MSY) is 742 mt (95% confidence interval: 578-906 mt). The estimated spawning stock output at MSY is 819 million eggs (95% confidence interval: 635-1,003 million of eggs). The exploitation rate corresponding to the estimated $\mathrm{SPR}_{\mathrm{MSY}}$ of F_{30} is 0.0665 .

Table ES-3. Summary of reference points for the base case model.

Quantity	Estimate	~95\% Confidence Interval
Unfished Spawning output (million eggs)	3,358	2,603-4,114
Unfished age 1+ biomass (mt)	36,171	28,181-44,161
Unfished recruitment (R0)	2,549	1,970-3,127
Depletion (2013)	36\%	16-56\%
Reference points based on $S^{\text {S }}$ XX\%		
Proxy spawning output ($B_{40 \%}$)(million eggs)	1,343	1,041-1,646
SPR resulting in $B 40 \%$ ($S P R_{40 \%}$)	44\%	NA
Exploitation rate resulting in $B_{40 \%}$	4.02\%	3.96-4.08\%
Yield with SPR50\% at $B_{40 \%}(\mathrm{mt})$	675	526-824
Reference points based on SPR proxy for MSY		
Spawning output (million eggs)	1,550	1,201-1,899
$S P R_{\text {proxy }}$	50\%	NA
Exploitation rate corresponding to $S P R_{\text {proxy }}$	3.3\%	3.25-3.35\%
Yield with $S P R_{\text {proxy }}$ at $S B_{S P R}(\mathrm{mt})$	625	487-763
Reference points based on estimated MSY values		
Spawning output at MSY ($S_{\text {MSY }}$) (million eggs)	819	635-1,003
$S P R_{M S Y}$	30\%	29.38-30.13\%
Exploitation rate corresponding to $S P R_{\text {MSY }}$	6.65\%	6.47-6.83\%
MSY (mt)	742	578-906

Exploitation status

The assessment shows that the stock of darkblotched rockfish off the continental U.S. Pacific Coast is currently at 36% of its unexploited level. This is above the overfished threshold of $\mathrm{SB}_{25 \%}$, but below the management target of $\mathrm{SB}_{40 \%}$ of unfished spawning biomass. Historically, the spawning output of darkblotched rockfish dropped below the $\mathrm{SB}_{40 \%}$ target for the first time in 1987, as a result of intense fishing by foreign and domestic fleets. It continued to decline and reached the level of 13% of its unfished output in 1999. Since 2000, when the stock was declared overfished, the spawning output was slowly increasing primarily due to management regulations instituted for the species.

This assessment estimates that the 2012 SPR is 86%, while the SPR-based management fishing mortality target is 50%. For the last 10 years, the relative SPR ratio (calculated as $1-\mathrm{SPR} / 1-\mathrm{SPR}_{\text {Target }}=0.50$) was below one, which means that overfishing of darkblotched rockfish has not been occurring. Historically, the darkblotched rockfish has been fished beyond the SPR-based target between 1966 and 1968, during the peak years of the Pacific ocean perch fishery and for a prolonged period between from 1981 and 2002. In the early-1970s the estimated darkblotched rockfish SPR ratio remained near the SPR target but exceeded it in 1973 and 1979.

Figure ES-4. Estimated relative depletion with approximate 95\% asymptotic confidence intervals (dashed lines) for the base case assessment model.

Figure ES-5. Time series of estimated relative spawning potential ratio (1-SPR/1-
SPR $_{\text {Target }=0.50 \text {) }}$ for the base-case model (round points) with $\sim 95 \%$ intervals (dashed lines). Values of relative SPR above 1.0 (100% in the table above) reflect harvests in excess of the current overfishing proxy.

Figure ES-6. Phase plot of estimated relative (1-SPR) vs. relative spawning biomass for the base case model. The relative (1-SPR) is (1-SPR) divided by 0.5 (the SPR target). Relative depletion is the annual spawning biomass divided by the spawning biomass corresponding to 40% of the unfished spawning biomass. The red point indicates the year 2012.

Table ES-4. Recent trend in spawning potential ratio (SPR) and harvest rate.

Year	SPR (\%)	Harvest rate (proportion)	$\sim 95 \%$ confidence interval
2003	56%	0.025	$0.006-0.044$
2004	55%	0.026	$0.011-0.042$
2005	73%	0.013	$0.005-0.021$
2006	67%	0.017	$0.006-0.029$
2007	59%	0.024	$0.008-0.040$
2008	63%	0.020	$0.007-0.034$
2009	60%	0.022	$0.008-0.037$
2010	57%	0.025	$0.008-0.042$
2011	82%	0.008	$0.003-0.013$
2012	86%	0.006	$0.002-0.010$

Ecosystem considerations

Darkblotched rockfish is most abundant from off British Columbia to Central California. This is a slope species that occurs at depths between 25 and 600 m , which majority of fish inhabiting at depths between 100 and 400 meters. Darkblotched rockfish co-occurs with an assemblage of slope rockfish, including Pacific ocean perch (Sebastes alutus), splitnose rockfish (Sebastes diploproa), yellowmouth rockfish (Sebastes reedi), and sharpchin rockfish (Sebastes zacentrus). Pacific ocean perch and darkblotched rockfish are the most abundant members of that assemblage off the coasts of Oregon and Washington, but splitnose rockfish and darkblotched rockfish dominate off the northern coast of California. Adults typically are observed resting on mud near cobble or boulders. They feed primarily on large planktonic organisms such as krill, gammarid amphipods, copepods and salps, and less frequently on fishes and octopi. Young darkblotched are eaten by king salmon and albacore.

In this assessment, ecosystem considerations were not explicitly included in the analysis. This is primarily due to lack of relevant data and results of analyses (conducted elsewhere) that could contribute ecosystem-related quantitative information for the assessment.

Management performance

Darkblotched rockfish have historically been managed with bimonthly cumulative landings limit (a.k.a. "trip limits") as most of the catch came from the limited entry bottom trawl fishery. However, for the last two years, that allocation has been managed as a catch share fishery, using Individual Fishing Quotas (IFQ), where each permit holder has an annual quota. Darkblotched rockfish has had species-specific management guidelines since 2001. For the last 10 years, the total dead catch (as estimated in this assessment) exceeded the Annual Catch Limit (ACL) in 2003, 2004, 2009 and 2010. The total dead catch also exceeded the Overfishing Limit (OFL) in 2003 and 2004, but only by 4% and 2% respectively. Overall, total dead catch of darkblotched rockfish for the last decade has been only 57% of the sum of the OFLs and 81% of the ACLs.

Table ES-5. Recent trend in total catch and commercial landings (mt) relative to the management guidelines. Estimated total catch consists of commercial landings, plus the model-estimated discarded biomass.

Year	OFL (mt)	ACL (mt)	Commercial Landings (mt)	Estimated Total Catch (mt)
2003	205	172	80	212
2004	240	240	189	243
2005	269	269	98	129
2006	294	200	107	190
2007	456	290	144	279
2008	487	330	117	252
2009	437	285	138	293
2010	440	291	184	350
2011	508	298	117	120
2012	497	296	94	96

Unresolved problems and major uncertainties

Uncertainty in the model was explored though asymptotic variance and sensitivity analyses. Asymptotic confidence intervals were estimated within the model and reported throughout the assessment for key model parameters and management quantities. To explore uncertainty associated with alternative model configurations and evaluate the responsiveness of model outputs to changes in key model assumptions, a variety of sensitivity runs were performed, including increase and decrease of fishery removals, runs with different assumptions regarding life-history parameters, shape of selectivity curves, stock-recruitment parameters, and many others. The uncertainty regarding natural mortality, stock-recruit steepness and unfished recruitment level was also explored through likelihood profile analysis. Also, a retrospective analysis was conducted where the model was re-run after removing data from recent years.

A major source of uncertainty is related to main life history parameters, such as natural mortality and stock-recruit curve steepness. These quantities, which the model is unable to estimate reliably, are essential for understanding the dynamics of the stock. In the model, female natural mortality is fixed at the value estimated outside the model using other life history characteristics of the species, while male natural mortality is estimated within the model. Stock-recruit steepness is fixed at the value estimated outside the model using meta-analysis of species with similar life history characteristics.

Darkblotched rockfish age estimates, particularly from the early time period, have been a source of uncertainty since 2005. Since the 2005 assessment, and prior to this assessment, no age data generated prior to 2004 have been used due to concerns that criteria for estimating ages of darkblotched rockfish might have changed and that a bias may have existed in early age estimates compared to those made during and after 2004. In this assessment, instead of removing these data a prior, we conducted an ageing error analysis
to compare recent estimates of darkblotched ages with those conducted prior to 2004. This analysis generated little evidence for ageing bias prior to 2004. We found, however, that a relatively wide aging error exists for the age data, and that imprecision in early age estimates is larger than in recent ones. Our analysis confirmed that it is extremely challenging to estimate ages reliably for long-lived rockfish species, such as darkblotched rockfish, and uncertainty associated with age estimates continue to be an issue.

Historically, darkblotched rockfish landings have not been sampled at the discrete species level; therefore, time series of catch remained a source of uncertainty. Although significant progress has been made in reconstructing historical California and Oregon landings, the lack of early species composition data does not allow to account for a gradual shift of fishing effort towards deeper areas, which can cause the potential to overestimate the historical contribution of slope species (including darkblotched rockfish) to overall landings of the mixed-species market category (i.e. "unspecified rockfish"). Also, it is known that the domestic trawl fishery has discarded a portion of the catch at sea. Previous to 2002, when the West Coast Groundfish Observer Program was established, only one study exists (limited in time and space) that informs pre-2002 discarding practices of darkblotched rockfish.

Decision table

The base model estimate for 2013 spawning depletion is 36%. The primary axis of uncertainty about this estimate used in the decision table was based on female natural mortality. Alternative states of nature were characterized using both the likelihood profile and the prior distribution for female natural mortality. The choice to use both sources of information for this fixed parameter was motivated by the observation that the data showed strong evidence against extremely low values of natural mortality, but was relatively flat for large values. In the absence of a fully integrated posterior distribution, the prior distribution based on maximum age was used as a proxy for the upper end of the range. The low and high states of nature for the decision table were therefore based on female natural mortality values of 0.036 and 0.082 , both approximately half as likely as the value used in the base model (0.05). The lower value of natural mortality corresponded to a depletion estimate of 18%, while the higher value corresponded to 82%, illustrating the marked sensitivity of the assessment results to a poorly informed parameter.

Twelve-year forecasts for each state of nature were calculated based on removals at current rebuilding SPR of 64.9% for the base model. Twelve-year forecasts were also calculated based on removals at an SPR of 71.9% for the base model, as requested by the Groundfish Management Team (GMT). This lower catch stream that corresponds to SPR 71.9\% was used in the Decision Table of the 2011 darkblotched assessment. Finally, twelve-year forecasts for each state of nature were produced with future catches fixed at the 2014 ACL set for darkblotched rockfish.

Under the middle state of nature (which corresponds to the base model), the spawning output and depletion are projected to increase under all three considered catch streams, and reach the $\mathrm{SB}_{40 \%}$ target in 2015. Under the low state of nature, spawning output and
depletion are also projected to increase under all three catch streams considered, but will stay below the $\mathrm{SB}_{40 \%}$ target within the next 12 years. Under the middle state of nature, the spawning output remains above the 40% target level throughout the 12 -year projection period.

Research and data needs

The following research could improve the ability of future stock assessments to determine the current status and productivity of the darkblotched rockfish population:

1) The base model does not use commercial age composition data for years that lacked coast wide samples. The additional age data could provide information necessary for the model to estimate such parameters as natural mortality. Future research could ascertain whether additional otoliths exist for these years, and whether they could be aged using current ageing methods. Also, alternative fleet structures (with state specific fisheries) could be explored to take use of as much available age data as possible.
2) The base model uses newly available information of female maturity collected within the NWFSC shelf-slope survey. This new information includes data on mass atresia (a form of skipped spawning), not previously available for the assessment. At present, Stock Synthesis allows incorporation of this information only when maturity is expressed as a function of age. Effort should be devoted to expand maturity options in Stock Synthesis to allow expression of maturity information (with mass atresia) as a function of female length. Also, continued collection of maturity samples would allow future researchers to explore differences in maturity at age, either spatially or over time.
3) Additional research would be important to explore whether other life history parameters, such as growth and fecundity vary spatially or change over time as well. This information will help in defining spatial structure of future models.
4) Given that the population range extends north to the border with Canada, it is important that future research would evaluate the impact of not accounting for any Canadian portion of population abundance. Such an analysis would require evaluation of movement of darkblotched along the coast, which information is currently lacking.
5) Future research could also improve existing meta-analyses for natural mortality and steepness, which both contribute to the implied yield curve. Directions for improvements include (1) explaining variability between methods in natural mortality estimates, included in the Hamel natural mortality method and (2) developing a larger database of species for estimating steepness, perhaps by including species from other regions, e.g., Canada and Alaska.
6) Imprecision in the indices of abundance derived from survey sampling, due a low probability the species occurrence, is one of the sources of uncertainty in this
assessment. Future research could explore the utility of model-based index standardization techniques; in particular, those using spatial modeling approaches. Spatial models could potentially account for the component of sampling variance arising from the random allocation of sampling tows either in or outside of suitable habitat. Such models could potentially decrease residual variance and imprecision of the resultant indices of abundance.
7) Finally, we note that Markov chain Monte Carlo sampling using the Metropolis algorithm was unable to obtain a sufficient number of independent samples within a feasible time period. However, it had trouble primarily with a single parameter (variance inflation for a survey index). We therefore recommend to improve MCMC options in ADMB, perhaps by making necessary changes to the Hamiltonian MCMC option (i.e., by allowing samples to be thinned during running, and hence making longer MCMC chains feasible for the ADMB implementation of Hamiltonian sampling).

Table ES-6. Summary table of 12-year projections beginning in 2015 for alternate states of nature based on female natural mortality. Columns range over low, mid, and high state of nature, and rows range over different assumptions of catch levels.

			State of nature					
			LowFemale $M=0.036$		Base case Female M=0.05		High Female $M=0.082$	
Management decision	Year	$\begin{aligned} & \text { Catch } \\ & \text { (mt) } \end{aligned}$	Spawning output (million eggs)	Depletion	$\begin{array}{r} \text { Spawning } \\ \text { output } \\ \text { (million } \\ \text { eggs) } \end{array}$	Depletion	Spawning output (million eggs)	Depletion
Catch calculated using SPR of 71.9\% applied to the base model	2013	223	607	18\%	1,214	36\%	3,606	82\%
	2014	240	648	19\%	1,294	39\%	3,770	85\%
	2015	252	688	20\%	1,374	41\%	3,922	89\%
	2016	260	722	21\%	1,441	43\%	4,032	91\%
	2017	266	751	22\%	1,496	45\%	4,101	93\%
	2018	271	776	23\%	1,541	46\%	4,135	94\%
	2019	276	798	23\%	1,578	47\%	4,147	94\%
	2020	280	821	24\%	1,613	48\%	4,150	94\%
	2021	285	844	25\%	1,646	49\%	4,149	94\%
	2022	289	867	25\%	1,678	50\%	4,146	94\%
	2023	293	891	26\%	1,709	51\%	4,140	94\%
	2024	297	915	27\%	1,739	52\%	4,133	94\%
Catch calculated using current rebuilding SPR of 64.9\% applied to the base model	2013	302	607	18\%	1,214	36\%	3,606	82\%
	2014	323	641	19\%	1,288	38\%	3,764	85\%
	2015	339	674	20\%	1,360	41\%	3,909	88\%
	2016	347	701	20\%	1,420	42\%	4,011	91\%
	2017	353	722	21\%	1,467	44\%	4,073	92\%
	2018	358	738	21\%	1,504	45\%	4,101	93\%
	2019	363	752	22\%	1,533	46\%	4,106	93\%
	2020	368	766	22\%	1,560	46\%	4,102	93\%
	2021	372	780	23\%	1,586	47\%	4,096	93\%
	2022	377	796	23\%	1,611	48\%	4,087	93\%
	2023	381	811	24\%	1,635	49\%	4,076	92\%
	2024	385	826	24\%	1,657	49\%	4,064	92\%
2014 ACL catch assumed for years between 2015 and 2024	2013	317	607	18\%	1,214	36\%	3,606	82\%
	2014	330	640	19\%	1,287	38\%	3,762	85\%
	2015	330	672	20\%	1,358	40\%	3,907	88\%
	2016	330	699	20\%	1,418	42\%	4,010	91\%
	2017	330	722	21\%	1,467	44\%	4,073	92\%
	2018	330	740	22\%	1,506	45\%	4,103	93\%
	2019	330	756	22\%	1,538	46\%	4,111	93\%
	2020	330	773	23\%	1,567	47\%	4,110	93\%
	2021	330	791	23\%	1,597	48\%	4,106	93\%
	2022	330	811	24\%	1,626	48\%	4,101	93\%
	2023	330	830	24\%	1,654	49\%	4,094	93\%
	2024	330	850	25\%	1,681	50\%	4,085	92\%

Table ES-7. Summary of recent trends in estimated darkblotched rockfish exploitation and stock level from the assessment model.

	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Commercial landings (mt)	80	189	98	107	144	117	138	184	117	94	NA
Estimated Total catch (mt)	212	243	129	190	279	252	293	350	120	96	NA
OFL (mt)	205	240	269	294	456	487	437	440	508	497	541
ACL (mt)	172	240	269	200	290	330	285	291	298	296	317
SPR	56\%	55\%	73\%	67\%	59\%	63\%	60\%	57\%	82\%	86\%	NA
Exploitation rate (catch/ age 1+ biomass) Age 1+ biomass (mt)	0.025 8,477	0.026 9,301	0.013 10,061	0.017 10,924	0.024 11,739	0.020 12,453	0.022 13,211	0.025 13,977	0.008 14,732	0.006 15,691	NA 16,610
Spawning output (million eggs) ~95\% Confidence Interval	536 $220-851$	583 $234-932$	648 $253-1044$	738 $286-1189$	818 $312-1324$	879 $325-1433$	937 $338-1536$	996 $349-1642$	1,054 $357-1751$	1,131 $384-1879$	1,214 $414-2013$
Recruitment ~95\% Confidence Interval	1,797 $617-2,977$	$\begin{gathered} \hline 3,265 \\ 1,180- \\ 5,350 \end{gathered}$	$\begin{gathered} \hline 3,004 \\ 1,042- \\ 4,966 \end{gathered}$	2,061 $650-3,471$	1,434 $383-2,486$	$\begin{gathered} \hline 6,674 \\ 2,159- \\ 11,190 \end{gathered}$	$\begin{gathered} \hline 1,216 \\ 206- \\ 2,226 \end{gathered}$	1,800 $220-3,380$	2,858 $0-6,154$	870 $0-2,117$	2,254 $0-5,691$
Depletion (\%) ~95\% Confidence Interval	16% $8-24 \%$	17% $9-26 \%$	19% $9-29 \%$	22% $11-33 \%$	24% $12-37 \%$	26% $12-40 \%$	28% $13-43 \%$	29% $13-46 \%$	31% $14-49 \%$	33% $15-53 \%$	36% $16-56 \%$

Table ES-8. Projection of potential OFL, ABC, estimated summary biomass (age-1 and older), spawning output, and depletion for the assessment model based on the 40:10 correction to the $F_{50 \%}$ overfishing limit/target. The OFL and ABC values for 2013 and 2014 have been adopted by the Council based on the previous assessment, and are not based on the results of this assessment. Projections assume total catch of 317 and 330 mt (the Council's adopted ACLs) for 2013 and 2014, respectively.

Year	Predicted OFL (mt)	ABC (mt)	Summary biomass (mt)	Spawning output (million eggs)	Depletion $(\%)$
2013	541	517	16,610	1,214	36%
2014	553	529	17,219	1,287	38%
2015	574	563	17,712	1,358	40%
2016	580	570	17,894	1,399	42%
2017	583	573	18,017	1,427	42%
2018	585	574	18,103	1,444	43%
2019	586	575	18,172	1,454	43%
2020	587	576	18,230	1,462	44%
2021	588	578	18,285	1,469	44%
2022	590	579	18,336	1,477	44%
2023	591	581	18,387	1,483	44%
2024	593	582	18,437	1,490	44%

Figure ES-7. Equilibrium yield curve (derived from reference point values reported in Table ES-5) for the base case model. Values are based on 2012 fishery selectivity and distribution with steepness fixed at 0.779 . The depletion is relative to unfished spawning biomass.

1 Introduction

1.1 Basic Information

Darkblotched rockfish (Sebastes crameri) are found in the Northeast Pacific Ocean from the southeastern Bering Sea and Aleutian Islands to near Santa Catalina Island in southern California. This species is most abundant from off British Columbia to Central California. Darkblotched rockfish occur at depths between 25 m and 900 m (Love et al., 2002), with the majority of fish inhabiting depths between 100 m and 600 m .

Commercially important concentrations are found from the Canadian border through Northern California, on or near the bottom, at depths between 183 m and 366 m .

There are no clear stock delineations for darkblotched rockfish in the waters of the United States. There are no distinct breaks in the fishery landings and catch distributions (Figure 1). Survey catches exhibit a continuous distribution of fish over most of the species range (Figure 2), with areas of higher abundance present in the Columbia, Eureka and Monterey International North Pacific Fisheries Commission (INPFC) areas.

Microsatellite analyses of spatial genetic structure in darkblotched rockfish (GomezUchida and Banks, 2005) suggested a possibility of genetic changes in the stock along the coast, but the level of genetic differentiation was found to be small and no distinct breaks in the stock were identified. Analysis of darkblotched rockfish length at age data collected within the NMFS Northwest Fisheries Science Center shelf-slope survey indicated a gradual cline in growth parameters, with growth coefficient decreasing with higher latitude, but again no district growth morphs and clear boundaries between them were identified.

For the purpose of this assessment, the species is treated as a single stock from the U.S.Canadian border in the north to the U.S.-Mexican border in the south, due to the lack of biological and genetic data supporting the presence of multiple stocks. A map depicting the spatial scope of the assessment is shown in Figure 3.

1.2 Life History

Darkblotched rockfish are among the longer living rockfish; the data used in this assessment includes individuals that have been aged to be 98 years old. In the literature, the maximum darkblotched rockfish age is reported to be 105 years (Love et al., 2002). As with many other Sebastes species, darkblotched rockfish exhibit sexually dimorphic growth; females reach larger sizes than males, while males attain maximum length earlier than females (Love et al., 2002; Nichol, 1990; Rogers et al., 2000).

There are indications that darkblotched rockfish life history parameters, particularly those related growth, might be varying with latitude. Analysis conducted within this assessment detected continues gradient along the coast in growth parameters, which is common for Sebastes species on the West Coast of the United States, but did not identify specific areas with different growth. It was also suggested that maturity schedule of darkblotched rockfish may vary with latitude. Maturity parameters of fish collected in waters off California (Echeverria, 1987; Phillips, 1964) were found to be smaller than those of fish
collected off Oregon (Nichol, 1990). However, Nichol (1990) argued that these differences are rather attributed to different criteria used to determine maturity in two studies. Also, Westrheim (1975) determined that the size at 50% maturity for darkblotched rockfish decreased, rather than increased, with increasing latitude from Oregon to Alaska. Size-at-age parameters reported in literature also vary widely. For instance, substantially smaller size-at-age was estimated for darkblotched rockfish off British Columbia, Canada, than for fish off Oregon (Hamel, 2008).

Darkblotched rockfish mate from August to December, eggs are fertilized from October through March, and larvae are released from November through April (Love et al., 2002). Fecundity increases with fish size, and all larvae released in one batch. Older larvae and pelagic juvenile darkblotched rockfish are found closer to the surface than many other rockfish species. Pelagic juvenile settle at 4 to 6 cm in length in about 55 to 200 m (Love et al., 2002). As many other Sebastes, this species exhibits ontogenetic movement, with fish migrating to deeper waters as they mature and increase in size and age (Lenarz, 1993; Nichol, 1990).

1.3 Ecosystem Considerations

In this assessment, ecosystem considerations were not explicitly included in the analysis. This is primarily due to lack of relevant data and results of analyses (conducted elsewhere) that could contribute ecosystem-related quantitative information for the assessment. Here, we briefly overview habitat preferences of the species and its ecosystem role and trophic relationships.

Darkblotched rockfish is a slope species. This species co-occurs with an assemblage of slope rockfish, including Pacific ocean perch (Sebastes alutus), splitnose rockfish (Sebastes diploproa), yellowmouth rockfish (Sebastes reedi), and sharpchin rockfish (Sebastes zacentrus) (Rogers and Pikitch, 1992; Rogers, 1994). Pacific ocean perch and darkblotched rockfish are the most abundant members of that assemblage off the coasts of Oregon and Washington, but splitnose rockfish and darkblotched rockfish dominate off the northern coast of California.

Adults typically are observed resting on mud near cobble or boulders (Love et al., 2002). Demersal juveniles are often found perched on the highest bit of structure in the benthic habitat. Juveniles occasionally are seen around the bottoms of deepwater oil platforms. Darkblotched rockfish feed primarily in midwater on large planktonic organisms such as krill, gammarid amphipods, copepods and salps. Occasionally, darkblotched rockfish take fishes and octopi. Young darkblotched are eaten by king salmon and albacore (Love et al., 2002).

1.4 Fishery Information and Summary of Management History

Darkblotched rockfish has always been caught primarily with commercial trawl gear, as part of a complex of slope rockfish, which includes Pacific ocean perch (Sebastes alutus), splitnose rockfish (Sebastes diploproa), yellowmouth rockfish (Sebastes reedi), and sharpchin rockfish (Sebastes zacentrus) (Rogers and Pikitch, 1992; Rogers, 1994). Over the years, catches with non-trawl gear comprised less than 2% of the total coastwide
domestic catch (Figure 4). This species has not been taken recreationally as evident from RecFIN (www.recfin.com), a regional source of recreational data managed by the Pacific States Marine Fisheries Commission (PSMFC).

The rockfish fishery off the U.S. Pacific coast first developed off California in the late 19th century. At that time, most rockfish were taken by hook and line, with a minor amount taken by gillnets (Love et al., 2002). Until the 1940s, catches of rockfish were very small because almost all fishing efforts were directed toward the various salmon species and Pacific halibut.

The rockfish fishery was established in the early 1940s, when the United States became involved in World War II and wartime shortage of red meat created an increased demand for other sources of protein (Alverson et al., 1964; Harry and Morgan, 1961). Also, in 1943, the new balloon trawls were introduced. These balloon trawls were lighter than the old paranzellas and otter trawl nets. They were built to fish over low-lying rocky reefs and proved to be successful in taking rockfish (Love et al., 2002). With this new technology and increased demands during the World War II, the catch of rockfish increased in the mid-1940s. The increased demand caused the fishery to shift toward previously unexploited areas, including those preferred by darkblotched rockfish. The California fishery moved north, to the Eureka INPFC area; and both the California and Oregon fisheries had moved deeper into the slope area, those greater than 100 fm (183 m) (Harry and Morgan, 1961; Scofield, 1948) . This is when darkblotched rockfish catch first became significant (Figure 5).

Domestic demand for rockfish declined after World War II and rockfish catches dropped (Cleaver, 1951), but in the early 1950s, the Pacific ocean perch fishery developed in Oregon and Washington (Love et al., 2002), and landings of darkblotched rockfish, which co-occur with Pacific ocean perch, also increased. Prior to 1965, Pacific ocean perch and species incidentally caught in the Pacific ocean perch fishery off of the U. S. West Coast were harvested almost entirely by U. S. and Canadian vessels. Most of these vessels were of multi-purpose design and used in other fisheries, such as salmon and herring, when not engaged in the groundfish fishery. Generally under 200 gross tons and less than 33 m in length, these vessels had very little at-sea processing capabilities. These characteristics, for the most part, restricted the distance these vessels could fish from home ports, and limited the size of their landings.

In the mid-1960s, foreign trawl fleets from the former Soviet Union, Japan, Poland, Bulgaria and East Germany came to the Northeast Pacific Ocean to target large aggregations of Pacific ocean perch over high-relief rocky outcrops (Love et al., 2002). Using very large vessels (often called factory trawlers), foreign fleets, particularly the Soviet, had the capacity to operate independently, by processing and freezing their own catch. Support vessels, such as refrigerated transports, oil tankers, and supply ships permitted these large stern trawlers to operate at sea for extended periods of time. Foreign fleets were known not to discard fish (Rogers, 2003).

Foreign catch was particularly significant between 1966 and 1968 (Figure 5). Within a short period of time, catches of Pacific ocean perch and rockfish co-occurring with Pacific ocean perch (including darkblotched rockfish) skyrocketed. However, regulations increasingly reduced catch of slope rockfish by foreign fleets. Catches declined rapidly, and the fishery proceeded with more moderate landings (Figure 5). By the late-1960s, the Soviet fleet had more or less abandoned the fishery, although the Japanese fleet continued fishing for some time. In 1976, on-bottom trawling by foreign fleets was prohibited, and the depleted Pacific ocean perch fishery became largely domestic (Love et al., 2002).

A very small amount of darkblotched rockfish has also been taken as bycatch in the atsea Pacific hake fishery (Figure 5). The at-sea Pacific hake fishery dates back to 1960s when foreign vessels participated. In the 1980s, the fishery evolved into a joint venture with U.S. catcher vessels delivering to foreign processing vessels. By 1991, foreign vessels were no longer allowed to fish in U.S. waters, the pacific hake fishery became completely domesticated, allowing only U.S. vessels to catch and process fish.

After the Pacific ocean perch fishery ended, domestic landings of rockfish rose again from the late-1970s. The fishery targeting slope rockfish at that time operated primarily between $244 \mathrm{~m}-515 \mathrm{~m}$ (134 fm and 282 fm) and used bottom trawl gear utilizing rollers (roller gear) with 3.5 inch cod end mesh, which is smaller than the mesh size used in the mid-1970s (Rogers, 2005). In 1992 and 1995, minimum codend mesh size changed again, increasing from 3 to 4.5 inches through regulatory changes (Appendix 1).

Prior to 1977, darkblotched rockfish in the waters off the United States were managed by the individual states (within the three miles). With implementation of the MagnusonStevens Fishery Conservation and Management Act (MFCMA) in 1976, primary responsibility for management of the groundfish stocks off Washington, Oregon and California shifted from the states to the Pacific Fishery Management Council (PFMC).

Limits on domestic rockfish catch were first instituted in 1983, with darkblotched rockfish managed as part of a group of around 50 species, designated as the Sebastes complex (Hamel, 2008). Commercial vessels were not required to separate most rockfish catches into individual species, and port biologists in each state routinely have sampled mixed-species market categories, such as the Sebastes complex, to determine the actual species composition of these mixed-species categories. In 1994, the Sebastes complex was divided into northern and southern areas, for annual harvest specifications and setting bimonthly cumulative landings limits (a.k.a. "trip limits"). In 1996, an assessment of the major species in the Sebastes complex was conducted (Rogers et al., 1996). This assessment led to a species-specific Overfishing Limit (OFL) (then called Acceptable Biological Catch (ABC)) for darkblotched rockfish in 1997.

The stock assessment conducted by Rogers et al. (2000) found the darkblotched rockfish stock to be depleted and an overfished determination was made. In 2001, darkblotched rockfish was given an individual ABC (then Optimum Yield (OY)). However, landed catch of darkblotched rockfish continued to be managed by trip limits established for the northern and southern minor slope rockfish complexes. Since 2000, when stock was
declared overfished, landings of darkblotched rockfish decreased substantially, primarily due to management regulations instituted for the species.

In 2002, Rockfish Conservation Areas (RCAs), which are large marine areas closed to commercial fishing, were implemented by the PFMC as a measure to reduce bycatch of overfished rockfish species. Specific boundaries for the RCAs have varied among bimonthly periods, years and areas and there are a number of latitudinal differences in the extent of the current RCAs. The description of exact boundaries of the RCAs and how they change over time are available upon request. Trawl gear that is used shoreward of the RCAs is required to have small footropes (<8 " diameter), which increases the risk of gear loss in rocky areas. Reductions in trip limits for shelf rockfish species have also reduced incentives to fish in rocky areas shoreward of the RCA. Since 2005, vessels using trawl gear shoreward of the RCA north of $40^{\circ} 10^{\prime} \mathrm{N}$ latitude have also been required to use nets that are designed to be more selective for flatfish. A summary of the major management shifts on the West Coast of the United States related to groundfish species through 2005 (prepared by Daniel Erickson of PFMC’ Groundfish Management team (GMT)) is provided in Appendix 1.

For the last two years (2011 and 2012), the shorebased trawl allocation (including nonhake groundfish trawl, and shorebased hake trips) has been managed as a catch share fishery, using Individual Fishing Quotas (IFQ), where each permit holder has an annual quota. Under this system, discard of darkblotched rockfish, and many other species has decreased dramatically, due to individual accountability; both landed and discarded fish count towards each fisher's annual quota.

1.5 Management Performance

Table 1 and Figure 6 present a summary of management performance for darkblotched rockfish over the last 10 years, which include a comparison of darkblotched rockfish Overfishing Limits (OFLs), Annual Catch Limits (ACLs), landings, and catch (i.e., landings plus discard). Between 2003 and 2012, the total dead catch (as estimated in this assessment) exceeded the ACLs in 2003, 2004, 2009 and 2010. The total dead catch also exceeded the OFLs in 2003 and 2004, but only by 4% and 2% respectively. Overall, total dead catch of darkblotched rockfish for the last decade has been only 57% of the sum of the OFLs and 81% of the ACLs.

1.6 Fisheries off Canada, Alaska, and/or Mexico

Darkblotched rockfish have a widespread distribution through the Canadian West Coast Exclusive Economic Zone; however, the highest concentrations occur along the shelf northwest of Vancouver Island and in Moresby Gully southeast of the Queen Charlotte Islands. Similarly to the Unites States, the Canadian commercial trawl fleet captures this species in slope rockfish assemblage and as a bycatch to the important Pacific ocean perch fishery, but in much lower numbers than those in the Unites States. A formal stock assessment of darkblotched rockfish has not been conducted in Canada. However, a review of darkblotched rockfish biology, distribution, and abundance trends along the Pacific coast of Canada was completed by Haigh and Starr (2008). In this review Haigh and Starr (2008) use values for natural mortality and individual growth drawn from the
contemporary U.S. assessments. This review was not intended to advise fisheries managers on harvest policy and, therefore did not yield a conclusion on a status and longterm trends of the stock. In the future this review could serve as a basis for a stock assessment.

In the Gulf of Alaska and the Bering Sea-Aleutian Islands, darkblotched rockfish are rare but still occur in fishery catches. It is managed within other rockfish complex, with management measures set based on area-swept biomass estimates and natural mortality assumptions. The range of darkblotched rockfish does not extend beyond southern California; therefore, there is no information about whether a fishery in Mexico exists.

2 Assessment

2.1 Data

The darkblotched rockfish data used in the assessment are summarized Figure 7. These data include both fishery-dependent and fishery-independent sources.

2.1.1 Fishery-dependent data

The fishery removals in the assessment are divided among two fleets, which include domestic trawl fishery and bycatch in the foreign Pacific ocean perch (POP) and at-sea Pacific hake fisheries. The domestic trawl fishery has historically reported landed catch only, even though a portion of the darkblotched catch was discarded at sea. The foreign POP fishery, on the other hand, was known not to discard fish based on fish size or species, while the at-sea hake fishery reports total catch, which includes both retained and discarded fish. To account for differences in discarding practices and catch reporting, and most importantly avoid inflating darkblotched removals in POP and at-sea hake fisheries, the domestic trawl fleet and bycatch in foreign POP and at-sea hake fisheries were separated. The discarded portion of the domestic trawl fleet was estimated within the model based on data collected by the West Coast Groundfish Observer Program (WCGOP) and historical discard data provided in the Pikitch study (Pikitch et al., 1988) (both described in details below).

Landings of darkblotched rockfish were reconstructed back to 1916, and the assessment assumes a zero catch and equilibrium unfished biomass in 1915. The reconstructed time series of darkblotched rockfish landings by the domestic trawl fishery and removals by bycatch fleet are presented in Figure 5 and Table 2. Figure 1 shows the spatial distribution of darkblotched rockfish catch, as observed by the WCGOP between 2002 and 2008.

2.1.1.1 Domestic commercial landings

Estimates of recent commercial landings of darkblotched rockfish (between 1981 and 2012) were obtained from the Pacific Fisheries Information Network (PacFIN), a regional fisheries database that manages fishery-dependent information in cooperation with west coast state agencies and NOAA Fisheries (www.pacfin.com). Landings data were extracted by gear type on March 14, 2013 and then combined into the fishing fleets used in the assessment.

Time series of historical (pre-1981) landings were reconstructed by gear group (trawl and non-trawl) for each state separately and then combined to produce annual coastwide estimates for domestic trawl fleet. The methods used to reconstruct historical landings for each state are described below.

2.1.1.1.1 Washington

The records of rockfish landings in Washington go back to 1935 (Hongskul, 1975; Tagart and Kimura, 1982). Historically, rockfish landings in Washington were reported on fish tickets in two mixed species complexes "Pacific Ocean Perch" and "Other Rockfish" (Tagart and Kimura, 1982). In 1966, the Washington Department of Fish and Wildlife (WDFW) initiated a sampling program to estimate landings of each rockfish species within these mixed species complexes. Tagart and Kimura (1982) described methodology employed in calculating rockfish landings by species based on data collected by the WDFW sampling program, and Tagart (1985) provided time series of darkblotched rockfish landings by year between 1963 and 1980. The rockfish landings for the earlier time period (1935-1962) were compiled by Hongskul (1975), but no species-specific catches were estimated. To derive estimates of darkblotched rockfish from rockfish landings between 1935 and 1962, we first estimated the proportion of darkblotched rockfish in 1963-1967 rockfish landings, the earliest five years of the Tagart data (Tagart, 1985), and then applied this proportion to the 1935-1962 Hongskul (1975) landings by year. The time series of Washington landings of darkblocthed rockfish as used in this assessemnt are presented in Table 2.

2.1.1.1.2 Oregon

Oregon records of darkblotched rockfish landings go back to late 1930s. Similar to Washington, darkblotched rockfish were historically landed in Oregon in mixed species market categories, primarily within "Pacific Ocean Perch" and "Unspecified Rockfish". A small portion of rockfish in Oregon between 1942 and the early 1980s were also landed in "Animal Food" category (also called "Mink Food" or "Miscellaneous" by some sources). This portion of catch went to feed mink for the fur trade. Mink food consisted mainly of red meat until World War II, when horsemeat became increasingly difficult and expensive to obtain. During this period, there was an abundance of fillet carcasses, which were used as a protein source for mink. When the demand exceeded the supply, whole fish were specifically targeted to supplement the carcasses(Niska, 1969).

A time series of Oregon historical landings of darkblotched rockfish through 1986 was provided by the Oregon Department of Fish and Wildlife (ODFW), which in collaboration with the National Marine Fisheries Service (NMFS) Northwest Fisheries Science Center (NWFSC), conducted a reconstruction of historical groundfish landings in Oregon (Karnowski et al., 2012). Karnowski et al. (2012) provide a detailed description of methods used in calculating rockfish landings by species. A variety of data sources were used to reconstruct historical landings of rockfish market categories, including Oregon Department of Fish and Wildlife's Pounds and Value reports derived from the Oregon fish ticket line data (1969-1986), Fisheries Statistics of the United States (19271977), Fisheries statistics of Oregon (Cleaver, 1951; Smith, 1956), Reports of the

Technical Sub-Committee of the International Trawl Fishery Committee (now the Canada-U.S. Groundfish Committee) (1942-1975) and many others.

To inform species compositions of rockfish within different market categories, the ODFW has routinely sampled species compositions of multi-species rockfish categories from commercial bottom trawl landings since 1963. Rockfish landings by species estimated based on data collected by ODFW sampling program have been summarized in several ODFW reports, including (Barss and Niska, 1978; Douglas, 1998; Niska, 1976). The latter publication by Douglas (1998) was an expansion and improvement on earlier publications by (Niska, 1976) and (Barss and Niska, 1978). These sources were also used by Karnowski et al. (2012) in reconstructing historical landings of darkblotched rockfish in Oregon. The reconstructed landings of darkblotched rockfish in Oregon are presented in Table 2.

2.1.1.1.3 California

A time series of California landings of darkblotched rockfish during the most recent "historical" period (between 1969 and 1980) were available from the California Cooperative Groundfish Survey (CalCOM) database.

Earlier landing records (between 1916 and 1968) were reconstructed by the NMFS's Southwest Fisheries Science Center (SWFSC) (Ralston et al., 2010). These reconstructed landings, in addition to apportioning catches to trawl and non-trawl gear included a portion assigned to unknown gear type. To assign unknown gear type landings to trawl and non-trawl catches, we calculated the proportion of trawl and non-trawl landings within landings assigned to trawl and non-trawl gear by year between 1916 and 1968, and applied these proportions to unknown gear type landings by years. The reconstructed landings of darkblotched rockfish in California are presented in Table 2.

2.1.1.2 Discard

There are three main sources of rockfish discard information on the West Coast of the United States. Since 2002, the WCGOP has collected bycatch and discard information on board fishing vessels in the trawl and fixed gear fleets along the entire coast, and produced discard ratio and total fishing mortality estimates for all species observed. The WCGOP was implemented in 2001 and began with gathering data for the limited entry trawl and fixed gear fleets. Observer coverage has expanded to include the California halibut trawl, the nearshore fixed gear and pink shrimp trawl fisheries. Since 2011, darkblotched rockfish was harvested with a catch share fishery, using Individual Fishing Quotas (IFQ), where each permit holder has an annual quota. The WCGOP provides 100% at-sea observer monitoring of catch for this new, catch share based IFQ fishery.

Prior to 2002, there were two studies of bycatch and discard in the trawl fishery, including the Enhanced Data Collection Project (EDCP) and the Pikitch study (Pikitch et al., 1988). The EDCP administered by the ODFW collected data on bycatch and discard of groundfish species off the Oregon coast from late 1995 to early 1999 (Sampson, pers.com.). The project had limited spatial coverage (Oregon waters only) and due to time constraints, the observers only recorded discarded catch for darkblotched rockfish.

Retained catch of darkblotched rockfish was recorded in the logbooks and fish tickets, but only as part of a mixed-species group of rockfish, which prevented calculation of the species-specific discard ratios for darkblotched rockfish. For this reason, the EDCP data were not included in the assessment.

The Pikitch study was conducted between 1985 and 1987. The northern and southern boundaries of the study were $48^{\circ} 42^{\prime}$ and $42^{\circ} 60^{\prime}$ North latitude respectively, which is primarily within the Columbia INPFC area (Pikitch et al., 1988; Rogers and Pikitch, 1992). Participation in the study was voluntary and included vessels using bottom, midwater and shrimp trawl gears. Observers of normal fishing operations on commercial fishing vessels collected the data, estimated the total weight of the catch by tow and recorded the weight of each species retained or discarded in the sample.

The WCGOP provided estimates of the discard ratios of darkblotched rockfish for the period between 2002 and 2011. The WCGOP data are collected by gear type, fishery (e.g., open access, limited entry) and species/management units. The discard ratios were computed as the total estimated discarded weight (in pounds) on observed trips divided by the estimated total catch (discarded and retained). To aggregate these ratios into the fleet modeled in this assessment, each state, fishery and gear combination was catchweighted by the total estimated catch (discarded and retained weight). Thus, the discard rates used for each fleet represent the weighted estimates from each contributing segment within that fleet. Uncertainty in these values was quantified via bootstrapping the individual observations and then aggregating to the total estimate, providing a distribution of the discard rate. From this distribution a standard error associated with year specific discard ratio estimate was provided.

The estimates of discard ratios of darkblotched rockfish for 2000 and 2001 were retained from the previous assessments (Hamel, 2008; Rogers, 2005). They were originally computed using information from fish ticket, species composition samples, logbook, and observer data. Discard ratios for 1985 and 1987 were estimated from observations of retained and discarded catch collected in the Pikitch study following methods used in previous assessments (Hamel, 2008; Rogers, 2005). In previous assessment, however, the entire Pikicth study dataset was combined to estimate a single discard ratio, while in this assessment year specific discard ratios were calculated for 1985, 1986 and 1987.

2.1.1.3 Bycatch in the foreign POP fishery

As described in the Introduction, between mid-1960s and mid-1970s, foreign trawl fleets from the former Soviet Union, Japan, Poland, Bulgaria and East Germany targeted aggregations of Pacific ocean perch in the Northeast Pacific Ocean, in the waters off the U.S. West Coast (Love et al., 2002). Rogers (2003) estimated removals of POP and other species caught within this foreign POP fishery, including removals of darkblotched rockfish. In the assessment, we used estimates of darkblotched bycatch in the foreign POP fishery between 1966 and 1976 as estimated by Rogers (2003).

2.1.1.4 Bycatch in the at-sea Pacific hake fishery

As also described in the the Introduction, small amounts of darkblotched rockfish are also incidentally caught in in the Pacific hake fishery. The At-Sea Hake Observer Program (A-SHOP) monitors the at-sea hake processing vessels and collects total catch and bycatch data. Since the 1970s observers were deployed onto foreign fishing vessels that were catching Pacific hake. After 1991, observers continued to be deployed aboard U.S. flagged catcher processor and mothership vessels.

The annual amounts of darkblotched rockfish bycatch in the at-sea hake fishery, collected by A-SHOP, have been obtained from the North Pacific Database Program (NORPAC). Since 1991, virtually 100% of hauls in the at-sea hake fishery have been sampled for catch and species composition, and the total catch (retained and discarded) has been estimated for both targeted and bycatch species for each haul. To derive the total amount of darkblotched rockfish bycatch by year, we simply summed the estimated catch in every haul within a year. Prior to 1991 (time of foreign fishery and joint venture), not every haul was sampled. For these years, NORPAC provided an expansion factor (one for each year), which is a ratio of total hauls to sampled hauls. These year-specific expansion factors were used to estimate the total amount of darkblotched rockfish caught by multiplying the amount of total catch in sampled hauls by the expansion factor. The removals of darkblotched in the at-sea hake fishery between 1976 and 2012 are presented in Table 2 and Figure 4.

2.1.1.5 Fishery biological data

Biological information on domestic commercial landings was obtained from PacFIN (date of data extraction: March 14, 2013) and on commercial discard from the WCGOP and the Pikitch study. The fishery biological data included sex, length and age of individual fish (amount of data available varied by source, year and state). These biological data were used to generate length and age frequency distributions by sex (when possible), which were then used in the assessment to describe selectivity and retention of the domestic trawl fleet. The summary of sampling efforts, which include number of sampled trips, hauls (when available) and fish by source, year and state is provided in Table 3 and Table 4. The WCGOP also provided average weight for discarded fish. No biological information was available on darkblotched removals in foreign POP fishery. Biological data were available from at-sea hake fishery, however, given that at-sea hake fishery operates in the midwater (not the major habitat for darkblotched) and darkblotched bycatch represents tiny amount of overall darkblotched removals (Figure 4), these data were not used in the assessment, since the model interpreted the data as representative of the entire stock, and iterative tuning of the composition data resulted in them receiving implausibly high weight (e.g., at-sea-hake bycatch having equal weight to the NWFSC shelf-slope survey compositional data).

2.1.1.5.1 Length composition data

Length composition data from commercial fisheries were compiled into 30 length bins, ranging from 4 to 62 cm . Most of the length data from PacFIN were reported for females and males separately; therefore length frequency distributions of darkblotched rockfish in commercial landings were generated by year and sex. The number of fish sampled by
port samplers from different trips has not been proportional to the amount of landed catch in these trips. Sampling effort also has varied among states. To account for nonproportional sampling of darkblotched rockfish among trips and states, and to generate length frequency distributions that would be more representative of coastwide species landings, the observed length composition data were expanded using the following algorithm:

1. Length composition data were acquired at the trip level by year, state and sex;
2. For each trip, raw length observations were scaled up to represent darkblotched rockfish landings for the entire trip:
a. An expansion factor was calculated by dividing the total weight of trip landings by the total weight of darkblotched rockfish sampled for length within the same trip;
b. The observed raw length composition data within each trip were multiplied by the expansion factor and then summed up by state.
3. The expanded and summed lengths in each state were then expanded again to account for differences in species landings among states:
a. The expansion factor was computed by dividing the total weight of state landings by the total weight of organisms sampled for length within this state;
b. The length frequency distributions for each state (from step 2 of this algorithm) were multiplied by the expansion factor (from step 3.a) and then summed up to determine the coastwide sex-specific length frequency distributions by year.

We only used randomly collected samples. The coastwide length frequency distributions of darkblotched rockfish (generated as described above) landed in the domestic trawl fishery by year and sex are shown in Figure 8 and Figure 9.

Length frequencies distributions were developed for the period between 1977 and 2012. Length distributions for 1977 and 1978, however, were not use in the assessment as those distributions were substantially different from distributions in the other years. More probably, 1977 and 1978 length data mainly represented catches in midwater trawl fishery targeting widow rockfish, the dominant rockfish fishery in the late-1970s on the U.S. West Coast. Landings of that period, however, were not distinguished between bottom and midwater trawl; therefore, we were unable to confirm our assumption regarding the reason for observed difference.

Length-frequency distributions of darkblotched rockfish that were discarded at sea were obtained from the WCGOP for the period between 2002 and 2011, and from the Pikitch study for the year of 1986. The discard length composition data were analyzed using a weighting method consistent with that applied to the port samples of landed catch described above. Length frequency distributions of discarded fish, however, were developed for both sexes combined, since the vast majority of data did now have sex information associated with length measurements. The length frequency distributions of darkblotched rockfish discarded at sea by year are shown in Figure 10.

The initial input sample sizes for length frequency distributions of darkblotched landings by year were calculated as a function of the number of trips and number of fish sampled using the method developed by Stewart and Miller (pers. com.):

$$
\begin{array}{ll}
N_{\text {input }}=N_{\text {trips }}+0.138 N_{\text {fish }} & \text { when } \frac{N_{\text {fish }}}{N_{\text {trips }}}<44 \\
N_{\text {input }}=7.06 N_{\text {trips }} & \text { when } \frac{N_{\text {fish }}}{N_{\text {trips }}} \geq 44
\end{array}
$$

The method was developed based on analysis of the input and model-derived effective sample sizes from west coast groundfish stock assessments. A step-wise linear regression was used to estimate the increase in effective sample size per sample based on fish-persample and the maximum effective sample size for large numbers of individual fish.

2.1.1.5.2 Age composition data

Age composition data from commercial fisheries were compiled into 36 age bins, ranging from age 0 to age 35 fish. The amount of age data sampled from commercial landings varied among state (Table 4). In the assessment, we used data from only those years when age estimates were available from all three states (2002-2008) to account for gradient in length-at-age parameters along the coast observed. Age data on discarded fish were available from the WCGOP for 2004 and 2005.

The age data were used to derive marginal age compositions using the same weighting methods as used for the length frequency distributions. The marginal composition approach was preferred over the conditional age-at-length compositions (used for fisheryindependent data) because the commercial fishery often operates over a more protracted season than the surveys (making age-at-length less stationary during a single year) and in order to speed the computation time of model runs. The marginal age compositions for commercial landings and discards used in the assessment are presented in Figure 11, Figure 12 and Figure 13.

In two previous full assessment of darkblotched rockfish (Rogers 2005, Hamel 2007), only age data aged in 2004 and later were used, as a way to deal with uncertainty in ageing (Rogers 2005). The concern was that criteria for estimating ages of darkblotched rockfish might have changed (Hamel 2007) and that a bias may have existed in "early" age data compared to those generated in 2004 and later (Rogers 2005). We re-evaluated all the age data available for darkblotched rockfish and, based on the communication with age readers involved in ageing of darkblotched rockfish over the years (McDonald, Kamikawa, Menkel, pers. com), established that no changes were made in ageing criteria for this species. We also explored a presence of potential bias in "early" age data by comparing double reads made by the same age reader in the "early" and "late" periods and found little support for "early" age data being biased relative to "late" age estimates or having different imprecision.

Since 2005, darkblotched rockfish age structures (otoliths) were read by a single reader (Reader 1) from the Ageing Laboratory in the Hatfield Marine Science Center in Newport (Oregon) using the break and burn method, with few other readers producing double-reads of the same age structures. Prior to 2005, several age readers were involved in ageing darkblotched rockfish, who use the same method (break and burn) and same criteria to estimate ages from darkblotched rockfish otoliths as the current age reader for this species. To account for the change in age readers in 2005, we estimated a separate pattern for ageing error in an "early" (prior to and including data aged in 2004) and "late" (after and including data aged in 2005) periods of age data (see "Ageing bias and impression" section for details).

2.1.1.5.3 Average weight of discarded fish

Also, average body weight estimates from the discarded catch were available from the WCGOP for years between 2002 and 2011. These estimates were available for some hauls where length data were not collected, as they were calculated via the sample weight divided by the count of fish in that haul. The smallest average fish weight was reported for the domestic trawl fishery discards in 2011, the first year of the IFQ fishery, which is consistent with other changes related to IFQ fishery. Such changes include negligible discard and changes in length frequency distributions, with smaller (relative to previous years) fish were discarded.

2.1.2 Fishery-independent data

2.1.2.1 Surveys used in the assessment

The assessment utilizes fishery-independent data from four bottom trawl surveys conducted on the continental shelf and slope of the Northeast Pacific Ocean by NWFSC and Alaska Fisheries Science Centers (AFSC), including: 1) the AFSC shelf survey (often called "triennial", since it was conducted every third year), 2) the AFSC slope survey, 3) the NWFSC slope survey, and 4) the NWFSC shelf-slope survey (often referred to as "combo" survey). Details on latitudinal and depth coverage of these surveys by year are presented in Table 5.

The AFSC triennial survey was conducted every third year between 1977 and 2004 (in 2004 this survey was conducted by the NWFSC using the same protocols). Survey methods are most recently described in Weinberg et al. (2002). The basic design was a series of equally spaced transects from which searches for tows in a specific depth range were initiated. Over the years, the survey area varied in depth and latitudinal range (Table 5). Prior to 1995, the depth range was limited to $366 \mathrm{~m}(200 \mathrm{fm})$ and the surveyed area included four INPFC areas (Monterey, Eureka, Columbia and U.S. Vancouver). After 1995, the depth coverage was expanded to $500 \mathrm{~m}(275 \mathrm{fm})$ and the latitudinal range included not only the four INPFC areas covered in the earlier years, but also part of the Conception area with a southern border of $34^{\circ} 50^{\prime}$ N. latitude. For all years, except 1977, the shallower surveyed depth was $55 \mathrm{~m}(30 \mathrm{fm})$; in 1977 no tows were conducted shallower than $91 \mathrm{~m}(50 \mathrm{fm})$. The data from the 1977 survey were not used in the assessment, because of the differences in depths surveyed and the large number of "water hauls", when the trawl footrope failed to maintain contact with the bottom (Zimmermann
et al., 2001). The tows conducted in Canadian and Mexican waters were also excluded. In the assessment, the triennial survey was divided into two periods: 1980-1992, and 19952004; separate catchability coefficients (Q) were estimated for each time period. This was done to account for differences in spatial coverage before and after 1995 (Table 5) and to reflect a change in the timing of the survey. The survey was conducted from midsummer to early fall in the earlier time period, and was conducted at least a full month earlier in the later time period (Figure 14).

The AFSC slope survey was initiated in 1984. The survey methods are described in Lauth (2000). Prior to 1997, the survey was conducted in different latitudinal ranges each year (Table 5). In this assessment, only data from 1997, 1999, 2000 and 2001 were used these years were consistent in latitudinal range (from $34^{\circ} 30^{\prime} \mathrm{N}$. latitude to the U.S.Canada border) and depth coverage (183-1280 m; 100-700 fm).

The NWFSC slope survey was conducted annually from 1999 to 2002 (Keller et al., 2007). The surveyed area ranged between $34^{\circ} 50^{\prime}$ and $48^{\circ} 07^{\prime} \mathrm{N}$. latitude, encompassing the U.S. Vancouver, Columbia, Eureka, Monterey INPFC areas, and a portion of the Conception area, and consistently covered depths from 100 to 700 fm (183-1280 m) (Table 5).

The NWFSC shelf-slope (combo) survey has been conducted annually since 2003, and the data between 2003 and 2012 were used in the assessment. The survey consistently covered depths between 55 and 1280 m (30 and 700 fm) and the latitudinal range between $32^{\circ} 34^{\prime}$ and $48^{\circ} 22^{\prime} \mathrm{N}$. latitude, the extent of all five INPFC areas on the U.S. west coast (Table 5). The survey is based on a random-grid design, and four industry chartered vessels per year are assigned an approximately equal number of randomly selected grid cells. The survey is conducted from late May to early October, and is divided into two passes, with two vessels operating during each pass. The survey methods are most recently described in detail in Bradburn et al. (2011).

2.1.2.2 Survey abundance indices

Indices of abundance for each of the four bottom trawl surveys were derived using a delta-generalized linear mixed model, or delta-GLMM (Maunder and Punt, 2004), implemented using the software from Thorson and Ward (In press). The analysis associated with this method and the new and improved software for constructing survey abundance indices were recently reviewed by the PFMC’s Scientific and Statistical Committee (SSC). The SSC endorsed the analysis and recommended using this software in stock assessments.

For each survey abundance index, spatial strata were first identified based on depth and latitude, via examination of trends in size across latitude and depth and evaluation of the presence (or absence) of darkblotched in certain depth- or latitudinal areas. Survey data are based on a randomly-stratified survey design with pre-specified strata. We attempted to retain strata already recognized by the survey, while balancing the need to inform strata designation by species-specific characteristics of the stock. Also, the number of positive tows in each strata x year combination were computed to ensure that each
stratum x year combination has a sufficient number of positive tows, for the estimation model to perform adequately.

Darkblotched exhibit ontogenetic movement, when fish move into deeper water as they mature, a common phenomenon observed in the genus Sebastes (Love et al., 2002). Survey data we evaluated also exhibited a rapid increase in fish size over the shallowest depths to roughly 300 m . Therefore, 300 m was used as the depth break for AFSC slope, NWFSC slope surveys, and the NWFSC combo surveys as well as the late period (19952004) of the AFSC triennial shelf survey. In the early period (prior to 1995) the AFSC triennial survey went as deep as 400 meters and to satisfy requirement for a positive tow number, a single depth stratum was used for early AFSC survey. No darkblotched was found beyond 550 m , and in order to avoid extrapolating biomass into those deeper areas, for the analysis surveys that went passed 550 m , were cut at 549 m .

INPFC area boundaries were used as latitudinal breaks; however, due to few occurrences of darkblotched in the water off California, Conception and Monterey INPFC areas were combined into a single stratum. Also, Columbia and U.S. Vancouver INPFC areas were combined in the later period of the AFSC triennial shelf survey and AFSC slope survey, again due to very few positive tows in those areas. Finally, in case of NWFSC combo survey, the boundary at $34^{\circ} 5^{\prime} \mathrm{N}$. lat. maintained the break in sampling density to the north and south. There was only 3 occurrences of darkblotched rockfish south of $34^{\circ} 5^{\prime} \mathrm{N}$. lat. over the entire time series of the survey, therefore, we limited the survey to $34^{\circ} 5^{\prime} \mathrm{N}$. lat. on the south and eliminated data from $32^{\circ}-34^{\circ} 5^{\prime} \mathrm{N}$. lat. from the analysis. Resultant strata for all the surveys are shown in Table 6. These strata were used in constructing survey abidance indices used in the assessment.

The delta-GLMM approach used to construct survey abundance indices, for every tow explicitly models both the probability that it encounters the target species (using a logistic regression), and the expected catch for an encounter (using a generalized linear model). The product of these two components yields an estimate of overall abundance. Year is always included in both model components (because it is the design variable), and strata are generally included as a fixed effect. The delta-mixed-model implementation is necessary to treat vessels as a random effect for the NWFSC slope and combined shelfslope surveys, because these vessels are selected in an open-bid for the sampling contract from the population of all possible commercial vessels (Helser et al., 2004). Lognormal and gamma errors structures were considered for the model component representing positive catches, while a Bernoulli error structure was assumed for the presence/absence model component.

We also explored an option to model extreme catch events (ECEs, defined as hauls with extraordinarily large catches) as a mixture distribution (Thorson et al., 2011), which has been shown to improve precision for estimated indices of abundance in simulated data in some cases (Thorson et al., 2012). Model convergence was evaluated using the effective sample size of all estimates parameters (>500 was sought) and visual inspection of trace plots and autocorrelation plots (where a maximum lag-1 autocorrelation of <0.2 was sought). Model goodness-of-fit was evaluated using Bayesian posterior predictive checks
and Q-Q plots. For all indices, Q-Q plots indicated that an ECE error structure was necessary. Also, a comparison of average deviance between lognormal-ECE and gamma-ECE indicated support for using the gamma-ECE error structure for all indices.

2.1.2.3 Length composition data

Length composition data collected by the surveys were used to derive length frequency distributions by survey, year and sex. Amount of length composition data available for the assessment varied by survey and year. A summary of sampling efforts in all surveys are summarized in Table 7, Table 8, Table 9 and Table 10. Length composition data were compiled into 30 length bins, ranging from 4 to 62 cm . The observed length compositions were expanded to account for differences in catches among tows and spatial strata. To generate coastwide length frequency distributions the following algorithm was used:

1. For a specific year and survey, length data by sex were acquired at the tow level;
2. For each tow, the raw length observations were expanded to represent the entire tow:
a. An expansion factor was calculated by dividing the total weight of darkblotched within the tow by the total weight of darkblotched in this tow measured for length;
b. The observed length frequencies were multiplied by the expansion factor and then summed up within a spatial stratum.
3. The expanded and summed length frequencies in each spatial stratum were then expanded again to account for differences in catches among spatial strata:
a. The expansion factor was computed by dividing the total weight of darkblotched within a stratum by the total weight of darkblotched within this stratum measured for length;
b. The length frequency distributions within each stratum (calculated via step 2 above) were multiplied by the second expansion factor (from step 3.a) and then summed up to produce annual sex-specific length frequency distributions for the entire survey area.

Spatial strata used to generate annual length frequency distributions were consistent with the strata used to compute survey abundance indices (Table 6). The coast-wide length frequency distributions of female and male darkblotched rockfish by survey, year and sex are shown in Figure 15 through Figure 22.

The initial input sample sizes for the survey length frequency distribution data were calculated as a function of both the number of fish and number of tows sampled using the method developed by Stewart and Miller (NWFSC, pers.com.):

$$
\begin{array}{ll}
N_{\text {input }}=N_{\text {tows }}+0.0707 N_{\text {fish }} & \text { when } \frac{N_{\text {fish }}}{N_{\text {tows }}}<55 \\
N_{\text {input }}=4.89 N_{\text {tows }} & \text { when } \frac{N_{\text {fish }}}{N_{\text {tows }}} \geq 55
\end{array}
$$

2.1.2.4 Age composition data

Age composition data were collected for all the surveys, but the amount of data varied by survey and year. A summary of age data available for the assessment is presented in Table 7, Table 8, Table 9 and Table 10.

As in case of fishery-independent age data in several previous assessments (Hamel, 2008; Rogers, 2005), only age data generated in 2004 and later were used. The concern was that criteria for estimating ages of darkblotched rockfish might have changed (Hamel, 2008) and that a bias may have esisted in "early" age data (Rogers, 2005). We re-evaluated all the age data available for darkblotched rockfish and, based on the communication with age readers involved in ageing of darkblotched rockfish over the years (McDonald, Kamikawa, Menkel, pers. com), established that no changes were made in ageing criteria for this species. We also explored a presence of potential bias in "early" age data by comparing double reads made by the same age reader in the "early" and "late" periods of age data and found little support for "early" age data being biased relative to "late" age estimates or for those data having different imprecision.

Since 2005, darkblotched rockfish age structures (otoliths) were read by a single reader (Reader 1) from the Ageing Laboratory at the Hatfield Marine Science Center in Newport (Oregon) using the break and burn method, with few other readers producing doublereads of the same age structures. Prior to 2005, several age readers were involved in ageing darkblotched rockfish; all readers used the same method (break and burn) and same criteria to estimate ages from darkblotched rockfish otoliths as the current age reader for this species. To account for the change in age readers in 2005, we estimated a separate pattern for ageing error in an "early" (prior to and including data aged in 2004) and "late" (after and including data aged in 2005) periods of age data (see "Ageing bias and impression" section for details).

Age composition data from the surveys were compiled as conditional distributions of ages at length by survey, year and sex. Prior to that, the observed age compositions were expanded to account for differences in catches among tows and spatial strata, using the same approach as described for length composition data above. The conditional ages at length approach uses an age-length matrix, in which columns correspond to ages and rows to length bins. The distribution of ages in each column then is treated as a separate observation, conditioned on the corresponding length bin (row). The conditional ages at length approach has been used in most recent stock assessments on the West Coast of the United States, since it has several advantages over the use of marginal age frequency distributions. Age structures are usually collected from the individuals that have been measured for length. If the standard age compositions are used along with length frequency distributions in the assessment, the information on sex ratio and year class strength may be double-counted since the same fish are contributing to likelihood components that are assumed to be independent. The use of conditional age distributions within each length bin allows avoiding such double-counting. Also, the use of conditional ages at length distributions allows the reliable estimation of growth parameters within the assessment model.

The number of ages within each length bin was used as the initial input sample sizes for conditional ages and length distributions. Conditional ages at length compositions generated and used in the assessment are shown in Figure 23 through Figure 29.

2.1.3 Biological parameters

Several biological parameters used in the assessment were estimated outside the model or obtained from literature. Their values were treated in the model as fixed, and therefore uncertainty reported for the stock assessment results does not include any uncertainty in these quantities (however some were investigated via sensitivity analyses described later in this report). These parameters include weight-length relationship parameters, female maturity and fecundity parameters, natural mortality and ageing error and impression. The methods used to derive these parameters in the assessment are described below.

2.1.3.1 Weight-length relationship

The weight-length relationship used for this assessment is based on observations from 3167 females and 3558 males collected in the NWSFC shelf-slope survey between 2003 and 2010. Male and female weight-length curves were fit separately using the following relationship:

$$
W=\alpha(L)^{\beta}
$$

Where W is individual weight $(\mathrm{kg}), L$ is total natural length (cm) and α and β are coefficients used as constants.

The parameters derived from this analysis were the following: $\alpha=1.110 \cdot 10^{-5}$ for females and $1.205 \cdot 10^{-5}$ for males, and $\beta=3.1351$ for females and 3.122 for males. Estimated parameters fit the data well, and indicated little difference in the weight-length relationship between female and male darkblotched rockfish (Figure 30).

2.1.3.2 Maturity schedule

Maturity data on female darkblotched rockfish were produced via histological analysis of fish collected in the NWFSC shelf-slope survey in 2011 and 2012. Methods used for identifying maturity of darkblotched rockfish are described in McDermott (1994). A female was classified as 'mature' if histological analysis suggested it was producing eggs, and that atresia was less than 25%. The presence of old (and otherwise mature) female individuals with significant atresia suggests that darkblotched rockfish will skip spawning intermittently. We therefore estimated an asymptotic maturity rate less than one, where this maturity schedule represents the combined effect of maturation and atresia.

Maturity at age was estimated from 303 records of females that had maturity and age recorded. Maturity at age was modeled using three parameters:

$$
\hat{m}(a)=m_{\infty} \frac{1}{1+e^{-(\beta \cdot(a-\alpha))}}
$$

Where m_{∞} is the asymptotic maturity for an old female; α is the age at which maturity is 50% of m_{∞}, and β is the slope of maturity as a function of age.

Model selection using AIC supported the use of this model over one in which m_{∞} was fixed at 1. Records were then assumed to be Bernoulli distributed given the prediction of maturity $\hat{m}(a)$. This resulted in estimates of $\alpha=4.82, \beta=1.03$, and $m_{\infty}=0.915$.

Maturity-at- relationship for female darkblotched rockfish used in the assessment, shown with fit to the data from the NWFSC shelf-slope survey samples is shown in Figure 31.

2.1.3.3 Fecundity

Fecundity (number of eggs) was assumed to be related to female body weight linearly as follows:

$$
\frac{\Phi}{W}=a+b W
$$

Where Φ is the number of eggs, W is female weight in kg , and a and b are constant coefficients.

This linear relationship follows the work of Dick (2009) who calculated this relationship for several species of rockfish and found the egg and female weight was not proportional. For darkblotched, Dick (2009) estimated parameters a and b to be 101100 and 44800 respectively, and we used these values in the assessment.

In several previous assessments, fecundity parameters were used as estimated by Nickol (1990) using data collected in waters off Oregon. Dick's (2009) analysis included data from several darkblotched fecundity studies, including those conducted using data from Oregon (Nickol and Pikitch, 1994), Washington (Snytko and Borets, 1973) and California (Phillips, 1964) waters. We explored the model sensitivity to fecundity parameters via a sensitivity analysis (Figure 128, Figure 129 and Figure 34).

2.1.3.4 Natural mortality

A fixed value for natural mortality, equal for males and females, has been assumed in all stock assessments of darkblotched rockfish. The value of 0.05 used by early assessments is consistent with results from the Hoenig (1983) method. Other life history-based methods provide wildly different estimates that are generally considered to be inconsistent with rockfish life history (Hamel, pers. com.). In Rogers (2005) and Hamel (2008) the value of 0.07 was used, based upon the estimates from the Hoenig (1983) maximum age method and Gunderson (2003) gonadosomatic index meta-analyses, and also based on model results, achieving a balance between natural mortality and steepness values (the steepness was 0.95 and 0.6 in Roger (2005) and Hamel (2008), respectively).

Exploration of the base model indicates that natural mortality in this assessment is estimated to have an implausibly large value. This was also true for many alternative model parameterizations (including those with Hamel natural mortality prior). A minority of runs estimated a natural mortality between 0.045 and 0.060 , while most runs estimated
this parameter to be greater than 0.10 , which is inconsistent with the maximum observed age for this species. We, therefore, have chosen to fix this parameter a priori at the value of $0.05 \mathrm{yr}^{-1}$ for females and estimate it for males. Dimorphic growth in fish is often accompanied by different rates of natural mortality. Even though model is unable to reliably estimate natural mortality for both sexes, compositional data can inform the difference between the sexes quite well, and estimating at least one sex would capture more of the uncertainty in the model results.

We explored the impact of using $0.07 \mathrm{yr}^{-1}$ for natural mortality of both sexes (as assumed in previous several assessments) via a sensitivity analysis (Figure 128, Figure 129 and Figure 130). We also use alternative values of natural mortality in defining states of nature in the Decision Table, to further incorporate uncertainty in this parameter into the management process.

2.1.3.5 Ageing bias and imprecision

In the assessment, two ageing error matrices were used to account for the change in age readers in 2005. Separate patterns for ageing error were estimated in an "early" (prior to and including data aged in 2004) and "late" (after and including data aged in 2005) periods of age data.

To develop ageing error matrices, we analyzed all available data from double-reads using a state-space model developed by Punt et al. (2008) and software developed by Stewart et al. (2011). We did not use formal model selection tools, however, because this often resulted in patterns that were implausible (i.e. residual patterns for the unbiased reader).

For the "early" peroid, age reads made by Reader 3 (re-reads of early ages done by the current reader after 2005) were assumed to be unbiased. We therefore started with a model with different linear (1-parameter) bias and imprecision for each Readers 1-2 (assumed throughout to have the same bias and imprecision) and Reader 3. We then explored adding a quadratic term to the bias and imprecision for either Reader 1-2 or Reader 3, and found that each such change caused little difference in the estimated ageing error or bias schedules. We also found that the estimated ageing imprecision and bias was very similar for Readers 1-2 and Reader 3, so we used a model in which imprecision and bias were identical for all readers.

For the "late" period, age reads made by Reader 1 (the current darkblotched rockfish age reader) were assumed to be unbiased. Comparison of age estimates of Reader 1 with those made by all other readers indicated small but important differences in precision and bias among readers. However, the only the bias and imprecision schedule for Reader 1 is used in the assessment model (given that Reader 1 provided all age reads used in the model after and including 2005).

Comparison of results from the "early" and "late" periods indicates greater imprecision during the early than that of in the later period (Figure 32, Figure 33 and Figure 34).

2.2 History of Modeling Approaches Used for this Stock

2.2.1 Previous assessments

The first stock assessments of darkblotched rockfish was done in 1993 and stock assessments have been conducted frequently since then (Lenarz, 1993; Rogers et al., 1996; Rogers et al. 2000; Rogers, 2003; Rogers, 2005; Hamel, 2008; Wallace and Hamel, 2009; Stephens et al. 2011).

Lenarz (1993) reviewed the available life-history and fishery information on the species. Based on the Hoenig (1983) method and a maximum age of 60 to 105 years, Lenarz (1993) estimated the natural mortality rate to be between 0.025 and $0.05 \mathrm{yr}^{-1}$. Based on these values, the target fishing mortality rate ($\mathrm{F}_{35 \%}$) was estimated to be between 0.04 and 0.06 , and the overfishing level ($\mathrm{F}_{20 \%}$) between 0.07 and 0.11 . Analysis of length composition data, available at that time, indicated that average size of fish had decreased between 1983 and 1993, which was consistent with estimated fishing impacts. OFL (then called ABC) was not estimated.

Rogers et al. (1996) analyzed 13 commercially important rockfish species (including darkblotched) using an $\mathrm{F}=\mathrm{M}$ approach, which was modified to derive OFLs under the assumption of anF $\mathrm{F}_{35 \%}$ target fishing mortality rate. Rogers et al. (1996) averaged the AFSC triennial survey abundance indices for several species over the period between 1980 and 1995 and developed a proxy adjustment factor based on the OFLs from available stock assessments of U.S. West Coast rockfish species and characteristics of each species analyzed. For darkblotched rockfish, this proxy adjustment factor was 0.8. The OFL was determined under the assumption of natural mortality rate of $0.05 \mathrm{yr}^{-1}$. At the same time, darkblotched rockfish was also assessed using a simple stock synthesis model, mostly to confirm the F = M approach, used by Rogers et al. (1996). That was a two sex model, which included two survey indices of abundance (one was derived from AFSC triennial survey and the other was based on POP bycatch effort), as well as length and age composition data from the AFSC triennial survey and the commercial fishery. The model was structured to have northern and southern fishing fleets; the modeling time period spanned between 1980 and 1995, and assumed equilibrium condition in 1979, with an equilibrium catch of 300 mt . The model produced estimates of age- 1 recruitment for the period between 1980 and 1993, estimated dome-shaped selectivity for the AFSC triennial survey and the southern fishery and asymptotic selectivity for the northern fishery. Catchability for the AFSC triennial survey was fixed at 1.0. The $\mathrm{F}_{35 \%}$ fishing mortality rate was estimated to be 0.04 for the northern fishery and 0.02 for the southern fishery.

Rogers et al. (2000) expanded the 1996 model to develop the first full assessment of the darkblotched rockfish stock. The model covered the period from 1963 to 1999, with an equilibrium catch of 200 mt assumed prior to the first year of the model. Five abundance indices were used. In addition to the AFSC triennial and POP bycatch indices (used in the 1996 assessment), 2000 assessment included AFSC slope survey and POP survey (Wilkins and Golden, 1983) abundance indices, as well as CPUE index developed based on commercial trawl fishery logbook data. Length composition data included samples
from all years of the AFSC triennial, AFSC slope and POP surveys. The model included a single fishing fleet and discard assumptions were explored only via sensitivity analysis, because incorporating discard in the assessment complicated the model without substantially changing the model output. Fishery selectivity was assumed to be asymptotic, while survey selectivity was allowed to be dome-shaped. Age-1 recruits were estimated between 1963 and 1998, with the 1999 recruitment fixed at an assumed value.

The 2000 assessment included two models - a Stock Assessment Team (STAT) model and a Stock Assessment Review Panel (STAR) model. Both models produced similar results, but their assumptions were quite different. The STAT model included subjective weights on the log-likelihood components and informative prior distributions on some of the fitted parameters as well as assumed a Beverton-Holt stock-recruitment relationship. The STAR model had all weights on the likelihood components to be either 1 or 0 , assumed no prior knowledge about the estimated parameters, and placed no bounds on the estimated recruitments. The STAT model considered CPUE and POP bycatch indices less reliable than the other indices of abundance, and the AFSC triennial survey index more reliable than AFSC slope or POP survey indices. The STAT model (similarly to the STAR model) estimated dome-shaped selectivity for all three surveys used in the assessment. The steepness prior probability distribution had a mean of 0.8 and a CV of 0.1 ; the estimated parameter value based on this prior was 0.83 . Uncertainty in the 2000 assessment was expressed both through choice between the models and through assumptions regarding the amount of darkblotched foreign bycatch relative to the estimated catch of POP. The target fishing mortality $\left(\mathrm{F}_{50 \%}\right)$ was estimated to be around 0.032 , regardless of the choice of model or the foreign bycatch assumption. Given the range of foreign bycatch, spawning depletion in 1999 was estimated to be between 17\% and 28% in the STAT model and between 13% and 26% in the STAR model. Base on this assessment, stock was declared overfished.

In the 2001 update assessment, selectivity parameters and survey catchability parameters were fixed at the values estimated in the 2000 assessment. Only the age- 1 recruits were re-estimated, with 2000 and 2001 recruitment fixed at an assumed level. The fishing mortality rate at $\mathrm{F}_{50 \%}$ was estimated to be 0.032 , the spawning depletion at the beginning of 2002 was 14%, and the 2002 OFL (then called ABC) was 187 mt .

The 2003 assessment was a comprehensive update of the 2000 assessment. The model structure and values of fixed parameters used in the assessment were not changed. However, the data used in the assessment were extended through 2002 and all the fitted parameters were estimated. Newly available age composition data were not included in the model, since they were not consistent with the growth curve and the aging error parameters fixed in the 2000 model. Management related discard was added to the 2001 and 2002 landings, using rates assumed by the PFMC (0.1 discard ratio in 2001 and 0.2 in 2002). Estimates of darkblotched catch in the foreign POP fishery between1966 and 1976 were included as estimated by Rogers (2003). The fishing mortality rate at $\mathrm{F}_{50 \%}$ was estimated to be 0.032 , the 2004 spawning depletion 11%, and the 2004 OFL (then called ABC) was 240 mt .

In 2005, full assessment (Rogers, 2005) was conducted using the Stock Synthesis 2 (SS2 v1.) modeling framework. The time series of landings were extended back to 1928, assuming unfished equilibrium condition of the stock in 1927. Discard ratio estimates were calculated from the data available for 1986 and the period between 2000 and 2004, and the full time series of discards were estimated within the model. Retention curve parameters were also estimated within the model. Only age data from otoliths read in 2004 were included in the assessment due to a concern of a bias in earlier age data. The AFSC slope survey index was re-estimated using a GLM approach, and the NWFSC slope survey index (1999-2004) and length composition data (2000-2004) were added to the assessment. Most of the growth parameters were estimated within the assessment model, while natural mortality was fixed at the value of $0.07 \mathrm{yr}^{-1}$. The assessment used a Beverton-Holt model to describe the stock-recruitment relationship with the steepness parameter fixed at the value of 0.95 . Spawning depletion at the start of 2005 was estimated to be 17% of the unfished level. Natural mortality was used as the main axis of uncertainty for the decision table, with three states of nature encompassing the range of M values ($0.05,0.07$ and $0.09 \mathrm{yr}^{-1}$) that corresponded to low, medium (base case) and high states of nature respectively.

The most recent full assessment (prior to the current assessment) was conducted in 2007 (Hamel, 2008). In the 2007 assessment, recent landings and discard ratio estimates were updated, while newly available landings, discard and NWFSC slope survey data were added. The shelf portion of the NWFSC shelf-slope (combo) survey (2003-2006) was also included in the assessment. The new GLMM approach was used to estimate abundance indices for all the surveys. Conditional ages-at-length compositions were used in the assessment for the first time for this stock to input age data from the fishery landings, fishery discards, the AFSC slope and NWFSC shelf and slope surveys. The use of age data was still limited to ages estimated during and after 2004. Data from the two year POP survey were no longer used in this assessment. Also, the average weight of discarded fish and mean size-at-age data were no longer used in the assessment since the conditional ages-at-length compositions encompass the same data sources and provide similar information. Natural mortality was fixed at the value of $0.07 \mathrm{yr}^{-1}$ and spawnerrecruit steepness was first estimated (with the prior) within the model and then fixed at the estimated value (0.6). The point estimate for the depletion of the spawning output at the start of 2007 was estimated to be 22.4% relative to spawning output in an unfished equilibrium condition. The decision table was developed based on uncertainty in the assumed value of natural mortality, with natural mortality values of $0.05,0.07$ and 0.09 yr^{-1} representing low, medium (base case) and high states of nature.

The 2007 assessment (Hamel, 2008) was updated twice; the first by Wallace and Hamel (2009) and then by Stephens et al. (2011). The 2009 update assessment retained the same model structure as the 2007 assessment, but updated the historical time series of catch with newly reconstructed California historical landings. It also included two more years of data that became available since the 2007 assessment. The point estimate of depletion was 27.5% at the start of 2009. The 2011 update assessment retained the same model structure as the 2007 full assessment, but, like the 2009 assessment, updated the time series of catch to incorporate the newly reconstructed Oregon historical landing of darkblotched rockfish. The data that became available since the 2009 were also included.

The spawner-recruit steepness was updated from 0.6 (as in the 2007 and 2009 assessments) to 0.76, based upon information from a new meta-analytic prior (Martin Dorn, pers.com.) and the model fit. In addition, selectivity for the NWFSC slope survey was found to be dome-shaped in that assessment, rather than the asymptotic as previously estimated. At the start of 2011, the spawning depletion was estimated to be 30%. The decision table was based on spawner-recruit steepness as the major axis of uncertainty (rather than natural mortality as in the 2007 full assessment and 2009 update assessment) with steepness of 0.76 to represent medium state of nature (base case). Alternative steepness values to represent low and high states of nature (0.54 and 0.95 , respectively) were calculated as the 12.5% and 87.5% quantiles from the prior distribution on steepness.

In aggregate, these assessments have largely drawn the same conclusions regarding historical trends in stock dynamics: the darkblotched rockfish abundance declined rapidly in the 1960s and 1970s due to high fishing intensity, and continued to decline in the 1980s and 1990s reaching the lowest point around 2000 (Figure 139). For the last decade, the stock was slowly increasing primarily due to management efforts toward rebuilding of the stock.

2.2.2 Responses to 2007 STAR panel recommendation

The STAR panel report from the last full assessment (conducted in 2007) identified a number of recommendations for the next assessment as well as general long term recommendations for future assessments. Below, we list the 2007 STAR panel recommendations and explain how these recommendations were taken into account in this assessment. Not all the long term recommendations could be addressed in this assessment, but we summarized the progress done toward each of them.

For the next assessment the following recommendations were made:

1) GLMM survey index swept area biomass data for the NWFSC shelf and slope surveys were much higher than simple swept area biomass calculations. Although some differences might be expected, the magnitude and consistency of the differences was surprising. GLMM procedures and models used to standardize the survey data should be checked and differences should be explained.

Since 2007, considerable progress has been made in applying the GLMM for constructing survey abundance indices, and this method has become the default approach to deal with survey abundance data. The software for constructing indices of abundance using a delta-GLMM method (i.e. the probability that a catch during a haul is positive and the size of the catch in the haul are modeled separately) has been most recently updated. New software (a) improves the speed with which analyses can be conducted, (b) allows additional fit diagnostics to be produced, (c) allows catches to be modeled as a mixture of distributions so that exceptional catch-rates can be modeled, (d) allows the coefficient of variation of the distribution for the positive catches to be estimated rather than pre-specified, and (e) treats effort as an offset. This new software was recently reviewed by the PFMC' SSC. The SSC endorsed the new software for the analysis of
trawl survey data and recommends using it in stock assessments. Following the recommendation of the 2007 STAR Panel, we did calculate survey abundance indices using design-based approach and included them in the model data file for comparison.
2) Assessment data and background information should be presented clearly and completely before dealing with assessment models and modeling results. Data tables should be distributed at the start of the review.

In this assessment, we substantially extended sections describing background information and data used. We also provide additional Tables and Figures to clearly summarize data used in the assessment and set the stage for explaining the model results.
3) Future assessments should include complete sets of model diagnostics for GLMM standardized abundance indices, and other types of model runs.

The new delta-GLMM software by Thorson and Ward (in press) produces a standard set of diagnostics, which include a posterior predictive check for all positive catch rate data, which (in case of this assessment) indicated no evidence of poor model fit. We included Bayesian Q-Q plots obtained from these posterior predictive checks for all surveys used in the assessment (Figure 35 through Figure 38). These plots show that the model can account for the variability seen in the positive catch rate data. Also, these Q-Q plots indicated that a mixture distribution was necessary to use to account for extreme catches (Thorson et al. 2011, 2012), while a comparison of average deviance (as recommended by A. MacCall, pers. com.) indicated that the gamma-mixture distribution provided better fit than a lognormal-mixture model.
4) Maps showing the spatial overlap of the darkblotched rockfish stock area, surveys, fishing grounds and prime habitat should be provided and considered in interpreting survey data.

In addition to the map of spatial distribution of darkblotched rockfish catch as observed by the WCGOP in Figure 1 (a similar map was included in the 2007 assessment), we supplied a detailed (5 page) map of spatial distribution of darkblotched rockfish catches in the NWFSC shelf-slope (combo) survey (Figure 2). We also included a table (Table 5) that summarizes latitudinal and depth ranges from four NMFS trawl surveys. Finally, to help interpret survey data, we included maps with NWFSC combo and AFSC triennial surveys catches per haul data (Figure 39, Figure 40).

General or long term recommendation on 2007 STAR Panel included:

1) Continued work to characterize effective sample size for length composition and, particularly, conditional age composition data is needed. For example, the procedure used to assign effective sample size initially for darkblotched rockfish was questioned in this assessment.

Considerable work has been done to address this long-term recommendation (Stewart and Miller, pers. com., Stewart and Hamel, pers.com.). The current consensus is that a combination of the number of trips (or tows) and the number of fish should be used to estimate input sample sizes used in the assessment.
2) A full Bayesian assessment.

We have explored the ability for Metropolis sampling to provide sufficient independent samples from the Bayesian posterior to allow for a Bayesian analysis of the model. Achieving 1,000,000 samples requires approximately 24 hours, and after discarding the first half and thinning to every 1,000th sample, this still results in significant lag-1 autocorrelation for the extra standard deviation parameter for the AFSC triennial survey. Previous research has also identified this parameter as being difficult to sample. Based on observed autocorrelation, we estimate that Bayesian sampling would require a 10 -fold increase in samples. We, therefore, did not pursue using a Bayesian assessment in 2013. It is worth pointing, however, that the estimated parameters and time series of depletion are very similar between maximum likelihood and Bayesian runs, which supports continued attempts to improve Markov chain Monte Carlo sampling methods in future assessments.
3) It would be useful to routinely check model estimates of survey catchability to determine if they imply implausible biomass estimates. This can be done by comparing the prior and posterior for q in a fully Bayesian assessment. Other approaches involve calculating bounds for plausible q values, comparison of model and minimum swept-area biomass estimates from trawl surveys.

We have estimated a parameter for $\ln (Q)$ for every survey, and have determined that these values are plausible. The $\ln (Q)$ for the early triennial survey time series is estimated to be $0.59(\mathrm{SE}=0.177)$, and the late triennial time series has an additive offset (in log-space) of 0.13 ($\mathrm{SE}=0.312$). The $\ln (Q)$ for the Alaska slope is estimated to be 0.04 (SE = 0.402), for the NWFSC slope 0.17 ($\mathrm{SE}=0.370$), and for the NWFSC shelfslope (combo) survey $0.68(\mathrm{SE}=0.336)$. The $\ln (Q)$ for the NWFSC combo survey being greater than zero is more probably explained by a single extreme catch in 2003 (Figure 39). This very large positive residual contributes to a high average observed in the NWFSC combo survey and causes the design-based estimate for that year to be aberrantly high and the delta-GLMM estimate for 2003 to be higher than can be fit by the model. Similarly, the $\ln (Q)$ greater than zero for the AFSC triennial survey is more probably explained by extreme catches in 1983, 1986, and 1995 (Figure 40).

We additionally explored including an 'extra standard deviation’ parameter for all survey indices. This extra standard deviation parameter accounts for process errors, which are not otherwise estimated during index standardization (e.g., the survey only encountering a portion of total abundance) (Maunder and Punt, 2004, Wilberg et al., 2010). This extra standard deviation was estimated to be zero for the Alaska slope and NWFSC slope surveys, but was non-zero for the AFSC triennial and NWFSC combo surveys. These latter two surveys were the ones with $\ln (Q)$ greater than zero, and the 'extra standard
deviation’ parameters indicate that these indices have one or more years that are outliers (i.e., the model has trouble fitting these years given other data types and assumptions about stock productivity).
4) Assessment and review work would have been enhanced if the STAT had consisted of more than one person and if more time had been available to carry out the assessment.

As in the 2009 and 2011 update assessments, the current STAT includes more than one stock assessment scientists, which makes the entire process of stock assessment less stressful and more efficient.

2.3 Model Description

2.3.1 Changes made from the last assessment

The last full assessment of darkblotched rockfish was conducted in 2007. It was updated since then twice, in 2009 and 2011. This assessment relies on much of the same data used in the 2007 assessment; however, nearly all aspects of the analysis have been revised to some degree. Below, we describe the most important changes made since the last full assessment and explain rationale for each change:

1) Upgraded to the newest SS version. Rationale: This is standard practice to capitalize on newly developed features, corrections to older versions of the code and increases in computational efficiency. Model results were nearly identical before and after this change.
2) Updated Washington historical landings and used the recently reconstructed Oregon and California landings conducted by SWFSC and ODFW in collaboration with NWFSC. Rationale: To utilize the best available information for the assessment. Portion (but not the entire time series) of the new estimates for California historical landings was included in in 2009 update assessment and Oregon reconstructed landings were included in 2011 update assessment. The updated estimates of landings used in this assessment were very close to those used in the most recent update assessment (Figure 41).
3) Extended assessment time series back to 1915 (from 1928). Rationale: The recently reconstructed historical landings show that non-zero darkblotched rockfish catch in California goes back to 1916 (see Table 2). We used 1916 as the first years of catch, and assumed that the stock was in unfished equilibrium condition in 1915. Model results were nearly identical before and after this change.
4) Changed the structure of fishing fleets and divided fishery removals between two fisheries (instead of combining all removals into one fleet as in the last assessment). Rationale: Domestic trawl fishery has historically reported landed catch only, even though a portion of the darkblotched catch was discarded at sea.

Foreign POP fishery, on the other hand, was known not to discard, while at-sea hake fishery reports total catch, which includes both retained and discarded fish. To avoid inflating darkblotched catch in POP and at-sea hake fisheries, the domestic trawl fleet (TWL) and bycatch in foreign POP and at-sea hake fisheries (BYCATCH) were treated separately.
5) Treated the NWFSC shelf-slope survey as a single survey time series (instead of dividing it into slope and shelf portions as was done in the last assessment). Rationale: In the 2007 assessment, NWFSC shelf-slope survey was divided into slope and shelf portions and the slope portion was used as continuation of NWFSC slope survey, to have a longer survey time series in the assessment. The change in this assessment was made to utilize the much longer time series of NWFSC shelf-slope survey now available (2003-2012) that runs consistently across all depths and geographic areas.
6) Divided AFSC triennial survey into two time-series, 1980-1992 and 1995-2004 (instead of treating it as a single time series). Rationale: The change was made to account for differences in spatial coverage during two periods (Table 5) and to reflect a change in the timing of the survey after 1992 (Figure 14).
7) Used the newest GLMM software to construct survey abundance indices. Rationale: This new software includes a number of improvements compared with the previously used.
8) Included discard ratio estimates from Pikitch study for 1985, 1986 and 1987 (instead of using three year the data combined to generate one discard ratio estimate, as it was previous done). Rationale: The examination of Pikitch data showed that sampling of retained and discarded catch was conducted throughout the entire three years of the study. Model results were nearly identical before and after this change.
9) Brought back to the assessment "early" age data (those read prior to 2004). Rationale: the 2005 and 2007 assessments did not use early ages due to concerns that criteria for estimating ages of darkblotched rockfish may have changed and that a bias may have existed in those early estimates. We re-evaluated all the age data available and established that no changes were made in ageing criteria. We also explored a presence of potential bias in early age data by comparing double reads made by the same age reader in the early and late periods and found little support for early age data being biased relative to late age.
10) Extend the range of modeled ages, setting the 'plus group' in the age data to 35 (from 30). Rationale: For avoid having a large percentage of the mass of the data in the 'plus-group' with addition of previously unused early age data (see above).
11) Restructured data length bins, which now range between 4 and 62 cm , in 2 cm increments (instead of bins between 6 and 51 cm with variable increments
between bins). Rationale: To include the entire range data and aid interpretation by having uniform step size.
12) Updated fishery and survey biological data. Rationale: This was done to account for changes in length and age bin structures and utilize updates made to the analysis and data weighting methods, to account for sampling differences among trips and states.
13) Updated the weight-length relationship. Rationale: The relationship had not been revisited in several assessments. The revised estimates are based on NWSFC shelf-slope survey data, not previously available. In this, assessment, we also estimated and used weight-length relationships for females and males separately, instead of using one set of parameters for both sexes, as was done in previous assessment. Model results were nearly identical before and after this change (see Sensitivity analysis section).
14) Updated the maturity parameters. Rationale: The last assessment used the maturity schedule as estimated by Nickol (1990). The new maturity data collected within the NWFSC shelf-slope survey became recently available. These data were used to develop maturity at age matrix used in the assessment. Model results were nearly identical before and after this change (see Sensitivity analysis section).
15) Update fecundity parameters. Rationale: In several previous assessments, fecundity parameters were used as estimated by Nickol (1990) using data collected in waters off Oregon. Dick’s (2009) analysis included data from several darkblotched fecundity studies, including those conducted using data from Oregon (Nickol and Pikitch, 1994), Washington (Snytko and Borets, 1973) and California (Phillips, 1964) waters. Model results were nearly identical before and after this change (see Sensitivity analysis section).
16) Used an updated prior to inform stock-recruit steepness. Rationale: In initial runs, an attempt was made to estimate the stock recruitment steepness (h) using the prior probability distribution derived from this year's meta-analysis of Tier 1 rockfish assessments. The estimated value was hitting the upper bound of 1 for the parameter. Therefore, following the recommendation of the PFMC' SSC, h was fixed in the assessment at the value of 0.778 , which is the mean of steepness prior probability distribution. In 2007, the steepness was fixed at the value of 0.6 , and in 2011 update assessment, steepness value was updated to 0.76 . Model results were nearly identical when 0.76 (instead of 0.779) steepness value was used in this assessment (see Sensitivity analysis section).
17) Extended the estimation of recruitment deviations. Rationale: 'Main' recruitment deviations were estimated for modeled years that had information about recruitment (as determined from the bias-correction ramp), i.e., 1960-2011. We additionally estimated 'early' deviations between 1870 and 1959 so that age-
structure in the initial modeled year (1915) would deviate from the stable agestructure to a degree that is consistent with estimated variability in recruitment. This resulted in an estimate of B_{0} that is also consistent with estimated variability in recruitment given the assumption that initial catch was negligible.
18) Updated the value for natural mortality from fixed $0.07 \mathrm{yr}^{-1}$ for both sexes, as used in previous assessment, to estimating natural mortality for male while holding the value for females fixed at $0.05 \mathrm{yr}^{-1}$. Rationale: Natural mortality has been a major axis of uncertainty in several darkblotched rockfish assessments. The fixed value of 0.07 was used for natural mortality for both sexes in the 2005 and 2007 assessments. This value was selected as a reasonable when the stockrecruit steepness of 0.6 was used the model. In and prior to the 2003 assessment, the fixed value of 0.05 was used for both sexes. The lower estimate was supported by the Hoenig method (1983). For this assessment, we went back to using female natural mortality value of $0.05 \mathrm{yr}^{-1}$, as we found it to be more plausible than other (much higher) values derived from different (than Hoenig) methods. Dimorphic growth in fish is often accompanied by different rates of natural mortality. Even though model is unable to reliably estimate natural mortality for both sexes, compositional data can inform the difference between the sexes quite well, and estimating at least one sex would capture more of the uncertainty in the model results.
19) Estimated the extra standard deviations for AFSC triennial and NWFSC shelfslope survey indices. Rationale: Estimating the additional variance components speeds the process of iterative reweighting among data sources and propagates the uncertainty about the true survey index variance into the model results. The attempt was made to estimate extra standard deviations for the surveys, but for AFSC and NWFSC slope surveys, these extra standard deviations were estimated to be 0 .
20) Employed age selectivity type 11 (to include age-0 fish) instead of 10 (that assumes that age 0 fish are not selected). Rationale: The survey data used in the assessment include age-0 fish.
21) Re-evaluated length-based selectivity assumptions. In the last assessment, the length-based selectivity curves of fishery and NWFSC slope survey were assumed to be asymptotic. This assessment assumes only fishery to be asymptotic, but does not force any of the surveys to be asymptotic. Rationale: Examination of length composition data showed that domestic trawl fleet is catching the largest fish observed, therefore, assumption of trawl fleet selectivity being Plus, when allowed to be dome-shaped, the trawl fishery selectivity was essentially asymptotic (with a drop observed in the very last bin). The selectivity curves for slope surveys, on the other hand, were estimated to be dome-shaped. We attributed survey dome-shaped selectivity to differences in gear used in survey vs. fishery (roller gear vs. rockhoppers) and to potentially more complex dynamics of darkblotched rockfish in the water column that currently known.
22) Re-evaluated length-based selectivity blocks. Rationale: In this assessment, blocks were created after the careful analysis of management actions that are most likely affect length-based selectivity of the fishery. The new block (2011-2012) was created for fishery retention inflection and slope parameters to reflect changes in selectivity with the start of the IFQ fishery. The number of blocks applied to asymptotic retention parameter was used to reflect changes in discard rates caused by changes in trip limits. A new block was added to descending width parameter for the AFSC shelf survey, to account for changes in depth coverage of the survey during 1995-2004 period.

The list above documents only the most important changes made to this assessment, compared to previous one. We also updated a number of settings in the model files to new recommended defaults. Despite the large number of changes made to data sources and model configuration, the results of this assessment are very consistent with those from previous analyses. Comparison of spawning depletion between this assessment and 2011 update assessment is shown in Figure 42.

2.3.2 Modeling software

This assessment uses the Stock Synthesis modeling framework developed by Dr. Richard Methot (NMFS, NWFSC). The most recent version (SSv3.24o, distributed on April 10, 2013) was used, since it included improvements in the output statistics for producing assessment results and several corrections to older versions.

2.3.3 General model specifications

This assessment focuses on a portion of a population of darkblotched rockfish that occurs in coastal waters of the western United States, off Washington, Oregon and California, the area bounded by the U.S.-Canada border on the north and U.S.-Mexico border on the south. The population within this area is treated as a single coastwide stock, given the lack of data suggesting the presence of multiple stocks. The modeling period begins in 1916, assuming that in 1915 the stock was in an unfished equilibrium condition.

Fishery removals are divided among two fleets: 1) the domestic trawl fishery, 2) bycatch in the foreign POP and at-sea Pacific hake fisheries. As described earlier, these two fleets are treated separately to account for difference in handling and reporting the discards. The domestic trawl fishery is associated with a particular amount of catch discarded at sea. The foreign POP fishery is known not to discard fish (based on their size or species), while the at-sea hake fishery, which is managed under maximized retention regulations. There, the time series of discards, therefore, are estimated for the domestic trawl fleet only, and no discard is assumed for the bycatch fleet.

Historical catches for the domestic trawl fishery were reconstructed by state, and then combined into the coastwide fleet. Selectivity and retention parameters are estimated for the domestic trawl fleet, while selectivity of the bycatch fleet is mirrored to that of the domestic trawl fishery. Each survey is treated as a separate fleet with independently estimated selectivity and catchability parameters reflecting differences in depth and
latitudinal coverage, design and methods among them. No seasons are used to structure removals or biological predictions; data collection is assumed to be relatively continuous throughout the year. Fishery removals occur instantaneously at the mid-point of each year and recruitment on the $1^{\text {st }}$ of January. Error distribution assumptions associated with different data sources used in the assessment are listed in Table 11.

This is a sex-specific model. The sex-ratio at birth is assumed to be $1: 1$. Growth of darkblotched rockfish is assumed to follow the von Bertalanffy growth model, and separate growth parameters are estimated for females and males. Females and males also have separate weight-at-length parameters.

Recruitment dynamics are assumed to be governed by a Beverton-Holt stock-recruit function. 'Main' recruitment deviations were estimated for modeled years that had information about recruitment, between 1960 and 2011 (as determined from the biascorrection ramp). We additionally estimated 'early’ deviations between 1870 and 1959 so that age-structure in the initial modeled year (1915) would deviate from the stable agestructure that is consistent with estimated variability in recruitment. This resulted in an estimate of B_{0} that is also consistent with estimated variability in recruitment given the assumption that initial catch was negligible.

The length composition data are summarized into thirty 2-cm bins, ranging between 4 and 62 cm . Population length bins are defined at a finer, $1-\mathrm{cm}$ scale. The age data are summarized into thirty six bins, ranging being age 0 and age 35 . Age data beyond age 35 comprise less than 5% of all the age data available for the assessment. For the internal population dynamics, ages 0-45 are individually tracked, with the accumulator age of 45 determining when the 'plus-group’ calculations are applied. This accumulator age is selected since little growth is predicted to occur at and beyond this age, since the model does not allow growth to continue in the plus-group.

Iterative re-weighting was used in the assessment to achieve consistency between the input sample sizes and the effective sample sizes for length and age composition samples based on model fit. This reduces the potential for particular data sources to have a disproportionate effect on total model fit.

2.3.4 Estimated and fixed parameters

In the assessment, there are parameters of three types, including life history parameters, stock-recruitment parameters and selectivity parameters. These parameters were either fixed or estimated within the model. Reasonable bounds were specified for all estimated parameters. A full list of all parameters used in the assessment is provided in Table 12.

2.3.4.1 Life history parameters

Life history parameters that were fixed in the model included weight-at-length parameters for females and males, female maturity-at-length and fecundity-at-length and natural mortality. These parameters were either derived from data or obtained from the literature, as described in Section 2.1.3.

The von Bertalanffy growth function (von Bertalanffy, 1938) was used to model the relationship between length and age in darkblotched rockfish. This is the most widely applied somatic growth model in fisheries (Haddon 2001), and has been commonly used to model growth in rockfish species, including darkblotched (Hamel, 2008; Love et al., 2002; Rogers, 2005).

Female darkblotched rockfish were reported to reach larger sizes than males; therefore, time-invariant growth was modeled for each sex separately. The Stock Synthesis modeling framework uses the following version of the von Bertalanffy function:

$$
L_{A}=L_{\infty}+\left(L_{1}-L_{\infty}\right) e^{-k\left(A-A_{1}\right)}
$$

Where asymptotic length, L_{∞}, is calculated as:

$$
L_{\infty}=L_{1}+\frac{L_{2}-L_{1}}{1-e^{-k\left(A_{2}-A\right)}}
$$

In these equations, L_{A} is length (cm) at age A, k is the growth coefficient, L_{α} is asymptotic length, and L_{1} and L_{2} are the sizes associated with a minimum A_{1} and maximum A_{2} reference ages.

Ages A_{1} and A_{2} were set to be 2 and 30 years, respectively. Female parameters L_{1}, L_{2}, growth coefficient k and CV associated with L_{1} estimates were estimated in the model. The male L_{2} and growth coefficient k were estimated in the model while L_{1} and CV associated with L_{1} were set to be identical to those of for females. CVs associated with L_{∞} were fixed in the model at the values estimated outside the model for both sexes. To estimate CV at L_{∞} we used length and age data from the NWFSC shelf-slope survey. These data were used to fit a 5 -parameter growth model ($L_{1}, L_{\infty}, k, C V_{1}$ and $C V_{\infty}$), which matches the one used in Stock Synthesis, i.e., errors are normally distributed around the von Bertalanffy growth curve, and the standard deviation of errors varies as a function of length, being linearly interpolated between CV at L_{1} and CV at L_{∞}.

2.3.4.2 Stock recruitment parameters

Recruitment dynamics are assumed in the assessment to be governed by a Beverton-Holt stock-recruit function. This relationship is parameterized to include two estimated quantities: the log of unexploited equilibrium recruitment $\left(R_{0}\right)$ and steepness (h).

In this assessment the \log of R_{0} was estimated, while h was fixed at its prior mean of 0.779. This prior was estimated using a likelihood profile approximation to a maximum marginal likelihood mixed-effect model for steepness from ten Tier-1 rockfish species off the U.S. West Coast (Pacific ocean perch, bocaccio, canary, chilipepper, black, darkblotched, gopher, splitnose, widow and yellowtail rockfish). Both northern and southern assessments of black rockfish were used, although the log-likelihood for each was given a 0.5 weighting, to ensure that the together these two assessments had an equal weighting to the other species. This likelihood profile model is intended to synthesize observation-level data from assessed species, while avoiding the use of model output and
thus improving upon previous meta-analyses (Dorn, 2002; Forrest et al., 2010). This methodology has been simulation tested, and has been recommended by the PFMC’ SSC for use in stock assessments.

We estimate lognormal deviations from the standard Beverton-Holt stock-recruit relationship for the period between 1870 and 2011. Deviations are penalized in the objective function, and the standard deviation of the penalty $\left(\sigma_{R}\right)$ is specified as:

$$
\hat{\sigma}_{R}=\sqrt{\frac{\sum_{y=1870}^{2011} \hat{r}_{y}^{2}}{2011-1870}+\left(\frac{\sum_{y=1870}^{2011} \hat{s}\left(\hat{r}_{y}\right)}{2011-1870+1}\right)^{2}}
$$

Where \hat{r}_{y} is the estimated recruitment deviation in year $y, \hat{s}\left(\hat{r}_{y}\right)$ is the estimated standard error of \hat{r}_{y}, the first summand on the right-hand side represents the sample variance of the recruitment deviations; the second summand on the right-hand side represents the average standard error-squared of recruitment deviations, as recommended in the "Estimating σ_{R} " subsection of Methot and Taylor (2011) and correcting for their typo.
'Main' recruitment deviations were estimated for modeled years that had information about recruitment (as determined from the bias-correction ramp), i.e., 1960-2011. We additionally estimated 'early' deviations between 1870 and 1959 so that age-structure in the initial modeled year (1915) would deviate from the stable age-structure to a degree that is consistent with estimated variability in recruitment. This resulted in an estimate of B_{0} that is also consistent with estimated variability in recruitment given the assumption that initial catch was negligible.

Recruitment deviations are also bias-corrected following Methot and Taylor (2011), by providing a proportion of the total bias correction for year y that varies depending upon how informative the data are about r_{y}. Specifically, we used R4SS (Taylor et al., 2012) to estimate a five-parameter bias-correction ramp (Figure 43).

2.3.4.3 Selectivity parameters

Gear selectivity parameters used in this assessment were specified as a function of size. Separate size-based selectivity curves were fit to each fishery fleet and survey, for which length composition data were available. Age-based selectivity was assumed to be 1.0 for all ages beginning at age-0.

A double-normal selectivity curve was used for all fleets, except for bycatch fishery, which was "mirrored" to domestic trawl fleet. The double-normal selectivity curve has six parameters, including: 1) peak, which is the length at which selectivity is fully selected, 2) width of the plateau on the top, 3) width of the ascending part of the curve, 4) width of the descending part of the curve, 5) selectivity at the first size bin, and 6) selectivity at the last size bin.

The selectivity curve for the domestic trawl fleet was assumed to be asymptotic because examination of length composition data revealed that this fleet is catching the largest fish observed. The selectivity curve was forced to be asymptotic by fixing the selectivity at the last size bin (parameter 6) at a large value. We also fixed the width of the plateau on the top (parameter 2) and the width of the descending part of the curve (parameter 4) at intermediate values since these parameters are redundant when selectivity is fixed to be asymptotic. When allowed to be dome-shaped (not fixed asymptotic), the fishery selectivity was essentially asymptotic with a drop observed in the very last bin, and trends in spawning output, recruitment, spawning depletion, relative SPR ratio as well as estimated current depletion levels were nearly identical for both runs (Figure 131 through Figure 134, Table 16).

A separate retention curve was estimated for the domestic trawl fleet. This retention curve is defined as a logistic function of size. It is controlled by four parameters including 1) inflection, 2) slope, 3) asymptotic retention, and 4) male offset to inflection. Male offset to retention was fixed at 0 (i.e. no male offset was applied). Asymptotic retention was set as a time-varying quantity to match the observed amount of discard between 2000 and 2010. The base value of asymptotic retention used for the period prior to 2000 and after 2010 was assumed to be 1 , since only a small portion of the catch was discarded prior to 2000 and since implementation of the IFQ fishery. Inflection and the slope of the retention curve were also allowed to change in 2011 (the beginning of the IFQ fishery) since analysis of length composition data of retain catch indicated a change relative to the pre-IFQ years, with smaller fish being retained. The time-varying parameters were set via use of time blocks.

The selectivity curves for all the surveys were estimated to be dome-shaped. The most important factors justifying dome-shaped selectivity for the slope surveys are related to differences in the specific types of trawl gear used in the survey versus the fishery. The NWFSC shelf-slope survey uses roller gear that is efficient in catching groundfish on the soft bottom and rock piles, but not in structurally complex habitats, where a number of rockfish, including darkblotched rockfish, reside as adults.

The fishery, on the other hand, has often been using large rollers, often called rockhopper gear for the last 30 years. Rockhopper gear (as well as other technological innovations to access areas with structurally complex habitats, such as rock pinnacles, boulder fields and deep sea coral forests) replaced bottom trawls that were historically dragged on relatively smooth bottoms in shallow water. Such trawls could not be used in the high relief habitats without risking expensive damage to the net from snagging on and rubbing against the rough bottom. With rockhoppers, fishing vessels are able to trawl in structurally complex habitats with a reduced probability of gear damage or loss, though with much greater destruction of important fish habitat and bottom dwelling species so that fishery management councils in the U.S. have enacted some limitation on the size of roller or rockhopper gear to protect rocky habitat and their inhabitants.

Another reason for bottom trawl surveys not taking largest individuals of darkblotched rockfish can be related to complex behavior of darkblotched rockfish in the water
column. Adult darkblotched rockfish are known to spend most of their time on the sea floor. However, Love et al. (2002) reports that darkblotched rockfish feed primarily in the midwater. The fact that darkblotched rockfish are among few rockfish species being bycaught in at-sea hake fishery (which operates in the midwater) confirms that this species can spend significant amount of time off the bottom, and therefore being not selected by bottom trawl survey gear.

2.4 Model Selection and Evaluation

2.4.1 Key assumptions and structural choices

The structure of the base model was selected to balance model realism and parsimony. Exploratory model runs, when natural mortality and shape of fishery selectivity curve were both estimated, demonstrated that the model was extremely unstable (i.e. was subject to local minima and produced wildly different results based on small differences in model assumptions). We agreed that we have more a priori information about natural mortality than about the shape of selectivity curve and, therefore, chose to fix natural mortality at a value $\left(0.05 \mathrm{yr}^{-1}\right)$ that is consistent with the Hoenig method and a number of earlier assessments. Given this specification, the domestic trawl fishery selectivity curve is estimated to be asymptotic even when given the opportunity to be a dome-shaped (i.e. a double-normal form). We have, therefore, chosen to specify that fishery selectivity is asymptotic, which is consistent with previous assessments.

We additionally sought to account for the effect of Rockfish Conservation Areas (RCAs) on fishery selectivity. RCAs were initiated in September of 2002, and could conceivably influence both the ascending and descending shape of a dome-shaped selectivity curve. When conducting a sensitivity run, in which the descending component was blocked to be asymptotic prior to RCAs and dome-shaped after RCAs, the model continued to estimate an asymptotic shape after RCAs. Additionally, sensitivity runs that specified a different block for the ascending limb resulted in implausible shapes for the ascending slope of selectivity prior to 2003. This occurs primarily because there is limited data to estimate blocks in the retention curve prior to 2003, and the retention curve estimated that after 2003 most fish smaller than 25 cm are being discarded. There is therefore essentially no information in the retained fishery length composition data to estimate changes in selectivity for the ascending limb affecting fish smaller than 25 cm prior to 2003. For this reason, we stipulate that fishery selectivity is constant prior to and after of implementation of RCAs.

Finally, earlier model structures explored splitting the fishery catches into several different fleets, corresponding to trawl and non-trawl gears, at-sea-hake bycatch and the foreign POP fishery removals. Such a split allowed us to separately estimate selectivity curves for at-sea-hake fishery and by non-trawl gear fleet. However, these fleets had similar selectivity to the trawl fishery, and contributed only 1-2\% to the total catch of darkblotched rockfish (Figure 4). Nevertheless, the model interpreted their composition data as representative of the entire stock, and iterative tuning of the composition data resulted in them receiving implausibly high weight (e.g., at-sea-hake bycatch having equal weight to the NWFSC shelf-slope survey compositional data). We, therefore,
chose not to use at-sea compositional data in the assessment, and selected the fleet structure defined in the base model.

2.4.2 Changes made during the STAR Panel meeting

During the STAR Panel meeting, analysis and evaluation of the base model were performed to further explore data sources and model assumptions to better understand model performance. The STAR Panel provided useful recommendations that were incorporated into the base model. Specific changes made to the pre-STAR model during the STAR Panel meeting included:

1) Change setting for the ages A_{1} and A_{2} in growth parameter specification section from 0 and 999 (the latter corresponds to L_{∞}) to 2 and 30 years, to improve estimability of CV parameters.
2) Assume a single CV for young ages for both sexes since estimating the CV for young males seems redundant.
3) Estimate the value for male natural mortality while holding the value for females fixed at $0.05 \mathrm{yr}^{-1}$. Dimorphic growth in fish is often accompanied by different rates of natural mortality. Even though model is unable to reliably estimate natural mortality for both sexes, compositional data can inform the difference between the sexes quite well, and estimating at least one sex would capture more of the uncertainty in the model results.

2.4.3 Evidence of search for global best estimates

For all model runs, we checked for evidence that the reported estimates were not the global optimum using three techniques. First, we used R4SS (Taylor et al. 2012) to do 25 re-estimates of the model after 'jittering’ starting values using a standard deviation of 0.1 times their parameter range, and ensured that the reported estimates had the greatest loglikelihood of all runs. In the case of the base model, jittering resulted in recovery of the initial estimates 25 times out of the 25 tests. Second, we conducted a likelihood profile across different values of $\ln \left(R_{0}\right)$ from 7.0 to 9.0 by 0.2 increments, to ensure that the reported estimates were at the maximum log-likelihood of this profile. Third, we ran $1,000,000$ samples of Markov chain Monte Carlo, extracted the sample with the maximum log-likelihood, and re-ran the optimizer from this location to ensure that this run resulted in the same final value as the reported estimates. For the base model, all three techniques yielded no evidence that the reported estimates differed from the global optimum.

2.4.4 Convergence criteria

A number of tests were done to verify convergence of the base model. Following conventional AD Model Builder methods (Fournier et al. 2012), we checked that the Hessian matrix for the base model was positive definite. We also confirmed that the final gradient was below 0.01 .

2.5 Base-Model Results

The list of the all the parameters used in the assessment model and their values (either fixed or estimated) is provided in Table 12. The life history parameters estimated within the model are reasonable and consistent with what we know about the species. Both sexes
follow the same trajectory in their growth. Males grow slightly faster than females, but with females reaching larger sizes (Figure 44). The estimated growth parameters for females and males are very close to the values used in previous assessments. Figure 45 through Figure 48 show weight-at-length relationships by sex, female maturity-at-length, fecundity-at-weight and spawning output-at-length generated based on fixed parameters that were derived outside the model. Female fecundity and spawning output in the assessment are expressed in number of eggs.

The base model was able to capture general trends for indices in all surveys (Figure 49 through Figure 52). Fit to the NWFSC slope and AFSC slope surveys was generally flat, as might be expected for such short time-series. We additionally explored including an extra standard deviation parameter for these two slope surveys, but it was estimated to be zero for both of them. With the offset estimate for the AFSC triennial survey beginning in 1995, predicted survey values fit the AFSC shelf survey abundance index well (Figure 49).

The NWFSC shelf-slope survey exhibits a slightly increasing trend in recent years, and the fit to the survey is mostly flat with a slight increase in recent years. The model was unable to fit the first (2003) point of the NWFSC survey time series. This is mostly because that survey abundance index reflects patchiness in the spatial distribution of darkblotched rockfish. The map of NWFSC survey catches by haul of the survey by year (Figure 39) shows that the NWFSC shelf-slope survey encountered one large haul of darkblotched rockfish in 2003, which causes the delta-GLMM estimate for 2003 to be higher than can be fit by the model, and also causes the design-based estimate for that year to be aberrantly high. For the AFSC triennial and NWFSC shelf-slope surveys, the model estimated non-zero extra SD parameters (0.01 and 0.06 for the AFSC shelf and NWFSC shelf-slope survey, respectively).

The model fit to length and age frequency distributions, by year and aggregated across year, and Pearson residuals for the fits by fleet, year and sex are shown in Figure 53 through Figure 80. The quality of fit varies among years and fleets, which reflects the differences in quantity and quality of data. The Pearson residuals, which reflect the noise in the data both within and among years, did not exhibit any strong trends.

Plots of observed and expected length composition for the trawl landings aggregated across all years (Figure 57, Figure 58) shows that the model is able to replicate the singlemodal length composition, as well as the tighter peak in length composition seen for males because the distribution of male length at maximum age has less overlap with the selectivity of the trawl fleet than does females. Similarly, the model is able to largely match the observed length composition for surveys, which incorporates differences in selectivity at length for these fleets. The survey length composition generally exhibits smaller average length than the fishery, and hence is more likely to pick out individual cohorts. This is born out in length composition plots by year for the NWFSC shelf-slope survey, where multiple modes are frequently seen and are generally matched by the model (e.g., male and female length compositions in 2010). Finally, the model is able to
predict the changes in length composition of discards, including a noticeable decline in average length of discards following implementation of IFQ fishery in 2011 (Figure 62).

Plots of observed and expected age compositions for the trawl fishery aggregated across all years (Figure 79, Figure 80) indicate general agreement between model and data, with the model able to replicate the large abundance of the data plus group. We also show the age compositions of trawl landings for years (1980-2001, and 2009-2012) that were not used in the model because age sampling was not conducted coastwide (Figure 81, Figure 82). These age compositions do not contribute to the likelihood and do not affect model fit in any way. These compositions are, therefore, often called "ghost" compositions. The fit to the "ghost" trawl age compositions shows that the model is able to reproduce a decline in the proportion of total abundance available to the fishery within the data plus group, despite these data not being included in the model log-likelihood. This ability to replicate data that are not included in the model provides additional support for the suitability of this model.

The fits to conditional ages at length and Pearson residuals for the fits by survey are shown in Figure 86 through Figure 99. These plots show that predicted average age at length is generally within predicted error bars around the observed average age at length, which provides support for the assumption that length at age is adequately approximated by the base model, as is necessary to model size at age internally to Stock Synthesis. For visual interpretation of fit to survey age composition data, we included the "ghost" marginal survey age compositions, with the likelihood contribution turned off so that they do not affect model fit (Figure 100 through Figure 103).

Estimated selectivity curves for fisheries and surveys are shown in Figure 104 through Figure 111. Selectivity curves for the trawl surveys are generally credible and broadly similar (Figure 104). Shelf surveys (the AFSC shelf and the NWFSC shelf-slope) have peak selectivity at length for smaller fishes than slope surveys, as is plausible for a species that has ontogenetic movement offshore. The AFSC shelf survey also would be expected to take fewer larger fish due to limited coverage of the depth range of the species. Trawl fishery selectivity curve, which is fixed to be asymptotic, shows that trawl fleet takes much larger fish than any of the surveys (Figure 104). The retention function, as expected shows changes in asymptote with changes in discard ratios as well as changes in slope and inflection of the curve at the start of the IFQ fishery. Estimated values for selectivity and retention parameters are provided in Table 12.

Discard ratios for domestic trawl fishery, as estimated from WCGOP and Pikitch study data, were fit by the model very well (Figure 112). Based on these data, year-specific discard fraction and discard amounts were estimated within the model (Figure 113, Figure 114). These estimates follow the assumption that discard amounts were minimal until 2000, when the species was declared overfished, and more restrictive management measures were implemented. Discard ratios increased following the implementation of management measures in the 2000s but decreased after the implementation of IFQ fishery. The retention curve is similarly estimated to shift to smaller fishes following IFQ
implementation, as fishers are encouraged to retain broader sizes of fish. The mean body weights of individuals in the discard were also fit very well (Figure 115).

The deviations from the estimated stock-recruitment function had a very large uncertainty prior to the mid-1960s, when the data first become informative about incoming cohort strengths (Figure 116). Therefore, the relative bias adjustment was ramped to the maximum value during this period. Recruitment of darkblotched rockfish was estimated to be quite variable over the historical record, and the estimated stock-recruit function predicts a wide range of cohort sizes over the observed range of spawning biomass (Figure 117).

The estimated time series of total and summary biomass, spawning output, spawning depletion (relative to B_{0}), recruitment and fishing mortality are presented in Figure 118 through Figure 123 and Table 13. Trends in total and summary biomass, spawning output and spawning depletion track one another very closely. The spawning output of darkblotched rockfish started to decline in the 1940s, during the World War II, but exhibited a sharp decline in the 1960s during the time of the intense foreign fishery targeting Pacific ocean perch. Between 1965 and 1975, the spawning output dropped from 89% to under 57% of its unfished level. The spawning output continued to decrease throughout the 1980s and 1990s and in 1999 reached its lowest estimated level of 13% of its unfished state. Since 2000, the spawning output has been slowly increasing that corresponds to decreased removals due to management regulations. Currently, the spawning output is estimated to be 36% of its unfished level (Figure 121).

2.6 Uncertainty and Sensitivity Analyses

Parameter uncertainty in the assessment is explicitly captured in the asymptotic confidence intervals estimated within the model and reported throughout this assessment for key parameters and management quantities (Figure 120, Figure 121 and Figure 122). These intervals reflect the uncertainty in the model fits to the data sources in the assessment, but do not include the uncertainty associated with alternative model configurations and fixed parameters. To explore uncertainty associated with alternative model configurations and evaluate the responsiveness of model outputs to changes in model assumptions, a variety of sensitivity runs were performed.

2.6.1 Sensitivity Analyses

A large number of configurations of the base model addressing alternative assumptions regarding key model parameters and structural choices were explored via the sensitivity analysis. Only the most relevant ones are reported here. Results of these selected sensitivity runs are summarized in Table 14, Table 15, Table 16 and Figure 124 through Figure 134.

2.6.1.1 Alternative assumptions about fishery removals

Historically, darkblotched rockfish landings have not been sampled at the discrete species level; therefore, time series of catch remained a source of uncertainty. Although significant progress has been made in reconstructing historical California and Oregon landings, the lack of early species composition data does not allow to account for a
gradual shift of fishing effort towards deeper areas, which can cause the potential to overestimate the historical contribution of slope species (including darkblotched rockfish) to overall landings of the mixed-species market category (i.e. "unspecified rockfish"). To explore the model sensitivity to uncertainty in darkblotched rockfish removals, we ran the model assuming: 1) landings in full time series of domestic trawl fishery doubled, 2) landings in full time series of domestic trawl fishery halved, 3) landings in historical (pre1980) time series of domestic trawl fishery doubled, 4) landings in historical (pre-1980) time series of domestic trawl fishery halved, 5) catches in both fleets (TWL and BYCATCH) doubled, and 6) catches in both fleets (TWL and BYCATCH) halved. Although these runs differed in the absolute estimate of B_{0} and R_{0} (Figure 124Figure 125), the trends in spawning depletion, and relative SPR ratio as well as estimated depletion levels varied only slightly (Figure 126, Figure 127, Table 14).

2.6.1.2 Alternative assumptions about life history parameters

A major uncertainty in this assessment is associated with life history parameters, particularly natural mortality and stock-recruit curve steepness. These quantities, which the model is unable to estimate reliably, were fixed at the values estimated outside the model. The model response to different values of natural mortality and steepness was explored via detailed likelihood profile analyses described above.

In this assessment, we also updated such life history parameters as female maturity and fecundity as well as parameters of weight-length relationships for both sexes. We used the newly available maturity data (collected within the NWFSC shelf-slope survey) to develop maturity at age matrix for the assessment, and new female fecundity estimates generated by Dick (2009) to describe female fecundity at weight relationship. In previous several assessments, female maturity and fecundity parameters were used as estimated by Nickol (1990). For new weight-length parameters, we used previously unavailable data from NWFSC shelf-slope survey and estimated separate sets of parameters for females and males, instead using one set of parameters for both sexes, as was done in several previous assessments. To explore the model sensitivity to updated maturity, fecundity and weight-length parameters, we ran the model assuming: 1) maturity parameters from Nickol (1990) as used in the previous assessment, 2) female fecundity parameters from Nickol (1990) as used in the previous assessment, and 3) weight-length relationship parameters as used in the previous assessment. We also ran the model with stock-recruit steepness fixed at the value of 0.76 , as used in the 2011 assessment, and not at the value of 0.779 as used in this assessment. Model results, including trends in spawning output, recruitment, spawning depletion and relative SPR ratio, were nearly identical before and after these changes (Figure 128 through Figure 130, Table 15). Estimated current depletion levels varied only slightly. Finally, ran the model with combination of assumed values of stock-recruit steepness (0.6) and natural mortality (0.07) as used in 2007 assessment. This ran produced the biggest change in model output, confining that combination of steepness and natural mortality parameters are essential for understanding the dynamics of the stock.

2.6.1.3 Alternative assumptions about selectivity parameters

In the base model, fishery selectivity curve was fixed asymptotic. We ran the model, allowing fishery selectivity to be dome-shaped. In this run, the fishery selectivity was essentially asymptotic with a drop in the very last bin, and trends in spawning output, recruitment, spawning depletion, relative SPR ratio as well as estimated current depletion levels were nearly identical for both runs (Figure 131 through Figure 134, Table 16).

In the assessment, the shape of selectivity curves for all the surveys were estimated and, therefore, allowed to be dome-shaped. In the previous assessment, NWFSC slope survey (which included a slope portion of NWFSC shelf-slope survey) was fixed asymptotic. In this assessment, we use NWFSC shelf-slope survey as a single time period, and to explore how sensitive model is to the assumption of this survey selectivity being domeshaped vs. asymptotic, we ran the model with this survey selectivity fixed asymptotic. The results are shown in Figure 131 through Figure 134 and Table 16. Even though trends in spawning output, recruitment, spawning depletion, relative SPR ratio as well as estimated current depletion levels were only slightly different, overall model fit degraded as indicated by the increased in negative log-likelihood degraded (Table 16).

2.6.2 Retrospective analysis

A retrospective analysis was conducted, where the model is fitted to a series of shortened input data sets, with the most recent years of input data sequentially being dropped. A 5year retrospective analysis was conducted by running the model using data only through 2007 ("5 year"), 2008, 2009, 2010 and 2011 (Figure 135 through Figure 138, Table 17). Little evidence of retrospective patterns was apparent.

The second type of retrospective analysis addresses assessment error, or at least the historical context of the current result given previous analyses. Figure 139 shows the spawning depletion time series for all assessment (full and update assessment) conducted since 2005. In aggregate, these assessments have largely drawn the same conclusions regarding historical trends: that the darkblotched resource declined rapidly due to high fishing intensity in the 1960s and 1970s, with continued decline in the 1980s and 1990s reaching the lowest point around 2000. For the last decade, the stock was slowly increasing due to management efforts toward rebuilding of the stock.

2.6.3 Likelihood profile analyses

The base model included several key parameters, such as natural mortality and stockrecruit steepness, which were fixed at the values determined based on life-history traits of the species of meta-analysis of species with similar life-history characteristics. To explore how informative the data in the model are in regard to these parameters, we performed likelihood profile analyses where we varied the values of these parameters and recorded the change the overall fit of the model.

A likelihood profile analysis conducted over a range of values for natural mortality shows that the negative log-likelihood for the base model declines with increasing natural mortality for all values between 0.02 and 0.10 (Figure 140). Natural mortality >0.10 is inconsistent with the age of old individuals that have been observed, as well as previous
assessments, and we, therefore, conclude that the model is unable to reliably estimate natural mortality. Also, the fact that the length and age composition data available for the assessment were collected only after extremely high darkblotched removals by the foreign POP fishery (and, therefore, these data cannot be expected to represent unfished equilibrium) provides an additional argument for the model not being able to estimate natural mortality reliably.

Similarly, a likelihood profile for steepness shows that the negative log-likelihood for the base model declines with increasing steepness up to the value of 0.95 (Figure 141). This value of steepness is considered to be implausible for a slow growing rockfish, although it is logical for the model to prefer a high steepness value given the strong recruitments seen at low biomass in 1995, 1999, 2000 and 2005. Given this implausible value, have chosen to fix steepness at the mean of the prior distribution obtained from 10 Tier-1 rockfish assessments off the U.S. West Coast $(h=0.779)$. This approach is consistent with recommendation of the PFMC’ SSC regarding the use of the steepness prior.

We also conducted a likelihood profile analysis for $\ln \left(R_{0}\right)$, which shows that the negative log-likelihood for the base model is optimized at a value of approximately 7.7 (as is estimated in the assessment), and that the primary source of information about $\ln \left(R_{0}\right)$ is in recruitment penalties (Figure 142). Exploratory analysis shows that different values of $\ln \left(R_{0}\right)$ scale recruitment deviations up or downward from the mean value of 0 , with low values of $\ln \left(R_{0}\right)$ having high recruitment deviations and vice-versa (Figure 143, Figure 144). Additionally, resulting recruitment scales with of $\ln \left(R_{0}\right)$, with high values of $\ln \left(R_{0}\right)$ having higher recruitment and low values of $\ln \left(R_{0}\right)$ having lower recruitment. This indicates that available data cause the model to seek a particular value for recruitment, and changes in $\ln \left(R_{0}\right)$ cause the model to compensate by changing recruitment deviations to continue achieving that desired level of recruitment, which causes recruitment deviations to contribute the greatest change in log-likelihood to $\ln \left(R_{0}\right)$.

3 Reference Points

Unfished spawning stock output for darkblotched rockfish was estimated to be 3,358 million eggs (95% confidence interval: 2,603-4,114 million eggs). The stock is declared overfished if the current spawning output is estimated to be below 25% of unfished level. The management target for darkblotched rockfish is defined as 40% of the unfished spawning output ($\mathrm{SB}_{40 \%}$), which is estimated by the model to be 1,343 million eggs (95% confidence interval: $1,041-1,646$), which corresponds to an exploitation rate of 0.0402 . This harvest rate provides an equilibrium yield of 675 mt at $\mathrm{SB}_{40 \%}$ (95% confidence interval: 526-824 mt). The model estimate of maximum sustainable yield (MSY) is 742 mt (95% confidence interval: 578-906 mt). The estimated spawning stock output at MSY is 819 million eggs (95% confidence interval: 635-1,003 million of eggs). The exploitation rate corresponding to the estimated $\mathrm{SPR}_{\mathrm{MSY}}$ of $\mathrm{F}_{30 \%}$ is 0.0665 .

The assessment shows that the stock of darkblotched rockfish off the continental U.S. Pacific Coast is currently at 36% of its unexploited level. This is above the overfished threshold of $\mathrm{SB}_{25 \%}$, but below the management target of $\mathrm{SB}_{40 \%}$ of unfished spawning output. Historically, the spawning output of darkblotched rockfish dropped below the
$\mathrm{SB}_{40 \%}$ target for the first time in 1987, as a result of intense fishing by foreign and domestic fleets. It continued to decline and reached the level of 13% of its unfished spawning output in 1999. Since 2000, when the stock was declared overfished, the spawning output was slowly increasing primarily due to management regulations implemented for the species (Figure 121).

This assessment estimates that the 2012 SPR is 86%, while the SPR-based management fishing mortality target is 50%. For the last 10 years, the relative SPR ratio (calculated as $1-\mathrm{SPR} / 1-\mathrm{SPR}_{\text {Target }=0.50}$) was below one, which means that overfishing of darkblotched rockfish has not been occurring (Figure 145). Historically, the darkblotched rockfish has been fished beyond the SPR-based target between 1966 and 1968, during the peak years of the Pacific ocean perch fishery and for a prolonged period between from 1981 and 2002. In the early-1970s the estimated darkblotched rockfish SPR ratio remained near the SPR target but exceeded it in 1973 and 1979. Phase plot of estimated relative (1-SPR) vs. relative spawning biomass for the base case model is shown in Figure 146, which also indicates that overfishing of darkblotched rockfish is not occurring.

A summary of reference points for the base model is provided in Table 18. A summary of recent trends in estimated darkblotched rockfish exploitation and stock level from the assessment model is given in Table 19.

4 Harvest Projections and Decision Table

The base model estimate for 2013 spawning depletion is 36%. The primary axis of uncertainty about this estimate used in the decision table was based on female natural mortality. Alternative states of nature were characterized using both the likelihood profile and the prior distribution for female natural mortality. The choice to use both sources of information for this fixed parameter was motivated by the observation that the data showed strong evidence against extremely low values of natural mortality, but was relatively flat for large values. In the absence of a fully integrated posterior distribution, the prior distribution based on maximum age was used as a proxy for the upper end of the range. The low and high states of nature for the decision table were therefore based on female natural mortality values of 0.036 and 0.082 , both approximately half as likely as the value used in the base model (0.05). The lower value of natural mortality corresponded to a depletion estimate of 18%, while the higher value corresponded to 82%, illustrating the marked sensitivity of the assessment results to a poorly informed parameter.

Twelve-year forecasts for each state of nature were calculated based on removals at current rebuilding SPR of 64.9% for the base model. Twelve-year forecasts were also calculated based on removals at an SPR of 71.9% for the base model, as requested by the Groundfish Management Team (GMT). This lower catch stream that corresponds to SPR 71.9% was used in the Decision Table of the 2011 darkblotched assessment. Finally, twelve-year forecasts for each state of nature were produced with future catches fixed at the 2014 ACL set for darkblotched rockfish.

Under the middle state of nature (which corresponds to the base model), the spawning output and depletion are projected to increase under all three considered catch streams, and reach the SB40\% target in 2015. Under the low state of nature, spawning output and depletion are also projected to increase under all three catch streams considered, but will stay below the SB40\% target within the next 12 years. Under the middle state of nature, the spawning output remains above the 40% target level throughout the 12 -year projection period.

5 Regional Management Considerations

This species is currently managed coastwide, with coastwide ACLs determined for management purposes. This assessment is not spatially structured. There are indications, however, that life history parameters, particularly growth, might be varying with latitude. Analysis conducted within this assessment did not allow to identify specific areas with different growth parameters, but rather detected continues gradient along the coast, which is common for Sebastes species on the West Coast of the United States. It was also suggested that maturity parameters may vary with latitude, as maturity schedule of fish collected in waters off California (Echeverria, 1987; Phillips, 1964) were found to be smaller than those of fish collected off Oregon (Nichol, 1990). However, Nichol (1990) argued that these differences can be rather attributed to different criteria used in different studies to determine maturity. Besides, Westrheim (1975) reported that the size at 50\% maturity for darkblotched rockfish decreased, rather than increased, with increasing latitude increased from Oregon to Alaska. To evaluate appropriateness of coastwise management of darkblotched rockfish, further research should be conducted to evaluate latitudinal variability in life history characteristics of this species. Also, given that the population range extends north to the border with Canada, it is important that future research evaluates the feasibility of a joint assessment with Canada.

6 Research Needs

The following research could improve the ability of future stock assessments to determine the current status and productivity of the darkblotched rockfish population:

1) The base model does not use commercial age composition data for years that lacked coast wide samples. The additional age data could provide information necessary for the model to estimate such parameters as natural mortality. Future research could ascertain whether additional otoliths exist for these years, and whether they could be aged using current ageing methods. Also, alternative fleet structures (with state specific fisheries) could be explored to take use of as much available age data as possible.
2) The base model uses newly available information of female maturity collected within the NWFSC shelf-slope survey. This new information includes data on mass atresia (a form of skipped spawning), not previously available for the assessment. At present, Stock Synthesis allows incorporation of this information only when maturity is expressed as a function of age. Effort should be devoted to expand maturity options in Stock Synthesis to allow expression of maturity information (with mass atresia) as a function of female length. Also, continued
collection of maturity samples would allow future researchers to explore differences in maturity at age, either spatially or over time.
3) Additional research would be important to explore whether other life history parameters, such as growth and fecundity vary spatially or change over time as well. This information will help in defining spatial structure of future models.
4) Given that the population range extends north to the border with Canada, it is important that future research would evaluate the impact of not accounting for any Canadian portion of population abundance. Such an analysis would require evaluation of movement of darkblotched along the coast, which information is currently lacking.
5) Future research could also improve existing meta-analyses for natural mortality and steepness, which both contribute to the implied yield curve. Directions for improvements include (1) explaining variability between methods in natural mortality estimates, included in the Hamel natural mortality method and (2) developing a larger database of species for estimating steepness, perhaps by including species from other regions, e.g., Canada and Alaska.
6) Imprecision in the indices of abundance derived from survey sampling, due a low probability the species occurrence, is one of the sources of uncertainty in this assessment. Future research could explore the utility of model-based index standardization techniques; in particular, those using spatial modeling approaches. Spatial models could potentially account for the component of sampling variance arising from the random allocation of sampling tows either in or outside of suitable habitat. Such models could potentially decrease residual variance and imprecision of the resultant indices of abundance.
7) Finally, we note that Markov chain Monte Carlo sampling using the Metropolis algorithm was unable to obtain a sufficient number of independent samples within a feasible time period. However, it had trouble primarily with a single parameter (variance inflation for a survey index). We therefore recommend to improve MCMC options in ADMB, perhaps by making necessary changes to the Hamiltonian MCMC option (i.e., by allowing samples to be thinned during running, and hence making longer MCMC chains feasible for the ADMB implementation of Hamiltonian sampling).

7 Literature Cited

Alverson, D.L., Pruter, A.T., Ronholt, L.L., 1964. A study of demersal fishes and fisheries of the northeastern Pacific Ocean. Institute of Fisheries, University of British Columbia.
Barss, W.H., Niska, E.L. 1978. Pacific Ocean perch (Sebastes alutus) and other rockfish (Scorpaenidae) trawl landings in Oregon 1963-1977. Oregon Department of Fish and Wildlife, Informational Report 78-6.
Bradburn, M. J., Keller, A. Horness, B. H. 2011. The 2003 to 2008 U.S. West Coast bottom trawl surveys of groundfish resources off Washington, Oregon, and California: Estimates of distribution, abundance, length, and age composition. U.S. Dept. of Commerce, NOAA Technical Memorandum NMFS-NWFSC-114.

Cleaver, F.C., 1951. Fisheries statistics of Oregon. Oregon Fish Commission 16.
Dick, E. J. 2009. Modeling the reproductive potential of rockfishes (Sebastes spp.). Ph.D. Dissertation, University of California, Santa Cruz.
Dorn, M.W. 2002. Advice on West Coast rockfish harvest rates from Bayesian metaanalysis of stock- recruit relationships. North American Journal of Fisheries Management 22: 280-300.
Douglas, D.A., 1998. Species composition of rockfish in catches by Oregon trawlers, 1963-93. Marine Program Data Series Report, Oregon Department of Fish and Wildlife.
Echeverria, T.W., 1987. Thirty-four species of California rockfishes: Maturity and seasonality of reproduction. Fishery Bulletin 85: 229-250.
Forrest, R.E., McAllister, M.K., Dorn, M.W., Martell, S.J.D., Stanley, R.D. 2010. Hierarchical Bayesian estimation of recruitment parameters and reference points for Pacific rockfishes (Sebastes spp.) under alternative assumptions about the stock-recruit function. Canadian Journal of Fisheries and Aquatic Sciences 67: 1611-1634.
Fournier, D.A., Skaug, H.J., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M.N., Nielsen, A., Sibert, J. 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optimization Methods and Software 27: 1-17.
Gomez-Uchida, D., Banks, M.A. 2005. Microsatellite analyses of spatial genetic structure in darkblotched rockfish (S ebastes crameri): Is pooling samples safe? Canadian Journal of Fisheries and Aquatic Sciences 62: 1874-1886.
Gunderson, D.R., Zimmerman, M, Nichol, D.G., Pearson, K. 2003. Indirect estimates of natural mortality rate for arrowtooth flounder (Atheresthes stomias) and darkblotched rockfish (Sebastes crameri). Fishery Bulletin 101:175-182.
Haigh, R., Starr, P. 2008. A review of darkblotched rockfish Sebastes crameri along the Pacific coast of Canada: biology, distribution, and abundance trends. Fisheries and Oceans Canada, Science.
Hamel, O.S. 2008. Status and future prospects for the darkblotched rockfish resource in waters off Washington, Oregon and California as assessed in 2007. Pacific Fishery Management Council, Portland, OR.
Harry, G., Morgan, A.R. 1961. History of the trawl fishery, 1884-1961. Oregon Fish Commission Research Briefs 19: 5-26.

Helser, T.E., Punt, A.E., Methot, R.D. 2004. A generalized linear mixed model analysis of a multi-vessel fishery resources survey. Fisheries Research 70: 251-264.
Hoenig, J.M. 1983. Empirical use of longevity data to estimate mortality rates. Fishery Bulletin 82(1): 898-902.
Hongskul, V. 1975. Fishery dynamics of the northeastern Pacific groundfish resources. Ph.D. Dissertation, University of Washington, Seattle.
Karnowski, M., Gertseva, V.V., Stephens, A. 2012. Historical Reconstruction of Oregon's Commercial Fisheries Landings (draft in review).
Keller, A.A., Horness, B.H., Simon, V.H., Tuttle, V.J., Wallace, J.R., Fruh, E.L., Bosley, K.L., Kamikawa, D.J., Buchanan, J.C. 2007. The U.S. West Coast trawl survey of groundfish resources off Washington, Oregon, and California: Estimates of distribution, abundance, and length composition in 2004. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-NWFSC.
Lauth, R.R. 2000. The 2000 Pacific west coast upper continental slope trawl survey of groundfish resources off Washington, Oregon, and California: Estimates of distribution, abundance, and length composition. NTIS No. PB2001-105327.
Lenarz, W.H., 1993. An initial examination of the status of the darkblotched rockfish fishery off the coasts of California, Oregon, and Washington. Append. C Append. Status Pac. Coast Groundf.
Love, M.S., Yoklavich, M.M., Thorsteinson, L.K., 2002. The rockfishes of the northeast Pacific. University of California Press.
Maunder, M.N., Punt, A.E., 2004. Standardizing catch and effort data: a review of recent approaches. Fisheries Research 70: 141-159.
Methot, R.D.J., Taylor, I.G. 2011. Adjusting for bias due to variability of estimated recruitments in fishery assessment models. Canadian Journal of Fisheries and Aquatic Sciences 68: 1744-1760.
McDermott, S.F. 1994. Reproductive Biology of Rougheye and Shortraker Rockfish, Sebastes aleutianus and Sebastes borealis. M.S. Thesis, University of Washington, Seattle.
Nichol, D.G. 1990. Life history examination of darkblotched rockfish (Sebastes crameri) off the Oregon coast. M.S. Thesis, Oregon State University, Corvallis.
Nichol, D. G., Pikitch, E.K. 1994. Reproduction of darkblotched rockfish off the Oregon coast. Transactions of the American Fisheries Society 123: 469-481.
Niska, E.L., 1969. The Oregon trawl fishery for mink food. Pacific Marine Fishery Commission. Bulletin 7.
Niska, E.L., 1976. Species composition of rockfish in catches by Oregon trawlers 19631971. Oregon Department of Fish and Wildlife, Informational Report 76-7.

Phillips, J.B., 1964. Life history studies on ten species of rockfish (genus Sebastodes). Resources Agency of California, Department of Fish and Game.
Pikitch, E.K., Erickson, D.L., Wallace, J.R., 1988. An evaluation of the effectiveness of trip limits as a management tool. Northwest and Alaska Fisheries Center, National Marine Fisheries Service, US Department of Commerce.
Punt, A.E., Smith, D.C., KrusicGolub, K., Robertson, S. 2008. Quantifying age-reading error for use in fisheries stock assessments, with application to species in Australias southern and eastern scalefish and shark fishery. Canadian Journal of Fisheries and Aquatic Sciences 65: 1991-2005.

Ralston, S., Pearson, D.E., Field, J.C., Key, M. 2010. Documentation of the California catch reconstruction project. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southwest Fisheries Science Center.
Rogers, J.B. 1994. Assemblages of groundfish caught using commercial fishing strategies off the coasts of Oregon and Washington from 1985-1987.Ph.D. Dissertation, Oregon State University, Oregon.
Rogers, J.B., Methot, R.D., Builder, T.L., Piner, K Wilkins, M. 2000. Status of the Darkblotched Rockfish (Sebastes crameri) Resource in 2000, appendix to Status of the Pacific coast groundfish fishery through 2000 and recommended acceptable biological catches for 2001. Pacific Fishery Management Council, Portland, OR.
Rogers, J.B. 2003. Species allocation of Sebastes and Sebastolobus sp. caught by foreign countries from 1965 through 1976 off Washington, Oregon, and California, USA. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service.
Rogers, J.B. 2003. Darkblotched Rockfish (Sebastes crameri) 2003 Stock Status and Rebuilding Update, appendix to Status of the Pacific coast groundfish fishery through 2003 and recommended acceptable biological catches for 2004. Pacific Fishery Management Council, Portland, OR.
Rogers, J.B., 2005. Status of the Darkblotched Rockfish (Sebastes crameri) Resource in 2005. Pacific Fishery Management Council, Portland, OR.

Rogers, J.B., Methot, R.D., Builder, T.L., Piner, K., Wilkins, M., 2000. Status of the darkblotched rockfish (Sebastes crameri) resource in 2000. Append. Status Pac. Coast Groundf. Fish.
Rogers, J.B., Pikitch, E.K., 1992. Numerical definition of groundfish assemblages caught off the coasts of Oregon and Washington using commercial fishing strategies. Canadian Journal of Fisheries and Aquatic Sciences 49: 2648-2656.
Rogers, J.B., Wilkins, M., Kamikawa, D., Wallace, F., Builder, T., Zimmerman, M., Kander, M., Culver, B. 1996. Status of the remaining rockfish in the Sebastes complex in 1996 and recommendations for management in 1997. Status Pac. Coast Groundf. Fish. 59.
Scofield, W.L. 1948. Trawling gear in California. Fishery Bulletin 72.
Smith, H.S. 1956. Fisheries statistics of Oregon, 1950-1953. Fish Commission of Oregon 22.

Snytko, V. A., Borets, L.A. 1973. Some data on the fecundity of ocean perch in the Vancouver-Oregon region. (translated from Russian). Fisheries Research Board of Canada Translation Series No. 2502.
Stephens, A., Hamel, O., Taylor, I., Welzel, C. 2011. Status and Future Prospects for the Darkblotched Rockfish Resource in Waters off Washington, Oregon, and California in 2011. In: Status of the Pacific Coast Groundfish Fishery through 2011, Stock Assessment and Fishery Evaluation: Stock Assessments, STAR Panel Reports, and Rebuilding Analyses. Pacific Fishery Management Council, Portland, OR.
Stewart, I.J., Thorson, J.T., Wetzel, C. 2011. Status of the US Sablefish resource in 2011. In: Status of the Pacific Coast Groundfish Fishery through 2011, Stock

Assessment and Fishery Evaluation: Stock Assessments, STAR Panel Reports, and Rebuilding Analyses. Pacific Fishery Management Council, Portland, OR.
Tagart, J., Kimura, D.K. 1982. Review of Washington's Coastal Trawl Rockfish Fishery. Technical report 68, State of Washington Department of Fisheries.
Tagart, J.V. 1985. Estimated domestic trawl rockfish landings, 1963-1980. Unpublished manuscript and data. Washington Department of Fisheries.
Taylor, I., Stewart, I., Hicks, A., Garrison, T., Punt, A., Wallace, J., Wetzel, C. 2012. r4ss: R code for Stock Synthesis.
Thorson, J.T., Ward, E. 2013. Accounting for space-time interactions in index standardization models. Fisheries Research (In press).
Thorson, J.T., Stewart, I., Punt, A. 2011. Accounting for fish shoals in single- and multispecies survey data using mixture distribution models. Canadian Journal of Fisheries and Aquatic Sciences 68: 1681-1693.
Thorson, J.T., Stewart, I.J., Punt, A.E. 2012. Development and application of an agentbased model to evaluate methods for estimating relative abundance indices for shoaling fish such as Pacific rockfish (Sebastes spp.). Ices Journal of Marine Sciences 69: 635-647.
von Bertalanffy, L. 1938. A quantitative theory of organic growth (inquiries on growth laws II). Human Biology 10: 181-213.
Wallace, J., Hamel, O. 2009. Status and Future Prospects for the Darkblotched Rockfish Resource in Waters off Washington, Oregon, and California as Updated in 2009. In: Status of the Pacific Coast Groundfish Fishery through 2009, Stock Assessment and Fishery Evaluation: Stock Assessments, STAR Panel Reports, and Rebuilding Analyses. Pacific Fishery Management Council, Portland, OR.
Westrheim, S.J. 1975. Reproduction, maturation, and identification of larvae of some Sebastes (Scorpaenidae) species in the northeast Pacific Ocean. Journal of the Fisheries Research Board of Canada 32: 2399-2411.
Weinberg, K.L., Wilkins, M. E., Shaw, F. R., Zimmermann, M. 2002. The 2001 Pacific west coast bottom trawl survey of groundfish resources: estimates of distribution, abundance, and length and age composition. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-AFSC-128.
Wilberg, M.J., Thorson, J.T., Linton, B.C., and Berkson, J. 2010. Incorporating timevarying catchability into population dynamic stock assessment models. Reviews in Fisheries Science 18: 7-24.
Wilkins, M.E. Golden, J.T. 1983. Condition of the Pacific ocean perch resource off Washington and Oregon during 1979: Results of a cooperative trawl survey. North American Journal of Fisheries Management 3: 103-122.
Zimmerman, M. 2001. Retrospective analysis of suspiciously small catches in the National Marine Fisheries Service West Coast Triennial bottom trawl survey. AFSC Processed Rep. 2001-03, AFSC/NMFS, Seattle.

8 Tables

Table 1: Recent darkblotched rockfish Overfishing Limits (OFLs) and Annual Catch Limits (ACLs) relative to recent total landings and total dead catch estimated in this assessment.

Year	OFL (mt)	ACL (mt)	Commercial Landings (mt)	Estimated Total Catch $(\mathrm{mt})^{*}$
2003	205	172	80	213
2004	240	240	189	244
2005	269	269	98	130
2006	294	200	107	192
2007	456	290	144	281
2008	487	330	117	253
2009	437	285	138	294
2010	440	291	184	350
2011	508	298	117	120
2012	497	296	94	96

*Includes discards estimated within the stock assessment and therefore may differ from total mortality reports used by management.

Table 2: Total landings (mt) of darkblotched rockfish for the domestic trawl fleet (provided here by state) and bycatch fleet (separated here as bycatch in foreign POP and in at-sea Pacific hake fisheries).

Year	Domestic trawl California	Domestic trawl Oregon	Domestic trawl Washington	Bycatch in foreign POP fishery	Bycatch in at-sea hake fishery	Total
1915	0	0	0	0	0	0
1916	13	0	0	0	0	13
1917	21	0	0	0	0	21
1918	21	0	0	0	0	21
1919	14	0	0	0	0	14
1920	14	0	0	0	0	14
1921	12	0	0	0	0	12
1922	11	0	0	0	0	11
1923	14	0	0	0	0	14
1924	14	0	0	0	0	14
1925	16	0	0	0	0	16
1926	21	0	0	0	0	21
1927	18	0	0	0	0	18
1928	18	0	0	0	0	18
1929	19	0	0	0	0	19
1930	21	0	0	0	0	21
1931	26	0	0	0	0	26
1932	16	0	0	0	0	16
1933	16	0	0	0	0	16
1934	15	0	0	0	0	15
1935	17	0	0	0	0	17
1936	11	0	0	0	0	12
1937	13	1	0	0	0	14
1938	16	0	0	0	0	17
1939	23	1	0	0	0	24
1940	20	13	0	0	0	33
1941	22	19	0	0	0	42
1942	12	36	1	0	0	48
1943	57	125	2	0	0	184
1944	177	218	3	0	0	398
1945	334	337	8	0	0	679
1946	189	209	4	0	0	401
1947	199	130	2	0	0	332
1948	99	89	3	0	0	191
1949	70	86	4	0	0	160
	13	0	0	0	0	0

Year	Domestic trawl California	Domestic trawl Oregon	$\begin{aligned} & \text { Domestic } \\ & \text { trawl } \\ & \text { Washington } \end{aligned}$	Bycatch in foreign POP fishery	Bycatch in at-sea hake fishery	Total
1950	73	101	4	0	0	178
1951	106	96	3	0	0	206
1952	78	136	3	0	0	217
1953	87	96	1	0	0	185
1954	79	136	2	0	0	217
1955	131	123	2	0	0	256
1956	149	189	2	0	0	339
1957	190	205	1	0	0	396
1958	180	153	2	0	0	335
1959	139	142	2	0	0	283
1960	151	189	2	0	0	342
1961	120	197	2	0	0	319
1962	107	235	3	0	0	345
1963	136	225	7	0	0	368
1964	85	175	5	0	0	265
1965	97	380	6	0	0	483
1966	84	320	8	3807	0	4220
1967	102	262	6	2706	0	3076
1968	110	17	7	2288	0	2422
1969	43	80	11	153	0	287
1970	49	145	8	149	0	351
1971	65	174	11	278	0	528
1972	84	148	6	374	0	611
1973	67	67	13	768	0	914
1974	95	144	24	346	0	609
1975	106	102	111	293	0	612
1976	121	322	99	118	11	670
1977	123	130	62	0	2	318
1978	60	156	199	0	1	416
1979	148	497	88	0	4	736
1980	166	334	99	0	21	620
1981	522	266	37	0	12	836
1982	170	941	24	0	2	1136
1983	510	582	22	0	12	1126
1984	596	625	82	0	20	1323
1985	802	848	111	0	13	1774
1986	417	622	215	0	6	1260
1987	1647	686	68	0	14	2415
1988	750	789	108	0	10	1656

Year	Domestic trawl California	Domestic trawl Oregon	Domestic trawl Washington	Bycatch in foreign POP fishery	Bycatch in at-sea hake fishery	Total
1989	441	737	91	0	5	1274
1990	870	764	16	0	28	1679
1991	333	774	54	0	45	1206
1992	187	451	20	0	29	687
1993	285	892	9	0	8	1194
1994	292	550	9	0	15	866
1995	366	342	28	0	49	786
1996	408	309	19	0	6	743
1997	452	342	22	0	4	820
1998	497	395	20	0	14	927
1999	113	227	10	0	11	361
2000	114	129	8	0	8	259
2001	87	66	10	0	12	175
2002	50	52	7	0	3	112
2003	11	62	2	0	4	80
2004	39	136	7	0	7	189
2005	18	68	1	0	11	98
2006	23	71	2	0	11	107
2007	41	87	3	0	12	144
2008	34	74	3	0	6	117
2009	47	89	2	0	0	138
2010	17	152	7	0	8	184
2011	3	87	14	0	12	117
2012	7	70	15	0	2	94

Table 3: Summary of fishery sampling effort (number of trips, hauls and fish sampled) used to create length frequency distributions of the domestic trawl fishery.

Year	Lengths from retained catch						Lengths from discarded catch		
	California		Oregon		Washington				
	$\begin{gathered} \hline \# \\ \text { Trips } \end{gathered}$	\# Fish	$\begin{gathered} \# \\ \text { Trips } \end{gathered}$	\# Fish	$\begin{gathered} \# \\ \text { Trips } \\ \hline \end{gathered}$	\# Fish	$\begin{gathered} \hline \# \\ \text { Trips } \end{gathered}$	\#Hauls	\# Fish
1977	0	0	5	304	0	0	0	0	0
1978	26	263	2	200	0	0	0	0	0
1979	11	86	0	0	0	0	0	0	0
1980	31	206	0	0	0	0	0	0	0
1981	29	195	0	0	0	0	0	0	0
1982	55	444	2	300	0	0	0	0	0
1983	115	792	0	0	0	0	0	0	0
1984	161	1925	1	70	0	0	0	0	0
1985	206	2985	0	0	0	0	0	0	0
1986	145	2436	0	0	0	0	5	0	145
1987	119	2644	0	0	0	0	0	0	0
1988	93	1339	0	0	0	0	0	0	0
1989	91	1098	0	0	0	0	0	0	0
1990	89	862	1	100	0	0	0	0	0
1991	72	756	2	200	0	0	0	0	0
1992	45	421	0	0	0	0	0	0	0
1993	42	509	0	0	0	0	0	0	0
1994	39	436	2	200	0	0	0	0	0
1995	40	745	7	188	0	0	0	0	0
1996	72	1003	23	833	0	0	0	0	0
1997	52	909	22	802	0	0	0	0	0
1998	70	1232	13	541	24	317	0	0	0
1999	37	712	9	430	24	332	0	0	0
2000	50	869	7	224	20	652	0	0	0
2001	39	692	30	1005	20	660	0	0	0
2002	39	861	21	611	47	1124	34	70	674
2003	27	436	59	1398	28	580	40	91	851
2004	29	526	58	1305	19	605	67	117	742
2005	33	567	54	1275	9	117	109	257	1526
2006	62	1129	62	1457	10	397	116	292	1152
2007	74	1520	79	2155	22	529	108	169	573
2008	81	1795	102	2689	12	350	121	202	674
2009	52	1214	136	2828	11	350	203	317	1154
2010	44	746	136	2855	5	206	89	138	538
2011	53	559	148	2570	17	869	82	125	349
2012	0	0	124	2301	17	729	0	0	0

Table 4: Summary of fishery sampling effort (number of trips, hauls and fish sampled) used to create age frequency distributions of the domestic trawl fishery.

Year	Ages from retained catch						Ages from discarded catch		
	California		Oregon		Washington				
	$\begin{gathered} \hline \text { \# } \\ \text { Trips } \\ \hline \end{gathered}$	\# Fish	$\begin{gathered} \# \\ \text { Trips } \\ \hline \end{gathered}$	\# Fish	$\begin{gathered} \# \\ \text { Trips } \end{gathered}$	\# Fish	$\begin{gathered} \# \\ \text { Trips } \\ \hline \end{gathered}$	\#Hauls	\# Fish
1980	28	185	0	0	0	0	0	0	0
1981	29	195	0	0	0	0	0	0	0
1982	52	413	0	0	0	0	0	0	0
1983	79	527	0	0	0	0	0	0	0
1985	198	2874	0	0	0	0	0	0	0
1986	17	169	0	0	0	0	0	0	0
1987	48	1071	0	0	0	0	0	0	0
1988	29	372	0	0	0	0	0	0	0
1990	75	798	0	0	0	0	0	0	0
1991	35	352	0	0	0	0	0	0	0
1993	37	468	0	0	0	0	0	0	0
1994	35	417	0	0	0	0	0	0	0
1995	17	354	0	0	0	0	0	0	0
1996	58	776	0	0	0	0	0	0	0
1997	48	810	1	33	0	0	0	0	0
1998	53	855	0	0	0	0	0	0	0
1999	23	500	1	24	0	0	0	0	0
2000	30	562	6	183	0	0	0	0	0
2001	27	620	25	843	0	0	0	0	0
2002	29	635	20	610	12	388	0	0	0
2003	22	319	51	1162	11	369	0	0	0
2004	15	243	27	753	11	414	42	62	229
2005	31	493	42	912	6	103	81	171	506
2006	46	856	54	1219	8	293	0	0	0
2007	30	559	66	1774	18	423	0	0	0
2008	21	309	87	2350	9	243	0	0	0
2009	0	0	35	905	11	272	0	0	0
2010	0	0	116	2331	4	120	0	0	0
2011	0	0	0	0	15	535	0	0	0
2012	0	0	16	421	10	455	0	0	0

Table 5: Latitudinal and depth ranges by year of four NMFS groundfish trawl surveys used in the assessment.

Survey	Year	Latitudes	Depths (fm)
AFSC shelf	1977	$34^{\circ} 00{ }^{\prime}$ - Border	50-250
	1980	$36^{\circ} 48^{\prime}-49^{\circ} 15^{\prime}$	30-200
	1983	$36^{\circ} 48^{\prime}-49^{\circ} 15^{\prime}$	30-200
	1986	$36^{\circ} 48^{\prime}$ - Border	30-200
	1989	$34^{\circ} 30^{\prime}-49^{\circ} 40^{\prime}$	30-200
	1992	$34^{\circ} 30 \cdot-49^{\circ} 40^{\prime}$	30-200
	1995	$34^{\circ} 30^{\prime}-49^{\circ} 40^{\prime}$	30-275
	1998	$34^{\circ} 30{ }^{\prime}-49^{\circ} 40^{\prime}$	30-275
	2001	$34^{\circ} 30^{\prime}-49^{\circ} 40^{\prime}$	30-275
	2004	$34^{\circ} 30^{\prime}$ - Border	30-275
AFSC slope	1988	$44^{\circ} 05^{\prime}-45^{\circ} 30^{\prime}$	100-700
	1990	$44^{\circ} 30^{\prime}-40^{\circ} 30^{\prime}$	100-700
	1991	$38^{\circ} 20^{\prime}-40^{\circ} 30^{\prime}$	100-700
	1992	$45^{\circ} 30 '$ - Border	100-700
	1993	$43^{\circ} 00^{\prime}-45^{\circ} 30^{\prime}$	100-700
	1995	$40^{\circ} 30^{\prime}-43^{\circ} 00^{\prime}$	100-700
	1996	$43^{\circ} 00{ }^{\prime}$ - Border	100-700
	1997	$34^{\circ} 00{ }^{\prime}$ - Border	100-700
	1999	$34^{\circ} 00{ }^{\prime}$ - Border	100-700
	2000	$34^{\circ} 00^{\prime}$ - Border	100-700
	2001	$34^{\circ} 00{ }^{\prime}$ - Border	100-700
NWFSC slope	1999	$34^{\circ} 50{ }^{\prime}-48^{\circ} 10^{\prime}$	100-700
	2000	$34^{\circ} 50{ }^{\prime}-48^{\circ} 10^{\prime}$	100-700
	2001	$34^{\circ} 50{ }^{\prime}-48^{\circ} 10^{\prime}$	100-700
	2002	$34^{\circ} 50{ }^{\prime}-48^{\circ} 10^{\prime}$	100-700
NWFSC shelf-slope	2003	$32^{\circ} 34^{\prime}-48^{\circ} 27^{\prime}$	30-700
	2004	$32^{\circ} 34^{\prime}-48^{\circ} 27^{\prime}$	30-700
	2005	$32^{\circ} 34^{\prime}-48^{\circ} 27^{\prime}$	30-700
	2006	$32^{\circ} 34^{\prime}-48^{\circ} 27^{\prime}$	30-700
	2007	$32^{\circ} 34^{\prime}-48^{\circ} 27^{\prime}$	30-700
	2008	$32^{\circ} 34^{\prime}-48^{\circ} 27^{\prime}$	30-700
	2009	$32^{\circ} 34^{\prime}-48^{\circ} 27^{\prime}$	30-700
	2010	$32^{\circ} 34^{\prime}-48^{\circ} 27^{\prime}$	30-700
	2011	$32^{\circ} 34^{\prime}-48^{\circ} 27^{\prime}$	30-700
	2012	$32^{\circ} 34^{\prime}-48^{\circ} 27^{\prime}$	30-700

Table 6: Spatial strata used in constructing survey abundance indices for surveys used in the assessment.

Survey	Latitude (N. lat.)	Depth (m)
AFSC shelf (1980-1992)	$36^{0} 5^{\prime \prime}-40^{0} 5^{\prime \prime}$	55-400
	$40^{0} 5^{\prime \prime}-43^{0}$	55-400
	$43^{0}-47^{0} 5^{\prime \prime}$	55-400
	$47^{0} 5^{\prime \prime}-49^{0}$	55-400
AFSC shelf (1995-2004)	$34^{0} 5^{\prime \prime}-40^{0} 5^{\prime \prime}$	55-300
		300-500
	$40^{0} 5^{\prime \prime}-43^{0}$	55-300
		300-500
	$43^{0}-49^{0}$	55-300
		300-500
AFSC slope	$34^{0} 5^{\prime \prime}-43^{0}$	183-300
		300-549
	$43^{0}-49^{0}$	183-300
		300-549
NWFSC slope	$34^{0} 5^{\prime \prime}-40^{0} 5^{\prime \prime}$	183-300
		300-549
	$40^{0} 5^{\prime \prime}-43^{0}$	183-300
		300-549
	$43^{0}-47^{0} 5^{\prime \prime}$	183-300
	43-475	300-549
	$47^{0} 5^{\prime \prime}-49^{0}$	183-300
	475 - 49	300-549
NWFSC shelf-slope	$34^{0} 5^{\prime \prime}-40^{0} 5^{\prime \prime}$	55-300
		300-549
	$40^{0} 5^{\prime \prime}-43^{0}$	55-300
	40 - 43	300-549
	$43^{0}-47^{0} 5^{\prime \prime}$	55-300
	$43-475$	300-549
	$47^{0} 5^{\prime \prime}-49^{0}$	55-300
		300-549

Table 7: Summary of sampling effort used to produce AFSC shelf survey biomass index and generate length and age frequency distributions.

Year	Number of hauls	Number of positive hauls	Number of hauls with lengths	Number of lengths	Number of hauls with ages	Numbers of ages
1980	349	126	12	656	2	96
1983	521	232	44	4483	1	117
1986	484	188	39	1839	8	219
1989	505	198	91	3056	0	0
1992	482	159	43	1614	0	0
1995	512	172	163	2897	45	626
1998	528	169	169	3396	62	467
2001	506	186	186	2935	115	1030
2004	383	152	152	3578	148	1134

Table 8: Summary of sampling effort used to produce AFSC slope survey biomass index and generate length and age frequency distributions.

Year	Number of hauls	Number of positive hauls	Number of hauls with lengths	Number of lengths	Number of hauls with ages	Numbers of ages
1997	182	27	25	314	0	0
1999	199	32	32	259	0	0
2000	208	27	27	236	24	128
2001	207	22	22	363	18	191

Table 9: Summary of sampling effort used to produce NWFSC slope survey biomass index and generate length and age frequency distributions.

Year	Number of hauls	Number of positive hauls	Number of hauls with lengths	Number of lengths	Number of hauls with ages	Numbers of ages
1999	324	53	0	0	0	0
2000	329	54	25	296	25	291
2001	334	54	45	494	45	359
2002	426	56	54	1027	54	827

Table 10: Summary of sampling effort used to produce NWFSC shelf-slope survey biomass index and generate length and age frequency distributions.

Year	Number of hauls	Number of positive hauls	Number of hauls with lengths	Number of lengths	Number of hauls with ages	Numbers of ages
2003	376	101	100	2375	100	748
2004	347	92	90	1062	90	595
2005	466	112	110	1983	110	804
2006	455	130	130	1925	130	940
2007	499	132	132	2086	132	987
2008	493	111	111	1647	111	762
2009	500	126	126	2298	126	1159
2010	515	117	117	2239	117	912
2011	502	110	108	1828	108	796
2012	506	102	102	2205	102	791

Table 11: Error distribution assumptions regarding data sources used in the assessment.

Data sources used	Error distribution assumption
Landings	Assumed to be known without error
Abundance	(uncertainty explored via sensitivity analysis)
Length composition	Lognormal
Age composition	Multinomial
Mean body weight	Normal
Discard	Normal

Table 12: List of parameter values used in the base model.

Parameter	$\begin{aligned} & \text { Estimated } \\ & \text { value } \end{aligned}$	Bounds (low, high)	Fixed value
Natural mortality (M, female)	-	NA	0.05
Individual growth			
Females:			
Length at A_{1}	15.34	$(1,20)$	-
Length at A_{2}	42.57	$(20,60)$	-
von Bertalanffy K	0.20	$(0.05,0.3)$	-
CV of length at A_{1}	0.11	(0.05,0.3)	-
CV of length at A_{2}	-	NA	0.046
Males:			
Length at A_{1} (set equal to females)	-	NA	0.0
Length at A_{2}	37.63	$(50,60)$	-
von Bertalanffy K	0.264	$(0.2,0.45)$	-
CV of length at A_{1} (set equal to females)	-	NA	0.0
Weight at length			
Females:			
Coefficient	-	NA	$1.11 \mathrm{E}-05$
Exponent	-	NA	3.13512
Males:			
Coefficient	-	NA	$1.21 \mathrm{E}-05$
Exponent	-	NA	3.10958
Fecundity at length			
Inflection	-	NA	101100
Slope	-	NA	44800
Stock and recruitment			
$\operatorname{Ln}\left(R_{0}\right)$	7.84	$(5,12)$	-
Steepness (h)	-	NA	0.779
Recruitment SD (σ_{r})	-	NA	Iterated to 0.75
Survey catchability and variability			
$\operatorname{Ln}(Q)$ - AFSC shelf (1980-1992)	0.555982	$(-10,2)$	
$\mathrm{Ln}(Q)$ - AFSC shelf offset (1995-2004) to early	0.023689	$(-4,4)$	
Ln (Q) - AFSC slope	-0.15737	$(-10,2)$	
$\operatorname{Ln}(Q)$ - NWFSC slope	0.019763	$(-10,2)$	
Ln (Q) - NWFSC shelf-slope	0.544378	$(-10,2)$	
Extra additive SD for AFSC shelf	0.010632	$(0,1)$	
Extra additive SD for NWFSC shelf-slope	0.049063	$(0,1)$	
Selectivity and retention			
TWL fishery (double-normal)			
Peak	36.2	$(20,45)$	-
Top: width of plateau	-	NA	2
Ascending slope	4.9	$(-1,9)$	-
Descending slope	-	NA	0.6
Selectivity at first bin	-	NA	-999
Selectivity at last bin	-	NA	9

Parameter	Estimated value	Bounds (low, high)	Fixed value
TWL retention (logistic function)			
Inflection base	27.84	$(15,70)$	-
Inflection block (2011-2012)	25.58	$(15,70)$	-
Slope base	1.58	$(0.1,10)$	-
Slope block (2011-2012)	1.50	$(0.1,10)$	-
Asymptotic retention base	-	NA	1
Asymptotic retention block (2000-2001)	0.66	$(0,1)$	-
Asymptotic retention block (2002)	0.51	$(0,1)$	-
Asymptotic retention block (2003)	0.40	$(0,1)$	-
Asymptotic retention block (2004)	0.85	$(0,1)$	-
Asymptotic retention block (2005)	0.79	$(0,1)$	-
Asymptotic retention block (2006)	0.57	$(0,1)$	-
Asymptotic retention block (2007)	0.52	$(0,1)$	-
Asymptotic retention block (2008)	0.48	$(0,1)$	-
Asymptotic retention block (2009)	0.50	$(0,1)$	-
Asymptotic retention block (2010)	0.54	$(0,1)$	-
Male offset to inflection	-	NA	0
AFSC shelf survey (double-normal)			
Peak	21.89	$(10,45)$	-
Top: width of plateau	-	NA	-6
Ascending slope	3.40	$(-1,9)$	-
Descending slope base	4.94	$(-1,9)$	-
Descending slope block (1995-2004)	4.83	$(-1,9)$	-
Selectivity at first bin	-	NA	-999
Selectivity at last bin	-	NA	-999
AFSC slope survey (double-normal)			
Peak	22.07	$(10,45)$	-
Top: width of plateau	-1.74	$(-6,4)$	-
Ascending slope	1.69	$(-1,9)$	-
Descending slope	3.39	$(-1,9)$	-
Selectivity at first bin	-	NA	-999
Selectivity at last bin	-	NA	-999
NWFSC slope survey (double-normal)			
Peak	24.32	$(10,45)$	-
Top: width of plateau	-	NA	-6
Ascending slope	3.032	$(-1,9)$	-
Descending slope	4.99	$(-1,9)$	-
Selectivity at first bin	-	NA	-999
Selectivity at last bin	-	NA	-999
NWFSC shelf-slope survey (double-normal)			
Peak	21.39	$(8,45)$	-
Top: width of plateau	-	NA	-6
Ascending slope	3.41	$(-1,9)$	-
Descending slope	5.26	$(-1,9)$	-
Selectivity at first bin	-	NA	-999
Selectivity at last bin	-	NA	-999

Table 13: Time series of total biomass, summary biomass, spawning output, depletion relative to B_{0}, recruitment, and exploitation rate estimated in the base model.

Year	Total biomass (mt)	Summary biomass (mt)	Spawning output (million fish)	Depletion (\%)	Age-0 Recruits (1000s)	Exploitation rate (catch/ age 1+ biomass)
1915	36,498	36,495	3,389	100\%	2,588	
1916	36,502	36,498	3,389	100\%	2,590	0.00036
1917	36,493	36,490	3,388	100\%	2,592	0.00058
1918	36,478	36,475	3,386	100\%	2,594	0.00060
1919	36,464	36,461	3,385	100\%	2,596	0.00038
1920	36,460	36,456	3,384	100\%	2,598	0.00040
1921	36,456	36,453	3,383	100\%	2,601	0.00034
1922	36,456	36,452	3,382	100\%	2,603	0.00032
1923	36,458	36,455	3,382	100\%	2,606	0.00038
1924	36,460	36,456	3,382	100\%	2,609	0.00039
1925	36,462	36,459	3,381	100\%	2,612	0.00044
1926	36,465	36,461	3,381	100\%	2,615	0.00060
1927	36,463	36,460	3,381	100\%	2,619	0.00051
1928	36,466	36,463	3,380	100\%	2,623	0.00051
1929	36,471	36,468	3,380	100\%	2,626	0.00054
1930	36,477	36,474	3,380	100\%	2,630	0.00059
1931	36,483	36,479	3,380	100\%	2,635	0.00073
1932	36,486	36,482	3,380	100\%	2,639	0.00046
1933	36,500	36,497	3,380	100\%	2,644	0.00045
1934	36,517	36,513	3,381	100\%	2,649	0.00043
1935	36,536	36,533	3,382	100\%	2,654	0.00049
1936	36,555	36,552	3,384	100\%	2,660	0.00033
1937	36,582	36,579	3,385	100\%	2,666	0.00038
1938	36,609	36,606	3,387	100\%	2,672	0.00047
1939	36,635	36,632	3,389	100\%	2,680	0.00066
1940	36,656	36,653	3,390	100\%	2,688	0.00091
1941	36,671	36,667	3,391	100\%	2,698	0.00117
1942	36,679	36,676	3,391	100\%	2,707	0.00134
1943	36,685	36,681	3,390	100\%	2,716	0.00511
1944	36,557	36,554	3,377	100\%	2,725	0.01111
1945	36,222	36,218	3,343	99\%	2,731	0.01914
1946	35,616	35,613	3,282	97\%	2,733	0.01150
1947	35,310	35,307	3,250	96\%	2,734	0.00960
1948	35,090	35,087	3,225	95\%	2,733	0.00557
1949	35,026	35,023	3,216	95\%	2,727	0.00468
1950	35,003	35,000	3,210	95\%	2,716	0.00519

Year	Total biomass (mt)	Summary biomass (mt)	$\begin{gathered} \hline \text { Spawning } \\ \text { output } \\ \text { (million } \\ \text { fish) } \\ \hline \hline \end{gathered}$	Depletion (\%)	Age-0 Recruits (1000s)	```Exploitation rate (catch/ age 1+ biomass)```
1951	34,971	34,967	3,205	95\%	2,697	0.00602
1952	34,915	34,912	3,197	94\%	2,672	0.00635
1953	34,853	34,849	3,189	94\%	2,644	0.00541
1954	34,824	34,821	3,185	94\%	2,612	0.00637
1955	34,761	34,757	3,178	94\%	2,582	0.00753
1956	34,654	34,650	3,168	93\%	2,559	0.01000
1957	34,457	34,454	3,150	93\%	2,545	0.01175
1958	34,197	34,194	3,126	92\%	2,541	0.01001
1959	33,995	33,992	3,107	92\%	2,546	0.00851
1960	33,841	33,838	3,094	91\%	2,554	0.01033
1961	33,624	33,621	3,074	91\%	2,553	0.00969
1962	33,430	33,426	3,056	90\%	2,521	0.01055
1963	33,210	33,207	3,035	90\%	2,465	0.01133
1964	32,969	32,966	3,012	89\%	2,376	0.00822
1965	32,832	32,829	2,999	88\%	2,254	0.01503
1966	32,468	32,465	2,965	87\%	2,105	0.13028
1967	28,409	28,406	2,579	76\%	1,943	0.10860
1968	25,535	25,533	2,304	68\%	1,835	0.09499
1969	23,350	23,347	2,094	62\%	1,830	0.01242
1970	23,298	23,296	2,087	62\%	2,009	0.01529
1971	23,173	23,170	2,076	61\%	2,335	0.02306
1972	22,870	22,867	2,048	60\%	2,176	0.02698
1973	22,498	22,496	2,013	59\%	1,877	0.04080
1974	21,851	21,848	1,948	57\%	1,960	0.02819
1975	21,523	21,521	1,911	56\%	1,674	0.02882
1976	21,199	21,196	1,875	55\%	2,578	0.03230
1977	20,817	20,815	1,837	54\%	1,543	0.01569
1978	20,804	20,800	1,834	54\%	3,285	0.02054
1979	20,712	20,708	1,822	54\%	3,072	0.03650
1980	20,343	20,340	1,780	53\%	2,362	0.03131
1981	20,174	20,168	1,749	52\%	4,454	0.04272
1982	19,870	19,868	1,700	50\%	1,254	0.05919
1983	19,345	19,344	1,629	48\%	801	0.06047
1984	18,865	18,863	1,566	46\%	1,267	0.07306
1985	18,129	18,127	1,495	44\%	1,951	0.10204
1986	16,841	16,839	1,390	41\%	1,669	0.07756
1987	16,022	16,018	1,334	39\%	2,827	0.15522
1988	14,000	13,998	1,168	34\%	1,320	0.12178
1989	12,764	12,763	1,057	31\%	816	0.10321

Year	Total biomass (mt)	Summary biomass (mt)	Spawning output (million fish)	Depletion $(\%)$	Age-0 Recruits $(1000$)	Exploitation rate (catch/ age 1+ biomass)
1990	11,928	11,927	972	29%	748	0.14655
1991	10,645	10,644	852	25%	932	0.11845
1992	9,798	9,797	779	23%	898	0.07308
1993	9,439	9,438	757	22%	418	0.13104
1994	8,513	8,510	690	20%	2,311	0.10499
1995	7,898	7,893	644	19%	4,213	0.10253
1996	7,410	7,409	599	18%	951	0.10349
1997	7,084	7,083	554	16%	1,298	0.12086
1998	6,780	6,779	501	15%	606	0.14685
1999	6,385	6,377	443	13%	6,012	0.06189
2000	6,630	6,625	447	13%	4,320	0.06326
2001	6,988	6,987	465	14%	508	0.03952
2002	7,668	7,666	499	15%	1,424	0.03080
2003	8,479	8,477	536	16%	1,797	0.02503
2004	9,305	9,301	583	17%	3,265	0.02618
2005	10,065	10,061	648	19%	3,004	0.01285
2006	10,927	10,924	738	22%	2,061	0.01738
2007	11,741	11,739	818	24%	1,434	0.02380
2008	12,462	12,453	879	26%	6,674	0.02027
2009	13,212	13,211	937	28%	1,216	0.02221
2010	13,979	13,977	996	29%	1,800	0.02502
2011	14,736	14,732	1,054	31%	2,858	0.00814
2012	15,692	15,691	1,131	33%	870	0.00615
2013	16,613	16,610	1,214	36%	2,254	NA

Table 14: Comparison among sensitivity analyses to alternative assumptions about darkblotched rockfish landings.

Model	Base	TWL landings doubled	TWL landings halved	TWL historical landings doubled	TWL historical landings halved	All landings doubled	All landings halved
Negative log-likelihood							
Total	1378.84	1378.57	1379.85	1379.71	1378.54	1378.84	1378.84
Indices	-12.65	-12.75	-12.47	-12.38	-12.80	-12.65	-12.65
Length frequencies	436.75	437.08	436.40	436.45	437.01	436.75	436.75
Age frequencies	991.03	990.79	991.31	991.22	990.86	991.03	991.03
Discard	-33.450	-33.447	-33.457	-33.464	-33.444	-33.450	-33.450
Mean body weight	-9.499	-9.499	-9.499	-9.499	-9.499	-9.499	-9.499
Selected parameters							
$\mathrm{Ln}\left(\mathrm{R}_{0}\right)$	7.843	8.416	7.360	8.039	7.733	8.536	7.150
Steepness (h)	0.779	0.779	0.779	0.779	0.779	0.779	0.779
Female M	0.050	0.050	0.050	0.050	0.050	0.050	0.050
Male M	0.067	0.067	0.067	0.067	0.067	0.067	0.067
Female L at A_{1}	15.34	15.34	15.34	15.34	15.34	15.34	15.34
Female L at A_{2}	42.57	42.55	42.59	42.59	42.56	42.57	42.57
Male L at A_{1}	15.34	15.34	15.34	15.34	15.34	15.34	15.34
Male L at A_{2}	37.63	37.63	37.63	37.63	37.63	37.63	37.63
Female von Bert K	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Male von Bert K	0.26	0.26	0.26	0.26	0.26	0.26	0.26
Management quantities Equilibrium							
spawning output (million eggs)	3,358	5,945	2,075	4,088	3,003	6,716	1,679
2013 Spawning depletion	36\%	35\%	39\%	39\%	35\%	36\%	36\%

Table 15: Comparison among sensitivity analyses to alternative assumptions about selected life history parameters.

Model	Base	2011 maturity	2011 fecundity	$2011 \mathrm{~W}-\mathrm{L}$ relationships	2011 steepness	2007 steepness and natural mortality
Negative log-likelihood						
\quad Total	1378.84	1379.01	1378.97	1379.17	1378.90	1392.99
Indices	-12.65	-12.70	-12.69	-12.71	-12.68	-12.72
Length frequencies	436.75	436.90	436.88	437.04	436.81	445.93
Age frequencies	991.03	991.03	991.01	991.02	991.05	994.98
\quad Discard	-33.450	-33.442	-33.44	-33.441	-33.446	-33.450
Mean body weight	-9.499	-9.499	-9.499	-9.428	-9.499	-9.535
Selected parameters						
\quad Ln(R R_{0})	7.843	7.842	7.843	7.839	7.845	8.279
Steepness (h)	0.779	0.779	0.779	0.779	0.76	0.6
\quad Female M	0.050	0.050	0.050	0.050	0.050	0.070
\quad Male M	0.067	0.067	0.067	0.067	0.067	0.070
Female L at A_{1}	15.34	15.34	15.34	15.34	15.34	15.34
Female L at A_{2}	42.57	42.57	42.57	42.57	42.57	42.63
\quad Male L at A_{1}	15.34	15.34	15.34	15.34	15.34	15.34
Male L at A_{2}	37.63	37.63	37.63	37.63	37.63	37.60
Female von Bert K	0.20	0.20	0.20	0.20	0.20	0.20
Male von Bert K	0.26	0.26	0.26	0.26	0.26	0.26
Management quantities						
2013 Spawning	36%	32%	32%	37%	35%	48%
\quad depletion						

Table 16: Comparison among sensitivity analyses to alternative assumptions about selectivity parameters

Model	Base	TWL dome-shaped	NWFSC combo asymptotic
Negative log-likelihood			
Total	1378.84	1379.13	1411.36
Indices	-12.648	-12.663	-9.924
Length frequencies	436.748	437.179	447.233
Age frequencies	991.028	990.921	1004.74
Discard	-33.45	-33.451	-33.447
Mean body weight	-9.499	-9.498	-9.429
Selected parameters			
\quad Ln $\left(\mathrm{R}_{0}\right.$)	7.84	7.84	7.79
Steepness (h)	0.779	0.779	0.779
Female M	0.05	0.05	0.05
Male M	0.067	0.067	0.066
Female L at A_{1}	15.342	15.338	15.42
Female L at A_{2}	42.57	42.57	42.71
Male L at A_{1}	15.34	15.34	15.42
Male L at A_{2}	37.63	37.63	37.61
Female von Bert K	0.2	0.2	0.193
Male von Bert K	0.26	0.26	0.25
Management quantities			
Equilibrium	3,358	3,354	3,203
spawning output			
(million eggs)		36%	28%
2013 Spawning	36%		
depletion			

Table 17: Results from the retrospective analysis. Likelihoods in italics are not comparable across rows

Model	Base	-1 year	-2 years	-3 years	-4 years	-5 years
Negative log-likelihood						
\quad Total	1378.84	1311.95	1263.19	1209.32	1133.38	1024.96
Indices	-12.65	-12.16	-11.70	-11.57	-10.54	-11.00
Length frequencies	436.75	418.29	401.44	383.61	356.42	324.68
Age frequencies	991.03	943.84	905.53	864.95	811.30	733.83
Discard	-33.45	-33.456	-29.014	-26.279	-24.088	-21.273
Mean body weight	-9.499	-9.532	-8.073	-7.251	-6.234	-5.215
Selected parameters						
\quad Ln $\left(\mathrm{R}_{0}\right.$)	7.84	7.84	7.84	7.84	7.87	7.86
Steepness (h)	0.779	0.779	0.779	0.779	0.779	0.779
Female M	0.05	0.05	0.05	0.05	0.05	0.05
\quad Male M	0.067	0.067	0.068	0.067	0.067	0.068
Female L at A_{1}	15.34	15.39	15.37	15.36	15.27	15.36
Female L at A_{2}	42.57	42.58	42.54	42.5	42.42	42.36
Male L at A_{1}	15.34	15.39	15.37	15.36	15.27	15.36
Male L at A_{2}	37.63	37.64	37.62	37.58	37.55	37.56
Female von Bert K	0.200	0.202	0.203	0.207	0.212	0.217
Male von Bert K	0.260	0.262	0.263	0.266	0.272	0.276
Management quantities						
\quad Equilibrium						
spawning output	3,358	3,360	3,348	3,359	3,438	3,411
(million eggs)						
2013 Spawning	36%	NA	NA	NA	NA	NA
depletion						

Table 18: Summary of reference points for the base model.

Quantity	Estimate	~95\% Confidence Interval
Unfished Spawning output (million eggs)	3,358	2,603-4,114
Unfished age 1+ biomass (mt)	36,171	28,181-44,161
Unfished recruitment (R0)	2,549	1,970-3,127
Depletion (2013)	36\%	16-56\%
Reference points based on $S^{\text {XXX\% }}$		
Proxy spawning output ($B_{40 \%}$)(million eggs)	1,343	1,041-1,646
SPR resulting in $B 40 \%$ ($\mathrm{SPR}_{40 \%}$)	44\%	NA
Exploitation rate resulting in $\mathrm{B}_{40 \%}$	4.02\%	3.96-4.08\%
Yield with SPR50\% at $B_{40 \%}$ (mt)	675	526-824
Reference points based on SPR proxy for MSY		
Spawning output (million eggs)	1,550	1,201-1,899
$S P R_{\text {proxy }}$	50\%	NA
Exploitation rate corresponding to $S P R_{\text {proxy }}$	3.3\%	3.25-3.35\%
Yield with $S P R_{\text {proxy }}$ at $S B_{S P R}(\mathrm{mt})$	625	487-763
Reference points based on estimated MSY values		
Spawning output at MSY ($S B_{M S Y}$) (million eggs)	819	635-1,003
$S P R_{\text {MSY }}$	30\%	29.38-30.13\%
Exploitation rate corresponding to $S P R_{M S Y}$	6.65\%	6.47-6.83\%
MSY (mt)	742	578-906

Table 19: Summary of recent trends in estimated darkblotched rockfish exploitation and stock level from the base model.

	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Commercial landings (mt)	80	189	98	107	144	117	138	184	117	94	NA
Estimated Total catch (mt)	212	243	129	190	279	252	293	350	120	96	NA
OFL (mt)	205	240	269	294	456	487	437	440	508	497	541
ACL (mt)	172	240	269	200	290	330	285	291	298	296	317
SPR	56\%	55\%	73\%	67\%	59\%	63\%	60\%	57\%	82\%	86\%	NA
Exploitation rate (catch/ age 1+ biomass) Age 1+ biomass (mt)	0.025 8,477	0.026 9,301	0.013 10,061	0.017 10,924	0.024 11,739	0.020 12,453	0.022 13,211	0.025 13,977	0.008 14,732	0.006 15,691	NA 16,610
Spawning output (million eggs) ~95\%	536	583	648	738	818	879	937	996	1,054	1,131	1,214
Confidence Interval	220-851	234-932	253-1044	286-1189	312-1324	325-1433	338-1536	349-1642	357-1751	384-1879	414-2013
Recruitment ~95\%	1,797	3,265	3,004	2,061	1,434	6,674	1,216	1,800	2,858	870	2,254
Confidence Interval	617-2,977	$\begin{gathered} 1,180- \\ 5,350 \end{gathered}$	$\begin{gathered} 1,042- \\ 4,966 \end{gathered}$	650-3,471	383-2,486	$\begin{aligned} & \text { 2,159- } \\ & 11,190 \end{aligned}$	$\begin{gathered} 206- \\ 2,226 \end{gathered}$	220-3,380	0-6,154	0-2,117	0-5,691
$\begin{aligned} & \text { Depletion (\%) } \\ & \sim 95 \% \end{aligned}$	16\%	17\%	19\%	22\%	24\%	26\%	28\%	29\%	31\%	33\%	36\%
Confidence Interval	8-24\%	9-26\%	9-29\%	11-33\%	12-37\%	12-40\%	13-43\%	13-46\%	14-49\%	15-53\%	16-56\%

Table 20: Summary table of 12-year projections beginning in 2015 for alternate states of nature based on female natural mortality. Columns range over low, mid, and high state of nature, and rows range over different assumptions of catch levels.

			State of nature					
			LowFemale $M=0.036$		Base case Female M=0.05		High Female $M=0.082$	
Management decision	Year	$\begin{aligned} & \text { Catch } \\ & \text { (mt) } \end{aligned}$	Spawning output (million eggs)	Depletion	$\begin{array}{r} \text { Spawning } \\ \text { output } \\ \text { (million } \\ \text { eggs) } \end{array}$	Depletion	Spawning output (million eggs)	Depletion
Catch calculated using SPR of 71.9\% applied to the base model	2013	223	607	18\%	1,214	36\%	3,606	82\%
	2014	240	648	19\%	1,294	39\%	3,770	85\%
	2015	252	688	20\%	1,374	41\%	3,922	89\%
	2016	260	722	21\%	1,441	43\%	4,032	91\%
	2017	266	751	22\%	1,496	45\%	4,101	93\%
	2018	271	776	23\%	1,541	46\%	4,135	94\%
	2019	276	798	23\%	1,578	47\%	4,147	94\%
	2020	280	821	24\%	1,613	48\%	4,150	94\%
	2021	285	844	25\%	1,646	49\%	4,149	94\%
	2022	289	867	25\%	1,678	50\%	4,146	94\%
	2023	293	891	26\%	1,709	51\%	4,140	94\%
	2024	297	915	27\%	1,739	52\%	4,133	94\%
Catch calculated using current rebuilding SPR of 64.9\% applied to the base model	2013	302	607	18\%	1,214	36\%	3,606	82\%
	2014	323	641	19\%	1,288	38\%	3,764	85\%
	2015	339	674	20\%	1,360	41\%	3,909	88\%
	2016	347	701	20\%	1,420	42\%	4,011	91\%
	2017	353	722	21\%	1,467	44\%	4,073	92\%
	2018	358	738	21\%	1,504	45\%	4,101	93\%
	2019	363	752	22\%	1,533	46\%	4,106	93\%
	2020	368	766	22\%	1,560	46\%	4,102	93\%
	2021	372	780	23\%	1,586	47\%	4,096	93\%
	2022	377	796	23\%	1,611	48\%	4,087	93\%
	2023	381	811	24\%	1,635	49\%	4,076	92\%
	2024	385	826	24\%	1,657	49\%	4,064	92\%
2014 ACL catch assumed for years between 2015 and 2024	2013	317	607	18\%	1,214	36\%	3,606	82\%
	2014	330	640	19\%	1,287	38\%	3,762	85\%
	2015	330	672	20\%	1,358	40\%	3,907	88\%
	2016	330	699	20\%	1,418	42\%	4,010	91\%
	2017	330	722	21\%	1,467	44\%	4,073	92\%
	2018	330	740	22\%	1,506	45\%	4,103	93\%
	2019	330	756	22\%	1,538	46\%	4,111	93\%
	2020	330	773	23\%	1,567	47\%	4,110	93\%
	2021	330	791	23\%	1,597	48\%	4,106	93\%
	2022	330	811	24\%	1,626	48\%	4,101	93\%
	2023	330	830	24\%	1,654	49\%	4,094	93\%
	2024	330	850	25\%	1,681	50\%	4,085	92\%

9 Figures

Figure 1: Spatial distribution of darkblotched rockfish catch ($\mathrm{lbs} / \mathrm{km}^{2}$) observed by the West Coast Groundfish Observer Program and the summary area of all observed fishing events.

Figure 1 (continued): Spatial distribution of darkblotched rockfish catch ($\mathrm{lbs} / \mathrm{km}^{2}$) observed by the West Coast Groundfish Observer Program and the summary area of all observed fishing events.

Figure 2: Spatial distribution of darkblotched rockfish (Sebastes crameri) catch in the NWFSC groundfish survey (2003-2012) by INPFC area.

Date Saved: 25 Mar 2013
Author: Curt Whitmire (NOAA Fisheries)

Map 2 of 5

Figure 2 (continued): Spatial distribution of darkblotched rockfish (Sebastes crameri) catch in the NWFSC groundfish survey (2003-2012) by INPFC area.

Date Saved: 25 Mar 2013
Author: Curt Whitmire (NOAA Fisheries)

Map 3 of 5

Figure 2 (continued): Spatial distribution of darkblotched rockfish (Sebastes crameri) catch in the NWFSC groundfish survey (2003-2012) by INPFC area.

Figure 2 (continued): Spatial distribution of darkblotched rockfish (Sebastes crameri) catch in the NWFSC groundfish survey $(2003-2012)$ by INPFC area.

Date Saved: 25 Mar 2013
Author: Curt Whitmire (NOAA Fisheries)

Man 5 of 5

Figure 2 (continued): Spatial distribution of darkblotched rockfish (Sebastes crameri) catch in the NWFSC groundfish survey (2003-2012) by INPFC area.

Figure 3: A map of the assessment area that includes coastal waters off three U.S. west coast states and five International North Pacific Fisheries Commission (INPFC) areas.

Figure 4: Darkblotched rockfish landings history, 1915-2012, with separate contribution of domestic trawl and non-trawl landings, bycatch in foreign POP and at-sea Pacific hake fisheries.

Figure 5: Darkblotched rockfish landings history, 1915-2012. Landings in the assessment are divided between two fleets that include domestic trawl fishery (TWL) and bycatch in foreign POP fishery and at-sea hake fishery (BYCATCH).

Figure 6: Recent darkblotched rockfish Overfishing Limits (OFLs) and Annual Catch Limits (ACLs) relative to recent total landings and total dead catch estimated in this assessment.

Figure 7: Summary of sources and data used in the assessment.

Figure 8: Length-frequency distributions for female darkblotched rockfish from the domestic trawl landings by year.

Figure 9: Length-frequency distributions for male darkblotched rockfish from the domestic trawl landings by year.

Figure 10: Length-frequency distributions for darkblotched rockfish (sexes combined) from the domestic trawl discards by year.

Figure 11: Age-frequency distributions for female darkblotched rockfish from the domestic trawl landings by year.

Figure 12: Age-frequency distributions for male darkblotched rockfish from the domestic trawl landings by year.

Age (yr)

Figure 13: Age-frequency distributions for darkblotched rockfish (sexes combined) from the domestic trawl discards by year.

Figure 14: Distribution of dates of operation for the AFSC shelf (triennial) bottom trawl survey (1980-2004). Solid bars show the mean date for each survey year, points represent individual hauls dates, but are jittered to allow better delineation of the distribution of individual points.

Figure 15: Length-frequency distributions for female darkblotched rockfish from the AFSC shelf survey.

Figure 16: Length-frequency distributions for male darkblotched rockfish from the AFSC shelf survey.

Figure 17: Length-frequency distributions for female darkblotched rockfish from the AFSC slope survey.

Figure 18: Length-frequency distributions for male darkblotched rockfish from the AFSC slope survey.

Figure 19: Length-frequency distributions for female darkblotched rockfish from the NWFSC slope survey.

Figure 20: Length-frequency distributions for male darkblotched rockfish from the NWFSC slope survey.

Figure 21: Length-frequency distributions for female darkblotched rockfish from the NWFSC shelf-slope survey.

Figure 22: Length-frequency distributions for male darkblotched rockfish from the NWFSC shelf-slope survey.

Figure 23: Conditional age-frequency distributions for female darkblotched rockfish from the AFSC shelf survey.

Figure 24: Conditional age-frequency distributions for male darkblotched rockfish from the AFSC shelf survey.

Figure 25: Conditional age-frequency distributions for female (left panel) and male (right panel) darkblotched rockfish from the AFSC slope survey.

Figure 26: Conditional age-frequency distributions for female darkblotched rockfish from the NWFSC slope survey.

Figure 27: Conditional age-frequency distributions for male darkblotched rockfish from the NWFSC slope survey.

Figure 28: Conditional age-frequency distributions for female darkblotched rockfish from the NWFSC shelf-slope survey.

Age (yr)

Figure 28 (continued): Conditional age-frequency distributions for female darkblotched rockfish from the NWFSC shelf-slope survey.

Figure 29: Conditional age-frequency distributions for male darkblotched rockfish from the NWFSC shelf-slope survey.

Age (yr)

Figure 29 (continued): Conditional age-frequency distributions for male darkblotched rockfish from the NWFSC shelf-slope survey.

Figure 30: Weight-length relationship for female (red) and male (blue) darkblotched rockfish used in the assessment, shown with fit to the data from the NWFSC shelf-slope survey samples (shaded points).

Figure 31: Maturity-at-age (left column) relationship for female darkblotched rockfish used in the assessment, shown with fit to the data from the NWFSC shelf-slope survey samples using a three-parameter (black line) and two-parameter (dashed line) model (top row) and the data availability by age (bottom row), and maturity-at-length (right column) relationship estimated using these same data (displayed identically to maturity at age except the addition red line shows the maturity-at-length schedule from the 2011 assessment).

Reads(dot), Sd(blue), expected_read(red solid line), and $95 \% \mathrm{Cl}$ for expected_read(red dotted line)

Figure 32: Ageing error figure for "early" reads (Reader 3 is recent re-reads of otoliths that were read prior to 2005, and hence is specified as unbiased).

Reads(dot), Sd(blue), expected_read(red solid line), and $95 \% \mathrm{Cl}$ for expected_read(red dotted line)

Figure 33: Ageing error figure for "late" reads (where Reader 1 is the reader of retained compositional data after 2005, and is believed a priori to be unbiased, while bias and imprecision are estimated separately for Readers 2-3).

Figure 34: SD of observed age versus true age for "early" (red) and "late" (blue) age data used in the assessment.

Figure 35: Bayesian Q-Q plot for AFSC shelf survey for 1980-1992 (upper panel) and 1995-2004 (lower panel).

Figure 36: Bayesian Q-Q plot for AFSC slope survey.

Figure 37: Bayesian Q-Q plot for NWFSC slope survey.

Figure 38: Bayesian Q-Q plot for NWFSC shelf-slope survey.

Figure 39: Distribution of darkblotched rockfish catch by haul observed within the NWFSC shelf-slope survey, by year and latitude.

Figure 40: Distribution of darkblotched rockfish catch by haul observed within the AFSC triennial shelf survey, by year and latitude.

Figure 41: Time series of darkblotched rockfish landings used in this and 2011 assessments.

Figure 42: Time series of spawning depletion from this and 2011 assessments.

Figure 43: Bias correction ramp estimated by R4SS using particle swarm optimization to avoid local minima.

Figure 44: Growth curves for females and males of darkblotched rockfish used in the assessment model.

Figure 45: Weight-at-length relationship for females and males of darkblotched rockfish used in the assessment model.

Figure 46: Female maturity at age relationship used in the assessment model. The parameters were estimated from the data collected within the NWFSC shelf-slope survey between 2011 and 2012.

Figure 47: Female darkblotched rockfish fecundity at weight relationship used in the assessment, based on the parameters estimated by Dick (2009).

Figure 48: Female darkblotched rockfish spawning output-at-length relationship used in the assessment model.

Figure 49: Observed and expected values of darkblotched rockfish biomass index (mt) for the AFSC shelf survey.

Figure 50: Observed and expected values of darkblotched rockfish biomass index (mt) for the AFSC slope survey.

Figure 51: Observed and expected values of darkblotched rockfish biomass index (mt) for the NWFSC slope survey.

Figure 52: Observed and expected values of darkblotched rockfish biomass index (mt) for the NWFSC shelf-slope survey.

Figure 53: Fit to length-frequency distributions of female darkblotched rockfish for the domestic trawl fishery landings, by year.

Figure 54: Fit to length-frequency distributions of male darkblotched rockfish for the domestic trawl fishery landings, by year.

Figure 55: Pearson residuals for the fit to length-frequency distributions of female darkblotched rockfish for the domestic trawl fishery landings, by year.

Figure 56: Pearson residuals for the fit to length-frequency distributions of male darkblotched rockfish for the domestic trawl fishery landings, by year.

Figure 57: Fit to length-frequency distributions of female darkblotched rockfish from domestic trawl fishery landings, aggregated across all years.

Figure 58: Fit to length-frequency distributions of male darkblotched rockfish from domestic trawl fishery landings, aggregated across all years.

Length (cm)
Figure 59: Fit to length-frequency distributions of darkblotched rockfish (sexes combined) for the domestic trawl fleet discard, by year.

Figure 60: Pearson residuals for the fit to length-frequency distributions of darkblotched rockfish (sexes combined) for the domestic trawl fleet discard, by year.

Figure 61: Fit to length-frequency distributions of darkblotched rockfish (sexes combined) from domestic trawl fishery discard, aggregated across all years.

Figure 62: Fit to length-frequency distributions of female (left panel) and male (right panel) darkblotched rockfish from the AFSC shelf survey, by year.

Figure 63: Pearson residuals for the fit to length-frequency distributions of female darkblotched rockfish from the AFSC shelf survey, by year.

Figure 64: Pearson residuals for the fit to length-frequency distributions of male darkblotched rockfish from the AFSC shelf survey, by year.

Figure 65: Fit to length-frequency distributions of female (left panel) and male (right panel) darkblotched rockfish from the AFSC slope survey, by year.

Figure 66: Pearson residuals for the fit to length-frequency distributions of female darkblotched rockfish from the AFSC slope survey, by year.

Figure 67: Pearson residuals for the fit to length-frequency distributions of male darkblotched rockfish from the AFSC slope survey, by year.

Figure 68: Fit to length-frequency distributions of female (left panel) and male (right panel) darkblotched rockfish from the NWFSC slope survey, by year.

Figure 69: Pearson residuals for the fit to length-frequency distributions of male darkblotched rockfish from the NWFSC slope survey, by year.

Figure 70: Pearson residuals for the fit to length-frequency distributions of male darkblotched rockfish from the NWFSC slope survey, by year.

Figure 71: Fit to length-frequency distributions of female (left panel) and male (right panel) darkblotched rockfish from the NWFSC shelf-slope survey by year.

Figure 72: Pearson residuals for the fit to length-frequency distributions of female darkblotched rockfish from the NWFSC shelf-slope survey by year.

Figure 73: Pearson residuals for the fit to length-frequency distributions of male darkblotched rockfish from the NWFSC shelf-slope survey by year.

Figure 74: Fit to length-frequency distributions of female darkblotched rockfish from the fishery-independent surveys, aggregated across all years.

Figure 75: Fit to length-frequency distributions of male darkblotched rockfish from the fishery-independent surveys, aggregated across all years.

Figure 76: Fit to age-frequency distributions of female (left panel) and male (right panel) darkblotched rockfish from the domestic trawl fishery landings by year.

Figure 77: Pearson residuals for the fit to age-frequency distributions of female darkblotched rockfish from the domestic trawl fishery landings.

Figure 78: Pearson residuals for the fit to age-frequency distributions of male darkblotched rockfish from the domestic trawl fishery landings.

Figure 79: Fit to age-frequency distributions of female darkblotched rockfish from the domestic trawl fishery landings, aggregated across all years.

Figure 80: Fit to age-frequency distributions of male darkblotched rockfish from the domestic trawl fishery landings, aggregated across all years.

Figure 81: Implied fit to "ghost" marginal age compositions for female darkblotched rockfish from the domestic trawl landings. Age data from these years were not explicitly used in the assessment. Fits are provided for evaluation only, but not included in the model likelihood.

Figure 82: Implied fit to "ghost" marginal age compositions for male darkblotched rockfish from the domestic trawl landings. Age data from these years were not explicitly used in the assessment. Fits are provided for evaluation only, but not included in the model likelihood.

Proportion

Age (yr)

Figure 83: Fit to age-frequency distributions of darkblotched rockfish (sexes combined) from the domestic trawl fishery discard by year.

Figure 84: Pearson residuals for the fit to age-frequency distributions of darkblotched rockfish (sexes combined) from the domestic trawl fishery discard.

Figure 85: Fit to age-frequency distributions of darkblotched rockfish (sexes combined) from the domestic trawl fleet discard, aggregated across all years.

Figure 86: Fit to conditional ages-at-length compositions of female darkblotched rockfish from the AFSC shelf survey.

Figure 86 (continued): Fit to conditional ages-at-length compositions of female darkblotched rockfish from the AFSC shelf survey.

Length (cm)
Figure 86 (continued): Fit to conditional ages-at-length compositions of female darkblotched rockfish from the AFSC shelf survey.

Figure 87: Fit to conditional ages-at-length compositions of male darkblotched rockfish from the AFSC shelf survey.

Figure 87 (continued): Fit to conditional ages-at-length compositions of male darkblotched rockfish from the AFSC shelf survey.

Length (cm)
Figure 87 (continued): Fit to conditional ages-at-length compositions of male darkblotched rockfish from the AFSC shelf survey.

Figure 88: Pearson residuals for the fit to conditional ages-at-length compositions of female darkblotched rockfish from the AFSC shelf survey.

Figure 89: Pearson residuals for the fit to conditional ages-at-length compositions of male darkblotched rockfish from the AFSC shelf survey.

Length (cm)
Figure 90: Fit to conditional ages-at-length compositions of female darkblotched rockfish from the AFSC slope survey.

Length (cm)
Figure 91: Fit to conditional ages-at-length compositions of male darkblotched rockfish from the AFSC slope survey.

Figure 92: Pearson residuals for the fit to conditional ages-at-length compositions of female (left) and male (right) darkblotched rockfish from the AFSC slope survey.

Figure 93: Fit to conditional ages-at-length compositions of female darkblotched rockfish from the NWFSC slope survey.

Figure 94: Fit to conditional ages-at-length compositions of male darkblotched rockfish from the NWFSC slope survey.

Figure 95: Pearson residuals for the fit to conditional ages-at-length compositions of female (left) and male (right) darkblotched rockfish from the NWFSC slope survey.

Figure 96: Fit to conditional ages-at-length compositions of female darkblotched rockfish from the NWFSC shelf-slope survey.

Figure 96 (continued): Fit to conditional ages-at-length compositions of female darkblotched rockfish from the NWFSC shelf-slope survey.

Figure 96 (continued): Fit to conditional ages-at-length compositions of female darkblotched rockfish from the NWFSC shelf-slope survey.

Length (cm)
Figure 96 (continued): Fit to conditional ages-at-length compositions of female darkblotched rockfish from the NWFSC shelf-slope survey.

Figure 97: Fit to conditional ages-at-length compositions of male darkblotched rockfish from the NWFSC shelf-slope survey.

Figure 97 (continued): Fit to conditional ages-at-length compositions of male darkblotched rockfish from the NWFSC shelf-slope survey.

Figure 97 (continued): Fit to conditional ages-at-length compositions of male darkblotched rockfish from the NWFSC shelf-slope survey.

Length (cm)
Figure 97 (continued): Fit to conditional ages-at-length compositions of male darkblotched rockfish from the NWFSC shelf-slope survey.

Figure 98: Pearson residuals for the fit to conditional ages-at-length compositions of female darkblotched rockfish from the NWFSC shelf-slope survey.

Age (yr)
Figure 98 (continued): Pearson residuals for the fit to conditional ages-at-length compositions of female darkblotched rockfish from the NWFSC shelf-slope survey.

Figure 99: Pearson residuals for the fit to conditional ages-at-length compositions of male darkblotched rockfish from the NWFSC shelf-slope survey.

Age (yr)
Figure 99 (continued): Pearson residuals for the fit to conditional ages-at-length compositions of male darkblotched rockfish from the NWFSC shelf-slope survey.

Figure 100: Implied fit to conditional ages-at-length compositions of female (left panel) and male (right panel) darkblotched rockfish from the AFSC shelf survey marginal age frequencies. Fits are provided for evaluation only, but not included in the model likelihood.

Age (yr)
Figure 101: Implied fit to conditional ages-at-length compositions of female (left panel) and male (right panel) darkblotched rockfish from the AFSC slope survey marginal age frequencies. Fits are provided for evaluation only, but not included in the model likelihood.

Age (yr)

Figure 102: Implied fit to conditional ages-at-length compositions of female (left panel) and male (right panel) darkblotched rockfish from the NWFSC slope survey marginal age frequencies. Fits are provided for evaluation only, but not included in the model likelihood.

Figure 103: Implied fit to conditional ages-at-length compositions of female (left panel) and male (right panel) darkblotched rockfish from the NWFSC shelf-slope survey marginal age frequencies. Fits are provided for evaluation only, but not included in the model likelihood.

Figure 104: Length-based selectivity curves estimated for the all fleets used in the assessment.

Figure 105: Estimated 2012 length-based selectivity, retention and discard mortality curves for the domestic trawl fishery.

Figure 106: Estimated time-varying length-based retention of domestic trawl fishery.

Figure 107: Length-based selectivity curve for bycatch fleet, mirrored to selectivity curve of domestic trawl fishery in the assessment.

Figure 108: Estimated time-varying length-based selectivity curve for the AFSC shelf survey.

Figure 109: Estimated length-based selectivity curve for the AFSC slope survey.

Figure 110: Estimated length-based selectivity curve for the NWFSC slope survey.

Figure 111: Estimated length-based selectivity curve for the NWFSC shelf-slope survey.

Figure 112: Fit to the discard ratio data of the domestic trawl fishery.

Figure 113: Discard fraction for the domestic trawl fishery estimated in the assessment.

Figure 114: Predicted discard for the domestic trawl fishery.

Figure 115: Fit to the mean body weight data for the domestic trawl fishery discard.

Figure 116: Recruitment deviation time-series estimated in the assessment model.

Figure 117: Estimated stock-recruit function for the assessment model.

Figure 118: Time series of total biomass (mt) estimated in the assessment model.

Figure 119: Time series of summary biomass (mt) estimated in the assessment model.

Figure 120: Time series of spawning output estimated in the assessment model (solid line) with ~ 95\% interval (dashed lines).

Figure 121: Time series of spawning depletion estimated in the assessment model (solid line) with $\sim 95 \%$ interval (dashed lines).

Figure 122: Time series of recruitment estimated in the assessment model with ~ 95\% interval.

Figure 123: Time series of fishing mortality of darkblotched rockfih estimated by the assessment model.

Figure 124: Sensitivity of darkblotched rockfish spawning output to alternative assumptions about fishery removals.

Figure 125: Sensitivity of darkblotched rockfish recruitment to alternative assumptions about fishery removals. Recruitment time series of this assessment are provided with ~ 95\% interval.

Figure 126: Sensitivity of darkblotched rockfish spawning depletion to alternative assumptions about fishery removals. Depletion time series of this assessment are provided with $\sim 95 \%$ interval.

Figure 127: Sensitivity of darkblotched rockfish relative SPR ratio (1-SPR/1-
$\mathrm{SPR}_{\text {Target }=0.50}$) to alternative assumptions about fishery removals. Relative SPR ratio time series of this assessment are provided with $\sim 95 \%$ interval.

Figure 128: Sensitivity of darkblotched rockfish spawning depletion to updated maturity and fecundity parameters, weight-length relationships and stock-recruit steepness value (in combination with value for natural mortality). Depletion time series of this assessment are provided with $\sim 95 \%$ interval.

Figure 129: Sensitivity of darkblotched rockfish recruitment to updated maturity and fecundity parameters, weight-length relationships and stock-recruit steepness value (in combination with value for natural mortality). Recruitment time series of this assessment are provided with $\sim 95 \%$ interval.

Figure 130: Sensitivity of darkblotched rockfish relative SPR ratio (1-SPR/1-
$\mathrm{SPR}_{\text {Target }=0.50}$) to updated maturity and fecundity parameters, weight-length relationships and stock-recruit steepness value (in combination with value for natural mortality). Relative SPR ratio time series of this assessment are provided with $\sim 95 \%$ interval.

Figure 131: Sensitivity of darkblotched rockfish spawning output to alternative assumptions about selectivity. Spawning output time series of this assessment are provided with ~ 95\% interval.

Figure 132: Sensitivity of darkblotched rockfish recruitment to alternative assumptions about selectivity. Recruitment time series of this assessment are provided with ~ 95\% interval.

Figure 133: Sensitivity of darkblotched rockfish depletion to alternative assumptions about selectivity. Depletion time series of this assessment are provided with ~ 95\% interval.

Figure 134: Sensitivity of darkblotched rockfish relative SPR ratio (1-SPR/1-
$\mathrm{SPR}_{\text {Target }}{ }^{0.50}$) to alternative assumptions about selectivity. Time series of this assessment are provided with $\sim 95 \%$ interval.

Figure 135: Results of retrospective analysis. Spawning output ime series of the base model are provided with $\sim 95 \%$ interval.

Figure 136: Results of retrospective analysis. Recruitment of the base model are provided with ~ 95\% interval.

Figure 137: Results of retrospective analysis. Depletion of the base model are provided with ~ 95\% interval.

Figure 138: Results of retrospective analysis. Relative SPR ratio (1-SPR/1-SPR ${ }_{\text {Target }=0.50}$) of the base model are provided with $\sim 95 \%$ interval.

Figure 139: Comparison of spawning depletion time series among darkblotched rockfish assessments.

Figure 140: Negative log-likelihood profile for each data component and in total given different values of natural mortality ranging from 0.02 to 0.1 by increments of 0.005 .

Figure 141: Negative log-likelihood profile for each data component and in total given different values of stock-recruit steepness ranging from 0.25 to 0.95 by increments of 0.05 .

Figure 142: Negative log-likelihood profile for each data component and in total given different values of $\ln \left(R_{0}\right)$ ranging from 7.3 to 8.4 by increments of 0.1 .

Figure 143: Values of recruitment deviations given different values of $\ln \left(R_{0}\right)$ ranging from 7.3 to 8.4 by increments of 0.1 .

Figure 144: Values of estimated recruitment given different values of $\ln \left(R_{0}\right)$ ranging from 7.3 to 8.4 by increments of 0.1 .

Figure 145: Time series of estimated relative spawning potential ratio (1-SPR/1$\mathrm{SPR}_{\text {Target }} . .50$) for the base model (round points) with $\sim 95 \%$ intervals (dashed lines). Values of relative SPR above 1.0 reflect harvests in excess of the current overfishing.

Figure 146: Phase plot of estimated relative (1-SPR) vs. relative spawning biomass for the base model. The relative (1-SPR) is (1-SPR) divided by 0.5 (the SPR target). Relative depletion is the annual spawning biomass divided by the spawning biomass corresponding to 40% of the unfished spawning biomass. The red point indicates the year 2012.

Appendix A. Management shifts related to West Coast groundfish species

Effective October 18, 1982

- First trip limits established (widow rockfish and sablefish).

Effective January 1, 1992

- First cumulative trip limits for various species and species groups (widow RF; Sebastes complex; Pacific ocean perch; deepwater complex; non-trawl sablefish).

Effective May 9, 1992

- Increased the minimum legal codend mesh size for roller trawl gear north of Point Arena, California ($40^{\circ} 30^{\prime} \mathrm{N}$ latitude) from 3.0 inches to 4.5 inches; prohibited double-walled codends; removed provisions regarding rollers and tickler chains for roller gear with codend mesh smaller than 4.5 inches.

Effective January 1, 1994

- Divided the commercial groundfish fishery into two components: the limited entry fishery and the open access fishery.
o A federal limited entry permit is required to participate in the limited entry segment of the fishery. Permits are issued based on the fishing history of qualifying fishing vessels.

Effective September 8, 1995

- The trawl minimum mesh size now applies throughout the net; removed the legal distinction between bottom and roller trawls and the requirement for continuous riblines; clarified the distinction between bottom and pelagic (midwater) trawls; modified chafing gear requirements;

Effective January 1, 1999:

- Dividing line between north and south management areas moved to $40^{\circ} 10^{\prime}$.

Effective January 1, 2000

- chafing gear may be used only on the last 50 meshes of a small footrope trawl, running the length of the net from the terminal (closed) end of the codend.

New rockfish categories in 2000.

- Rockfish (except thornyheads) are divided into new categories north and south of $40^{\circ} 10^{\prime} \mathrm{N}$. lat., depending on the depth where they most often are caught: nearshore, shelf, or slope. New trip limits have been established for "minor rockfish" species according to these categories.
o Nearshore: numerous minor rockfish species including black and blue rockfishes.
o Shelf: shortbelly, widow, yellowtail, bocaccio, chilipepper, cowcod rockfishes, and others.
o Slope: Pacific ocean perch, splitnose rockfish, and others

New Limited Entry Trawl Gear Restrictions in 2000.

- Limited entry trip limits may vary depending on the type of trawl gear that is onboard a vessel during a fishing trip: large footrope, small footrope, or midwater trawl gear.
o Large footrope trawl gear is bottom trawl gear, with a footrope diameter larger than 8 in . (20 cm) (including rollers, bobbins or other material encircling or tied along the length of the footrope).
o Small footrope trawl gear is bottom trawl gear, with a footrope diameter 8 in. (20 cm) or smaller (including rollers, bobbins or other material encircling or tied along the length of the footrope), except chafing gear may be used only on the last 50 meshes of a small footrope trawl, running the length of the net from the terminal (closed) end of the codend.
o Midwater trawl gear is pelagic trawl gear, The footrope of midwater trawl gear may not be enlarged by encircling it with chains or by any other means.

Effective during 2001:

- First conservation area was established (Cowcod Conservation Area)
- The West Coast Observer Program was initiated
- It is unlawful to take and retain, possess or land petrale sole from a fishing trip if large footrope gear is onboard and the trip is conducted at least in part between May 1 and October 31

Effective during 2002:

- Darkblotched Conservation Area was established.

Effective during 2003:

- Vessel buyback program was initiated (December 4, 2003)
- Yelloweye Rockfish Conservation Area was established
- Rockfish Conservation areas for several rockfish species were established.

Effective during 2004:

- Vessel Monitoring System (VMS) was initiated.

Effective during 2005:

- Selective flatfish trawl required shoreward of the RCA North of $40^{\circ} 10^{\prime}$.

Appendix B. Assessment model files

Appendix B.1. SS data file

```
#Global specifications
1915 # Start year
2012 # End year
1 # N seasons per year
12 # Months per season
1 # Spawning Season
2 # N fishing fleets
# # N surveys
1 # Number of areas
TWL%BYCATCH%AKSHLF%AKSLP%NWSLP%NWCBO #Names divided by "%"
0.5 0.5 0.5 0.5 0.5 0.5 #Timing of each fishery/survey
1}11414141\mp@code{1 # Area of each fleet
1 1 # Units for catch by fishing fleet:
1=Biomass(mt),2=Numbers(1000s)
0.01 0.01 # SE of log(catch) by fleet for equilibrium and continuous
options
2 # Number of Genders
45 # Accumulator age
#Landings section
# Initial equilibrium catch (landings + discard) by fishing fleet
0 0 # Initial equilibrium catch (landings + discard) by fishing fleet
98 # Number of lines catch data
# Landed catch (only) time series by fleet
# Catch(by fleet) Year Season
0 0 1915 1
13.009 0 1916 1
20.633 0 1917 1
21.345 0 1918 1
13.733 0 1919 1
14.439 0 1920 1
12.312 0 1921 1
11.311 0 1922 1
13.643 0 1923 1
13.863 0 1924 1
15.798 0 1925 1
21.328 0 1926 1
18.319 0 1927 1
18.159 0 1928 1
19.318 0 1929 1
21.079 0 1930 1
26.002 0 1931 1
16.433 0 1932 1
16.044 0 1933 1
15.249 0 1934 1
17.499 0 1935 1
11.881 0 1936 1
13.537 0 1937 1
16.741 0 1938 1
23.738 0 1939 1
32.725 0 1940 1
41.860 0 1941 1
48.165 0 1942 1
183.614 0 1943 1
```

397.657	0	1944	1
678.760	0	1945	1
401.009	0	1946	1
331.568	0	1947	1
191.102	0	1948	1
160.203	0	1949	1
177.770	0	1950	1
205.861	0	1951	1
216.837	0	1952	1
184.548	0	1953	1
216.901	0	1954	1
256.018	0	1955	1
339.045	0	1956	1
396.068	0	1957	1
335.049	0	1958	1
283.182	0	1959	1
342.106	0	1960	1
318.933	0	1961	1
345.280	0	1962	1
368.227	0	1963	1
264.989	0	1964	1
482.897	0	1965	1
413.119	3807	1966	1
370.119	2706	1967	1
133.875	2288	1968	1
133.554	153	1969	1
202.068	149	1970	1
250.117	278	1971	1
237.284	374	1972	1
146.314	768	1973	1
263.084	346	1974	1
318.595	293	1975	1
541.032	128.759	1976	1
315.707	2.396	1977	1
415.123	1.075	1978	1
732.379	3.716	1979	1
598.373	21.430	1980	1
824.186	11.848	1981	1
1134.167	1.653	1982	1
1114.261	11.559	1983	1
1302.935	19.582	1984	1
1760.872	12.769	1985	1
1254.632	5.720	1986	1
2401.271	13.985	1987	1
1646.800	9.519	1988	1
1268.669	5.289	1989	1
1650.955	28.252	1990	1
1161.030	44.969	1991	1
657.876	29.453	1992	1
1185.669	8.026	1993	1
851.283	14.734	1994	1
737.049	49.066	1995	1
736.793	5.993	1996	1
815.790	3.879	1997	1
912.558	14.058	1998	1
350.348	11.114	1999	1
250.741	8.145	2000	1

162.871	12.357	2001	1
109.061	3.217	2002	1
75.486	4.371	2003	1
181.873	7.274	2004	1
86.647	11.059	2005	1
95.978	11.148	2006	1
131.538	12.052	2007	1
111.054	6.317	2008	1
138.071	0.353	2009	1
176.168	8.176	2010	1
104.814	12.197	2011	1
91.828	2.225	2012	1

\#Survey Indices section

```
27 # number of Survey data points (#_N_cpue)
```

\#_Units: 0=numbers; 1=biomass; 2=F
\#_Errtype: -1=normal; 0=lognormal; >0=T
\#_Fleet Units Errtype
110 \# fleet (fishery or survey) \# TWL
210 \# fleet (fishery or survey) \# BYCATCH
310 \# fleet (fishery or survey) \# AKSHLF
410 \# fleet (fishery or survey) \# AKSLP
510 \# fleet (fishery or survey) \# NWSLP
610 \# fleet (fishery or survey) \# NWCBO
\#
\#Year Seas Flt/Svy Value se(log)
\#AKSHLF triennial early ($\mathrm{N}=5$)
\#Random-SY, Random-VY, GammaECE,
"C: \Users\thorsonja\Dropbox\Darkblotched\delta-GLMM\AFSC triennial
early\2012-11-01 -- PRELIMINARY=2 (1e6 1e6) \Model=2"
$1980 \quad 1 \quad 3 \quad 4329.5106950 .328855581$
1983 1 3 11307.197 0.188300112
1986 1 3 3 5626.360727 0.2519586
$1989 \quad 1 \quad 3 \quad 7000.510252 \quad 0.316365157$
$1992 \quad 1 \quad 3 \quad 6185.453803 \quad 0.289054054$
\#AKSHLF triennial late ($\mathrm{N}=4$)
\#Random-SY, Random-VY, GammaECE,
"C:\Users $\backslash t h o r s o n j a \backslash D r o p b o x \backslash D a r k b l o t c h e d \backslash d e l t a-G L M M \backslash A F S C ~ t r i e n n i a l ~$
late\2012-10-31 -- PRELIMINARY=2 (RandomSY 1e6 1e6) \Model=2"
$1995 \quad 1 \quad 3 \quad 3574.325258 \quad 0.295860335$
$1998 \quad 1 \quad 3 \quad 4152.80707 \quad 0.345400667$
2001 1 3 3408.702865 0.325285022
$\begin{array}{lllll}2004 & 1 & 3 & 7329.157077 & 0.31872779\end{array}$
\#AKSLP survey ($\mathrm{N}=4$)
\#Random-SY, no-VY, GammaECE,
"C: \Users \thorsonja\Dropbox\Darkblotched\delta-GLMM\AFSC slope\2012-10-
31 -- FINAL=1 (syRandom 1e7 1e7) \Model=1"
$1997 \quad 1 \quad 4 \quad 1655.059106 \quad 0.558034217$
$1999 \quad 1 \quad 4 \quad 1917.966195 \quad 0.612989277$
$2000 \quad 1 \quad 4 \quad 1633.165459 \quad 0.56262013$
$\begin{array}{lllll}2001 & 1 & 4 & 2180.37366 & 0.87740395\end{array}$
\#NWSLP survey ($\mathrm{N}=4$)
\#Random-SY, Random-VY, GammaECE,
"C: \Users \thorsonja\Dropbox\Darkblotched\delta-GLMM\NWFSC Slope\2012-
10-27 FINAL=1 (randomSY 1e6 1e6) \Model=1"
\# DESIGN-BASED ESTIMATOR FOR COMPARISON (NOT FOR USE IN FINAL VERSION)
$\begin{array}{lllll}\# 1999 & 1 & 5 & 1980.11701 & 0.307066331\end{array}$

-1 \# Minimum proportion for compressing tails of observed compositional data 0.001 \# Constant added to expected frequencies

0 \# Combine males and females at and below this bin number
30 \# Number of Observed Length Bins
\# Data length bins
$\begin{array}{llllllllllllllllllllllllllllll}4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 & 32 & 34 & 36 & 38 & 40 & 42 & 44 & 46 & 48 & 50 & 52\end{array}$ 5456586062

71 \# Length Composition Observations
\#TWL updated with final BDS data ($\mathrm{N}=36$)
\#Year Seas Fleet Gender Partition Nsamp F-4 F-6 F-8 F-10 F-12 F-14
F-16 F-18 F-20 F-22 F-24 F-26 F-28 F-30 F-32 F-34 F-36 F-38 F-40 F-42
F-44 F-46 F-48 F-50 F-52 F-54 F-56 F-58 F-60 F-62 M-4 M-6 M-8 M-10 M-12

M-42 M-44 M-46 M-48 M-50 M-52 M-54 M-56 M-58 M-60 M-62
$\begin{array}{llllllllllllllll}\# 1977 & 1 & 1 & 3 & 2 & 35 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1914.311761\end{array}$
8447.18938323282 .7102440963 .2784838691 .8671624160 .473466366 .774088
249.047302100000000000000000000002631 .266311
3929.25923415502 .2584355012 .624133762 .5532816064 .293091674 .110431
027.647922530000221 .39937960000000
$\begin{array}{lllllllllllllllll}\# 1978 & 1 & 1 & 3 & 2 & 92 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2654.541186\end{array}$
11288.7327624730 .6261337302 .9976546770 .1308720279 .602833196 .226015
2680.2211874813 .6863213993 .7118162326 .003466800 .3764266000000
000000000000159.599988816258 .3983138571 .9176462212 .25422 25371.6538512533 .241126234 .26433410100 .908143771 .698166944 .3406064 9.002974819000000000 $19791 \begin{array}{lllllllllllllllll}0 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 187.0178901\end{array}$ 986.91141073337 .55378511771 .82828763 .3424856310 .9891363631 .702319 3803.1278593658 .6100743644 .368124986 .9114107000000000000 00000003108.0962326037 .317184639 .28915912631 .05806 2975.77697513027 .9743320300 .1189210603 .5119905487 .91511200000 000
 465.1675222806 .75029954608 .9821795332 .0783494972 .4590659550 .955786 12853.6329416273 .1071827904 .1500215354 .379747103 .884406846 .9172915 01293.9882751293 .98827500000000000000601 .04340020 1022.4924192187 .4173167613 .44217912114 .8481820347 .657526001 .46245 4802.8865451145 .186135579 .93617020000000000
$1981 \quad 1 \quad 1 \quad 3 \quad 2 \quad 55 \quad 0 \quad 4111.398272$ 3808.044462012411 .234472153 .6253834088 .08040913733 .90088 73028.3507972587 .4203355758 .7149926673 .42046885 .995675000000 00000000000000568.541630502574 .76733114909 .6067 94828.0614838417 .773274322 .91243800000000000 $19821 \quad 1 \quad 3 \quad 2 \quad 158 \quad 0 \quad 141.107601$ 391.76270123332 .3071394666 .82231922212 .6847930211 .5703647038 .94247 149357.272163726 .4129196877 .531110032 .140147445 .2133513850 .36024 4317.3680222903 .416531265 .61976100000000000000 842.57595973007 .6075631454 .2200018192 .36519917140 .7962658768 .54555 111735.468131941 .141540437 .514499174 .0585241221 .213789900 .1212691 186.0885041372 .1770083131 .1479027000000 $19831 \quad 1 \quad 3 \quad 2 \quad 224 \quad 0 \quad 1033.104686$ 2289.1354782456 .4290825048 .7098679459 .49110812226 .5787351884 .06434 46236.2854477169 .822144374 .8405619693 .231065304 .9309222459 .051214 1114.837508000000000000000237 .3667002305 .9650694 531.31257844292 .5719544851 .70793621568 .504542013 .4294848689 .14646 44623.649698596 .1681772152 .257731643 .2970558456 .70447190 880.9075103880 .907510300000
$19841 \begin{array}{lllllllllllll}1 & 1 & 2 & 436 & 0 & 0 & 0 & 0 & 0 & 77.08972888 & 0 & 0\end{array}$ 77.08972888386 .35507321463 .64146214794 .5862315364 .9925218234 .08535 39546.27728110538 .6401181734 .556119614 .7121164612 .9052110557 .2208 29483.4237916656 .763671744 .8844370000000000000000 2870.1835751134 .5126048679 .1325412034 .5493137178 .2332188207 .14088 68267.2738756525 .1277813213 .711098952 .269282796 .767007200 126.1000609000000 $19851 \quad 1 \quad 3 \quad 2 \quad 617 \quad 0 \quad 0 \quad 0 \quad 047.41340848000354 .5062826$ 1381.136334807 .96723036935 .94299613597 .6809835749 .0230146028 .1168 37747.8852856202 .5768875100 .510769275 .2287144766 .724528430 .99728 6313.49024197 .6202453109 .263282500000000000000 27.68293826667 .55512792545 .8702038289 .46227118615 .7401841162 .08328 53342.4364492086 .8161281408 .6936142700 .3539518107 .476841110 .112068 2652.306468 000000000
$19861 \quad 1 \quad 3 \quad 2 \quad 468 \quad 0 \quad 1054.006598$ 113.49734811378 .4238185839 .84110720730 .273844257 .4519248695 .82395 34942.6100640492 .0318928067 .18519959 .10417560 .8638512133 .920072 442.08311010000000000000001054 .00659857 .19133848 724.74317142069 .7254766899 .65374924897 .1304336112 .8747741409 .91512 31103.4777815886 .096923467 .2717678 .22868440000000000 198710103420000000000734.9731404 $1612.8400971082 .1576285189 .353081 \quad 25713.69599102233 .1739189530 .4193$ 263806.8812165933 .0851106322 .285332045 .184928490 .9457131498 .241428
174.87227780000000000000000495 .4223748658 .8466328 4059.33483911895 .8321572031 .21875231069 .3842317437 .6124230601 .1852 55664.290849410 .7136712714 .8553751417 .2840241997 .41135900 314.663141900000
$19881 \begin{array}{llllllllllll} & 1 & 271 & 0 & 0 & 0 & 0 & 0 & 0 & 502.9816598\end{array}$ 260.91053033281 .3042033846 .2228294892 .110885 57917.23352 92338.8421 93925.8211290449 .2385860517 .8478916927 .537514910 .5519632006 .957307 000000000000000000460.21204872769 .2556744051 .801358 18107.49741 86844.921 102967.104 109740.5496 38483.624985429 .3287570 197.1537175 000000000
$19891 \begin{array}{llllllllllll}1326 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1326.606814\end{array}$ 5580.7356438937 .49389911895 .2003427401 .9487151206 .2983844913 .42328 27963.2911223338 .81728 11210.36493 7691.386286 000000000000 000000138.767002349 .59640477779 .3134148075 .72014216074 .50957 49854.423969428 .9094433503 .3356214751 .220982888 .012499196 .8726007 041.9423683100000000
199010130206000000001440.525222
14923.0097243166 .6234356955 .89493113766 .4597131950 .7731167021 .6282 133245.811187059 .2477163392 .345980904 .8214533193 .446313772 .998574 8509.17635900000000000000001849 .6593592527 .295459 46572.62702108785 .6275131884 .7093194981 .0641149314 .688866360 .8989 22888.21773 4581.832975 0000000000
$1991 \begin{array}{lllllllllllll}1 & 1 & 3 & 2 & 193 & 0 & 0 & 0 & 0 & 0 & 1067.413529\end{array}$
2770.4122448288 .5395275298 .9261868222 .80986812182 .7516819174 .65563 61161.51675107748 .7335143208 .606193692 .8472681717 .4847268679 .60326 52994.13398 13559.84746 0000000000000119.09220730
435.23239582474 .9891383877 .4163819865 .1893236912 .1460199965 .745482 71802.5333499732 .99674100812 .183339802 .3991814853 .9313625 .4719260 000000000
$19921 \begin{array}{llllllllllllll} & 1 & 3 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 489.8299149\end{array}$ 1115.5951582111 .0264896632 .0940439795 .55449312585 .2766215389 .88697 21022.2533217352 .6403513382 .333175438 .350447258 .6139356000000 000000000000298.81075341827 .097474821 .7059435221 .846245 5677.85545222739 .26078 23191.61988 10376.76492 2536.361576899 .6415959 0451.241697100000000
$19931 \begin{array}{llllllllll} & 1 & 3 & 2 & 0 & 0 & 0 & 0 & 813.2131571 & 146.5311538\end{array}$ 187.60088251617 .7359471807 .9732436363 .44674813750 .3483214452 .04782 17090.2766831775 .3805921036 .7875413419 .336116542 .906958 2107.582361 813.2131571406 .6065786000000000000000994 .56481490 605.60230243398 .2521458975 .0735418869 .2538540371 .1782645703 .21439 38356.3223811745 .493914398 .4974671841 .2180880000000000 $199410130 \quad 2 \quad 0 \quad 0 \quad 0 \quad 0000644.3413834$ 908.0391572950 .8548584145 .3928313973 .8444737101 .6823447084 .36832 $89290.00135139048 .267962095 .6642372909 .75688 \quad 30178.6187415689 .66677$ 0000000000000000000581.33118222796 .863504 29251.9056793087 .07656120955 .565498392 .7736555259 .6328619534 .31584 3196.38440101228 .96531200000000
$199511 \begin{array}{llllllllllll} & 1 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 425.6337958\end{array}$ 798.9397108542 .87413193840 .8220416067 .8314247380 .4766275479 .90434 74180.3179662887 .5650262991 .887549302 .0460418011 .675528745 .975812 394.41439310000000000000000202 .6386939167 .8482303 920.61219498025 .09821846037 .3286668312 .19807 101040.4083 61165.42252 20094.102493002 .57034137 .17561160000000000
$19961 \begin{array}{lllllllllll}1 & 1 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 99.48424167\end{array}$
2126.2956374606 .286368 8670.635218 14947.1473134107 .2281653478 .55067 61921.9005967124 .8868762168 .368536800 .7705916894 .273036598 .288855 1411.5485220000000000000000681 .46637212880 .493013
5369.40300412980 .2661252743 .74524116398 .1592146467 .240563475 .86444 27260.689694546 .106808825 .5007597392 .821623317 .3017179000000 00
$19971 \begin{array}{llllllllllllll} & 1 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 76.34660269\end{array}$ 1323.7512086659 .6839349180 .7249317413 .1922722166 .561456854 .15826 66042.7680267502 .2127283873 .6569658772 .9409246132 .2770126122 .90088 14217.585223718 .41966875 .3309319600000000000000 211.233915677 .0170963541 .6509558085 .0235218276 .8691955032 .31323 106108.719293669 .4596377272 .021434729 .959259178 .5999352949 .589421 148.083673000000000
$19981 \begin{array}{lllllllllllll}1 & 2 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 1006.854338\end{array}$ $3446.3108477172 .11626814058 .08367 \quad 25889.06823 \quad 31930.6326939921 .45618$ 72571.63679105109 .14876779 .9936872250 .9623964805 .2540935458 .13502 7202.112539615 .73806750000000000000001758 .168767 3198.86806219496 .6538921860 .3501533082 .9243228919 .58708101302 .5328 117880.223471346 .7411536273 .290068956 .0382654049 .4694720
1841.27956978 .18458850000000
$19991010273 \quad 0 \quad 326.8956951$ 3457.30877515810 .069633010 .8772627605 .2324825014 .7484714426 .12523 30979.2163451472 .4293630240 .1367924249 .5732714656 .813044652 .8568 4868.8781981270 .024048000000000000000401 .1893314 4005.93544614459 .9016530988 .2769230279 .8768726071 .4824130692 .16598 42055.7885919904 .3934612111 .271046395 .08654851 .7862775465 .18946242 012.725629030000000
$20001 \quad 1 \quad 3 \quad 2 \quad 318 \quad 0 \quad 0207.1368958$ 2356.6528659131 .2219921102 .4214816264 .4424815360 .30778317 .094 25609.1676123997 .8734727623 .5277910738 .75246011 .7944691361 .385546 334.13190060000000000013 .0494538413 .0494538413 .049453840 01590.4749143768 .67222812869 .3508523318 .2542213420 .27382 15068.9312620344 .6429521957 .313077714 .0501912659 .09312226 .7364325 128.6808374292 .38611028 .7715185970000000
$20011 \begin{array}{llllllllllllllll} & 1 & 2 & 413 & 0 & 0 & 0 & 0 & 0 & 96.78375128 & 2252673\end{array}$ 253.339908923 .8691113824 .8982718477 .0279928395 .6069923207 .32166 12116.443465709 .0156176607 .0153034601 .1083652764 .1566773151 .676602 1615.88957745 .416396995 .84279887200000000000000 885.032830923 .98399886511 .12632615364 .18548914128 .8731427370 .91259 19593.824599077 .739947812 .1444082850 .848596928 .0661834260 .8471964 00238.57600970000000
$20021 \begin{array}{lllllllllllll} & 1 & 3 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 73.79886508\end{array}$
896.4053614788 .17754711177 .3791921382 .1228243884 .38324511446 .30438 13335.912246733 .0087877103 .3765417768 .0601238319 .1891464666 .037518 1353.211274145 .4907813000000000000000120 .2040784 1939.830725748 .61428521036 .6120822884 .419098565 .69331714644 .99811 15550.770027295 .652443751 .601539792 .6635532176 .825953516 .26851113 06.8616489740000000
$20031 \begin{array}{lllllllllllll} & 1 & 3 & 2 & 427 & 0 & 0 & 0 & 0 & 0 & 0 & 60.8809982 & 61.54023704\end{array}$ 538.3218484816 .352246429 .8930624301 .74291481481 .5564543908 .931619 10791.8394110525 .870175796 .040015151 .3527713800 .9844943171 .544904 792.2132209310 .327158678 .658094112 .718436208000000000000 7.3696010249 .962233297 .7221299941 .7316453266 .3857414596 .4219568 1123.7318672330 .2097688773 .29638410116 .85186778 .4635332352 .626022 1026.919975251 .1702569105 .701578493 .03418081000035 .4616445100 0
$200413103437 \quad 0 \quad 7.954751937$
13.878428291663 .6997421206 .3445774152 .418656026 .07376814302 .1887
19385.6558617162 .6056517357 .262629644 .2147295789 .3826784136 .054725 791.3788892208 .835452600000000004 .33700883900000
1318.9057771193 .990864439 .2595926266 .87642316080 .2768227666 .94795 19887.58401 8128.051849 2398.842412127 .6755077331 .9060942 8.464184213 00000000
$200511 \begin{array}{llllllllllll} & 1 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 13.21908273\end{array}$ 416.51671311346 .6527923665 .2535457414 .549667888 .3824567075 .923932 8811.3872358585 .498347 5509.936735 2637.430475 1076.318763 911.5426636 284.444255511 .63556773000000000000000132 .7686674 389.70338081728 .0923633858 .4441810744 .982488313 .76278410931 .87114 9021.2258633897 .366496967 .8865274248 .686332632 .046839158 .775703694 00000000
$20061 \quad 1 \quad 3 \quad 2 \quad 492 \quad 0 \quad 2.494196853$
$12.47098427 \quad 361.69471581451 .228018 \quad 5561.01894814079 .10516 \quad 9336.918568$ 7383.0114365878 .3153323925 .9674912024 .154541 2047.338484 290.3869791 70.6227165232 .661130040000000000000003 .513784697 19.043287311 .13940592504 .1159611734 .9950613862 .5112512280 .64878 9259.816743068 .27375858 .9669756110 .59610754 .8421301710000000 00 $20071 \begin{array}{lllllllllllll} & 1 & 3 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 16.05148061\end{array}$ 70.27121067894 .08374814806 .41814115494 .3100816486 .02911981 .77323 9259.6036977137 .7039964895 .6375494122 .0754131621 .469065722 .0544235 94.4481799426 .0909051100000000000003 .5252012500 153.80009421836 .1817057655 .04640516966 .0885614601 .5955510914 .28554 5316.8458072526 .5069411117 .49124411 .2830093818 .17996012000000 00
$20081 \begin{array}{llllllllllll} & 1 & 3 & 2 & 0 & 0 & 0 & 0 & 36.9784794 & 136.1851992\end{array}$ 207.3583375207 .2508805688 .7609863600 .13620913971 .4752516751 .29588 9348.736787451 .1271016268 .3915044124 .1882032415 .3196321448 .226238 272.52971560106 .17790410000000000006 .794087742 9.80212843353 .46881575160 .9210524207 .5275815 823.355196 7704.606388 16618.4154814965 .95766 9697.370715 3453.29184792 .680973366 .78444444 74.8069751829 .721246900000000
$20091 \begin{array}{llllllllll} & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 5.285738662\end{array} 0$ 14.39955622335 .39963491256 .1893383870 .4345311127 .1445927971 .35499 17151.8537510095 .2406410593 .573818588 .5244384505 .7345141608 .660458 581.47755918 .32503839340 .7354259600000000000000 92.7380972787 .452358611104 .8117631282 .4693546981 .05992719924 .45458 24183.8796816227 .90168 5088.798803 1980.856138 747.829429 37.92589494 0282.924808740 .73542596000000

820.22408162175 .1810477329 .78556522069 .6037530912 .4467213885 .37571 8767.9664197114 .7042344511 .239642724 .702665497 .2734098 117.7758282 00000000000000007.05809057564 .892701181209 .839381 3969.15058812091 .9061626278 .1541318805 .108347353 .926978 2021.157018 250.807316722 .0176342246 .4704118834 .848862010000000 $2011 \begin{array}{lllllllllllll}1 & 1 & 3 & 2 & 0 & 0 & 0 & 0 & 0 & 111.0910125\end{array}$ 162.5748393113 .0106963200 .3135872633 .35516313311 .8304546672 .989118 9889.24115812019 .94543 8430.24616 3517.6545873153 .7946122304 .544926 905.975830919 .9833485345 .17479112023 .7932059900000000000 0101.2346845 87.97525158 209.0946574 226.902537 1399.18693 6399.661925 10662.715213628 .0475515002 .835754493 .3920291227 .289248302 .0012718 25.5024563142 .770410200000000
2012101304540000005.5811220905 .58112209 60.53011413212 .2701326677 .10975892228 .915266095 .83771311918 .63285 10660.800025674 .3407084441 .3229784163 .0975233209 .1292571770 .002445 840.0042196148 .503902400000000000005 .5811220900 19.29131182155 .6073452715 .20373933404 .05988611365 .8500811540 .81192
11019.277948334 .6362513523 .390988881 .1727372128 .62757316 .73213462 000000000

0	0	0	0	0	0	0	0	0

\#TWL discard from WCGOP ($\mathrm{N}=10$)
\#year season fleet gender partition Nsamp $\quad 468101214161820$

 6062
$20021 \quad 1 \quad 0 \quad 1 \quad 118 \quad 0 \quad 0 \quad 0 \quad 0.000414240 .0008284810 .00041424$ 0.0170627560 .0356641190 .0700911890 .097598170 .1853577370 .066220353 0.0419356350 .0474637920 .1066498230 .1588205970 .1112884310 .041535877 0.0036480640 .0113584310 .0036480640000000000000 .00041424 0.0008284810 .000414240 .0170627560 .0356641190 .0700911890 .09759817 0.1853577370 .0662203530 .0419356350 .0474637920 .1066498230 .158820597 0.1112884310 .0415358770 .0036480640 .0113584310 .003648064000000 000
$\begin{array}{llllllllllll}2003 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0.000159582 & 0.000159582\end{array}$ 0.0004787450 .0044227490 .0345856720 .050516570 .0263431160 .029120547 0.0632908150 .05904630 .2107502160 .2308339190 .1396443320 .073853911 0.04721770 .0142130540 .0103689590 .0010046920 .0039895390000000 00000.0001595820 .0001595820 .0004787450 .0044227490 .034585672 0.050516570 .0263431160 .0291205470 .0632908150 .05904630 .210750216 0.2308339190 .1396443320 .0738539110 .04721770 .0142130540 .010368959 0.0010046920 .0039895390000000
$20041110 \quad 1 \quad 169 \quad 0 \quad 0 \quad 0 \quad 0.0008776720 .003170212$ 0.0013165080 .0033447870 .0018527440 .0115563480 .0434221630 .043740165 0.0498239760 .0677225780 .2251898810 .1712967120 .2376530430 .066468373 0.033250450 .02271603400 .0163789350 .00021941800000000000 0.0008776720 .0031702120 .0013165080 .0033447870 .0018527440 .011556348 0.0434221630 .0437401650 .0498239760 .0677225780 .2251898810 .171296712 0.2376530430 .0664683730 .033250450 .02271603400 .016378935 0.0002194180000000 $\begin{array}{lllllllllll}2005 & 1 & 1 & 0 & 1 & 365 & 0 & 0.000273245 & 0.0010929820 .007257076\end{array}$ 0.0124924180 .0125495720 .0331166640 .0110749080 .010596670 .010323573 0.0950166730 .0946730910 .1348252640 .176550220 .1411935210 .154894739 0.0802882230 .0135558890 .0064007730 .0009661180 .0020386440 .000546491 0000.000273245000000 .0002732450 .0010929820 .007257076 0.0124924180 .0125495720 .0331166640 .0110749080 .010596670 .010323573 0.0950166730 .0946730910 .1348252640 .176550220 .1411935210 .154894739 0.0802882230 .0135558890 .0064007730 .0009661180 .0020386440 .000546491 0000.000273245000
$20061 \quad 1 \quad 0 \quad 1 \quad 373 \quad 0 \quad 0 \quad 0.0010484080 .0070304990 .021093234$ 0.0288492010 .0223161690 .0495746020 .065079850 .0372053370 .016481587 0.010052380 .0180951290 .1125144120 .1428025920 .1742980920 .129121847 0.0726340890 .0230856120 .0433393270 .020382280 .0025901840000
0.002405171000000 .0010484080 .0070304990 .0210932340 .028849201 0.0223161690 .0495746020 .065079850 .0372053370 .0164815870 .01005238 0.0180951290 .1125144120 .1428025920 .1742980920 .1291218470 .072634089 0.0230856120 .0433393270 .020382280 .00259018400000 .00240517100 0
2007 1 $10 \begin{array}{lllllll} & 1 & 210 & 0 & 0 & 0.000744505 & 0.030093011\end{array}$
0.0135320370 .0112020170 .0263958430 .0131335760 .0123891160 .008170599 0.0185512250 .0166823650 .0589909810 .1373868520 .2767383510 .131171573 0.1533271770 .0320533640 .0438400260 .0151258620 .00047152000000 000000.0007445050 .0300930110 .0135320370 .0112020170 .026395843 0.0131335760 .0123891160 .0081705990 .0185512250 .0166823650 .058990981 0.1373868520 .2767383510 .1311715730 .1533271770 .0320533640 .043840026 0.0151258620 .0004715200000000

2008 1 $1 \quad 0 \quad 1 \quad 250 \quad 0 \quad 0 \quad 0.0003882430 .0003882430 .001261789$ 00.0033707780 .0046945010 .0069657210 .0120932970 .020258718
0.0255943590 .0430465090 .0523772740 .2005930510 .2452097370 .120947179 0.1164604040 .0739492040 .0242037990 .0204960410 .0270993790 .000601776 0000000000.0003882430 .0003882430 .00126178900 .003370778 0.0046945010 .0069657210 .0120932970 .0202587180 .0255943590 .043046509 0.0523772740 .2005930510 .2452097370 .1209471790 .1164604040 .073949204 0.0242037990 .0204960410 .0270993790 .0006017760000000 $2009131 \begin{array}{llllllll}0 & 1 & 1 & 0 & 0.00075435 & 0.003063823 & 0.004993623\end{array}$ 0.0193233890 .015658560 .0097378430 .011262010 .0654557080 .059766056 0.0486587890 .0570913090 .0343829520 .0410934520 .1104558150 .280892895 0.1279426590 .044835430 .0198706220 .0185621750 .0060399790 .019926453 0.000232108000000000 .000754350 .0030638230 .004993623 0.0193233890 .015658560 .0097378430 .011262010 .0654557080 .059766056 0.0486587890 .0570913090 .0343829520 .0410934520 .1104558150 .280892895 0.1279426590 .044835430 .0198706220 .0185621750 .0060399790 .019926453 0.0002321080000000
$2010 \quad 1 \quad 1 \quad 0 \quad 1 \quad 176 \quad 0 \quad 0.0001083700 .0010620270 .002227275$ 0.0051505790 .0103165020 .0215246130 .0255720760 .0192444720 .009994735 0.0407213050 .0592606310 .1909687160 .2197144110 .1708394150 .08290886 0.0682150580 .0151573670 .0497961390 .0039229980 .0015171820 .00166890 0.000108370000000 .0001083700 .0010620270 .0022272750 .005150579 0.0103165020 .0215246130 .0255720760 .0192444720 .0099947350 .040721305 0.0592606310 .1909687160 .2197144110 .1708394150 .082908860 .068215058 0.0151573670 .0497961390 .0039229980 .0015171820 .001668900 .00010837 00000
$\begin{array}{llllllllll}2011 & 1 & 1 & 0 & 1 & 150 & 0.002185965 & 0.002595833 & 0.024728729\end{array}$ 0.0830325140 .047026710 .0752791690 .0665035930 .0862602280 .293040714 0.1468023490 .0601853190 .0530153430 .0255484660 .0192182750 .007741959 0.0027324560 .00410237700000000000000 .002185965 0.0025958330 .0247287290 .0830325140 .047026710 .0752791690 .066503593 0.0862602280 .2930407140 .1468023490 .0601853190 .0530153430 .025548466 0.0192182750 .0077419590 .0027324560 .004102377000000000000 \#AKSHLF ($\mathrm{N}=9$)

\#year	season	fleet gender partition	Nsamp	F4	F6	F8	F10			
F12	F14	F16	F18	F20	F22	F24	F26	F28		
F30	F32	F34	F36	F38	F40	F42	F44	F46		
F48	F50	F52	F54	F56	F58	F60	F62	M4	M6	M8
M12	M14	M16	M18	M20	M22	M24	M26	M28		
M30	M32	M34	M36	M38	M40	M42	M44	M46		

0.7110033140 .2001544630 .6521581142 .5575414981 .2604060232 .906166924 9.90879655510 .283685347 .6894840894 .6902059584 .6579683233 .559396444
2.1312939192 .619064140 .8394539530 .7671496760 .3856896880 .239313408
$\begin{array}{llllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
0.4320287380 .4726869921 .1236522832 .8581008661 .8938876773 .537584122 5.1115254015 .6370927686 .2127015155 .3312079264 .2434781613 .087463828 2.891183848 0.767149676 0.255716559 0 0 0 0 0 0 $\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllllll}1983 & 1 & 3 & 3 & 0 & 205 & 0 & 0 & 0 & 0.086023124 & 0.3585804\end{array}$
0.518132822 .2645310395 .3382470260 .9277372642 .185134111 .924821789 2.4663710056 .6291680623 .2801675972 .053156578 2.241027248 2.267714515 4.7448539448 .5932208925 .4663844281 .8838725550 .9562073270 .227324737 $\begin{array}{llllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.156365982 & 0.708496832\end{array}$ 0.4778670022 .4334337174 .4441966231 .240225052 .9003942691 .116787267 2.2831655365 .3448648133 .3927598282 .4591230333 .9901776127 .402880004 $\begin{array}{llllllllll}5.508537704 & 1.421172582 & 0.306875686 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ $0 \quad 0$
$\begin{array}{llllllllll}1986 & 1 & 3 & 3 & 0 & 169 & 0 & 0 & 0 & 0.053815215\end{array}$
0.2428913370 .9710178470 .3111895551 .2139753551 .1248030310 .732900647
2.7228658065 .9787457398 .2970192859 .6043798466 .2452601184 .646361021
2.3106503421 .2209786271 .4507539731 .1219101960 .4353951540 .254992794
$0.0725658590 \quad 0 \quad 0.0402683290$
0.0361796090 .3363535581 .024194690 .2414353990 .7480948871 .236745417
1.0397581872 .1286561758 .82174592813 .1701868511 .064710716 .321238845
1.9627355431 .0358218410 .8175651540 .6715736970 .2176975770 .072565859
$\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\ 1989 & 1 & 3 & 3 & 0 & 290 & & 0 & 0 & 0.084666398 & 0.084666398\end{array}$
0.8373699992 .4446906362 .9192223824 .1601374425 .4923471685 .504379982
6.1870204755 .2402223594 .2464929094 .2583207361 .652101942 .299252401
1.9910270321 .5840113361 .5441723280 .7252739270 .2190008540
$\begin{array}{llllllllllll}0.066797771 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.115560065\end{array}$
1.2512051063 .7003035993 .0483668944 .622178634 .7050950395 .803122303
4.9688070424 .7765442594 .26008443 .8455343963 .2460553741 .53949547
0.7638771130 .7562519170 .5648395450 .340998810 .15050556500
$\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{llllllllll}1992 & 1 & 3 & 3 & 0 & 132 & 0 & 0 & 0 & 0.054486168\end{array}$
0.0544861680 .2182054440 .1821463012 .2683208467 .013892381 .6554459 4.8555507317 .88734614915 .225560896 .8833715691 .6447704830 .112573343 0.1228520830 .1271072460 .1271072460 .0614260410 .197043615000 $\begin{array}{llllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.108972336\end{array}$ 0.233595870 .3114208172 .4250385156 .4776726761 .8173698235 .909217268 10.8356964617 .278878514 .3318473360 .6856927190 .4501572790 .249959329 $\begin{array}{lllllllllllll}0.192788451 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ $\begin{array}{lllllllllll}1995 & 1 & 3 & 3 & 0 & 283 & 0 & 0 & 0 & 0.055323155 & 0.0579755\end{array}$ 2.7927846010 .2369928851 .7559487791 .783789723 .6600650158 .668013886 5.5149971393 .0976561942 .6643153372 .3899449693 .7337994423 .10280146 3.4142744033 .4181355493 .3130548441 .8046102270 .7286678290 .127285669 $\begin{array}{llllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.116914925 & 0.315134709\end{array}$ 2.9303930030 .3157781981 .580130333 .3899294694 .1311120068 .843210707 4.7996067322 .3957831022 .4478769193 .8879250426 .2567359214 .825103632 $\begin{array}{lllllllllll}1.14876664 & 0.127285669 & 0.167876394 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ $0 \quad 0$
$\begin{array}{llllllllll}1998 & 1 & 3 & 3 & 0 & 326 & 0 & 0 & 0 & 0.166015745\end{array}$
1.3196667350 .2943608891 .5172001872 .0532494226 .61004953414 .62690127 6.8284164446 .0595226653 .8976570581 .4690679170 .6462723340 .914011098 0.3532574980 .1563320230 .1145089740 .7810175890 .0635061830 .026200241 $\begin{array}{llllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.538549148\end{array}$ 1.7929177660 .1824403661 .7040654471 .7731357057 .72866844315 .26098968 8.4871426756 .283235733 .3307822712 .3781193711 .2459939061 .074043899

0.0554224380 .2987815340 .3383028270 .0678430152 .440299481 .580276293
3.1752186913 .1697059212 .179863141 .5646839080 .0664465771 .249039861
1.9325505143 .7471266018 .1187766422 .544877930 .62452343900
$\begin{array}{llllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.295707968\end{array}$
0.7320772130 .0538084650 .1083256740 .2793015791 .9481709682 .723250042
10.81119985 .545857682 2.283084452 9.062965026 10.50441857 0.624523439
$\begin{array}{llllllllllll}1.249046879 & 0 & 0.624523439 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllllll}2001 & 1 & 5 & 3 & 0 & 80 & 0 & 0 & 0 & 0 & 0\end{array}$
0.1289106650 .8236975994 .3055469689 .1157054841 .3788148231 .599758602 2.1471095272 .7263913183 .96711937112 .915948373 .3287741370 .994580904 $\begin{array}{lllllllll}1.971576336 & 1.660380252 & 0.500233731 & 0 & 0 & 0 & 0 & 0\end{array}$ $0 \quad 0 \quad 0.64710087001 .041549698$ 3.4462332219 .642972862 .2966231440 .6981012143 .8492150842 .158907376 6.4016561516 .0892728627 .9848186176 .7248479510 .6962214730 .568918481 $\begin{array}{lllllllllll}0 & 0.189012913 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllllll}2002 & 1 & 5 & 3 & 0 & 118 & 0 & 0 & 0 & 0 & 0\end{array}$
0.1195644610 .6090461083 .4715834721 .5075285549 .9458296716 .73643556
6.1913926534 .0574520873 .6460688122 .3848303791 .4399240910 .337223562
0.0987832160 .25588888 0.049384722 0. 2065041580.3080967670 .154048384

0	0	0	0	0	0	0	0	0	0	0	0
0	0.186893493										

0.3035108462 .8092415260 .7939840438 .13759966314 .953407468 .108280066 4.6438302493 .6624844812 .1653672080 .9773520230 .4433056920 .858338423
$\begin{array}{llllllllllll}0.436819299 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
\#NWCBO ($\mathrm{N}=10$)

0.0641151110 .0483375620 .1278620080 .6077722043 .4524890194 .726184253
3.4640014334 .1085144031 .4110521555 .89301905110 .746804499 .860567278
6.2210796882 .2432905342 .7711106272 .6447751691 .6336868520 .376394363
$\begin{array}{lllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.126051627\end{array}$
0.1336498590 .315178930 .6000358933 .0693038094 .5899511494 .368660813
3.3640833491 .4449392697 .6958902478 .3012805723 .916755910 .945197344

0.0
$\begin{array}{llllllllll}2004 & 1 & 6 & 3 & 0 & 164 & 0 & 0 & 0.02055708 & 0.22882472\end{array}$
0.3646591850 .5803456921 .0243022841 .5317008742 .5294570482 .279617294
8.95800183613 .925559056 .582799213 .8434004421 .5683576070 .759263521
0.5318177540 .2562816510 .3943244750 .0854289130 .11654948200
$\begin{array}{llllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.074102166 & 0.165525198\end{array}$
0.5713596020 .9510040840 .3852162641 .8803062011 .1012946534 .267079816
$11.5621563916 .686746298 .126356023 \quad 3.487498371 .3124932041 .441463436$
 $0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$
$\begin{array}{lllllllllll}2005 & 1 & 6 & 0 & 247 & 0 & 0.034332186 & 0.026858867 & 0.125028112\end{array}$ 0.6952857230 .8502730021 .4177458911 .6717034991 .0165968381 .174726032 0.5960448972 .4461543884 .469291164 .5095811944 .2035288295 .240752721 12.451201913 .8157727961 .1315333670 .3695148910 .2256560960 .063119204 $0.4385087140 .022170269 \quad 0 \quad 0.034332186$ 0.059398150 .1548277560 .8919779381 .3364895831 .9256784462 .785058147 0.930523621 .5852349411 .1327297924 .0488716 .1697747414 .452381691 11.785379459 .8934713884 .8091451230 .7487156210 .2287529280 .031876915 $\begin{array}{lllllllllllll}0 & 0 & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\ 2006 & 1 & 6 & 3 & 0 & 264 & 0 & 0.023445712 & 0.064551679 & 0.07757188\end{array}$ 1.1899400131 .1286024772 .093084974 .7723361176 .3404112856 .331090271 2.693925172 .1156307222 .6007559316 .6776508544 .7384122993 .66480673 2.0440605242 .5031628630 .9359584350 .8510466210 .1904934880 .047464126 $0 \quad 0 \quad 0.0234457120 .064557523$ 0.2035604411 .1606036531 .4935421151 .3745253224 .8304478225 .324654446 6.5882333972 .3709388652 .3741062564 .0971264926 .4921538975 .209541376
 $\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ $\begin{array}{llllllllll}2007 & 1 & 6 & 3 & 0 & 275 & 0 & 0 & 0.023683149 & 0.033904175\end{array}$ 0.6182852890 .4629673572 .5941787144 .2088578224 .7268080516 .033860883 3.0869004873 .9675524662 .4720357113 .6339916384 .620662172 .576601558 1.2915476631 .1201284310 .8415852010 .838309380 .5410140970 .256359087
 0.0413586950 .513250641 0.36009151 2.991114536 4.238363367 5.507304388 6.6136176484 .3323956544 .3686206854 .5570846078 .0235231775 .223158693 4.8259624262 .5948558721 .1713319540 .3759265770 .0658926310 .125314647

$\begin{array}{llllllllll}2008 & 1 & 6 & 3 & 0 & 222 & 0 & 0.086163009 & 0.097809384\end{array}$ 0.095362210 .7121236751 .6587765671 .0163527446 .8239574978 .349066411 12.364734996 .7738117663 .1905444311 .6880340611 .9718208922 .091394996 0.6608377390 .3756624970 .53766850 .2963445930 .1792991050 .143669652 $0 \quad 0 \quad 0.0861630090 .060341642$ 0.192694570 .946680041 .1540266271 .8477674128 .2867856466 .674532527 10.955678749 .3417424582 .6016132652 .3566050252 .5176647352 .650696357
 $0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$
$\begin{array}{llllllllll}2009 & 1 & 6 & 3 & 0 & 283 & 0 & 0 & 0 & 0.106325939\end{array}$
1.2757942661 .4221071820 .9862689332 .8737163483 .7697513323 .838106293 4.4068879663 .8846902663 .8329627963 .1605371833 .6912623783 .946079231 3.8655202772 .0764608061 .1076113631 .3584547191 .2830032620 .623200142
 2.1751097492 .0543253191 .2101348045 .7240867094 .8850396914 .125962128 5.2258109954 .3139540193 .7497983444 .2045140825 .3065409495 .656492248 1.7465704961 .2264517950 .6374696330 .0754289570 .05390996900 $\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{llllllllll}2010 & 1 & 6 & 3 & 0 & 272 & 0 & 0 & 0.248112791 & 0.05252704\end{array}$ 0.1766110550 .2550950373 .115667149 8.235133989 3.960662556 4. 298732529 $5.9353345686 .464792107 \quad 5.124615141 \quad 3.9673686051 .5347849811 .391869892$ 2.1504600021 .5546656020 .7781171990 .5082732710 .5140844440 .051604544 $\begin{array}{lllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.248101743 & 0.019366895\end{array}$ 0.1515047980 .5200779073 .151561648 .6630396185 .5889400344 .618059812 6.0299981386 .8934876585 .3907248923 .4499918991 .5823239142 .049300292
 $0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$

```
2011 1 6 3 0 234 0 0 0.020313128 0.047110092
0.404284202 0.425786275 0.370262119 0.315392605 2.806783353 6.868667731
5.49934146 2.862639642 3.45470957 5.004066958 5.057357632 3.441876679
2.845387923 2.495385984 1.948038633 2.099819098 1.834804976 1.172832856
0.20949478 0 0 0 0 0 0 0 0 0 0 0 0 0.020313128 0
0.157729997 0.577513791 0.515698342 0.344731116 2.338252865 8.243072285
6.124586288 2.702680977 5.330299649 5.99526579 6.32053096 5.865800885
3.910392726 1.688834451 0.645817888 0 0.034123167 0 0
0}00<0000
2012 1 6 3 0 0 254 0 0 0 0.00830749 0.00830749
0.188935526 0.113834048 0.604845807 2.374385373 1.491594764 4.171217376
15.67937323 9.440892348 4.557474707 3.076960799 2.777494051 1.787950931
0.937195846 0.866812241 0.538414248 0.341335113 0.34829689 0.151655821
0.144845317 0 0 0 0 0 0 0 0 0 0 0 0 0
0.00830749 0.215210013 0.105485588 0.653660192 2.964138398 1.960466872
5.250850754 15.12388703 9.705216143 3.944857173 3.676820851 2.872406182
1.336670785 1.464056505 0.774818446 0.236032315 0.088678362 0 0
0 0 0 0 0 0 0 0 0 0
\#Age composition set-up
36 \# Number of Age Bins
01234567891011121314151617181920212223242526
\(\begin{array}{llllllll}27 & 28 & 29 & 30 & 31 & 32 & 33 & 34 \\ 35\end{array}\)
2 \# Number of Ageing Error Sets
\# Ageing error for "late" period (2005 forward)
\begin{tabular}{llllllllll}
0.5 & 1.5 & 2.5 & 3.5 & 4.5 & 5.5 & 6.5 & 7.5 & 8.5 & 9.5 \\
10.5 & 11.5 & 12.5 & 13.5 & 14.5 & 15.5 & 16.5 & 17.5 & 18.5 & 19.5 \\
20.5 & 21.5 & 22.5 & 23.5 & 24.5 & 25.5 & 26.5 & 27.5 & 28.5 & 29.5 \\
30.5 & 31.5 & 32.5 & 33.5 & 34.5 & 35.5 & 36.5 & 37.5 & 38.5 & 39.5
\end{tabular}
\(40.5 \quad 41.5 \quad 42.5 \quad 43.5 \quad 44.5 \quad 45.5\)
\(0.101891 \quad 0.101891 \quad 0.203782 \quad 0.305673 \quad 0.407564 \quad 0.509455 \quad 0.611346\)
\(0.713238 \quad 0.815129 \quad 0.91702 \quad 1.01891 \quad 1.1208 \quad 1.222691 .324581 .42648\)
\(\begin{array}{lllllllllllllll}1.52837 & 1.63026 & 1.73215 & 1.83404 & 1.93593 & 2.03782 & 2.13971 & 2.2416 & 2.34349\end{array}\)
2.445392 .547282 .649172 .751062 .852952 .954843 .0567313 .158623 .26051
\(3.362413 .4643 \quad 3.566193 .668083 .769973 .871863 .973754 .075644 .17753\)
4.279434 .381324 .483214 .5851
\# Ageing error for "early" dataset
\(\begin{array}{llllllllll}0.5 & 1.5 & 2.5 & 3.5 & 4.5 & 5.5 & 6.5 & 7.5 & 8.5 & 9.5\end{array}\)
\(\begin{array}{llllllllll}10.5 & 11.5 & 12.5 & 13.5 & 14.5 & 15.5 & 16.5 & 17.5 & 18.5 & 19.5\end{array}\)
\(\begin{array}{llllllllll}20.5 & 21.5 & 22.5 & 23.5 & 24.5 & 25.5 & 26.5 & 27.5 & 28.5 & 29.5\end{array}\)
\(\begin{array}{llllllllll}30.5 & 31.5 & 32.5 & 33.5 & 34.5 & 35.5 & 36.5 & 37.5 & 38.5 & 39.5\end{array}\)
\(40.5 \quad 41.5 \quad 42.5 \quad 43.5 \quad 44.5 \quad 45.5\)
0.156547 0.156547 0.313095 0.469642 0.626189 0.782737 0.939284
\(\begin{array}{lllllll}1.09583 & 1.25238 & 1.40893 & 1.56547 & 1.72202 & 1.87857 & 2.03512\end{array} 2.19166\)
\(\begin{array}{lllllllllll}2.34821 & 2.50476 & 2.6613 & 2.81785 & 2.9744 & 3.13095 & 3.28749 & 3.44404 & 3.60059\end{array}\)
3.757143 .913684 .070234 .226784 .383334 .539874 .696424 .852975 .00951
\(5.166065 .322615 .479165 .6357 \quad 5.792255 .9488 \quad 6.105356 .261896 .41844\)
6.574996 .731546 .888087 .04463
773 \# Number of age comp observations
3 \# Age-Length Bin Option (1=poplenbins; 2=datalenbins; 3=lengths)
0 \# Combine Males \& Females Below this Bin
\#TWL updated for 2013 assessment ( \(N=762\) )
\#TWL marginal ages ( \(N=30\) ), 2002-2008 are used in the model, the rest are ghost compositions
```

\#Year Seas Fleet Gender Partition AgeError LbinLo LbinHi Nsamp Age_0 Age_1 Age_2 Age_3 Age_4 Age_5 Age_6 Age_7 Age_8 Age_9 Age_10 Age_11 Age_12 Age_13 Age_14 Age_15 Age_16 Age_17 Age_18 Age_19 Age_20 Age_21 Age_22 Age_23 Age_24 Age_25 Age_26 Age_27 Age_28 Age_29 Age_30 Age_31 Age_32 Age_33 Age_34 Age_35 Age_0 Age_1 Age_2 Age_3 Age_4 Age_5 Age_6 Age_7 Age_8 Age_9 Age_10 Age_11 Age_12 Age_13 Age_14 Age_15 Age_16 Age_17 Age_18 Age_19 Age_20 Age_21 Age_22 Age_23 Age_24 Age_25 Age_26 Age_27 Age_28 Age_29 Age_30 Age_31 Age_32 Age_33 Age_34 Age_35 19801 -1 $322-1-153 \quad 0 \quad 0000376.76629852843 .551403$ 5160.2635774903 .8862097733 .666772568 .39249952667 .1288155374 .743042 2012.7720822030 .3979672796 .77438803769 .8356185711 .024613 3494.21232304381 .567193134 .7379972634 .3647970259 .6560989 2804. 285868 2071.017044 0010883.2999101427 .2709432025 .317571 2393.65829422971 .9882000001257 .63867015929 .724046952 .989348 8579.4419333898 .9223056562 .5915374062 .953191 2071.496895 2071.496895 191.6262016944 .833840175 .896067778 .96829662256 .6369931614 .689998 2664.988008778 .96829660002025 .317571778 .9682966200 .62407960 376.76629850778 .968296605768 .694955

1981 1 $-1322-1-155 \quad 0 \quad 0 \quad 0 \quad 04425.2806318592 .731461868 .6052688$ 2940.0636551182 .48762717443 .623366650 .64382177748 .46857258 .98998 32881.5315525799 .7865120177 .36635834 .8734543024 .5185223534 .707140 2181.515293568 .54163053557 .9102260568 .541630500000000000 000000868.60526881522 .42814413521 .2465934718 .2991811401 .54918 29576.212434874 .14776724289 .3175624815 .284839939 .8149520 47.3784692100047 .3784692100000000000000 $19821 \quad-1322-1-1106 \quad 0 \quad 0 \quad 0 \quad 325.13887151004 .248345$ 3504.7362065157 .8757713949 .3481273134 .43188715115 .031523094 .420069 10800.810479104 .1217699710 .5991139920 .9635246718 .260572066 .516647 5195.3666226425 .9598621067 .5283986776 .0321153731 .728661625 .74793 921.429318501730 .67253201017 .757081126 .850647652 .01911280 652.6049341291 .15955641707 .6691054109 .9773110000318 .6610397 1852.1662691728 .5245572852 .830301499 .11975212662 .0222772283 .442156 3902.020184039 .4696743580 .4874082989 .1496766001 .8766274477 .263946 $2867.481908670 .27059891488 .7748551228 .015545 \quad 21.382477642386 .944366$ 1319.021749623 .64037271216 .52511339 .315294002826 .34589323 .18876 1170.493941291 .15955641715 .83795604529 .297721
$19831-1322-1-1150 \quad 00011.376071291907 .1917215882 .956858$ 3977.1333594209 .0938139334 .2054784241 .7666287415 .883347354 .287524 6356.9508086117 .16064110017 .340241755 .82694510613 .5722310279 .38492 17106.627775600 .04444912148 .693834192 .4736539953 .71695810425 .54117 3618.135649313 .4107645397 .0750099412 .5566077947 .452336167 .629118 9322.804775605 .2170473636 .0960878886 .02866914915 .2215459018 .11810 0021.856276961739 .4837353016 .9019745725 .7756912627 .063345
6832.9051451636 .6611465345 .1049615118 .11731914527 .584848212 .145223 6522.611133821 .0327862641 .63155611802 .388946537 .8398997486 .362712 2955.2743671239 .9815566174 .954981819 .16973852455 .588701409 .5268004 9028.904759786 .54385875005 .22388325 .155337638293 .9277051084 .701099 5387.3732333435 .1021024335 .00406231558 .89293
$19851 \quad-1321-1-15930049.37611911427 .13718772438 .411575$
$14077.5670730319 .8579235570 .66109 \quad 23032.4143612142 .7536816916 .38569$ 15302.0657718595 .025819694 .44234612525 .1692820908 .7065510901 .78046 12237.7328211460 .8446911153 .5752812648 .381459721 .9370944516 .905781 2474.2854959693 .3023455051 .3731565811 .47853810037 .8343811002 .91887 8170.0285858398 .0778585662 .2575646155 .66610213868 .825153953 .495565 44101.23791000190 .53058524133 .62004910286 .1766330931 .91819 33023.1197817679 .4475412453 .4952517578 .5728214447 .953113353 .66466 19760.699027516 .2342538293 .82457512404 .6052111076 .468579497 .009889
8545.92131112746 .822867110 .3312586448 .7229996207 .7649288138 .603895 7528.9208863157 .0974736132 .4919211707 .6046966101 .3168752492 .066588 3644.8384947873 .929114863 .0545396639 .48350841315 .43952

19861 -1 $321-1-140 \quad 0000001633.13751314963 .47608$ 47049.4953123463 .043416080 .784618722 .5084414607 .117413773 .66702 15913.86621533 .3300511533 .33005114189 .754951533 .3300510 1533.33005111038 .8968511442 .71776016029 .34104139 .388248800 14607.11741533 .3300510139 .3882488914 .2600624001193 .036560000 0914.26006244471 .73603611082 .5819135417 .485564966 .7470719058 .8766 139.38824881862 .010286723 .07778818380 .03063278 .776497711194 .18488 1583.2337821533 .330051278 .77649771802 .6215711672 .71831722 .622031 1942.009823206 .04835249 .9037306600002134 .9146771533 .33005100 02039.688996

19871 - $1322-1-119600001255.7440795681 .13451611107 .69993$ 26070.6530439416 .6530519977 .6730131246 .0574232256 .1851138998 .84052 33048.422823239 .0006732560 .0432739253 .5984157105 .9807153533 .24436 30181.2566222999 .1569829209 .7376124777 .7792642693 .3510824291 .23495 11685.1401320007 .9767621763 .061559133 .0251649879 .28831712959 .10444 91.551470812904 .277081197 .9472118067 .777367166194 .29620000 3571.542471180 .94296113411 .6751842651 .6816441215 .9155934357 .61049 31979.4673833828 .8080823762 .2736228619 .808147196 .7546336416 .69135 41404.1379747812 .7882727214 .5790446981 .4652449203 .403310804 .34556 19178.527888229 .78841824555 .151043185 .44400848301 .8927713375 .64696 4942.7764212175 .010856570 .6896349523 .4684833601 .1335360 34416.96094 187225.3912
$19881-1322-1-175 \quad 0 \quad 0 \quad 0725.3580368$ 2218.864023 3570.043705 15238.4494813861 .3333525730 .7383433028 .9141943501 .4884621419 .99519 21478.489095750 .4121435606 .8449457754 .3959338176 .9939939285 .50169 13886.686388331 .2406266143 .2908855213 .5723244151 .4162658249 .676276 5620.6278445089 .5498148110 .2988365038 .3971985089 .5498146830 .133039 7674.909034531 .07802982374 .13605406343 .19674122200 .72152000 2960.440817 6168.478168 4191.094483 11581.25219 17563.148149646.69725 23571.7361912291 .50721090 .6842215541 .9439410711 .7275426042 .87744 10688.1366318576 .5037520161 .0341518904 .259987869 .6386918533 .481871 12021.0549610995 .501775440 .2759037267 .2685398790 .9986489736 .831397 5767.7707111753 .283388025 .050148757 .7816087001782 .529608 936.6455552 21184.20664

19901 -1 $322-1-1175 \quad 0001964.0182161842 .9209817566 .926282$ 33619.5608139998 .312121464 .8718638335 .7264941335 .3557846669 .29929 27606.00518391 .4395113892 .4420312357 .9231414453 .131684834 .176571 6296.77007511530 .223866300 .3945247533 .9202217328 .2741811542 .578292 5063.58780411582 .774163849 .8706087099 .0816628430 .43415490 .1854779 490.185477903053 .6413081998 .2475732100 .86691229757 .74450000 388.87207848141 .65633720383 .4141924297 .1674132643 .8425219667 .57512 55101.4826439359 .6270526318 .2002415010 .0535913966 .40199346 .333766 8017.5613 8100.42968 10815.12055 6266.951782 3818.286613 16639.96359 11119.281613724 .3891853844 .7725832181 .2820671632 .607468864 .6922235 4051.92664 2011.020576 2472.563359 6093.101772 00017607.3733
$19911-1321-1-180 \quad 0 \quad 0 \quad 0 \quad 3573.904571$ 15189.09443 8423.100837 $8820.78249511272 .582439679 .077756 \quad 21976.370714970 .305386 \quad 6385.545678$ 14316.9427514592 .230286282 .6485951159 .969596096 .9913166157 .495251 6279.129864676 .5583933373 .782512 2437.985661 2095.251959 2342.350263 3450.7717554293 .9737184500 .1482903205 .6345787471 .944369 635.16019813745 .4764141682 .543798317 .5800997121 .35085211528 .46727 0001092.8478828041 .2852864569 .7601165858 .5232367056 .750022 6818.68279420175 .970917222 .4926647800 .8186227271 .2450115666 .21602 925.959543903243 .728136031 .0212687476 .008831808 .8297561915 .580286
3759.417549679 .4677707730 .9019758376 .24399711225 .7866391446 .942085 7476.00883874 .55433370741 .18103220317 .580099003783 .377468 19931 -1 $322-1-197 \quad 000003302.6715986101 .379897$ 7593.29018910125 .03447 2944.220176 7271.616899 7450.851206 11089.60827 2377.1796414206 .7649343356 .366143692 .16598434559 .3647613379 .202727 1399.012633082 .9450093648 .7129783060 .4420773975 .468652738 .6547445 2461.185647936 .1640091649 .9431890902 .72472541641 .379471041 .919142 2259.734353741 .98507961688 .2080623076 .862360000598 .8486339 4652.6652993767 .01685814470 .102365354 .1594415133 .9495254397 .061897 12768.165168860 .98176514417 .292769261 .0503759233 .1843067129 .168016 5011.814588479 .0860376303 .0409995275 .1149565282 .8630826508 .570255 2429.589349933 .78519821605 .0856132076 .0901574083 .4066012185 .243591 2303.9122683337 .8793851294 .9566483606 .685008349 .75315741923 .642366 17019.4375

19941 -1 $322-1-187 \quad 0 \quad 0 \quad 23.33018183620 .64122736505 .72573$ 13221.188720035 .5355921605 .4795712901 .148513111 .0588448440 .441081 8354.3785585574 .016696982 .6310889434 .16899363657 .9864764053 .564011 4106.9636681046 .83463604 .1189361585 .91549593432 .9509030 376.88675861221 .059649788 .10492294023 .506107125 .945046777 .95694906 5024.5375212941 .120321304 .5384055125 .94504671836 .35085716534 .74361 000006049.76117212570 .6544416062 .9120319674 .104665314 .771846 7861.7022492787 .0083481385 .0124056696 .7049344951 .5921214787 .055313 6860.0544493803 .488621892 .3053581874 .1019182077 .5186076328 .165809 4833.425682313 .2765234075 .194776830 .5138821327 .86903604518 .570575 4075.19477435 .4890639241 .31037224829 .82183009367 .67327
$19951-1322-1-166 \quad 0 \quad 0 \quad 0 \quad 983.70192393514 .63612214042 .20026$ 22549.9544717627 .4362616111 .0386916713 .8416310019 .943869651 .035199 5792.3125023751 .4188865195 .4787167970 .945784997 .1623223228 .037404 8536.7091737460 .4288814189 .8362743044 .9338042831 .1012064014 .845494 1400.2162581553 .7816811339 .9490831186 .383662372 .767325501 .6871460 153.56542282340 .58977460 .696268322018 .63263000269 .44402320 543.512831918436 .2743815726 .1046218866 .5806316031 .6630525488 .25023 9830.13643812071 .602664145 .0853031888 .0883214998 .0697215171 .690977 8495.50497301644 .7175463532 .8058683302 .38864003196 .646844 1400.2162582526 .3327439165 .4701031186 .3836601400 .21625800 487.87206371644 .71754610344 .67591
$199614-1322-1-1165 \quad 000577.10759221047 .7950043956 .511921$ 5696.42016115647 .5462423283 .100116083 .1466412165 .5681113734 .94596 9879.1755361332 .2807511447 .7410815043 .552038527 .010798 5923.939759 10173.913111779 .9752772501 .5517066281 .38727919 .7786894414 .6872006 1545.383222489 .7327292348 .2062743814 .0827422773 .122806397 .7889211 3962.1358254496 .8450777 .99264698812 .87842333739 .30613315042 .94896 000538.33017932911 .7480096320 .3332413645 .5090621387 .016 21161.9510516717 .8190819531 .8102124302 .31196742 .1903737009 .896615 8949.99181411497 .55272 2441.045643 9317.331855 4228.050001 4725.376607 6420.7717352950 .9465052423 .5694284161 .9283572237 .043446309 .2582978 323.81154792617 .80630338 .311017833884 .1828563843 .801514149 .8667868 52.31873162062 .473645017673 .7123

19971 -1 $322-1-1163 \quad 0 \quad 0 \quad 4085.4916227801 .07847112246 .30038$ 10859.8441618708 .9291126294 .5870418678 .3390131602 .138759546 .862611 13383.916822258 .4102085958 .8583897241 .91462314739 .5052824528 .58583 3784.3522795246 .9436071993 .4451674767 .6064733340 .0761687468 .529046 242.388294710282 .900945378 .69132812418 .422672076 .45550467 .46081988 3209.933075484 .20609627101 .384868678 .256809319 .048317345269 .85855 0001782.8651884757 .6376149264 .2210678579 .15973717558 .90652 19597.945421456 .5417910268 .976356970 .1394355854 .28473114878 .64155 7085.37839412272 .479756140 .8733167873 .5379216484 .280235484 .7765894
08326.5699867156 .8398269143 .2193135066 .54490511423 .65227 201.102959210132 .11295413 .7501872668 .8384613776 .72193343 .69735083 1815.9511403761 .24730520102 .56723
$19981-1321-1-1170 \quad 0 \quad 0 \quad 03300.02243711964 .2094211781 .37449$ 17312.1156417963 .5812721362 .4966628088 .712522980 .0092517259 .60112 6949.9732295415 .3678117619 .71324714285 .5287711668 .5084114003 .00155 11635.371258747 .3297673940 .6030692229 .9415076253 .4803067804 .989033 8922.9066552572 .7265632649 .2012153862 .2102649834 .3132313444 .266257 3521.5759941414 .6980191419 .1841451419 .1841459079 .35360823586 .54049 0002740.27737116858 .2541512700 .753789987 .6077438798 .717461 9486.71159421247 .901048363 .2539756159 .2493548834 .605791748 .186844 9493.6751951576 .49571411225 .4556510563 .533993129 .2229762404 .651056 4945.8773994689 .0365678930 .0727776362 .64545557 .03443571148 .685873 2054.7421395089 .0415673836 .0598212739 .8555132395 .91248196 .3666516 02386.4030721909 .85349712529 .26343
$19991 \quad-1322-1-196 \quad 0 \quad 0 \quad 0 \quad 3676.27193850732 .5496943385 .85135$ 7270.861592237 .440947902 .74580622143 .989197865 .5501217412 .283911 1048.3454047772 .659309 92.89081129 562.4617344 7662.245037 7527.238477 7736.246818522 .29452557900 .9470658515 .98260214424 .68926130 .0864963 7949.0365410466 .5993993214 .711599807304 .261169130 .08649630 260.1729926130 .086496308661 .8399680005002 .67492842377 .13868 39549.806758095 .953181844 .6149852123 .122151921 .81176787044 .088176 1878.28027301898 .5711231221 .7583642270 .33850392 .89081129 3006.866004330 .82913032278 .294871 130.0864963 0774.8618688 15637.9000901886 .2366417902 .745806130 .0864963302 .2473097 774.86186887346 .3354860007044 .0881767536 .49623

20001 -1 $322-1-1137 \quad 0 \quad 0 \quad 0 \quad 838.22563189941 .281344$ 23109.39391 17143.964696635 .9141353528 .1640247349 .5819792572 .4808819987 .12624 6813.1058194931 .7818035836 .7515182607 .5959054581 .9529653470 .999428 7167.2110464458 .202597998 .6622953728 .4958147559 .7273376688 .218929 831.77774233724 .961012187 .084067999 .75577766661 .80332780 1563.7328590187 .084067987 .32829021106 .12620689131 .70420600 24.96939491979 .7050728409 .73517219976 .6421313983 .805088659 .669983 3795.3747783892 .1967513049 .1337471479 .7060223843 .7695743083 .247927 3331.0480724852 .0537622016 .784731060 .0300831382 .666585332 .830951 5043.366073341 .6559933581 .5490831765 .68533874 .15801961124 .0533310 614.54569541091 .204369709 .74647522980 .67207100798 .2155598 469.28994873098 .411921
$20011 \begin{array}{llllllllllll} & -1 & 3 & 2 & -1 & -1 & 253 & 0 & 0 & 724.0276407 & 10059.92825 & 25058.69571\end{array}$ 23978.377178958 .4272475441 .0375672528 .0382312074 .5578642727 .171858 1604.935751733 .7768712039 .4545771261 .1180452250 .2347431629 .307356 915.9871236201 .6305518686 .42497191244 .941528321 .04297251160 .587891 182.1297576767 .2421278118 .3982919286 .37403794 .5801554103 .47204360 424.695497317 .81505219508 .206125405028 .0494770001747 .784739 11718.5721631050 .439221045 .043099036 .6893262388 .731602828 .4152461 568.62279881709 .6957442082 .9824771500 .354091430 .6679342598 .602436 1649.725385919 .766751632 .87794731300 .3937941414 .28932321 .0789268 368.767146882 .3931168400 .246662795 .0154591494 .627195234 .84267500 855.264507848 .35386467372 .0097755660 .950643801686 .812458 $20021 \quad 1322-1-1279 \quad 0 \quad 0 \quad 0 \quad 576.81784031442 .47635462 .615043$ 10590.823889070 .8186057851 .5725323350 .4787011286 .3542041077 .591889 1225.3092772652 .1575061026 .56143842 .8437814917 .2388002539 .8688277 1113.604071580 .3930524876 .27740111089 .9516821659 .7477063355 .025351 2222.23525788 .1527314173 .40980361088 .875001685 .0917577345 .0025577 889.9709292243 .9873535608 .941031663 .7247921771 .570741210134 .58386 000252.91611321586 .990144012 .1196398069 .15826910179 .55613 5379.9384141230 .956569484 .3600775550 .95633882768 .350421482 .690765
645.32321751221 .4507971194 .7650141212 .6187481956 .152553382 .5541725 396.9977278263 .3793179118 .7742379928 .24265141235 .81552312 .0572291 420.4114031187 .7758974297 .408232424 .92968219185 .4670327123 .122946 776.2557392245 .0014094110 .33497581482 .11052
$20031 \quad 1322-1-133200143.31594241342 .6139871116 .831725$ 1423.628724757 .0378069957 .7194656719 .9985952758 .8339851287 .77649 1506.6831151040 .2833961734 .744743321 .0835887681 .34142841556 .010879 1736.3935311782 .249065640 .0735199277 .03308191332 .99666964 .6261014 389.13517251379 .599849943 .544125193 .92972385356 .1485233319 .3923868 335.3098738375 .7632272303 .2961279476 .9170706104 .5294978118 .8583863 1723.68209600216 .51931841843 .8689961536 .9284152282 .953276 4182.8301595144 .7367453558 .7460031873 .598272594 .95239411033 .08804 577.7862093877 .1126538457 .2022309239 .15169371789 .657557675 .5489364 632.5812727147 .6306855729 .271685561 .9662342822 .0016795488 .1661454 685.6553365415 .9569828212 .8292723208 .3811783343 .66019550 128.49668559 .187417237306 .5140232295 .3913483170 .33213941352 .962063 $20041 \quad 1322-1-1246 \quad 0000480.69591274977 .956828245 .251095$ 9341.85245613619 .09078 13607.21826 3821.201899 1455.339923 2456.063675 1808.6697753541 .4856352662 .0095874078 .4107342329 .3588832747 .821144 468.07888732840 .3017671258 .0341021155 .7604072518 .5121144482 .720872 2217.755896624 .65154241116 .308443143 .9024748638 .821288951 .30417067 1266.140594794 .216436412 .21115416799 .18224036973 .802631000 2.6845217745439 .4267589593 .40691810819 .7296815951 .4901311252 .77173 6757.9550657082 .4421532221 .4702081472 .7709481567 .5527511269 .864348 947.9965137401 .1854402606 .75236492596 .069845322 .7999702628 .2854262 288.168980959 .41824369767 .86188284033 .588125618 .62483382060 .812538 0312.1724593156 .7103141248 .796888591 .642448960002556 .421078 $20051 \quad 1321-1-1272 \quad 0 \quad 0 \quad 27.188392951530 .874907$ 7913.339397 11731.062486438 .344585768 .5187884070 .3771214002 .232747809 .0455446 853.2358257527 .4153269674 .15971661148 .9394671207 .6423841041 .184043 573.2731756691 .4323069389 .3303537260 .0847321460 .308107935 .2991462 948.6595751589 .5704433276 .5280472277 .4141444258 .895225520 .70908434 137.626497620 .70908434381 .845520284 .98924686259 .69515991824 .737088 000133.06857261484 .0289758143 .48801110879 .543845129 .682864 $4858.7678882797 .8719452436 .423996 \quad 575.9543788 \quad 653.994681114 .255968$ 540.6240308805 .2395877275 .1511438329 .4696505815 .6421685828 .4386798 751.8198723308 .7898677764 .6619433597 .4926003436 .92995151156 .441548 486.2266004168 .875001295 .3386572383 .60112702530 .22041690 358.5374634107 .65304613 .399196891335 .912353
$20061 \quad 1321-1-139200029.7723303741 .36739723382 .7993195$ 7322.25959916350 .671249030 .4081114324 .6578834262 .1386512823 .832304 2605.839923744 .5436329743 .05656881247 .85281321 .7873759837 .6951042 550.3823255950 .8935265531 .8434815260 .3667142463 .8969668589 .1098044 359.1710734565 .8393384203 .137309646 .4439492338 .022042461 .6372644 $278.1505747228 .456046165 .0543114915 .15910416 \quad 29.7045471258 .8607960$ 009.265212722 .44536921385 .4146638033 .19113112842 .43903 9275.0375813937 .8395695111 .4623434082 .669153926 .71787161021 .403403 247.83456931833 .082454892 .9588622486 .4551611953 .7727246716 .0612034 585.4889945419 .0868106557 .2052631580 .640465356 .3306129952 .4074072 656.5308419201 .713872165 .1429186 .85659229407 .3509137307 .5832312 4.8086958320 .68087665223 .4079597383 .8253761
$20071 \quad 1321-1-147200006.504166146845 .98579816782 .184534$ 15720.8347213178 .636867293 .2359774430 .7674295415 .7450582594 .731353 2508.7063052069 .645382774 .9326102811 .59999742071 .9725571632 .46543 722.94657512054 .1946631462 .968558510 .19247531021 .630891139 .907132 1828.5089571015 .860457838 .98416951347 .5020091241 .77238480 .43038705 680.4601813587 .1896862663 .8937178167 .4353221591 .8254740000
9.504166146653 .60576395013 .36758312937 .733438269 .001725495 .741858 3999.4210663872 .9801412834 .2478241450 .4829951170 .016369533 .223491 451.54416491533 .996181805 .5475895839 .78471741150 .082165733 .049224 730.81939351390 .703047336 .0805126995 .7077598228 .2019207257 .0705342 275.198865209 .70981198 .8529513623 .20176026425 .743344196 .54880546 788.51043652633 .553418
$20081 \quad 1321-1-1487 \quad 0 \quad 0 \quad 0 \quad 57.39442787384 .9719484224 .6263289$ 1639.795477902 .56283612673 .996318907 .1513354457 .3207342678 .075787 2742.1627472702 .4118531673 .274425957 .4620778698 .1517773985 .5101078 1132.6203894 .1331169931 .30365961705 .7820971016 .325119818 .5885451 662.03287171002 .324029745 .8846375722 .2451603984 .6800384617 .6931633 259.0301687504 .3928375145 .4220996203 .1699987377 .21564541924 .545292 00021.59090411254 .1586327413 .00800733237 .190979241 .844194 12515.989816738 .7864313274 .365642315 .877773290 .4119571707 .903685 843.5063968756 .46444213789 .099446692 .5311181593 .1872667571 .6207324 903.4003857248 .8219945383 .9850621640 .5634628815 .66129297 .73969753 $348.3720434338 .1310535217 .5372284314 .7878908 \quad 282.6564449142 .2029225$ 37.990691882627 .02435173 .37183197672 .6252378

2009 1 $-1 \begin{array}{llllllllllll} & 2 & 1 & -1 & -1 & 208 & 0 & 0 & 0 & 19.27934417 & 14.45950813 & 421.9057626\end{array}$ 1229.0101536384 .292419583 .6845077455 .9227833764 .8887113748 .303496 2771.1915212070 .2207791547 .6215431433 .664454509 .74736581095 .136221 578.74271361723 .0484951327 .494381449 .70391151265 .706562872 .5114198 872.7859942346 .2908893905 .4378927575 .8418941103 .103013356 .3494262 309.04627580207 .983456701274 .9682380004 .819836042028 .91901625 229.62589581438 .3221446020 .0532889328 .8200138503 .7048492174 .999259 2065.9673353265 .3575812103 .8370351798 .6755011331 .730284116 .3798257 299.5481332696 .1933709 925.9857024 596.5182939 69.69047734 623.1756772 324.2247445559 .5845673531 .103076681 .2909602173 .1708179578 .5215862 161.130356477 .20930929140 .72917980141 .39739991008 .012516 2010 1 $-1321-1-135600000299.32919423475 .066304$ 3047.7019083838 .132698957 .48737816710 .0691615673 .786376135 .760835 5142.5750215677 .2712531475 .710841 2551.085564 2394.826809 1705.737303 1419.0353582212 .1988281136 .243021829 .8812826506 .4483411209 .36639 1022.9620381504 .901035920 .128297449 .45399681180 .62724626 .1684037 216.6341581619 .3714329666 .9915517171 .02905585470 .123986000 9.18535951115 .86990628282 .59220261851 .3464433347 .7750365253 .651532 6255.342159285 .99983510621 .505755123 .4104733868 .6294553719 .653207 3437.9821871987 .7491831284 .4034051007 .3520011212 .078026434 .3419446 1004.7704041366 .56597453 .7915315951 .2924579 .1581825666 .0219391 319.9235573666 .2274136697 .4234884966 .1845845736 .7732498376 .3672274 108.511248126 .21484251530 .346868
 1224.411082924 .8745852460 .7342874638 .4516741473 .584535687 .43533278 207.2514306294 .5595283250 .658965797 .8924326227 .436527684 .256968051 26.19952849111 .401604195 .942454977 .207083714 .25696805154 .60082685 046.8780634227 .4365276812 .6422720938 .8830715030 .55108854 89.1431912419 .44153575294 .76731060000095 .90118399438 .985251 2717.751683587 .589026728 .5633546322 .282062887 .3588557727 .772153 175.8838739116 .9225977149 .7256163335 .0463369129 .92815560 10.7121144973 .1320688157 .76554796044 .33576782120 .3613667 81.464051764 .25696805127 .4365276819 .4415357500062 .63489638 12.6422720919 .44153575140 .0107273

20121 -1 $321-1-1135 \quad 0 \quad 06.17967363867 .30416185886 .6412031$ 550.67006926611 .32811611143 .485457304 .3348425737 .1360841346 .581415 374.68607931458 .8431442318 .752458970 .63668022318 .0928491137 .824109 2196.833497475 .0835805343 .4233549355 .6707695928 .3243086425 .3876416 87.36959433958 .0146702359 .376092363 .5538861432 .2214323289 .151354
366.9192216165 .753039723 .68512103310 .822062956 .45418228175 .5099698 2590.480965006 .1796736380653 .83034941422 .2733669126 .10652 7473.7664367193 .9416773983 .782041302 .655444399 .44559392478 .444882 1738.479683633 .47874812557 .356855599 .287357525 .3464671372 .9421716 170.05914511169 .796349844 .3761187166 .0767416771 .9203761132 .4434086 368.8182608 80.17770866 13.92819095 301.182660137 .93701389256 .2794554 330.8812469181 .254256413 .92819095610 .66377631834 .371295
\#TWL WCGOP discard marginal ages ($\mathrm{N}=2$)
\#Year Seas Fleet Gender Partition AgeError LbinLo LbinHi Nsamp 0123

$\begin{array}{llllllllllll}2004 & 1 & 1 & 0 & 1 & 1 & -1 & -1 & 78 & 0.002521126 & 0.005042252\end{array}$ 0.036309947 0.292008225 0.137401718 0.08493528 0.101543199 0.13816349 0.0278019170 .0012605630 .0384471740 .02231196700 .008823942 0.0264087970 .0025211260 .0091390820 .0075633780 .0186563340 .001260563 0.00126056300 .00126056300 .0053573930 .017395770 .0012605630000 0000.01134506800 .0025211260 .0050422520 .0363099470 .292008225 0.1374017180 .084935280 .1015431990 .138163490 .0278019170 .001260563 0.0384471740 .02231196700 .0088239420 .0264087970 .002521126 0.0091390820 .007563378 0.018656334 0.001260563 0.001260563 0 0.00126056300 .0053573930 .017395770 .0012605630000000 0.011345068
$\begin{array}{llllllllllll}2005 & 1 & 1 & 0 & 1 & 1 & -1 & -1 & 207 & 0.013171064 & 0.056466155\end{array}$ 0.0170123830 .0425062830 .2297613510 .1266608750 .1292692560 .146692004 0.0416594330 .0599066290 .0060189450 .0687016360 .0129936030 .000868422 0.0017368440 .0011434220 .0353737140 .0005789480 .0008721860 .001157896 000.0002894740 .0002894740 .0002894740 .001948949000000 0.00318421300 .0014473700 .0131710640 .0564661550 .017012383 0.0425062830 .2297613510 .1266608750 .1292692560 .1466920040 .041659433 0.0599066290 .0060189450 .0687016360 .0129936030 .0008684220 .001736844 0.0011434220 .0353737140 .000578948 0.000872186 0.001157896 00 0.0002894740 .0002894740 .0002894740 .0019489490000000 .003184213 00.00144737
\#
\#AKSHLF updated for 2013 assessment ($\mathrm{N}=210$)
\#AKSHLF CAAL ($\mathrm{N}=203$)
\#AKSHLF females
\#year Season Fleet gender partition ageErr LbinLo LbinHi Nsamp F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30 F31 F32 F33 F34 F35 F0.1 F1.1 F2.1 F3.1 F4.1 F5.1 F6.1 F7.1 F8.1 F9.1 F10.1 F11.1 F12.1 F13.1 F14.1 F15.1 F16.1 F17.1 F18.1 F19.1 F20.1 F21.1 F22.1 F23.1 F24.1 F25.1 F26.1 F27.1 F28.1 F29.1 F30.1 F31.1 F32.1 F33.1 F34.1 F35.1

 0000000000000000000000000

 00000000000000000000000000

 0000000000000000000000000

 0000000000000000000000000
$19801 \begin{array}{llllllllllllllllll}1 & 3 & 1 & 0 & 2 & 30 & 30 & 1 & 0 & 0 & 0 & 0 & 0 & 100 & 0 & 0 & 0 & 0\end{array} 0$ 00000000000000000000000000000001000000 0000000000000000000000000
 00000000000000000000000000000010000000 0000000000000000000000000 $198013 \begin{array}{llllllllllll}1 & 1 & 0 & 2 & 34 & 34 & 6 & 0 & 0 & 0 & 0 & 0 \\ 33.33333333\end{array}$
33.3333333316 .666666670016 .666666670000000000000000 0000000000000033.3333333333 .3333333316 .6666666700 16.66666667 0000000000000000000000000 $19801 \begin{array}{lllllllllllll}1 & 3 & 1 & 0 & 26 & 36 & 0 & 0 & 0 & 0 & 33.33333333\end{array}$ 066.66666667000000000000000000000000000000 000033.33333333066 .666666670000000000000000000 0000000
 000000000000000000000000000000000257500 0000000000000000000000000 $19801 \begin{array}{lllllllllllllllll}1 & 3 & 1 & 0 & 2 & 40 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 60\end{array}$ 20020000000000000000000000000000000000 6020020000000000000000000000
 5005000000000000000000000000000000000000 05005000000000000000000000
$19831 \quad 3 \quad 1 \quad 0 \quad 2 \quad 22 \quad 22 \quad 1 \quad 0 \quad 0 \quad 0 \quad 100000000000$ 00000000000000000000000000000010000000000 0000000000000000000000000 $19831 \quad 3 \quad 1 \quad 0 \quad 2 \quad 24 \quad 24 \quad 1 \quad 0 \quad 0 \quad 0 \quad 1000000000$ 0000000000000000000000000000100000000 0000000000000000000000000
 000000000000000000000000000000001000000 0000000000000000000000000 $19831 \quad 3 \quad 1 \quad 0 \quad 2 \quad 30 \quad 30 \quad 8 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 37.537 .52500$ 000000000000000000000000000000037.537 .5 250000000000000000000000000000 $19831 \quad 3 \quad 1 \quad 0 \quad 2 \quad 32 \quad 32 \quad 4 \quad 0 \quad 0 \quad 0 \quad 0 \quad 075250000$ 0000000000000000000000000000007525000 0000000000000000000000000
 25002500000000000000000000000000000250 25025002500000000000000000000 $19831 \begin{array}{llllllllllllll}1 & 3 & 1 & 0 & 26 & 36 & 0 & 0 & 0 & 0\end{array}$ 14.2857142900028 .57142857028 .5714285714 .2857142900000 14.28571429000000000000000000000014 .2857142900 028.57142857028 .5714285714 .285714290000014 .2857142900000 000000000
$19831 \quad 3 \quad 1 \quad 0 \quad 2 \quad 38 \quad 38 \quad 4 \quad 0 \quad 000000000000$ 00000025250250250000000000000000000000 00000000252502502500000000000
$19831 \quad 3 \quad 1 \quad 0 \quad 2 \quad 40 \quad 40 \quad 5 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 00000000$ 0000002020400002000000000000000000000000 00000000202040000200000000000
$19831 \quad 3 \quad 1 \quad 0 \quad 2 \quad 42 \quad 42 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 00000000$ 00000000001000000000000000000000000000 00000000000100000000000000

 000000000000000000000001000

 000000000000000000000000100

 00000000000000000000000000
$\begin{array}{lllllllllll}1986 & 1 & 3 & 1 & 0 & 2 & 14 & 14 & 10 & 0 & 84.06365806\end{array} 15.93634194$
 84.0636580615 .936341940000000000000000000000000 000000000
$\begin{array}{llllllllllllll}1986 & 1 & 3 & 1 & 0 & 2 & 16 & 16 & 5 & 0 & 14.5118006 & 85.4881994 & 0\end{array}$

 00000000

 0000000000000000000000000 $\begin{array}{lllllllllll}1986 & 1 & 3 & 1 & 0 & 2 & 20 & 20 & 10 & 0 & 0 \\ 73.83901213\end{array}$
 000073.8390121326 .160987870000000000000000000000 000000000000
$\begin{array}{llllllllllll}1986 & 1 & 3 & 1 & 0 & 2 & 22 & 22 & 10 & 0 & 0 & 33.22333564\end{array}$
 00000000033.2233356455 .7022191511 .074445210000000000 0000000000000000000000
$\begin{array}{llllllllllll}1986 & 1 & 3 & 1 & 0 & 2 & 24 & 24 & 10 & 0 & 0 & 0 \\ 52.28087763\end{array}$

 00000000000
$\begin{array}{llllllllllllllllllll}1986 & 1 & 3 & 1 & 0 & 2 & 26 & 26 & 10 & 0 & 0 & 0 & 10 & 50 & 30 & 10 & 0 & 0 & 0 & 0\end{array}$
 0000000000000000000000000000
$\begin{array}{llllllllllll}1986 & 1 & 3 & 1 & 0 & 28 & 28 & 11 & 0 & 0 & 10.10164254\end{array}$
 0000000000000010.1016425420 .2032850857 .29372241
 $\begin{array}{lllllllllllll}1986 & 1 & 3 & 1 & 0 & 2 & 30 & 30 & 10 & 0 & 0 & 0 & 0 \\ 11.41080004\end{array}$
22.8216000844 .7547808114 .008546057 .004273024000000000000 000000000000000000011.4108000422 .82160008
44.75478081 14.00854605 7. 0042730240000000000000000000 000000000
$\begin{array}{lllllllllllllll}1986 & 1 & 3 & 1 & 0 & 2 & 32 & 32 & 11 & 0 & 0 & 0 & 0 & 0 & 26.73273605\end{array}$
39.0432424327 .753397556 .4706239740000000000000000000 0000000000000026.7327360539 .0432424327 .75339755
 $\begin{array}{llllllllllllllll}1986 & 1 & 3 & 1 & 0 & 2 & 34 & 34 & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 35.64293591\end{array}$

 0000000

 00000000000000000000000000
$\begin{array}{llllllllllllllllllllll}1986 & 1 & 3 & 1 & 0 & 2 & 46 & 46 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
 000000000000000000000000100

 00000000000000000000000000

 00000000000000000000000000 $19951 \begin{array}{llllllllllllllllllll}16 & 1 & 0 & 2 & 16 & 16 & 1 & 0 & 100 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
 00000000000000000000000000 $\begin{array}{llllllllllll}1995 & 1 & 3 & 1 & 0 & 2 & 18 & 18 & 8 & 0 & 0 & 91.18336928\end{array}$

 000000000000

1995	1	3	1	0	2	20	20	14	0	0	56.05428381

 000000000000
$19951313022 \quad 22 \quad 20 \quad 0 \quad 0 \quad 2.22286855566 .4609605$
 000000002.22286855566 .460960530 .2443457301 .071825208000 000000000000000000000000000 $\begin{array}{lllllllllll}1995 & 1 & 3 & 1 & 0 & 24 & 24 & 46 & 0 & 0 & 0.880104514\end{array}$
 000000000000000.88010451472 .2908663325 .99428920 0.834739955000000000000000000000000000000000 $\begin{array}{llllllllllll}1995 & 1 & 3 & 1 & 0 & 2 & 26 & 26 & 21 & 0 & 0 & 26.68637296\end{array}$ 57.32667648 .5225557147 .4643949220000000000000000000 0000000000000026.6863729657 .32667648 .522555714 7.4643949220000000000000000000000000000000 $\begin{array}{llllllllllll}1995 & 1 & 3 & 1 & 0 & 28 & 28 & 24 & 0 & 13.66068366\end{array}$ 55.3944308220 .5336690104 .1524360464 .639211664001 .619568796000 00000000000000000000000000013.6606836655 .39443082 20.5336690104 .1524360464 .639211664001 .619568796000000000 000000000000000
$\begin{array}{llllllllllllll}1995 & 1 & 3 & 1 & 0 & 2 & 30 & 30 & 17 & 0 & 0 & 0 & 0 & 27.6145254\end{array}$
 000027.614525472 .38547460000000000000000000000 000000000

9.47969440780 .00831005005 .1411349861 .5861971350000000000 0000000000000000003.7846634209 .479694407
80.00831005005 .1411349861 .5861971350000000000000000 000000000
$\begin{array}{lllllllllllllllll}1995 & 1 & 3 & 1 & 0 & 2 & 34 & 34 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 2.310753936 & 0\end{array}$
 000000002.3107539360095 .647053722 .04219233900000000 00000000000000000
$\begin{array}{lllllllllllllllllll}1995 & 1 & 3 & 1 & 0 & 2 & 36 & 36 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 33.09777278 & 0\end{array}$
 000000000000033.09777278033 .097772780 .70668165300 33.0977727800000000000000000000000
 33.33333333033 .33333333000033 .333333330000000000000
00000000000000033.33333333033 .333333330000 33.333333330000000000000000000 $199513010 \quad 2 \quad 40 \quad 40 \quad 2 \quad 0 \quad 0 \quad 0 \quad 000000000$ 05005000000000000000000000000000000000 00500500000000000000000000
 0005005000000000000000000000000000000 00005005000000000000000000
 00000000000000000000000100000000000000 000000000000000000000000100
 000000000000000000000000000100000000000 00000000000000000000000000
$19981 \begin{array}{lllllllllllllllll}14 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
 0000000000000000000000000
$19981 \begin{array}{llllllllllllllllll}16 & 1 & 1 & 1 & 0 & 1 & 0 & 100 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 00000000000000000000000000010000000000 0000000000000000000000000
 0000000000000000000000000010000000000 0000000000000000000000000 $\begin{array}{lllllllllll}1998 & 1 & 3 & 1 & 0 & 2 & 20 & 20 & 20 & 0 & 0\end{array} 42.27492232$ 57.72507768 000042.2749223257 .7250776800000000000000000000 000000000000
$\begin{array}{llllllllllll}1998 & 1 & 3 & 1 & 0 & 2 & 22 & 22 & 52 & 0 & 13.90356004 & 82.3554753\end{array}$ 3.740964652000000000000000000000000000000
 0000000000000000
$19981 \begin{array}{llllllllll}19 & 3 & 1 & 24 & 24 & 43 & 0 & 0 & 12.49726661\end{array}$
67.60972591 19.89300748 0000000000000000000000000 00000000012.4972666167 .6097259119 .89300748000000000 0000000000000000000000
$\begin{array}{lllllllllll}1998 & 1 & 3 & 1 & 0 & 2 & 26 & 26 & 27 & 0 & 0 \\ 9.774531442\end{array}$
28.7798192350 .1437029410 .167186180000001 .134760199000000 00000000000000000009.774531442 28.77981923
50.1437029410 .167186180000001 .134760199000000000000 00000000000
$\begin{array}{llllllllll}1998 & 1 & 3 & 1 & 0 & 2 & 28 & 28 & 28 & 0\end{array} 01.104127724$
13.3568525254 .570782612 .7933808784 .34956442223 .82529185000000 0000000000000000000000001.10412772413 .35685252 54.570782612 .7933808784 .34956442223 .82529185000000000000 0000000000000000
$\begin{array}{llllllllllll}1998 & 1 & 3 & 1 & 0 & 2 & 30 & 30 & 9 & 0 & 0 & 0 \\ 8.79918667\end{array}$ 8.7991866721 .41463729060 .9869893700000000000000000 000000000000008.799186678 .7991866721 .414637290 60.9869893700000000000000000000000000000 $199813030 \quad 2 \quad 32 \quad 32 \quad 8 \quad 0 \quad 0 \quad 0 \quad 0 \quad 5.156799119$ 43.7568352511 .9393650134 .31695519000004 .8300454350000000 00000000000000000005.15679911943 .75683525
11.9393650134 .31695519000004 .8300454350000000000000 000000000
$\begin{array}{llllllllllll}1998 & 1 & 3 & 1 & 0 & 2 & 34 & 34 & 9 & 0 & 0 & 0 \\ 5.16877239\end{array}$
13.605531314 .62902987468 .793267443 .431401102000004 .3719978810 0000000000000000000000005.1687723913 .60553131
4.62902987468 .793267443 .431401102000004 .3719978810000000 00000000000000
$19981 \begin{array}{llllllllllll}1 & 3 & 1 & 0 & 36 & 6 & 0 & 0 & 5.208910662 & 0 & 0 & 0\end{array}$ 83.309640217 .6794264573 .802022674000000000000000000 000000000005.20891066200083 .309640217 .679426457 3.8020226740000000000000000000000000
 000000051.7783200400000000000000000000000000 000048.2216799600000051 .7783200400000000000000 0000000
$19981 \begin{array}{llllllllllllllllll}0 & 1 & 0 & 40 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 000060.23241730000000000000000039 .76758270000 000000000000060.232417300000000000000000 39.7675827
 00000000000000000000000100000000000000 00000000000000000000000100
$19981 \begin{array}{llllllllllllllllll}1 & 1 & 2 & 4 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 00000000000000000000000100000000000000 00000000000000000000000100 $19981 \begin{array}{lllllllllllllllll}1 & 3 & 0 & 46 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 0000000000000000000000100000000000000 00000000000000000000000100 $20011 \begin{array}{lllllllllllllllll} & 3 & 1 & 0 & 2 & 10 & 10 & 4 & 0 & 100 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 00000000000000000000000000100000000000 0000000000000000000000000
 00000000000000000000000000100000000000 0000000000000000000000000
$\begin{array}{llllllllllll}2001 & 1 & 3 & 1 & 0 & 2 & 14 & 14 & 58 & 0 & 98.7510704 & 1.248929604\end{array} 0$ 0000000000000000000000000000000000 98.75107041 .248929604000000000000000000000000 000000000
$20011 \begin{array}{lllllllllllllllll}16 & 1 & 1 & 0 & 2 & 16 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 00000000000000000000000000010000000000 0000000000000000000000000
$\begin{array}{llllllllll}2001 & 1 & 3 & 1 & 0 & 2 & 18 & 184 & 0 & 94.85535315\end{array}$
5.14464685000000000000000000000000000000 000094.855353155 .1446468500000000000000000000 000000000000
$\begin{array}{llllllllll}2001 & 1 & 3 & 1 & 0 & 2 & 20 & 20 & 80 & 0\end{array} 096.60467414$
2.8792558880 .516069975000000000000000000000000 00000000096.604674142 .8792558880 .516069975000000000 0000000000000000000000
$\begin{array}{llllllllllll}2001 & 1 & 3 & 1 & 0 & 2 & 22 & 22 & 5 & 0 & 0 & 0 \\ 33.13923687\end{array}$
66.86076313000000000000000000000000000000 000033.1392368766 .8607631300000000000000000000 00000000000
$\begin{array}{llllllllll}2001 & 1 & 3 & 1 & 0 & 24 & 24 & 23 & 0 & 0\end{array}$ 4. 247349405
24.1936143154 .3436125514 .521989792 .693433937000000000000 00000000000000000004.24734940524 .19361431
54.3436125514 .521989792 .693433937000000000000000000 00000000000
$\begin{array}{lllllllllll}2001 & 1 & 3 & 1 & 0 & 26 & 26 & 38 & 0 & 0 & 3.305590237\end{array}$
44.0025875947 .587967655 .103854516000000000000000000 000000000000003.30559023744 .0025875947 .58796765
5.10385451600000000000000000000000000000
$\begin{array}{llllllllllllll}2001 & 1 & 3 & 1 & 0 & 2 & 28 & 28 & 21 & 0 & 0 & 0 & 0 & 39.12912173\end{array}$
 00000000039.1291217344 .2865493816 .584328890000000000 000000000000000000000
$\begin{array}{llllllllllllll}2001 & 1 & 3 & 1 & 0 & 2 & 30 & 30 & 23 & 0 & 0 & 0 & 0 & 0.35908609\end{array}$
 000000000000000.3590860933 .8773118164 .43363111 1.32997099000000000000000000000000000000 $\begin{array}{lllllllllllllll}2001 & 1 & 3 & 1 & 0 & 2 & 32 & 39 & 0 & 0 & 0 & 0 & 55.47048785\end{array}$ 40.955021191 .6548105381 .6639463060 .255734118000000000000 000000000000000000055.4704878540 .95502119
1.6548105381 .6639463060 .255734118000000000000000000 00000000
$\begin{array}{lllllllllllllll}2001 & 1 & 3 & 1 & 0 & 2 & 34 & 34 & 24 & 0 & 0 & 0 & 0 & 0 & 31.86529043\end{array}$
 00.63414448400000000000031 .8652904350 .63874495
16.628793830 .2330263040000000000000000000 0.6341444840000000
$\begin{array}{lllllllllllllll}2001 & 1 & 3 & 1 & 0 & 2 & 36 & 36 & 4 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 032.84195507$

 0000000
$\begin{array}{lllllllllllllllllllll}2001 & 1 & 3 & 1 & 0 & 2 & 38 & 38 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 100 & 0 & 0 & 0 & 0 & 0\end{array}$
 00000000000000000000000000
 000000049.5590314000050 .44096860000000000000000 000000000000000049.5590314000050 .440968600000 00000

 00000000000001000000000000

 00000000000000000000000100

 0000000000000000000000000

 00000000000000000000000000

 00000000000000000000000000
$\begin{array}{lllllllllll}2004 & 1 & 3 & 1 & 0 & 2 & 18 & 18 & 35 & 0 & 2.632392128 \\ 96.24580552\end{array}$

 00000000000000000
$\begin{array}{lllllllllll}2004 & 1 & 3 & 1 & 0 & 2 & 20 & 20 & 16 & 0 & 0 \\ 62.38378524\end{array}$
 00000000062.3837852432 .207991655 .408223116000000000 0000000000000000000000
$\begin{array}{lllllllllll}2004 & 1 & 3 & 1 & 0 & 22 & 22 & 22 & 0 & 4.486582044\end{array}$
 0000000004.48658204462 .2833221433 .230095810000000000 0000000000000000000000
$\begin{array}{lllllllllllll}2004 & 1 & 3 & 1 & 0 & 2 & 24 & 24 & 39 & 0 & 0 & 0 & 9.31682759\end{array}$
 000000000000009.3168275986 .282849863 .639851792
 $\begin{array}{lllllllllllllllll}2004 & 1 & 3 & 1 & 26 & 26 & 0 & 0 & 1.560458055\end{array}$
 000000000000001.56045805582 .8635897213 .62181452
 $\begin{array}{llllllllllll}2004 & 1 & 3 & 1 & 0 & 28 & 28 & 67 & 0 & 0 & 0.274584903\end{array}$
 000000000000000.27458490377 .1100681220 .17388267
 $\begin{array}{lllllllllllll}2004 & 1 & 3 & 1 & 0 & 2 & 30 & 30 & 59 & 0 & 0 & 0 & 0 \\ 20.29495787\end{array}$
 00000000020.2949578769 .2883687810 .41667335000000000 00000000000000000000
$\begin{array}{lllllllllllll}2004 & 1 & 3 & 1 & 0 & 2 & 32 & 32 & 42 & 0 & 0 & 0 & 13.41650445\end{array}$
77.91581926 .0647812942 .60289505700000000000000000000 0000000000000013.4165044577 .91581926 .064781294 2.602895057000000000000000000000000000000 $20041 \begin{array}{lllllllllllll} & 1 & 3 & 0 & 2 & 34 & 34 & 13 & 0 & 0 & 0 & 0 & 70.14940311\end{array}$ 14.006597152 .31282297411 .523009562 .008167206000000000000 000000000000000000070.1494031114 .00659715 2.31282297411 .523009562 .008167206000000000000000000 00000000
$\begin{array}{lllllllllllllllllllll}2004 & 1 & 3 & 1 & 0 & 2 & 36 & 36 & 12 & 0 & 0 & 0 & 17.32764139\end{array}$
 000000000000000000017.327641396 .289892281
23.1256187411 .6396193841 .61722821000000000000000000 00000000
$\begin{array}{lllllllllllllllll}2004 & 1 & 3 & 1 & 0 & 2 & 38 & 38 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
 00000000001.48333646698 .51666353000000000000000 000000000000

 0000000000000046.0333484719 .7506359719 .0834690300 15.13254653000000000000000000000000
 0000000000000086.8889835000000000013 .111016500000 000000000000000000000086888983500000000 13.1110165

 00000000000000000100000000 \#AKSHLF males
\#year Season Fleet gender partition ageErr LbinLo LbinHi Nsamp M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 M29 M30 M31 M32 M33 M34 M35 M0.1 M1.1 M2.1 M3.1 M4.1 M5.1 M6.1 M7.1 M8.1 M9.1 M10.1 M11.1 M12.1 M13.1 M14.1 M15.1 M16.1 M17.1 M18.1 M19.1 M20.1 M21.1 M22.1 M23.1 M24.1 M25.1 M26.1 M27.1 M28.1 M29.1 M30.1 M31.1 M32.1 M33.1 M34.1 M35.1

 0000000000000000000000000
$19801 \begin{array}{llllllllllllllllll}14 & 2 & 2 & 14 & 14 & 0 & 100 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 00000000000000000000000000100000000000 0000000000000000000000000
$198013 \quad 3 \quad 0 \quad 2 \quad 16 \quad 16 \quad 3 \quad 0 \quad 0 \quad 100000000000$ 000000000000000000000000000010000000000 0000000000000000000000000
 00000000000000000000000000000100000000000 0000000000000000000000000
 00000000000000000000000000010000000000 0000000000000000000000000
$19801 \begin{array}{lllllllllllllllll}1 & 2 & 2 & 2 & 2 & 1 & 0 & 0 & 0 & 100 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 00000000000000000000000000000001000000000 0000000000000000000000000
 00000000000000000000000000000100000000 0000000000000000000000000 $19801 \quad 3 \quad 2 \quad 0 \quad 2 \quad 30 \quad 30 \quad 6 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 50 \quad 0 \quad 33.33333333$ 16.66666667000000000000000000000000000000 0050033.3333333316 .666666670000000000000000000 00000000
$\begin{array}{llllllllllllll}1980 & 1 & 3 & 2 & 0 & 32 & 32 & 9 & 0 & 0 & 0 & 0 & 0 & 44.44444444\end{array}$ 33.3333333322 .22222220000000000000000000000000 00000000044.4444444433 .3333333322 .22222222000000000 000000000000000000
$198013020 \quad 2 \quad 34 \quad 34 \quad 14 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 7.142857143$
21.4285714328 .5714285728 .5714285714 .28571429000000000000 00000000000000000007.14285714321 .42857143
28.5714285728 .5714285714 .28571429000000000000000000 0000000
$19801 \begin{array}{lllllllllllllllll} & 3 & 2 & 0 & 2 & 36 & 6 & 0 & 0 & 0 & 0 & 0 & 50 & 50 & 0\end{array}$ 00000000000000000000000000000000050500 0000000000000000000000000 $198013020 \quad 2 \quad 38 \quad 38 \quad 3 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$
33.3333333366 .66666667000000000000000000000000 000000000033.3333333366 .6666666700000000000000 00000000000
 000000000000000000000000000010000000000 00000000000000000000000000
$19831 \quad 3 \quad 2 \quad 0 \quad 2 \quad 24 \quad 24 \quad 1 \quad 0 \quad 0 \quad 10000000000$ 000000000000000000000000000001000000000 0000000000000000000000000 $\begin{array}{llllllllllll}1983 & 1 & 3 & 2 & 0 & 2 & 26 & 26 & 0 & 0 & 66.66666667\end{array}$
33.3333333300000000000000000000000000000000 000066.6666666733 .3333333300000000000000000000 00000000000
$19831 \begin{array}{lllllllllllllllll}1 & 2 & 2 & 28 & 2 & 4 & 0 & 0 & 0 & 50 & 50 & 0 & 0 & 0 & 0 & 0\end{array}$ 0000000000000000000000000000505000000 00000000000000000000000000 $19831 \begin{array}{llllllllllll}19 & 2 & 0 & 2 & 30 & 30 & 11 & 0 & 0 & 0 & 36.36363636\end{array}$ 63.636363640000000000000000000000000000000 000036.3636363663 .6363636400000000000000000000 000000000
$19831 \quad 3 \quad 2 \quad 0 \quad 2 \quad 32 \quad 32 \quad 6 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 16.66666667$
16.6666666733 .3333333316 .6666666716 .66666667000000000000
000000000000000000016.666666616 .66666667
33.3333333316 .666666716 .66666667000000000000000000 00000000
$\begin{array}{lllllllllllllllll}1983 & 1 & 3 & 2 & 0 & 2 & 34 & 34 & 12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$ 16.6666666716 .66666667033 .333333338 .3333333338 .3333333330 8.3333333330008 .33333333300000000000000000000000000 00016.6666666716 .66666667033 .333333338 .3333333338 .3333333330 8.3333333330008 .3333333330000000000000000
 7.14285714307 .14285714314 .28571429007 .14285714314 .28571429 14.28571429014 .2857142907 .1428571437 .142857143007 .14285714300 0000000000000000007.14285714307 .14285714314 .28571429 007.14285714314 .2857142914 .28571429014 .2857142907 .142857143 7.142857143007 .14285714300000000
 005.88235294105 .88235294111 .7647058811 .764705885 .882352941000 11.764705885 .8823529410005 .8823529410011 .7647058800 23.5294117600000000000000005 .88235294105 .882352941 11.7647058811 .764705885 .88235294100011 .764705885 .882352941000 5.8823529410011 .764705880023 .52941176
$\begin{array}{llllllllllllllllllllll}1983 & 1 & 3 & 2 & 0 & 2 & 40 & 40 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 0000000016.6666666700016 .6666666000016 .6666666700 050000000000000000000000016.666666700000 16.66666667000016 .6666666700050

 000000000000000000000000100

 00000000000000000000000000

 0000000000000000000000000
$\begin{array}{lllllllllll}1986 & 1 & 3 & 2 & 0 & 2 & 14 & 14 & 12 & 0 & 82.58563211\end{array} 17.41436789$

 000000000
$\begin{array}{llllllllllll}1986 & 1 & 3 & 2 & 0 & 2 & 16 & 16 & 6 & 0 & 10.92708357 & 89.07291643\end{array}$

 000000000
$\begin{array}{llllllllllll}1986 & 1 & 3 & 2 & 0 & 2 & 18 & 18 & 8 & 0 & 0 & 88.48792957\end{array}$
 000088.4879295711 .51207043000000000000000000000 000000000000
$\begin{array}{llllllllllll}1986 & 1 & 3 & 2 & 0 & 2 & 20 & 20 & 9 & 0 & 0 & 70.23493753\end{array}$

 000000000000
$\begin{array}{llllllllllll}1986 & 1 & 3 & 2 & 0 & 2 & 22 & 22 & 7 & 0 & 0 & 0 \\ 57.14285714\end{array}$

 00000000000
$\begin{array}{llllllllllll}1986 & 1 & 3 & 2 & 0 & 24 & 24 & 24 & 0 & 0 & 29.19747643\end{array}$
54.012617858 .3949528628 .39495286200000000000000000000 0000000000000029.1974764354 .012617858 .394952862
8.3949528620000000000000000000000000000000
$\begin{array}{lllllllllllll}1986 & 1 & 3 & 2 & 2 & 26 & 26 & 0 & 0 & 0 & 0 & 31.20505046\end{array}$
27.188215631 .2050504610 .401683490000000000000000000 0000000000000031.2050504627 .188215631 .20505046

 0000000000000000000000000000 $\begin{array}{lllllllllllllllllllllll}1986 & 1 & 3 & 2 & 2 & 30 & 10 & 0 & 0 & 0 & 17.18800745\end{array}$
 00000000017.1880074564 .9451777317 .86681483000000000 0000000000000000000

71.341839039 .5527203249 .5527203240000000000000000000 000000000000009.55272032471 .341839039 .552720324
 $\begin{array}{lllllllllllllll}1986 & 1 & 3 & 2 & 0 & 2 & 34 & 34 & 7 & 0 & 0 & 0 & 0 & 0 & 44.60167969\end{array}$
 00000000000000044.6016796932 .2167515714 .14638589 9.0351828410000000000000000000000000000

 0000000000000000000000000 $\begin{array}{lllllllllllllllllllll}1986 & 1 & 3 & 2 & 0 & 2 & 40 & 40 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$
 000000000000000000000000100
$199513 \quad 3 \quad 2 \quad 0 \quad 2 \quad 12 \quad 12 \quad 8 \quad 0 \quad 100 \quad 0 \quad 0$
 0000000000000000000000000
$\begin{array}{lllllllllll}1995 & 1 & 3 & 2 & 0 & 2 & 14 & 14 & 12 & 0 & 95.79213238\end{array} 0$

 000000000000

 00000000000000000000000000
$\begin{array}{lllllllllll}1995 & 1 & 3 & 2 & 0 & 2 & 18 & 18 & 7 & 0 & 0 \\ 95.01776982\end{array}$

 000000000000
$\begin{array}{llllllllllll}1995 & 1 & 3 & 2 & 0 & 2 & 20 & 20 & 19 & 0 & 0 & 33.42881277\end{array}$
 00000000033.4288127764 .829283361 .741903868000000000 0000000000000000000000
$\begin{array}{lllllllllll}1995 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 0 & 2\end{array}$
80.3793610215 .114065062 .07024343200000000000000000000 000000000000002.436330488 80.37936102 15.11406506
 $\begin{array}{llllllllllll}1995 & 1 & 3 & 2 & 0 & 24 & 24 & 41 & 0 & 0 & 70.23581915\end{array}$
17.109998877 .6079214671 .7845835471 .5405422801 .72113468700000 000000000000000000000000000000070.2358191517 .10999887 7.6079214671 .7845835471 .5405422801 .72113468700000000000 000000000000000
$\begin{array}{llllllllllll}1995 & 1 & 3 & 2 & 0 & 2 & 26 & 26 & 27 & 0 & 0 & 20.27821654\end{array}$
49.3540916319 .9624280607 .8039478262 .60131594200000000000 000000000000000000020.2782165449 .35409163 19.9624280607 .8039478262 .60131594200000000000000000 0000000000
$\begin{array}{lllllllllllll}1995 & 1 & 3 & 2 & 28 & 28 & 20 & 0 & 0 & 0 & 48.29493204\end{array}$
31.386472349 .4393089814 .7196544906 .15963214800000000000 000000000000000000048.2949320431 .38647234 9.4393089814 .7196544906 .15963214800000000000000000 000000000
$\begin{array}{lllllllllllll}1995 & 1 & 3 & 2 & 0 & 2 & 30 & 30 & 15 & 0 & 0 & 0 & 0 \\ 13.57531859\end{array}$
52.8954793917 .970593273 .7658439344 .2610769467 .531687868000000
000000000000000000000000013.5753185952 .89547939 17.970593273 .7658439344 .2610769467 .531687868000000000000 00000000000000
$\begin{array}{lllllllllllllllllllll}1995 & 1 & 3 & 2 & 0 & 2 & 32 & 11 & 0 & 0 & 0 & 24.58538338\end{array}$
15.2438310516 .1843222412 .7145223208 .092161118023 .179779910000 000000000000000000000000024.5853833815 .24383105 16.1843222412 .7145223208 .092161118023 .179779910000000000 0000000000000
$\begin{array}{llllllllllllllll}1995 & 1 & 3 & 2 & 0 & 2 & 34 & 34 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
24.71875916074 .156277480000 .5971848350000 .52777852100000 0000000000000000000000024.71875916074 .15627748000 0.5971848350000 .527778521000000000000000000
$\begin{array}{llllllllllllllll}1995 & 1 & 3 & 2 & 0 & 2 & 36 & 6 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
19.7269657200019 .7269657200039 .453931440019 .72696572
1.36517140100000000000000000000000000019 .72696520 0019.7269657200039 .453931440019 .726965721 .36517140100000 000000000
 49.403229360001 .19354127800449 .40322936000000000000000 00000000000000049.403229360001 .19354127800 49.403229360000000000000000

 00000000000000000000000000

 000000000000000000000000000 $\begin{array}{lllllllllll}1998 & 1 & 3 & 2 & 0 & 2 & 16 & 16 & 9 & 0 & 67.50517789 \\ 32.49482211\end{array}$

 000000000
$\begin{array}{lllllllllll}1998 & 1 & 3 & 2 & 0 & 2 & 18 & 18 & 15 & 0 & 31.69006974\end{array} 29.14586672$
 00031.6900697429 .1458667239 .16406354000000000000000 00000000000000000
$\begin{array}{lllllllllll}1998 & 1 & 3 & 2 & 0 & 20 & 20 & 20 & 4 & 290951818 & 45.1729004\end{array}$
 0004.29095181845 .172900450 .53614778000000000000000 00000000000000000
$\begin{array}{lllllllllll}1998 & 1 & 3 & 2 & 0 & 2 & 22 & 22 & 0 & 0 & 31.58248281\end{array}$
 00000000031.5824828167 .627947960 .789569229000000000 000000000000000000000000
$\begin{array}{lllllllllllllllll}1998 & 1 & 3 & 2 & 2 & 24 & 24 & 0 & 28 & 22845891 & 60.5829939\end{array}$
 0000000028.2284589160 .58299397 .7062014223 .4823457710000 000000000000000000000000000
$\begin{array}{lllllllllllll}1998 & 1 & 3 & 2 & 0 & 26 & 26 & 17 & 0 & 5.002742177 & 19.7631097\end{array}$ 71.652736731 .4915603342 .0898510540000000000000000000 00000000000005.00274217719 .763109771 .65273673
1.4915603342 .0898510540000000000000000000000000 00000 $\begin{array}{llllllllllll}1998 & 1 & 3 & 2 & 0 & 28 & 28 & 13 & 0 & 3.721992091\end{array}$
 000000000000003.7219920919 .51587482346 .60484607
 $\begin{array}{llllllllllll}1998 & 1 & 3 & 2 & 0 & 2 & 30 & 30 & 9 & 0 & 0 & 0 \\ 16.89059525\end{array}$
 0000000000000016.890595257 .27242564315 .27573806
 $\begin{array}{llllllllllll}1998 & 1 & 3 & 2 & 0 & 2 & 32 & 32 & 18 & 0 & 0 & 2.095426505\end{array}$ 3.5456426257 .58149537137 .21250511000000047 .09357256 2.4713578270000000000000000000000002 .095426505 3.5456426257 .58149537137 .21250511000000047 .09357256 2.47135782700000000000000000000
 30.82677261018 .37276537014 .577423710019 .1605911200000000 00000000000000000017.06244720030 .826772610 18.37276537014 .577423710019 .16059112000000000000000 000000

 000000000000000061.5518062138 .4481937900000000 0000000

 0000000000000000000000000100

 00000000000000000000000000
$\begin{array}{llllllllllll}2001 & 1 & 3 & 2 & 0 & 2 & 14 & 14 & 44 & 0 & 94.48203416 & 5.517965842\end{array}$
 94.482034165 .51796584200000000000000000000000000 000000000
$\begin{array}{lllllllllll}2001 & 1 & 3 & 2 & 0 & 2 & 16 & 16 & 16 & 0 & 2.919198916 \\ 97.08080108\end{array}$

 000000000
$\begin{array}{llllllllllll}2001 & 1 & 3 & 2 & 0 & 2 & 18 & 183 & 0 & 0 & 90.96027907\end{array}$
7.7254692430 .23870450401 .07554718000000000000000000 0000000000000090.960279077 .7254692430 .2387045040
 $\begin{array}{lllllllllll}2001 & 1 & 3 & 2 & 0 & 2 & 20 & 20 & 79 & 0 & 0 \\ 80.42540348\end{array}$
 00000000080.4254034817 .283903582 .290692934000000000 0000000000000000000000
$\begin{array}{llllllllllllll}2001 & 1 & 3 & 2 & 0 & 22 & 7 & 0 & 0 & 29.16007459\end{array}$
 0000000000000029.1600745929 .3693301125 .88346652
 $\begin{array}{llllllllllll}2001 & 1 & 3 & 2 & 0 & 24 & 24 & 19 & 0 & 0 & 20.51636809\end{array}$
 0000000000000020.5163680962 .44647781 13.79677928 3.240374822000000000000000000000000000000000 $\begin{array}{llllllllllll}2001 & 1 & 3 & 2 & 0 & 26 & 26 & 35 & 0 & 0 & 5.084223772\end{array}$
46.7465717743 .471542064 .6976623980000000000000000000
000000000000005.08422377246 .7465717743 .47154206 4.69766239800000000000000000000000000000000 $\begin{array}{lllllllllllll}2001 & 1 & 3 & 2 & 28 & 2 & 28 & 0 & 0 & 0 & 10.44067167\end{array}$
 0000000000000010.4406716723 .1031680265 .66544511 0.790715202000000000000000000000000000000 $\begin{array}{llllllllllllll}2001 & 1 & 3 & 2 & 0 & 2 & 30 & 30 & 37 & 0 & 0 & 0 & 0 & 0.594117561\end{array}$ 3.4480631480 .7651642514 .059273081 .133381971000000000000 00000000000000000000.5941175613 .44806314
 000000000
$\begin{array}{llllllllllllll}2001 & 1 & 3 & 2 & 2 & 32 & 32 & 33 & 0 & 0 & 0 & 0 & 0 & 4.157331011\end{array}$
7.2501003582 .413049224 .4856845021 .309225253000000000
0.38460966600000000000000000000044 .157331011
7.2501003582 .413049224 .4856845021 .309225253000000000
0.3846096660000000000000000
 17.6908824300030 .1102027330 .110202730000000000000000 00009.2553541220000000012 .83335798017 .69088243000 30.1102027330 .110202730000000000000000000 9.25535412200

 0100000000000000000000000000

 00000000000000000000000000
 00000000020.5325261800000000000000079 .46747382000 000000000000000000020.532526180000000000000 079.46747382
$\begin{array}{llllllllllll}2004 & 1 & 3 & 2 & 0 & 2 & 12 & 12 & 60 & 0 & 61.43520244 & 38.56479756\end{array}$
 61.4352024438 .564797560000000000000000000000000 000000000

 0000000000000000000000000
$20041303020 \quad 2 \quad 16 \quad 16 \quad 21 \quad 0 \quad 0 \quad 100 \quad 0 \quad 0$
 00000000000000000000000000
$200413 \quad 3 \quad 2 \quad 0 \quad 2 \quad 18 \quad 18 \quad 33 \quad 0 \quad 4.59401180291 .76455271$
 0004.59401180291 .764552713 .641435493000000000000000 00000000000000000
$\begin{array}{lllllllllll}2004 & 1 & 2 & 2 & 20 & 20 & 23 & 2.349634533 & 47.6750817\end{array}$
 000000002.34963453347 .675081726 .8817689723 .093514800000 0000000000000000000000000000 $\begin{array}{lllllllllll}2004 & 1 & 3 & 2 & 0 & 2 & 22 & 22 & 0 & 2 & 216785706\end{array}$
 0000000002.21678570618 .8615574478 .92165686000000000 0000000000000000000000
$\begin{array}{llllllllllll}2004 & 1 & 3 & 2 & 0 & 24 & 24 & 62 & 0 & 0 & 23.26001465\end{array}$
62.5293797712 .393082511 .8175230680000000000000000000 0000000000000023.2600146562 .5293797712 .39308251
1.8175230680000000000000000000000000000000
$\begin{array}{llllllllllll}2004 & 1 & 3 & 2 & 0 & 26 & 26 & 0 & 0 & 3.537778082\end{array}$
54.0972541633 .487208228 .877759545000000000000000000 000000000000003.53777808254 .0972541633 .48720822
 $\begin{array}{llllllllllll}2004 & 1 & 3 & 2 & 0 & 28 & 28 & 69 & 0 & 0 & 0.205825284\end{array}$ 41.2002585956 .605801340 .6750565340 .4271303570 .885927895000000 0000000000000000000000000000.20582528441 .20025859 56.605801340 .6750565340 .4271303570 .885927895000000000000 000000000000000
$\begin{array}{lllllllllllll}2004 & 1 & 3 & 2 & 0 & 2 & 30 & 30 & 78 & 0 & 0 & 0 & 0\end{array} 28.04557288$
 00000000028.0455728854 .9174541517 .03697298000000000 00000000000000000000
$\begin{array}{llllllllllll}2004 & 1 & 3 & 2 & 0 & 2 & 32 & 32 & 41 & 0 & 0 & 0 \\ 17.61117288\end{array}$ 50.0414910210 .170071617 .587529442 .6575763161 .6548384360
 17.6111728850 .0414910210 .170071617 .587529442 .6575763161 .654838436 00.27732029900000000000000000000000000 $\begin{array}{lllllllllllll}2004 & 1 & 3 & 2 & 0 & 24 & 34 & 35 & 0 & 0 & 0 & 2.833836605\end{array}$ 12.9956245512 .6935654739 .042216519 .20048147 .7092448251 .5185640870
 002.83383660512 .9956245512 .6935654739 .042216519 .2004814
7.7092448251 .51856408700001 .9297245722 .07674199500000000 00000000000
$\begin{array}{lllllllllllllllll}2004 & 1 & 3 & 2 & 0 & 2 & 36 & 36 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
20.7760640927 .229902228 .18187223000000000023 .8121614800 0000000000000000000020.7760640927 .2299022
28.18187223000000000023 .812161480000000000000000 $\begin{array}{lllllllllllllll}2004 & 1 & 3 & 2 & 0 & 2 & 38 & 38 & 6 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 18.78101783\end{array}$ 00000018.146604120018 .7810178313 .50537047016 .9898135400 13.79617620000000000000000000018 .78101783000000 018.146604120018 .7810178313 .50537047016 .989813540013 .7961762 000000000000

 000000000000100000000000000 \# AKSHLF ghost marginal ages ($\mathrm{N}=7$)
\#Year Seas Fleet Gender Partition AgeError LbinLo LbinHi Nsamp 0123
 $\begin{array}{llllllllllllllllllllllllllllllllllll}30 & 31 & 32 & 33 & 34 & 35 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20\end{array}$

$\begin{array}{lllllllllllllllllllllll}1980 & 1 & -3 & 3 & 0 & 2 & -1 & -1 & 96 & 0 & 6 & 7 & 0 & 1 & 3 & 3 & 3 & 3 & 2 & 1 & 3 & 1\end{array}$
 000000000000000000000000 $19831 \begin{array}{lllllllllllllllllll}1 & -3 & 3 & 0 & 2 & -1 & -1 & 117 & 0 & 0 & 0 & 1 & 1 & 3 & 9 & 3 & 2 & 0 & 1\end{array} 0$
 423112442301311101012008
 00000000000000000000000000000000201821101410 161222100000000000000000000000000001 $\begin{array}{llllllllllllllllll}1995 & 1 & -3 & 3 & 0 & 2 & -1 & -1 & 393 & 0 & 20 & 18 & 59 & 43 & 25 & 10 & 1 & 2\end{array}$
 7857402110121111100000000000000

 201010031000210000000000000002
$\begin{array}{lllllllllllllllllllll}2001 & 1 & -3 & 3 & 0 & 2 & -1 & -1 & 1019 & 0 & 121 & 212 & 17 & 45 & 57 & 53 & 10\end{array}$
 443912811003100000100100000000000101
 67000100000000000000000100010000000300896743187 129241215621000111111011011000000000000 \#
\#AKSLP updated for 2013 assessment ($\mathrm{N}=51$)
\#AHSLP CAAL ($\mathrm{N}=49$)
\#AKSLP females
\#year Season Fleet gender partition ageErr LbinLo LbinHi Nsamp F0 F1 F2
F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30 F31 F32 F33 F34 F35 F0.1 F1.1 F2.1
F3.1 F4.1 F5.1 F6.1 F7.1 F8.1 F9.1 F10.1 F11.1 F12.1 F13.1 F14.1 F15.1
F16.1 F17.1 F18.1 F19.1 F20.1 F21.1 F22.1 F23.1 F24.1 F25.1 F26.1 F27.1 F28.1 F29.1 F30.1 F31.1 F32.1 F33.1 F34.1 F35.1

 0000000000000000000000000
$\begin{array}{llllllllllllllllll}2000 & 1 & 4 & 1 & 0 & 2 & 16 & 16 & 2 & 0 & 69.17759437 & 30.82240563 & 0\end{array}$

69.1775943730 .822405630000000000000000000000000 000000000

 000000000000000000000000000000

 0000000000
$\begin{array}{lllllllllllll}2000 & 1 & 4 & 1 & 0 & 22 & 22 & 13 & 0 & 0 & 0 & 44.69480571\end{array}$
 0000000000000044.6948057132 .6587398916 .95370719
5.692747203000000000000000000000000000000000 $\begin{array}{lllllllllllll}2000 & 1 & 4 & 1 & 0 & 2 & 24 & 24 & 11 & 0 & 0 & 0 & 31.11291151\end{array}$
 00000000031.1129115138 .5577961730 .329292320000000000 000000000000000000000
$\begin{array}{llllllllllllll}2000 & 1 & 4 & 1 & 0 & 2 & 26 & 26 & 8 & 0 & 0 & 0 & 0 & 63.18298085\end{array}$
 000063.1829808536 .817019150000000000000000000000 0000000000
$\begin{array}{llllllllllllll}2000 & 1 & 4 & 1 & 0 & 2 & 28 & 28 & 10 & 0 & 0 & 0 & 0 & 3.180049447\end{array}$
60.9743342718 .558833068 .019935167009 .2668480520000000000 0000000000000000000003.18004944760 .97433427
18.558833068 .019935167009 .2668480520000000000000000 000000000
$\begin{array}{lllllllllllllll}2000 & 1 & 4 & 1 & 0 & 2 & 30 & 30 & 10 & 0 & 0 & 0 & 0 & 0 & 37.54134503\end{array}$
7.54426546426 .6339025518 .042921738 .71722280401 .52034241800000 000000000000000000000000000000037.541345037 .544265464 26.6339025518 .042921738 .71722280401 .52034241800000000000 0000000000000
$\begin{array}{lllllllllllllll}2000 & 1 & 4 & 1 & 0 & 2 & 32 & 32 & 5 & 0 & 0 & 0 & 0 & 0 & 18.65054414\end{array}$
 00000000018.6505441441 .14864293040 .2008129300000000 0000000000000000000
 0000000010000000000000000000000000000 0000000001000000000000000
 0000000000000000000001000000000000000 0000000000000000000000100
 0000000000000000000000010000000000000000 0000000000000000000000100
$\begin{array}{llllllllllll}2001 & 1 & 4 & 1 & 0 & 2 & 18 & 18 & 6 & 0 & 0 & 80.12751331\end{array} 19.87248669$ 000000000000000000000000000000000000 80.12751331 19.87248669 000000000000000000000000 00000000
$\begin{array}{lllllllllllll}2001 & 1 & 4 & 1 & 0 & 2 & 20 & 20 & 24 & 0 & 0 & 89.05582432 & 10.94417568\end{array}$ 00000000000000000000000000000000000 89.05582432 10.94417568 000000000000000000000000 00000000 $\begin{array}{lllllllllllll}2001 & 1 & 4 & 1 & 0 & 2 & 22 & 22 & 12 & 0 & 0 & 86.32451839 & 13.67548161\end{array}$ 00000000000000000000000000000000000 86.3245183913 .67548161000000000000000000000000 00000000
$\begin{array}{llllllllllll}2001 & 1 & 4 & 1 & 0 & 24 & 24 & 5 & 0 & 5 & 507612438 & 52.85380622\end{array}$ 41.438581340000000000000000000000000000000 0005.70761243852 .8538062241 .43858134000000000000000 0000000000000000

 000000000000000000000000 $\begin{array}{llllllllllll}2001 & 1 & 4 & 1 & 0 & 2 & 28 & 28 & 8 & 0 & 0 & 14.22801764\end{array}$
73.0998080612 .6721743000000000000000000000000 00000000014.2280176473 .0998080612 .6721743000000000 000000000000000000000
$\begin{array}{lllllllllllll}2001 & 1 & 4 & 1 & 0 & 2 & 30 & 30 & 7 & 0 & 0 & 0 & 17.80416572\end{array}$
44.5044117337 .69142255000000000000000000000000
 00000000000000000000
$\begin{array}{llllllllllllll}2001 & 1 & 4 & 1 & 0 & 2 & 32 & 32 & 0 & 0 & 0 & 31.82677186\end{array}$
68.17322814000000000000000000000000000000 000031.8267718668 .1732281400000000000000000000 000000000
$\begin{array}{lllllllllllll}2001 & 1 & 4 & 1 & 0 & 2 & 34 & 34 & 11 & 0 & 0 & 0 & 2.473996013\end{array}$
4.66164097782 .5408825710 .32348044000000000000000000 000000000000002.4739960134 .66164097782 .54088257 10.323480440000000000000000000000000000 $20011 \begin{array}{lllllllllllll}1 & 4 & 1 & 0 & 2 & 36 & 36 & 0 & 0 & 0 & 0 & 40.78356144\end{array}$ 59.21643856 000040.7835614459 .2164385600000000000000000000 000000000
 0000005050000000000000000000000000000 0000000505000000000000000
 000000000066.75701030000033 .24298970000000000 000000000000000000066.75701030000033 .24298970 0000
\#AKSLP males
\#year Season Fleet gender partition ageErr LbinLo LbinHi Nsamp M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 M29 M30 M31 M32 M33 M34 M35 M0.1 M1.1 M2.1 M3.1 M4.1 M5.1 M6.1 M7.1 M8.1 M9.1 M10.1 M11.1 M12.1 M13.1 M14.1 M15.1 M16.1 M17.1 M18.1 M19.1 M20.1 M21.1 M22.1 M23.1 M24.1 M25.1 M26.1 M27.1 M28.1 M29.1 M30.1 M31.1 M32.1 M33.1 M34.1 M35.1 $\begin{array}{lllllllllllllll}2000 & 1 & 4 & 2 & 0 & 2 & 14 & 14 & 2 & 0 & 73.02329463 & 26.97670537 & 0\end{array}$

 000000000

 0000000000000000000000000

 000000000000000000000000
$\begin{array}{lllllllllllll}2000 & 1 & 4 & 2 & 0 & 2 & 22 & 7 & 0 & 0 & 0 & 51.54489519\end{array}$
 00000000051.5448951917 .3915728531 .06353196000000000 000000000000000000000
$\begin{array}{llllllllllll}2000 & 1 & 4 & 2 & 0 & 24 & 24 & 10 & 0 & 0 & 0 & 36.7604527\end{array}$
 000000000336.760452744 .3076453818 .93190192000000000 000000000000000000000
$\begin{array}{lllllllllllll}2000 & 1 & 4 & 2 & 0 & 26 & 26 & 8 & 0 & 0 & 5.427530023\end{array}$
26.0481870726 .159976767 .56961058326 .048187078 .746508498000000 00000000000000000000000005.42753002326 .04818707 26.159976767 .56961058326 .048187078 .746508498000000000000 000000000000000
$\begin{array}{llllllllllllll}2000 & 1 & 4 & 2 & 0 & 2 & 28 & 11 & 0 & 0 & 0 & 0 & 7.498000048\end{array}$
 000000000000007.49800004856 .9030135926 .1441846
 $\begin{array}{llllllllllllll}2000 & 1 & 4 & 2 & 0 & 2 & 30 & 30 & 10 & 0 & 0 & 0 & 0 & 5.502131626\end{array}$
 000000000000005.50213162648 .089105624 .24066711

 00000043.30581346000025 .35369866031 .340487880000000 0000000000000000
$\begin{array}{lllllllllllllllllllllll}2000 & 1 & 4 & 2 & 0 & 2 & 34 & 34 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
 01000000000000000000000000
$\begin{array}{lllllllllllllllll}2000 & 1 & 4 & 2 & 0 & 2 & 36 & 36 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$
14.215011610000000000058 .13063623000027 .65435215000 00000000000000014.21501161000000000000 58.13063623000027 .65435215000000000

 0000000000000000000000000
$\begin{array}{lllllllllllll}2001 & 1 & 4 & 2 & 0 & 2 & 18 & 18 & 3 & 0 & 0 & 62.31818439 & 37.68181561\end{array}$

 00000000
$\begin{array}{lllllllllllll}2001 & 1 & 4 & 2 & 0 & 2 & 20 & 20 & 24 & 0 & 0 & 74.81060723 & 25.18939277\end{array}$

 00000000
$\begin{array}{lllllllllllll}2001 & 1 & 4 & 2 & 0 & 2 & 22 & 22 & 8 & 0 & 0 & 67.39957843 & 32.60042157\end{array}$

 00000000
$\begin{array}{lllllllllllll}2001 & 1 & 4 & 2 & 0 & 2 & 24 & 24 & 3 & 0 & 0 & 14.30455071 & 85.69544929\end{array}$

 00000000
$\begin{array}{llllllllllllllllllllllll}2001 & 1 & 4 & 2 & 0 & 2 & 26 & 26 & 6 & 0 & 0 & 0 & 0 & 87.799809 & 0\end{array}$

 000000
$\begin{array}{llllllllllllll}2001 & 1 & 4 & 2 & 0 & 2 & 28 & 28 & 7 & 0 & 0 & 0 & 0 & 95.41634496\end{array}$
 000095.416344964 .5836550420000000000000000000000 0000000000
$\begin{array}{llllllllllllll}2001 & 1 & 4 & 2 & 0 & 2 & 30 & 30 & 12 & 0 & 0 & 0 & 0 & 2.197363768\end{array}$
 0000000002.19736376824 .466115973 .336520340000000000 00000000000000000000
$\begin{array}{llllllllllllll}2001 & 1 & 4 & 2 & 0 & 2 & 32 & 32 & 16 & 0 & 0 & 0 & 0 & 11.19482091\end{array}$

00000000011.1948209128 .443138260 .36204089000000000 00000000000000000000
$\begin{array}{llllllllllllll}2001 & 1 & 4 & 2 & 0 & 2 & 34 & 34 & 2 & 0 & 0 & 0 & 0 & 0\end{array} 79.49727051$

 000000000
$\begin{array}{lllllllllllllllllllllll}2001 & 1 & 4 & 2 & 0 & 2 & 36 & 36 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 50 & 0 & 0 & 50 & 0\end{array}$
 0000000000000000000000000

 0000000000000000001000000

 0000000000000000000000100
\# AKSLP ghost marginal ages ($\mathrm{N}=2$)
\#Year Seas Fleet Gender Partition AgeError LbinLo LbinHi Nsamp 0123
 $\begin{array}{lllllllllllllllllllllllllllllllllll}30 & 31 & 32 & 33 & 34 & 35 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20\end{array}$ $\begin{array}{lllllllllllll}21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 & 33 \\ 34 & 35\end{array}$
$\begin{array}{llllllllllllllllllll}2000 & 1 & -4 & 3 & 0 & 2 & -1 & -1 & 128 & 0 & 1 & 3 & 12 & 16 & 16 & 6 & 3 & 4 & 1 & 1\end{array}$
 1011000000001000010000000000
$\begin{array}{lllllllllllllllllll}2001 & 1 & -4 & 3 & 0 & 2 & -1 & -1 & 191 & 0 & 0 & 39 & 8 & 13 & 13 & 26 & 1 & 0 & 0\end{array}$
 10010000000000000000000000100001
\#
\#NWSLP updated for 2013 assessment (N=94)
\#NWSLP CAAL ($\mathrm{N}=91$)
\#NWSLP females
\#year Season Fleet gender partition ageErr LbinLo LbinHi nSamps F0 F1
F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21
F22 F23 F24 F25 F26 F27 F28 F29 F30 F31 F32 F33 F34 F35 F0.1 F1.1 F2.1

F3.1 F4.1 F5.1 F6.1 F7.1 F8.1 F9.1 F10.1 F11.1 F12.1 F13.1 F14.1 F15.1 F16.1 F17.1 F18.1 F19.1 F20.1 F21.1 F22.1 F23.1 F24.1 F25.1 F26.1 F27.1 F28.1 F29.1 F30.1 F31.1 F32.1 F33.1 F34.1 F35.1

 0000000000000000000000000

 00000000000000000000000000

 00000000000000000000000000

 000000000000000000000000000 $\begin{array}{llllllllllll}2000 & 1 & 5 & 1 & 0 & 2 & 22 & 22 & 8 & 0 & 0 & 60.69761758\end{array}$
 000060.6976175839 .302382420000000000000000000000 00000000000
$\begin{array}{lllllllllllll}2000 & 1 & 5 & 1 & 0 & 2 & 24 & 24 & 4.5 & 0 & 0 & 0 & 4.055968277\end{array}$
 0000000004.05596827767 .8684186028 .0756131200000000 000000000000000000000
$\begin{array}{llllllllllll}2000 & 1 & 5 & 1 & 0 & 2 & 26 & 26 & 11 & 0 & 0 & 0 \\ 1.755413427\end{array}$
 0000000001.75541342763 .0344364235 .21015015000000000 000000000000000000000
$\begin{array}{lllllllllllll}2000 & 1 & 5 & 1 & 0 & 28 & 28 & 48 & 0 & 0 & 0 & 18.27659028\end{array}$
43.1870970824 .71305217 .1220949496 .701165598000000000000 000000000000000000018.2765902843 .18709708 24.71305217 .1220949496 .701165598000000000000000000 000000000
$\begin{array}{llllllllllllllllll}2000 & 1 & 5 & 1 & 0 & 2 & 30 & 34.5 & 0 & 0 & 0 & 2.002339119\end{array}$
41.2161695940 .170925929 .3395150187 .27105035000000000000 00000000000000000002.00233911941 .21616959 40.170925929 .3395150187 .27105035000000000000000000 000000000
$\begin{array}{llllllllllllllllllll}2000 & 1 & 5 & 1 & 0 & 2 & 32 & 32 & 10.5 & 0 & 0 & 0 & 0 & 0 & 78.3215177\end{array}$
8.7872965398 .62077342700004 .270412332000000000000000 0000000000000078.32151778 .7872965398 .6207734270000 4.270412332000000000000000000000000

 00000000000000000000000000

 010000000000000000000000000
 00033.33333333033 .333333330033 .333333330000000000000 0000000000000000000033.33333333033 .3333333300 33.3333333300000000000000
 0016.6666978816 .66669788016 .6666978833 .3332084900016 .66669788 000000000000000000000000000016.66669788 16.66669788016 .6666978833 .3332084900016 .6666978800000000 0000
 7.69231434107 .692314341007 .692314341007 .6923143417 .692314341 7.6923143417 .69231434115 .3845422515 .384628687 .692314341000000 007.6923143410000000000007 .69231434107 .69231434100 7.692314341007 .6923143417 .6923143417 .6923143417 .692314341 15.3845422515 .384628687 .692314341000000007 .692314341 $\begin{array}{lllllllllllllllll}2000 & 1 & 5 & 1 & 0 & 2 & 44 & 44 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 24.54034082000000000000000000000000000000
 000000000075.45965918

 000000000000000000000000100

 0000000000000000000000000
$\begin{array}{llllllllllll}2001 & 1 & 5 & 1 & 0 & 2 & 16 & 16 & 4 & 0 & 0 & 74.12309729\end{array}$

 000000000000
$\begin{array}{lllllllllllllllllllll}2001 & 1 & 5 & 1 & 0 & 2 & 18 & 18 & 11 & 0 & 0 & 100 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
 000000000000000000000000000
$\begin{array}{llllllllllll}2001 & 1 & 5 & 1 & 0 & 2 & 20 & 20 & 22 & 0 & 96.32390612\end{array}$
 00000000096.323906121 .8380469411 .838046941000000000 00000000000000000000000
$\left.\begin{array}{lllllllllll}2001 & 1 & 5 & 1 & 0 & 2 & 22 & 22 & 2 & 0 & 0 \\ 5\end{array}\right) .55808138$
 000055.5580813844 .4419186200000000000000000000000 000000000000
$\begin{array}{lllllllllll}2001 & 1 & 5 & 1 & 0 & 2 & 24 & 24 & 7 & 0 & 0 \\ 10.80640983\end{array}$
 00000000010.8064098323 .5039413865 .68964879000000000 0000000000000000000000
$\begin{array}{llllllllllll}2001 & 1 & 5 & 1 & 0 & 2 & 26 & 26 & 14 & 0 & 0 & 6.756289743\end{array}$
 0000000006.75628974340 .5400423952 .70366786000000000 00000000000000000000000
$\begin{array}{lllllllllll}2001 & 1 & 5 & 1 & 0 & 2 & 28 & 28 & 11 & 0 & 0 \\ 11.52317881\end{array}$
11.9722398610 .6413861928 .2237140537 .63948109000000000000 000000000000000000011.5231788111 .97223986
10.6413861928 .2237140537 .63948109000000000000000000 00000000000
$\begin{array}{llllllllllll}2001 & 1 & 5 & 1 & 0 & 2 & 30 & 30 & 16 & 0 & 0 & 0 \\ 4.001943659\end{array}$
28.695755137 .3051668922 .497850767 .499283587000000000000 00000000000000000004.00194365928 .6957551
 0000000000
$\begin{array}{lllllllllll}2001 & 1 & 5 & 1 & 0 & 2 & 32 & 32 & 50 & 0 & 0\end{array} 2.247344021$
$2.39141718711 .1747489142 .6012508732 .94953295 \quad 2.3758257073 .884054653$
0000000002.37582570700000000000000000000000
2.2473440212 .39141718711 .1747489142 .6012508732 .949532952 .375825707
 00
$\begin{array}{lllllllllllll}2001 & 1 & 5 & 1 & 0 & 2 & 34 & 34 & 14 & 0 & 0 & 0 & 4.680233007\end{array}$
9.30020550436 .0118357839 .708586350004 .0984873076 .20065205000
00000000000000000000000004.6802330079 .300205504 36.0118357839 .708586350004 .0984873076 .20065205000000000 000000000000000 $\begin{array}{lllllllllllllll}2001 & 1 & 5 & 1 & 0 & 2 & 36 & 36 & 6 & 0 & 0 & 0 & 0 & 0 & 31.13090673\end{array}$ 12.176272790015 .482862370018 .668515130022 .54144298000000 000000000000000000031.1309067312 .1762727900 15.482862370018 .668515130022 .5414429800000000000000 000000
$\begin{array}{lllllllllllllllll}2001 & 1 & 5 & 1 & 0 & 2 & 38 & 38 & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 9.219776685\end{array}$ 009.219776685018 .4395533726 .950558290000000026 .950558290 000000000009.21977668500000009 .21977668500 9.219776685018 .4395533726 .950558290000000026 .95055829000 0000000009.219776685
 33.223348820033 .2233488210 .8219100511 .36569616000011 .36569616 000000000000000000000000000033.2233488200 33.2233488210 .8219100511 .36569616000011 .3656961600000000 00000
 33.33333333000000033 .333333330000000033 .33333333000 00000000000000033.333333330000000033 .3333333300 00000033.33333333000000

 00000000000000000000000000

 00000000000000000000000000

 00000000000000000000000000 $\begin{array}{llllllllllll}2002 & 1 & 5 & 1 & 0 & 2 & 20 & 20 & 0 & 0 & 31.39277352\end{array}$
 00000000031.3927735259 .951546278 .655680205000000000 0000000000000000000000
$\begin{array}{lllllllllllll}2002 & 1 & 5 & 1 & 0 & 2 & 22 & 22 & 0 & 0 & 0 & 98.55105246\end{array}$
 000098.551052461 .4489475360000000000000000000000 00000000000
$\begin{array}{lllllllllllll}2002 & 1 & 5 & 1 & 0 & 2 & 24 & 24 & 137.5 & 0 & 0 & 0 & 87.16400221\end{array}$
11.712217230 .3965002050 .72728036100000000000000000000 0000000000000087.1640022111 .712217230 .396500205 0.72728036100000000000000000000000000000000 $\begin{array}{llllllllllllll}2002 & 1 & 5 & 1 & 0 & 26 & 26 & 52.5 & 0 & 0 & 0 & 83.58594843\end{array}$
 00000000083.5859484314 .471643071 .9424085010000000000 000000000000000000000
$\begin{array}{llllllllllll}2002 & 1 & 5 & 1 & 0 & 2 & 28 & 28 & 34 & 0 & 0 & 0 \\ 5\end{array} .271420436$
 0000000000000005.27142043619 .7789851263 .71292691 11.236667540000000000000000000000000000000 $\begin{array}{lllllllllllll}2002 & 1 & 5 & 1 & 0 & 2 & 30 & 29 & 0 & 0 & 0 & 10.51301288\end{array}$
 0000000000000010.5130128861 .2618504124 .61113808 3.613998628000000000000000000000000000000 $\begin{array}{lllllllllllll}2002 & 1 & 5 & 1 & 0 & 2 & 32 & 32 & 17 & 0 & 0 & 0 & 0 \\ 5.613399463\end{array}$ 10.4640801171 .042480112 .8800403300000000000000000000
000000000000005.61339946310 .4640801171 .0424801
 $\begin{array}{llllllllllllll}2002 & 1 & 5 & 1 & 0 & 2 & 34 & 34 & 10 & 0 & 0 & 0 & 0 & 12.7152308\end{array} 0$
 000000000000012.715230803 .64490908158 .2093985
 $\left.\begin{array}{llllllllllllllll}2002 & 1 & 5 & 1 & 0 & 2 & 36 & 36 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 54\end{array}\right) .93609928$

 0000000
$\begin{array}{lllllllllllllllll}2002 & 1 & 5 & 1 & 0 & 2 & 40 & 40 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
42.2787310200000000029 .813603260000000000000000000 027.907665720000000042 .278731020000000029 .813603260 000000000000000027.90766572

 0000000000000000000000000100
 00000000000000000000033.33333333066 .66666667000 0000000000000000000000000000000033333333 066.66666667
$20021 \quad 5 \quad 1 \quad 0 \quad 2 \quad 48 \quad 48 \quad 1 \quad 0 \quad 0$
 00000000000000000000000100
\#NWSLP males
\#year Season Fleet gender partition ageErr LbinLo LbinHi nSamps M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 M29 M30 M31 M32 M33 M34 M35 M0.1 M1.1 M2.1 M3.1 M4.1 M5.1 M6.1 M7.1 M8.1 M9.1 M10.1 M11.1 M12.1 M13.1 M14.1 M15.1 M16.1 M17.1 M18.1 M19.1 M20.1 M21.1 M22.1 M23.1 M24.1 M25.1 M26.1 M27.1 M28.1 M29.1 M30.1 M31.1 M32.1 M33.1 M34.1 M35.1
$\begin{array}{llllllllllll}2000 & 1 & 5 & 2 & 0 & 2 & 14 & 14 & 2.5 & 0 & 17.33356746 & 33.88353564\end{array}$
 00017.3335674633 .883535640048 .78289690000000000000 00000000000000000

 00000000000000000000000000
$20001020 \quad 0 \quad 2 \quad 20 \quad 20 \quad 1 \quad 0 \quad 0 \quad 100 \quad 0 \quad 0$
 00000000000000000000000000
$200013 \quad 5 \quad 2 \quad 0 \quad 2 \quad 22 \quad 22 \quad 3 \quad 0 \quad 0 \quad 0 \quad 61.31134433$
 000061.3113443338 .68865567000000000000000000000 00000000000
$\begin{array}{lllllllllllll}2000 & 1 & 5 & 2 & 0 & 2 & 24 & 24 & 10.5 & 0 & 0 & 0 & 13.69298568\end{array}$
 000000000000000000013.6929856854 .36697131
 0000000000
$\begin{array}{lllllllllllll}2000 & 1 & 5 & 2 & 0 & 2 & 26 & 26 & 16 & 0 & 0 & 0 & 0\end{array} 17.05095367$
 00000000017.0509536740 .9982013941 .95084493000000000 00000000000000000000
$\begin{array}{llllllllllll}2000 & 1 & 5 & 2 & 0 & 28 & 28 & 38 & 0 & 0 & 0.635279847\end{array}$
5.27752753441 .122673842 .1677183510 .79680047000000000000 00000000000000000000.6352798475 .277527534
41.122673842 .1677183510 .79680047000000000000000000 0000000000
$\begin{array}{llllllllllllllllllll}2000 & 1 & 5 & 2 & 0 & 2 & 30 & 30 & 20.5 & 0 & 0 & 0 & 16.87287958\end{array}$
 000000000000000000016.8728795878 .01129402
2.233728381 .7066409791 .175457043000000000000000000 000000000
$\begin{array}{llllllllllllll}2000 & 1 & 5 & 2 & 0 & 2 & 32 & 32 & 7.5 & 0 & 0 & 0 & 0 & 0 \\ 18.34330748\end{array}$
1.283293999026 .791132840000026 .7911328400026 .79113284000 000000000000000000018.343307481 .2832939990
26.791132840000026 .7911328400026 .791132840000000000 0000000
$\begin{array}{lllllllllllllllll}2000 & 1 & 5 & 2 & 0 & 2 & 34 & 34 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
2.36401135900013 .947964796 .97402157820 .9219863713 .9479647900 6.9740215780013 .9479647906 .97402157806 .97402157806 .9740215780 0000000000000002.364011359000013 .947964796 .974021578 20.9219863713 .94796479006 .9740215780013 .9479647906 .9740215780 6.97402157806 .9740215780000000
$200015020 \quad 2 \quad 36 \quad 36 \quad 11 \quad 0 \quad 0$
5.94533244205 .9453324425 .945332442040 .5467423911 .890598080
5.9453324425 .9453324425 .945332442005 .94533244200000
5.94533244200000000000000000005 .94533244205 .945332442
5.945332442040 .5467423911 .8905980805 .9453324425 .945332442
5.945332442005 .945332442000005 .9453324420000

 00000000000000000100000000
$200015 \quad 5 \quad 2 \quad 0 \quad 2 \quad 40 \quad 40 \quad 2 \quad 0 \quad 0$
 000000000000005000000000050
$20001 \begin{array}{lllllllllllllllllllll}2 & 2 & 2 & 2 & 44 & 44 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
 00000000000000000000100000

 0000000000000000000000000

 00000000000000000000000000

 0000000000000000000000000
$\begin{array}{lllllllllllllllllllll}2001 & 1 & 5 & 2 & 0 & 2 & 20 & 20 & 26 & 0 & 0 & 100 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
 000000000000000000000000000
$\begin{array}{lllllllllll}2001 & 1 & 5 & 2 & 0 & 2 & 22 & 22 & 5 & 0 & 87.30963481\end{array}$

 00000000000
$\begin{array}{llllllllllll}2001 & 1 & 5 & 2 & 0 & 2 & 24 & 24 & 4 & 0 & 0 & 0 \\ 79.22054916\end{array}$

 00000000000
$\begin{array}{llllllllllll}2001 & 1 & 5 & 2 & 0 & 2 & 26 & 26 & 21 & 0 & 0 & 36.8931235\end{array}$
25.7564660332 .2387318200000005 .111678651000000000000 0000000000000036.893123525 .7564660332 .238731820000 0005.1116786510000000000000000000000
$\begin{array}{lllllllllllll}2001 & 1 & 5 & 2 & 0 & 2 & 28 & 28 & 0 & 0 & 13.4395729\end{array}$
55.9693883422 .191162498 .3998762700000000000000000000 0000000000000013.439572955 .9693883422 .19116249
 $\begin{array}{lllllllllllll}2001 & 1 & 5 & 2 & 0 & 2 & 30 & 24 & 0 & 0 & 25.50802282\end{array}$
 0000000000000025.5080228226 .8572887438 .695087240 8.93960120300000000000000000000000000000 $\begin{array}{lllllllllllll}2001 & 1 & 5 & 2 & 0 & 2 & 32 & 32 & 27 & 0 & 0 & 0 & 13.17751462\end{array}$ 44.5548347435 .671736673 .21712883203 .37878513600000000000 000000000000000000013.1775146244 .55483474
35.671736673 .21712883203 .37878513600000000000000000 000000000
$\begin{array}{lllllllllllllll}2001 & 1 & 5 & 2 & 0 & 2 & 34 & 34 & 25 & 0 & 0 & 0 & 0 & 0 & 3.643683032\end{array}$
16.892971739 .2423875547 .10121678112 .59216661 .5887765600
7.10121678111 .1196198316 .515527577 .1012167810000007 .101216781
000000000000000003.64368303216 .892971739 .242387554
7.10121678112 .59216661 .58877656007 .10121678111 .11961983
16.515527577 .1012167810000007 .1012167810000000000000
 10.2847829212 .1650666310 .284782922 .73749820901 .880283708 12.165066633 .76056741708 .4041409940013 .159836650008 .349691933 00008.404140994000008 .4041409940000000010 .28478292 12.1650666310 .284782922 .73749820901 .88028370812 .16506663
3.76056741708 .4041409940013 .159836650008 .3496919330000 8.404140994000008 .404140994
$\begin{array}{llllllllllllllllllll}2001 & 1 & 5 & 2 & 0 & 2 & 38 & 38 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$ 000000000018.28282828000000000000081 .71717172000 00000000000000000000018.2828282800000000000 081.71717172
$\begin{array}{llllllllllllllllllllll}2001 & 1 & 5 & 2 & 0 & 2 & 40 & 40 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
 000000000000000000000000100

 00000000000000000000000100

 000000000000000000000000000

 000000000000000000000000000 $20021 \begin{array}{lllllllllll}2 & 2 & 2 & 2 & 2 & 18 & 25 & 0 & 92.11231566\end{array}$
 000092.112315667 .88768433800000000000000000000000 000000000000
$\begin{array}{llllllllllll}2002 & 1 & 5 & 2 & 0 & 20 & 20 & 10 & 0 & 0 & 51.40246703\end{array}$

 000000000000
$\begin{array}{lllllllllll}2002 & 1 & 5 & 2 & 0 & 2 & 22 & 68 & 0 & 0 & 1.510654273\end{array}$
 000000000000001.51065427393 .504131293 .323476294
 $\begin{array}{llllllllllll}2002 & 1 & 5 & 2 & 0 & 24 & 24 & 127.5 & 0 & 0 & 1.592674218\end{array}$
86.8870239710 .732193210 .7881085970000000000000000000
000000000000001.59267421886 .8870239710 .73219321
 $\begin{array}{llllllllllllll}2002 & 1 & 5 & 2 & 0 & 26 & 26 & 59.5 & 0 & 0 & 0 & 74.17570656\end{array}$ 15.496666987 .4738594141 .4948382610000001 .358928788000000 000000000000000000074.1757065615 .49666698 7.4738594141 .4948382610000001 .3589287880000000000000 0000000000
$\begin{array}{lllllllllllll}2002 & 1 & 5 & 2 & 0 & 2 & 28 & 28 & 34 & 0 & 0 & 0 & 4.4966058\end{array}$ 18.7878577856 .705829710 .78769396 .3831128312 .8388999890000000 0000000000000000000000044.496605818 .78785778
56.705829710 .78769396 .3831128312 .8388999890000000000000 00000000000000
$\begin{array}{lllllllllllll}2002 & 1 & 5 & 2 & 0 & 2 & 30 & 30 & 33 & 0 & 0 & 0 & 0 \\ 8.084272415\end{array}$
65.3328200524 .051935332 .5309722130000000000000000000 000000000000008.08427241565 .3328200524 .05193533
 $\begin{array}{lllllllllll}2002 & 1 & 5 & 2 & 0 & 2 & 32 & 32 & 17 & 0 & 0 \\ 5\end{array} .265603024$
11.8262872934 .1958722921 .0185002527 .69373715000000000000 00000000000000000005.26560302411 .82628729
34.1958722921 .0185002527 .69373715000000000000000000 0000000000
$\begin{array}{llllllllllllll}2002 & 1 & 5 & 2 & 0 & 2 & 34 & 34 & 10 & 0 & 0 & 0 & 0 & 0 \\ 29.12049559\end{array}$
 00000000029.1204955946 .3975656624 .48193875000000000 0000000000000000000
 0034.6833578800000032 .6583210600000000032 .6583210600000 0000000000000000034.6833578800000032 .6583210600 0000032.65832106000000
 000030.850545300000030 .850545312 .2768537111 .19844026000 0000014.8236154300000000000000000030 .850545300 000030.850545312 .2768537111 .198440260000000014 .82361543 $2002105020 \quad 2 \quad 40 \quad 40 \quad 3 \quad 0 \quad 0$ 0000000000059.6302184500000023 .729611960000 16.640169580000000000000000000000000059 .63021845 0000023.72961196000016 .64016958 \# NWSLP ghost marginal ages ($\mathrm{N}=3$)
\#Year Seas Fleet Gender Partition AgeError LbinLo LbinHi Nsamp F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30 F31 F32 F33 F34 F35 M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 M29 M30 M31 M32 M33 M34 M35
$\begin{array}{llllllllllll}2000 & 1 & -5 & 3 & 0 & 2 & -1 & -1 & 270 & 0 & 0.354203749 & 0.284494183\end{array}$ $1.6688753536 .69757774313 .11093498 \quad 8.7581012 .2198223162 .4656653720$ 000.6923660171 .2490390730 .6245230450 .6245230451 .24904609 0.6245230451 .249046091 .2490390730 .6245230451 .249046090 .624523045 1.249046091 .2490390731 .249046090 .62452304500000000 3.16940638500 .7874921360 .2166512110 .5547433063 .196205341 10.623649396 .2454690361 .317331150 .690969580 .21169701800 0.6245230451 .2490390731 .8735691352 .4980851621 .2490390734 .259202536 1.8735621170 .6245230450 .6245230450 .6245230451 .8735621170 0.6245230450 .6245230451 .2490460900 .6245230450 .6245230450 0.6245230450 .624523045000 .624523045
$\begin{array}{llllllllllll}2001 & 1 & -5 & 3 & 0 & 2 & -1 & -1 & 357 & 0 & 0.128910793 & 11.79726675\end{array}$ 2.531989025 .2596691759 .0033751287 .4220413710 .7939935290 .48675449 0.1298259310 .3297217540 .1985107491 .3323420160 .5802717020
0.7692848020 .18901310 .1985107490 .2977413900 .1985107490
0.7787824510000000 .198510749000000 .19851074900 .647101511
20.544056972 .275923515 .1067421936 .3898151576 .1692421620 .944249297
1.870665772 .0674204440 .8399482970 .189013100 .9086083821 .748581412
1.6092083660 .5802717020 .580271702000 .908633115000 .710097633
0.57651221600000 .580271702000001 .929828206
$\begin{array}{lllllllllll}2002 & 1 & -5 & 3 & 0 & 2 & -1 & -1 & 819 & 0 & 0\end{array} 4.737140295$
30.529815064 .7253381055 .3795264913 .2080060991 .6696449870 .707511702
0000.13402440600000 .166304843000000000000000 0.16630484300 .976565835003 .90684174526 .51182344 .464904941
7.0135721062 .5826001841 .2869345210 .12405382800000 .1127749550 0.07783661600 .2789283120000 .073292015000 .5578566230 .110998429 0.101248195000 .0732920150 .11099842900000 .211861022
\#
\#NWCBO final ($\mathrm{N}=386$)
\#NWCBO CAAL ($\mathrm{N}=376$)
\#NWCBO females
\#year Season Fleet gender partition ageErr LbinLo LbinHi nSamps F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30 F31 F32 F33 F34 F35 F0.1 F1.1 F2.1 F3.1 F4.1 F5.1 F6.1 F7.1 F8.1 F9.1 F10.1 F11.1 F12.1 F13.1 F14.1 F15.1 F16.1 F17.1 F18.1 F19.1 F20.1 F21.1 F22.1 F23.1 F24.1 F25.1 F26.1 F27.1 F28.1 F29.1 F30.1 F31.1 F32.1 F33.1 F34.1 F35.1

 00000000000000000000000000
$\begin{array}{lllllllllll}2003 & 1 & 6 & 1 & 0 & 2 & 14 & 14 & 4 & 0 & 89.82767374\end{array}$
 000089.8276737410 .172326260000000000000000000000 0000000000000

 000000000000000000000000000
$\begin{array}{lllllllllll}2003 & 1 & 6 & 1 & 0 & 2 & 18 & 18 & 7 & 0 & 0 \\ 37.95245125\end{array}$

 000000000000
$\begin{array}{lllllllllll}2003 & 1 & 6 & 1 & 0 & 2 & 20 & 20 & 10 & 0 & 0 \\ 54.63202559\end{array}$

 000000000000
$\begin{array}{llllllllllll}2003 & 1 & 6 & 1 & 0 & 2 & 22 & 22 & 48.5 & 0 & 0 & 9.771834204\end{array}$
 000000009.77183420472 .0851157918 .1430500000000000 00000000000000000000
$\begin{array}{llllllllllll}2003 & 1 & 6 & 1 & 0 & 2 & 24 & 24 & 52 & 0 & 0 & 0 \\ 55.02762831\end{array}$

 00000000000
$\begin{array}{llllllllllll}2003 & 1 & 6 & 1 & 0 & 2 & 26 & 26 & 32.5 & 0 & 0 & 0 \\ 5.609095774\end{array}$
 000000005.60909577462 .54163331 .8492712300000000000 0000000000000000000
$\begin{array}{lllllllllllllllll}2003 & 1 & 6 & 1 & 0 & 28 & 28 & 0 & 0 & 0 & 81.09021656\end{array}$
 0000000000000081.090216564 .26944328610 .44428143 4.19605871600000000000000000000000000000
$\begin{array}{llllllllllll}2003 & 1 & 6 & 1 & 0 & 2 & 30 & 30 & 20 & 0 & 0 & 15.98204468\end{array}$ 2.50125896473 .525951827 .990744534000000000000000000 0000000000000015.982044682 .50125896473 .52595182 7.9907445340000000000000000000000000000 $200316310 \quad 2 \quad 32 \quad 32 \quad 19 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0.73006931$
8.71887938915 .8231368671 .7197347203 .00817971800000000000 00000000000000000000.730069318 .718879389 15.8231368671 .7197347203 .00817971800000000000000000 000000000
$20031 \begin{array}{llllllllllll}2 & 6 & 1 & 0 & 2 & 34 & 34 & 0 & 0 & 0 & 0.234084994\end{array}$ 0.24431373233 .2988455532 .578884421 .68940582431 .95446548000000 0000000000000000000000000.2340849940 .244313732 33.2988455532 .578884421 .68940582431 .95446548000000000000 0000000000000
$20031 \quad 6 \quad 1 \quad 0 \quad 2 \quad 36 \quad 36 \quad 28 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$
18.5901488925 .0956008925 .7173117224 .68147085 5.23748697 0.338990343
000000.338990343000000000000000000000000 18.5901488925 .0956008925 .7173117224 .68147085 5.23748697 0.338990343 000000.33899034300000000000000000 $20031 \quad 6 \quad 1 \quad 0 \quad 2 \quad 38 \quad 38 \quad 14 \quad 0 \quad 0 \quad 0 \quad 000$ 23.5828102314 .5964185530 .294181196 .8302955260 .2115836690 23.4638856700 .07572848100000 .493744444000 .45135224400000 0000000000000023.5828102314 .5964185530 .29418119 6.8302955260 .211583669023 .4638856700 .07572848100000 .493744444 000.451352244000000000000
$20031 \quad 6 \quad 1 \quad 0 \quad 2 \quad 40 \quad 40 \quad 6 \quad 0 \quad 0$ 44.3847206003 .619641778001 .0582918722 .93298337744 .3847206000 3.6196417780000000000000000000000044 .38472060 03.619641778001 .0582918722 .93298337744 .38472060003 .619641778 0000000000000
 001.76495221204 .11863237858 .740735274 .118632378000000000 0001.76495221229 .4920955500000000000000000 1.76495221204 .11863237858 .740735274 .11863237800000000000 01.76495221229 .49209555000
$20031 \quad 6 \quad 1 \quad 0 \quad 2 \quad 44 \quad 44 \quad 10 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0000$ 0000019.4185960300 .63348378300010 .0515527600 .22000758400 0019.4185960310 .05155276010 .0515527610 .0515527620 .10310553000 0000000000000019.4185960300 .63348378300010 .05155276 00.220007584000019 .4185960310 .05155276010 .0515527610 .05155276 20. 10310553
$20031 \quad 6 \quad 1 \quad 0 \quad 2 \quad 46 \quad 46 \quad 8 \quad 0 \quad 00000000000$ 0000000000000000000018.94940190081 .05059810000 0000000000000000000000000000018.94940190 081.0505981
$20031 \quad 6 \quad 1 \quad 0 \quad 2 \quad 48 \quad 48 \quad 1 \quad 0 \quad 000$ 00000000000000000000000010000000000000 0000000000000000000000000100
 0000000000000000000000000000100000000000 000000000000000000000000000
 0000000000000000000000000000100000000000 00000000000000000000000000
 00000000000000000000000000010000000000 00000000000000000000000000
$\begin{array}{lllllllllll}2004 & 1 & 6 & 1 & 0 & 2 & 16 & 16 & 10.5 & 0 & 24.04601059\end{array}$
 000024.0460105975 .953989410000000000000000000000 0000000000000
$\begin{array}{llllllllllllllllllll}2004 & 1 & 6 & 1 & 0 & 2 & 18 & 18 & 24 & 0 & 0 & 100 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
 0000000000000000000000000000 $\begin{array}{lllllllllll}2004 & 1 & 6 & 1 & 0 & 2 & 20 & 20 & 22 & 0 & 0\end{array} 29.49454951$

 000000000000

2004	1	6	1	0	2	22	22	6	0	0	0
69.30947887											

 00000000000
$\begin{array}{lllllllllllll}2004 & 1 & 6 & 1 & 0 & 2 & 24 & 24 & 21 & 0 & 0 & 7.401657683\end{array}$
 0000000007.40165768391 .167466621 .430875696000000000 000000000000000000000
$\begin{array}{llllllllllll}2004 & 1 & 6 & 1 & 0 & 2 & 26 & 51.5 & 0 & 0 & 0 & 2.356052331\end{array}$
 0000000002.35605233182 .9331244614 .710823210000000000 000000000000000000000
$\begin{array}{llllllllllllllllll}2004 & 1 & 6 & 1 & 0 & 2 & 28 & 28 & 29 & 0 & 0 & 0 & 74.14840529\end{array}$

 0000000000
$\begin{array}{llllllllllllll}2004 & 1 & 6 & 1 & 0 & 2 & 30 & 30 & 34 & 0 & 0 & 0 & 0 & 56.05624995\end{array}$
 0000000000000056.0562499526 .9806591115 .46237682 1.5007141210000000000000000000000000000000 $\begin{array}{llllllllllllllllll}2004 & 1 & 6 & 1 & 0 & 2 & 32 & 32 & 23 & 0 & 0 & 5.918776696\end{array}$
 000000000000005.91877669686 .053399515 .273599916 2.754223878000000000000000000000000000000 $\begin{array}{llllllllllllll}2004 & 1 & 6 & 1 & 0 & 2 & 34 & 34 & 8 & 0 & 0 & 0 & 0 & 49.07035415\end{array}$
 0000000000000049.070354155 .59191882733 .13120370 12.206523320000000000000000000000000000 $\begin{array}{lllllllllllllll}2004 & 1 & 6 & 1 & 0 & 2 & 36 & 36 & 6 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
 0000000000000009.05335688751 .1508951439 .79574797000 00000000000000000000000

 0000005000000000500000000000

 27.86690026033 .320737870000000010 .945461620000000 27.8669002600000000000000000027 .86690026033 .32073787 $200410610 \quad 0 \quad 2 \quad 42 \quad 42 \quad 1 \quad 0 \quad 0$
 000000000000000000000000100

 0000000000000000000000000100

 000000000000000000000000000
$\begin{array}{llllllllll}2005 & 1 & 6 & 1 & 0 & 1 & 10 & 10 & 3.5 & 20.80792161 \\ 79.19207839\end{array}$
 20.8079216179 .19207839000000000000000000000000 0000000000 $\begin{array}{lllllllllll}2005 & 1 & 6 & 1 & 0 & 1 & 12 & 12 & 18 & 24.12614724 & 75.87385276\end{array}$

 0000000000
$\begin{array}{llllllllllllll}2005 & 1 & 6 & 1 & 0 & 1 & 14 & 14 & 25 & 0 & 82.896162 & 17.103838 & 0\end{array}$

 0000000
$\begin{array}{lllllllllll}2005 & 1 & 6 & 1 & 0 & 1 & 16 & 16 & 20.5 & 0 & 3.702447483\end{array}$
 00003.70244748396 .297552520000000000000000000000 0000000000000
$\begin{array}{lllllllllll}2005 & 1 & 6 & 1 & 0 & 1 & 18 & 18 & 41 & 0 & 0 \\ 98.79180012\end{array}$
 000098.791800121 .2081998840000000000000000000000 000000000000
$\begin{array}{lllllllllll}2005 & 1 & 6 & 1 & 0 & 1 & 20 & 20 & 19 & 0 & 0\end{array} 23.68401691$

 000000000000

 000000000000000000000000000
$\begin{array}{llllllllllll}2005 & 1 & 6 & 1 & 0 & 1 & 24 & 24 & 12 & 0 & 0 & 42.23623016\end{array}$
 00000000042.2362301646 .7494330611 .01433678000000000 0000000000000000000000
$\begin{array}{llllllllllll}2005 & 1 & 6 & 1 & 0 & 1 & 26 & 26 & 29 & 0 & 0 & 0 \\ 2\end{array}$
 000000000000002.59791393617 .2067297372 .49356357
 $\begin{array}{lllllllllllll}2005 & 1 & 6 & 1 & 0 & 1 & 28 & 28 & 36 & 0 & 0 & 0 & 0 \\ 5\end{array} .695887549$
 0000000005.69588754989 .141228995 .162883465000000000 00000000000000000000
$\begin{array}{lllllllllllllllll}2005 & 1 & 6 & 1 & 0 & 1 & 30 & 30 & 39 & 0 & 0 & 0 & 0.585446612\end{array}$
 0000000000.58544661269 .156394530 .25815889000000000 00000000000000000000
$\begin{array}{llllllllllllllllllll}2005 & 1 & 6 & 1 & 0 & 1 & 32 & 32 & 26 & 0 & 0 & 0.456702628\end{array}$
 000000000000000.45670262815 .3846221381 .97006022
 $\begin{array}{llllllllllllll}2005 & 1 & 6 & 1 & 0 & 1 & 34 & 34 & 23 & 0 & 0 & 0 & 0 & 0 \\ 2\end{array} 453482109$
 000000000000002.45348210923 .7104155168 .82213448 5.01396790400000000000000000000000000000 $\begin{array}{llllllllllllllllllllll}2005 & 1 & 6 & 1 & 0 & 1 & 36 & 36 & 17 & 0 & 0 & 0 & 0 & 0\end{array}$
0.70624904837 .3349884524 .6293938712 .8562214424 .4731472000000 000000000000000000000000000.706249048
37.3349884524 .6293938712 .8562214424 .4731472000000000000 000000000000

 000000000000000049.577868480 .414978935050 .0071525900 0000000000000000000000

10.8494581618 .313853164 .354853554000014 .4507972300000
33.2409175600000018 .790120330000000000000000
10.8494581618 .313853164 .354853554000014 .4507972300000
33.2409175600000018 .79012033000
 16.571065220010 .0295415100010 .0295415100010 .0295415100 33.28122723010 .0295415100000000010 .029541510000000000 016.571065220010 .0295415100010 .0295415100010 .0295415100 33.28122723010 .029541510000000010 .02954151
 0013.83743535000000013 .885119030000013 .88511903 44.507207570000013 .8851190300000000000000 13.83743535000000013 .885119030000013 .8851190344 .50720757 0000013.88511903

 0000000000000010000000000000
$20051 \quad 6 \quad 1 \quad 0 \quad 1 \quad 50 \quad 50 \quad 1 \quad 0 \quad 0$
 0000000000000000000000000100

 000000000000000000000000000

 000000000000000000000000000
$200610610 \quad 0 \quad 1 \quad 10 \quad 10 \quad 1 \quad 0 \quad 0 \quad 100 \quad 0 \quad 0$
 000000000000000000000000000

 000000000000000000000000000
$\begin{array}{lllllllllll}2006 & 1 & 6 & 1 & 0 & 1 & 14 & 14 & 21 & 0 & 95.12236694\end{array}$

 0000000000000

 000000000000000000000000000
$\begin{array}{llllllllllll}2006 & 1 & 6 & 1 & 0 & 1 & 18 & 18 & 73.5 & 0 & 0 & 96.8315896\end{array}$
 000096.83158963 .1684103960000000000000000000000 000000000000
$\begin{array}{lllllllllll}2006 & 1 & 6 & 1 & 0 & 1 & 20 & 20 & 36 & 0 & 0 \\ 5.663148901\end{array}$

 000000000000
$\begin{array}{lllllllllll}2006 & 1 & 6 & 1 & 0 & 1 & 22 & 22 & 53 & 0 & 0 \\ 1.259463396\end{array}$

0000000001.25946339683 .4344629515 .30607365000000000 0000000000000000000000
$\begin{array}{llllllllllll}2006 & 1 & 6 & 1 & 0 & 1 & 24 & 24 & 28 & 0 & 0 & 0 \\ 33.92356339\end{array}$

 00000000000
$\begin{array}{lllllllllllll}2006 & 1 & 6 & 1 & 0 & 1 & 26 & 26 & 18 & 0 & 0 & 0 & 2.07727642\end{array}$
 0000000002.0772764286 .9239651910 .99875839000000000 000000000000000000000

 000000000000005.87047828384 .382285138 .230076092 1.5171604920000000000000000000000000000000 $\begin{array}{lllllllllllllll}2006 & 1 & 6 & 1 & 0 & 1 & 30 & 30 & 46 & 0 & 0 & 0 & 0 & 20.18923217\end{array}$
 00000000020.1892321778 .202732551 .608035279000000000 0000000000000000000
$20061 \begin{array}{llllllllllllllllll}2 & 6 & 1 & 0 & 1 & 32 & 32 & 46 & 0 & 0 & 0 & 0 & 0 & 0 & 48.23775816\end{array}$

 00000000
$\begin{array}{lllllllllllllll}2006 & 1 & 6 & 1 & 0 & 1 & 34 & 34 & 36 & 0 & 0 & 0 & 0 & 0 & 0 \\ 8.465133455\end{array}$
 0000000008.46513345543 .3115214548 .223345090000000000 000000000000000000

5.38607153122 .6104915539 .8915222732 .11191465000000000000 0000000000000000000005.38607153122 .61049155
39.8915222732 .1119146500000000000000000000000000 0

12.275763846 .8309118933 .8278403307 .06548397600000000000 0000000000000000000000012.275763846 .83091189
 $20061 \begin{array}{lllllllllllllllllll}0 & 1 & 1 & 0 & 1 & 40 & 40 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
 000001000000000000000000000
 00000000000077.234921509092 .76507849000000000000 000000000000000000000007.234921509092 .765078490 00000000

 00000000100000000000000000000

 000000000000000000000000000

 000000000000000000000000000

 000000000000000000000000000 $\begin{array}{llllllllll}2007 & 1 & 6 & 1 & 0 & 1 & 14 & 14 & 7 & 0 \\ 71.64127424\end{array}$

 0000000000000
$\begin{array}{llllllllllllll}2007 & 1 & 6 & 1 & 0 & 1 & 16 & 16 & 39 & 0 & 0 & 98.43659546 & 0\end{array}$

 00000000000
$\begin{array}{lllllllllll}2007 & 1 & 6 & 1 & 0 & 1 & 18 & 18 & 67 & 0 & 0 \\ 68.47151514\end{array}$
 00000000068.4715151429 .625334431 .9031504330000000000 0000000000000000000000
$\begin{array}{llllllllllll}2007 & 1 & 6 & 1 & 0 & 1 & 20 & 20 & 49.5 & 0 & 0 & 0 \\ 93.16756585\end{array}$
 000093.167565856 .8324341540000000000000000000000 00000000000
$\begin{array}{lllllllllllll}2007 & 1 & 6 & 1 & 0 & 1 & 22 & 22 & 59 & 0 & 0 & 0 & 63.39720658\end{array}$
 00000000063.3972065834 .151735822 .451057601000000000 000000000000000000000
$\begin{array}{llllllllllll}2007 & 1 & 6 & 1 & 0 & 1 & 24 & 24 & 34 & 0 & 0 & 0\end{array} 25.62139179$
 00000000025.6213917964 .474409069 .904199144000000000 000000000000000000000
$\begin{array}{llllllllllllll}2007 & 1 & 6 & 1 & 0 & 1 & 26 & 26 & 34 & 0 & 0 & 0 & 0 & 39.06513518\end{array}$
 00000000039.0651351836 .7385740524 .196290770000000000 000000000000000000000
$\begin{array}{llllllllllllll}2007 & 1 & 6 & 1 & 0 & 1 & 28 & 28 & 19 & 0 & 0 & 0 & 0 & 0\end{array} 46.91654101$ 24.400307154 .01826204524 .66488980000000000000000000 0000000000000046.9165410124 .400307154 .018262045 24.6648898000000000000000000000000000000 $\begin{array}{llllllllllllllllllllll}2007 & 1 & 6 & 1 & 0 & 1 & 30 & 30 & 32 & 0 & 0 & 0 & 14.48998061\end{array}$
 0000000000000014.4899806137 .8180349140 .80623788
 $20071 \begin{array}{llllllllllllll}2 & 6 & 1 & 0 & 1 & 32 & 32 & 46 & 0 & 0 & 0 & 0 & 0 & 27.33661306\end{array}$
 0000000000000027.3366130654 .4266304815 .84665787 2.3900985920000000000000000000000000000 $\begin{array}{llllllllllllll}2007 & 1 & 6 & 1 & 0 & 1 & 34 & 34 & 29 & 0 & 0 & 0 & 0 & 0 \\ 0 & 17.42186971\end{array}$ 43.2232079532 .205562154 .2109481122 .938412085000000000000 000000000000000000017.4218697143 .22320795 32.205562154 .2109481122 .938412085000000000000000000 0000000
$\begin{array}{lllllllllllllll}2007 & 1 & 6 & 1 & 0 & 1 & 36 & 36 & 22 & 0 & 0 & 0 & 0 & 0 & 0 \\ 6\end{array} .683491181$
 000000000000006.68349118128 .63144861 50.26371009
 $\begin{array}{llllllllllllllll}2007 & 1 & 6 & 1 & 0 & 1 & 38 & 38 & 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
29.604770446 .09292492624 .5537195639 .74858508000000000000 00000000000000000000000029.604770446 .092924926 24.5537195639 .74858508000000000000000000000000000 $\begin{array}{llllllllllllllllll}2007 & 1 & 6 & 1 & 0 & 1 & 40 & 40 & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 10.36036574018 .5149106610 .36036574007 .782824359000000000 52.9815335000000000000000000010 .360365740 18.5149106610 .36036574007 .78282435900000000052 .98153350 00000000
$\begin{array}{llllllllllllllllllll}2007 & 1 & 6 & 1 & 0 & 1 & 42 & 42 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 0014.1282636107 .88083129124 .55906728024 .5590672810 .4237204100 0000018.449050140000000000000000000000
14.1282636107 .88083129124 .55906728024 .5590672810 .423720410000 00018.449050140000000

 0000000100000000000000000000

 38.375089260000000000000000009 .1040327840000000 52.5208779600000000038 .37508926

 0000000000000000000000000000
$\begin{array}{lllllllllll}2008 & 1 & 6 & 1 & 0 & 1 & 10 & 10 & 3 & 12.27548472 & 87.72451528\end{array}$

12.2754847287 .724515280000000000000000000000000000 0000000000
$\begin{array}{lllllllllll}2008 & 1 & 6 & 1 & 0 & 1 & 12 & 12 & 3 & 0 & 34.60083777\end{array}$
 000034.6008377765 .399162230000000000000000000000 0000000000000
$\begin{array}{lllllllllll}2008 & 1 & 6 & 1 & 0 & 1 & 14 & 14 & 18 & 0 & 38.18110078\end{array}$

 0000000000000
$\begin{array}{lllllllllll}2008 & 1 & 6 & 1 & 0 & 1 & 16 & 16 & 20 & 0 & 0\end{array} 18.49289437$

 000000000000
$\begin{array}{lllllllllll}2008 & 1 & 6 & 1 & 0 & 1 & 18 & 18 & 19.5 & 0 & 0\end{array} 49.78352443$
 000049.7835244350 .216475570000000000000000000000 000000000000

2008	1	6	1	0	1	20	20	59	0	0	0.623194561

 0000000000.62319456194 .864553914 .5122515290000000000 0000000000000000000000
$\begin{array}{lllllllllllll}2008 & 1 & 6 & 1 & 0 & 1 & 22 & 22 & 43 & 0 & 0 & 0 & 12.04929886\end{array}$
 00000000012.0492988686 .697017731 .253683405000000000 000000000000000000000
$\begin{array}{llllllllllllll}2008 & 1 & 6 & 1 & 0 & 1 & 24 & 24 & 35 & 0 & 0 & 0 & 0 & 98.45370792\end{array}$

 0000000000
$\begin{array}{lllllllllllllllllll}2008 & 1 & 6 & 1 & 0 & 1 & 26 & 26 & 22 & 0 & 0 & 12.08823792\end{array}$
 0000000012.0882379285 .1645352 .74722708500000000000 000000000000000000
$\begin{array}{lllllllllllll}2008 & 1 & 6 & 1 & 0 & 1 & 28 & 28 & 14 & 0 & 0 & 0 & 4.593245868\end{array}$
 0000000004.59324586866 .3675834729 .03917066000000000 00000000000000000000
$\begin{array}{llllllllllllll}2008 & 1 & 6 & 1 & 0 & 1 & 30 & 30 & 13 & 0 & 0 & 0 & 0 & 0 \\ 24.63446514\end{array}$
40.3128532935 .0526815700000000000000000000000000
00000000024.6344651440 .3128532935 .052681570000000000 0000000000000000000
$\begin{array}{llllllllllllllllllllll}2008 & 1 & 6 & 1 & 0 & 1 & 32 & 32 & 27 & 0 & 0 & 0 & 0 & 0 & 7.318660858\end{array}$
 000000000000007.31866085826 .1075270432 .24483784 34.32897426000000000000000000000000000 $\begin{array}{lllllllllllllll}2008 & 1 & 6 & 1 & 0 & 1 & 34 & 34 & 33 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 20.5095627137 .9615996919 .311328028 .378674313 .838835290000000 0000000000000000000000000020.5095627137 .96159969 19.311328028 .378674313 .838835290000000000000000000 00000
$\begin{array}{lllllllllllllll}2008 & 1 & 6 & 1 & 0 & 1 & 36 & 36 & 11 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$
2.7552858526 .81221087219 .269645776 .22871745213 .7967767244 .32515246

2.7552858526 .81221087219 .269645776 .22871745213 .7967767244 .32515246 6.8122108720000000000000000000000

43.7550955711 .6382824512 .391294519 .8240329700000000
12.3912945000000000000000000000000043 .75509557
11.6382824512 .391294519 .824032970000000012 .391294500000 00000000

3.73324631700015 .114873776 .8785274890012 .1430211600
27.73588098025 .402148826 .612643972 .37965749400000000000
0000000003.73324631700015 .114873776 .87852748900
12.143021160027 .73588098025 .402148826 .612643972 .379657494000 000000000
 00010.69765026000000034 .795934270034 .79593427000000 19.71048120000000000000000010 .697650260000000 34.795934270034 .7959342700000019 .710481200
 00000000020.745121546 .24217599000023 .95066274
 20.745121546 .24217599000023 .950662749 .0620397640000000
 00000000000000508.19290142700000000041 .807098570 0000000000000000000000000508.1929014270000 000041.80709857

 00000000000000000000000000

 0000000000000000000000000000

 000000000000000000000000000

 000000000000000000000000000
$\begin{array}{lllllllllll}2009 & 1 & 6 & 1 & 0 & 1 & 16 & 16 & 23.5 & 0 & 49.28220147\end{array}$

 0000000000000
$\begin{array}{lllllllllll}2009 & 1 & 6 & 1 & 0 & 1 & 18 & 18 & 38 & 0 & 2.397714591\end{array}$

0000000002.39771459190 .193515787 .408769627000000000 000000000000000000000000
$\begin{array}{lllllllllllllllll}2009 & 1 & 6 & 1 & 0 & 1 & 20 & 20 & 64 & 0 & 0 & 42.5221056 & 52.178486\end{array}$

 0000000000000
$\begin{array}{llllllllllll}2009 & 1 & 6 & 1 & 0 & 1 & 22 & 22 & 54 & 0 & 0 & 0 \\ 74.53837384\end{array}$

 00000000000
$\begin{array}{llllllllllll}2009 & 1 & 6 & 1 & 0 & 1 & 24 & 24 & 45.5 & 0 & 0 & 0\end{array} 4.054281752$
 0000000004.05428175294 .180783641 .76493461000000000 000000000000000000000
$20091 \begin{array}{lllllllllllll} & 6 & 1 & 0 & 1 & 26 & 26 & 50 & 0 & 0 & 0 & 0 & 39.1821573\end{array}$
 00000000039.182157346 .5367263614 .28111634000000000 00000000000000000000
$\begin{array}{lllllllllllllll}2009 & 1 & 6 & 1 & 0 & 1 & 28 & 28 & 0 & 0 & 0 & 0 & 6.097155258\end{array}$
 000000000000006.09715525882 .0124323111 .03207628
 $\begin{array}{lllllllllllllll}2009 & 1 & 6 & 1 & 0 & 1 & 30 & 30 & 23 & 0 & 0 & 0 & 0 & 0 & 37.00353354\end{array}$ 36.41301143 .21301583102 .86869826920 .5017409500000000000 000000000000000000037.0035335436 .4130114 3.21301583102 .86869826920 .5017409500000000000000000 00000000
$\begin{array}{llllllllllllll}2009 & 1 & 6 & 1 & 0 & 1 & 32 & 32 & 24 & 0 & 0 & 0 & 0 & 0 \\ 0 & 16.3483165\end{array}$ 51.736585741 .82624049415 .296757850 .93991075613 .85218866000000 000000000000000000000000016.348316551 .73658574 1.82624049415 .296757850 .93991075613 .85218866000000000000 000000000000

30.3234839939 .4744636217 .0632343112 .344457240 .794360835000000 00000000000000000000000000030.32348399
39.4744636217 .0632343112 .344457240 .794360835000000000000 000000000000

24.1694875711 .4161205562 .497067931 .07877959200 .83854435900000 000000000000000000000000000024.16948757
11.4161205562 .497067931 .07877959200 .83854435900000000000 000000000000

1.1906215662 .8424749092 .14311881848 .2926998312 .938252721 .54736248 8.1993643421 .2447482291 .6013571270000000000000000000 0000000001.1906215662 .8424749092 .14311881848 .29269983
12.938252721 .547362488 .1993643421 .2447482291 .601357127000000 0000000000000
 16.56337678016 .7568184321 .117294104 .94857978609 .897159571000 0004.948579786000025 .7681915500000000000000000 16.56337678016 .7568184321 .117294104 .94857978609 .897159571000 0004.948579786000025 .768191550000
 006.8404730552 .9633640580014 .933730425 .87134963514 .93373042 30.573228815 .9710309015 .9710309010005 .9710309010005 .971030901 0000000000000000006.8404730552 .96336405800
14.933730425 .87134963514 .9337304230 .573228815 .9710309015 .971030901 0005.9710309010005 .9710309010000
 0000000000002.316984789021 .30742617 .084321436000
 0002.316984789021 .30742617 .08432143600021 .3074261000 47.98384157
 0000000000000044.9692735244 .969273520000000
 44.9692735244 .96927352000000010 .06145297

 0000000000000000000000000100
$201010610 \quad 0 \quad 1 \quad 10 \quad 10 \quad 1.5 \quad 0 \quad 100 \quad 0 \quad 0$
 0000000000000000000000000000

 000000000000000000000000000
$\begin{array}{llllllllllll}2010 & 1 & 6 & 1 & 0 & 1 & 14 & 14 & 4 & 0 & 41.2113574 & 58.7886426\end{array}$
 41.211357458 .788642600000000000000000000000000 00000000
$\begin{array}{lllllllllll}2010 & 1 & 6 & 1 & 0 & 1 & 16 & 16 & 42 & 0 & 1.002862518\end{array}$

 0000000000000
$\begin{array}{lllllllllll}2010 & 1 & 6 & 1 & 0 & 1 & 18 & 18 & 97.5 & 0 & 0 \\ 93.36826478\end{array}$
 00000000093.368264786 .2588842190 .3728510010000000000 0000000000000000000000
$\begin{array}{lllllllllll}2010 & 1 & 6 & 1 & 0 & 1 & 20 & 20 & 37 & 0 & 0 \\ 36.09545106\end{array}$
 00000000036.0954510662 .441608641 .462940302000000000 0000000000000000000000
$\begin{array}{llllllllllll}2010 & 1 & 6 & 1 & 0 & 1 & 22 & 22 & 31 & 0 & 0 & 50.04044745\end{array}$
 00000000050.0404474548 .699285381 .260267165000000000 000000000000000000000
$\begin{array}{lllllllllllll}2010 & 1 & 6 & 1 & 0 & 1 & 24 & 24 & 38 & 0 & 0 & 0 & 10.2110437\end{array}$
 00000000010.211043782 .986150526 .802805779000000000 000000000000000000000
$\begin{array}{llllllllllllll}2010 & 1 & 6 & 1 & 0 & 1 & 26 & 26 & 34 & 0 & 0 & 0 & 0 & 37.89191255\end{array}$
49.9300067512 .1780807000000000000000000000000000 00000000037.8919125549 .9300067512 .1780807000000000 00000000000000000000
$\begin{array}{lllllllllllll}2010 & 1 & 6 & 1 & 0 & 1 & 28 & 28 & 32 & 0 & 0 & 0 & 0\end{array} 2.212293723$
 0000000002.21229372372 .8268963524 .96080993000000000 00000000000000000000
$\begin{array}{lllllllllllllll}2010 & 1 & 6 & 1 & 0 & 1 & 30 & 30 & 31 & 0 & 0 & 0 & 0 & 0 & 19.81823243\end{array}$
 00000000019.8182324351 .7602336328 .421533940000000000 0000000000000000000
 85.48672863 000014.5132713785 .4867286300000000000000000000 00000000
$20101 \begin{array}{llllllllllllll} & 6 & 1 & 0 & 1 & 34 & 0 & 0 & 0 & 0\end{array}$
16.4010703333 .44493678050 .1539928900000000000000000 00000000000000016.4010703333 .44493678050 .1539928900 00000000000000000000000

19.132946617 .11217296510 .4583632859 .03110314 .265414039000000 000000000000000000000000019.13294661 7.11217296510 .4583632859 .03110314 .265414039000000000000 000000000000
$20101 \begin{array}{lllllllllllllllll}0 & 6 & 1 & 0 & 1 & 38 & 0 & 0 & 0 & 0 & 0\end{array}$
15.27429217017 .221258933 .79925167127 .4500353615 .27429217
1.94696675916 .8701946102 .1637083340000000000000000000 00000000015.27429217017 .221258933 .79925167127 .45003536 15.274292171 .94696675916 .8701946102 .16370833400000000000 0000000
$201010610 \quad 40 \quad 40 \quad 9 \quad 0 \quad 0$ 3.69814632203 .6981463223 .69814632222 .994377213 .243123192
3.243123192022 .9943772129 .012599817 .41796041300000000000 000000000000003.69814632203 .6981463223 .698146322
22.994377213 .2431231923 .243123192022 .9943772129 .01259981
7.41796041300000000000000
 0008.587575484080 .52985642000010 .88256810000000000 0000000000000000008.587575484080 .529856420000 10. 88256810000000000000
 0000003.6492968990000000004 .055248417000000 4.16130782288 .134146860000000000000000003 .649296899 0000000004.055248417000004 .16130782288 .13414686

 000000000000000000000000100
 00000000000000000000000000100000000000 00000000000000000000000000
$20111 \begin{array}{llllllllllllllllll}10 & 1 & 1 & 0 & 1 & 10 & 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 00000000000000000000000000000100000000000 00000000000000000000000000
$20111 \begin{array}{lllllllllllllllll}12 & 6 & 1 & 0 & 1 & 12 & 12 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 0000000000000000000000000000100000000000 00000000000000000000000000
$\begin{array}{llllllllll}2011 & 1 & 6 & 1 & 0 & 1 & 14 & 14 & 9.5 & 0 \\ 33.74218584\end{array}$
66.257814160000000000000000000000000000000 000033.7421858466 .2578141600000000000000000000 0000000000000
$20111 \begin{array}{llllllllllllllllll}16 & 1 & 1 & 0 & 1 & 16 & 16 & 0 & 0 & 100 & 0 & 0 & 0 & 0 & 0\end{array}$ 0000000000000000000000000000010000000000 00000000000000000000000000
$\begin{array}{llllllllll}2011 & 1 & 6 & 1 & 0 & 1 & 18 & 18 & 7 & 0 \\ 9\end{array}$
5.9917431530000000000000000000000000000000 000094.008256855 .99174315300000000000000000000 000000000000
$\begin{array}{llllllllllll}2011 & 1 & 6 & 1 & 0 & 1 & 20 & 20 & 31 & 0 & 0 & 18.64149042\end{array}$
 000018.6414904281 .358509580000000000000000000000 000000000000
$\begin{array}{lllllllllllll}2011 & 1 & 6 & 1 & 0 & 1 & 22 & 22 & 62 & 0 & 0 & 0 & 99.45148256\end{array}$

 00000000000
$\begin{array}{lllllllllllll}2011 & 1 & 6 & 1 & 0 & 1 & 24 & 24 & 54 & 0 & 0 & 0 & 79.98305191\end{array}$
 00000000079.9830519118 .668915281 .3480328010000000000 000000000000000000000
$\begin{array}{lllllllllllll}2011 & 1 & 6 & 1 & 0 & 1 & 26 & 26 & 19 & 0 & 0 & 0 & 11.43671313\end{array}$
 00000000011.4367131312 .1686754176 .39461146000000000 000000000000000000000
$\begin{array}{llllllllllllllllll}2011 & 1 & 6 & 1 & 0 & 1 & 28 & 28 & 31 & 0 & 0 & 0 & 0 & 8.612033547\end{array}$
 0000000008.61203354780 .0872089611 .3007575000000000 00000000000000000000
$\begin{array}{lllllllllllllll}2011 & 1 & 6 & 1 & 0 & 1 & 30 & 30 & 30 & 0 & 0 & 0 & 0 & 0 & 25.75471819\end{array}$
 0000000000000025.7547181939 .3453024533 .982292420000 0.91768693400000000000000000000000
$\begin{array}{llllllllllllll}2011 & 1 & 6 & 1 & 0 & 1 & 32 & 32 & 34 & 0 & 0 & 0 & 0 & 0\end{array} 2.443436082$
9.82715276745 .8784749415 .7972148326 .05372138000000000000 00000000000000000002.4434360829 .827152767
45.8784749415 .7972148326 .05372138000000000000000000 00000000
$\begin{array}{llllllllllllllll}2011 & 1 & 6 & 1 & 0 & 1 & 34 & 34 & 20 & 0 & 0 & 0 & 0 & 0 & 0 & 11.23317501\end{array}$ 31.5425738637 .081433418 .883743281 .259074444000000000000 000000000000000000011.2331750131 .54257386 37.081433418 .883743281 .259074444000000000000000000 0000000
$\begin{array}{llllllllllllllll}2011 & 1 & 6 & 1 & 0 & 1 & 36 & 36 & 18 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 32.4168017110 .0029535524 .940862494 .04968881328 .58969344000000 00000000000000000000000000032.41680171
10.0029535524 .940862494 .04968881328 .58969344000000000000 00000000000
$\begin{array}{lllllllllllllllllllllll}2011 & 1 & 6 & 1 & 0 & 1 & 38 & 38 & 14 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
9.4113634115 .78209263316 .7361821734 .6273580215 .481232971 .076410927
 00009.4113634115 .78209263316 .7361821734 .6273580215 .48123297 1.0764109271 .4041268915 .48123297000000000000000000 0
$\begin{array}{lllllllllllllllllllllllllllll}2011 & 1 & 6 & 1 & 0 & 1 & 40 & 40 & 15 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
3.609121406051 .1037483701 .07692460511 .873656741 .076924605 8.77733292315 .213215841 .0769246050005 .040053515000000 1.1520973870000000000000003 .609121406051 .103748370 $1.07692460511 .873656741 .076924605 \quad 8.77733292315 .213215841 .076924605$ 0005.0400535150000001 .15209738700000

| $\begin{array}{lllllllll}2011 & 1 & 1 & 0 & 1 & 42 & 42 & 11\end{array}$ | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | 0015.5676403211 .5080269615 .567640321 .4119639190015 .56764032

2.08625050218 .5341973616 .65005916000000001 .69809067900
1.4084904530000000000000015 .5676403211 .50802696 15.567640321 .4119639190015 .567640322 .08625050218 .53419736 16.65005916000000001 .698090679001 .408490453
$20111 \begin{array}{llllllllllllllllll} & 6 & 1 & 0 & 4 & 44 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 0000001.128091623023 .27256913023 .272569130023 .2725691300 025.07732101000003 .976879963000000000000000000 1.128091623023 .27256913023 .272569130023 .27256913000
25.07732101000003 .976879963
$20111 \begin{array}{llllllllllllllllll} & 6 & 1 & 0 & 46 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 000000000091.684353180000000000008 .31564681500 0000000000000000000091.684353180000000000 008.315646815
 0000000000000000000000010000000000000 000000000000000000000000100
$20111 \begin{array}{lllllllllllllllll}1 & 1 & 0 & 1 & 8 & 8 & 0 & 100 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 0000000000000000000000000001000000000000 00000000000000000000000000
$20121 \begin{array}{lllllllllllllllll}12 & 6 & 1 & 0 & 1 & 10 & 10 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 0000000000000000000000000010000000000 00000000000000000000000000
$20121 \begin{array}{lllllllllllllllll}12 & 6 & 1 & 0 & 1 & 12 & 12 & 0 & 0 & 100 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 00000000000000000000000000010000000000 00000000000000000000000000
$\begin{array}{lllllllllll}2012 & 1 & 6 & 1 & 0 & 1 & 14 & 14 & 5.5 & 0 & 72.5767786 \\ 27.4232214\end{array}$ 0000000000000000000000000000000000 72.576778627 .42322140000000000000000000000000 00000000
$\begin{array}{llllllllll}2012 & 1 & 6 & 1 & 0 & 1 & 16 & 16 & 19.5 & 0 \\ 0 & 80.38310371\end{array}$
9.58076240410 .036133890000000000000000000000000 00000000080.383103719 .58076240410 .03613389000000000 0000000000000000000000
$\begin{array}{lllllllllll}2012 & 1 & 6 & 1 & 0 & 1 & 18 & 18 & 59.5 & 0 & 0 \\ 91.80494985\end{array}$
8.1950501530000000000000000000000000000000 000091.804949858 .19505015300000000000000000000 000000000000
$\begin{array}{lllllllllll}2012 & 1 & 6 & 1 & 0 & 1 & 20 & 20 & 32.5 & 0 & 0\end{array} 46.01998998$
42.4588479511 .52116206000000000000000000000000 00000000046.0199899842 .4588479511 .52116206000000000 0000000000000000000000
$\begin{array}{lllllllllll}2012 & 1 & 6 & 1 & 0 & 1 & 22 & 22 & 25 & 0 & 0 \\ 0 & 20.13730659\end{array}$
29.23455250 .628141410000000000000000000000000 0000000020.1373065929 .23455250 .6281414100000000000 0000000000000000000
$20121 \begin{array}{llllllllll}2 & 6 & 1 & 0 & 1 & 24 & 24 & 53 & 0 & 0 \\ 1.582785415\end{array}$
65.5841079332 .694809170 .138297480000000000000000000 000000000000001.58278541565 .5841079332 .69480917 0.1382974800000000000000000000000000000 $\begin{array}{llllllllllll}2012 & 1 & 6 & 1 & 0 & 1 & 26 & 26 & 42 & 0 & 0 & 0 \\ 0.894620427\end{array}$ 64.289588829 .951538742 24.3727198 0.4915322050000000000000 000 00000000000000000000.89462042764 .28958882
9.95153874224 .37271980 .491532205000000000000000000 0000000000
$\begin{array}{llllllllllll}2012 & 1 & 6 & 1 & 0 & 1 & 28 & 28 & 26 & 0 & 0 & 0 \\ 0 & 72.48399703\end{array}$
12.6047744314 .91122853000000000000000000000000 00000000072.4839970312 .6047744314 .91122853000000000 00000000000000000000

2012	1	6	1	0	1	30	30	27	0	0	0	0

31.3732242960 .763498840 .612863966000000000000000000
000000000000007.25041290731 .3732242960 .76349884 0.61286396600000000000000000000000000000 $\begin{array}{llllllllllllll}2012 & 1 & 6 & 1 & 0 & 1 & 32 & 32 & 19 & 0 & 0 & 0 & 0 & 3.271919583\end{array}$ 20.769499144 .18871202014 .3997209317 .3701483600000000000 00000000000000000003.27191958320 .7694991 44.18871202014 .3997209317 .3701483600000000000000000 00000000
$\begin{array}{llllllllllllllll}2012 & 1 & 6 & 1 & 0 & 1 & 34 & 34 & 17 & 0 & 0 & 0 & 0 & 0 & 0 & 10.95901742\end{array}$ 33.298715535 .6108419316 .4674764228 .66979391004 .9941547990000 000000000000000000000000010.9590174233 .29871553 5.6108419316 .4674764228 .66979391004 .9941547990000000000 000000000000
$\begin{array}{llllllllllllllllllll}2012 & 1 & 6 & 1 & 0 & 1 & 36 & 36 & 12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 18.6020205\end{array}$ 1.53652670944 .87862751 .67953428318 .60202051 .26614583113 .435124680 0000000000000000000000000000018.6020205 1.53652670944 .87862751 .67953428318 .60202051 .26614583113 .435124680 000000000000000000000 $\begin{array}{llllllllllllllllllll}2012 & 1 & 6 & 1 & 0 & 1 & 38 & 38 & 14 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$ 45.683081224 .666587491 .0523216420 .019101635 .5718859641 .353444479
 45.683081224 .666587491 .0523216420 .019101635 .5718859641 .353444479 1.65357759700000000000000000
 0005.78340481316 .557179185 .7834048139 .21595315841 .604560980 14.2859344103 .337014304000000003 .4325483450000000000 0000000005.78340481316 .557179185 .7834048139 .215953158 41.60456098014 .2859344103 .337014304000000003 .43254834500 0
 00000000044.889426270016 .389463190019 .3605552700000 19.36055527000000000000000000000000044 .889426270 016.389463190019 .360555270000019 .3605552700
$\begin{array}{llllllllllllllllllll}2012 & 1 & 6 & 1 & 0 & 1 & 44 & 44 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$ 00000000000000020.47847192000000000000079 .5215280800 00000000000000000000000020.478471920000000000 0079.52152808
$2012 \begin{array}{llllllllllllllllllll}1 & 6 & 1 & 0 & 1 & 46 & 46 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 000000000000000000010.3448909500089 .6551090500 0000000000000000000000000000000010.344890950 0089.65510905
$\begin{array}{lllllllllllllllllllll}2012 & 1 & 6 & 1 & 0 & 1 & 48 & 48 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
 000000000000000000000000100
$201210610 \quad 0 \quad 1 \quad 8 \quad 8 \quad 0.5 \quad 0 \quad 100 \quad 0 \quad 0$
 000000000000000000000000000
\#NWCBO males
\#year Season Fleet gender partition ageErr LbinLo LbinHi nSamps M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 M29 M30 M31 M32 M33 M34 M35 M0.1 M1.1 M2.1 M3.1 M4.1 M5.1 M6.1 M7.1 M8.1 M9.1 M10.1 M11.1 M12.1 M13.1 M14.1 M15.1 M16.1 M17.1 M18.1 M19.1 M20.1 M21.1 M22.1 M23.1 M24.1 M25.1 M26.1 M27.1 M28.1 M29.1 M30.1 M31.1 M32.1 M33.1 M34.1 M35.1

 00000000000000000000000000000
$\begin{array}{llllllllll}2003 & 1 & 6 & 2 & 0 & 2 & 16 & 16 & 7.5 & 0\end{array}$
 00000000023.3052944152 .4563511724 .23835442000000000 00000000000000000000000 $\begin{array}{llllllllll}2003 & 1 & 6 & 2 & 0 & 2 & 18 & 18 & 19 & 0\end{array}$
 0000000007.22867792252 .3788642840 .39245779000000000 00000000000000000000000

2003	1	6	2	0	2	20	20	20	0	17.44851482

 000017.4485148282 .551485180000000000000000000000 000000000000
$\begin{array}{lllllllllll}2003 & 1 & 6 & 2 & 0 & 2 & 22 & 22 & 62.5 & 0 & 0 \\ 1.572675304\end{array}$
81.3182954516 .623998970 .4850302690000000000000000000 000000000000001.57267530481 .3182954516 .62399897
 $\begin{array}{llllllllllll}2003 & 1 & 6 & 2 & 0 & 2 & 24 & 24 & 68 & 0 & 0 & 71.9738087\end{array}$
22.646943464 .60729609200 .771951746000000000000000000 0000000000000071.973808722 .646943464 .6072960920

 55.0483576923 .313320862 .8394408941 .460871108000000000000 000000000000000000017.3380094555 .04835769 23.313320862 .8394408941 .460871108000000000000000000 0000000000
$\begin{array}{llllllllllll}2003 & 1 & 6 & 2 & 0 & 28 & 28 & 68 & 0 & 0 & 0 & 6.586272845\end{array}$
64.5020957313 .525274523 .9488951796 .2072352772 .6151132210
2.61511322100000000000000000000000000000000000
6.58627284564 .5020957313 .525274523 .9488951796 .2072352772 .615113221 02.61511322100000000000000000000000000 $\begin{array}{lllllllllllll}2003 & 1 & 6 & 2 & 0 & 2 & 30 & 30 & 24 & 0 & 0 & 19.13551813\end{array}$
 0000000000000019.1355181315 .2968354964 .18901121
1.3786351690000000000000000000000000000000 $\begin{array}{lllllllllllll}2003 & 1 & 6 & 2 & 0 & 2 & 32 & 32 & 0 & 0 & 0 & 1.295399924\end{array}$ 8.0503319731 .36276547581 .272723491 .9639534862 .7375675880 .491718991
 0001.2953999248 .0503319731 .36276547581 .272723491 .963953486 2.7375675880 .4917189911 .3347790510000001 .490760022000000 00000000000
$\begin{array}{llllllllllllll}2003 & 1 & 6 & 2 & 0 & 2 & 34 & 34 & 33 & 0 & 0 & 0 & 0 & 0\end{array}$
52.6390394215 .3509639618 .156589770 .39861741900 .986042297
8.7099088790 .4575391091 .078654005000 .1579488371 .078654005
0.9860422970000000000000000000000052 .63903942
15.3509639618 .156589770 .39861741900 .9860422978 .709908879
0.4575391091 .078654005000 .1579488371 .0786540050 .9860422970000 000000000000

12.0382779926 .1826252821 .341147774 .815594840004 .526276228000 09.754575560010 .6707511600010 .67075116000000000000 000012.0382779926 .1826252821 .341147774 .81559484000 4.52627622800009 .754575560010 .6707511600010 .67075116000 000000
 0.8303490030002 .0899783360000000000045 .3717096100 6.33625345000045 .37170961000000000000 .830349003000
2.0899783360000000000045 .37170961006 .336253450000 45.37170961
$20031 \quad 6 \quad 2 \quad 0 \quad 2 \quad 40 \quad 40 \quad 3 \quad 0 \quad 0 \quad 00000000$ 0000000011.0195339000000000000000088 .980466100 000000000000000011.019533900000000000000 0088.9804661
$20031 \quad 6 \quad 2 \quad 0 \quad 2 \quad 46 \quad 46 \quad 1 \quad 0 \quad 0$ 0000000000000000000000000010000000000000 0000000000000000000000000100
$20031 \quad 6 \quad 2 \quad 0 \quad 2 \quad 48 \quad 48 \quad 1 \quad 0 \quad 0000000000$
 0000000000000000000000000100
 00000000000000000000000000001000000000 000000000000000000000000000
 000000000000000000000000000010000000000 000000000000000000000000000
 0000000000000000000000000000010000000000 000000000000000000000000000
$\begin{array}{llllllllll}2004 & 1 & 6 & 2 & 0 & 2 & 16 & 16 & 7.5 & 0\end{array} 42.65636352$
57.34363648000000000000000000000000000000 000042.6563635257 .3436364800000000000000000000 0000000000000
$\begin{array}{lllllllllll}2004 & 1 & 6 & 2 & 0 & 2 & 18 & 18 & 30 & 0 & 0 \\ 90.16166766\end{array}$
9.838332339 0000000000000000000000000000000 000090.161667669 .83833233900000000000000000000 000000000000
$\begin{array}{llllllllll}2004 & 1 & 6 & 2 & 0 & 2 & 20 & 20 & 15 & 0 \\ 0 & 60.2818069\end{array}$
37.456314782 .261878315000000000000000000000000 00000000060.281806937 .456314782 .261878315000000000 0000000000000000000000
$\begin{array}{lllllllllll}2004 & 1 & 6 & 2 & 0 & 2 & 22 & 22 & 17 & 0 & 0\end{array} 9.034714914$
78.7256231812 .2396619000000000000000000000000 0000000009.03471491478 .72562318 12.2396619 000000000 0000000000000000000000
$\begin{array}{lllllllllll}2004 & 1 & 6 & 2 & 0 & 24 & 24 & 39 & 0 & 0 & 0\end{array} 14.67793026$
60.9487694223 .614878970 .3912853330 .367136015000000000000 000000000000000000014.6779302660 .94876942
23.614878970 .3912853330 .367136015000000000000000000 0000000000
$20041 \begin{array}{lllllllll}2 & 6 & 2 & 2 & 26 & 26 & 0 & 0 & 0.516137689\end{array}$
68.8906865430 .59317577000000000000000000000000 0000000000.51613768968 .8906865430 .59317577000000000 000000000000000000000
$20041628 \quad 2 \quad 28 \quad 28 \quad 56 \quad 0 \quad 0 \quad 0 \quad 70.08748415$ 10.3376060519 .5749098000000000000000000000000 00000000070.08748415 10.33760605 19.5749098 0000000000 00000000000000000000
$20041 \begin{array}{lllllllllll} & 6 & 2 & 0 & 2 & 30 & 30 & 25 & 0 & 0 & 0 \\ 66.56381603\end{array}$
33.4361839700000000000000000000000000000000 000066.5638160333 .4361839700000000000000000000 0000000000
$2004130 \quad 2 \quad 0 \quad 2 \quad 32 \quad 32 \quad 13 \quad 0 \quad 0 \quad 0 \quad 0 \quad 5.321229419$
53.4131451724 .2857897912 .817463464 .162372156000000000000 00000000000000000005.32122941953 .41314517
24.2857897912 .817463464 .162372156000000000000000000 000000000
$\begin{array}{llllllllll}2004 & 1 & 6 & 2 & 0 & 24 & 34 & 17 & 0 & 0\end{array} 00$
3.75721748219 .8603080814 .93886022023 .18044785009 .5657915940
9.5657915949 .5657915949 .565791594000000000000000000 0000003.75721748219 .8603080814 .93886022023 .1804478500 9.56579159409 .5657915949 .5657915949 .56579159400000000000 0000000

6.458314824006 .45831482400016 .632381797 .4356047928 .7648558330 007.03990486807 .435604792000019 .887509140000000
19.8875091400000006 .458314824006 .45831482400016 .63238179
7.4356047928 .7648558330007 .03990486807 .4356047920000
19.88750914000000019 .88750914
$200416 \quad 2 \quad 0 \quad 2 \quad 38 \quad 38 \quad 9 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$
5.564546174000000016 .9398779931 .107087976 .186257160000
5.6815535790014 .16720998006 .1862571614 .1672099800000000 000005.564546174000000016 .9398779931 .107087976 .18625716 00005.6815535790014 .16720998006 .1862571614 .167209980000 0
$20041620 \quad 2 \quad 40 \quad 40 \quad 2 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 000$ 000000000000000072.78639320000000027 .213606800 00000000000000000000000072.7863932000000 0027.2136068
$200416 \quad 2 \quad 0 \quad 2 \quad 42 \quad 42 \quad 1 \quad 0 \quad 0$ 00000000000000000000000001000000000000 0000000000000000000000000100

72.2653299500000000000000000000000000000000 000027.7346700572 .2653299500000000000000000000 00000000000000
$20051 \quad 6 \quad 2 \quad 0 \quad 1 \quad 10 \quad 10 \quad 3.5 \quad 0 \quad 10000000000$ 000000000000000000000000000010000000000 000000000000000000000000000
$\begin{array}{lllllllll}2005 & 1 & 6 & 2 & 0 & 1 & 12 & 12 & 33\end{array} \quad 0.979219457$
99.020780540000000000000000000000000000000 00000.97921945799 .0207805400000000000000000000 00000000000000
$\begin{array}{llllllllll}2005 & 1 & 6 & 2 & 0 & 1 & 14 & 14 & 41 & 0 \\ 82.90648077\end{array}$
17. 0935192300000000000000000000000000000000 000082.90648077 17.09351923 000000000000000000000 0000000000000
$\begin{array}{lllllllll}2005 & 1 & 6 & 2 & 0 & 1 & 16 & 16 & 30.5\end{array} \quad 0 \quad 0.913149351$
99.086850650000000000000000000000000000000 00000.91314935199 .0868506500000000000000000000 0000000000000
$\begin{array}{llllllllll}2005 & 1 & 6 & 2 & 0 & 18 & 18 & 53 & 0 & 0 \\ 98.99161949\end{array}$
1.0083805090000000000000000000000000000000 000098.991619491 .00838050900000000000000000000 000000000000
$\begin{array}{lllllllllll}2005 & 1 & 6 & 2 & 0 & 1 & 20 & 20 & 23 & 0 & 0\end{array} 40.13800875$
57.978755061 .883236182000000000000000000000000 00000000040.1380087557 .978755061 .883236182000000000 0000000000000000000000
$\begin{array}{lllllllllllll}2005 & 1 & 6 & 2 & 0 & 1 & 22 & 22 & 28 & 0 & 0 & 91.99321148\end{array}$
8.006788522000000000000000000000000000000
000091.99321148 8.006788522 00000000000000000000 00000000000
$\begin{array}{llllllllllll}2005 & 1 & 6 & 2 & 0 & 1 & 24 & 24 & 13 & 0 & 0 & 3.596067838\end{array}$ 96.40393216000000000000000000000000000000 00003.59606783896 .4039321600000000000000000000 00000000000
$\begin{array}{llllllllllll}2005 & 1 & 6 & 2 & 0 & 1 & 26 & 26 & 0 & 0 & 21.0516056\end{array}$
76.545394892 .4029995010000000000000000000000000 00000000021.051605676 .545394892 .402999501000000000 00000000000000000000

| 2005 | 1 | 6 | 2 | 0 | 1 | 28 | 28 | 55 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 84.838516427 .8165130450000000000000000000000000 0000000007.34497053284 .838516427 .816513045000000000 00000000000000000000

$200513020 \quad 1 \quad 30 \quad 30 \quad 44 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0.173129574$ 26.156890172 .86585080 .804129530000000000000000000 00000000000000.17312957426 .156890172 .86585080 .80412953 0000000000000000000000000000 $200513060 \quad 1 \quad 32 \quad 32 \quad 26 \quad 0 \quad 0 \quad 0 \quad 0 \quad 26.77647179$ 14.4132501955 .7130490903 .09722892500000000000000000 0000000000000026.7764717914 .4132501955 .713049090 3.09722892500000000000000000000000000 $\begin{array}{llllllllll}2005 & 1 & 6 & 2 & 1 & 34 & 34 & 0 & 0 & 0 \\ 0 & 0\end{array}$
9.2814250596 .82337215715 .203723858 .15029755938 .1500288817 .30578057 2.542685958002 .5426859580000000000000000000000 00009.2814250596 .82337215715 .203723858 .15029755938 .15002888
17.305780572 .542685958002 .5426859580000000000000000 0000
$200516 \quad 2 \quad 0 \quad 1 \quad 36 \quad 36 \quad 23 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$
0.7967202881 .078184682 .1368772092 .28755554746 .96088194000 .43277151 0.432771510 .8008930951 .5109561900043 .562388030000000000 0000000000000.7967202881 .078184682 .1368772092 .287555547 46.9608819400 .432771510 .432771510 .8008930951 .51095619000 43.5623880300000000000000
$20051 \quad 6 \quad 2 \quad 0 \quad 1 \quad 38 \quad 38 \quad 10 \quad 0 \quad 0$ 00027.7200204100013 .3182050100005 .627385795 .62298802
5.62298802028 .732386930000006 .6591025036 .69692332000000 0000000027.7200204100013 .3182050100005 .62738579 5.622988025 .62298802028 .732386930000006 .6591025036 .69692332 $20051 \quad 6 \quad 2 \quad 0 \quad 1 \quad 40 \quad 40 \quad 6 \quad 0 \quad 0$ 00000021.954906930021 .954906936 .59355064221 .9549069300 5.58682163800000000021 .95490693000000000000000 0021.954906930021 .954906936 .59355064221 .95490693005 .586821638 00000000021.95490693
$20051 \quad 6 \quad 2 \quad 0 \quad 1 \quad 6 \quad 6 \quad 1 \quad 10000000000$ 000000000000000000000000000001000000000 0000000000000000000000000000
$20051 \quad 6 \quad 2 \quad 0 \quad 1 \quad 8 \quad 8 \quad 0.5 \quad 10000000000$ 0000000000000000000000000001000000000 0000000000000000000000000000 $\begin{array}{lllllllll}2006 & 1 & 6 & 2 & 0 & 1 & 10 & 10 & 4\end{array} \quad 22.05954124$
77.9404587600000000000000000000000000000000 000022.0595412477 .9404587600000000000000000000 00000000000000
 00000000000000000000000000001000000000 000000000000000000000000000
$\begin{array}{lllllllllll}2006 & 1 & 6 & 2 & 0 & 1 & 14 & 14 & 30 & 0 & 89.35048811\end{array}$
 000089.3504881110 .649511890000000000000000000000 0000000000000
$\begin{array}{lllllllllll}2006 & 1 & 6 & 2 & 0 & 1 & 16 & 16 & 19 & 0 & 0 \\ 90.25241971\end{array}$
 000090.252419719 .7475802900000000000000000000000 000000000000
$\begin{array}{lllllllllll}2006 & 1 & 6 & 2 & 0 & 1 & 18 & 18 & 72.5 & 0 & 0 \\ 88.66509931\end{array}$

 000000000000
$\begin{array}{lllllllllll}2006 & 1 & 6 & 2 & 0 & 1 & 20 & 20 & 38 & 0 & 0 \\ 16.96350137\end{array}$

 000000000000
$\begin{array}{lllllllllll}2006 & 1 & 6 & 2 & 0 & 1 & 22 & 22 & 51 & 0 & 0\end{array} 4.3504834$
 000000004.350483485 .188746710 .4607699000000000000 0000000000000000000
$\begin{array}{lllllllllllll}2006 & 1 & 6 & 2 & 0 & 1 & 24 & 24 & 22 & 0 & 0 & 16.0850607\end{array}$

 0000000000
$\begin{array}{llllllllllllllllllll}2006 & 1 & 6 & 2 & 0 & 1 & 26 & 26 & 24 & 0 & 0 & 35.77465086\end{array}$
 00000000035.7746508648 .3735595915 .85178955000000000 00000000000000000000 $\begin{array}{lllllllllllll}2006 & 1 & 6 & 2 & 0 & 1 & 28 & 28 & 30 & 0 & 0 & 0 & 2.457463812\end{array}$ 47.9681221345 .592668393 .9817456640000000000000000000 000000000000002.45746381247 .9681221345 .59266839
 $\begin{array}{lllllllllllll}2006 & 1 & 6 & 2 & 0 & 1 & 30 & 30 & 44 & 0 & 0 & 0 & 0 \\ 7\end{array} .901932446$
 0000000007.90193244688 .618444673 .479622884000000000 0000000000000000000 $\begin{array}{llllllllllllllllllllllll}2006 & 1 & 6 & 2 & 0 & 1 & 32 & 0 & 0 & 0 & 0 & 0\end{array}$ 36.1803878152 .016489319 .3700438840 .9156723941 .517406606000000 000000000000000000000000000036.18038781 52.016489319 .3700438840 .9156723941 .517406606000000000000 0000000000000
$\begin{array}{lllllllllllllll}2006 & 1 & 6 & 2 & 0 & 1 & 34 & 34 & 47 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$
4.69123581764 .6765938320 .342694673 .7774005584 .1819885520 .939871187

4.69123581764 .6765938320 .342694673 .7774005584 .1819885520 .939871187 1.39021538900000000000000000000000
 12.0532563546 .0116930827 .639253791 .660162921 .7942600074 .413592755
 $00000000012.0532563546 .01169308 \quad 27.639253791 .66016292$ 1.7942600074 .4135927550001 .6601629202 .97335816401 .7942600070 00000000000
$\begin{array}{llllllllllllllllllll}2006 & 1 & 6 & 2 & 0 & 1 & 38 & 38 & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 002.92863954941 .8994899900006 .7367417170000041 .899489990 6.53563876100000000000000000000002 .928639549 41.8994899900006 .7367417170000041 .8994899906 .53563876100 000000
 00000000000000000000000100000000000000 0000000000000000000000010000
$20061 \quad 6 \quad 2 \quad 0 \quad 1 \quad 6 \quad 6 \quad 0.5 \quad 10000000000$ 0000000000000000000000000000010000000000 00000000000000000000000000000
$20061 \quad 6 \quad 2 \quad 0 \quad 1 \quad 8 \quad 8 \quad 0.5 \quad 10000000000$ 0000000000000000000000000000010000000000 0000000000000000000000000000
 0000000000000000000000000000010000000000 000000000000000000000000000 $\begin{array}{llllllllll}2007 & 1 & 6 & 2 & 0 & 1 & 14 & 14 & 5 & 0 \\ 51.17590242\end{array}$ 48.82409758000000000000000000000000000000000 000051.1759024248 .8240975800000000000000000000 0000000000000
$20071 \begin{array}{llllllllllllllll}16 & 2 & 0 & 1 & 16 & 16 & 48 & 0 & 100 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 00000000000000000000000000000100000000 000000000000000000000000000
$\begin{array}{lllllllllll}2007 & 1 & 6 & 2 & 0 & 18 & 18 & 18 & 55 & 0 & 0 \\ 88.10331199\end{array}$
10.6930282201 .2036597900000000000000000000000 00000000088.1033119910 .6930282201 .2036597900000000 0000000000000000000000
$\begin{array}{lllllllllll}2007 & 1 & 6 & 2 & 0 & 1 & 20 & 20 & 62.5 & 0 & 0 \\ 9.711752128\end{array}$
82.852959086 .6440178420 .791270953000000000000000000 000000000000009.71175212882 .852959086 .644017842
0.791270953000000000000000000000000000000 $\begin{array}{lllllllllll}2007 & 1 & 6 & 2 & 0 & 1 & 22 & 22 & 54 & 0 & 0\end{array} 047.07948179$ 48.051520024 .86899819000000000000000000000000 00000000047.0794817948 .051520024 .86899819000000000 000000000000000000000
$\begin{array}{llllllllllll}2007 & 6 & 2 & 0 & 1 & 24 & 24 & 40 & 0 & 0 & 16.04876369\end{array}$ 53.5843199830 .36691632000000000000000000000000 00000000016.0487636953 .5843199830 .36691632000000000 000000000000000000000
$\begin{array}{llllllllllll}2007 & 1 & 6 & 2 & 0 & 1 & 26 & 26 & 34 & 0 & 0 & 1.303266908\end{array} 0$ 32.8597169158 .10362197 .733394291000000000000000000 00000000000001.303266908032 .8597169158 .1036219 7.73339429100000000000000000000000000000 $200713028 \quad 0 \quad 1 \quad 28 \quad 27 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0.850741633$ 20.42307741 .06873539 .85538813227 .802057940000000000000 0000000000000000000.85074163320 .42307741 .0687353 9.85538813227 .80205794000000000000000000000000 000
$20071 \begin{array}{llllllllllll}2 & 6 & 2 & 1 & 30 & 30 & 40 & 0 & 0 & 0 & 0 & 5.463872337\end{array}$
28.4860513435 .2670247530 .78305157000000000000000000 000000000000005.46387233728 .4860513435 .26702475 30.78305157000000000000000000000000000 $\begin{array}{lllllllllllllllll}2007 & 1 & 6 & 2 & 0 & 1 & 32 & 0 & 0\end{array}$ 4.25233219569 .8019730812 .23984916 .1987424282 .10324742400 5.4038557670000000000000000000000000000 4.25233219569 .8019730812 .23984916 .1987424282 .10324742400 5.403855767 0000000000000000000000 $\begin{array}{lllllllllllll}2007 & 1 & 6 & 2 & 0 & 1 & 34 & 34 & 46 & 0 & 0\end{array}$ $5.14105011412 .717932748 .36610888 \quad 2.251320635 \quad 3.5941036947 .729951997$ 16.605428280003 .594103694000000000000000000000 00005.14105011412 .717932748 .366108882 .2513206353 .594103694
7.72995199716 .605428280003 .594103694000000000000000 0000

1.09732619112 .755551659 .0712298476 .33044018410 .9558618517 .78940692
2.29699465516 .5869321 .2045329969 .2508433416 .33044018400
6.33044018400000000000000000000001 .097326191
12.755551659 .071229847 6.330440184 10.95586185 17.78940692 2.296994655
16.5869321 .2045329969 .2508433416 .330440184006 .33044018400000

0000000000
$\begin{array}{lllllllllllllllll}2007 & 1 & 6 & 2 & 0 & 1 & 38 & 38 & 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
27.424647930027 .424647931 .5218766021 .92617190201 .266232501
5.19559920500014 .96012491010 .140349510010 .14034951000000
00000000000027.424647930027 .424647931 .521876602
1.92617190201 .2662325015 .19559920500014 .96012491010 .140349510 010.14034951000000000
 00000004.7408853610047 .868653000039 .71676358000000 007.6736980600000000000000000004 .74088536100 47.868653000039 .71676358000000007 .67369806
$20071 \begin{array}{llllllllllllllllll}0 & 6 & 2 & 1 & 42 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
 0000000000000000000001000000

 00000000000000000000000000000
$20081 \begin{array}{lllllllll}2 & 2 & 0 & 1 & 10 & 10 & 2 & 19.89202391\end{array}$
 000019.8920239180 .107976090000000000000000000000 00000000000000
$\begin{array}{llllllllll}2008 & 1 & 6 & 2 & 0 & 1 & 12 & 12 & 4 & 0\end{array} 46.73082032$

 0000000000000
$\begin{array}{llllllllll}2008 & 1 & 6 & 2 & 0 & 1 & 14 & 14 & 26 & 0\end{array}$

 0000000000000

 00000000000000000000000000000
$\begin{array}{llllllllllll}2008 & 1 & 6 & 2 & 0 & 1 & 18 & 18 & 25.5 & 0 & 49.1804975\end{array}$

 00000000000
$\begin{array}{lllllllllll}2008 & 1 & 6 & 2 & 0 & 1 & 20 & 20 & 54 & 0 & 0\end{array} 4.839660879$
 0000000004.83966087987 .657502417 .5028367090000000000 0000000000000000000000
$\begin{array}{llllllllllll}2008 & 1 & 6 & 2 & 0 & 1 & 22 & 22 & 0 & 0 & 44.12696796\end{array}$
 000044.1269679655 .873032040000000000000000000000 00000000000
$\begin{array}{lllllllllllll}2008 & 1 & 6 & 2 & 0 & 1 & 24 & 24 & 56 & 0 & 0 & 0.495623486\end{array}$
 000000000000000.49562348671 .6688865427 .339866490

$\begin{array}{llllllllllllllllllllll}2008 & 1 & 6 & 2 & 0 & 1 & 26 & 26 & 26 & 0 & 0 & 34.63846204\end{array}$
 00000000034.6384620465 .086876350 .274661602000000000 00000000000000000000
$\begin{array}{lllllllllllllllllllll}2008 & 1 & 6 & 2 & 0 & 1 & 28 & 0 & 0 & 0 & 0 & 43.25796346\end{array}$
9.68332247818 .7773332128 .281380850000000000000000000 0000000000000043.257963469 .68332247818 .77733321
28.28138085000000000000000000000000000000
$\left.\begin{array}{lllllllllllll}2008 & 1 & 6 & 2 & 0 & 1 & 30 & 30 & 20 & 0 & 0 & 0 & 0\end{array}\right] .47481841$ 15.8943249628 .038383438 .32423492615 .9498844700001 .31835380200 000000000000000000000000030.4748184115 .89432496 28.038383438 .32423492615 .9498844700001 .31835380200000000 0000000000000
$\begin{array}{llllllllllllllllllllllll}2008 & 1 & 6 & 2 & 0 & 1 & 32 & 32 & 34 & 0 & 0 & 0\end{array}$
11.2737976336 .6146678631 .2034414818 .9663087801 .94178425800000 000000000000000000000000011.27379763
36.6146678631 .2034414818 .9663087801 .94178425800000000000 0000000000000
$\begin{array}{lllllllllllllllllllllll}2008 & 1 & 6 & 2 & 0 & 1 & 34 & 34 & 46 & 0 & 0 & 0 & 0 & 0\end{array}$ 10.1363856415 .695310529 .433245079 .418154381020 .90615301
8.5877395290002 .80188491201 .4632271290001 .55789983200000 0000000000000010.1363856415 .695310529 .43324507 9.418154381020 .906153018 .5877395290002 .80188491201 .4632271290 001.557899832000000000000
$\begin{array}{lllllllllllllllllllllll}2008 & 1 & 6 & 2 & 0 & 1 & 36 & 36 & 12 & 0 & 0 & 0 & 0 & 0\end{array}$ 2.612499042016 .738520267 .92803961617 .2964012813 .99577933
13.437201820013 .995779330000013 .9957793300000000000 0000000002.612499042016 .738520267 .92803961617 .29640128 13.9957793313 .437201820013 .995779330000013 .9957793300000 0000000
$\begin{array}{llllllllllllllllllll}2008 & 1 & 6 & 2 & 0 & 1 & 38 & 38 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 0006.594367878011 .6413794742 .907708970005 .9542223540
11.641379470011 .64137947003 .28009408106 .3394683030000000 000000000006.594367878011 .6413794742 .90770897000 5.954222354011 .641379470011 .64137947003 .28009408106 .339468303 0000
$20081 \begin{array}{lllllllllllllllllll}0 & 2 & 2 & 1 & 40 & 40 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 0000000035.2567820100000000000000000064 .743217990 000000000000000000035.25678201000000000000000 00064.74321799

 00000000000000000001000000000

 0000000000000000000000000000000
$2009136020 \quad 1 \quad 10 \quad 10 \quad 2 \quad 0 \quad 0 \quad 100 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$
 000000000000000000000000000 $200910620 \quad 0 \quad 1 \quad 12 \quad 12 \quad 51 \quad 0 \quad 0 \quad 100 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$
 0000000000000000000000000000
$\begin{array}{llllllllll}2009 & 1 & 6 & 2 & 0 & 1 & 14 & 14 & 43 & 0 \\ 97.77842423\end{array}$
 000097.778424232 .2215757680000000000000000000000 0000000000000
$\begin{array}{llllllllll}2009 & 1 & 6 & 2 & 0 & 1 & 16 & 16 & 21.5 & 0 \\ 53.37571493\end{array}$
 000053.3757149346 .6242850700000000000000000000000 0000000000000
$\begin{array}{lllllllllll}2009 & 1 & 6 & 2 & 0 & 1 & 18 & 18 & 59 & 0 & 0 \\ 92.91662626\end{array}$
 00000000092.916626266 .4972013880 .586172355000000000 0000000000000000000000
$\begin{array}{lllllllllll}2009 & 1 & 6 & 2 & 0 & 1 & 20 & 20 & 74 & 0 & 0 \\ 35.74630706\end{array}$
 00000000035.7463070662 .110277922 .1434150170000000000 00000000000000000000000
$\begin{array}{lllllllllll}2009 & 1 & 6 & 2 & 0 & 1 & 22 & 22 & 63 & 0 & 1.821795531\end{array}$
 000000000000001.82179553167 .3527969429 .66695116
 $\begin{array}{llllllllllll}2009 & 1 & 6 & 2 & 24 & 24 & 51.5 & 0 & 0 & 2.491547043\end{array}$
 0000000002.49154704391 .014456076 .493996882000000000 000000000000000000000
$\begin{array}{llllllllllllllllll}2009 & 1 & 6 & 2 & 0 & 1 & 26 & 26 & 49 & 0 & 0 & 0 & 38.80286057\end{array}$
 00000000038.8028605757 .352440143 .844699293000000000 00000000000000000000
$\begin{array}{lllllllllllll}2009 & 1 & 6 & 2 & 0 & 1 & 28 & 28 & 37.5 & 0 & 0 & 0 & 2.159116875\end{array}$
 00000000000000000002.15911687558 .36202753
31.675399680 .9697982086 .833657703000000000000000000 000000000
$\begin{array}{llllllllllllllllll}2009 & 1 & 6 & 2 & 0 & 1 & 30 & 30 & 37 & 0 & 0 & 0 & 0 & 19.55634371\end{array}$ 59.2850728518 .104680442 .5499513410 .503951660000000000000 000000000000000000019.5563437159 .28507285 18.104680442 .5499513410 .50395166000000000000000000 00000000
$\begin{array}{llllllllllllllllllll}2009 & 1 & 6 & 2 & 0 & 1 & 32 & 32 & 36 & 0 & 0 & 0 & 0\end{array}$
1.11074489855 .1362729625 .8224954315 .905315061 .3024640850

1.11074489855 .1362729625 .8224954315 .905315061 .3024640850
0.72270756200000000000000000000000000
$\begin{array}{llllllllllllllllll}2009 & 1 & 6 & 2 & 0 & 1 & 34 & 34 & 40.5 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 2.34065983814 .4104499615 .5378679735 .54199928 .2606702703 .908352967 00000000000000000000000000000002.340659838 14.4104499615 .5378679735 .54199928 .2606702703 .908352967000000 0000000000000000
$\begin{array}{lllllllllllllllllll}2009 & 1 & 6 & 2 & 0 & 1 & 36 & 36 & 28 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
2.27008943811 .0376473743 .598653221 .2838986255 .8540818493 .604654088
16.175218218 .6072951894 .49885552300001 .355226326000000
1.7143801680000000000000002 .27008943811 .03764737
43.598653221 .2838986255 .8540818493 .60465408816 .175218218 .607295189 4.49885552300001 .3552263260000001 .7143801680000000 $\begin{array}{lllllllllllllllllll}2009 & 1 & 6 & 2 & 0 & 1 & 38 & 38 & 21 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 02.759465122014 .9897241517 .378524820003 .40937904513 .58513605 9.74170258800003 .70898002208 .097233529020 .7542070900 3.7089800221 .86666755600000000000002 .7594651220 14.9897241517 .378524820003 .40937904513 .585136059 .741702588000 03.70898002208 .097233529020 .75420709003 .7089800221 .8666675560
 00033.55733254000000020 .315264818 .4556886796 .444423433
 00033.55733254000000020 .315264818 .4556886796 .444423433 16.39133906 .3802628560008 .4556886790000
 00000000000000000000000018.97557132000081 .024428680 00000000000000000000000000000000018.97557132 00081.02442868
$\begin{array}{llllllllllllllllllll}2009 & 1 & 6 & 2 & 0 & 1 & 44 & 44 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
 00000000010000000000000000000 $\begin{array}{lllllllllllllllllllll}2010 & 1 & 6 & 2 & 1 & 10 & 10 & 0.5 & 0 & 100 & 0 & 0 & 0 & 0\end{array}$
 0000000000000000000000000000

 00000000000000000000000000000
$\begin{array}{llllllllll}2010 & 1 & 6 & 2 & 0 & 1 & 14 & 14 & 10 & 0 \\ 68.97077932\end{array}$

 0000000000000

| 2010 | 1 | 6 | 2 | 0 | 1 | 16 | 16 | 50 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 1.078323679

 0000000000000
$\begin{array}{lllllllllll}2010 & 1 & 6 & 2 & 0 & 1 & 18 & 18 & 94.5 & 0 & 0 \\ 94.31853957\end{array}$
 000094.318539575 .681460435000000000000000000000 000000000000

2010	1	6	2	0	1	20	20	66	0	0
70.69586421										

 00000000070.6958642126 .29767153 3.006464258 0000000000 0000000000000000000000 $\begin{array}{lllllllllll}2010 & 1 & 6 & 2 & 0 & 1 & 22 & 22 & 43 & 0 & 0\end{array}$
 000000000000007.45605993956 .3746699934 .0382688
 $\begin{array}{llllllllllll}2010 & 1 & 6 & 2 & 0 & 1 & 24 & 24 & 39 & 0 & 0 & 0 \\ 15.32435767\end{array}$
76.341973818 .33366851700000000000000000000000000000 00000000015.3243576776 .341973818 .3336685170000000000 000000000000000000000
$\begin{array}{lllllllllllll}2010 & 1 & 6 & 2 & 0 & 1 & 26 & 26 & 36 & 0 & 0 & 0 & 26.41504612\end{array}$
 0000000026.4150461267 .84850585 .73644808000000000000 000000000000000000
$\begin{array}{lllllllllllll}2010 & 1 & 6 & 2 & 0 & 1 & 28 & 28 & 35 & 0 & 0 & 0 & 0.65865499\end{array}$
 000000000000000.6586549979 .1137258812 .00557389 8.222045244000000000000000000000000000000000 $\left.\begin{array}{lllllllllllll}2010 & 1 & 6 & 2 & 0 & 1 & 30 & 30 & 27 & 0 & 0 & 0 & 0 \\ 20\end{array}\right] 74518838$
 00000000020.7451883860 .8288031518 .42600846000000000 0000000000000000000
$\begin{array}{lllllllllllllllllllll}2010 & 1 & 6 & 2 & 1 & 32 & 0 & 0 & 0 & 0 & 0\end{array}$
24.4841551358 .427009485 .0691695124 .9790167764 .6550959012 .385553199
0000000000000000000000000000000024.48415513
58.427009485 .0691695124 .9790167764 .6550959012 .385553199000000 000000000000000000
 6.66444240661 .4521644810 .3209993819 .37224507002 .1901486620000 0000000000000000000000000006.664442406
61.4521644810 .3209993819 .37224507002 .1901486620000000000 0000000000

3.61392554232 .6407869931 .549835064 .02155984912 .064090480
 00003.61392554232 .6407869931 .549835064 .02155984912 .064090480 4.02155984912 .088242220000000000000000000
 000020.0780489740 .5024521500000000000039 .41949888000 000000000000000000020.0780489740 .50245215000000 00000039.419498880000000
 0000000066.66747803000000000000000033 .33252197000000 0000000000000000066.667478030000000000000 33.332521970000
$\begin{array}{llllllllllllllllllll}2010 & 1 & 6 & 2 & 0 & 1 & 8 & 8 & 6 & 100 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
 0000000000000000000000000000000

 000000000000000000000000000
$\begin{array}{llllllllll}2011 & 1 & 6 & 2 & 0 & 1 & 14 & 14 & 14.5 & 0 \\ 32.01107688\end{array}$
 000032.0110768867 .988923120000000000000000000000 0000000000000
$\begin{array}{llllllllllll}2011 & 1 & 6 & 2 & 0 & 1 & 16 & 16 & 11 & 0 & 0 & 92.37489885\end{array}$
 000092.374898857 .6251011480000000000000000000000 000000000000

 0000000000000000000000000000
$\begin{array}{lllllllllll}2011 & 1 & 6 & 2 & 0 & 1 & 20 & 20 & 31 & 0 & 0\end{array} 23.85336313$
 000023.8533631376 .146636870000000000000000000000 000000000000
$\begin{array}{lllllllllllll}2011 & 1 & 6 & 2 & 0 & 1 & 22 & 22 & 78 & 0 & 0 & 96.96605398\end{array}$
 000096.966053983 .0339460210000000000000000000000 00000000000
$\begin{array}{lllllllllllll}2011 & 1 & 6 & 2 & 0 & 1 & 24 & 24 & 53 & 0 & 0 & 0 & 75.90147392\end{array}$
 00000000075.9014739216 .150239277 .9482868130000000000 000000000000000000000
$\begin{array}{lllllllllllll}2011 & 1 & 6 & 2 & 0 & 1 & 26 & 26 & 26 & 0 & 0 & 0 & 18.61888238\end{array}$
11.3076960965 .747281784 .3261397410000000000000000000 0000000000000018.6188823811 .3076960965 .74728178
 $\begin{array}{lllllllllllll}2011 & 1 & 6 & 2 & 0 & 1 & 28 & 28 & 28 & 0 & 0 & 17.12896585\end{array}$
 0000000000000017.1289658540 .284625941 .71972193 0.86668631500000000000000000000000000000
$\begin{array}{lllllllllllllllllllll}2011 & 1 & 6 & 2 & 0 & 1 & 30 & 30 & 36 & 0 & 0 & 0 & 0 & 3.407977293\end{array}$ 52.7369739134 .12326078 .7964996220 .935288475000000000000 00000000000000000003.40797729352 .73697391
34.12326078 .7964996220 .935288475000000000000000000 00000000
$\begin{array}{llllllllllllll}2011 & 1 & 6 & 2 & 0 & 1 & 32 & 32 & 41 & 0 & 0 & 0 & 0 & 0\end{array}$
10.1005832140 .9237646738 .270357438 .1779278232 .527366869000000 0000000000000000000000000000010.10058321
40.9237646738 .270357438 .1779278232 .527366869000000000000 0000000000000
$\begin{array}{lllllllllllllll}2011 & 1 & 6 & 2 & 0 & 1 & 34 & 34 & 34 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$
16.2129847428 .5204164519 .5374222423 .031932997 .0419825684 .349858822 0.92547741600000000000 .379924766000000000000000 000016.2129847428 .5204164519 .5374222423 .031932997 .041982568 4.3498588220 .92547741600000000000 .37992476600000000 000
$\begin{array}{lllllllllllllllll}2011 & 1 & 6 & 2 & 0 & 1 & 36 & 36 & 31 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
0.5384493486 .4203862266 .86419956533 .4211051722 .127815020 .893535832
5.2797402846 .4203862266 .73160171200007 .955065354000
0.3112154860000003 .036499775000000000000 .538449348
6.4203862266 .86419956533 .4211051722 .127815020 .8935358325 .279740284
6.4203862266 .73160171200007 .9550653540000 .31121548600000 03.036499775000
$\begin{array}{lllllllllllllllllll}2011 & 1 & 6 & 2 & 0 & 1 & 38 & 38 & 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 10.307286511 .3662384480019 .764567100001 .7882096131 .374231370 23.5308871319 .7645671002 .33944562219 .764567100000000000 000000010.307286511 .3662384480019 .76456710000 1.7882096131 .37423137023 .5308871319 .7645671002 .339445622 19.76456710000000
$\begin{array}{llllllllllllllllllll}2011 & 1 & 6 & 2 & 0 & 1 & 40 & 40 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
 00000000000001000000000000000
$\begin{array}{llllllllllllllllll}2011 & 1 & 6 & 2 & 0 & 1 & 44 & 44 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
 0000000000000000000000000001000
$20111 \begin{array}{llllllllllllllll}2 & 6 & 2 & 1 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
 0000000000000000000000000000000
$201210620 \quad 0 \quad 1 \quad 10 \quad 10 \quad 0.5 \quad 0 \quad 0 \quad 100 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$
 00000000000000000000000000000

 0000000000000000000000000000 $\begin{array}{llllllllll}2012 & 1 & 6 & 2 & 0 & 1 & 14 & 14 & 4.5 & 0 \\ 76.39683675\end{array}$

 0000000000000
$\begin{array}{lllllllllll}2012 & 1 & 6 & 2 & 0 & 1 & 16 & 16 & 19.5 & 0 & 0 \\ 63.81846144\end{array}$
 00000000063.8184614422 .6132830513 .568255510000000000 0000000000000000000000
$\begin{array}{lllllllllll}2012 & 1 & 6 & 2 & 0 & 1 & 18 & 18 & 70.5 & 0 & 0 \\ 89.75886698\end{array}$
 000089.7588669810 .241133020000000000000000000000 000000000000
$\begin{array}{lllllllllll}2012 & 1 & 6 & 2 & 0 & 1 & 20 & 20 & 40.5 & 0 & 0\end{array} 72.84783254$
 00000000072.8478325415 .4964483111 .65571915000000000 0000000000000000000000
$\begin{array}{lllllllllllll}2012 & 1 & 6 & 2 & 0 & 1 & 22 & 22 & 0 & 0 & 0 & 9 & 674720354\end{array}$
 0000000009.67472035489 .652223410 .673056234000000000 000000000000000000000
$\begin{array}{llllllllllll}2012 & 1 & 6 & 2 & 0 & 1 & 24 & 24 & 61 & 0 & 0 & 11.61640955\end{array}$
 0000000000000011.6164095568 .1445357319 .74804244
 $\begin{array}{lllllllllllll}2012 & 1 & 6 & 2 & 0 & 1 & 26 & 26 & 46 & 0 & 0 & 0 & 0 \\ 70.8154362\end{array}$
 00000000070.815436228 .441184740 .743379058000000000 00000000000000000000
$\begin{array}{lllllllllllll}2012 & 1 & 6 & 2 & 0 & 1 & 28 & 28 & 26 & 0 & 0 & 0 & 21.49088523\end{array}$ 46.5329020319 .3745390312 .6016737000000000000000000000 0000000000000021.4908852346 .5329020319 .37453903
 $\begin{array}{llllllllllllllllllll}2012 & 1 & 6 & 2 & 0 & 1 & 30 & 30 & 35 & 0 & 0 & 0 & 9.081066185\end{array}$ 47.2198661930 .041979885 .9768819765 .9768819760001 .70332379000 0000000000000000000000000009.08106618547 .21986619 30.041979885 .9768819765 .9768819760001 .70332379000000000 0000000000000
$\begin{array}{lllllllllllll}2012 & 1 & 6 & 2 & 0 & 1 & 32 & 32 & 22 & 0 & 0 & 0 & 0\end{array} 2.475402839$ 0.6814628929 .803263127 .1402930335 .581761413 .7451509220 .5726658110 0000000000000000000000000000002.475402839 0.6814628929 .803263127 .1402930335 .581761413 .7451509220 .5726658110 00000000000000000000000
$\begin{array}{llllllllllllllllllllll}2012 & 1 & 6 & 2 & 0 & 1 & 34 & 34 & 18 & 0 & 0 & 0 & 0\end{array}$ 3.4566780757 .5446475482 .8944621172 .01168246820 .399162150
19.225326776 .217683764 .6890822816 .7806374216 .780637420000000 000000000000000000003.4566780757 .5446475482 .894462117 2.01168246820 .39916215019 .225326776 .217683764 .6890822816 .78063742 16.78063742000000000000000000
 1.303353845014 .3108436128 .5119762710 .523670602 .437237981 14.951947838 .5237441472 .4372379812 .04803991308 .5237441470 6.428203682000000000000000000000001 .3033538450 14.3108436128 .5119762710 .523670602 .43723798114 .95194783 8.5237441472 .4372379812 .04803991308 .52374414706 .4282036820000 0000000
 002.5402694332 .54026943300000034 .539276618 .97653160800
 0002.5402694332 .54026943300000034 .539276618 .97653160800 41.766377384 .8186377720004 .81863777200000
 8.4803079250000000000000047 .2059935400000000000 44.31369854000000000008 .4803079250000000000000 47.20599354000000000044 .31369854

 00000000000000000000000000100
$\begin{array}{llllllllllllllllllllll}2012 & 1 & 6 & 2 & 0 & 1 & 8 & 8 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
 000000000000000000000000000000 \#NWCBO ghost marginal ages ($\mathrm{N}=10$)
\#Year Seas Fleet Gender Partition AgeError LbinLo LbinHi Nsamp F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30 F31 F32 F33 F34 F35 M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 M29 M30 M31 M32 M33 M34 M35
$\begin{array}{lllllllllll}2003 & 1 & -6 & 3 & 0 & 2 & -1 & -1 & 748 & 0 & 0.067354237\end{array}$
0.4311641563 .5919900838 .8061277881 .3127603714 .10449098611 .83099869 8.3479248977 .7247625238 .1214258750 .82317690 .051678332 .807979938 0.0247335670 .0088524570 .0767551791 .6743821060 .9078390720 .026047244 0.05771740900 .0651142740 .46605618600 .00904615300000 .798443333 0.4380278790 .8265886240 .4132943120 .4132943123 .0076300860 0.1517498380 .4510073929 .435735817 .6106816562 .4165367744 .045227849 4.4440007561 .3094809720 .242752180 .1653718060 .1120039150 .466056186 0.0244823380 .0821997470 .0190377700 .0084516420 .173152226 0.105523747000 .0577174090000 .0577174090 .41329431200 0.05771740900000 .914443895
$\begin{array}{llllllllll}2004 & 1 & -6 & 3 & 0 & 2 & -1 & -1 & 594 & 0.02055708 \\ 1.374871728\end{array}$ 2.473902052 .95845887426 .709294456 .6431779980 .7735211790 .510380384 0.3447839490 .35423817000000 .12383605100 .148072033000000 000.1480720330000000 .12383605100 .4199801180 .020551991 2.0275284742 .9467962944 .43723035730 .2689257811 .123242392 .675335987 0.498285290 .29011941800 .348172814000 .1238360510 .123836051 0.1791976910 .3371666350 .3957441350 .05407427800 .0524154640 0.055361640 .049662648000 .2719080840 .14807203300 .054074278 0.12383605100000 .267644017
$\begin{array}{llllllllll}2005 & 1 & -6 & 3 & 0 & 1 & -1 & -1 & 804 & 0.189891813\end{array} 1.169445316$ 3.2824057162 .219979801 0.715746865 8.121243202 5.891015756 3.190062468 10.946766935 .3417870572 .8200652577 .9769854880 .0654115340 .136669948 0.05242078000 .02625547300 .08712405800 .0262554730 .0262554730 0.0871240582 .8432620420 .02625547300 .0262554730 .08415900300 0.113285897000 .0746812310 .0618083862 .5091055795 .262028819 2.0930789283 .40860260513 .797384397 .316010642 .1736590570 .205327437 0.2628564340 .5235731730 .317479332 .875288100 .1355498160 .052510945 0.048588750 .1787910640 .05251094500 .0871240582 .669017394 0.0871240580 .0221876260 .0221702860 .04434057200 .11328589700000 00.0262554730 .11352865
$\begin{array}{lllllllllll}2006 & 1 & -6 & 3 & 0 & 1 & -1 & -1 & 940 & 0.049532917 & 2.128097991\end{array}$ 7.89771861613 .247443164 .9632146794 .6856877518 .3488328244 .416324755 2.2542035631 .0418509321 .0843711670 .9373268930 .6770686960 0.14141659600 .037757454000 .59052050100000 .0460557950 0.5905205010000000000 .0944374642 .3311794466 .675665108 8.8618398023 .6479684583 .9295159919 .1356733843 .181309473 .403722554 0.9683930780 .55697651 .3706581050 .752069340 .1469215520 .636576296 0.1132898930000 .1375596200 .07632136600 .04605579500 .590520501 00.092111591000000 .11328989300
$\begin{array}{llllllllll}2007 & 1 & -6 & 3 & 0 & 1 & -1 & -1 & 987 & 0.02368316\end{array} 0.874725809$ 6.75883922411 .798531096 .7814574523 .5737610045 .3576724296 .834981856 3.3795324720 .4761461040 .3079563150 .2426655710 .179307910 .100335106 0.05772046700 .1075696980 .1342798110 .0753728710 .100335106 0.04258570100000 .195825930 .51310039900 .075372871000000 0.1430828620 .023688947 0.602184268 6.488560663 8.107187712 6.984263316 5.370978294 .5576133955 .6530868567 .1898009620 .6279046890 .467869731 1.2896904171 .484439840 .3040785730 .5131003990 .0617139620 .58232676

```
0.19582593 0.019394494 0 0.484729224 0.19582593 0.19582593 0 0
0.19582593 0.162477356 0 0 0 0 0.075372871 0 0 0 0.031392341
2008 1 -6 3 0 1 1 - - < -1 762 0.09817008 0.355231961
1.685055894 10.16302912 22.85685908 6.100688924 1.060739484 1.323870823
1.543806241 1.257913467 0.364136418 0.416516029 0.426692551 0.156188663
0 0.023959813 0.077933384 0 0 0.178007684 0 0.197992293 0.16281271
0.093205923 0 0.093205923 0.093205923 0.0403648 0.015272539 0 0 0 0
0.044146092 0 0.077933384 0.098166202 0.324745058 2.595559825
7.677603764 19.81425366 12.6736049 0.612359773 1.718300232 1.409378425
1.47839184 0.349771389 0.08400672 0.665829172 0.311877032 0.142711753 0
0.077933384 0.441507456 0 0.082300291 0 0.039860628 0 0.198306431 0 0
0.077933384 0 0 0.098286427 0 0.042439663 0 0 0 0.077933384
2009 1 -6 3 0 0 1 - - < -1 1159 0 3.368428016
5.267932859 5.024825327 6.787309934 6.529055432 2.689500823 4.291434739
2.299846573 3.981583335 1.180221728 1.852160435 0.530481479 0.587581869
0.419016693 0.23885054 0.043667916 0.042938917 0.10921479 0.128816752
0.10921479 0.22359107 0.043667916 0.043667916 0.024313453 0 0.490121057
0.341598842 0 0 0 0.490850055 0 0 0 0.577861888 0 4.319676685
8.206256203 5.589268241 7.414239728 6.387692704 5.277315341 3.970063358
2.228989709 1.691497244 2.601152493 1.183506722 0.217786081 0.24951102
0.830900901 0.449981134 0.112679783 0 0 0.088924329 0.183235147
0.165338682 0.135359739 0.056339892 0.042938917 0.10921479 0.050026404
0.042511418 0.152153707 0 0.279930961 0.07801185 0 0.050026404
0.025177452 0.092537822
```



```
12.57271628 6.865688214 10.26895722 9.824861149 5.632736777 3.637969592
0.970145111 0.171197529 2.136450375 0.181124025 0.531694495 0.333567824
0.075423692 0.594324773 0.033071748 0.385111582 0.033071748 0.234485155
0.295855978 0.075644649 0.04191003 0 0 0 0 0 0.036750683 0 0 0 0 0
0.037711846 1.094571555 0.248101634 0.453182928 13.62827786 4.666905853
6.39972292 8.665018879 3.469064493 2.055248655 0.080135601 0.227353766
1.437811774 0.511283587 0.37127967 0.113130014 0 0.191663677 0.34784165
0 0.151294822 0 0 0 0 0 0 0 0 0 0.228215498 0 0 0.075644649 0 0 0 0
```



```
1.507353444 13.5417138 1.866096526 6.351598064 2.897482887 4.543071408
3.105114688 2.386781342 1.177067976 0.519678787 3.329964501 0.345178543
0.400486051 0.631651221 0.721664312 0.286472679 0.458994561 0.031307227
0.690357085 0.046258064 1.101312574 0.515697994 0 0.345178543 0 0 0
0.371946607 0.033492571 0 0.037651465 0 0 0.169561558 0.020313115
0.325804067 1.651528422 15.22634971 2.656151533 4.786641056 5.489739567
5.335749792 4.530484016 2.098580604 1.962049518 2.419089784 1.486703382
0.106162498 0.283854116 0.690357085 0.361910388 0 0 0 0.03123021
0.451687615 0 1.101312574 0.369039232 0.016731845 0 0.040857279
0.345178543 0 0 0 0.163251015 0 0.034123144 0
```



```
3.265156121 1.977999204 21.86302932 9.903355448 4.494942184 4.344241265
0.144463998 1.15250055 0.822167463 0.254985779 0.599226666 0.583970002
0.013403551 0.290472256 0.172563236 0.052725467 0.077610123 0.255282025
0 0.240933008 0 0.020475634 0.076437745 0 0 0.066106957 0 0 0
0.035486477 0.021061823 0.066106957 0 0.623632285 0 0.337619476
3.798477529 2.991840915 22.45886807 7.246533978 3.109513568 2.634259508
1.049183217 1.181201735 0.129421639 0.320434062 0.147171181 0.670618776
0.214589184 0.066106957 0.261638706 0.39033864 0.087657271 0.025064294
0.021061823 0.254361772 0.153764228 0 0.174331257 0.307585184
0.035486477 0 0 0 0.035486477 0 0 0 0 0.167700392
#
#
```

```
0 # Mean Size at Age Observations
0 # Total number of environmental variables
0 # Total number of environmental observations
0 # No Weight frequency data
0 # No tagging data
0 # No morph composition data
999 # End data file
```


Appendix B.2. SS control file

```
# Morph setup
1 # Number of growth patterns
1 # N sub morphs within growth patterns
3 # Blocks
1 10 1 #1: blocks in each design
2011 2012 #1: Retention inflection and slope, to reflect IFQ
2000 2001 2002 2002 2003 2003 2004 2004 2005 2005 2006 2006 2007 2007
2008 2008 2009 2009 2010 2010 #2: TWL retention asymptote to fit
changes in discard ratios
1995 2004 #3: AKSHLF selectivity for later period
# Mortality and growth specifications
0.5 # Fraction female at birth
0 # M setup: 0=single
Par,1=N_breakpoints,2=Lorenzen,3=agespecific;_4=agespec_withseasinterpo
late
    # no additional input for selected M Option; read 1P per morph
1 # GrowthModel: 1=vonBert with L1&L2; 2=Richards with L1&L2;
3=notimplemented; 4=notimplemented
2 # Age for growth Lmin
30 # Age for growth Lmax or 999 = Linf
0 # SD constant added to LAA (0.1 mimics v1.xx for compatibility only)
0 # CV_Growth_Pattern: 0 CV=f(LAA); 1 CV=F(A); 2 SD=F(LAA); 3 SD=F(A)
3 # Maturity option: 1=length logistic, 2=age logistic, 3=read age-
maturity matrix by growth_pattern
0.001739756 0.005167382 0.015234516 0.043959551 0.119591027 0.282761575
0.521345184 0.727124058 0.838074814 0.883280433 0.899554999 0.905148746
0.90704054 0.907676833 0.90789045 0.907962122 0.907986163 0.907994227
0.907996932 0.907997839 0.907998143 0.907998245 0.90799828 0.907998291
0.907998295 0.907998296 0.907998297 0.907998297 0.907998297 0.907998297
0.907998297 0.907998297 0.907998297 0.907998297 0.907998297 0.907998297
0.907998297 0.907998297 0.907998297 0.907998297 0.907998297 0.907998297
0.907998297 0.907998297 0.907998297 0.9079982972
# First age allowed to mature, from Nickols 1990
1 # fecundity option:(1)eggs=Wt*(a+b*Wt);(2)eggs=a*L^b;(3)eggs=a*Wt^b;
(4)eggs=a+b*L; (5)eggs=a+b*W
0 # hermaphroditism option: 0=none; 1=age-specific fxn
1 # parameter_offset_approach (1=none, 2= M,G,CV_G As offset from
female-GP1, 3=like SS2 V1.x)
2 # env/block/dev_adjust_method (1=standard; 2=logistic transform
keeps in Base parm bounds; 3=standard w/ no bound check)
# Maturity & Growth Parameters
#_LO HI INIT PRIOR PR_type SD PHASE env-var use_dev devmnyr devmxyr
devstd Block Block_Fxn
# female growth
    0.01 0.15 0.05 0.08 -1 99 -3 0 0 0 0 0 0 0 # NatM
    1 20 14.5 14.6-1 99 2 0 0 0 0 0 0 0 # L_at_Amin
    20 60 42.44 42.5 -1 99 2 0 0 0 0 0 0 0 # L_at_Amax
    0.05 0.3 0.2 0.2 -1 99 2 0 0 0 0 0 0 0 # VonBert_K
    0.05 0.3 0.1 0.2 -1 99 3 0 0 0 0 0 0 0 # CV_young
    0.03 0.3 0.046 0.1 -1 99-3 0 0 0 0 0 0 0 # CV_old
# male growth as direct estimates (parameter offset approach = 1)
```

```
    0.01 0.15 0.05 0.08 -1 99 3 0 0 0 0 0 0 0 # NatM
    -3 3 0 0 -1 99 -3 0 0 0 0 0 0 0 # L_at_Amin (set equal to females)
    20 60 42.44 42.5 -1 99 2 0 0 0 0 0 0 0 # L_at_Amax
    0.05 0.3 0.2 0.2 -1 99 2 0 0 0 0 0 0 0 # VonBert_K
    -3 3 0 0 -1 99 -3 0 0 0 0 0 0 0 # CV_young
    0.03 0.3 0.046 0.1 -1 99-3 0 0 0 0 0 0 0 # CV_old
# female weight and maturity
    0 1 1.11E-05 1.11E-05 -1 99-3 0 0 0 0 0 0 0 # Wtlen coeff # estimated
from NWFSC shelf-slope survey data 2003-2010
    2 4 3.13512 3.13512-1 99-3 0 0 0 0 0 0 0 # Wtlen Exp # estimated
from NWFSC shelf-slope survey data 2003-2010
    0 60 34.59 55-1 99-3 0 0 0 0 0 0 0 # Mat50%_Fem # from 2005
assessment, from Nickol 1990
    -3 3-0.6429-0.6429 -1 99-3 0 0 0 0 0 0 0 # Mat_slope # from 2005
assessment, from Nickol 1990
    -3 150000 101100 101100-1 99 -3 0 0 0 0 0 0 0 # eggs/kg intercept,
from E.J.Dick 2009
    0 50000 44800 44800-1 99-3 0 0 0 0 0 0 0 # eggs/kg slope, from
E.J.Dick 2009
# male weight as direct assignment
    0 1 1.21E-05 1.21E-05 -1 99-3 0 0 0 0 0 0 0 # Wtlen coeff # estimated
from NWFSC shelf-slope survey data 2003-2010
    2 4 3.10958 3.10958-1 99-3 0 0 0 0 0 0 0 # Wtlen Exp # estimated
from NWFSC shelf-slope survey data 2003-2010
# stuff that we don't need for this model
    0 2 1 1 -1 99-5 0 0 0 0 0 0 0 # Recruitment apportionment by growth
pattern
    0 2 1 1 -1 99-5 0 0 0 0 0 0 0 # Rec app by Area
    0 2 1 1 -1 99 -5 0 0 0 0 0 0 0 # Rec app by Season
    0 2 1 1 -1 99-5 0 0 0 0 0 0 0 # Cohort growth deviation
#_seasonal_effects_on_biology_parms
    0 0 0 0 0 0 0 0 0 0 #_femwtlen1, femwtlen2, mat1, mat2, fec1, fec2,
Malewtlen1, malewtlen2, L1, K
3 #Recruitment Function 1 BH w/flat top, 2 Ricker, 3 BH, 4 none
# Recruitment Parms
# Low High Init Prior PrType SD phase
    5 12 8.2 8 -1 99 1 # R0
    0.2 1 0.779 0.779 2 0.152 -2 # h
    0 2 0.75 0.75 -1 99 -1 # sigma R
    -5 5 0 0 0 0-1 99 -3 # Env link coeff
    -5 5 0 0 0 -1 99 -3 # Init Equilb offset to virgin
    -1 1 0 0 -1 99 -1 # placeholder for Autocorrelation
0 # index of environmental variable to be used
0 # env target parameter: 0=none, 1=rec devs, 2=R0, 3=steepness
# Recruitment residuals
2 # rec dev type: 0=none, 1=devvector (zero-sum), 2=simple deviations
(no sum constraint)
1960 # Start year recruitment residuals
2011 # End year recruitment residuals
3 # Phase
1 # Read 11 advanced recruitment options: 0=no, 1=yes
1870 # first year for early rec devs
3 # phase for early rec devs
```

```
5 # Phase for forecast recruit deviations
1 # Lambda for forecast recr devs before endyr+1
    1960.754 #_last_early_yr_nobias_adj_in_MPD
    1990.399 #_first_yr_fullbias_adj_in_MPD
    2008.982 #_last_yr_fullbias_adj_in_MPD
    2013.077 #_first_recent_yr_nobias_adj_in_MPD
        0.877 #_max_bias_adj_in_MPD (1.0 to mimic pre-2009 models)
0 # placeholder
-5 # Lower bound rec devs
5 # Upper bound rec devs
0 # read intitial values for rec devs
# Fishing mortality setup
0.2 # F ballpark for tuning early phases
-1999 # F ballpark year
3 # F_Method: 1=Pope; 2=instan. F; 3=hybrid (hybrid is
recommended)
4 # max F or harvest rate, depends on F_Method
# no additional F input needed for Fmethod 1
# if Fmethod=2; read overall start F value; overall phase; N
detailed inputs to read
# if Fmethod=3; read N iterations for tuning for Fmethod 3
# # N iterations for tuning F in hybrid method (recommend 3 to 7)
# Initial Fishing Mortality Parameters
#LO HI INIT PRIOR PR_type SD PHASE
0 1 0 0.01 -1 99 -1 # InitF_1TWL
0 1 0 0.01 -1 99 -1 # InitF_2BYCATCH
# Catchability Specification (Q_setup)
# A=do power: 0=skip, survey is prop. to abundance, 1= add par for non-
linearity
# B=env. link: 0=skip, 1= add par for env. effect on Q
# C=extra SD: 0=skip, 1= add par. for additive constant to input SE (in
ln space)
# D=type: <0=mirror lower abs(#) fleet, 0=no par Q is median unbiased,
1=no par Q is mean unbiased, 2=estimate par for ln(Q)
# 3=ln(Q) + set of devs about ln(Q) for all years. 4=ln(Q) + set of
devs about Q for indexyr-1
# A B C D
0 0 0 0 # 1 TWL
0 0 0 0 # 2 BYCATCH
0 0 1 4 # 3 AKSHLF
0 0 0 2 # 4 AKSLP
0}0002# 5 NWSLP
0}0012% 1 # 6 NWCBO
1 #_If q has random component, Then 0=read one parm For each fleet With
random q; 1=read a parm For each Year of index
#_Q_parms(if_any)
# Lo Hi Init Prior Prior_type Prior_sd Phase
0 1 0.4 0.1 -1 99 3 # Q_extraSD_5_AKSHLF
0 1 0.4 0.1 -1 99 3 # Q_extraSD_8_NWCBO
# bnd bnd value mean type SD phase Early period
-10 2 -0.0003 0 -1 99 1 # AKSHLF (log) base parameter (1980)
-4 4 0 0 -1 99 -5 # AKSHLF 1983 deviation
```

```
-4 4 0 0 -1 99 -5 # AKSHLF 1986 deviation
-4 4 0 0 -1 99 -5 # AKSHLF 1989 deviation
-4 4 0 0 -1 99 -5 # AKSHLF 1992 deviation
# Late period
-4 4 0 0 -1 99 1 # AKSHLF 1995 deviation
-4 4 0 0 -1 99 -5 # AKSHLF 1998 deviation
-4 4 0 0 -1 99 -5 # AKSHLF 2001 deviation
-4 4 0 0 -1 99 -5 # AKSHLF 2004 deviation
# Other catchability parameters
-10 2 -0.0003 0 -1 99 1 # AKSLP (log) base parameter
-10 2 -0.0003 0 -1 99 1 # NWSLP (log) base parameter
-10 2 -0.0003 0 -1 99 1 # NWCBO (log) base parameter
# Selectivity Specification
#_size_selex_types
#_Pattn Discard Male Special
24}10000%1 TW
15 0 0 1 # 2 BYCATCH
24 0 0 0 # 3 AKSHLF
24 0 0 0 # 4 AKSLP
24 0 0 0 # 5 NWSLP
24 0 0 0 # 6 NWCBO
#_age_selex_types
#_Pattn Discard Male Special
11 0 0 0 # 1 TWL
11 0 0 0 # 2 BYCATCH
11 0 0 0 # 3 AKSHLF
11 0 0 0 # 4 AKSLP
11 0 0 0 # 5 NWSLP
11 0 0 0 # 6 NWCBO
# Length-based selectivity, retention and discard mortality section
#TWL
#Low High Init Prior PrType SD Phase env usedev minyr maxyear sd block
blswitch
    20 45 36 32 -1 99 2 0 0 0 0 0 0 0 # PEAK
-6 4 2 0 -1 99 -3 0 0 0 0 0 0 0 # TOP:_width_of_plateau
-1 9 4 4 -1 99 2 0 0 0 0 0 0 0 # Asc_width
-1 9 0.6 5.5 -1 99 -3 0 0 0 0 0 0 0 # Desc_width
-999 9 -999 -2 -1 99 -2 0 0 0 0 0 0 0 # INIT:_selectivity_at_fist_bin
-5 9 9 5 -1 99 -3 0 0 0 0 0 0 0 # FINAL:_selectivity_at_last_bin
#TWL retention
#_LO HI INIT PRIOR PR_type SD PHASE env-var use_dev dev_min dev_max
dev_std Block Block_Fxn
15 70 27 35-1 99 2 0 0 0 0 0 1 2 #Inflection
0.1 10 2 1 -1 99 2 0 0 0 0 0 1 2 #Slope # 1 means that parm' = baseparm
+ blockparm
0.001 1 1 1 -1 99-3 0 0 0 0 0 2 2 #Asymptotic retention # 2 means that
parm' = blockparm
0 0 0 0 -1 99 -3 0 0 0 0 0 0 0 #Male offset To inflection
#AKSHLF
#_LO HI INIT PRIOR PR_type SD PHASE env-var use_dev dev_min dev_max
dev_std Block Block_Fxn
10 45 21 23 -1 99 2 0 0 0 0 0 0 0 # PEAK
-6 4 -6 -1 -1 99 -2 0 0 0 0 0 0 0 # TOP:_width_of_plateau
-1 9 4 4 -1 99 3 0 0 0 0 0 0 0 # Asc_width
```

```
-1 9 4 6 -1 99 4 0 0 0 0 0 3 2 # Desc_width
-999 9 -999 -4 -1 99 -2 0 0 0 0 0 0 0 # INIT:_selectivity_at_fist_bin
-999 9 -999 -1 -1 99 -3 0 0 0 0 0 0 0 # FINAL:_selectivity_at_last_bin
#AKSLP
#_LO HI INIT PRIOR PR_type SD PHASE env-var use_dev dev_min dev_max
dev_std Block Block_Fxn
    10 45 23 28-1 99 2 0 0 0 0 0 0 0 # PEAK
-6 4 -1 -1 -1 99 2 0 0 0 0 0 0 0 # TOP:_width_of_plateau
-1 9 2 4 -1 99 3 0 0 0 0 0 0 0 # Asc_width
-1 9 2 4 -1 99 3 0 0 0 0 0 0 0 # Desc_width
-999 9 -999 -4 -1 99 -4 0 0 0 0 0 0 0 # INIT:_selectivity_at_fist_bin
-999 9 -999 -2 -1 99 -3 0 0 0 0 0 0 0 # FINAL:_selectivity_at_last_bin
#NWSLP
#_LO HI INIT PRIOR PR_type SD PHASE env-var use_dev dev_min dev_max
dev_std Block Block_Fxn
10 45 25 28-1 99 2 0 0 0 0 0 0 0 # PEAK
-6 4 -6 1 -1 99 -5 0 0 0 0 0 0 0 # TOP:_width_of_plateau
-1 9 3 4 -1 99 4 0 0 0 0 0 0 0 # Asc_width
-1 9 .1 4 -1 99 4 0 0 0 0 0 0 0 # Desc_width
-999 9 -999 -4 -1 99 -5 0 0 0 0 0 0 0 # INIT:_selectivity_at_fist_bin
-999 9 -999 1 -1 99 -4 0 0 0 0 0 0 0 # FINAL:_selectivity_at_last_bin
#NWCBO
#_LO HI INIT PRIOR PR_type SD PHASE env-var use_dev dev_min dev_max
dev_std Block Block_Fxn
    8 45 18 20-1 99 2 0 0 0 0 0 0 0 # PEAK
-6 4 -6 -1 -1 99 -3 0 0 0 0 0 0 0 # TOP:_width_of_plateau
-1 9 -0.5 2 -1 99 3 0 0 0 0 0 0 0 # Asc_width
-1 9 3 4 -1 99 4 0 0 0 0 0 0 0 # Desc_width
-999 9 -999 -3 -1 99 -4 0 0 0 0 0 0 0 # INIT:_selectivity_at_fist_bin
-999 9 -999 -4 -1 99 -3 0 0 0 0 0 0 0 # FINAL:_selectivity_at_last_bin
# age sel: select all ages following user manual instructions:
# "If it is desired that age 0 fish be selected, then use pattern #11
and set the minimum age to 0.1"
# all ages selected for fleets 1 & 2
0 1 0.1 0.1 -1 99 -3 0 0 0 0 0.5 0 0 # Min age selected
0 100 100 100-1 99-3 0 0 0 0 0.5 0 0 # Max age selected
0 1 0.1 0.1 -1 99-3 0 0 0 0 0.5 0 0 # Min age selected
0 100 100 100-1 99-3 0 0 0 0 0.5 0 0 # Max age selected
0 1 0.1 0.1 -1 99-3 0 0 0 0 0.5 0 0 # Min age selected
0 100 100 100-1 99-3 0 0 0 0 0.5 0 0 # Max age selected
0 1 0.1 0.1 -1 99-3 0 0 0 0 0.5 0 0 # Min age selected
0 100 100 100-1 99-3 0 0 0 0 0.5 0 0 # Max age selected
0 1 0.1 0.1 -1 99-3 0 0 0 0 0.5 0 0 # Min age selected
0 100 100 100-1 99-3 0 0 0 0 0.5 0 0 # Max age selected
0 1 0.1 0.1 -1 99-3 0 0 0 0 0.5 0 0 # Min age selected
0 100 100 100-1 99-3 0 0 0 0 0.5 0 0 # Max age selected
1 # Selex block setup: 0=Read one line apply all, 1=read one line each
parameter
# Lo Hi Init Prior P_type SD Phase
#TWL retention inflection and slope, to reflect changes with IFQ
15 70 27 35 -1 99 2 #Inflection
0.1 10 2 1 1 - 1 99 2 #Slope
#TWL Retention asymptote, to fit discard ratio
0
```

```
0
0
0
0
0
0
0
0
```



```
#AKSHLF selectivity parameters 1995-2004
-1 9 5 5 5 -1 99 4 # Desc_width
1 #_env/block/dev_adjust_method (1=standard; 2=logistic trans to keep
in base parm bounds)
0 # Tagging flag: 0=none,1=read parameters for tagging
### Likelihood related quantities ###
# variance/sample size adjustment by fleet
1 # Do variance adjustments
0 0 0 0 0 0 # const added to survey CV
0 0 0 0 0 0 # const added to discard sd
0}000000 0 const added to body weight s
0.1670494 1 0.2639248 0.5042809 0.4347276 0.276025 # mult scalar for
length comps
0.2675704 1 0.1684169 0.1924211 0.1440778 0.1182449 # mult scalar for
age comps
1 1 1 1 1 1 # mult scalar for length at age obs
2 # Max N lambda phases: read this N values for each item below
# S SD offset (CPUE, discard, mean body weight, recruitment devs):
0=omit log(s) term, 1=include
2 # N changes to default Lambdas = 1.0
# Component codes:
# 1=survey
# 2=discard
# 3=mean body weight
# 4=length frequency
# 5=age frequency
# 6=Weight frequency
# 7=size at age
# 8=catch
# 9=initial equilibrium catch
# 10=rec devs
# 11=parameter priors
# 12=parameter deviations
# 13=Crash penalty
# 14=Morph composition
# 15=Tag composition
# 16=Tag return
# Component fleet/survey phase value wtfreq_method
4 1 1 0.5 1 #TWL length comps
5 1 1 1 0.5 1 #TWL age comps
0 # extra SD pointer
```


Appendix B.3. SS starter file

```
darkblotched_data.SS # Data file
darkblotched_control.SS # Control file
1 # Read initial values from .par file: 0=no,1=yes
1 # DOS display detail: 0,1,2
2 # Report file detail: 0,1,2
0 # Detailed checkup.sso file (0,1)
0 # Write parameter iteration trace file during minimization
2 # Write cumulative report: 0=skip,1=short,2=full
0 # Include prior likelihood for non-estimated parameters
1 # Use Soft Boundaries to aid convergence (0,1) (recommended)
1 # N bootstrap datafiles to create
25 # Last phase for estimation
0 # MCMC burn-in
1 # MCMC thinning interval
0 # Jitter initial parameter values by this fraction
-1 # Min year for spbio sd_report (neg val = styr-2, virgin state)
-2 # Max year for spbio sd_report (-1=endyr+1, -2=entire forecast)
0 # N individual SD years
0.0001 # Ending convergence criteria
0 # Retrospective year relative to end year (i.e. -4)
1 # Min age for summary biomass
1 # Depletion basis: denom is: 0=skip; 1=rel X*B0; 2=rel X*Bmsy; 3=rel
X*B_styr
1 # Fraction (X) for Depletion denominator (e.g. 0.4)
1 # (1-SPR)_reporting: 0=skip; 1=rel(1-SPR); 2=rel(1-SPR_MSY); 3=rel(1-
SPR_Btarget); 4=notrel
1 # F_std reporting: 0=skip; 1=exploit(Bio); 2=exploit(Num);
3=sum(frates)
#0 45 #_min and max age over which average F will be calculated
0 # F_report_basis: 0=raw; 1=rel Fspr; 2=rel Fmsy ; 3=rel Fbtgt
999 # end of file marker
```


Appendix B.4. SS forecast file

```
1 # Benchmarks: 0=skip; 1=calc F_spr,F_btgt,F_msy
2 # MSY: 1= set to F(SPR); 2=calc F(MSY); 3=set to F(Btgt); 4=set to
F(endyr)
0.5 # SPR target (e.g. 0.40)
0.4 # Biomass target (e.g. 0.40)
#_Bmark_years: beg_bio, end_bio, beg_selex, end_selex, beg_relF,
end_relF (enter actual year, or values of 0 or -integer to be rel.
endyr)
    0 0 0 0 0 0
# 2010 2010 2010 2010 2010 2010 # after processing
1 #Bmark_relF_Basis: 1 = use year range; 2 = set relF same as forecast
below
1 # Forecast: 0=none; 1=F(SPR); 2=F(MSY) 3=F(Btgt); 4=Ave F (uses
first-last relF yrs); 5=input annual F scalar
12 # N forecast years
0.20 # F scalar (only used for Do_Forecast==5)
#_Fcast_years: beg_selex, end_selex, beg_relF, end_relF (enter actual
year, or values of 0 or -integer to be rel. endyr)
    0 0 0 0
# 1180659524 1667592815 7631713 0 # after processing
1 # Control rule method (1=catch=f(SSB) west coast; 2=F=f(SSB) )
0.40 # Control rule Biomass level for constant F (as frac of Bzero,
e.g. 0.40); (Must be > the no F level below)
0.10 # Control rule Biomass level for no F (as frac of Bzero, e.g.
0.10)
1 # Control rule target as fraction of Flimit (e.g. 0.75)
3 #_N forecast loops (1=OFL only; 2=ABC; 3=get F from forecast ABC
catch with allocations applied)
# #_First forecast loop with stochastic recruitment
0 #_Forecast loop control #3 (reserved for future bells&whistles)
0 #_Forecast loop control #4 (reserved for future bells&whistles)
#-65534 #_Forecast loop control #5 (reserved for future bells&whistles)
0 #_Forecast loop control #5 (reserved for future bells&whistles)
2013 #FirstYear for caps and allocations (should be after years with
fixed inputs)
0 # stddev of log(realized catch/target catch) in forecast (set
value>0.0 to cause active impl_error)
0 # Do West Coast gfish rebuilder output (0/1)
2001 # Rebuilder: first year catch could have been set to zero
(Ydecl)(-1 to set to 1999)
2011 # Rebuilder: year for current age structure (Yinit) (-1 to set to
endyear+1)
1 # fleet relative F: 1=use first-last alloc year; 2=read seas(row) x
fleet(col) below
# Note that fleet allocation is used directly as average F if
Do_Forecast=4
2 # basis for fcast catch tuning and for fcast catch caps and
allocation (2=deadbio; 3=retainbio; 5=deadnum; 6=retainnum)
# Conditional input if relative F choice = 2
# Fleet relative F: rows are seasons, columns are fleets
#_Fleet: FISHERY
# 0
# max totalcatch by fleet (-1 to have no max) must enter value for each
fleet
```

```
-1 -1
# max totalcatch by area (-1 to have no max); must enter value for each
fleet
-1
# fleet assignment to allocation group (enter group ID# for each fleet,
0 for not included in an alloc group)
0 0
#_Conditional on >1 allocation group
# allocation fraction for each of: 0 allocation groups
# no allocation groups
0 # Number of forecast catch levels to input (else calc catch from
forecast F)
2 # basis for input Fcast catch: 2=dead catch; 3=retained catch;
99=input Hrate(F) (units are from fleetunits; note new codes in
SSV3.20)
#
999 # verify end of input
```

