Status of the U.S. yelloweye rockfish resource in 2011 (Update of 2009 assessment model)

Ian G. Taylor ${ }^{1}$ and Chantel Wetzel ${ }^{2}$
${ }^{1}$ National Marine Fisheries Service Northwest Fisheries Science Center 2725 Montlake Blvd. E.
Seattle WA, 98112
206-861-7603 (phone)
206-860-6792 (fax)
Ian.Taylor@noaa.gov
${ }^{2}$ National Marine Fisheries Service
Northwest Fisheries Science Center

9 September 2011

Table of Contents

Executive Summary 4
Stock 4
Catches 4
Data and Assessment 5
Stock biomass 6
Recruitment 8
Reference points 9
Exploitation status 10
Management performance 13
Unresolved problems and major uncertainties 13
Forecasts 14
Decision table 15
Research and data needs 17
Rebuilding projections 18

1. Introduction 22
1.1 Distribution and Stock Structure 22
1.2 Life History and Ecosystem Interactions 23
1.3 Historical and Current Fishery 23
1.4 Management History and Performance 24
1.5 Fisheries in Canada and Alaska 24
2. Assessment 24
2.1 Fishery-Independent Data 25
2.1.1 International Pacific Halibut Commission Survey 25
2.1.2 Triennial Bottom Trawl Survey 26
2.1.3 NWFSC Bottom Trawl Survey 26
2.1.4 Visual Surveys 27
2.1.5 Research Removals 27
2.2 Biological Data 27
2.3 Fishery-Dependent Data 28
2.3.1 Historical Commercial Catches 28
2.3.2 Historical Recreational Catches 29
2.3.3 Foreign Catches. 30
2.3.4 Recent Removals (2002+) 30
2.3.5 Fishery Catch-Per-Unit-Effort 30
2.3.6 Fishery Biological Data 31
2.4 History of Modeling Approaches 31
2.4.1 Previous Assessments 31
2.4.2 Pre-Assessment Workshop, GAP and GMT Input 31
2.4.3 Response to STAR Panel Recommendations in 2006 32
2.5 Model Description 33
2.5.1 Link from the 2009 to the updated assessment model 33
2.5.2 Summary of Fleets 34
2.5.3 Modeling Software 34
2.5.4 Priors 34
2.5.5 Sample Weighting 34
2.5.6 General Model Specifications 34
2.5.7 Estimated and Fixed parameters 35
2.6 Model Selection and Evaluation 36
2.6.1 Key Assumptions and Structural Choices 36
2.6.2 Alternate Models Explored 36
2.7 Base-case model Results 36
2.8 Uncertainty and Sensitivity Analysis 38
2.8.1 Retrospective Analysis 39
2.8.2 Likelihood Profiles 39
3. Rebuilding Parameters 39
4. Reference Points 39
5. Harvest Projections and Decision Tables 40
6. Regional Management Considerations 41
7. Research Needs 41
8. Acknowledgements 42
9. Literature cited 43
10. Tables 45
11. Figures 79
12. Appendix A: Predicted numbers at age by sex and area. 128
13. Appendix B: SS Data file 147
14. Appendix C: SS Control file 219
15. Appendix D: SS Starter file 226
16. Appendix E: SS Forecast file 226

Executive Summary

Stock
This update assessment reports the status of the yelloweye rockfish (Sebastes ruberrimus) resource off the coast of the United States from southern California to the U.S.-Canadian border using data through 2010. Each area is modeled simultaneously with its own unique catch history and fishing fleets (recreational and commercial) but the dynamics follow the current understanding of yelloweye stock structure: large stocks linked via a common stock-recruit relationship with negligible adult movement among areas.

Catches

Yelloweye rockfish catches were estimated from a variety of sources, but are very uncertain due to the relatively small contribution of yelloweye to rockfish market categories (prior to sorting requirements) and the relatively large scale of recreational removals (average 60% of the total in the past 10 years). The accuracy of estimates of rebuilding rates will therefore depend in part on the accuracy of the recreational catch data. Catches include estimates of discarding after 2001 when management restrictions resulted in nearly all yelloweye caught by recreational and commercial fishermen being discarded at sea. Recent catches were based on current total mortality estimates (20022009) and the GMT scorecard (2010). Estimated catches increased gradually throughout the first half of the $20^{\text {th }}$ century, with the exception of a brief period of higher removals around World War II. Catches peaked in 1982 at 463 mt , an estimate that is slightly higher than the previous assessment due to the inclusion of a new catch reconstruction for Oregon. Removals were estimated as remaining in excess of 200 mt for all years between 1977 and 1997. Uncertainty in catches is treated explicitly throughout this analysis.

Figure a. Yelloweye rockfish estimated catch history, 1916-2010.

Table a. Recent yelloweye rockfish catches (mt) by fleet.

Year	California Recreational	California Commercial 1	Oregon Recreational	Oregon Commercial 1	Washington Recreational	Washington Commercial 1
2001	6.37	4.35	4.83	6.23	12.50	21.84
2002	2.49	0.89	3.14	1.56	3.70	1.55
2003	3.74	0.70	3.02	0.92	2.60	0.98
2004	0.60	2.61	3.69	2.67	3.70	0.66
2005	0.90	3.43	4.30	1.69	5.20	0.74
2006	4.10	1.86	2.49	2.92	1.70	0.76
2007	8.00	4.81	2.85	3.28	2.49	1.61
2008	1.69	1.72	3.25	3.88	2.40	0.78
2009	3.84	0.61	2.05	1.61	1.63	1.15
2010	1.20	1.85	2.80	2.52	1.90	1.12

${ }^{1}$ Includes research catches.

Data and Assessment

This stock assessment used the newest version of Stock Synthesis available (3.21e, released 9 June 2011). The model data sources include catch, length- and agefrequency data from six state-specific recreational and commercial fishing fleets. Biological data are derived from both port and on-board observer sampling programs. Yelloweye catch in the IPHC long-line survey for Pacific halibut is also included via an index of relative abundance for Washington and for Oregon as well as length- and agefrequency data. Oregon recreational charter observer data for discarded yelloweye was used to construct a recent index of relative abundance (2004-2010) and included lengthfrequency observations. Relative biomass indices from the National Marine Fisheries Service (NMFS) Northwest Fisheries Science Center (NWFSC) bottom trawl survey and the Alaska Fisheries Science Center triennial trawl survey are included, along with biological data from the former.

Externally estimated model parameters, including those defining weight-length, maturity, and fecundity relationships, were kept at the values used in the previous assessment. The assessment explicitly accounts for the small degree of dimorphic growth as well as markedly different exploitation histories in waters off the three states. Due to sparse and poorly informative age- and length-frequency data, recruitment is modeled as a deterministic process. Key parameters including natural mortality, stock-recruitment steepness and all growth parameters are estimated.

Although the base case assessment model captures some uncertainty via asymptotic intervals, uncertainty from two sources is examined using alternate states of nature, which bracket the base case, with results reported in the decision table. The magnitude of the estimated-catch time-series was found to have a large influence on the perception of current stock size and the estimate of steepness of the stock-recruit relationship was closely linked to the projected recovery rates. Alternate values of each were selected to bracket the best estimates with marginal probabilities one-half as likely. For historical catch these values, 75% and 150% of the estimated catch series prior to 2000, were subjective, but reflect both the lack of a comprehensive catch reconstruction in Washington and the change in likelihood of the fit to data sources over a reasonable range of catch levels. For steepness the $12.5^{\text {th }}$ and $87.5^{\text {th }}$ percentiles were calculated from
the likelihood profile as a proxy for the probability distribution about this point estimate. The most optimistic and pessimistic of the nine combinations from these two axes (weighted 6.25% each, relative to 25% for the best estimate on each dimension) are reported in this document. All nine combinations will be included in the rebuilding analysis, in order to more completely portray the uncertain impact of future harvest levels on stock status and rebuilding time.

Table b. Relative probabilities for combinations of the two alternate states of nature. Cells in bold denote those reported throughout this document.

	Historical catch			
	Low	$\mathbf{6 . 2 5 \%}$	Best estimate	High
	Estimated value	12.5%	$\frac{\text { Base case: }}{\mathbf{2 5 \%}}$	6.25%
	High	6.25%	12.5%	

Stock biomass

A fecundity relationship is used for yelloweye specifying that spawning output per unit weight increases with fish weight; therefore all reference to spawning output is in terms of eggs produced, instead of spawning biomass. Yelloweye rockfish are estimated to have been lightly exploited until the mid-1970's, when catches increased and a rapid decline in biomass and spawning output began. Spawning output is estimated to have reached a minimum in 2000, at 15.7\% of unexploited levels (very similar to the 15.8\% from the 2009 assessment). Yelloweye rockfish spawning output is estimated to have been gradually increasing since that time, in response to large reductions in harvest. Although the relative trend in spawning output is quite robust to uncertainty in the estimated removals, the absolute scale of the time series is very sensitive global shifts in removals. The estimated relative depletion level in 2009 is 20.2% (very similar to the estimate of 20.3% from the 2009 assessment) and 21.4% in 2011, corresponding to 219 million eggs. The range over states of nature indicates less uncertainty in level of depletion (18.9-24.0\%) than in the absolute scale of the estimated spawning output: 146371 million eggs in 2011. The portions of the total spawning output within each of the three states differs, with California and Oregon having very similar estimates of spawning output at unexploited equilibrium, with Washington considerably lower. Oregon is estimated to have the largest 2011 spawning output, followed by California, then Washington. Relative depletion also varies by state, with California estimated to be at 17.3% of unexploited conditions, Oregon, 23.9\%, and Washington, 27.2\%.

Figure b. Estimated total spawning output time-series (1916-2011, areas combined) for the base-case model with alternate states of nature. Shaded regions show 95% intervals.

Figure c. Estimated spawning output time-series (1916-2011) by state for the base-case model.

Table c. Recent trend in estimated yelloweye rockfish spawning output, recruitment and relative depletion level.

	Spawning output (millions eggs)	Range of states of nature	Estimated recruitment (1000s)	Range of states of nature	Estimated depletion	Range of states of nature
2002	166	$115-269$	86	$54-154$	16.1%	$15.0-17.4 \%$
2003	172	$119-280$	89	$56-158$	16.7%	$15.5-18.1 \%$
2004	179	$123-292$	91	$57-162$	17.4%	$16.0-18.9 \%$
2005	185	$127-303$	93	$59-166$	18.0%	$16.4-19.6 \%$
2006	191	$130-315$	95	$60-170$	18.6%	$16.9-20.4 \%$
2007	197	$133-326$	98	$61-174$	19.2%	$17.3-21.1 \%$
2008	202	$136-337$	99	$62-177$	19.7%	$17.7-21.8 \%$
2009	208	$139-348$	101	$63-181$	20.2%	$18.1-22.5 \%$
2010	214	$142-360$	103	$64-184$	20.8%	$18.5-23.3 \%$
2011	219	$146-371$	105	$65-187$	21.4%	$18.9-24.0 \%$

Recruitment

Because year-class strength is modeled as a deterministic process in this assessment, the decline in estimated recruitment tracks closely that of the spawning output. The decline is especially pronounced given the low (and likely imprecise) estimate for steepness of the stock-recruit relationship in the base-case model (0.441), and alternate models $(0.383,0.508)$. However, the considerable uncertainty in absolute recruitment levels is illustrated by the broad range over the states of nature.

Figure d. Time series of estimated yelloweye rockfish recruitments for the base-case model and alternate states of nature.

Reference points

Unfished spawning output was estimated to be 1,028 million eggs (slightly higher than 994 million eggs estimated in the previous assessment). The target stock size ($\mathrm{SB}_{40 \%}$) is therefore 411 million eggs and the overfished threshold ($\left(\mathrm{SB}_{25 \%}\right)$ is 257 million eggs. Maximum sustainable yield (MSY), conditioned on current fishery selectivity and allocations, was estimated in the assessment model to occur at a spawning stock biomass of 392 million eggs and produce an MSY catch of 63 mt (slightly above the estimate from the 2009 assessment of 56 mt). However, the yield at MSY is extremely sensitive to the states of nature, resulting in a wide range for this value from 39 to 111 mt . Maximum sustainable yield is estimated to be achieved at an SPR of 57.7% (range of states of nature: 51.1-65.5\%). This is nearly identical to the yield, 62 mt , generated by the SPR (59.0\%) that stabilizes the stock at the $S B_{40 \%}$ target. The fishing mortality target/overfishing level ($\mathrm{SPR}=50.0 \%$) results in a smaller equilibrium yield of 58 mt at a spawning output of 275 million eggs (26.7% of the unfished level).

Figure e. Time series of relative spawning depletion as estimated in the base-case model and alternate states of nature. Light shading around each line shows 95% intervals.

Figure f. Time series of relative spawning depletion by state for the base-case model.

Exploitation status

The coast-wide abundance of yelloweye rockfish is estimated to have dropped below the $S B_{40 \%}$ management target in 1988 and the overfished threshold in 1994. In hindsight, the spawning output passed through the target and threshold levels with annual catch averaging almost five times the current estimate of the MSY. The coast-wide stock remains below the overfished threshold, although the spawning output is estimated to have been increased by 36% since 2000 (from 161 to 219 million eggs), in response to reductions in harvest. The degree of increase is largely insensitive to the magnitude of historical catch and only moderately sensitive to the value of steepness, but the absolute scale of the population reflects alternate removal series very closely. Fishing mortality rates are estimated to have been in excess of the current F-target for rockfish of $S P R_{50 \%}$ from 1976 through 1999. Relative exploitation rates (catch/biomass of age-8 and older fish) are estimated to have peaked at 12.7% in 1992, but have been at or less than 1.1% after 2001. The alternate states of nature result in estimated exploitation rates ranging from less than 0.9% to less than 1.7% of the period 2002-2010.

Table d. Recent trend in spawning potential ratio (SPR) and relative exploitation rate (catch/biomass of age-8 and older fish).

Year	Estimated SPR (\%)	Range of states of nature	Relative exploitation rate	Range of states of nature
2001	53.9%	$44.7-65.2 \%$	3.2%	$2.0-4.5 \%$
2002	78.7%	$72.0-85.6 \%$	0.7%	$0.5-1.1 \%$
2003	79.4%	$72.6-86.3 \%$	0.6%	$0.4-0.9 \%$
2004	78.6%	$71.5-85.7 \%$	0.7%	$0.4-1.1 \%$
2005	76.5%	$69.0-84.2 \%$	0.8%	$0.5-1.2 \%$
2006	77.5%	$69.8-85.2 \%$	0.7%	$0.4-1.0 \%$
2007	67.5%	$58.3-77.7 \%$	1.1%	$0.7-1.7 \%$
2008	79.9%	$72.7-87.0 \%$	0.7%	$0.4-1.0 \%$
2009	83.2%	$76.6-89.3 \%$	0.5%	$0.3-0.8 \%$
2010	83.5%	$77.1-89.5 \%$	0.5%	$0.3-0.8 \%$

Figure g. Time series of relative spawning potential ratio (1-SPR/1-SPR ${ }_{\text {Target }}$. 0) for the base-case model and alternate states of nature. Values of relative SPR above 1.0 reflect harvests in excess of the current overfishing proxy.

Figure h. Time series of estimated exploitation rate (catch/age 8 and older biomass) for the base-case model (circles) and alternate states of nature (light lines). Horizontal line indicates the overfishing limit/target ($\mathrm{F}_{50 \%}$) from the base case.

Figure i. Estimated relative spawning potential ratio relative to the proxy target/limit of 50% vs. estimated spawning output relative to the proxy 40% level from the base-case model. Higher spawning output occurs on the right side of the x-axis, higher exploitation rates occur on the upper side of the y-axis.

Management performance

Before 2000, yelloweye rockfish were managed as part of the Sebastes Complex, which included all Sebastes species without individual assessments, OFLs and ACLs (Previously termed ABCs and OYs but referred to under the current terms from here forward). In 2000, the Sebastes Complex was divided into three depth-based groups (for areas north and south of $40^{\circ} 10^{\prime} \mathrm{N}$. latitude), and yelloweye rockfish were managed as part of the minor shelf rockfish group until 2002. Since then, there has been speciesspecific management, and total catch has been below both the OFL and ACL for yelloweye each year. These catch levels represent a 95% reduction from average catches observed in the 1980s and 1990s. Managers have constrained catches by eliminating all retention of yelloweye rockfish in both commercial and recreational fisheries, instituting broad spatial closures (some specifically for moving fixed-gear fleets away from known areas of yelloweye abundance), and creating new gear restrictions intended to reduce trawling in rocky shelf habitats and the coincident catch of rockfish in shelf flatfish trawls. Since 2002, the total 8-year catch (130 mt) has been only 70% of the sum of the ACLs for 2004-2010 and only 39\% of the sum of the OFLs for that period. The total 2010 catch (11.4 mt) is estimated to be just 3% of the peak annual catch that occurred in the early 1980s.

Table e. Recent trend in yelloweye rockfish catch (mt) relative to management guidelines.

Year	OFL $(\mathrm{mt})^{1}$	ACL $(\mathrm{mt})^{1}$	Commercial ${\text { Catch }(\mathrm{mt})^{2}}$	Recreational Catch (mt)	Total Catch (mt)
1999	39^{3}	NA	117.8	38.1	155.8
2000	39^{3}	NA	15.5	25.3	40.9
2001	29^{4}	NA	32.5	23.7	56.1
2002	27^{4}	13.5^{4}	4.0	9.3	13.3
2003	52	22	2.6	9.4	12.0
2004	53	22	5.9	8.0	13.9
2005	54	26	5.9	10.4	16.3
2006	55	27	5.5	8.3	13.8
2007	47	23	9.7	13.3	23.0
2008	47	20	6.4	7.3	13.7
2009	31	17	3.4	7.5	10.9
2010	32	17^{5}	5.5	5.9	11.4

${ }^{1}$ OFL and ACL were called ABC and OY prior to 2010.
${ }^{2}$ Includes research catches.
${ }^{3}$ Includes the Columbia and Vancouver INPFC areas only.
${ }^{4}$ Includes the Columbia, Vancouver and Eureka INPFC areas only.
${ }^{5}$ The 2010 ACL value of 17 mt is the NMFS preferred alternative.

Unresolved problems and major uncertainties

Data for yelloweye rockfish are sparse and relatively uninformative, especially regarding current trend. Historical catches are very uncertain, as yelloweye comprise a
small percentage of overall rockfish removals and actual species-composition samples are infrequently available for historical analyses. Further, the relative contribution of recreational removals was very large, and there is high uncertainty in the exact magnitude of these removals. The management related quantities were found to be very sensitive to alternate catch time-series and this is presented as one of the primary axes of uncertainty.

The choice to model the yelloweye rockfish stock with explicit areas in the assessment model is based on the sedentary life-history of adult yelloweye, and the differences in population trends, as well as historical and current exploitation rates among the three states. The data do not clearly inform this choice, but it does have substantial ramifications for future projections and management decisions and should be considered a major uncertainty in the assessment.

Parameters that generally contribute significant uncertainty to stock assessments, including those defining steepness, natural mortality and growth are estimated, but may be poorly determined due to the short time-series of data, which are primarily available after the biggest period of removals from the stock. Steepness of the stock-recruitment relationship especially is often poorly estimated from a time series like that of yelloweye (a 'one-way trip'), but its value is very important in determining projected rebuilding. For this reason alternate values (from the likelihood profile) are included as a second axis of uncertainty in this assessment.

As in the 2009 assessment, process error in recruitment is not explicitly accounted for in this assessment. This choice was driven by several factors: the lack of substantial reduction in the estimates of uncertainty in recruitment deviations (when estimated) relative to the level of recruitment variability (σ_{r}), and the fact that, even when accounted for, recruitment variability did not represent the dominant axis of uncertainty with regard to current management quantities. Previous assessments have struggled with the lack of signal in recruitment deviations; the 2006 and 2007 models estimated deviations over only a short period of the time series (1968-1992).

Currently available fishery-independent indices of abundance are imprecise and not highly informative. It is unclear whether future stock recovery (or lack thereof) will be detectable without more precise survey methods applied over broad portions of the coast. Fishery data are also unlikely to produce conclusive information about the stock for the foreseeable future, due to lack of retention and active avoidance of yelloweye among all fleets. For these reasons, it is unlikely that the major uncertainties in this assessment will soon be resolved.

Forecasts

The forecast reported here will be replaced by the rebuilding analysis to be completed in September-October 2011. In the interim, the total catch in 2011 and 2012 is set equal to the NMFS preferred alternative ACL (17 mt), allocated between fleets according to the average catch over the years 2007-2009. The target exploitation rate for 2013 and beyond is based upon an SPR of 76\%, which is the NMFS preferred alternative rate. This SPR-based forecast catch is allocated between fleets according to the average fishing mortality rate for the years 2007-2009 (which allows the forecast catch to respond to different trends in the biomass available to each fleet). Uncertainty in the rebuilding forecast will be included via integrating over all combinations of the alternate states of nature for catch history and steepness.

Current medium-term forecasts predict increases in coast-wide abundance under the SPR=76\% rebuilding strategy, however these increases are largely driven by the California and Oregon portions of the stock. The estimated ACL values for 2013 and 2014 are only slightly larger $(17.7,18.0)$ than the 17.0 value set for 2011 and 2012 and less that that predicted from the 2009 rebuilding analysis (21.0, 20.5), which was based on a higher fishing mortality associated with a 71.9\% SPR. Catch allocation in 20112012 among fleets (recreational, commercial) are as follows: for Washington (14\%, 7\%), Oregon ($17 \%, 18 \%$) and California ($28 \%, 15 \%$). Over the period 2013 to 2022, the where catch was based on average fishing mortality over the years 2007-2009, the greatest increase in allocation was for the California recreational fishery, which went from 28% to 31% of the total, while the greatest decrease was for Washington recreational, which decreased from 14% to 12%. These changes are due to differences in the rate of increase in forecast biomass for each state. The following table shows the projection of expected yelloweye rockfish catch, summary biomass, depletion and spawning output (by area). It would be desirable to evaluate specific alternative allocation scenarios if relative removals based on future management actions will be substantially different than recent values by state.

Table f. Projection of yelloweye rockfish under ACL values calculated from a 76\% SPR rate. OFL values are calculated from a 50% SPR rate.

Year	$\begin{aligned} & \text { OFL } \\ & (\mathrm{mt})^{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ACL } \\ & (\mathrm{mt})^{1} \\ & \hline \end{aligned}$	Coastwide Age 8+ biomass (mt)	Coast- wide Depletion	Spawning output (million eggs)			
					Coastwide	California	Oregon	Washington
2011	47.8	17.0	2,188	21.4\%	219.5	78.7	108.3	32.6
2012	48.0	17.0	2,222	21.8\%	224.4	81.2	110.3	32.9
2013	51.2	17.7	2,255	22.3\%	229.1	83.7	112.3	33.2
2014	51.2	18.0	2,288	22.7\%	233.5	86.0	114.1	33.4
2015	51.2	18.3	2,320	23.1\%	237.8	88.3	115.9	33.6
2016	51.1	18.6	2,351	23.5\%	241.9	90.4	117.6	33.8
2017	51.1	18.8	2,382	23.9\%	245.8	92.5	119.3	34.0
2018	51.0	19.1	2,413	24.3\%	249.6	94.5	120.9	34.2
2019	50.9	19.3	2,444	24.6\%	253.3	96.5	122.4	34.4
2020	50.9	19.6	2,475	25.0\%	256.9	98.5	124.0	34.5
2021	50.8	19.8	2,506	25.3\%	260.5	100.4	125.5	34.6
2022	50.7	20.0	2,536	25.7\%	264.0	102.2	127.0	34.8

Decision table

Because yelloweye rockfish are currently managed under a rebuilding plan, this decision table is only intended to better evaluate the management implications of the considerable uncertainty in the base case assessment model. Various alternate management actions, including a range of SPR rates and fixed ACLs, will be compared in the rebuilding analysis. Landings in 2011-2012 are 17 mt and fleet allocation in all cases is as described above for the base case forecast.

Table g. Decision table of 12-year projections for alternate states of nature (columns) and management options (rows) beginning in 2013. Relative probabilities are based on the joint distribution of alternate historical catch levels and steepness values.

			State of nature					
			```75% of annual base-case catches before 2000 and steepness = 0.383```		$\frac{\text { Base case }}{\text { of catches before }}$2000andsteepness $=0.441$		```150% of annual base-case catches before 2000 and steepness = 0.508```	
Relative probability			0.0625		0.25		0.0625	
Management decision	Year	$\begin{aligned} & \text { Catch } \\ & (\mathrm{mt}) \\ & \hline \end{aligned}$	Depletion	$\begin{gathered} \hline \text { Spawning } \\ \text { output } \\ \text { (millions } \\ \text { eggs) } \\ \hline \end{gathered}$	Depletion	$\begin{gathered} \hline \text { Spawning } \\ \text { output } \\ \text { (millions } \\ \text { eggs) } \\ \hline \end{gathered}$	Spawning   output   (millions   Depletion eggs)	
Forecast catch calculated from 76\% SPR applied to low alternative model.	2013	11.7	19.5\%	150	22.3\%	229	25.3\%	391
	2014	11.9	19.8\%	153	22.8\%	234	26.0\%	402
	2015	12.0	20.1\%	155	23.3\%	239	26.6\%	412
	2016	12.2	20.4\%	157	23.7\%	244	27.3\%	422
	2017	12.3	20.7\%	160	24.2\%	248	27.9\%	432
	2018	12.4	21.0\%	162	24.6\%	253	28.6\%	441
	2019	12.6	21.3\%	164	25.0\%	257	29.2\%	451
	2020	12.7	21.5\%	166	25.5\%	262	29.8\%	460
	2021	12.8	21.8\%	167	25.9\%	266	30.4\%	470
	2022	12.9	22.0\%	169	26.3\%	270	31.0\%	479
Forecast catch calculated from 76\% SPR applied to basecase model.	2013	17.7	19.5\%	150	22.3\%	229	25.3\%	391
	2014	18.0	19.7\%	152	22.7\%	234	26.0\%	401
	2015	18.3	20.0\%	154	23.1\%	238	26.6\%	410
	2016	18.6	20.2\%	155	23.5\%	242	27.2\%	420
	2017	18.8	20.4\%	157	23.9\%	246	27.8\%	429
	2018	19.1	20.6\%	158	24.3\%	250	28.3\%	438
	2019	19.3	20.7\%	160	24.6\%	253	28.9\%	447
	2020	19.6	20.9\%	161	25.0\%	257	29.5\%	456
	2021	19.8	21.0\%	162	25.3\%	260	30.1\%	464
	2022	20.0	21.2\%	163	25.7\%	264	30.6\%	473
Forecast catch calculated from 76\% SPR applied to high alternative model.	2013	30.2	19.5\%	150	22.3\%	229	25.3\%	391
	2014	30.7	19.6\%	151	22.6\%	232	25.9\%	400
	2015	31.3	19.6\%	151	22.9\%	235	26.4\%	408
	2016	31.8	19.7\%	151	23.1\%	238	26.9\%	416
	2017	32.3	19.7\%	151	23.4\%	240	27.4\%	423
	2018	32.8	19.7\%	151	23.6\%	243	27.9\%	431
	2019	33.3	19.6\%	151	23.8\%	245	28.4\%	438
	2020	33.8	19.6\%	151	24.0\%	247	28.8\%	446
	2021	34.3	19.5\%	150	24.2\%	249	29.3\%	453
	2022	34.7	19.5\%	150	24.4\%	251	29.8\%	460

## Research and data needs

The available data for yelloweye rockfish are very sparse and generally weakly informative about current status. The following research topics were suggested in the 2009 assessment and are repeated here with minor modifications and additions. Progress on these points could improve the ability of this assessment to reliably model the yelloweye rockfish population dynamics in the future and provide better monitoring of progress toward rebuilding:

1. Develop and implement a comprehensive visual survey.
2. Do a scientific review of current efforts to develop and improve stock size indices for yelloweye based on IPHC (including additional stations) and make recommendations on the best approaches to develop such indices.
3. Explore a recalculation of GLMM estimates in the IPHC survey that explores station effects which allows inclusion of stations that differ over time.
4. Investigate the development of a WA recreational yelloweye CPUE based on the recreational halibut fishery. Consider a full time series and one ending in 2002, since the yelloweye RCA in waters off northern WA was implemented in 2003.
5. Encourage the collection of samples to refine the estimate biological parameters, particularly maturity and fecundity.
6. Continue to evaluate the spatial aspects of the assessments, including growth, the number and placement of boundaries between areas, as well as the northern boundary with Canada.
7. Investigate alternative ways of re-weighting. This issue is relevant for all west coast stock assessments.
8. Investigate how best to account for the variability in dates in trawl surveys through a meta-analysis. This issue is relevant for all west coast stock assessments.
9. Conduct a historical catch reconstruction for WA to match those produced for OR and CA. This issue is relevant for all west coast stock assessments.
10. Access and processing of recreational data (catch and biological sampling) currently entails differing locations and formats for data from each of the three states and RecFIN. RecFIN is difficult to use and estimates from it don't match the total mortality estimates also provided by the state agencies. A single database that holds all raw recreational data in a consistent format would reduce assessment time spent on processing these data and potential introduction of errors or alternate interpretations due to processing.
11. The IPHC data organization should be revisited. Currently biological samples cannot be linked to the station from which they were collected. Age data for 2003-2005 is disconnected from length and sex information and other unknown issues may persist in these data. A thorough evaluation of what data are reliable and a final determination of what information is lost, or can potentially be recovered, is needed.
12. Instigate discard sampling of yelloweye bycatch in the directed Pacific halibut fishery.
13. Different trends in CPUE of yelloweye in the CA recreational fishery have been identified. CPUE by port from 1980 to 2000 should be analyzed using clustering methods to identify regions with a similar demographic trajectory. This could lead to improvements in management of the stock as well as possibly inform refinements of the spatial structure of future assessment models.

## Rebuilding projections

The rebuilding projections will be presented in a separate document after the assessment has been reviewed by the SSC in June 2011.

Table h. Summary of recent trends in estimated yelloweye rockfish exploitation and stock levels from the base-case model; all values reported at the beginning of the year.

	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Commercial catch (mt)										
Total catch (mt)	4.0	2.6	5.9	5.9	5.5	9.7	6.4	3.4	5.0	NA
OFL(mt)	13.33	11.96	13.93	16.26	13.83	23.04	13.72	10.89	11.39	NA
ACL	273	52	53	54	55	47	47	31	31	32
SPR	13.53	22	22	26	27	23	20	17	17	17
Exploitation rate (catch/age	$78.7 \%$	$79.4 \%$	$78.6 \%$	$76.5 \%$	$77.5 \%$	$67.5 \%$	$79.9 \%$	$83.2 \%$	$83.5 \%$	NA
8+ biomass)	$0.7 \%$	$0.6 \%$	$0.7 \%$	$0.8 \%$	$0.7 \%$	$1.1 \%$	$0.7 \%$	$0.5 \%$	$0.5 \%$	NA
Age 8+ biomass (mt)	1789	1844	1898	1948	1991	2035	2067	2107	2148	2188
Spawning output (millions	166	172	179	185	191	197	202	208	214	219
eggs)										
(Range of states of nature)	$115-269$	$119-280$	$123-292$	$127-303$	$130-315$	$133-326$	$136-337$	$139-348$	$142-360$	$146-371$
Recruitment (1000s)	86.1	88.5	90.9	93.2	95.4	97.6	99.4	101.3	103.3	105.2
(Range of states of nature)	$54-154$	$56-158$	$57-162$	$59-166$	$60-170$	$61-174$	$62-177$	$63-181$	$64-184$	$65-187$
Depletion	$16.1 \%$	$16.7 \%$	$17.4 \%$	$18.0 \%$	$18.6 \%$	$19.2 \%$	$19.7 \%$	$20.2 \%$	$20.8 \%$	$21.4 \%$
(Range of states of nature)	$15.0-$	$15.5-$	$16.0-$	$16.4-$	$16.9-$	$17.3-$	$17.7-$	$18.1-$	$18.5-$	$18.9-$

[^0]Table i. Summary of yelloweye rockfish reference points from the base-case model.

Quantity	Estimate	Range of states of nature
Unfished spawning output ( $\mathrm{SB}_{0}$, millions eggs)	1,028	770-1,545
Unfished 8+ biomass (mt)	8,882	6,700-13,274
Unfished recruitment ( $R_{0}$, thousands)	228	178-331
Reference points based on $\mathrm{SB}_{40 \%}$		
MSY Proxy Spawning output ( $\mathrm{SB}_{40 \%}$, millions eggs)	411	308-618
Relative spawning depletion at $S_{40 \%}$	40.0\%	40.0\%
SPR resulting in $\mathrm{SB}_{40 \%}$ ( $S P R_{\text {SB40\% }}$ )	59.0\%	54.5-64.1\%
Exploitation rate resulting in S $_{40 \%}$	1.60\%	1.36-1.87\%
Yield with $S P R_{S B 40 \%}$ at $S B_{40 \%}$ (mt)	62	39-110
Reference points based on SPR proxy for MSY		
Spawning output at $S P R_{\text {MSY-proxy }}\left(S B_{\text {SPR }}\right.$, millions eggs)	275	125-526
Relative spawning depletion at $S B_{S P R}$	26.70\%	16.2-34.0\%
$S P R_{\text {MSY-proxy }}$	50.0\%	50.0\%
Exploitation rate corresponding to SPR	2.20\%	2.18-2.23\%
Yield with $S P R_{\text {MSY-proxy }}$ at $S B_{\text {SPR }}$ (mt)	58	27-111
Reference points based on estimated MSY values		
Spawning output at MSY ( B $_{\text {MSY }}$, millions eggs)	392	312-549
Relative spawning depletion at $S B_{\text {MSY }}$	38.10\%	35.5-40.5\%
$S P R_{\text {MSY }}$	57.70\%	51.5-64.4\%
Exploitation Rate corresponding to $S P R_{M S Y}$	1.70\%	1.34-2.09\%
MSY (mt)	63	39-111



Figure j. Equilibrium yield curve for the base-case model (solid line) and alternate states of nature (dashed lines), reflecting the higher and lower values for historical catch prior to 2000 and for steepness.

## 1. Introduction

This updated assessment does not attempt to reiterate all background information for yelloweye rockfish presented in the 2009 assessment document. Instead, only a few key assumptions are restated, along with a detailed description of changes made during the course of the update. Those interested in a more complete description of yelloweye rockfish life-history and the details of previous assessments should refer to the 2009 assessment (Stewart et al. 2009).

### 1.1 Distribution and Stock Structure

Yelloweye rockfish (Sebastes ruberrimus) are distributed in the northeastern Pacific Ocean from the western Gulf of Alaska to northern Baja California (Hart 1973, Eschmeyer and Herald 1983, Love et al. 2002). The species is most abundant from southeast Alaska to central California (Love et al. 2002), with adults found along the continental shelf generally shallower than 400 m . Although smaller yelloweye tend to occur in shallower water, they do not show as pronounced an ontogenetic shift as do many eastern pacific rockfish species. Yelloweye are strongly associated with rocky bottom types, especially areas of high-relief such as caves and large boulders (Love et al. 2002). Mainly solitary, it is widely believed that yelloweye are very sedentary after settlement, with adults moving only short distances during their entire lifetime.

There is relatively little direct information regarding the stock structure of yelloweye rockfish off the U.S. and Canadian coasts. The pelagic larval phase exhibited by all rockfish promotes some mixing of reproductive output, dependent on ocean currents, the duration of the pelagic phase and the timing of annual spawning in relation to annually variable spring transition and upwelling events. However, the sedentary nature of yelloweye rockfish makes adult movement among major rocky habitat areas unlikely. An unpublished genetics study (Yamanaka et al. 2001) of yelloweye rockfish collected from northern Vancouver, B.C. and SE Alaskan waters found little variability among samples and suggested a panmictic stock in the study area. Preliminary results from an analysis of yelloweye collected off Oregon, Washington, Vancouver Island B.C., and the Strait of Georgia B.C. (Lynne Yamanaka, DFO, personal communication, cited in Wallace et al. 2006) suggest that there may be genetic separation between the Strait of Georgia (inside Vancouver Island) and the outer coast (Yamanaka et al. 2006). The yelloweye population residing in the waters of Puget Sound is also thought to be isolated from coastal waters. This Puget Sound stock was proposed for listing under the Endangered Species Act (Federal Register Vol. 73, No. 52, Monday, March 17, 2008, p. 14195-14200) with the result that the stock was considered distinct and proposed to have threatened status (Federal Register / Vol. 74, No. 77, Thursday, April 23, 2009, p. 18516-18542).

A study of otolith isotope levels (Gao et al. 2010) examined ratios of $C^{13} / C^{12}$ and $\mathrm{O}^{18} / \mathrm{O}^{16}$ in 200 yelloweye rockfish otoliths from the Washington and Oregon coasts. The centroids from these otoliths showed no consistent differences, and suggest there might be a single spawning stock for this portion of the yelloweye rockfish population. Isotopic differences between otolith nuclei and the fifth annual zones may reflect changes in diet from age- 1 to age- 5 . The fifth annual otolith zones differed between Washington and

Oregon samples suggesting that the diet compositions of the two areas are slightly different, an unlikely result if appreciable numbers of age 5+ fish were moving between areas.

### 1.2 Life History and Ecosystem Interactions

Yelloweye rockfish spawn in late winter through the summer and possibly into the fall in SE Alaska (Love et al. 2002). Little is known about the pelagic juvenile phase, but recruiting juveniles settle in both shallow and deeper depths, often observed in the same areas as adults. These young juveniles are very conspicuous, and easy to identify, due to having markedly different coloration than adults.

Adult yelloweye rockfish are large-bodied, reaching lengths up to 91 cm (Eschmeyer and Herald 1983, Love et al. 2002). They are long-lived (the oldest observed age is 147 years, from Washington in 2005), late-maturing and slow growing. These lifehistory characteristics would suggest that yelloweye are relatively unproductive and very sensitive to exploitation. This is compounded by their status as an aggressive top-predator on rocky reefs, making hook-and-line gear highly effective, even gear designed for much larger species such as halibut and lingcod. Adult yelloweye are piscivorous predators eating most small pelagic and groundfish species as available.

The cohabitation of adult and juvenile yelloweye likely results in some cannibalism, and large changes in predator biomass (such as the rebuilding of lingcod, Ophiodon elongatus, in recent years) could have a strong feedback to juvenile survival and therefore stock productivity. Many rockfishes have shown decadal changes in productivity linked to ocean conditions, and it would not be surprising if yelloweye exhibited similar trends, although this is uncertain. There is evidence that changes in otolith ring width (and likely growth) are correlated with some of the leading environmental indicators of ocean conditions along the west coast (Black et al. 2008). It is very uncertain how future climate change will influence west coast yelloweye growth, productivity or distribution.

### 1.3 Historical and Current Fishery

Yelloweye rockfish have historically been a prized catch for both commercial and recreational fleets. They have generally yielded a higher price than other rockfish and have therefore largely been retained when encountered, except in recent years when all retention has been prohibited. Throughout the exploitation history, yelloweye were targeted primarily with line-gear due to their affinity for rocky, and largely untrawlable, habitat.

Rockfish catches are recorded back to the beginning of the $20^{\text {th }}$ century, primarily in California, but appreciable quantities were not landed until an early peak around World War II (Ralston et al. 2010). A small fraction of these early catches were yelloweye rockfish. Total removals gradually increased until around 1970 and then increased very rapidly with increases in effort, advances in fishing technology, and the evolution of markets (Table 1, Figure 1). The late-1970s to the late-1990s saw the highest yelloweye catches of the time-series. Since 2002, when yelloweye were declared overfished, total catches have been maintained at much lower levels. Yelloweye are currently caught only incidentally in commercial hook-and-line and sport fisheries targeting other species that are found in association with yelloweye.

### 1.4 Management History and Performance

The management history is described in detail in the 2009 assessment (Stewart et al. 2009). Following the yelloweye assessment in 2001 (Oregon and California) which found the stock to be depleted and resulted in an overfished determination in 2002, an individual OY for the stock was established, at a small fraction of prior catches. In November 2001, the Council adopted a total annual catch limit (ACL) of 13.5 metric tons ( mt ) for yelloweye for all 2002 commercial, recreational, and tribal fisheries combined for Northern California (Eureka INPFC area), Oregon, and Washington. This was an interim level that allowed for fisheries to take place and potentially catch yelloweye along with other fish, but did not allow prosecution of fisheries that directly targeted yelloweye. Based on the 2002 assessment results (Methot et al. 2002), the Council adopted an ACL of 22 mt for 2003. Since 2002, total catch has been below both the annual OFL and ACLs, which were based on rebuilding analyses which indicated that very long time-periods would be required to rebuild the stock to target levels (Table 1). These catch levels represent a 95\% reduction from average catches observed in the 1980s and 1990s. Since 2002, the total 8-year cumulative catch ( 130 mt ) has been only $69 \%$ of the sum of the ACLs for 2002-2010 and only $39 \%$ of the sum of the OFLs for that period. The total 2010 catch ( 11.4 mt ) is estimated to be just $3 \%$ of the peak annual catch that occurred in the early 1980s (Table 2).

### 1.5 Fisheries in Canada and Alaska

The background provided in the 2009 assessment on Canadian and Alaskan fisheries for yelloweye rockfish has not been updated for this assessment.

## 2. Assessment

The following sources of data were used in building this assessment:

1) Fishery independent data: including relative abundance indices, length and age data from the International Pacific Halibut Commission's (IPHC) longline survey 1999-2010, and the NWFSC and Triennial bottom trawl surveys 200320010 (NWFSC survey) and 1980-2004 (Triennial survey).
2) Estimates of fecundity, maturity, length-weight relationships and ageing error from various sources.
3) Informative priors on natural mortality and stock recruit steepness derived from other fish and yelloweye stocks.
4) Commercial (targeted and bycatch) and recreational catch estimates from 1916-2010.
5) Commercial and recreational fishery biological data (age and length) from 1968-2010.
6) Fishery dependent catch-per-unit-effort series from recreational and charter observer programs from all three states.
Data availability by source and year is presented in Table 3. A description of each of the specific data sources is presented below.

### 2.1 Fishery-Independent Data

### 2.1.1 International Pacific Halibut Commission Survey

The International Pacific Halibut Commission (IPHC) has conducted an annual longline survey for Pacific halibut off the coast of Oregon and Washington (IPHC area "2C") since 1997 (no surveys were performed in 1998 or 2000). Beginning in 1999, this has been a fixed station design, with roughly 1,800 hooks deployed at 84 locations each year station locations differed in 1997 and are therefore not comparable with subsequent surveys. Rockfish bycatch, mainly yelloweye, has been recorded during this survey, although values for 1999 and 2001 are estimates based on subsampling the first 20 hooks of each 100 -hook skate. The gear used to conduct this survey, while designed to efficiently sample Pacific halibut, is similar to that used in some earlier line fisheries that targeted yelloweye, and should be capable of sampling at least the adult population. Some variability in exact sampling location is practically unavoidable, and leeway is given in the IPHC methods to center the set on the target coordinates but to allow wind and currents to dictate the actual direction in which the gear is deployed. This can result in different habitats accessed at each fixed location among years.

Yelloweye catch has historically occurred at very few of the 84 stations in the design (Table 4). There are 27 stations in Washington waters, but yelloweye have been captured at only a small subset of these, with 476 fish being observed from 1999-2010. Similarly, in Oregon yelloweye are only observed at a small portion of the total station (57 total stations), with 1479 fish being observed from 1999-2010.

The IPHC longline survey catch data were standardized using a Generalized Linear Model (GLM) with binomial error structure. Catch-per-hook was modeled, rather than catch per station due to the variability in the number of hooks deployed each year. The binomial error structure was logical, given the binary nature of capturing a yelloweye rockfish on each longline hook or not. See the 2009 document (Stewart et. al 2009) for a more detailed description of survey design and methods. The re-analysis of the full time series with two years of additional data made little difference in the estimates for the years available at the time of the previous assessment.

As in 2009, the individual indices for Oregon and Washington are highly variable, with some mixed signals, but very little overall trend. The index trends were somewhat downward from 1999 through 2006, but have shown some increases since then. Given the small sample sizes in the surveys, substantial variability and uncertainty is to be expected. Nevertheless, this survey may be the best index of relative abundance available, as it is based upon sampling the adult yelloweye rockfish population in habitats where it is most abundant.

Biological samples were collected from yelloweye during the course of the IPHC survey. Length and sex information was recorded at sea, and age structures were retained for later ageing by Washington Department of Fish and Wildlife (WDFW) staff.

Length frequency distributions indicate that the IPHC survey caught very few fish smaller than 40 cm , consistent with the use of large hooks intended for halibut, the target species.

Age-frequency data from recent (2006-2010) IPHC surveys were compiled as conditional age-at-length distributions by state, sex and year. This treatment of age data from the survey is consistent with the previous full assessment in 2009. Age distributions
included 64 bins from age 2 to age 65, with the last bin also including all fish of greater age. The choice of these bins reflects the lack of any source for fish younger than age 2 , and the need to reduce the computational time by limiting the total number of age bins for each entry. Most data series in the assessment model included very few fish greater than 65 years old; however they were most common in the IPHC survey.

Nearly all fish sampled for length were also aged (Table 5). To aid in inspecting the full conditional age-at-length distributions, they are displayed graphically for each data set in this assessment via the entire matrix of age distribution-at-length. The IPHC age data show many fish older than 65 years in both states, with somewhat more older and larger fish present in Washington than in Oregon.

In aggregate, these age data appear relatively sparse, provide only a short timeseries, show no coherent cohort structure and are unlikely to provide much more than estimates of the growth parameters and the diffuse information that there are more old fish remaining in Washington than in Oregon.

### 2.1.2 Triennial Bottom Trawl Survey

The triennial shelf trawl survey conducted by NMFS starting in 1977 (Dark and Wilkins 1994). The 2009 assessment contains a thorough description of the survey and methods for analyzing the data for use in the yelloweye assessment, which were used for Washington waters only. The data for this area are unchanged from those used in the 2009. As in 2009, the 1977 sample was excluded, and the remaining years were broken into two pieces (1980-1992 and 1995-2004), due to differences in survey timing (Stewart et al. 2009).

As in 2007 and 2009, an index of abundance based on a Generalized Linear Mixed Model (GLMM), including vessel-specific differences in catchability (via inclusion of random effects), was calculated for the survey time series. The GLMM approach explicitly models both the zero catches as well as allows for skewness in the distribution of catch rates through the use of a Gamma or lognormal error structure. This update's GLMM index was generated using the same basic method, but reprogrammed by John Wallace using an R package which calls OpenBUGS (http://www.openbugs.info/) from the statistical language R. The changes in index values associated with this software update were minimal.

The updated index values were very similar to those used in the 2009 assessment, showing a relatively flat trend over both the early and late portions of the survey (Figure 2). Survey length-frequency distributions from the triennial survey are unchanged from those used in 2009.

### 2.1.3 NWFSC Bottom Trawl Survey

The NWFSC shelf and slope trawl survey time series has been extended through 2010. Three sources of information are produced by this survey: an index of relative abundance, length-frequency distributions, and age-frequency distributions. See the 2009 document (Stewart et. al 2009) for a more detailed description of survey design and methods.

The biomass index was analyzed using the updated GLMM software described above for the triennial survey. Following the 2009 assessment, this index was only computed for tows in Washington, which was a choice based on insufficient samples in Oregon and California. The data was insufficient to estimate vessel-specific differences in
catchability, so the random effects were not included in this analysis. As in the previous assessment, the resulting index shows a relatively flat trend with the exception of a very large value for 2003, a function of the single very large catch in that year. The additional years (2009 and 2010), and small increases in the index values for 2009 and 2010 relative to 2008, with the estimate 2009 the greatest uncertainty of all points in the timeseries, due to having only 1 tow with yelloweye present, but catching 7 yelloweye in that tow, which is above average for this survey.

The length-frequency distributions for the NWFSC survey from 2003-2010 were constructed using the same size bins as other data sources. These observations are based on very few fish, between 7 and 35 per year. Most notably, the NWFSC length-frequency data show a very truncated size range; almost no fish larger than 60 cm were observed in any year of the survey. Fish less than 20 cm in length are rare, perhaps slightly more so than in the triennial survey. As is the case for the yelloweye length- and age-compositions from other fishery independent sources, neither clear trends, nor visible signs of cohorts appear in the biological data. Age structures were collected for nearly all yelloweye encountered by the NWFSC survey, but have not yet been read and are therefore unavailable for this assessment.

### 2.1.4 Visual Surveys

Yelloweye are a conspicuous member of the Sebastes genus, relatively easily identified during underwater visual surveys conducted by scuba-divers, manned or unmanned underwater vehicles. Density estimates for yelloweye rockfish have provided the basis for recent summaries of yelloweye rockfish population trends and abundance in both southeast Alaska and British Columbia waters (Yamanaka et al. 2006, Brylinsky et al. 2007, Brylinsky et al. 2008). An extensive effort was made specifically for this assessment to summarize existing density estimates from published and unpublished visual studies (W. Wakefield and J. Clemens, NWFSC, personal communication). These estimates, although not strictly comparable among all studies (in many cases the survey locations were nonrandom, or even selected based on predicted abundance of yelloweye and other species of interest), generally show lower-though variable-yelloweye density off the U.S. west coast compared to British Columbia or southeast Alaska (Stewart et al. 2009). Clear trends over time are not evident, but the observation that at least some locations in California may harbor relatively high densities suggests it is not outside the core range of the species.

### 2.1.5 Research Removals

Research catches have historically represented only a tiny fraction of the total removals from the yelloweye rockfish population. However, as total mortality has been substantially reduced in recent years, the relative contribution of research removals to the total has increased. This was particularly true in 2007, when research catches totaled 1.7 mt , or $8 \%$ of the total estimated removals from the stock. Research catches are included in estimates of total commercial catch, ensuring that all known sources of current mortality are accounted for in recent years.

### 2.2 Biological Data

A number of biological parameters were kept at the values used in the 2009 assessment, which were the result of estimates outside of the assessment model. These
included the weight-length relationship, the maturity-at-length relationship, and the fecundity-at-weight relationship (Table 13). Values for these relationships are treated as fixed and therefore uncertainty reported for the stock assessment results does not include any uncertainty associated with these quantities. The ageing imprecision and bias estimates used for this update are also the same as those used in 2009. That document provides a description of the data and methods upon which they are based.

A sex-specific natural mortality rate was estimated in this update by applying the identical prior type, mean, and standard deviation to that used in 2009 (Figure 5).

### 2.3 Fishery-Dependent Data

### 2.3.1 Historical Commercial Catches

The historical commercial catch reconstruction used for this assessment represents an amalgamation of newly available data (unused in previous assessments), and portions of the reconstruction created for the 2009 (and earlier) assessment retained as the best estimates where no additional improvements could be made. The results of this effort, by modeled fishing fleet, are provided in Table 1 and Figure 1. The sources and methods used are summarized by state below.

As in the 2009 assessment, commercial landings in California for the period 19161968 relied on estimates from the recent reconstruction efforts by SWFSC and California DFG scientists (Ralston et al. 2010). From 1969 to 2008, CalCOM (documentation: 2004) estimates of yelloweye catch were used. These estimates were updated in June, 2009 to reflect the changes made during that month. Changes in this database among recent assessments illustrate how sensitive the annual totals for individual species are to application of sparse species-composition sampling data to time-varying market categories. A summary of the CalCOM catch estimation concluded that prior to 1992 "many of the landing estimates are not based on actual sampling, which could explain why they are highly erratic" (Pearson et al. 2008); they concluded those earlier landings were unreliable, but later years (from 1992 through 1996) were generally reliable.

Historical landings of yelloweye rockfish in Oregon were provided by Oregon Department of Fish and Wildlife (ODFW), which in collaboration with Northwest Fisheries Science Center (NWFSC), conducted a reconstruction of west coast groundfish landings in Oregon for the years 1892-1986. Catches were only 3.5 tons or less for the years 18921915, so the starting date for the model was kept in 1916 as used in the 2009 assessment. Future full assessments could extend the timeseries back to 1892, but this is likely to make very little differences in the results.

Historically, rockfish in Oregon were landed in three mixed species market categories, including ROCKFISH (also known as Other Rockfish or Unspecified Rockfish), POP (Pacific Ocean Perch) and ANIMAL FOOD (also called Mink Food or Miscellaneous by some sources).

The Oregon historical reconstruction included four steps:

1. Determine the annual landings in each market category by gear;
2. Derive species compositions for each market category by gear, year and spatial stratum (when available);
3. Apply the year and gear specific species compositions to the historical landings in each market category (from Step 1) to obtain a species-specific time-series of landings;
4. Sum the species-specific landings by gear across market categories to obtain a final per-species time-series of landings in Oregon.
A variety of data sources were used to reconstruct historical landings of each market category, including Oregon Department of Fish and Wildlife's pounds and value reports derived from the Oregon fish ticket line data (1969-1977), Fisheries Statistics of the United States (1927-1977), Fisheries statistics of Oregon (Cleaver 1951, Smith 1956), Reports of the Technical Sub-Committee of the International Trawl Fishery Committee (1942-1975) and many others.

Trawl species compositions of market categories were derived from historical sampling program of Oregon trawlers conducted by ODFW between 1963 and 1993 (Douglas 1998). The spatial strata used to derive trawl species compositions were defined by PMFC areas and depth of the catch ( $<50 \mathrm{fm}, 51-80 \mathrm{fm}, 81-120 \mathrm{fm}$ and $>120 \mathrm{fm}$ ). For nontrawl catches the earliest available species compositions were assumed for the historical period.

The detailed description of the sources used and the methodology employed in the Oregon reconstruction efforts is available in Gertseva et al. (2010) and Karnowski et al. (2011).

Beginning in 1987, the commercial catch estimates from the 2009 assessment were used, which were based on summary catch from the PacFIN system.

For the state of Washington there was also no comprehensive historical reconstruction that could be used directly for this assessment, so historical catch was kept identical to the values used in the 2009 assessment.

The net result of the historical catch reconstruction is shown in Figure 1 and Table 1. In aggregate, the estimated removals from commercial sources are based on sparse sampling of shifting market categories for a rare contributor to the total. Species compositions have been shared across years, areas and sectors, even in the decades. The degree of uncertainty in commercial catch should be an integral part of the conclusions drawn from this assessment.

### 2.3.2 Historical Recreational Catches

Estimates of recreational catch from 1981-2007 remain unchanged from the 2009 assessment. For the most recent years, 2008-2010, updated state estimates are included. Estimates of recreational catch must be far more uncertain than those from commercial sources, due to a much less rigorous sampling program until very recently. For many west coast rockfish species, uncertainty in the recreational removals is relatively less important due to the small magnitude of these removals relative to commercial fisheries; however this is not the case for yelloweye rockfish. Yelloweye have been, until as recently at 2002, one of the most sought-after groundfish species captured by recreational fishermen. Release mortality for yelloweye is generally assumed to be very high, although sample sizes for existing studies are extremely small (e.g., 2 fish in Hannah and Matteson 2007).

For this yelloweye assessment, the recreational catch in the years 2008-2009 have been updated using the values from the total mortality reports (Bellman et al. 2010a, Bellman et al. 2010b), which were provided by each state. These values differ from total mortality estimates calculated from the RecFIN database, but due to various inconsistencies and useability problems with the RecFIN database, the total mortality reports are a more reliable source.

### 2.3.3 Foreign Catches

Foreign catches are included in the catch estimates for trawl fleets by state (Table 1), as was done in the 2009 assessment.

### 2.3.4 Recent Removals (2002+)

Catches explicitly include discards beginning in 2002 when management restrictions have resulted in nearly all yelloweye caught by recreational and commercial fishermen being discarded at sea. Recent catches were based on current total mortality estimates (2002-2009) produced by the West Coast Groundfish Observer Program (WCGOP) and the GMT scorecard (2010). Although these sources are relatively comprehensive in covering all sources of mortality, incidental removals occurring in nongroundfish sectors, such as the fixed-gear halibut fishery are not routinely observed, nor included in these estimates. The methodology used by WCGOP for estimating total mortality has been revised and improved, so the commercial catch for the whole period (2002-2009) has been updated for this assessment. The differences in the overlapping years differ from the 2009 assessment by less than 2 tons for all combinations of year and state.

In aggregate, all sources of removals have been below both the OFL and ACL set for each year. These catch levels represent a 95\% reduction from average catches observed in the 1980s and 1990s. Managers have constrained catches by eliminating all retention of yelloweye rockfish in both commercial and recreational fisheries, instituting broad spatial closures, some specifically for moving fixed-gear fleets away from known areas of yelloweye abundance, and new gear restrictions intended to reduce trawling in rocky shelf habitats and the coincident catch of rockfish in shelf flatfish trawls. During 2002-2010, the total cumulative estimated yelloweye mortality ( 130 mt ) represented only $69 \%$ of the summed ACLs and only $39 \%$ of the summed OFLs for that period. The total 2010 catch (11.4 mt) is just $3 \%$ of the peak annual catch that occurred in the early 1980s.

### 2.3.5 Fishery Catch-Per-Unit-Effort

There are four indices of recreational fishery catch per unit effort that were developed for previous assessments and are included in this update. Methods used to calculate these time-series are described in the 2006 document. The individual indices are described below by state.

The California recreational CPUE series begins in 1980 and ends in 1999 with a gap between 1986 and 1993. The data from this CPUE series remains unchanged from the 2009 assessment. The Oregon recreational CPUE series is unchanged from the 2009 assessment. This series begins in 1979 and ends in 1999 with gaps in 1985 and 1997. The Washington recreational CPUE series begins in 1990 and extends through 1999. The data from this CPUE series remains unchanged from the 2009 assessment.

A new fishery dependent CPUE series was developed for the 2009 assessment based on the recreational charter observing program in Oregon. This program sends samplers on charter sport fishing trips where they record the catch rates and size distributions of yelloweye rockfish for as many anglers as they are capable of monitoring. The CPUE series was updated with data from 2009 and 2010 and was included in the update assessment.

A relative index of abundance from these data was fit using the statistical approach that was applied to the IPHC survey (described in Stewart et al. 2009). Binary data of
whether a yelloweye rockfish was captured on each hook of each drift was analyzed with a binomial GLM. Auxiliary variables considered included: port (with sparse observations included in an aggregate port category), day of the calendar year, and depth at which fishing was conducted. In the final model, year and port group were used as factors with a fourth degree polynomial of depth and a second degree polynomial of the number of days into the calendar year.

### 2.3.6 Fishery Biological Data

Length-frequency distributions were developed for each fleet (recreational or commercial) for which observations were available, following the methods used for the 2009 assessment. The same bin structure ( 2 cm ) was used as for fishery independent observations. Sampling statistics (number of samples and number of individual fish) for each fleet and year (Table 9-10) clearly show the different sampling targets employed over different time periods and between state agencies.

The California recreational fishery has yielded a small but relatively consistent number of samples since the early 1990s. Only measured lengths, not length converted from other measurements, are included in the length-frequency observations (this excludes many observations from the earlier years in California). The recreational charter boat sampling program produced over 1,800 lengths during the period 1987-1998. Oregon has collected most of the recreational length data (both sexed and unsexed), while Washington provided samples beginning only in the late 1990s. California provides the majority of the commercial lengths from 1978 to 2007, with sampling in Oregon and Washington beginning only in the early 1990s.

As with the fishery independent data described above, ages from recreational or commercial fisheries, are compiled as conditional age-at-length observations by two cm size bin. There are very few yelloweye ages available from the recreational fisheries (Table 11), and no new recreational age data since the previous assessment. All three states have collected a few ages, but there have been only a total of 83 samples collected from all recreational sources available for this assessment. Commercial age data are not much more numerous than those from recreational sources. Sparse sampling was conducted in the 1980s in California (resulting in only 52 useful ages). Since 2001, the majority of commercial fishery age data were from Washington, including the only new samples since the 2009 assessment (Table 12).

### 2.4 History of Modeling Approaches

### 2.4.1 Previous Assessments

The 2009 assessment document contains a detailed description of the history of yelloweye rockfish assessments.

### 2.4.2 Pre-Assessment Workshop, GAP and GMT Input

Because this is an updated assessment, there was no formal or informal discussion of data, modeling or management issues for 2011. This has been a valuable part of the assessment process in recent years and should be continued in the future.

### 2.4.3 Response to STAR Panel Recommendations in 2006

The STAR panel report from the 2006 review (the 2007 assessment was an update, and did not go through the STAR process) identified a number of recommendations for future assessments. As this was an updated assessment these issues were not revisited, but are reiterated here for consideration in future yelloweye and other assessments. Although all these recommendations could not be addressed for 2009, progress on each is summarized below:

1) In the current assessment model, catches are assumed known without error. Because yelloweye rockfish are relatively rare in the fisheries, catches are estimated with considerable error. Ignoring this source of uncertainty will lead to an overestimation of model precision. Future assessments should allow catch to have some error to better propagate this key uncertainty to model estimates. SS2 should be modified to allow error in the catch data. This should not be difficult to code, although it may cause some problems with convergence that may require attention. Allowing for some autocorrelation in F might improve the estimation.
Preliminary investigation into the direct integration of uncertainty in catches via estimated parameters for annual $F$ s indicated that it would not be feasible to integrate over the very broad distribution of possible catches in this manner. The method would probably be much more appropriate for assessments where only some portions of the catch has very great uncertainty associated with points estimates, however for yelloweye the entire time-series for all sectors is very uncertain. The choice of representing catch uncertainty via alternate states of nature represents an imperfect solution, but does attempt to provide those evaluating the results of this assessment with insight into the sensitivity of the model scale to historical catches.
2) Formal estimates of uncertainty in catch should be produced by modeling the species composition sampling process. This will require an extended analytical effort, but it should be doable. The analysis may lead to using model-based estimates for missing cells, rather than substitution, which may change the best estimates of catch somewhat. Estimates of uncertainties in the total unclassified rockfish landings and in the species fraction estimates in the earlier years may still have to be assumed.

This topic was not addressed specifically, but it should be noted that model-based catch estimators are an available tool for ongoing state-specific catch reconstructions. It is likely that all three states will have some level of comprehensive catch reconstruction completed for the 2011 assessment cycle; however, the authors are unaware of further exploration of model-based methods for these reconstructions.
3) Obtain data from Canada for a truly stockwide model.

This topic has been raised with Canadian scientists and may be more realistically possible after current (2009, L. Yamanaka, personal communication) assessment efforts for coastal waters of B.C. are completed.
4) Continue efforts on the fishery independent survey programs. The most promising should be expanded stockwide.

Although a number of projects are being evaluated in 'pilot' studies (e.g., open-ended trawls with cameras, AUV surveys, and others) it is likely to be several years (at a
minimum) before any of these can produce results that might be directly useful as data in a stock assessment framework.
5) Consider an assessment model incorporating several rockfish species simultaneously.

The use of the meta-analysis for stock-recruit steepness is a step in this direction, but a formal process for developing (and reviewing) multiple-species assessments needs to be created before this will be a realistic option for stock assessment authors. The approach may be best tested in a 'research-mode' analysis before being applied to a 'production' assessment.
6) The panel recommends that aging error be explored again in future assessments. The panel was not completely comfortable with decreasing aging error as age increased as is currently in the base model. The panel discussed that it seemed counterintuitive that fish would become easier to age as they became older, and evidence for this pattern was sparse. However, removing the trend in aging error (to either a constant SD or CV) had small effects on model estimates.

This topic has been resolved using current double-read data and analysis software (see section 2.2.5 above).
7) Data are sparse in the most recent years of the model since the fisheries have been closed. Because of this, there is considerable uncertainty about current age and size structure of the population as well as uncertainty because most of the CPUE time series end in 2001. This uncertainty will become worse for future assessments if no new data streams are added. The best types of data to add would be surveys that estimate absolute abundance such as the submersible survey conducted in 2001. This survey would need to be expanded to include Oregon and California waters. Another option would be to continue and expand the IPHC survey.

As soon as actual data are produced by alternate survey methods it should be incorporated into the yelloweye stock assessment. It may be of little value to perform frequent full stock assessments if no new sources of (higher) quality data become available.

### 2.5 Model Description

### 2.5.1 Link from the 2009 to the updated assessment model

The bridge from the 2009 stock assessment model to the current base case followed two steps: 1) upgrade to the newest version of SS, and 2) add all new data inputs, including the new Oregon catch reconstruction, recent catch for each fleet, biological data, and extended and re-analyzed GLMM-based indices of survey abundance.

The Stock Synthesis version was updated from 3.03b used in the 2009 assessment to the latest version available (3.21e). The change due to updating the to the latest software version was extremely small, with changes in estimates of 2009 spawning biomass and depletion amounting to less than $0.01 \%$ of the values in the previous assessment when the model was configured in the same manner despite many new (and unused for this update) features.

The effect of the new composition data, extended indices, and the Oregon historical catch reconstruction on estimates of equilibrium biomass and current status were also quite small, and are described in detail below.

### 2.5.2 Summary of Fleets

As in the 2009 assessment, fishery removals were divided among six fleets: 1) California recreational, 2) California commercial, 3) Oregon recreational, 4) Oregon commercial, 5) Washington recreational, and 6) Washington commercial. The California CPFV index of relative abundance and the length frequency distributions from this source are assigned the selectivity from the California recreational fishery. The Oregon charter observer index is treated separately (selectivity estimated independently) from the Oregon recreational fleet. The IPHC data is modeled by state, with each survey utilizing separate selectivity and catchability parameters. There were only sufficient data for a Washington triennial survey index and an Oregon NWFSC survey index, so each had its own fleet. The data available for each fleet are described in Table 3.

### 2.5.3 Modeling Software

This assessment used the Stock Synthesis modeling framework written by Dr. Richard Methot at the NWFSC. The most recent version (3.21e) was used, since it included many improvements in the output statistics for producing assessment results and several corrections to the older version (3.03b) used during the 2009 assessments.

### 2.5.4 Priors

As in the 2009 assessment, uniform (and intended to be noninformative) priors were applied to all estimated parameters in the base-case model with only three exceptions where additional information was available (natural mortality, described in section 2.2.4, and steepness, described below). Parameter bounds were selected to be sufficiently wide to avoid truncating the searching procedure during maximum likelihood estimation. A list of all parameter bounds and priors are provided in this document (Table 14).

In addition to the priors for natural mortality, an informative prior for stockrecruitment steepness ( $h$ ) is used for the base-case model. The use of a prior on stockrecruitment steepness based on meta-analysis of rockfish (original basis: Dorn 2002) has become standard practice for U.S. west coast stock assessments. This prior has been kept at the same value used in the 2009 assessment, which was found to be relatively uninformative in that analysis (less than two units of negative log-likelihood over most of the acceptable range for $h, 0.2-1.0$ ).

### 2.5.5 Sample Weighting

The approach to sample weighting remains unchanged from the 2009 assessment. The resulting changes in weighting adjustments (Table 15) were minor. This approach attempts to reduce the potential for particular data sources to have a disproportionate effect of total model fit, while creating estimates of uncertainty that are commensurate with the uncertainty inherent in the input data.

### 2.5.6 General Model Specifications

Stock synthesis has a broad suite of structural options available for each application. These options were configured in the newest version to almost exactly match the behavior of the 2009 model.

This assessment is structured to be sex-specific, including separate growth curves for males and females, and therefore tracks the spawning output of only females for use in calculating management quantities. Growth parameters describing the von Bertalanffy growth equation, as well as the spread of lengths for a given age, were estimated for each sex, except that the length at age one year was forced to be identical for males and females. The parameterization used by Stock Synthesis allows the user to specify the age for the two growth parameters (rather than the length at age zero and the implied length at infinite age). Ages one and 70 were selected to be close to the range of observed data. Based on preliminary analyses, this choice had little effect on estimated growth curves. A list of the growth parameters, bounds and priors is given in Table 14. Natural mortality was freely estimated for each sex, based on the a priori evidence that it might differ for males and females.

For the internal population dynamics, ages 0-100 are individually tracked, with the accumulator age of 100 determining when the 'plus-group' calculations are applied. This relatively large number of ages substantially increases the memory and computational requirements of the model. However, this specification is necessary to define a plus-group in which little individual fish growth is expected, since the model does not apply further growth increases to fish in the plus-group.

Three explicit areas are included in the base-case model, representing the three states: California, Oregon and Washington. Although these are political rather than strictly biological boundaries, the yelloweye population appears to be fragmented enough, and adult movement is likely small enough, that the exact placement of these lines is of little importance. What is known to be important (and related to states rather than biology) is the vastly different exploitation history among the three areas from the historical period to the current fishery. Growth is assumed to be identical among the three areas, largely due to the sparseness of the data. Recruitment dynamics are governed by a global stock-recruit function (using spawning output based on the fecundity relationship, rather than strictly spawning biomass as is common among assessments). This relationship is parameterized to include two estimated quantities: the log of unexploited equilibrium recruitment ( $R_{0}$ ) and steepness (h). Recruitment is partitioned via estimation of one additional parameter for each area after the first, which are then renormalized to allocate the total recruits among the areas. The base case does not allow for process error in the stock recruitment relationships (either over time or areas) although this was investigated extensively during preliminary model building and via sensitivity analyses.

No seasons are used to structure removals or biological predictions, so data collection is assumed to be relatively continuous throughout the year. Fishery removals occur instantaneously at the mid-point of each year and recruitment on the $1^{\text {st }}$ of January. Since the time-series is started in 1916, the stock is assumed to be in equilibrium at the beginning of the modeled period. The sex-ratio at birth is fixed at 1:1, although sex-specific natural mortality, size-based selectivity, and dimorphic growth can result in significant departure from equality due to differential mortality over age and sex.

### 2.5.7 Estimated and Fixed parameters

A full list of all estimated parameters and values of key parameters that are fixed is provided in Table 14, this parameter estimation framework remains unchanged from the 2009 assessment.

A two-parameter logistic function was used to represent the selectivity for all fishing fleets and for the IPHC survey. For all indices of abundance, catchability parameters were solved for analytically, except for the triennial survey, where allowing for a change (unrestricted) in catchability for the time-series including and after 1995 required the direct estimation of catchability for each period. For the historical fishery-dependent time series, where the basic assumptions of CPUE analysis were likely violated, there were four additional parameters estimated to allow for a non-linear relationship between the index and modeled population abundance.

In total, there were nine estimated growth and mortality parameters, four parameters governing the stock recruitment relationship, six catchability related parameters (and seven analytic solutions which could have been treated as estimated parameters), and 23 parameters describing selectivity curves.

### 2.6 Model Selection and Evaluation

### 2.6.1 Key Assumptions and Structural Choices

Following the terms of reference for an updated assessment, all assumptions and structural choices remained unchanged, and were not reevaluated for 2011.

### 2.6.2 Alternate Models Explored

A 'standard' update, ignoring the newly available historical catch reconstruction is presented for comparison with the base case presented here.

An extensive evaluation of dome-shaped vs. asymptotic selectivity curves for commercial, recreational and survey fleets was performed as part of the 2009 assessment. In the previous assessment, models very similar to the base case were fit while allowing each fleet to have dome-shaped selectivity. With only one exception, the NWFSC survey, all fleets produced asymptotic curves, requiring the application of informative priors on the descending limbs or fixed parameter values to ensure all parameters remained contributors to the objective function (i.e., when the final selectivity is estimated to be close to 1.0 , then the descending width parameter is irrelevant to model fit and if not somehow informed can cause estimation instability). This exercise was repeated across fleets to determine whether additional flexibility was needed beyond a single parameter describing the ascending limb of the selectivity curve. This was found to be the case for the triennial survey, so an additional parameter was estimated, although little change was observed in model results. This exercise was repeated as part of the 2009 STAR panel review, focusing on the IPHC selectivity for Oregon which was found to fit slightly better with dome-shaped selectivity.

This exercise was not repeated here, but should be in the next full assessment.

### 2.7 Base-case model Results

The biological (growth and mortality) parameters estimated from the base case and alternate models appear to be quite reasonable (Table 16) and commensurate with inspection of the raw data. These parameters are relatively precisely estimated, both in terms of the asymptotic standard error estimates (Table 18) and the alternate states of nature (Table 16). Comparison between the 2009 assessment and the current analysis (Table 18), indicates very little change in parameter estimates due to the new data. Female and male yelloweye rockfish showed similar growth trajectories, beginning to diverge at
approximately age 10; with males growing to a maximum size ( 66.7 cm ) that was about 2.3 cm larger than females (Figure 7). The estimates of growth are almost identical to those in the 2009 assessment (Table 18).

The estimated natural mortality rates for males and females are nearly identical, with females slightly higher than males for both of the alternate states of nature. The estimated female value for the base case, 0.046 , is just below the 0.047 estimate from the 2009 assessment and remains consistent with the very protracted age-structure observed in the population.

Estimated selectivity curves for the fishing fleets exhibit the expected pattern that the recreational sectors in all three states access somewhat smaller yelloweye than the commercial fisheries (Figure 8-10). This pattern is most pronounced in Oregon, and, also as expected, the recent charter fishing selectivity is shifted further toward smaller fish. Estimated selectivity curves for the IPHC surveys in both Oregon and Washington appear to access the largest yelloweye available, with Washington especially shifted slightly more than 10 cm larger than Oregon (Figure 11). The NWFSC trawl survey selects far more small yelloweye than did the triennial survey (Figure 12). The decline in selectivity in the NWFSC at about 60 cm is similar, but even more pronounced than the previous assessment.

The base-case model predicts a relatively flat trend through the yelloweye index from the IPHC survey both the Washington and Oregon (Figure 13). The poor residual pattern for the Oregon index (5 positive residuals followed by 5/6 negative residuals) seems unlikely to occur by chance, however, it also seems unlikely, given the life-history characteristics of yelloweye rockfish that any model could predict the negative offset seen between the 2004 and 2005 or 2008 and 2009 survey estimates. This seems likely to be the result of some interaction between survey design and availability of yelloweye at the relatively few stations where they are present in this survey.

The base-case model fits the NWFSC (Figure 14) and triennial (Figure 15) trawl survey indices as well as expected, given the small number of positive hauls on which they are based and the relatively small contribution to the total likelihood value.

Fits to the fishery CPUE series are generally good, tracking the declining trends in California through the 1990s (Figure 16). However, the model exhibits poor fit to the increasing trend in the 1980s portion of the California recreational index. For the Oregon recreational index, the model again tracked the overall decline in the 20-year index, but little of the interannual variability (Figure 17). The Oregon recreational observer index showed a small and very uncertain increasing trend, but during the extent of these observations (2004-2010) the estimated degree of rebuilding among fish available to this fishery has been almost imperceptible. With relatively large variances on many of the observations, the Washington recreational index provided a flat trend, which was largely matched by the slightly declining predictions (Figure 18).

The base case model fits the length distributions from the IPHC surveys in Oregon (Figure 19, Figure 20) and Washington (Figure 21, Figure 22) reasonably well. The few new length samples from the NWFSC survey are consistent with previous data, and the continued absence of samples over 60 cm explains the even stronger domed shape in the estimated selectivity curve (Figure 12).

The fit to the length compositions is similar to that in the 2009 assessment, as expected, given the similar estimates of population trends and the choice to not estimate annual deviations in recruitment. What little new length data has been collected is
consistent with previous distributions for each data source. There appear to be few patterns in the residuals.

The unsexed Oregon recreational length data (unchanged since the 2009 assessment) continue to show a strong diagonal residual pattern through the 1990s (Figure 32, Figure 33). This residual pattern from 1985-2003 could be due to a strong cohort (or cohorts) in the mid-1980s, although growth would have to be slightly above predicted rates to achieve the observed increase in mean size of this mode during the 10-year span over which it is observed. It is possible that other factors are also influencing this pattern, such as a shift in the targeting by the recreational fleet; however time-varying selectivity was not included for this fishery. The extended Oregon recreational charter observer program also shows some indication of a cohort through the residual patterns (Figure 36).

The new age-frequency data are sparse, but consistent with previous years. Fits to the age-frequency data (Figure 42-52) are reasonably good and very similar to those from the 2009 assessment.

The estimated stock-recruitment relationship for the base case and alternate states of nature are very consistent in their predictions of little surplus production (steepness values $0.383,0.441,0.508$ (Tables 20-21)), which are similar to the previous assessment. These model runs reveal an almost linear relationship between the magnitude of historical removals and the scale of the estimated population size (Table 20, Figure 53). Because no process error in recruitment is modeled and steepness is relatively low among the states of nature, the time-series’ of total recruitment (Figure 54) and spawning output (Figure 55) track one another very tightly. Both show that the aggregate yelloweye population was rapidly reduced from near unexploited conditions to low levels from about 1970 to 2000 (Tables 18-23), and this result is quite conserved among the alternate states of nature (Tables 19 and 21).

The portions of the total spawning output within each of the three states differs, with California and Oregon having very similar estimates of spawning output at unexploited equilibrium, and with Washington having considerably less. Oregon is estimated to have the largest 2011 spawning output, followed by California, then Washington. Relative depletion also varies by state, with California estimated to be at 17.3\% of unexploited conditions, Oregon, 23.9\%, and Washington, 27.2\% (Figure 57 and 59). The matrix of predicted numbers at age, by sex and area, is provided in Appendix A.

### 2.8 Uncertainty and Sensitivity Analysis

As in 2009, the base-case assessment model captures some uncertainty via asymptotic intervals. Uncertainty from two additional sources is characterized through consideration of alternate states of nature, in which assumptions regarding these two key areas of uncertainty bracket those of the base case, and key results are reported in the decision table. The two axes of uncertainty are the steepness of the stock-recruit relationship and the magnitude of the historical catch. The sensitivity of the model results to changes in these two dimensions were calculated for total of 9 combinations of low, base, and high assumptions for the two axes.

Alternate values of steepness and historical catch were selected to bracket the best estimates with marginal probabilities one-half as likely. For historical catch, these values, $75 \%$ and $150 \%$ of the estimated catch series prior to 2000 , were subjective, but reflect the lack of a comprehensive catch reconstruction in Washington and the change in likelihood of
the fit to data sources over a reasonable range of catch levels. For steepness the $12.5^{\text {th }}$ and $87.5^{\text {th }}$ percentiles were calculated from the likelihood profile using the $X^{2}$ critical value of 0.66 (Figure 62) as a proxy for the probability distribution about this point estimate. This results in alternate values for steepness of 0.344 and 0.508 about the maximum likelihood estimate. The most optimistic and pessimistic of the nine combinations from these two axes (weighted $6.25 \%$ each relative to $25 \%$ for the best estimate on each dimension) are reported in this document and all combinations used to provide a more realistic degree of uncertainty for future projections, decision tables and rebuilding analyses.

### 2.8.1 Retrospective Analysis

A 5-year retrospective analysis was conducted by running the model using data only through 2005 ("Retrospective in 2006"), 2006, 2007, 2008 and 2009 (Figure 60). Very little retrospective pattern is apparent through any of these removals, indicating that the new data is consistent with previous values or the sample sizes are too small to have any impact.

The changes between assessments over the past 10 years have been relatively small, with the change since the previous assessment the smallest difference between assessments yet (Figure 61).

### 2.8.2 Likelihood Profiles

A likelihood profile was conducted for steepness of the stock-recruit relationship ( $h$ ) to elucidate conflicting information among various data sources, to determine how asymmetric the likelihood surfaces surrounding point estimates may be, and to provide an additional evaluation of how precisely parameters are being estimated.

Steepness appears to be informed by the length and age data (Figure 62), with a slight increase in the model estimate of 0.441 relative to the 0.417 value from the 2009 assessment. Correlation between steepness and natural mortality is similar to the previously estimated relationship (Figure 63), though the values are shifted slightly.

## 3. Rebuilding Parameters

Revised rebuilding projections will be presented in a separate document in September 2011. As in 2009, the base-case assessment model captures some uncertainty via asymptotic intervals; uncertainty from two sources is reported through alternate states of nature bracketing the base-case specifications and will be included explicitly in the decision table.

## 4. Reference Points

The spawning output of yelloweye rockfish was estimated to have dropped below the $S B_{40 \%}$ management target in 1989 and the overfished threshold in 1994. In hindsight, the spawning output passed through the target and threshold levels with annual catch averaging almost five times the current estimate of the MSY. The coast-wide stock remains below the overfished threshold, although the spawning output is estimated to have been increasing since 2000 in response to reductions in harvest. The degree of increase is largely insensitive to the magnitude of historical catch and only moderately sensitive to the value for steepness, but the absolute scale of the population reflects alternate removal series very closely. Fishing mortality rates are estimated to have been in excess of the current F-target for rockfish of $S P R_{50 \%}$ from 1976 through 1999 (Figure 64, Figure 65, Figure 66). Recent
management actions have reduced the rate such that recent SPR values are in excess of 65\% over the last ten years (Figure 67). Relative exploitation rates (catch/biomass of age-8 and older fish) are estimated to have been at or less than $1 \%$ after 2001. The alternate states of nature result in maximum estimated exploitation rates for the years after 2001 ranging from $1.7 \%$ to $0.7 \%$.

Unfished spawning output was estimated to be 1,028 million eggs. The target stock size ( $S B_{40 \%}$ ) is therefore 411 million eggs and the overfished threshold ( $S B_{25 \%}$ ) is 257 million eggs. Maximum sustained yield (MSY), conditioned on current fishery selectivity and allocations, was estimated in the assessment model to occur at a spawning stock biomass of 392 million eggs and produce an MSY catch of 63 mt (slightly above the estimate from the 2009 assessment of 56.4 mt ). However, the yield at MSY is extremely sensitive to states of nature resulting in a wide range for this value from 39 to 111 mt . Maximum sustainable yield is estimated to be achieved at an SPR of 57.7\% (range of states of nature: 51.1-64.4\%). This is nearly identical to the yield, 62 mt , generated by the SPR (59.0\%) that stabilizes the stock at the $S B_{40 \%}$ target. The fishing mortality target/overfishing level (SPR $=50.0 \%$ ) results in a smaller equilibrium yield of 58 mt at a spawning output of 275 million eggs ( $26.7 \%$ of the unfished level). In sum, although the estimated MSY spawning output is very close to the proxy level, the harvest rate needed to achieve equilibrium at $40 \%$ of the unfished level is lower than the MSY-proxy rate.

## 5. Harvest Projections and Decision Tables

The forecast reported here will be replaced by the rebuilding analysis to be completed in September-October 2011. In the interim, the total catch in 2011 and 2012 is set equal to the NMFS preferred alternative ACL ( 17 mt ), allocated between fleets according to the average catch over the years 2007-2009. The target exploitation rate for 2013 and beyond is based upon an SPR of $76 \%$, which is the NMFS preferred alternative. This SPR-based forecast catch is allocated between fleets according to the average fishing mortality rate for the years 2007-2009 (which allows the forecast catch to respond to different trends in the biomass available to each fleet). Uncertainty in the rebuilding forecast will be included via integrating over all combinations of the alternate states of nature for catch history and steepness.

Current medium-term forecasts predict increases in coast-wide abundance under the SPR $=76 \%$ rebuilding strategy, however these increases are largely driven by the California and Oregon portions of the stock. The estimated ACL values for 2013 and 2014 are only slightly larger (17.7, 18.0) than the 17.0 value set for 2011 and 2012 and less that that predicted from the 2009 rebuilding analysis (21.0, 20.5), which was based on a higher fishing mortality associated with a $71.9 \%$ SPR. Catch allocation in 2011-2012 among fleets (recreational, commercial) for Washington (14\%, 7\%), Oregon (17\%, 18\%) and California ( $28 \%, 15 \%$ ). Over the period 2013 to 2022, the where catch was based on average fishing mortality over the years 2007-2009, the greatest increase in allocation was for the California recreational fishery, which went from $28 \%$ to $31 \%$ of the total, while the greatest decrease was for Washington recreational, which decreased from $14 \%$ to $12 \%$. These changes are due to differences in the rate of increase in forecast biomass for each state. The projection of expected yelloweye rockfish catch, summary biomass, depletion and spawning output (by area) are shown in Table 24. It would be desirable to evaluate specific
alternative allocation scenarios if relative removals based on future management actions will be substantially different than recent values by state.

Because yelloweye rockfish are currently managed under a rebuilding plan, the decision table included here (Table 25) is only intended to better evaluate the management implications of the considerable uncertainty in the base case assessment model. Various alternate management actions including SPR rates and fixed ACLs will be evaluated in the rebuilding analysis. Landings in 2011-2012 are 17 mt for all cases. Catch allocation used for the forecast reflects the same proportions by fleet.

## 6. Regional Management Considerations

As in 2009, the choice to model the yelloweye rockfish stock with explicit areas in the assessment model is based on the sedentary life-history of adult yelloweye, and the markedly different population trends as well as historical and current exploitation rates among the three states. Current population status differs by state, with both near term forecasts as well as longer term the rates of recovery under ACL catches predicted to be quite different for each area. This information may be valuable for making management and allocation decisions; alternate future projections can easily be added to this assessment, as needed, to better describe the implications of these choices.

The use of area-specific vs. coast-wide assessment models and management tools should be considered a major source of uncertainty. Future efforts, including links to Canadian waters and alternate approaches to meta-population dynamics could produce differing results.

## 7. Research Needs

The available data for yelloweye rockfish are very sparse and generally weakly informative about current status. The following research topics were suggested in the 2009 assessment and are repeated here with minor modifications and additions. Progress on these points could improve the ability of this assessment to reliably model the yelloweye rockfish population dynamics in the future and provide better monitoring of progress toward rebuilding:

1. Develop and implement a comprehensive visual survey.
2. Do a scientific review of current efforts to develop and improve stock size indices for yelloweye based on IPHC (including additional stations) and make recommendations on the best approaches to develop such indices.
3. Explore a recalculation of GLMM estimates in the IPHC survey that explores station effects which allows inclusion of stations that differ over time.
4. Investigate the development of a WA recreational yelloweye CPUE based on the recreational halibut fishery. Consider a full time series and one ending in 2002, since the yelloweye RCA in waters off northern WA was implemented in 2003.
5. Encourage the collection of samples to refine the estimate biological parameters, particularly maturity and fecundity.
6. Continue to evaluate the spatial aspects of the assessments, including growth, the number and placement of boundaries between areas, as well as the northern boundary with Canada.
7. Investigate alternative ways of re-weighting. This issue is relevant for all west coast stock assessments.
8. Investigate how best to account for the variability in dates in trawl surveys through a meta-analysis. This issue is relevant for all west coast stock assessments.
9. Conduct a historical catch reconstruction for WA to match those produced for OR and CA. This issue is relevant for all west coast stock assessments.
10. Access and processing of recreational data (catch and biological sampling) currently entails differing locations and formats for data from each of the three states and RecFIN. RecFIN is difficult to use and estimates from it don't match the total mortality estimates also provided by the state agencies. A single database that holds all raw recreational data in a consistent format would reduce assessment time spent on processing these data and potential introduction of errors or alternate interpretations due to processing.
11. The IPHC data organization should be revisited. Currently biological samples cannot be linked to the station from which they were collected. Age data for 2003-2005 is disconnected from length and sex information and other unknown issues may persist in these data. A thorough evaluation of what data are reliable and a final determination of what information is lost, or can potentially be recovered, is needed.
12. Instigate discard sampling of yelloweye bycatch in the directed Pacific halibut fishery.
13. Different trends in CPUE of yelloweye in the CA recreational fishery have been identified. CPUE by port from 1980 to 2000 should be analyzed using clustering methods like those described in Cope and Punt (2009) to identify regions with a similar demographic trajectory. This could lead to improvements in management of the stock as well as possibly inform refinements of the spatial structure of future assessment models.

## 8. Acknowledgements

This update assessment draws heavily on the text and analyses in the 2009 assessment and has benefited greatly from the efforts of Ian Stewart, the primary author of that assessment, as well as his co-authors, John Wallace and Carey McGilliard. Many people at various state and federal agencies assisted with assembling the data sources included in this updated assessment. Claude Dykstra at the IPHC, Farron Wallace, Bob Le Goff at WDFW, Troy Buell at ODFW, and John Budrick at CDFG all provided valuable data and advice on data availability. Jason Jannot and Marlene Bellman provided total mortality estimates from recent years and summarized biological data from the West Coast Observer Program as well as advising on the complexities associated with these data sources. Beth Horness provided summary statistics from the NWFSC trawl survey. Richard Methot has provided extensive guidance in the use of Stock Synthesis and continues to make it an easier and more powerful software to use. Every member of the NWFSC Assessment team has provided some advice, input, or guidance at some point in the preparation of this update assessment, and the results benefit greatly from their contributions. Comments and suggestions from Jim Hastie substantially improved the quality of the document.

## 9. Literature cited

Anonymous. 2004. CALCOM (California Cooperative Survey: CDFG, Belmont, CA; PSMFC, Belmont, CA; NMFS, Santa Cruz, CA).
Bellman, M. A., E. Heery, J. Jannot, and J. Majewski. 2010a. Estimated discard and total catch of selected groundfish species in the 2009 U.S. west coast fisheries. West Coast Groundfish Observer Program. National Marine Fisheries Service, NWFSC, 2725 Montlake Blvd E., Seattle, WA 98112.
Bellman, M. A., E. Heery, and J. Majewski. 2010b. Estimated Discard and Total Catch of Selected Groundfish Species in the 2008 U.S. West Coast Fisheries. West Coast Groundfish Observer Program. NWFSC, 2725 Montlake Blvd E., Seattle, WA 98112.

Black, B. A., G. W. Boehlert, and M. M. Yoklavich. 2008. Establishing climate-growth relationships for yelloweye rockfish (Sebastes ruberrimus) in the northeast Pacific using a dendrochronological approach. Fisheries Oceanography 17:368-379.
Brylinsky, C., D. Carlile, and J. Stahl. 2007. Chapter 14: Assessment of the demersal shelf rockfish stock for 2007 in the Southeast Outside District of the Gulf of Alaska. Alaska Department of Fish and Game, Commercial Fisheries Division, 204 Lake Street, Room 103, Sitka, Alaska 99835.
Brylinsky, C., J. Stahl, M. Jaenicke, and D. Carlile. 2008. 14 Demersal shelf rockfishes (Executive summary). p. 485-494. NPFMC Gulf of Alaska SAFE. December 2008.
Cleaver, F. C. 1951. Fisheries statistics of Oregon. Oregon Fish Commission 16:1-175.
Cope, J. M. and A. E. Punt. 2009. Drawing the lines: Resolving fishery management units with simple fisheries data. Canadian Journal of Fisheries and Aquatic Sciences 69:1256-1273.
Dark, T. A. and M. E. Wilkins. 1994. Distribution, abundance and biological characteristics of groundfish off the coast of Washington, Oregon and California, 1977-1986. NOAA Technical Report NMFS 117:1-73.
Dorn, M. W. 2002. Advice on West coast rockfish harvest rates from Bayesian metaanalysis of stock-recruit relationships. North American Journal of Fisheries Management 22:280-300.
Douglas, D. A. 1998. Species composition of rockfish in catches by Oregon trawlers, 19631993.

Eschmeyer, W. N. and E. S. Herald. 1983. A field guide to Pacific coast fishes North America. Houghton Mifflin Co., Boston, MA.
Gao, Y., D. L. Dettman, K. R. Piner, and F. R. Wallace. 2010. Isotopic Correlation ( $\delta^{18}$ O versus $\delta^{13} \mathrm{C}$ ) of Otoliths in Identification of Groundfish Stocks. Transactions of the American Fisheries Society 139:491-501.
Gertseva, V., M. Karnowski, and A. Stephens. 2010. Historical Reconstruction of Oregon Commercial Groundfish Landings (draft, May 28, 2010).
Hannah, R. W. and K. M. Matteson. 2007. Behavior of nine species of Pacific rockfish after hook-and-line capture, recompression, and release. Transactions of the American Fisheries Society 136:24-33.
Hart, J. L. 1973. Pacific Fishes of Canada, Fisheries Research Board of Canada, Bulletin 180. St. Andrews, N.B., Canada. 740 p.

Karnowski, M., V. Gertseva, and A. Stephens. 2011. Historical Reconstruction of Oregon’s Commercial Fisheries Landings (in preparation).
Love, M. S., M. Yoklavich, and L. Thorsteinson. 2002. The rockfishes of the northeast Pacific. University of California Press, Berkeley.
Methot, R. D., F. Wallace, and K. Piner. 2002. Status of yelloweye rockfish off the U.S. west coast in 2002. Seattle, WA. National Marine Fisheries Service. 76 p.
Pearson, D. E., B. Erwin, and M. Key. 2008. Reliability of California's landing estimates from 1969-2006. NOAA Technical Memorandum. NOAA-TM-NMFS-SWFSC431. 139 p.

Ralston, S., D. Pearson, J. C. Field, and M. Key. 2010. Documentation of the California catch reconstruction project. NOAA Technical Memorandum. NOAA-TM-NMFS-SWFSC-461. 83 p.
Smith, H. S. 1956. Fisheries statistics of Oregon 1950-1953., Fish Commission of Oregon.
Stewart, I. J., J. R. Wallace, and C. McGilliard. 2009. Status of the U.S. yelloweye rockfish resource in 2009. NOAA. SAFE. 9 November, 2009.
Yamanaka, K. L., L. C. Lacko, R. E. Withler, C. J. Grandin, J. K. Lochead, J. C. Martin, N. Olsen, and S. S. Wallace. 2006. A review of yelloweye rockfish Sebastes ruberrimus along the Pacific coast of Canada: biology, distribution and abundance trends. Canadian Science Advisory Secretariat Research Document 2006/076.
Yamanaka, K. L., R. E. Withler, and K. M. Miller. 2001. Abstract: Limited genetic structure in yelloweye rockfish (Sebastes rubberimus) populations of British Columbia., 11th Western Groundfish Conference, April 24-28, 2000, Sitka, Alaska. Cited in Wallace et al. 2006.
10. Tables

Table 1. Total catches (mt) of yelloweye rockfish by fleet used in the assessment model. Foreign and research catches are included in commercial totals. See text for description of sources.

Year	California   Recreational	California   Commercial	Oregon   Recreational	Oregon   Commercial	Washington   Recreational	Washington   Commercial
1916	0.00	2.20	0.00	1.70	0.00	0.00
1917	0.00	3.62	0.00	1.79	0.00	0.00
1918	0.00	4.25	0.00	1.88	0.00	0.00
1919	0.00	2.16	0.00	1.97	0.00	0.00
1920	0.00	2.38	0.00	2.05	0.00	0.00
1921	0.00	2.30	0.00	2.14	0.00	0.00
1922	0.00	2.06	0.00	2.23	0.00	0.00
1923	0.00	2.21	0.00	2.32	0.00	0.00
1924	0.00	2.82	0.00	2.40	0.00	0.00
1925	0.00	3.86	0.00	2.49	0.00	1.00
1926	0.00	4.87	0.00	2.58	0.00	1.00
1927	0.00	5.92	0.00	2.67	0.00	1.00
1928	0.00	5.52	0.00	4.45	0.00	1.00
1929	0.73	5.66	0.00	7.46	0.00	1.00
1930	1.18	6.76	0.00	6.65	0.00	1.00
1931	1.76	5.62	0.00	5.21	0.00	1.00
1932	2.35	8.13	0.00	1.79	0.00	1.00
1933	2.94	4.45	0.00	2.74	0.00	1.00
1934	3.53	5.78	0.00	3.11	0.00	1.00
1935	4.12	7.99	0.00	2.84	0.00	1.00
1936	4.70	8.08	0.00	6.64	0.00	1.00
1937	5.61	6.08	0.00	7.57	0.00	1.00
1938	5.50	6.36	0.00	7.30	0.00	1.00
1939	4.81	6.43	0.00	3.82	0.00	1.00
1940	6.85	4.57	0.00	11.15	0.00	1.00
1941	6.25	5.35	0.00	15.98	0.00	1.00
1942	6.78	3.37	0.00	23.85	0.00	1.00
1943	7.30	5.89	0.00	66.05	0.00	1.00
1944	7.83	24.88	0.00	46.97	0.00	1.00
1945	8.36	58.56	0.00	62.52	0.00	1.00
1946	8.88	57.74	0.00	42.38	0.00	1.00
1947	5.02	16.28	0.00	25.53	0.00	1.00
1948	10.12	23.30	0.00	20.73	0.00	1.00
1949	13.09	9.89	0.00	15.93	0.00	1.00
1950	1595	8.03	0.00	17.79	0.00	1.00
1951	17.91	16.99	0.00	15.10	0.00	1.00
1952	15.95	14.15	0.00	14.88	0.00	1.00
1953	13.97	11.77	0.00	11.32	0.00	1.00
1954	18.74	11.78	0.00	14.23	0.00	1.00
1955	24.06	6.98	6.20	15.04	1.00	2.00
1956	27.15	10.40	6.50	18.06	1.00	2.00
1957	24.78	13.17	6.70	25.89	1.00	2.00
1958	35.91	13.41	7.00	18.30	2.00	2.00
1959	30.41	10.25	7.20	20.64	2.00	2.00
1960	22.05	8.88	7.50	25.32	2.00	2.00

Table 1. Continued. Total catches (mt) of yelloweye rockfish by fleet used in the assessment model.

Year	California   Recreational	California   Commercial	Oregon   Recreational	Oregon   Commercial	Washington   Recreational	Washington   Commercial
1961	17.68	5.25	7.70	24.63	2.00	2.00
1962	22.08	5.43	8.00	28.28	2.00	2.00
1963	23.10	10.86	8.20	8.28	3.00	4.00
1964	20.82	7.52	8.50	1.94	3.00	4.00
1965	31.51	9.38	8.70	70.16	3.00	4.00
1966	35.34	8.97	9.00	3.86	3.00	4.00
1967	36.60	7.85	9.20	11.35	3.00	4.00
1968	42.79	7.66	9.50	7.93	3.00	4.00
1969	44.97	25.70	9.70	55.36	3.00	4.00
1970	51.89	27.70	10.00	6.31	4.00	5.10
1971	46.17	46.50	13.10	17.97	4.00	6.41
1972	59.61	63.66	16.30	14.82	4.00	7.31
1973	75.02	49.51	7.40	14.98	4.00	9.21
1974	80.47	56.38	12.80	14.86	4.00	10.31
1975	81.34	60.24	6.20	9.87	4.00	7.10
1976	88.56	57.96	19.40	14.86	4.30	10.30
1977	79.78	57.45	19.90	17.13	8.80	17.88
1978	74.46	154.20	24.50	41.91	4.50	23.90
1979	85.49	99.33	38.80	67.38	3.50	28.50
1980	80.19	42.07	31.50	76.22	2.40	35.06
1981	43.58	169.44	36.00	106.27	3.40	9.70
1982	79.60	154.33	56.90	156.56	3.40	12.60
1983	38.36	62.69	63.80	142.78	6.70	16.99
1984	71.26	53.66	43.70	82.56	12.20	13.42
1985	121.87	12.22	26.80	132.95	8.80	26.41
1986	77.31	33.51	27.40	56.89	9.00	14.94
1987	57.83	54.31	29.80	73.72	10.50	25.09
1988	60.07	65.44	9.40	110.73	8.30	25.56
1989	54.44	51.25	16.90	170.21	14.60	39.50
1990	40.06	81.32	18.70	61.12	9.90	26.27
1991	27.38	147.30	17.20	137.74	18.00	20.36
1992	16.41	111.10	29.40	165.88	16.20	33.85
1993	7.13	52.92	27.73	183.18	18.00	29.76
1994	13.78	56.02	21.57	102.19	10.30	19.58
1995	10.08	51.40	16.81	148.34	9.90	18.07
1996	12.74	76.54	8.17	9.52	10.80	16.89
1997	14.58	683	15.38	115.42	11.40	18.68
1998	4.84	21.89	18.78	41.47	14.40	5.57
1999	9.40	23.49	18.05	61.35	10.60	32.92
2000	5.71	4.02	9.52	3.64	10.10	7.86
2001	6.37	4.35	4.83	6.23	12.50	21.84
2002	2.49	0.89	3.14	1.56	3.70	1.55
2003	3.74	0.70	3.02	0.92	2.60	0.98
2004	0.60	2.61	3.69	2.67	3.70	0.66
2005	0.90	3.43	4.30	1.69	5.20	0.74

Table 1. Continued. Total catches (mt) of yelloweye rockfish by fleet used in the assessment model.

Year	California   Recreational	California   Commercial	Oregon   Recreational	Oregon   Commercial	Washington   Recreational	Washington   Commercial
2006	4.10	1.86	2.49	2.92	1.70	0.76
2007	8.00	4.81	2.85	3.28	2.49	1.61
2008	1.69	1.72	3.25	3.88	2.40	0.78
2009	3.84	0.61	2.05	1.61	1.63	1.15
2010	1.20	1.85	2.80	2.52	1.90	1.12

Table 2. Recent trend in yelloweye rockfish catch (mt) relative to management guidelines.

Year	OFL   $(\mathrm{mt})$	ACL   $(\mathrm{mt})$	Commercial   Catch $(\mathrm{mt})^{1}$	Recreational   Catch $(\mathrm{mt})$	Total Catch   $(\mathrm{mt})$
1999	$39^{2}$	NA	117.8	38.1	155.8
2000	$39^{2}$	NA	15.5	25.3	40.9
2001	$29^{3}$	NA	32.5	23.7	56.1
2002	$27^{3}$	$13.5^{3}$	4.0	9.3	13.3
2003	52	22	2.6	9.4	12.0
2004	53	22	5.9	8.0	13.9
2005	54	26	5.9	10.4	16.3
2006	55	27	5.5	8.3	13.8
2007	47	23	9.7	13.3	23.0
2008	47	20	6.4	7.3	13.7
2009	31	17	3.4	7.5	10.9
2010	32	17	5.5	5.9	11.4

${ }^{1}$ Includes research, foreign and discarded catches after 2001.
${ }^{2}$ Includes the Columbia and Vancouver INPFC areas only.
${ }^{3}$ Includes the Columbia, Vancouver and Eureka INPFC areas only.

Table 3. Summary of data sources available in 2011. All data in the final 2 columns (2009 and 2010) is new for this update.

	$\begin{gathered} \hline 1 \\ 9 \\ 16 \\ - \\ 24 \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline 1 \\ 9 \\ 25 \\ - \\ \hline 27 \\ \hline \hline \end{gathered}$	$\begin{aligned} & 1 \\ & 9 \\ & 2 \\ & 8 \end{aligned}$	$\begin{gathered} \hline 1 \\ 9 \\ 29 \\ - \\ 54 \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline 1 \\ 9 \\ 55 \\ - \\ \hline 65 \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline 1 \\ 9 \\ 66 \\ - \\ 76 \\ \hline \hline \end{gathered}$	1 9 7 7	1 9 7 8	1 9 7 9	1 9 8 0	1 9 8 1	1 9 8 2	1 9 8 3	1 9 8 4	1 9 8 5	1 9 8 6	1 9 8 7	1 9 8 8	1 9 8 9	1 9 9 0	1 9 9 1	1 9 9 2	1 9 9 3	1 9 9 4	1 9 9 5	1 9 9 6	1 9 9 7	1 9 9 8	1 9 9 9	2 0 0 0	2 0 0 1	2 0 0 2	2 0 0 3	2 0 0 4	2 0 0 5	2 0 0 6	2 0 0 7	2 0 0 8	2 0 0 9	2 0 1 0
Catches   CA Recreational				X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
CA Commercial	X		X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
OR Recreational					X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
OR Commercial			X	X	X	X	X	X	X	X	X	X X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
WA Recreational					X	X	X	X	X	X	X	X X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
WA Commercial		X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Foreign						X																																		
Research							X			X			X			X			X			X			X			X			X		X	X	X	X	X	X	X	X
WCGOP discards																																X	X	X	X	X	X	X	X	X
$\begin{aligned} & \hline \text { Fishery Data } \\ & \hline \text { CPUE } \end{aligned}$   CA Recreational											X	X	X	X	X	X							X	X	X	X	X	X	X											
CA Rec. Charter																		X	X	X	X	X	X	X	X	X	X	X												
OR Recreational									X	X	X	X	X	X		X	X	X	X	X	X	X	X	X	X	X		X	X											
WA Recreational																				X	X	X	X	X	X	X	X	X	X											
OR Rec. Charter																																		X	X	X	X	X	X	X
Age																																								
CA Recreational													X													X														
CA Commercial								X	X	X	X	X	X		X	X	x	X													X				X					
OR Recreational									X					X	X	X	X		X												X									
OR Commercial																															X	X	X	X	X	X	X			
WA Recreational																												X	X	X	X			X	X	X		X	X	
WA Commercial																							X								X	X	X	X	X	X	X	X	X	X
Length   CA Recreational																							X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
CA Rec. Charter																	X	X	X	X	X	X	X	X	X	X	X	X												
CA Commercial								X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X		X	
OR Recreational								X	X	X	X	X	X	X	X	X	X	X	X				X	X	X	X	X	X	X	X	X	X	X							
OR Rec. Charter																																		X	X	X	X	X	X	X
OR Commercial																						X			X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
WA Recreational																												X	X	X	X			X	X	X		X		
WA Commercial										X														X		X	X	X	X	X	X	X	X	X	X	X	X	X	X	X

Table 3. Continued. Summary of data sources available in 2011.


Table 4. Sample information contributing to the index of abundance from the IPHC longline survey.

	Oregon (57 stations)		Washington (27 stations)	
Year	Positive   stations	Number of   fish	Positive   stations	Number of   fish
1999	6	325	2	11
2001	6	149	3	54
2002	7	125	2	16
2003	8	215	6	101
2004	7	151	6	19
2005	7	81	7	75
2006	5	68	5	22
2007	7	102	4	30
2008	9	122	6	13
2009	7	57	6	108
2010	8	84	4	27

Table 5. Number of fish contributing biological information caught in association with the IPHC long-line survey (Note that a few fish were ambiguously allocated to state in the available data).

	Lengths (sexed)		Ages (sexed > 2005)	
Year	Oregon	Washington	Oregon	Washington
1999	0	0	0	0
2001	0	0	0	0
2002	0	0	0	0
2003	217	99	215	99
2004	155	17	157	17
2005	68	72	62	72
2006	58	34	58	34
2007	103	268	101	268
2008	253	83	251	83
2009	57	32	57	32
2010	71	27	71	27

Table 6. Summary of sampling used in the calculation of yelloweye biomass indices for the shelf trawl surveys.

	Triennial (WA only)			NWFSC (OR only)		
Year	Number   of tows	Positive   tows	Number   of fish	Number   of tows	Positive   tows	Number   of fish
1980	101	3	16	NA	NA	NA
1983	176	13	13	NA	NA	NA
1986	263	21	114	NA	NA	NA
1989	113	14	66	NA	NA	NA
1992	107	7	90	NA	NA	NA
1995	83	3	38	NA	NA	NA
1998	87	7	11	NA	NA	NA
2001	87	8	26	NA	NA	NA
2003	NA	NA	NA	62	7	100
2004	75	5	23	83	5	11
2005	NA	NA	NA	118	6	13
2006	NA	NA	NA	123	8	35
2007	NA	NA	NA	118	5	14
2008	NA	NA	NA	105	8	14
2009	NA	NA	NA	103	1	7
2010	NA	NA	NA	104	8	22

Table 7. Summary of data used to produce NWFSC and Triennial trawl survey lengthfrequency data.

	Triennial (WA only)		NWFSC (OR only)	
Year	Number of   Samples	Number of   fish	Number of   samples	Number of   Fish
1980	0	0	NA	NA
1983	0	0	NA	NA
1986	13	51	NA	NA
1989	9	44	NA	NA
1992	4	7	NA	NA
1995	5	7	NA	NA
1998	10	19	NA	NA
2001	10	21	NA	NA
2003	NA	NA	7	24
2004	4	10	5	11
2005	NA	NA	6	12
2006	NA	NA	8	35
2007	NA	NA	5	14
2008	NA	NA	8	14
2009	NA	NA	1	7
2010	NA	NA	8	22

Table 8. Summary of sampling used to generate the Oregon charter observer CPUE index.

Year	Number of   observed   drifts	Number of   observed   angler-drifts	Number of   yelloweye   encountered
2004	905	41,529	22
2005	948	39,922	21
2006	1,100	40,132	41
2007	1,396	46,624	37
2008	1,349	42,508	52
2009	894	29,500	31
2010	968	29,219	17

Table 9. Summary of sampling effort generating length-frequency distributions used in the assessment model for the recreational fleets.

Year	California		California Charter		Oregon		Oregon Observer		Washington	
	$\begin{gathered} \mathrm{N} \\ \text { trips } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \text { fish } \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \text { trips } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \text { fish } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \text { trips } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \text { fish } \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \text { trips } \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \text { fish } \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \text { hauls } \end{gathered}$	N fish
1978	0	0	0	0	NA	120	0	0	0	0
1979	0	0	0	0	NA	107	0	0	0	0
1980	0	0	0	0	13	25	0	0	0	0
1981	0	0	0	0	8	13	0	0	0	0
1982	0	0	0	0	24	61	0	0	0	0
1983	0	0	0	0	8	17	0	0	0	0
1984	0	0	0	0	53	348	0	0	0	0
1985	0	0	0	0	31	222	0	0	0	0
1986	0	0	0	0	14	175	0	0	0	0
1987	0	0	16	23	22	165	0	0	0	0
1988	0	0	61	276	25	38	0	0	0	0
1989	0	0	84	279	36	112	0	0	0	0
1990	0	0	31	89	0	0	0	0	0	0
1991	0	0	37	112	0	0	0	0	0	0
1992	0	0	81	164	0	0	0	0	0	0
1993	32	33	77	203	88	163	0	0	0	0
1994	37	61	75	189	84	151	0	0	0	0
1995	40	47	72	152	50	110	0	0	0	0
1996	65	75	64	164	38	73	0	0	0	0
1997	8	10	68	144	51	99	0	0	0	0
1998	16	18	31	55	74	147	0	0	1	25
1999	71	88	0	0	109	246	0	0	4	95
2000	41	47	0	0	37	62	0	0	7	189
2001	15	15	0	0	204	368	0	0	10	101
2002	9	13	0	0	278	448	0	0	0	0
2003	13	15	0	0	306	490	2	2	0	0
2004	11	15	0	0	0	0	11	21	5	12
2005	46	57	0	0	0	0	12	24	2	4
2006	60	95	0	0	0	0	24	46	1	1
2007	43	57	0	0	0	0	23	52	0	0
2008	19	27	0	0	0	0	21	59	3	6
2009	38	44	0	0	0	0	14	32	0	0
2010	10	12	0	0	0	0	12	20	0	0

Table 10. Summary of sampling effort generating length-frequency distributions used in the assessment model for the commercial fleets.

	California			Oregon			Washington	
Year	N trips	N fish		N trips	N fish		N trips	N fish
1978	2	15		0	0		0	0
1979	15	60		0	0		0	0
1980	18	35		0	0		2	4
1981	17	62		0	0		0	0
1982	10	18		0	0		0	0
1983	20	43		0	0		0	0
1984	19	30		0	0		0	0
1985	20	27		0	0		0	0
1986	20	23		0	0		0	0
1987	18	26		0	0		0	0
1988	14	21		0	0		0	0
1989	20	51		0	0		0	0
1990	15	28		0	0		0	0
1991	27	224		0	0		0	0
1992	75	493		13	1		0	0
1993	97	710		0	0		2	20
1994	82	736		0	0		0	0
1995	37	378		73	5		0	0
1996	80	526		129	7		24	298
1997	53	290		232	7		21	142
1998	18	62		95	3		13	63
1999	58	508		166	11		8	45
2000	14	26		141	34		20	361
2001	26	146		219	46		31	583
2002	9	12		8	14		36	195
2003	3	4		2	30		24	59
2004	24	71		14	61		18	51
2005	12	54		22	39		16	23
2006	6	28		6	15		24	102
2007	20	79		3	5		6	29
2008	0	0		3	16		1	1
2009	5	10		11	24		2	14
2010	0	0		0	0		3	27

Table 11. Summary of sampling effort generating age-frequency distributions used in the assessment model for the recreational fleets.

Year	California		Oregon		Oregon Observer		Washington	
	N trips	N fish						
1978	0	0	0	0	0	0	0	0
1979	0	0	1	17	0	0	0	0
1980	0	0	0	0	0	0	0	0
1981	0	0	0	0	0	0	0	0
1982	0	0	0	0	0	0	0	0
1983	1	1	0	0	0	0	0	0
1984	0	0	10	88	0	0	0	0
1985	0	0	8	54	0	0	0	0
1986	0	0	12	68	0	0	0	0
1987	0	0	9	63	0	0	0	0
1988	0	0	0	0	0	0	0	0
1989	0	0	4	17	0	0	0	0
1990	0	0	0	0	0	0	0	0
1991	0	0	0	0	0	0	0	0
1992	0	0	0	0	0	0	0	0
1993	0	0	0	0	0	0	0	0
1994	0	0	0	0	0	0	0	0
1995	0	0	0	0	0	0	0	0
1996	1	1	0	0	0	0	0	0
1997	0	0	0	0	0	0	0	0
1998	0	0	0	0	0	0	1	25
1999	0	0	0	0	0	0	4	95
2000	0	0	0	0	0	0	7	189
2001	0	0	4	28	0	0	10	101
2002	0	0	0	0	0	0	0	0
2003	0	0	0	0	0	0	0	0
2004	0	0	0	0	0	0	5	10
2005	0	0	0	0	0	0	2	4
2006	0	0	0	0	0	0	1	1
2007	0	0	0	0	0	0	0	0
2008	0	0	0	0	0	0	3	6
2009	0	0	0	0	0	0	0	0
2010	0	0	0	0	0	0	0	0

Table 12. Summary of sampling effort generating age-frequency distributions used in the assessment model for the commercial fleets.

	California			Oregon			Washington	
Year	N trips	N fish		N trips	N fish		N trips	N fish
1978	2	6		0	0		0	0
1979	5	10		0	0		0	0
1980	5	8		0	0		0	0
1981	2	7		0	0		0	0
1982	1	1		0	0		0	0
1983	1	1		0	0		0	0
1984	0	0		0	0		0	0
1985	4	10		0	0		0	0
1986	2	4		0	0		0	0
1987	0	0		0	0		0	0
1988	1	5		0	0		0	0
1989	0	0		0	0		0	0
1990	0	0		0	0		0	0
1991	0	0		0	0		0	0
1992	0	0		0	0		0	0
1993	0	0		0	0		2	19
1994	0	0		0	0		0	0
1995	0	0		0	0		0	0
1996	0	0		0	0		0	0
1997	0	0		0	0		0	0
1998	0	0		0	0		0	0
1999	0	0		0	0		0	0
2000	0	0		0	0		0	0
2001	1	14		1	9		9	144
2002	0	0		3	4		12	104
2003	0	0		1	29		5	18
2004	0	0		7	16		13	41
2005	2	7		14	29		11	19
2006	0	0		11	12		24	96
2007	0	0		4	4		9	28
2008	0	0		0	0		1	1
2009	0	0		0	0		2	13
2010	0	0		0	0		3	27
	0							

Table 13. Summary of fixed biological parameters estimated externally and used as input for this update (identical to values in 2009 assessment).

Quantity	Value	Source
Female weight-length   coefficient $(a)$	0.00000977	
Female weight-length   exponent $(b)$	3.17	All available data pooled from
fishery and survey sources.		
Male weight-length   coefficient $(a)$	0.0000170	
Male weight-length exponent   $(b)$	3.03	Hannah et al., 2009
Female length at 50\%   maturity	38.78	Dick, 2009
Female maturity logistic slope	-0.437	
Fecundity eggs/kilogram		
intercept	137,900	36,500

Table 14. Description of model parameters in the base case assessment model.

Parameter	Number estimated	Bounds (low, high)	Prior (Mean, SD)
Natural mortality ( $M$, female)	1	(0.01,0.15)	Normal (0.0517,0.0226)
Natural mortality ( $M$, male)	1	$(0.01,0.15)$	Normal (0.0517,0.0226)
Stock and recruitment			
$\operatorname{Ln}\left(R_{0}\right)$	1	$(3,15)$	Uniform
Ln (Mean recruitment offset Oregon, normalized)	1	$(-5,5)$	Uniform
Ln (Mean recruitment offset Washington, normalized)	1	$(-5,5)$	Uniform
Steepness ( $h$ )	1	(0.2,1.0)	Beta (0.73,0.189)
Catchability			
Surveys:			
Ln $(Q)$ - IPHC Oregon	-		
Ln $(Q)$ - IPHC Washington	-	Analytic solution	
Ln(Q) - NWFSC survey (OR only)	-	Analytic solution	
$\operatorname{Ln}(Q)$ - Triennial survey (1980-1992, WA only)	1	$(-10,0)$	Uniform
$\operatorname{Ln}(Q)$ - Triennial survey offset (1995-2004) to early	1	$(-4,4)$	Uniform
Fisheries:			
Ln(Q) - Fisheries	-	Analytic solution	
Power coefficient for $\operatorname{Ln}(Q)$ relationship	4	$(-6,6)$	Uniform
Selectivity			
Fisheries (logistic):			
Length selectivity inflection	7	$(10,70)$	Uniform
95\% width of selectivity logistic	7	$(0.001,50)$	Uniform
IPHC Surveys (logistic):			
Length selectivity inflection	2	$(10,70)$	Uniform
$95 \%$ width of selectivity logistic	2	$(0.001,50)$	Uniform
Trawl Surveys (double-normal):			
Length at peak selectivity	1	$(20,87)$	Uniform
Width of top (as logistic)	-	Fixed at -4	
Ascending width (as exp[width])	2	$(0,8)$	Uniform
Descending width (as exp[width])	1	$(0,12)$	Uniform
Initial selectivity (as logistic)	1	$(-10,10)$	
Final selectivity (as logistic)	-	Fixe	t 10 , or not used
Individual growth			
Females:			
Length at age 1	1	$(10,35)$	Uniform
Length at age 70	1	$(40,120)$	Uniform
von Bertalanffy K	1	$(0.01,0.2)$	Uniform
CV of length at age 1	1	$(0.05,0.2)$	Uniform
CV of length at age 70	1	$(0.05,0.2)$	Uniform
Males:			
Length at age 1 offset to females	-	NA	Fixed at 0.0
Length at age 70	1	$(40,120)$	Uniform
von Bertalanffy K	1	$(0.01,0.2)$	Uniform
CV of length at age 1	1	$(0.05,0.2)$	Uniform
CV of length at age 70	1	$(0.05,0.2)$	Uniform
Total: 44 estimated parameters			

Table 15. Input and effective sample sizes used for tuning the composition data in the base model.

Type of data	Fleet	Input   adjustment	Average input   after   adjustment	Average   effective N
Fishery				
independent:	LPHC (OR)	0.73	89.6	94.0
	IPHC (WA)	0.62	49.0	53.7
	Triennial (WA)	2.08	19.7	20.3
	NWFSC (OR)	2.79	20.2	21.9
Fishery dependent:		0.74	6.3	6.8
Length	IPHC (OR)	0.9	5.7	6.0
	CA Recreational	1.28	48.0	48.0
	CA Rec. Charter	1.52	120.6	123.8
	CA Commercial	2.25	110.1	110.1
	OR Recreational	0.54	72.5	73.1
	OR Rec. Charter	1.44	120.6	33.3
	OR Commercial	2.16	48.4	50.1
	WA Recreational	5.49	63.6	64.5
	WA Commercial	1.57	48.9	51.7
	CA Recreational	1	1.0	1.0
	CA Commercial	1	1.2	1.5
	OR Recreational	1	1.9	2.4
	OR Commercial	1	1.5	2.4
	WA Recreational	1	3.2	4.0
	WA Commercial	1	2.7	3.3

${ }^{1}$ Length data with initial input sample sizes (before tuning) based on number of fish instead of number of samples.

Table 16. Estimated parameter values for the base-case model and alternate states of nature.

Parameter	Low	Base case	High
Natural mortality (M, female)	0.047	0.046	0.045
Natural mortality ( $M$, male)	0.046	0.045	0.044
$\operatorname{Ln}\left(R_{0}\right)$	5.184	5.430	5.801
Ln (Mean recruitment offset Oregon, normalized)	-0.005	-0.006	-0.005
Ln(Mean recruitment offset Washington, normalized)	-1.312	-1.336	-1.356
Steepness ( $h$; not estimated in the low or high cases)	0.383	0.441	0.508
CA Rec. power coefficient for $\operatorname{Ln}(Q)$ relationship	-0.025	0.044	0.120
CA Rec. Obs. power coefficient for $\operatorname{Ln}(Q)$ relationship	0.398	0.528	0.677
OR Rec. power coefficient for $\operatorname{Ln}(Q)$ relationship	-0.073	-0.011	0.059
WA Rec. power coefficient for $\operatorname{Ln}(Q)$ relationship	-0.330	-0.317	-0.301
$\operatorname{Ln}(Q)$ - Triennial survey (1980-1992, WA only)	0.709	0.452	0.071
$\operatorname{Ln}(Q)$ - Triennial survey offset (1995-2004) to early	-0.585	-0.608	-0.636
CA Rec. length selectivity inflection	34.157	34.310	34.464
CA Comm. length selectivity inflection	36.277	36.364	36.444
OR Rec. length selectivity inflection	32.069	32.199	32.332
OR Rec. Obs. length selectivity inflection	23.308	23.534	23.751
OR Comm. length selectivity inflection	38.157	38.295	38.419
WA Rec. length selectivity inflection	38.157	38.295	38.419
WA Comm. length selectivity inflection	38.157	38.295	38.419
CA Rec. $95 \%$ width of selectivity logistic	14.106	14.009	13.898
CA Comm. $95 \%$ width of selectivity logistic	14.106	14.009	13.898
OR Rec. 95\% width of selectivity logistic	8.124	8.145	8.158
OR Rec. Obs. 95\% width of selectivity logistic	4.797	4.913	5.035
OR Comm. 95\% width of selectivity logistic	11.714	11.670	11.594
WA Rec. $95 \%$ width of selectivity logistic	12.743	12.896	12.972
WA Comm. $95 \%$ width of selectivity logistic	12.743	12.896	12.972
OR IPHC length selectivity inflection	46.698	46.748	46.794
WA IPHC length selectivity inflection	58.003	58.169	58.295
OR IPHC 95\% width of selectivity logistic	5.188	5.198	5.201
WA IPHC 95\% width of selectivity logistic	9.621	9.654	9.681
NWFSC Length at peak selectivity	57.475	57.479	57.484
NWFSC ascending width (as exp[width])	7.017	6.935	6.857
Triennial ascending width (as exp[width])	6.621	6.627	6.634
NWFSC descending width (as exp[width])	0.000	0.000	0.000
Triennial initial selectivity (as logistic)	-3.079	-3.177	-3.278
Female length at age 1	18.796	18.717	18.614
Female length at age 70	62.300	62.265	62.233
Female von Bertalanffy K	0.047	0.047	0.048
Female CV of length at age 1	0.131	0.130	0.130
Female CV of length at age 70	0.072	0.072	0.072
Male length at age 70	64.630	64.594	64.562
Male von Bertalanffy K	0.047	0.047	0.047
Male CV of length at age 1	0.133	0.132	0.132
Male CV of length at age 70	0.060	0.060	0.060

Table 17. Estimated parameter values for the 2009 and 2011 base-case model.

Parameter	2009 Base Case	2011 Base Case
Natural mortality (M, female)	0.047	0.046
Natural mortality (M, male)	0.047	0.045
Ln(R0)	5.425	5.430
Ln(Mean recruitment offset Oregon, normalized)	-0.099	-0.006
Ln(Mean recruitment offset Washington, normalized)	-1.306	-1.336
Steepness (h; not estimated in the low or high cases)	0.417	0.441
CA Rec. power coefficient for Ln(Q) relationship	0.056	0.044
CA Rec. Obs. power coefficient for Ln(Q) relationship	0.546	0.528
OR Rec. power coefficient for Ln(Q) relationship	-0.078	-0.011
WA Rec. power coefficient for Ln(Q) relationship	-0.274	-0.317
Ln(Q) - Triennial survey (1980-1992, WA only)	0.355	0.452
Ln(Q) - Triennial survey offset (1995-2004) to early	-0.631	-0.608
CA Rec. length selectivity inflection	33.837	34.310
CA Comm. length selectivity inflection	36.149	36.364
OR Rec. length selectivity inflection	32.036	32.199
OR Rec. Obs. length selectivity inflection	22.727	23.534
OR Comm. length selectivity inflection	38.864	38.295
WA Rec. length selectivity inflection	42.643	38.295
WA Comm. length selectivity inflection	43.863	38.295
CA Rec. 95\% width of selectivity logistic	13.697	14.009
CA Comm. 95\% width of selectivity logistic	11.939	14.009
OR Rec. 95\% width of selectivity logistic	8.021	8.145
OR Rec. Obs. 95\% width of selectivity logistic	4.113	4.913
OR Comm. 95\% width of selectivity logistic	12.189	11.670
WA Rec. 95\% width of selectivity logistic	12.015	12.896
WA Comm. 95\% width of selectivity logistic	10.466	12.896
OR IPHC length selectivity inflection	47.002	46.748
WA IPHC length selectivity inflection	57.989	58.169
OR IPHC 95\% width of selectivity logistic	5.318	5.198
WA IPHC 95\% width of selectivity logistic	9.829	9.654
NWFSC Length at peak selectivity	52.193	57.479
NWFSC ascending width (as exp[width])	6.346	6.935
Triennial ascending width (as exp[width])	6.67	6.627
NWFSC descending width (as exp[width])	3.169	0.000
Triennial initial selectivity (as logistic)	-3.093	-3.177
Female length at age 1	18.393	18.717
Female length at age 70	62.38	62.265
Female von Bertalanffy K	0.049	0.047
Female CV of length at age 1	0.128	0.130
Female CV of length at age 70	0.071	0.072
Male length at age 70	64.594	
Male von Bertalanffy K	0.048	0.047
Male CV of length at age 1	0.132	
Male CV of length at age 70	0.060	

Table 18. Yelloweye rockfish stock-recruitment, mortality and growth parameter estimates (or derived values) and standard errors from the base-case model.

Parameter	Value	SD
$R_{0}-$ California (1000s Age-0)	101.1	NA
$R_{0}$ - Oregon (1000s Age-0)	100.5	NA
$R_{0}$ - Washington (1000s Age-0)	26.6	NA
Steepness $(h)$	0.441	0.054
Females:		
Natural mortality $(M)$	0.046	0.0015
Length at age $1(\mathrm{~cm})$	18.717	0.6438
Length at age $70(\mathrm{~cm})$	62.264	0.3767
von Bertalanffy $K$	0.0473	0.0017
CV of length at age 1	0.130	0.0117
CV of length at age 70	0.0718	0.0043
Males:		
Natural mortality $(M)$	0.045	0.001431
Length at age $1(\mathrm{~cm})$		NA
Length at age 70 $(\mathrm{cm})$	64.594	0.3097
von Bertalanffy $K$	0.0472	0.0014
CV of length at age 1	0.132	0.0103
CV of length at age 70	0.060	0.0036

Table 19. Comparison of summary quantities among the base case and alternate states of nature.

Model	Low	Base case	High
Convergence			
Maximum gradient   component	0.0000391	0.0000006	0.0000137
Negative log-			
likelihoods			
Total	$6,699.05$	$6,695.62$	$6,693.50$
$\quad$ Indices	-27.3843	-26.8025	-26.1329
Length-frequency data	$2,688.28$	$2,686.12$	$2,684.67$
$\quad$ Age-frequency data	$4,037.06$	$4,035.46$	$4,034.34$
$\quad$ Priors	1.09	0.84	0.62
Select parameters			
Equilibrium recruitment			
( $R_{0}$, 1000s age-0)	178	228	331
Steepness ( $h$ )	0.383	0.441	0.508
Male $M$	0.046	0.045	0.044
Management			
quantities			
Equilibrium spawning	770	1028	1,545
output (SB ${ }_{0}$, millions eggs)	$18.9 \%$	$21.3 \%$	$24.0 \%$
2009 Spawning depletion	1,439	2,186	3,723
2009 age-8+ biomass (mt)	$73.80 \%$	$81.0 \%$	$87.9 \%$
2008 SPR	27.4	58.9	110.8
MSY (mt)			

Table 20. Comparison of summary quantities among the 2009 and 2011 base-case models.

Model	2009 Base Case	2011 Base Case
Convergence		
Maximum gradient component	0.0000018	0.0000006
Negative log-likelihoods		
Total	$6,102.50$	$6,695.62$
Indices	-28.3	-26.8
Length-frequency data	$2,503.80$	$2,686.12$
Age-frequency data	$3,626.10$	$4,035.46$
Priors	0.9	0.8
Select parameters		
Equilibrium recruitment		
(R0, 1000s age-0)	227	228
Steepness (h)	0.417	0.441
Male M	0.047	0.045
Management quantities		
Equilibrium spawning output		
(SB0, millions eggs)	994	1028
2009 Spawning depletion	$20.3 \%$	$21.3 \%$
2009 age-8+ biomass (mt)	2,008	2,186
2008 SPR	$79.30 \%$	$81.0 \%$
MSY (mt)	56.1	58.9

Table 21. Time-series of population estimates from the base-case model.

Year	Age-8+ biomass (mt)	Spawning output (millions eggs)	Spawning depletion	Age-0 recruits (1000s)	Total catch (mt)	SPR	Relative exploitation rate
1916	8883	1028	100.0\%	228	3.9	98.4\%	0.0\%
1917	8879	1027	100.0\%	228	5.4	97.8\%	0.1\%
1918	8874	1027	99.9\%	228	6.1	97.5\%	0.1\%
1919	8868	1026	99.8\%	228	4.1	98.3\%	0.0\%
1920	8864	1025	99.8\%	228	4.4	98.2\%	0.0\%
1921	8860	1025	99.7\%	228	4.4	98.2\%	0.1\%
1922	8856	1024	99.7\%	228	4.3	98.3\%	0.0\%
1923	8853	1024	99.6\%	228	4.5	98.2\%	0.1\%
1924	8849	1023	99.6\%	228	5.2	97.9\%	0.1\%
1925	8844	1023	99.5\%	228	7.4	97.1\%	0.1\%
1926	8838	1022	99.5\%	228	8.5	96.6\%	0.1\%
1927	8831	1021	99.4\%	228	9.6	96.2\%	0.1\%
1928	8822	1020	99.3\%	228	11.0	95.7\%	0.1\%
1929	8813	1019	99.1\%	228	14.9	94.2\%	0.2\%
1930	8800	1017	99.0\%	227	15.6	93.9\%	0.2\%
1931	8786	1016	98.8\%	227	13.6	94.6\%	0.2\%
1932	8775	1014	98.7\%	227	13.3	94.8\%	0.2\%
1933	8764	1013	98.6\%	227	11.1	95.6\%	0.1\%
1934	8755	1012	98.4\%	227	13.4	94.7\%	0.2\%
1935	8745	1010	98.3\%	227	16.0	93.8\%	0.2\%
1936	8732	1009	98.2\%	227	20.4	92.0\%	0.2\%
1937	8715	1007	98.0\%	227	20.3	92.1\%	0.2\%
1938	8699	1005	97.8\%	227	20.2	92.1\%	0.2\%
1939	8683	1003	97.6\%	226	16.1	93.6\%	0.2\%
1940	8671	1001	97.4\%	226	23.6	90.8\%	0.3\%
1941	8652	999	97.2\%	226	28.6	89.1\%	0.3\%
1942	8629	996	96.9\%	226	35.0	87.1\%	0.4\%
1943	8600	992	96.5\%	226	80.2	76.1\%	0.9\%
1944	8527	983	95.7\%	225	80.7	73.6\%	0.9\%
1945	8455	974	94.8\%	224	130.4	62.5\%	1.5\%
1946	8337	960	93.4\%	223	110.0	66.4\%	1.3\%
1947	8240	948	92.2\%	222	47.8	82.0\%	0.6\%
1948	8205	943	91.8\%	222	55.2	79.7\%	0.7\%
1949	8164	938	91.3\%	221	39.9	84.4\%	0.5\%
1950	8139	934	90.9\%	221	42.8	83.3\%	0.5\%
1951	8112	931	90.6\%	221	51.0	80.9\%	0.6\%
1952	8078	926	90.1\%	221	46.0	82.3\%	0.6\%
1953	8049	922	89.8\%	220	38.1	84.9\%	0.5\%
1954	8028	920	89.5\%	220	45.8	82.3\%	0.6\%
1955	8000	916	89.1\%	220	55.3	78.8\%	0.7\%
1956	7963	911	88.7\%	219	65.1	75.7\%	0.8\%

Table 21. continued. Time-series of population estimates from the base-case model.

	Age-8+   biomass   (mt)	Spawning   output   (millions   eggs)	Spawning   depletion	Age-0   recruits   (1000s)	Total   catch   (mt)	SPR	Relative   exploitation   rate
1957	7917	906	$88.1 \%$	219	73.5	$73.1 \%$	$0.9 \%$
1958	7864	899	$87.5 \%$	218	78.6	$71.9 \%$	$1.0 \%$
1959	7807	892	$86.8 \%$	218	72.5	$73.1 \%$	$0.9 \%$
1960	7756	886	$86.2 \%$	217	67.8	$74.3 \%$	$0.9 \%$
1961	7711	880	$85.6 \%$	217	59.3	$76.9 \%$	$0.8 \%$
1962	7675	875	$85.2 \%$	216	67.8	$74.2 \%$	$0.9 \%$
1963	7632	870	$84.6 \%$	216	57.4	$77.4 \%$	$0.8 \%$
1964	7600	866	$84.2 \%$	215	45.8	$81.3 \%$	$0.6 \%$
1965	7579	863	$84.0 \%$	215	126.8	$60.1 \%$	$1.7 \%$
1966	7481	851	$82.8 \%$	214	64.2	$75.4 \%$	$0.9 \%$
1967	7444	846	$82.3 \%$	214	72.0	$72.4 \%$	$1.0 \%$
1968	7401	841	$81.8 \%$	213	74.9	$71.9 \%$	$1.0 \%$
1969	7355	835	$81.2 \%$	213	142.7	$55.0 \%$	$1.9 \%$
1970	7245	821	$79.9 \%$	211	105.0	$65.4 \%$	$1.4 \%$
1971	7172	813	$79.1 \%$	211	134.2	$57.9 \%$	$1.9 \%$
1972	7073	800	$77.9 \%$	209	165.7	$53.6 \%$	$2.3 \%$
1973	6944	785	$76.4 \%$	208	160.1	$55.5 \%$	$2.3 \%$
1974	6823	770	$74.9 \%$	206	178.8	$51.8 \%$	$2.6 \%$
1975	6685	753	$73.3 \%$	205	168.8	$55.7 \%$	$2.5 \%$
1976	6559	738	$71.8 \%$	203	195.4	$47.7 \%$	$3.0 \%$
1977	6410	719	$70.0 \%$	201	200.9	$45.1 \%$	$3.1 \%$
1978	6257	701	$68.2 \%$	199	323.5	$33.3 \%$	$5.2 \%$
1979	5988	668	$65.0 \%$	195	323.0	$27.3 \%$	$5.4 \%$
1980	5722	636	$61.9 \%$	191	267.4	$29.2 \%$	$4.7 \%$
1981	5514	611	$59.4 \%$	188	368.4	$24.0 \%$	$6.7 \%$
1982	5212	574	$55.9 \%$	182	463.4	$17.6 \%$	$8.9 \%$
1983	4822	528	$51.4 \%$	175	331.3	$21.0 \%$	$6.9 \%$
1984	4563	496	$48.3 \%$	170	276.8	$22.4 \%$	$6.1 \%$
1985	4362	471	$45.9 \%$	166	329.1	$17.7 \%$	$7.5 \%$
1986	4114	441	$42.9 \%$	160	219.1	$25.8 \%$	$5.3 \%$
1987	3975	424	$41.2 \%$	157	251.3	$21.4 \%$	$6.3 \%$
1988	3806	403	$39.2 \%$	153	279.5	$18.6 \%$	$7.3 \%$
1989	3612	380	$36.9 \%$	148	346.9	$13.6 \%$	$9.6 \%$
1990	3354	349	$33.9 \%$	141	237.4	$20.4 \%$	$7.1 \%$
1991	3203	331	$32.2 \%$	137	368.0	$11.6 \%$	$11.5 \%$
1992	2927	299	$29.1 \%$	129	372.8	$9.4 \%$	$12.7 \%$
1993	2647	267	$26.0 \%$	120	318.7	$11.9 \%$	$12.0 \%$
1994	2418	240	$23.4 \%$	112	223.4	$13.7 \%$	$9.2 \%$
1995	2284	224	$21.8 \%$	107	254.6	$12.2 \%$	$11.1 \%$
1996	2120	205	$19.9 \%$	100	217.7	$12.2 \%$	$10.3 \%$
1997	1992	190	$18.5 \%$	95	244.1	$9.7 \%$	$12.3 \%$

Table 21. continued. Time-series of population estimates from the base-case model.

	Age-8+   biomass   $(\mathrm{mt})$	Spawning   output   (millions   eggs)	Spawning   depletion	Age-0   recruits   $(1000 \mathrm{~s})$	Total   catch   $(\mathrm{mt})$	SPR	Relative   exploitation   rate
1998	1837	173	$16.9 \%$	89	107.0	$23.5 \%$	$5.8 \%$
1999	1812	170	$16.5 \%$	88	155.8	$17.3 \%$	$8.6 \%$
2000	1739	161	$15.7 \%$	84	40.9	$53.7 \%$	$2.3 \%$
2001	1772	164	$16.0 \%$	86	56.1	$53.9 \%$	$3.2 \%$
2002	1789	166	$16.1 \%$	86	13.3	$78.7 \%$	$0.7 \%$
2003	1844	172	$16.7 \%$	89	12.0	$79.4 \%$	$0.6 \%$
2004	1898	179	$17.4 \%$	91	13.9	$78.6 \%$	$0.7 \%$
2005	1948	185	$18.0 \%$	93	16.3	$76.5 \%$	$0.8 \%$
2006	1991	191	$18.6 \%$	95	13.8	$77.5 \%$	$0.7 \%$
2007	2035	197	$19.2 \%$	98	23.0	$67.5 \%$	$1.1 \%$
2008	2067	202	$19.7 \%$	99	13.7	$79.9 \%$	$0.7 \%$
2009	2107	208	$20.2 \%$	101	10.9	$83.2 \%$	$0.5 \%$
2010	2148	214	$20.8 \%$	103	11.4	$83.5 \%$	$0.5 \%$
2011	2188	219	$21.3 \%$	105	NA	NA	NA

Table 22. Time-series of population estimates from the low state of nature.

Year	Age-8+ biomass (mt)	Spawning output (millions eggs)	Spawning depletion	Age-0 recruits (1000s)	Total catch (mt)	SPR	Relative exploitation rate
1916	6,700	770	100.0\%	178	2.9	98.5\%	0.0\%
1917	6,697	770	100.0\%	178	4.1	97.9\%	0.1\%
1918	6,693	769	99.9\%	178	4.6	97.6\%	0.1\%
1919	6,689	769	99.8\%	178	3.1	98.4\%	0.0\%
1920	6,686	768	99.8\%	178	3.3	98.2\%	0.0\%
1921	6,683	768	99.7\%	178	3.3	98.2\%	0.0\%
1922	6,680	767	99.7\%	178	3.2	98.3\%	0.0\%
1923	6,677	767	99.6\%	178	3.4	98.2\%	0.1\%
1924	6,674	767	99.6\%	178	3.9	97.9\%	0.1\%
1925	6,671	766	99.5\%	178	5.5	97.1\%	0.1\%
1926	6,666	766	99.5\%	178	6.3	96.7\%	0.1\%
1927	6,661	765	99.4\%	178	7.2	96.3\%	0.1\%
1928	6,654	764	99.3\%	178	8.2	95.8\%	0.1\%
1929	6,647	763	99.2\%	178	11.1	94.3\%	0.2\%
1930	6,637	762	99.0\%	178	11.7	94.0\%	0.2\%
1931	6,627	761	98.8\%	178	10.2	94.7\%	0.2\%
1932	6,619	760	98.7\%	178	10.0	94.9\%	0.2\%
1933	6,611	759	98.6\%	177	8.3	95.6\%	0.1\%
1934	6,604	758	98.5\%	177	10.1	94.8\%	0.2\%
1935	6,596	757	98.3\%	177	12.0	93.9\%	0.2\%
1936	6,587	756	98.2\%	177	15.3	92.2\%	0.2\%
1937	6,574	754	98.0\%	177	15.2	92.2\%	0.2\%
1938	6,562	753	97.8\%	177	15.1	92.2\%	0.2\%
1939	6,549	751	97.6\%	177	12.0	93.8\%	0.2\%
1940	6,541	750	97.4\%	177	17.7	91.0\%	0.3\%
1941	6,526	748	97.2\%	176	21.4	89.3\%	0.3\%
1942	6,509	746	96.9\%	176	26.3	87.3\%	0.4\%
1943	6,487	743	96.6\%	176	60.2	76.5\%	0.9\%
1944	6,432	737	95.7\%	175	60.5	74.0\%	0.9\%
1945	6,379	730	94.8\%	175	97.8	63.0\%	1.5\%
1946	6,289	719	93.4\%	174	82.5	66.9\%	1.3\%
1947	6,217	710	92.3\%	173	35.9	82.3\%	0.6\%
1948	6,191	707	91.8\%	172	41.4	80.1\%	0.7\%
1949	6,160	703	91.3\%	172	29.9	84.6\%	0.5\%
1950	6,141	700	91.0\%	172	32.1	83.6\%	0.5\%
1951	6,120	698	90.6\%	171	38.3	81.3\%	0.6\%
1952	6,094	694	90.2\%	171	34.5	82.6\%	0.6\%
1953	6,072	691	89.8\%	171	28.5	85.2\%	0.5\%
1954	6,056	689	89.5\%	170	34.3	82.6\%	0.6\%
1955	6,035	687	89.2\%	170	41.5	79.1\%	0.7\%
1956	6,006	683	88.7\%	170	48.8	76.1\%	0.8\%

Table 22. continued. Time-series of population estimates from the low state of nature.
$\left.\begin{array}{cccccccc}\hline & \begin{array}{c}\text { Age-8+ } \\ \text { biomass } \\ \text { (mt) }\end{array} & \begin{array}{c}\text { Spawning } \\ \text { output } \\ \text { (millions } \\ \text { eggs) }\end{array} & \begin{array}{c}\text { Spawning } \\ \text { depletion }\end{array} & \begin{array}{c}\text { Age-0 } \\ \text { recruits } \\ \text { (1000s) }\end{array} & \begin{array}{c}\text { Total } \\ \text { catch } \\ \text { (mt) }\end{array} & & \begin{array}{c}\text { SPR }\end{array} \\ \text { Year } \\ \text { explative } \\ \text { rate }\end{array}\right]$

Table 22. continued. Time-series of population estimates from the low state of nature.

Age-8+   biomass   (mt)	Spawning   output   (millions   eggs)	Spawning   depletion	Age-0   recruits   $(1000$ s)	Total   catch   (mt)	SPR	Relative   exploitation   rate	
1998	1,323	125	$16.3 \%$	58	80.2	$22.7 \%$	$6.1 \%$
1999	1,298	122	$15.9 \%$	57	116.9	$16.5 \%$	$9.0 \%$
2000	1,237	115	$15.0 \%$	54	40.9	$44.2 \%$	$3.3 \%$
2001	1,246	116	$15.1 \%$	55	56.1	$44.7 \%$	$4.5 \%$
2002	1,239	115	$15.0 \%$	54	13.3	$72.0 \%$	$1.1 \%$
2003	1,270	119	$15.5 \%$	56	12.0	$72.6 \%$	$0.9 \%$
2004	1,301	123	$16.0 \%$	57	13.9	$71.5 \%$	$1.1 \%$
2005	1,328	127	$16.4 \%$	59	16.3	$69.0 \%$	$1.2 \%$
2006	1,349	130	$16.9 \%$	60	13.8	$69.8 \%$	$1.0 \%$
2007	1,372	133	$17.3 \%$	61	23.0	$58.3 \%$	$1.7 \%$
2008	1,383	136	$17.7 \%$	62	13.7	$72.7 \%$	$1.0 \%$
2009	1,402	139	$18.1 \%$	63	10.9	$76.6 \%$	$0.8 \%$
2010	1,422	142	$18.5 \%$	64	11.4	$77.1 \%$	$0.8 \%$
2011	1,441	146	$18.9 \%$	65	NA	NA	NA

Table 23. Time-series of population estimates from the high state of nature.

Year	Age-8+ biomass (mt)	$\begin{gathered} \hline \text { Spawning } \\ \text { output } \\ \text { (millions } \\ \text { eggs) } \\ \hline \hline \end{gathered}$	Spawning depletion	Age-0 recruits (1000s)	Total catch (mt)	SPR	Relative exploitation rate
1916	13,274	1,545	100.0\%	331	5.9	98.4\%	0.0\%
1917	13,268	1,544	100.0\%	331	8.1	97.8\%	0.1\%
1918	13,260	1,543	99.9\%	331	9.2	97.5\%	0.1\%
1919	13,252	1,542	99.8\%	331	6.2	98.3\%	0.0\%
1920	13,246	1,542	99.8\%	331	6.6	98.2\%	0.1\%
1921	13,240	1,541	99.7\%	331	6.7	98.2\%	0.1\%
1922	13,234	1,540	99.7\%	330	6.4	98.2\%	0.0\%
1923	13,229	1,539	99.6\%	330	6.8	98.1\%	0.1\%
1924	13,223	1,539	99.6\%	330	7.8	97.9\%	0.1\%
1925	13,216	1,538	99.5\%	330	11.0	97.0\%	0.1\%
1926	13,207	1,537	99.5\%	330	12.7	96.6\%	0.1\%
1927	13,196	1,535	99.4\%	330	14.4	96.1\%	0.1\%
1928	13,183	1,534	99.3\%	330	16.5	95.6\%	0.1\%
1929	13,169	1,532	99.1\%	330	22.3	94.1\%	0.2\%
1930	13,149	1,529	99.0\%	330	23.4	93.8\%	0.2\%
1931	13,129	1,527	98.8\%	330	20.4	94.5\%	0.2\%
1932	13,112	1,525	98.7\%	330	19.9	94.7\%	0.2\%
1933	13,096	1,523	98.5\%	330	16.7	95.5\%	0.1\%
1934	13,083	1,521	98.4\%	329	20.1	94.6\%	0.2\%
1935	13,067	1,519	98.3\%	329	23.9	93.7\%	0.2\%
1936	13,048	1,516	98.1\%	329	30.6	91.9\%	0.2\%
1937	13,023	1,513	97.9\%	329	30.4	91.9\%	0.2\%
1938	12,998	1,510	97.7\%	329	30.2	92.0\%	0.2\%
1939	12,974	1,507	97.5\%	329	24.1	93.5\%	0.2\%
1940	12,957	1,505	97.4\%	329	35.4	90.7\%	0.3\%
1941	12,929	1,501	97.2\%	328	42.9	88.9\%	0.3\%
1942	12,894	1,497	96.9\%	328	52.5	86.9\%	0.4\%
1943	12,850	1,491	96.5\%	328	120.4	75.8\%	0.9\%
1944	12,742	1,478	95.7\%	327	121.0	73.3\%	0.9\%
1945	12,634	1,464	94.8\%	326	195.7	62.0\%	1.5\%
1946	12,456	1,443	93.4\%	325	165.0	66.0\%	1.3\%
1947	12,311	1,424	92.2\%	324	71.7	81.8\%	0.6\%
1948	12,259	1,418	91.7\%	324	82.7	79.4\%	0.7\%
1949	12,198	1,409	91.2\%	323	59.9	84.1\%	0.5\%
1950	12,161	1,404	90.9\%	323	64.2	83.1\%	0.5\%
1951	12,120	1,399	90.5\%	323	76.5	80.7\%	0.6\%
1952	12,069	1,392	90.1\%	322	69.0	82.1\%	0.6\%
1953	12,026	1,386	89.7\%	322	57.1	84.7\%	0.5\%
1954	11,996	1,382	89.5\%	322	68.6	82.0\%	0.6\%
1955	11,954	1,377	89.1\%	321	82.9	78.5\%	0.7\%
1956	11,900	1,370	88.6\%	321	97.7	75.4\%	0.8\%

Table 23. continued. Time-series of population estimates from the high state of nature.
$\left.\begin{array}{cccccccc}\hline & \begin{array}{c}\text { Age-8+ } \\ \text { biomass } \\ \text { (mt) }\end{array} & \begin{array}{c}\text { Spawning } \\ \text { output } \\ \text { (millions } \\ \text { eggs }\end{array} & \begin{array}{c}\text { Spawning } \\ \text { depletion }\end{array} & \begin{array}{c}\text { Age-0 } \\ \text { recruits } \\ \text { (1000s) }\end{array} & \begin{array}{c}\text { Total } \\ \text { catch } \\ \text { (mt) }\end{array} & \begin{array}{c}\text { SPR }\end{array} & \begin{array}{c}\text { Relative } \\ \text { Year }\end{array} \\ \hline 1957 & 11,832 & 1,361 & 88.1 \% & 320 & 110.3 & 72.8 \% & 0.9 \% \\ \text { rate }\end{array}\right]$

Table 23. continued. Time-series of population estimates from the high state of nature.

Year	Age-8+ biomass (mt)	Spawning output (millions eggs)	Spawning depletion	Age-0 recruits (1000s)	Total catch (mt)	SPR	Relative exploitation rate
1998	2,882	270	17.5\%	154	160.4	24.3\%	5.6\%
1999	2,856	266	17.2\%	153	233.7	18.2\%	8.2\%
2000	2,760	254	16.4\%	148	40.9	65.4\%	1.5\%
2001	2,843	262	17.0\%	151	56.1	65.2\%	2.0\%
2002	2,910	269	17.4\%	154	13.3	85.6\%	0.5\%
2003	3,015	280	18.1\%	158	12.0	86.3\%	0.4\%
2004	3,117	292	18.9\%	162	13.9	85.7\%	0.4\%
2005	3,215	303	19.6\%	166	16.3	84.2\%	0.5\%
2006	3,304	315	20.4\%	170	13.8	85.2\%	0.4\%
2007	3,394	326	21.1\%	174	23.0	77.7\%	0.7\%
2008	3,471	337	21.8\%	177	13.7	87.0\%	0.4\%
2009	3,555	348	22.5\%	181	10.9	89.3\%	0.3\%
2010	3,640	360	23.3\%	184	11.4	89.5\%	0.3\%
2011	3,725	371	24.0\%	187	NA	NA	NA

Table 24. Projection of yelloweye rockfish under ACL values calculated from a $76 \%$ SPR rate. Total catch in 2011 and 2012 is set equal to the NMFS preferred alternative ACL $(17 \mathrm{mt})$, allocated between fleets according to the average catch over the years 20072009. The target exploitation rate for 2013 and beyond is based upon an SPR of $76 \%$, which is the NMFS preferred alternative. This SPR-based forecast catch is allocated between fleets according to the average fishing mortality rate for the years 2007-2009 (which allows the forecast catch to respond to different trends in the biomass available to each fleet). OFL values are based on a $50 \%$ SPR rate.


Table 25. Decision table of 12-year projections for alternate states of nature (columns) and management options (rows) beginning in 2011. Relative probabilities are based on the joint distribution of alternate historical catch levels and steepness values.

			State of nature					
			$\begin{gathered} 75 \% \text { of catch }<2000 \\ \text { and } \\ \text { steepness }=0.383 \end{gathered}$		$\begin{gathered} \text { Base case } \\ 100 \% \text { of catch }<2000 \\ \text { and } \\ \text { steepness }=0.441 \end{gathered}$		```150% of catch < 2000 and steepness = 0.508```	
Relative probability			0.0625		0.25		0.0625	
Management decision	Year	$\begin{aligned} & \text { Catch } \\ & (\mathrm{mt}) \\ & \hline \end{aligned}$	Depletion	Spawning output (millions eggs)	Depletion	Spawning output (millions eggs)	Depletion	$\begin{gathered} \text { Spawning } \\ \text { output } \\ \text { (millions } \\ \text { eggs) } \\ \hline \end{gathered}$
Forecast catch calculated from 76\% SPR applied to low alternative model.	2013	11.7	19.5\%	150	22.3\%	229	25.3\%	391
	2014	11.9	19.8\%	153	22.8\%	234	26.0\%	402
	2015	12.0	20.1\%	155	23.3\%	239	26.6\%	412
	2016	12.2	20.4\%	157	23.7\%	244	27.3\%	422
	2017	12.3	20.7\%	160	24.2\%	248	27.9\%	432
	2018	12.4	21.0\%	162	24.6\%	253	28.6\%	441
	2019	12.6	21.3\%	164	25.0\%	257	29.2\%	451
	2020	12.7	21.5\%	166	25.5\%	262	29.8\%	460
	2021	12.8	21.8\%	167	25.9\%	266	30.4\%	470
	2022	12.9	22.0\%	169	26.3\%	270	31.0\%	479
Forecast catch calculated from 76\% SPR applied to basecase model.	2013	17.7	19.5\%	150	22.3\%	229	25.3\%	391
	2014	18.0	19.7\%	152	22.7\%	234	26.0\%	401
	2015	18.3	20.0\%	154	23.1\%	238	26.6\%	410
	2016	18.6	20.2\%	155	23.5\%	242	27.2\%	420
	2017	18.8	20.4\%	157	23.9\%	246	27.8\%	429
	2018	19.1	20.6\%	158	24.3\%	250	28.3\%	438
	2019	19.3	20.7\%	160	24.6\%	253	28.9\%	447
	2020	19.6	20.9\%	161	25.0\%	257	29.5\%	456
	2021	19.8	21.0\%	162	25.3\%	260	30.1\%	464
	2022	20.0	21.2\%	163	25.7\%	264	30.6\%	473
Forecast catch calculated from 76\% SPR applied to high alternative model.	2013	30.2	19.5\%	150	22.3\%	229	25.3\%	391
	2014	30.7	19.6\%	151	22.6\%	232	25.9\%	400
	2015	31.3	19.6\%	151	22.9\%	235	26.4\%	408
	2016	31.8	19.7\%	151	23.1\%	238	26.9\%	416
	2017	32.3	19.7\%	151	23.4\%	240	27.4\%	423
	2018	32.8	19.7\%	151	23.6\%	243	27.9\%	431
	2019	33.3	19.6\%	151	23.8\%	245	28.4\%	438
	2020	33.8	19.6\%	151	24.0\%	247	28.8\%	446
	2021	34.3	19.5\%	150	24.2\%	249	29.3\%	453
	2022	34.7	19.5\%	150	24.4\%	251	29.8\%	460

11. Figures


Figure 1. Yelloweye rockfish estimated catch history, 1916-2010 by sector (upper plot) and comparison with previous assessment showing the effect of the Oregon historical catch reconstruction for the years 1916-1986.


Figure 2. Comparison of indices of abundance that were extended with additional data (black) with those used in the 2009 assessment (red). For comparison, indices are standardized to have mean = 1 over the overlapping years. Increase in uncertainty of the 1999 and 2001 IPHC values is due to a new accounting for sampling only the first 20 out of every 100 hooks prior to 2002. Note that the years have been offset slightly to allow each point to be visible.


Figure 3. W-L relationship for male and female yelloweye (upper panel), female maturity curve (middle panel), and female spawning output at length (lower panel) illustrating the product of the female W-L, fecundity and maturity relationships.


Figure 4. Female yelloweye fecundity relationship (Filled circles, From Dick, 2009). Horizontal line indicates no fecundity relationship (for comparison).


Figure 5. Prior for natural mortality (normal approximation) used in the base-case model, with original log-normal distribution for comparison.


Figure 6. Catch series for the alternate states of nature.


Figure 7. Growth curve for males (upper solid line) and females (lower solid line) with $\sim 95 \%$ interval (dashed lines) indicating the expectation and individual variability of length-at-age for the base-case model.


Figure 8. Estimated selectivity for the California fisheries.


Figure 9. Estimated selectivity for Oregon fisheries.


Figure 10. Estimated selectivity for Washington fisheries.


Figure 11. Estimated selectivity for IPHC surveys.


Figure 12. Estimated selectivity for trawl surveys.


Figure 13. Fit to the IPHC survey index for Washington (left) and Oregon (right) in the base-case model.



Figure 14. Fit to the NWFSC survey index for Oregon of relative biomass (left) and $\log$ (index) for easier evaluation (right) in the base-case model.


Figure 15. Fit to the early (left) and late (right) portions of the triennial survey index for Washington of relative biomass in the base-case model.


Figure 16. Fit to the California recreational CPUE index (left) and California recreational observer CPUE index (right) in the base-case model.


Figure 17. Fit to the Oregon recreational CPUE index (left) and Oregon recreational observer CPUE index (right) in the base-case model.



Figure 18. Fit to the Washington recreational CPUE index (left) and log(index) for easier evaluation (right) in the base-case model.


Figure 19. Fit to the Oregon IPHC female (left panels) and male (right panels) length frequencies.


Figure 20. Pearson residuals for the fit to Oregon IPHC female (left, maximum = 3.75) and male (right, maximum = 2.69) length frequencies. Filled circles represent positive residuals (observed - expected).


Figure 21. Fit to the Washington IPHC female (left panels) and male (right panels) length frequencies.


Figure 22. Pearson residuals for the fit to Washington IPHC female (left, maximum = 4.74) and male (right, maximum $=2.77$ ) length frequencies. Filled circles represent positive residuals (observed - expected).


Figure 23. Fit to the Oregon NWFSC female (left panels) and male (right panels) length frequencies.


Figure 24. Pearson residuals for the fit to Oregon NWFSC female (left, maximum = 4.89) and male (right, maximum = 5.24) length frequencies. Filled circles represent positive residuals (observed - expected).


Figure 25. Fit to the Washington triennial female (left panels) and male (right panels) length frequencies.


Figure 26. Pearson residuals for the fit to Washington triennial female (left, maximum = 6.65 ) and male (right, maximum = 4.06) length frequencies. Filled circles represent positive residuals (observed - expected).


Figure 27. Fit to the California recreational sexes-combined length frequencies.


Figure 28. Pearson residuals for the fit to California recreational length frequencies (maximum $=6.66$ ). Filled circles represent positive residuals (observed - expected).


Figure 29. Fit to the California recreational charter vessel sexes-combined length frequencies (left panels) and Pearson residuals for the fit to California recreational length frequencies (right panel, maximum = 3.54). Filled circles represent positive residuals (observed - expected).


Figure 30. Fit to the California commercial sexes-combined length frequencies.


Figure 31. Pearson residuals for the fit to California commercial length frequencies (maximum = 11.95). Filled circles represent positive residuals (observed - expected).


Figure 32. Fit to the Oregon recreational sexes-combined length frequencies.


Figure 33. Pearson residuals for the fit to Oregon recreational length frequencies (maximum $=4.72$ ). Filled circles represent positive residuals (observed - expected).


Figure 34. Fit to the Oregon recreational female (left panels) and male (right panels) length frequencies.


Figure 35. Pearson residuals for the fit to Oregon recreational female (left, maximum = 3.52 ) and male (right, maximum $=4.16$ ) length frequencies. Filled circles represent positive residuals (observed - expected).


Figure 36. Fit to the Oregon recreational charter observer sexes-combined length frequencies and associated Pearson residuals (maximum = 5.56). Filled circles represent positive residuals (observed - expected).


Figure 37. Fit to the Oregon commercial female (left panels) and male (right panels) length frequencies.


Figure 38. Pearson residuals for the fit to Oregon commercial female (left, maximum = 10.42 ) and male (right, maximum = 7.94) length frequencies. Filled circles represent positive residuals (observed - expected).


Figure 39. Fit to the Washington recreational female (left panels) and male (right panels) length frequencies.


Figure 40. Pearson residuals for the fit to Washington recreational female (upper panel, maximum $=10.72$ ) and male (lower panel, maximum $=22.6$ ) length frequencies. Filled circles represent positive residuals (observed - expected).


Figure 41. Fit to the Washington commercial sexes-combined (left), females (center) and males (right) length frequencies.


Figure 42. Pearson residuals for the fit to Washington commercial length frequencies for combined sex (left), females (center), and males (right), (maxima $=4.58,7,79$, and 6.46, respectively). Filled circles represent positive residuals (observed - expected).


Figure 43. Fit to the Oregon (left panel) and Washington (right panel) IPHC sexescombined age frequencies.


Figure 44. Pearson residuals for the fit to the Oregon (upper panel, maximum = 3.23) and Washington (lower panel, maximum = 3.6) IPHC sexes-combined age frequencies. Filled circles represent positive residuals (observed - expected).


Figure 45. Pearson residuals for the fit to the Oregon female (upper panels, maximum = 12.41) and male (lower panels, maximum = 9.04) IPHC age frequencies. Filled circles


Figure 46. Pearson residuals for the fit to the Washington female (left panels, maximum = 12.99) and male (right panels, maximum = 12.98) IPHC age frequencies. Filled circles represent positive residuals (observed - expected).


Figure 47. Pearson residuals for the fit to the California commercial female (maximum = 20.12) age frequencies. Filled circles represent positive residuals (observed - expected).


Figure 48. Pearson residuals for the fit to the California commercial male (maximum = 15.63) age frequencies. Filled circles represent positive residuals (observed - expected).


Figure 49. Pearson residuals for the fit to the Oregon recreational female (upper panels, maximum = 14.32) and male (lower panels, maximum = 16.7) age frequencies. Filled circles represent positive residuals (observed - expected).


Figure 50. Pearson residuals for the fit to the Oregon commercial female (upper panels, maximum $=10.24$ ) and male (lower panels, maximum $=28.72$ ) age frequencies. Filled circles represent positive residuals (observed - expected).


Figure 51. Pearson residuals for the fit to the Washington recreational female (upper panels, maximum = 9.38) and male (lower panels, maximum = 18.77) age frequencies. Filled circles represent positive residuals (observed - expected).


Figure 52. Pearson residuals for the fit to the Washington commercial female (upper panels, maximum $=28.57$ ) and male (lower panels, maximum $=20.77$ ) age frequencies. Filled circles represent positive residuals (observed - expected).


Figure 53. Estimated stock-recruit function for the base-case model, and alternate states of nature. Plus signs indicate estimate equilibrium values.


Figure 54. Time series of estimated yelloweye rockfish recruitments for the base-case model and alternate states of nature. Disconnected points at left indicate equilibrium.


Figure 55. Estimated spawning output time-series (1916-2011) for the base-case model and alternate states of nature. Disconnected points at left indicate equilibrium.


Figure 56. Estimated summary biomass (age-8+) time-series (1916-2011) by state for the base-case model.


Figure 57. Estimated spawning output time-series (1916-2011) by state for the base-case model.


Figure 58. Time series of relative spawning depletion as estimated in the base-case model and alternate states of nature. Light shading around each line shows $95 \%$ intervals.


Figure 59. Time-series of relative spawning depletion by state for the base-case model.


Figure 60. Results from a 5-year retrospective analysis. Each year of retrospective is performed as if the assessment were conducted in that year (i.e., retrospective in 2006 includes data through 2005). Upper panel represents the entire time-series of spawning output, lower panel only the most recent period for easier identification of effects on current status.


Figure 61. Retrospective pattern in relative depletion among yelloweye rockfish stock assessments.


Figure 62. Results of a likelihood profile for steepness of the stock-recruit function, by data type. Dashed lines indicate interval used for low and high states of nature.


Figure 63. Relationship between steepness and estimated male natural mortality from the likelihood profile on steepness for the 2011 and 2009 assessments. Larger points and dashed lines indicate estimated values for each model.


Figure 64. Time-series of harvest rate per year $(F)$ for the fishing fleets in the base-case model.


Figure 65. Time series of relative spawning potential ratio (1-SPR/1-SPR ${ }_{\text {Target }=0.5}$ ) for the base-case model and alternate states of nature. Values of relative SPR above $100 \%$ reflect harvests in excess of the current overfishing proxy.


Figure 66. Time series of estimated exploitation rate (catch/age 8 and older biomass) for the base-case model and alternate states of nature. Horizontal line indicates the overfishing limit/target ( $\mathrm{F}_{50 \%}$ ) from the base case.


Figure 67. Estimated relative spawning potential ratio relative to the proxy target/limit of $50 \%$ vs. estimated spawning biomass relative to the proxy $40 \%$ level from the base-case model. Higher biomass occurs on the right side of the x-axis, higher exploitation rates occur on the upper side of the $y$-axis.


Figure 68. Equilibrium yield curve for the base-case model (solid line) and alternate states of nature (dashed lines).
12. Appendix A: Predicted numbers at age by sex and area

Table A.1. Female numbers at age in California (1000s) predicted by the base-case model.

$\begin{aligned} & \text { Age } \\ & \text { (Yr) } \\ & \hline \end{aligned}$	0	1	2	3	4	5	6	7	8	9	10-19	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90+
1916	49.8	47.6	45.4	43.4	41.4	39.5	37.8	36.1	34.4	32.9	257.5	162.5	102.5	64.7	40.8	25.7	16.2	10.2	17.5
1917	49.8	47.6	45.4	43.4	41.4	39.5	37.8	36.1	34.4	32.9	257.5	162.4	102.4	64.6	40.8	25.7	16.2	10.2	17.5
1918	49.8	47.5	45.4	43.4	41.4	39.5	37.8	36.1	34.4	32.9	257.3	162.2	102.3	64.6	40.7	25.7	16.2	10.2	17.5
1919	49.8	47.5	45.4	43.4	41.4	39.5	37.8	36.1	34.4	32.9	257.2	162.1	102.2	64.5	40.7	25.7	16.2	10.2	17.5
1920	49.8	47.5	45.4	43.4	41.4	39.5	37.8	36.1	34.4	32.9	257.1	162	102.2	64.4	40.7	25.6	16.2	10.2	17.4
1921	49.8	47.5	45.4	43.4	41.4	39.5	37.8	36.1	34.4	32.9	257.1	161.9	102.1	64.4	40.6	25.6	16.2	10.2	17.4
1922	49.7	47.5	45.4	43.3	41.4	39.5	37.8	36.1	34.4	32.9	257	161.8	102	64.4	40.6	25.6	16.2	10.2	17.4
1923	49.7	47.5	45.4	43.3	41.4	39.5	37.8	36.1	34.4	32.9	257	161.8	102	64.3	40.6	25.6	16.1	10.2	17.4
1924	49.7	47.5	45.4	43.3	41.4	39.5	37.7	36.1	34.4	32.9	257	161.7	101.9	64.3	40.6	25.6	16.1	10.2	17.4
1925	49.7	47.5	45.4	43.3	41.4	39.5	37.7	36	34.4	32.9	256.9	161.6	101.8	64.2	40.5	25.6	16.1	10.2	17.4
1926	49.7	47.5	45.4	43.3	41.4	39.5	37.7	36	34.4	32.9	256.9	161.5	101.7	64.2	40.5	25.5	16.1	10.2	17.4
1927	49.7	47.5	45.3	43.3	41.4	39.5	37.7	36	34.4	32.9	256.8	161.3	101.6	64.1	40.4	25.5	16.1	10.1	17.3
1928	49.7	47.5	45.3	43.3	41.4	39.5	37.7	36	34.4	32.8	256.6	161.1	101.5	64	40.4	25.5	16.1	10.1	17.3
1929	49.7	47.4	45.3	43.3	41.3	39.5	37.7	36	34.4	32.8	256.5	161	101.3	63.9	40.3	25.4	16	10.1	17.3
1930	49.6	47.4	45.3	43.3	41.3	39.5	37.7	36	34.4	32.8	256.3	160.8	101.2	63.8	40.2	25.4	16	10.1	17.3
1931	49.6	47.4	45.3	43.3	41.3	39.5	37.7	36	34.4	32.8	256.1	160.5	100.9	63.6	40.1	25.3	16	10.1	17.2
1932	49.6	47.4	45.3	43.2	41.3	39.5	37.7	36	34.4	32.8	256	160.3	100.8	63.5	40.1	25.3	15.9	10.1	17.2
1933	49.6	47.4	45.2	43.2	41.3	39.4	37.7	36	34.3	32.8	255.7	160	100.5	63.3	39.9	25.2	15.9	10	17.1
1934	49.5	47.3	45.2	43.2	41.3	39.4	37.6	35.9	34.3	32.8	255.5	159.8	100.3	63.2	39.9	25.1	15.9	10	17.1
1935	49.5	47.3	45.2	43.2	41.2	39.4	37.6	35.9	34.3	32.8	255.3	159.5	100.1	63	39.8	25.1	15.8	10	17.1
1936	49.5	47.3	45.2	43.2	41.2	39.4	37.6	35.9	34.3	32.7	255	159.2	99.8	62.8	39.6	25	15.8	9.9	17
1937	49.5	47.3	45.2	43.1	41.2	39.4	37.6	35.9	34.3	32.7	254.7	158.8	99.5	62.6	39.5	24.9	15.7	9.9	16.9
1938	49.4	47.2	45.1	43.1	41.2	39.3	37.6	35.9	34.2	32.7	254.5	158.5	99.2	62.4	39.4	24.8	15.7	9.9	16.9
1939	49.4	47.2	45.1	43.1	41.2	39.3	37.5	35.8	34.2	32.7	254.2	158.2	98.9	62.2	39.2	24.7	15.6	9.8	16.8
1940	49.4	47.2	45.1	43.1	41.1	39.3	37.5	35.8	34.2	32.6	254.1	157.9	98.7	62	39.1	24.7	15.6	9.8	16.8
1941	49.3	47.2	45	43	41.1	39.3	37.5	35.8	34.2	32.6	253.9	157.7	98.4	61.8	39	24.6	15.5	9.8	16.7
1942	49.3	47.1	45	43	41.1	39.3	37.5	35.8	34.2	32.6	253.7	157.4	98.2	61.7	38.9	24.5	15.5	9.8	16.7
1943	49.2	47.1	45	43	41.1	39.2	37.5	35.8	34.2	32.6	253.6	157.3	98	61.5	38.7	24.4	15.4	9.7	16.6
1944	49.1	47	44.9	43	41	39.2	37.4	35.7	34.1	32.6	253.3	157	97.7	61.3	38.6	24.3	15.4	9.7	16.6
1945	48.9	46.9	44.9	42.9	41	39.2	37.4	35.7	34.1	32.5	252.3	155.9	96.9	60.7	38.2	24.1	15.2	9.6	16.4
1946	48.7	46.7	44.7	42.8	40.9	39.1	37.3	35.6	33.9	32.3	249.8	153.5	95.2	59.6	37.5	23.7	14.9	9.4	16.1
1947	48.5	46.5	44.6	42.7	40.9	39	37.2	35.5	33.8	32.2	247.5	151.1	93.5	58.5	36.8	23.2	14.6	9.2	15.8
1948	48.4	46.3	44.4	42.6	40.8	39	37.2	35.5	33.8	32.2	247.5	150.6	93	58.1	36.6	23	14.5	9.2	15.7
1949	48.3	46.2	44.2	42.4	40.6	38.9	37.2	35.5	33.8	32.2	246.9	149.7	92.3	57.6	36.2	22.8	14.4	9.1	15.5
1950	48.3	46.1	44.1	42.2	40.4	38.8	37.1	35.5	33.8	32.2	246.9	149.2	91.8	57.2	36	22.7	14.3	9	15.4
1951	48.2	46.1	44	42.1	40.3	38.6	37	35.4	33.8	32.2	246.9	148.7	91.3	56.9	35.7	22.5	14.2	8.9	15.3
1952	48.1	46	44	42	40.2	38.4	36.8	35.2	33.7	32.2	246.3	147.8	90.5	56.3	35.3	22.3	14	8.9	15.1
1953	48	45.9	43.9	42	40.1	38.4	36.6	35.1	33.6	32.1	246.1	147.2	89.9	55.9	35	22.1	13.9	8.8	15
1954	48	45.9	43.9	41.9	40.1	38.3	36.6	34.9	33.4	32	245.9	146.8	89.4	55.5	34.8	21.9	13.8	8.7	14.9
1955	47.9	45.8	43.8	41.9	40	38.2	36.5	34.9	33.3	31.8	245.5	146.3	88.8	55	34.4	21.7	13.7	8.6	14.7
1956	47.8	45.8	43.7	41.8	39.9	38.2	36.4	34.8	33.2	31.7	244.9	145.8	88.2	54.6	34.1	21.5	13.5	8.5	14.6
1957	47.7	45.7	43.7	41.7	39.9	38.1	36.4	34.7	33.1	31.6	243.9	145	87.5	54	33.7	21.2	13.4	8.4	14.4

Table A.1. Continued. Female numbers at age in California (1000s) predicted by the base-case model.

(Yr)	0	1	2	3	4	5	6	7	8	9	10-19	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90+
1958	47.6	45.6	43.6	41.7	39.8	38	36.3	34.6	33	31.5	242.9	144.3	86.7	53.4	33.4	21	13.2	8.3	14.2
1959	47.5	45.5	43.5	41.6	39.8	38	36.2	34.5	32.9	31.4	241.4	143.2	85.7	52.7	32.9	20.7	13	8.2	14
1960	47.4	45.3	43.4	41.5	39.7	37.9	36.2	34.5	32.9	31.3	240.3	142.4	84.9	52.1	32.5	20.4	12.8	8.1	13.8
1961	47.3	45.2	43.3	41.4	39.6	37.9	36.1	34.5	32.8	31.3	239.7	142.2	84.4	51.7	32.2	20.2	12.7	8	13.7
1962	47.2	45.1	43.2	41.3	39.5	37.8	36.1	34.4	32.8	31.3	239.6	142.2	84.2	51.4	32	20	12.6	8	13.6
1963	47.1	45	43.1	41.2	39.4	37.7	36	34.4	32.8	31.3	239.3	142.1	83.9	51.1	31.7	19.9	12.5	7.9	13.5
1964	47	44.9	43	41.1	39.3	37.6	35.9	34.3	32.7	31.2	238.6	141.7	83.4	50.6	31.4	19.7	12.4	7.8	13.3
1965	46.9	44.9	42.9	41	39.2	37.5	35.8	34.2	32.7	31.2	238.3	141.5	83.1	50.3	31.1	19.5	12.3	7.7	13.2
1966	46.7	44.8	42.8	40.9	39.1	37.4	35.7	34.1	32.6	31.1	237.4	140.8	82.5	49.8	30.7	19.2	12.1	7.6	13
1967	46.6	44.6	42.8	40.9	39	37.3	35.6	34	32.4	30.9	236.4	139.8	81.8	49.2	30.3	19	11.9	7.5	12.8
1968	46.5	44.5	42.6	40.8	39	37.2	35.5	33.9	32.3	30.8	235.4	138.8	81.2	48.6	29.9	18.7	11.7	7.4	12.6
1969	46.4	44.4	42.5	40.6	38.9	37.1	35.4	33.8	32.2	30.7	234	137.5	80.4	48	29.5	18.4	11.5	7.3	12.4
1970	46.1	44.3	42.4	40.5	38.7	37	35.3	33.6	32	30.5	231.7	135.4	79.1	47	28.8	17.9	11.3	7.1	12.1
1971	45.9	44	42.2	40.4	38.6	36.8	35.2	33.5	31.9	30.3	229.1	132.9	77.5	45.9	28.1	17.5	11	6.9	11.8
1972	45.6	43.8	42	40.3	38.5	36.7	35	33.4	31.7	30.1	225.9	129.9	75.6	44.6	27.2	16.9	10.6	6.7	11.4
1973	45.3	43.6	41.8	40	38.3	36.5	34.8	33.1	31.5	29.8	221.4	125.5	72.9	42.8	26	16.1	10.1	6.4	10.9
1974	45	43.3	41.6	39.8	38.1	36.4	34.6	32.9	31.2	29.6	217	121.2	70.1	41	24.8	15.4	9.6	6.1	10.4
1975	44.6	42.9	41.2	39.6	37.9	36.1	34.4	32.7	30.9	29.2	212.3	116.4	66.9	39	23.6	14.6	9.1	5.7	9.8
1976	44.2	42.6	40.9	39.3	37.6	35.9	34.2	32.5	30.7	28.9	207.5	111.4	63.6	37	22.3	13.7	8.6	5.4	9.2
1977	43.8	42.2	40.6	38.9	37.3	35.6	33.9	32.2	30.5	28.7	202.7	106.3	60.1	34.9	20.9	12.9	8	5.1	8.6
1978	43.3	41.8	40.2	38.6	37	35.3	33.7	32	30.2	28.5	198.8	101.7	57	32.9	19.7	12.1	7.5	4.7	8.1
1979	42.5	41.4	39.8	38.2	36.6	34.9	33.2	31.5	29.7	27.8	189.8	93	51.3	29.6	17.6	10.8	6.7	4.2	7.2
1980	41.6	40.6	39.4	37.8	36.2	34.6	32.9	31.1	29.3	27.4	183.5	86.4	46.9	26.9	15.9	9.8	6.1	3.8	6.5
1981	40.8	39.7	38.6	37.5	35.9	34.3	32.6	30.9	29.1	27.3	181.2	82.7	44.2	25.3	14.9	9.1	5.7	3.5	6.1
1982	39.7	39	37.8	36.7	35.5	33.9	32.2	30.4	28.6	26.7	173.2	74.9	39.1	22.3	13.1	8	4.9	3.1	5.3
1983	38.2	37.9	37.1	35.8	34.7	33.3	31.6	29.8	27.9	26	163.3	66.2	33.6	19	11.1	6.7	4.2	2.6	4.5
1984	37	36.5	36.2	35.3	34	32.8	31.5	29.7	27.9	26	163.1	63.7	31.5	17.8	10.3	6.2	3.9	2.4	4.1
1985	36.1	35.4	34.7	34.3	33.4	32.1	30.9	29.4	27.6	25.8	160.7	60.3	28.9	16.2	9.4	5.6	3.5	2.2	3.7
1986	34.9	34.5	33.6	32.9	32.4	31.4	30.1	28.7	27.1	25.3	156.8	56.5	26.3	14.6	8.4	5	3.1	1.9	3.3
1987	34.1	33.3	32.8	31.9	31.1	30.6	29.5	28.1	26.6	25	154.7	53.8	24.2	13.2	7.6	4.6	2.8	1.7	3
1988	33.2	32.6	31.7	31.1	30.2	29.4	28.7	27.5	26	24.5	152.3	51.2	22.1	12	6.9	4.1	2.5	1.6	2.7
1989	32.1	31.7	31	30.1	29.5	28.5	27.5	26.7	25.4	23.8	147.9	47.9	19.8	10.6	6	3.6	2.2	1.4	2.3
1990	30.6	30.7	30.2	29.4	28.5	27.8	26.7	25.6	24.7	23.3	144.7	45.6	18	9.4	5.4	3.2	1.9	1.2	2
1991	29.6	29.2	29.2	28.6	27.8	26.8	26	24.8	23.6	22.5	139.5	42.4	16	8.2	4.6	2.7	1.7	1	1.8
1992	27.8	28.3	27.7	27.6	27	26	24.8	23.8	22.4	21	127.6	36.2	12.8	6.4	3.6	2.1	1.3	0.8	1.4
1993	25.9	26.6	26.9	26.3	26	25.3	24.2	22.9	21.7	20.1	120	32.3	10.8	5.3	2.9	1.7	1	0.6	1.1
1994	24.1	24.7	25.3	25.6	24.9	24.6	23.8	22.7	21.3	20	120.1	31.9	10.1	4.8	2.7	1.5	0.9	0.6	1
1995	23	23	23.5	24.1	24.2	23.5	23.1	22.2	21	19.6	118.5	31	9.3	4.3	2.4	1.4	0.8	0.5	0.9
1996	21.6	21.9	21.9	22.4	22.8	22.9	22.1	21.6	20.7	19.4	117.4	30.5	8.7	3.9	2.1	1.2	0.7	0.4	0.8
1997	20.4	20.6	20.9	20.8	21.1	21.5	21.4	20.5	19.8	18.7	112.1	28.4	7.7	3.3	1.8	1	0.6	0.4	0.6
1998	19	19.5	19.6	19.8	19.6	19.9	20	19.8	18.7	17.9	107.1	26.5	6.8	2.8	1.5	0.8	0.5	0.3	0.5
1999	18.7	18.2	18.6	18.6	18.8	18.6	18.8	18.9	18.6	17.6	110	27.8	6.8	2.7	1.4	0.8	0.5	0.3	0.5

Table A.1. Continued. Female numbers at age in California (1000s) predicted by the base-case model.

(Yr)	0	1	2	3	4	5	6	7	8	9	10-19	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90+
2000	18	17.9	17.3	17.7	17.7	17.8	17.6	17.7	17.7	17.4	111.1	28.9	6.8	2.5	1.3	0.7	0.4	0.3	0.4
2001	18.2	17.2	17.1	16.5	16.9	16.9	17	16.7	16.8	16.8	115.3	31.5	7.3	2.6	1.3	0.7	0.4	0.3	0.4
2002	18.4	17.4	16.4	16.3	15.7	16.1	16.1	16.1	15.9	15.9	118.2	34.4	7.7	2.6	1.3	0.7	0.4	0.3	0.4
2003	18.9	17.5	16.6	15.6	15.5	15	15.3	15.3	15.4	15.1	120.9	37.8	8.4	2.7	1.3	0.7	0.4	0.3	0.4
2004	19.4	18	16.8	15.9	14.9	14.8	14.3	14.6	14.6	14.6	121.9	41.4	9.2	2.8	1.3	0.7	0.4	0.3	0.4
2005	19.9	18.5	17.2	16	15.2	14.2	14.1	13.7	13.9	13.9	122.1	45.4	10.1	2.9	1.3	0.7	0.4	0.3	0.4
2006	20.4	19	17.7	16.4	15.3	14.5	13.6	13.5	13	13.3	121	49.3	11.1	3.1	1.3	0.7	0.4	0.3	0.4
2007	20.9	19.5	18.2	16.9	15.7	14.6	13.8	12.9	12.8	12.4	118.6	53.3	12.2	3.2	1.4	0.7	0.4	0.3	0.4
2008	21.3	19.9	18.6	17.3	16.1	15	13.9	13.1	12.3	12.2	114.2	56.6	13.3	3.4	1.4	0.7	0.4	0.2	0.4
2009	21.7	20.3	19	17.7	16.5	15.4	14.3	13.2	12.5	11.7	110.8	60.6	14.8	3.6	1.4	0.7	0.4	0.2	0.4
2010	22.1	20.7	19.4	18.2	16.9	15.8	14.7	13.6	12.6	11.9	107	64.1	16.3	3.9	1.4	0.7	0.4	0.2	0.4

Table A.2. Male numbers at age in California (1000s) predicted by the base-case model.

$\begin{aligned} & \text { Age } \\ & \text { (Yr) } \\ & \hline \end{aligned}$	0	1	2	3	4	5	6	7	8	9	10-19	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90+
1916	49.8	47.6	45.5	43.5	41.6	39.8	38	36.4	34.8	33.2	261.7	167	106.6	68	43.4	27.7	17.7	11.3	19.9
1917	49.8	47.6	45.5	43.5	41.6	39.8	38	36.4	34.8	33.2	261.6	166.9	106.5	68	43.4	27.7	17.7	11.3	19.9
1918	49.8	47.6	45.5	43.5	41.6	39.8	38	36.3	34.7	33.2	261.5	166.8	106.4	67.9	43.3	27.6	17.6	11.3	19.9
1919	49.8	47.6	45.5	43.5	41.6	39.8	38	36.3	34.7	33.2	261.3	166.6	106.3	67.8	43.3	27.6	17.6	11.2	19.8
1920	49.8	47.6	45.5	43.5	41.6	39.8	38	36.3	34.7	33.2	261.3	166.5	106.2	67.8	43.3	27.6	17.6	11.2	19.8
1921	49.8	47.6	45.5	43.5	41.6	39.8	38	36.3	34.7	33.2	261.2	166.4	106.2	67.7	43.2	27.6	17.6	11.2	19.8
1922	49.7	47.6	45.5	43.5	41.6	39.8	38	36.3	34.7	33.2	261.2	166.3	106.1	67.7	43.2	27.6	17.6	11.2	19.8
1923	49.7	47.6	45.5	43.5	41.6	39.8	38	36.3	34.7	33.2	261.1	166.3	106	67.7	43.2	27.5	17.6	11.2	19.8
1924	49.7	47.6	45.5	43.5	41.6	39.7	38	36.3	34.7	33.2	261.1	166.2	106	67.6	43.1	27.5	17.6	11.2	19.8
1925	49.7	47.5	45.5	43.5	41.6	39.7	38	36.3	34.7	33.2	261.1	166.1	105.9	67.6	43.1	27.5	17.6	11.2	19.8
1926	49.7	47.5	45.5	43.5	41.6	39.7	38	36.3	34.7	33.2	261	166	105.8	67.5	43.1	27.5	17.5	11.2	19.7
1927	49.7	47.5	45.4	43.5	41.6	39.7	38	36.3	34.7	33.2	260.9	165.8	105.7	67.4	43	27.4	17.5	11.2	19.7
1928	49.7	47.5	45.4	43.4	41.5	39.7	38	36.3	34.7	33.2	260.7	165.6	105.5	67.3	42.9	27.4	17.5	11.2	19.7
1929	49.7	47.5	45.4	43.4	41.5	39.7	38	36.3	34.7	33.2	260.6	165.4	105.3	67.2	42.9	27.4	17.5	11.1	19.6
1930	49.6	47.5	45.4	43.4	41.5	39.7	38	36.3	34.7	33.2	260.4	165.2	105.2	67.1	42.8	27.3	17.4	11.1	19.6
1931	49.6	47.5	45.4	43.4	41.5	39.7	37.9	36.3	34.7	33.1	260.2	164.9	104.9	66.9	42.7	27.2	17.4	11.1	19.6
1932	49.6	47.4	45.4	43.4	41.5	39.7	37.9	36.3	34.7	33.1	260	164.7	104.7	66.8	42.6	27.2	17.4	11.1	19.5
1933	49.6	47.4	45.3	43.4	41.5	39.7	37.9	36.2	34.6	33.1	259.7	164.3	104.5	66.6	42.5	27.1	17.3	11	19.5
1934	49.5	47.4	45.3	43.3	41.5	39.6	37.9	36.2	34.6	33.1	259.6	164.1	104.3	66.5	42.4	27.1	17.3	11	19.4
1935	49.5	47.4	45.3	43.3	41.4	39.6	37.9	36.2	34.6	33.1	259.3	163.9	104	66.3	42.3	27	17.2	11	19.4
1936	49.5	47.3	45.3	43.3	41.4	39.6	37.9	36.2	34.6	33.1	259	163.5	103.7	66.1	42.2	26.9	17.2	11	19.3
1937	49.5	47.3	45.3	43.3	41.4	39.6	37.8	36.2	34.6	33	258.7	163.1	103.4	65.8	42	26.8	17.1	10.9	19.2
1938	49.4	47.3	45.2	43.3	41.4	39.6	37.8	36.1	34.5	33	258.4	162.8	103.1	65.6	41.9	26.7	17	10.9	19.2
1939	49.4	47.3	45.2	43.2	41.4	39.5	37.8	36.1	34.5	33	258.2	162.4	102.8	65.4	41.7	26.6	17	10.8	19.1
1940	49.4	47.2	45.2	43.2	41.3	39.5	37.8	36.1	34.5	33	258	162.1	102.5	65.2	41.6	26.5	16.9	10.8	19.1
1941	49.3	47.2	45.1	43.2	41.3	39.5	37.8	36.1	34.5	33	257.8	161.9	102.3	65	41.5	26.5	16.9	10.8	19
1942	49.3	47.2	45.1	43.2	41.3	39.5	37.7	36.1	34.5	32.9	257.6	161.6	102	64.8	41.3	26.4	16.8	10.7	18.9
1943	49.2	47.1	45.1	43.1	41.3	39.4	37.7	36.1	34.5	32.9	257.5	161.4	101.8	64.6	41.2	26.3	16.8	10.7	18.9
1944	49.1	47.1	45	43.1	41.2	39.4	37.7	36	34.4	32.9	257.2	161.1	101.5	64.4	41.1	26.2	16.7	10.7	18.8
1945	48.9	46.9	45	43.1	41.2	39.4	37.6	36	34.4	32.8	256.1	160	100.6	63.8	40.7	26	16.6	10.6	18.6
1946	48.7	46.8	44.8	43	41.1	39.3	37.5	35.8	34.2	32.6	253.4	157.4	98.8	62.6	39.9	25.4	16.2	10.4	18.3
1947	48.5	46.6	44.7	42.8	41	39.2	37.5	35.8	34.1	32.5	250.9	154.8	97	61.4	39.1	25	15.9	10.2	17.9
1948	48.4	46.4	44.5	42.7	40.9	39.2	37.5	35.8	34.1	32.5	250.8	154.3	96.5	61.1	38.9	24.8	15.8	10.1	17.8
1949	48.3	46.3	44.3	42.5	40.8	39.1	37.4	35.7	34.1	32.5	250.2	153.3	95.7	60.5	38.5	24.5	15.7	10	17.6
1950	48.3	46.2	44.2	42.3	40.6	39	37.3	35.7	34.1	32.5	250.2	152.8	95.2	60.1	38.2	24.4	15.6	9.9	17.5
1951	48.2	46.1	44.2	42.3	40.5	38.8	37.2	35.6	34.1	32.5	250.2	152.3	94.7	59.7	38	24.2	15.4	9.9	17.4
1952	48.1	46.1	44.1	42.2	40.4	38.6	37	35.5	34	32.5	249.6	151.3	93.9	59.1	37.6	23.9	15.3	9.7	17.2
1953	48	46	44	42.1	40.3	38.6	36.9	35.3	33.9	32.4	249.3	150.6	93.2	58.6	37.2	23.7	15.1	9.7	17
1954	48	45.9	44	42.1	40.3	38.5	36.8	35.2	33.7	32.3	249.2	150.2	92.7	58.2	36.9	23.5	15	9.6	16.9
1955	47.9	45.9	43.9	42	40.2	38.4	36.7	35.1	33.5	32.1	248.8	149.6	92	57.7	36.6	23.3	14.9	9.5	16.7
1956	47.8	45.8	43.8	41.9	40.1	38.4	36.7	35	33.5	32	248.2	149.1	91.4	57.3	36.3	23.1	14.7	9.4	16.6
1957	47.7	45.7	43.8	41.9	40.1	38.3	36.6	35	33.4	31.9	247.2	148.3	90.6	56.7	35.9	22.8	14.6	9.3	16.4

Table A.2. Continued. Male numbers at age in California (1000s) predicted by the base-case model.

$\begin{aligned} & \text { Age } \\ & \text { (Yr) } \end{aligned}$	0	1	2	3	4	5	6	7	8	9	10-19	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90+
1958	47.6	45.6	43.7	41.8	40	38.2	36.5	34.9	33.3	31.8	246.1	147.5	89.8	56.1	35.4	22.6	14.4	9.2	16.2
1959	47.5	45.5	43.6	41.7	39.9	38.2	36.5	34.8	33.2	31.7	244.5	146.3	88.7	55.3	34.9	22.2	14.2	9	15.9
1960	47.4	45.4	43.5	41.7	39.9	38.1	36.4	34.7	33.1	31.6	243.4	145.5	87.9	54.6	34.5	21.9	14	8.9	15.7
1961	47.3	45.3	43.4	41.6	39.8	38.1	36.4	34.7	33.1	31.6	242.8	145.2	87.3	54.2	34.2	21.7	13.8	8.8	15.6
1962	47.2	45.2	43.3	41.5	39.7	38	36.3	34.7	33.1	31.6	242.7	145.3	87.1	53.9	33.9	21.6	13.7	8.8	15.4
1963	47.1	45.1	43.2	41.4	39.6	37.9	36.3	34.7	33.1	31.5	242.4	145.2	86.7	53.5	33.7	21.4	13.6	8.7	15.3
1964	47	45	43.1	41.3	39.5	37.8	36.2	34.6	33	31.5	241.7	144.8	86.2	53	33.3	21.1	13.5	8.6	15.1
1965	46.9	44.9	43	41.2	39.4	37.7	36.1	34.5	33	31.5	241.4	144.6	85.8	52.7	33	20.9	13.3	8.5	15
1966	46.7	44.9	42.9	41.1	39.3	37.6	36	34.4	32.8	31.4	240.5	143.8	85.2	52.1	32.6	20.7	13.2	8.4	14.8
1967	46.6	44.6	42.9	41	39.2	37.5	35.9	34.3	32.7	31.2	239.4	142.7	84.5	51.5	32.2	20.4	13	8.3	14.6
1968	46.5	44.5	42.6	40.9	39.1	37.4	35.8	34.1	32.6	31.1	238.3	141.7	83.8	50.9	31.7	20.1	12.8	8.1	14.4
1969	46.4	44.4	42.6	40.7	39.1	37.3	35.7	34	32.5	30.9	236.9	140.4	83	50.2	31.3	19.7	12.6	8	14.1
1970	46.1	44.3	42.5	40.6	38.9	37.2	35.5	33.9	32.3	30.7	234.5	138.2	81.6	49.1	30.5	19.3	12.2	7.8	13.8
1971	45.9	44.1	42.3	40.5	38.8	37	35.4	33.7	32.1	30.6	231.6	135.6	80	48	29.7	18.7	11.9	7.6	13.4
1972	45.6	43.9	42.1	40.4	38.6	36.9	35.2	33.6	31.9	30.3	228.2	132.4	78	46.6	28.8	18.1	11.5	7.3	12.9
1973	45.3	43.6	41.9	40.1	38.5	36.7	35	33.3	31.7	30	223.4	127.8	75.1	44.7	27.6	17.3	11	7	12.3
1974	45	43.3	41.6	39.9	38.2	36.6	34.8	33.1	31.4	29.8	218.7	123.2	72.2	42.8	26.3	16.5	10.5	6.7	11.8
1975	44.6	43	41.3	39.7	38	36.3	34.6	32.9	31.1	29.4	213.6	118.2	68.9	40.7	24.9	15.6	9.9	6.3	11.1
1976	44.2	42.6	41	39.4	37.8	36.1	34.3	32.7	30.9	29.1	208.5	113	65.4	38.5	23.5	14.7	9.3	5.9	10.5
1977	43.8	42.3	40.7	39.1	37.4	35.8	34.1	32.3	30.6	28.8	203.3	107.6	61.8	36.3	22.1	13.8	8.7	5.6	9.8
1978	43.3	41.9	40.3	38.7	37.2	35.5	33.9	32.1	30.3	28.6	199.1	102.8	58.5	34.3	20.8	13	8.2	5.2	9.2
1979	42.5	41.4	39.9	38.4	36.7	35.1	33.4	31.6	29.8	27.9	189.5	93.6	52.6	30.8	18.6	11.6	7.3	4.6	8.2
1980	41.6	40.6	39.5	37.9	36.4	34.7	33	31.2	29.4	27.5	182.7	86.7	48	28	16.8	10.4	6.6	4.2	7.4
1981	40.8	39.8	38.7	37.6	36.1	34.5	32.8	31	29.2	27.3	180.3	82.8	45.2	26.3	15.7	9.7	6.1	3.9	6.9
1982	39.7	39.1	37.9	36.8	35.6	34	32.3	30.5	28.7	26.7	171.8	74.6	39.9	23.1	13.8	8.5	5.4	3.4	6
1983	38.2	38	37.2	36	34.8	33.5	31.7	29.9	27.9	25.9	161.2	65.6	34.1	19.7	11.7	7.2	4.5	2.9	5
1984	37	36.5	36.2	35.4	34.2	33	31.6	29.8	28	26	161	62.9	32	18.4	10.9	6.7	4.2	2.7	4.7
1985	36.1	35.4	34.8	34.5	33.6	32.3	31	29.5	27.7	25.8	158.5	59.3	29.3	16.8	9.8	6	3.8	2.4	4.2
1986	34.9	34.5	33.7	33	32.6	31.6	30.2	28.8	27.2	25.3	154.5	55.4	26.5	15	8.8	5.4	3.4	2.1	3.7
1987	34.1	33.3	32.9	32	31.3	30.7	29.6	28.1	26.6	25	152.5	52.6	24.4	13.7	8	4.9	3	1.9	3.4
1988	33.2	32.6	31.8	31.2	30.3	29.5	28.8	27.6	26.1	24.5	150	49.9	22.2	12.3	7.2	4.3	2.7	1.7	3
1989	32.1	31.7	31.1	30.2	29.6	28.6	27.6	26.8	25.4	23.8	145.4	46.5	19.8	10.9	6.3	3.8	2.4	1.5	2.6
1990	30.6	30.7	30.2	29.5	28.6	27.9	26.8	25.7	24.7	23.3	142.2	44.1	18	9.7	5.6	3.4	2.1	1.3	2.3
1991	29.6	29.2	29.2	28.7	27.9	26.9	26	24.8	23.6	22.4	136.8	40.9	15.9	8.4	4.9	2.9	1.8	1.1	2
1992	27.8	28.3	27.8	27.7	27	26.1	24.9	23.8	22.3	20.8	124.4	34.7	12.7	6.6	3.8	2.2	1.4	0.9	1.5
1993	25.9	26.6	26.9	26.4	26.1	25.4	24.3	22.9	21.6	20	116.4	30.7	10.6	5.4	3.1	1.8	1.1	0.7	1.2
1994	24.1	24.7	25.4	25.7	25	24.7	23.9	22.7	21.3	19.9	116.6	30.3	9.9	4.9	2.8	1.6	1	0.6	1.1
1995	23	23	23.6	24.1	24.3	23.6	23.2	22.3	21	19.5	115.1	29.3	9.1	4.3	2.5	1.4	0.9	0.6	1
1996	21.6	22	22	22.4	22.9	23	22.2	21.7	20.7	19.3	114.2	28.8	8.4	3.9	2.2	1.3	0.8	0.5	0.9
1997	20.4	20.6	20.9	20.8	21.2	21.5	21.4	20.5	19.8	18.6	108.9	26.7	7.4	3.3	1.8	1.1	0.6	0.4	0.7
1998	19	19.5	19.6	19.8	19.7	19.9	20.1	19.8	18.7	17.8	103.8	24.8	6.5	2.8	1.5	0.9	0.5	0.3	0.6
1999	18.7	18.2	18.6	18.7	18.9	18.7	18.9	19	18.6	17.5	107	26	6.5	2.7	1.4	0.8	0.5	0.3	0.5

Table A.2. Continued. Male numbers at age in California (1000s) predicted by the base-case model.

Age (Yr)	0	1	2	3	4	5	6	7	8	9	10-19	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90+
2000	18	17.9	17.4	17.8	17.8	17.9	17.7	17.8	17.8	17.3	108.5	27.1	6.5	2.5	1.4	0.8	0.5	0.3	0.5
2001	18.2	17.2	17.1	16.6	17	17	17.1	16.8	16.9	16.8	113.2	29.6	6.9	2.6	1.3	0.8	0.5	0.3	0.5
2002	18.4	17.4	16.4	16.3	15.8	16.2	16.2	16.2	16	16	116.6	32.4	7.3	2.6	1.3	0.8	0.5	0.3	0.5
2003	18.9	17.6	16.7	15.7	15.6	15.1	15.4	15.4	15.5	15.2	119.8	35.8	8	2.7	1.3	0.8	0.5	0.3	0.5
2004	19.4	18.1	16.8	15.9	15	14.9	14.4	14.7	14.7	14.8	121.4	39.4	8.7	2.8	1.3	0.8	0.5	0.3	0.5
2005	19.9	18.6	17.3	16	15.2	14.3	14.2	13.8	14.1	14	122.1	43.3	9.5	2.9	1.4	0.8	0.5	0.3	0.5
2006	20.4	19.1	17.8	16.5	15.3	14.5	13.7	13.6	13.1	13.4	121.4	47.4	10.5	3	1.4	0.8	0.5	0.3	0.5
2007	20.9	19.5	18.2	17	15.8	14.6	13.9	13	12.9	12.5	119.3	51.5	11.5	3.1	1.4	0.8	0.5	0.3	0.5
2008	21.3	20	18.6	17.4	16.2	15	13.9	13.2	12.4	12.3	115.1	55.1	12.6	3.3	1.4	0.8	0.4	0.3	0.5
2009	21.7	20.3	19.1	17.8	16.6	15.5	14.4	13.3	12.6	11.8	111.9	59.3	13.9	3.5	1.4	0.8	0.4	0.3	0.5
2010	22.1	20.8	19.4	18.2	17	15.9	14.8	13.7	12.7	12	108.2	63.1	15.5	3.7	1.4	0.8	0.4	0.3	0.5

Table A.3. Female numbers at age in Oregon (1000s) predicted by the base-case model.

$\begin{aligned} & \text { Age } \\ & \text { (Yr) } \\ & \hline \end{aligned}$	0	1	2	3	4	5	6	7	8	9	10-19	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90+
1916	49.8	47.6	45.4	43.4	41.4	39.5	37.8	36.1	34.4	32.9	257.5	162.5	102.5	64.7	40.8	25.7	16.2	10.2	17.5
1917	49.8	47.6	45.4	43.4	41.4	39.5	37.8	36.1	34.4	32.9	257.5	162.4	102.4	64.6	40.8	25.7	16.2	10.2	17.5
1918	49.8	47.5	45.4	43.4	41.4	39.5	37.8	36.1	34.4	32.9	257.4	162.3	102.4	64.6	40.7	25.7	16.2	10.2	17.5
1919	49.8	47.5	45.4	43.4	41.4	39.5	37.8	36.1	34.4	32.9	257.4	162.3	102.3	64.6	40.7	25.7	16.2	10.2	17.5
1920	49.8	47.5	45.4	43.4	41.4	39.5	37.8	36.1	34.4	32.9	257.3	162.2	102.3	64.5	40.7	25.7	16.2	10.2	17.5
1921	49.8	47.5	45.4	43.4	41.4	39.5	37.8	36.1	34.4	32.9	257.3	162.1	102.2	64.5	40.7	25.7	16.2	10.2	17.5
1922	49.7	47.5	45.4	43.3	41.4	39.5	37.8	36.1	34.4	32.9	257.2	162.0	102.2	64.5	40.7	25.6	16.2	10.2	17.4
1923	49.7	47.5	45.4	43.3	41.4	39.5	37.8	36.1	34.4	32.9	257.2	162.0	102.1	64.4	40.6	25.6	16.2	10.2	17.4
1924	49.7	47.5	45.4	43.3	41.4	39.5	37.8	36.1	34.4	32.9	257.1	161.9	102.1	64.4	40.6	25.6	16.2	10.2	17.4
1925	49.7	47.5	45.4	43.3	41.4	39.5	37.7	36.0	34.4	32.9	257.1	161.8	102.0	64.3	40.6	25.6	16.1	10.2	17.4
1926	49.7	47.5	45.4	43.3	41.4	39.5	37.7	36.0	34.4	32.9	257.1	161.7	101.9	64.3	40.6	25.6	16.1	10.2	17.4
1927	49.7	47.5	45.3	43.3	41.4	39.5	37.7	36.0	34.4	32.9	257.1	161.7	101.9	64.2	40.5	25.6	16.1	10.2	17.4
1928	49.7	47.5	45.3	43.3	41.4	39.5	37.7	36.0	34.4	32.9	257.0	161.6	101.8	64.2	40.5	25.5	16.1	10.2	17.4
1929	49.7	47.4	45.3	43.3	41.3	39.5	37.7	36.0	34.4	32.9	256.9	161.5	101.7	64.1	40.4	25.5	16.1	10.2	17.3
1930	49.6	47.4	45.3	43.3	41.3	39.5	37.7	36.0	34.4	32.8	256.7	161.2	101.5	64.0	40.4	25.5	16.1	10.1	17.3
1931	49.6	47.4	45.3	43.3	41.3	39.5	37.7	36.0	34.4	32.8	256.6	161.0	101.3	63.9	40.3	25.4	16.0	10.1	17.3
1932	49.6	47.4	45.3	43.2	41.3	39.5	37.7	36.0	34.4	32.8	256.5	160.9	101.2	63.8	40.2	25.4	16.0	10.1	17.3
1933	49.6	47.4	45.2	43.2	41.3	39.5	37.7	36.0	34.4	32.8	256.5	160.9	101.1	63.7	40.2	25.4	16.0	10.1	17.2
1934	49.5	47.3	45.2	43.2	41.3	39.4	37.7	36.0	34.4	32.8	256.5	160.9	101.1	63.7	40.2	25.3	16.0	10.1	17.2
1935	49.5	47.3	45.2	43.2	41.3	39.4	37.7	36.0	34.4	32.8	256.5	160.8	101.0	63.6	40.1	25.3	16.0	10.1	17.2
1936	49.5	47.3	45.2	43.2	41.2	39.4	37.6	36.0	34.3	32.8	256.5	160.8	101.0	63.6	40.1	25.3	16.0	10.1	17.2
1937	49.5	47.3	45.2	43.1	41.2	39.4	37.6	35.9	34.3	32.8	256.3	160.7	100.8	63.5	40.0	25.3	15.9	10.0	17.2
1938	49.4	47.2	45.1	43.1	41.2	39.4	37.6	35.9	34.3	32.8	256.2	160.5	100.6	63.4	39.9	25.2	15.9	10.0	17.1
1939	49.4	47.2	45.1	43.1	41.2	39.3	37.6	35.9	34.3	32.7	256.0	160.3	100.5	63.2	39.9	25.1	15.9	10.0	17.1
1940	49.4	47.2	45.1	43.1	41.2	39.3	37.6	35.9	34.3	32.7	256.0	160.3	100.4	63.2	39.8	25.1	15.8	10.0	17.1
1941	49.3	47.2	45.0	43.0	41.1	39.3	37.5	35.9	34.2	32.7	255.6	160.0	100.2	63.0	39.7	25.0	15.8	10.0	17.0
1942	49.3	47.1	45.0	43.0	41.1	39.3	37.5	35.8	34.2	32.7	255.1	159.5	99.8	62.7	39.5	24.9	15.7	9.9	16.9
1943	49.2	47.1	45.0	43.0	41.1	39.2	37.5	35.8	34.2	32.6	254.4	158.6	99.2	62.3	39.3	24.8	15.6	9.9	16.8
1944	49.1	47.0	44.9	42.9	41.0	39.2	37.4	35.7	34.1	32.5	252.1	156.1	97.4	61.1	38.5	24.3	15.3	9.7	16.5
1945	48.9	46.9	44.9	42.9	41.0	39.2	37.4	35.7	34.0	32.5	250.8	154.5	96.2	60.3	38.0	24.0	15.1	9.5	16.3
1946	48.7	46.7	44.8	42.9	40.9	39.1	37.3	35.6	34.0	32.4	249.0	152.2	94.5	59.2	37.3	23.5	14.8	9.4	16.0
1947	48.5	46.5	44.6	42.7	40.9	39.1	37.3	35.6	33.9	32.4	248.2	150.8	93.5	58.5	36.8	23.2	14.6	9.2	15.8
1948	48.4	46.3	44.4	42.6	40.8	39.0	37.3	35.6	34.0	32.4	248.2	150.2	92.9	58.1	36.5	23.0	14.5	9.2	15.7
1949	48.3	46.2	44.2	42.4	40.7	38.9	37.3	35.6	34.0	32.4	248.5	149.8	92.4	57.7	36.3	22.9	14.4	9.1	15.6
1950	48.3	46.1	44.1	42.2	40.5	38.8	37.2	35.6	34.0	32.4	249.0	149.7	92.1	57.5	36.1	22.8	14.4	9.1	15.5
1951	48.2	46.1	44.1	42.2	40.3	38.6	37.1	35.5	33.9	32.4	249.3	149.6	91.8	57.2	35.9	22.6	14.3	9.0	15.4
1952	48.1	46.0	44.0	42.1	40.2	38.5	36.9	35.4	33.9	32.4	249.7	149.6	91.5	57.0	35.8	22.5	14.2	9.0	15.3
1953	48.0	45.9	43.9	42.0	40.2	38.4	36.7	35.2	33.8	32.3	250.1	149.7	91.3	56.8	35.6	22.4	14.2	8.9	15.3
1954	48.0	45.9	43.9	42.0	40.1	38.4	36.7	35.1	33.6	32.2	250.4	150.0	91.2	56.6	35.5	22.4	14.1	8.9	15.2
1955	47.9	45.8	43.8	41.9	40.1	38.3	36.6	35.0	33.5	32.1	250.5	150.3	91.0	56.5	35.4	22.3	14.0	8.9	15.1
1956	47.8	45.8	43.8	41.8	40.0	38.2	36.6	34.9	33.4	31.9	249.9	150.2	90.7	56.2	35.2	22.1	13.9	8.8	15.0
1957	47.7	45.7	43.7	41.8	39.9	38.2	36.5	34.9	33.3	31.8	249.1	150.1	90.3	55.8	34.9	22.0	13.8	8.7	14.9

Table A.3. Continued. Female numbers at age in Oregon (1000s) predicted by the base-case model.

(Yr)	0	1	2	3	4	5	6	7	8	9	10-19	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90+
1958	47.6	45.6	43.6	41.7	39.9	38.1	36.4	34.8	33.2	31.7	247.9	149.6	89.7	55.3	34.6	21.7	13.7	8.6	14.8
1959	47.5	45.5	43.5	41.7	39.8	38.1	36.4	34.7	33.2	31.7	247.0	149.5	89.3	55.0	34.3	21.6	13.6	8.6	14.7
1960	47.4	45.3	43.4	41.6	39.8	38.0	36.3	34.7	33.1	31.6	246.0	149.3	88.9	54.6	34.0	21.4	13.5	8.5	14.5
1961	47.3	45.2	43.3	41.5	39.7	37.9	36.3	34.6	33.0	31.5	244.9	148.8	88.4	54.1	33.7	21.2	13.3	8.4	14.4
1962	47.2	45.1	43.2	41.3	39.6	37.9	36.2	34.6	33.0	31.5	243.8	148.3	87.9	53.7	33.4	21.0	13.2	8.3	14.2
1963	47.1	45.0	43.1	41.2	39.5	37.8	36.1	34.5	32.9	31.4	242.6	147.6	87.4	53.2	33.0	20.7	13.1	8.2	14.1
1964	47.0	44.9	43.0	41.1	39.4	37.7	36.0	34.5	32.9	31.4	242.4	147.7	87.4	53.0	32.9	20.6	13.0	8.2	14.0
1965	46.9	44.9	42.9	41.1	39.3	37.6	35.9	34.4	32.9	31.4	242.5	148.0	87.7	53.0	32.8	20.6	12.9	8.2	13.9
1966	46.7	44.8	42.8	41.0	39.2	37.5	35.8	34.2	32.7	31.2	239.7	145.2	86.0	51.8	32.0	20.1	12.6	8.0	13.6
1967	46.6	44.6	42.8	40.9	39.1	37.4	35.7	34.2	32.6	31.2	239.9	145.3	86.3	51.7	32.0	20.0	12.6	7.9	13.5
1968	46.5	44.5	42.6	40.9	39.0	37.3	35.7	34.1	32.6	31.1	239.8	145.0	86.3	51.6	31.8	19.9	12.5	7.9	13.4
1969	46.4	44.4	42.5	40.7	39.0	37.3	35.6	34.0	32.5	31.0	239.8	144.8	86.4	51.5	31.7	19.8	12.4	7.8	13.4
1970	46.1	44.3	42.4	40.6	38.8	37.2	35.5	33.9	32.4	30.9	237.6	142.6	85.2	50.6	31.0	19.3	12.2	7.7	13.1
1971	45.9	44.0	42.3	40.5	38.7	37.0	35.5	33.9	32.3	30.9	237.7	142.5	85.3	50.5	30.9	19.3	12.1	7.6	13.0
1972	45.6	43.8	42.0	40.4	38.6	36.9	35.3	33.8	32.3	30.8	237.1	141.8	85.0	50.3	30.7	19.1	12.0	7.5	12.9
1973	45.3	43.6	41.9	40.1	38.5	36.9	35.2	33.7	32.2	30.7	236.4	141.1	84.7	50.0	30.4	18.9	11.9	7.5	12.7
1974	45.0	43.3	41.6	40.0	38.3	36.8	35.2	33.6	32.1	30.7	236.2	140.9	84.6	49.9	30.2	18.8	11.8	7.4	12.7
1975	44.6	42.9	41.3	39.7	38.1	36.6	35.1	33.5	32.0	30.5	235.7	140.5	84.3	49.8	30.0	18.6	11.7	7.3	12.5
1976	44.2	42.6	41.0	39.4	37.9	36.4	34.9	33.5	32.0	30.5	235.7	140.7	84.3	49.8	30.0	18.5	11.6	7.3	12.5
1977	43.8	42.2	40.7	39.1	37.6	36.2	34.7	33.2	31.9	30.4	234.6	140.1	83.7	49.6	29.7	18.4	11.5	7.2	12.3
1978	43.3	41.8	40.3	38.8	37.4	35.9	34.5	33.1	31.6	30.3	233.4	139.4	83.1	49.3	29.4	18.2	11.3	7.1	12.2
1979	42.5	41.4	39.9	38.5	37.0	35.6	34.2	32.8	31.4	30.0	230.9	137.3	81.6	48.5	28.9	17.8	11.1	7.0	11.9
1980	41.6	40.6	39.5	38.1	36.7	35.3	33.9	32.4	31.1	29.6	226.5	133.5	79.0	47.1	27.9	17.1	10.7	6.7	11.5
1981	40.8	39.7	38.7	37.7	36.3	34.9	33.5	32.1	30.7	29.3	222.4	129.7	76.4	45.6	27.0	16.5	10.3	6.5	11.0
1982	39.7	39.0	37.9	36.9	35.9	34.6	33.2	31.8	30.3	28.9	216.8	124.4	72.8	43.5	25.7	15.7	9.7	6.1	10.4
1983	38.2	37.9	37.2	36.1	35.1	34.1	32.7	31.3	29.8	28.3	208.0	115.9	67.3	40.1	23.7	14.4	8.9	5.6	9.6
1984	37.0	36.5	36.2	35.5	34.4	33.4	32.2	30.8	29.3	27.7	199.6	107.8	62.0	36.9	21.8	13.2	8.2	5.1	8.7
1985	36.1	35.4	34.8	34.5	33.8	32.7	31.6	30.5	29.0	27.5	196.0	103.4	59.0	35.1	20.6	12.5	7.7	4.8	8.2
1986	34.9	34.5	33.7	33.2	32.9	32.1	31.0	29.9	28.7	27.1	191.2	97.6	55.0	32.6	19.2	11.5	7.1	4.5	7.6
1987	34.1	33.3	32.9	32.2	31.6	31.3	30.5	29.4	28.3	27.0	190.5	95.4	53.2	31.4	18.5	11.1	6.8	4.3	7.3
1988	33.2	32.6	31.8	31.4	30.7	30.1	29.7	28.9	27.7	26.6	188.7	92.3	50.9	29.9	17.7	10.5	6.5	4.1	6.9
1989	32.1	31.7	31.1	30.3	29.9	29.2	28.6	28.1	27.3	26.1	186.2	88.7	48.1	28.1	16.6	9.9	6.1	3.8	6.4
1990	30.6	30.7	30.2	29.6	28.8	28.4	27.6	26.9	26.4	25.4	179.4	82.1	43.6	25.2	15.0	8.9	5.4	3.4	5.7
1991	29.6	29.2	29.3	28.9	28.2	27.4	27.0	26.2	25.4	24.8	178.7	80.6	42.0	24.1	14.3	8.5	5.2	3.2	5.5
1992	27.8	28.3	27.8	27.9	27.5	26.8	26.0	25.4	24.5	23.7	172.8	75.7	38.4	21.9	13.0	7.7	4.7	2.9	4.9
1993	25.9	26.6	27.0	26.5	26.5	26.0	25.3	24.3	23.6	22.6	163.3	68.9	33.8	19.1	11.3	6.7	4.0	2.5	4.3
1994	24.1	24.7	25.3	25.7	25.2	25.1	24.5	23.6	22.5	21.7	152.3	61.2	28.9	16.2	9.6	5.6	3.4	2.1	3.6
1995	23.0	23.0	23.6	24.1	24.4	23.9	23.7	23.0	22.1	20.9	147.2	57.8	26.3	14.5	8.6	5.0	3.0	1.9	3.2
1996	21.6	21.9	21.9	22.4	22.9	23.1	22.5	22.2	21.3	20.3	138.5	52.2	22.7	12.4	7.3	4.3	2.6	1.6	2.7
1997	20.4	20.6	20.9	20.9	21.3	21.8	21.9	21.2	20.8	19.9	135.0	49.9	20.8	11.2	6.5	3.8	2.3	1.4	2.4
1998	19.0	19.5	19.6	19.9	19.8	20.2	20.5	20.5	19.7	19.1	128.3	45.8	18.2	9.6	5.6	3.3	2.0	1.2	2.0
1999	18.7	18.2	18.6	18.7	19.0	18.9	19.1	19.3	19.2	18.4	127.2	45.5	17.4	9.0	5.2	3.1	1.8	1.1	1.9

Table A.3. Continued. Female numbers at age in Oregon (1000s) predicted by the base-case model.

$\begin{aligned} & \text { Age } \\ & \text { (Yr) } \end{aligned}$	0	1	2	3	4	5	6	7	8	9	10-19	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90+
2000	18.0	17.9	17.3	17.7	17.8	18.0	17.8	18.0	18.1	17.8	123.6	44.1	16.2	8.2	4.7	2.8	1.6	1.0	1.7
2001	18.2	17.2	17.1	16.5	16.9	17.0	17.1	16.9	17.1	17.1	126.0	46.5	16.5	8.2	4.6	2.7	1.6	1.0	1.7
2002	18.4	17.4	16.4	16.3	15.8	16.1	16.2	16.3	16.1	16.2	127.7	49.0	17.0	8.2	4.6	2.7	1.6	1.0	1.6
2003	18.9	17.5	16.6	15.6	15.5	15.1	15.4	15.4	15.6	15.4	128.8	52.0	17.7	8.3	4.6	2.7	1.6	1.0	1.6
2004	19.4	18.0	16.8	15.9	14.9	14.8	14.4	14.7	14.7	14.8	128.7	55.2	18.5	8.4	4.6	2.7	1.6	1.0	1.6
2005	19.9	18.5	17.2	16.0	15.2	14.3	14.2	13.7	14.0	14.0	127.4	58.3	19.3	8.5	4.6	2.7	1.6	1.0	1.6
2006	20.4	19.0	17.7	16.4	15.3	14.5	13.6	13.5	13.1	13.3	125.1	61.3	20.3	8.6	4.7	2.7	1.6	1.0	1.6
2007	20.9	19.5	18.2	16.9	15.7	14.6	13.8	13.0	12.9	12.4	122.0	64.5	21.5	8.8	4.7	2.7	1.6	1.0	1.6
2008	21.3	19.9	18.6	17.4	16.1	15.0	13.9	13.2	12.4	12.3	117.8	67.6	22.8	8.9	4.7	2.7	1.6	1.0	1.6
2009	21.7	20.3	19.0	17.8	16.6	15.4	14.3	13.3	12.5	11.8	113.5	70.3	24.1	9.1	4.7	2.7	1.6	1.0	1.6
2010	22.1	20.7	19.4	18.2	17.0	15.8	14.7	13.6	12.7	12.0	109.2	72.9	25.7	9.4	4.8	2.7	1.6	1.0	1.6

Table A.4. Male numbers at age in Oregon (1000s) predicted by the base-case model.

$\begin{aligned} & \hline \text { Age } \\ & \text { (Yr) } \\ & \hline \end{aligned}$	0	1	2	3	4	5	6	7	8	9	10-19	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90+
1916	49.8	47.6	45.5	43.5	41.6	39.8	38.0	36.4	34.8	33.2	261.7	167.0	106.6	68.0	43.4	27.7	17.7	11.3	19.9
1917	49.8	47.6	45.5	43.5	41.6	39.8	38.0	36.4	34.8	33.2	261.7	167.0	106.5	68.0	43.4	27.7	17.7	11.3	19.9
1918	49.8	47.6	45.5	43.5	41.6	39.8	38.0	36.4	34.8	33.2	261.6	166.9	106.5	67.9	43.4	27.7	17.7	11.3	19.9
1919	49.8	47.6	45.5	43.5	41.6	39.8	38.0	36.4	34.8	33.2	261.5	166.8	106.4	67.9	43.3	27.7	17.6	11.3	19.9
1920	49.8	47.6	45.5	43.5	41.6	39.8	38.0	36.4	34.8	33.2	261.5	166.7	106.4	67.9	43.3	27.6	17.6	11.3	19.8
1921	49.8	47.6	45.5	43.5	41.6	39.8	38.0	36.4	34.8	33.2	261.4	166.6	106.3	67.8	43.3	27.6	17.6	11.2	19.8
1922	49.7	47.6	45.5	43.5	41.6	39.8	38.0	36.4	34.8	33.2	261.4	166.6	106.2	67.8	43.3	27.6	17.6	11.2	19.8
1923	49.7	47.6	45.5	43.5	41.6	39.8	38.0	36.4	34.8	33.2	261.3	166.5	106.2	67.8	43.2	27.6	17.6	11.2	19.8
1924	49.7	47.6	45.5	43.5	41.6	39.8	38.0	36.3	34.8	33.2	261.3	166.4	106.1	67.7	43.2	27.6	17.6	11.2	19.8
1925	49.7	47.5	45.5	43.5	41.6	39.7	38.0	36.3	34.7	33.2	261.3	166.3	106.0	67.7	43.2	27.5	17.6	11.2	19.8
1926	49.7	47.5	45.5	43.5	41.6	39.7	38.0	36.3	34.7	33.2	261.2	166.2	106.0	67.6	43.1	27.5	17.6	11.2	19.8
1927	49.7	47.5	45.4	43.5	41.6	39.7	38.0	36.3	34.7	33.2	261.2	166.2	105.9	67.6	43.1	27.5	17.6	11.2	19.8
1928	49.7	47.5	45.4	43.4	41.5	39.7	38.0	36.3	34.7	33.2	261.2	166.1	105.8	67.5	43.1	27.5	17.5	11.2	19.7
1929	49.7	47.5	45.4	43.4	41.5	39.7	38.0	36.3	34.7	33.2	261.1	165.9	105.7	67.4	43.0	27.5	17.5	11.2	19.7
1930	49.6	47.5	45.4	43.4	41.5	39.7	38.0	36.3	34.7	33.2	260.8	165.7	105.5	67.3	42.9	27.4	17.5	11.2	19.7
1931	49.6	47.5	45.4	43.4	41.5	39.7	38.0	36.3	34.7	33.2	260.6	165.4	105.3	67.2	42.9	27.3	17.4	11.1	19.6
1932	49.6	47.4	45.4	43.4	41.5	39.7	37.9	36.3	34.7	33.2	260.5	165.3	105.2	67.1	42.8	27.3	17.4	11.1	19.6
1933	49.6	47.4	45.3	43.4	41.5	39.7	37.9	36.3	34.7	33.2	260.6	165.3	105.1	67.0	42.8	27.3	17.4	11.1	19.6
1934	49.5	47.4	45.3	43.3	41.5	39.7	37.9	36.3	34.7	33.2	260.6	165.3	105.1	67.0	42.7	27.3	17.4	11.1	19.6
1935	49.5	47.4	45.3	43.3	41.4	39.6	37.9	36.3	34.7	33.2	260.6	165.2	105.0	66.9	42.7	27.2	17.4	11.1	19.6
1936	49.5	47.3	45.3	43.3	41.4	39.6	37.9	36.2	34.7	33.1	260.6	165.2	104.9	66.9	42.7	27.2	17.4	11.1	19.5
1937	49.5	47.3	45.3	43.3	41.4	39.6	37.9	36.2	34.6	33.1	260.4	165.1	104.8	66.8	42.6	27.2	17.3	11.1	19.5
1938	49.4	47.3	45.2	43.3	41.4	39.6	37.9	36.2	34.6	33.1	260.2	164.8	104.6	66.6	42.5	27.1	17.3	11.0	19.5
1939	49.4	47.3	45.2	43.3	41.4	39.6	37.8	36.2	34.6	33.1	260.0	164.7	104.4	66.5	42.4	27.1	17.3	11.0	19.4
1940	49.4	47.2	45.2	43.2	41.4	39.6	37.8	36.2	34.6	33.1	260.0	164.6	104.3	66.4	42.4	27.0	17.2	11.0	19.4
1941	49.3	47.2	45.2	43.2	41.3	39.5	37.8	36.1	34.6	33.0	259.7	164.3	104.1	66.2	42.2	26.9	17.2	11.0	19.3
1942	49.3	47.2	45.1	43.2	41.3	39.5	37.8	36.1	34.5	33.0	259.1	163.7	103.7	65.9	42.0	26.8	17.1	10.9	19.3
1943	49.2	47.1	45.1	43.1	41.3	39.5	37.7	36.1	34.5	33.0	258.3	162.9	103.0	65.5	41.8	26.6	17.0	10.8	19.1
1944	49.1	47.1	45.0	43.1	41.2	39.4	37.7	36.0	34.4	32.8	255.8	160.2	101.2	64.3	41.0	26.1	16.7	10.6	18.8
1945	48.9	46.9	45.0	43.1	41.2	39.4	37.6	35.9	34.3	32.8	254.3	158.4	99.9	63.4	40.4	25.8	16.4	10.5	18.5
1946	48.7	46.8	44.9	43.0	41.1	39.3	37.6	35.9	34.3	32.7	252.3	156.0	98.1	62.2	39.6	25.3	16.1	10.3	18.2
1947	48.5	46.6	44.7	42.9	41.1	39.3	37.6	35.9	34.2	32.7	251.5	154.5	97.0	61.5	39.1	25.0	15.9	10.2	17.9
1948	48.4	46.4	44.5	42.8	41.0	39.3	37.5	35.9	34.3	32.7	251.5	153.8	96.3	61.0	38.8	24.8	15.8	10.1	17.8
1949	48.3	46.3	44.3	42.5	40.9	39.2	37.5	35.9	34.3	32.7	251.7	153.4	95.9	60.6	38.6	24.6	15.7	10.0	17.7
1950	48.3	46.2	44.2	42.4	40.7	39.1	37.4	35.9	34.3	32.7	252.3	153.2	95.5	60.4	38.4	24.5	15.6	10.0	17.6
1951	48.2	46.1	44.2	42.3	40.5	38.9	37.3	35.8	34.2	32.7	252.7	153.0	95.1	60.1	38.2	24.4	15.5	9.9	17.5
1952	48.1	46.1	44.1	42.2	40.4	38.7	37.1	35.7	34.2	32.7	253.1	153.0	94.9	59.8	38.0	24.3	15.5	9.9	17.4
1953	48.0	46.0	44.0	42.2	40.4	38.6	37.0	35.5	34.1	32.6	253.5	153.1	94.6	59.6	37.9	24.1	15.4	9.8	17.3
1954	48.0	45.9	44.0	42.1	40.3	38.6	36.9	35.4	33.9	32.5	254.0	153.4	94.5	59.5	37.7	24.1	15.3	9.8	17.3
1955	47.9	45.9	43.9	42.0	40.3	38.5	36.9	35.3	33.8	32.4	254.1	153.6	94.2	59.2	37.6	24.0	15.3	9.7	17.2
1956	47.8	45.8	43.9	42.0	40.2	38.5	36.8	35.2	33.7	32.2	253.5	153.6	93.9	58.9	37.4	23.8	15.2	9.7	17.1
1957	47.7	45.7	43.8	41.9	40.1	38.4	36.7	35.1	33.6	32.1	252.7	153.4	93.4	58.5	37.1	23.6	15.1	9.6	16.9

Table A.4. Continued. Male numbers at age in Oregon (1000s) predicted by the base-case model.

Age   (Yr)	0	1	2	3	4	5	6	7	8	9	10-19	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90+
1958	47.6	45.6	43.7	41.9	40.1	38.3	36.7	35.1	33.5	32.0	251.4	153.0	92.8	58.0	36.7	23.4	14.9	9.5	16.8
1959	47.5	45.5	43.6	41.8	40.0	38.3	36.6	35.0	33.5	32.0	250.5	152.9	92.3	57.6	36.5	23.2	14.8	9.4	16.6
1960	47.4	45.4	43.5	41.7	39.9	38.2	36.6	34.9	33.4	31.9	249.5	152.6	91.9	57.2	36.2	23.0	14.7	9.4	16.5
1961	47.3	45.3	43.4	41.6	39.9	38.2	36.5	34.9	33.3	31.8	248.3	152.1	91.3	56.7	35.8	22.8	14.5	9.3	16.3
1962	47.2	45.2	43.3	41.5	39.8	38.1	36.4	34.8	33.3	31.8	247.1	151.7	90.8	56.2	35.5	22.5	14.4	9.2	16.2
1963	47.1	45.1	43.2	41.4	39.6	38.0	36.4	34.8	33.2	31.7	245.9	151.0	90.3	55.7	35.1	22.3	14.2	9.1	16.0
1964	47.0	45.0	43.1	41.3	39.5	37.9	36.3	34.7	33.2	31.7	245.7	151.1	90.3	55.5	34.9	22.2	14.1	9.0	15.9
1965	46.9	44.9	43.0	41.2	39.5	37.8	36.2	34.7	33.2	31.7	245.8	151.4	90.5	55.5	34.9	22.1	14.1	9.0	15.8
1966	46.7	44.9	42.9	41.1	39.4	37.7	36.0	34.5	33.0	31.5	242.8	148.5	88.8	54.2	34.0	21.5	13.7	8.8	15.4
1967	46.6	44.6	42.9	41.0	39.3	37.6	36.0	34.4	32.9	31.4	243.1	148.5	89.1	54.1	33.9	21.5	13.7	8.7	15.4
1968	46.5	44.5	42.7	41.0	39.2	37.5	35.9	34.4	32.8	31.4	243.0	148.2	89.1	53.9	33.7	21.3	13.6	8.7	15.3
1969	46.4	44.4	42.6	40.8	39.2	37.5	35.9	34.3	32.8	31.3	243.0	148.1	89.2	53.8	33.6	21.2	13.5	8.6	15.2
1970	46.1	44.3	42.5	40.7	39.0	37.4	35.8	34.2	32.6	31.2	240.7	145.7	88.0	52.8	32.9	20.8	13.2	8.4	14.9
1971	45.9	44.1	42.4	40.6	38.9	37.2	35.7	34.1	32.6	31.1	240.8	145.6	88.1	52.8	32.8	20.7	13.1	8.4	14.8
1972	45.6	43.9	42.1	40.5	38.8	37.2	35.5	34.1	32.5	31.1	240.2	144.9	87.8	52.5	32.5	20.5	13.0	8.3	14.6
1973	45.3	43.6	42.0	40.3	38.7	37.1	35.5	33.9	32.5	31.0	239.4	144.2	87.5	52.2	32.2	20.3	12.9	8.2	14.5
1974	45.0	43.3	41.7	40.1	38.5	37.0	35.4	33.9	32.4	31.0	239.3	144.0	87.4	52.1	32.0	20.2	12.8	8.2	14.4
1975	44.6	43.0	41.4	39.9	38.3	36.8	35.3	33.8	32.3	30.8	238.8	143.6	87.1	52.0	31.8	20.0	12.7	8.1	14.2
1976	44.2	42.6	41.1	39.6	38.1	36.6	35.1	33.7	32.2	30.8	238.8	143.8	87.1	52.0	31.7	19.9	12.6	8.0	14.2
1977	43.8	42.3	40.7	39.3	37.8	36.4	34.9	33.5	32.1	30.7	237.7	143.1	86.5	51.8	31.4	19.7	12.5	7.9	14.0
1978	43.3	41.9	40.4	38.9	37.5	36.1	34.7	33.3	31.9	30.6	236.5	142.4	85.8	51.5	31.1	19.5	12.3	7.8	13.8
1979	42.5	41.4	40.0	38.6	37.2	35.8	34.4	33.1	31.7	30.2	233.8	140.3	84.3	50.7	30.5	19.1	12.0	7.7	13.5
1980	41.6	40.6	39.6	38.2	36.9	35.4	34.1	32.7	31.3	29.9	229.1	136.3	81.6	49.2	29.5	18.4	11.6	7.4	13.0
1981	40.8	39.8	38.8	37.8	36.5	35.1	33.7	32.3	30.9	29.5	224.6	132.3	78.8	47.6	28.5	17.7	11.2	7.1	12.5
1982	39.7	39.1	38.0	37.1	36.1	34.7	33.4	31.9	30.5	29.1	218.6	126.7	75.1	45.4	27.1	16.8	10.6	6.7	11.8
1983	38.2	38.0	37.3	36.2	35.3	34.3	32.9	31.4	29.9	28.4	209.0	117.8	69.3	41.9	25.0	15.4	9.7	6.2	10.8
1984	37.0	36.5	36.3	35.6	34.5	33.5	32.4	30.9	29.4	27.8	200.0	109.2	63.8	38.5	22.9	14.1	8.9	5.6	9.9
1985	36.1	35.4	34.9	34.6	33.9	32.8	31.8	30.6	29.1	27.6	196.0	104.6	60.6	36.6	21.8	13.3	8.4	5.3	9.3
1986	34.9	34.5	33.8	33.3	33.0	32.3	31.1	30.0	28.8	27.2	190.9	98.4	56.5	34.0	20.2	12.3	7.7	4.9	8.6
1987	34.1	33.3	33.0	32.3	31.8	31.5	30.7	29.5	28.4	27.2	190.2	96.0	54.6	32.7	19.5	11.8	7.4	4.7	8.3
1988	33.2	32.6	31.9	31.5	30.8	30.2	29.9	29.1	27.9	26.7	188.3	92.7	52.2	31.1	18.6	11.2	7.0	4.4	7.8
1989	32.1	31.7	31.2	30.4	30.0	29.3	28.7	28.3	27.4	26.2	185.6	88.8	49.3	29.2	17.5	10.5	6.6	4.2	7.3
1990	30.6	30.7	30.3	29.7	29.0	28.5	27.8	27.0	26.5	25.5	178.4	81.8	44.5	26.2	15.7	9.4	5.9	3.7	6.5
1991	29.6	29.2	29.3	28.9	28.4	27.6	27.1	26.3	25.6	24.9	177.8	80.2	42.8	25.1	15.1	9.0	5.6	3.5	6.2
1992	27.8	28.3	27.9	28.0	27.6	27.0	26.1	25.5	24.7	23.8	171.6	75.0	39.0	22.7	13.7	8.2	5.0	3.2	5.6
1993	25.9	26.6	27.0	26.6	26.6	26.1	25.4	24.5	23.7	22.7	161.6	67.9	34.3	19.8	11.9	7.1	4.4	2.8	4.8
1994	24.1	24.7	25.4	25.7	25.3	25.2	24.6	23.7	22.6	21.7	150.0	59.9	29.2	16.7	10.0	6.0	3.7	2.3	4.0
1995	23.0	23.0	23.6	24.2	24.5	24.0	23.8	23.1	22.1	20.9	144.8	56.3	26.5	15.0	9.0	5.4	3.3	2.1	3.6
1996	21.6	22.0	22.0	22.5	23.0	23.2	22.6	22.2	21.4	20.3	135.8	50.6	22.8	12.8	7.6	4.5	2.8	1.7	3.0
1997	20.4	20.6	21.0	21.0	21.4	21.9	22.0	21.3	20.8	19.9	132.2	48.1	20.7	11.5	6.8	4.1	2.5	1.5	2.7
1998	19.0	19.5	19.7	20.0	19.9	20.3	20.6	20.5	19.7	19.1	125.4	44.0	18.1	9.9	5.8	3.5	2.1	1.3	2.3
1999	18.7	18.2	18.7	18.8	19.0	18.9	19.2	19.4	19.3	18.4	124.6	43.6	17.2	9.2	5.4	3.3	2.0	1.2	2.1

Table A.4. Continued. Male numbers at age in Oregon (1000s) predicted by the base-case model.


Table A.5. Female numbers at age in Washington (1000s) predicted by the base-case model.

$\begin{aligned} & \text { Age } \\ & \text { (Yr) } \end{aligned}$	0	1	2	3	4	5	6	7	8	9	10-19	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90+
1916	13.2	12.6	12.0	11.5	10.9	10.5	10.0	9.5	9.1	8.7	68.1	43.0	27.1	17.1	10.8	6.8	4.3	2.7	4.6
1917	13.2	12.6	12.0	11.5	10.9	10.5	10.0	9.5	9.1	8.7	68.1	43.0	27.1	17.1	10.8	6.8	4.3	2.7	4.6
1918	13.2	12.6	12.0	11.5	10.9	10.5	10.0	9.5	9.1	8.7	68.1	43.0	27.1	17.1	10.8	6.8	4.3	2.7	4.6
1919	13.2	12.6	12.0	11.5	10.9	10.5	10.0	9.5	9.1	8.7	68.1	43.0	27.1	17.1	10.8	6.8	4.3	2.7	4.6
1920	13.2	12.6	12.0	11.5	10.9	10.5	10.0	9.5	9.1	8.7	68.1	43.0	27.1	17.1	10.8	6.8	4.3	2.7	4.6
1921	13.2	12.6	12.0	11.5	10.9	10.5	10.0	9.5	9.1	8.7	68.1	43.0	27.1	17.1	10.8	6.8	4.3	2.7	4.6
1922	13.2	12.6	12.0	11.5	10.9	10.5	10.0	9.5	9.1	8.7	68.1	43.0	27.1	17.1	10.8	6.8	4.3	2.7	4.6
1923	13.1	12.6	12.0	11.5	10.9	10.5	10.0	9.5	9.1	8.7	68.1	43.0	27.1	17.1	10.8	6.8	4.3	2.7	4.6
1924	13.1	12.6	12.0	11.5	10.9	10.4	10.0	9.5	9.1	8.7	68.1	43.0	27.1	17.1	10.8	6.8	4.3	2.7	4.6
1925	13.1	12.6	12.0	11.5	10.9	10.4	10.0	9.5	9.1	8.7	68.1	43.0	27.1	17.1	10.8	6.8	4.3	2.7	4.6
1926	13.1	12.6	12.0	11.5	10.9	10.4	10.0	9.5	9.1	8.7	68.1	42.9	27.1	17.1	10.8	6.8	4.3	2.7	4.6
1927	13.1	12.5	12.0	11.4	10.9	10.4	10.0	9.5	9.1	8.7	68.1	42.9	27.0	17.1	10.8	6.8	4.3	2.7	4.6
1928	13.1	12.5	12.0	11.4	10.9	10.4	10.0	9.5	9.1	8.7	68.0	42.9	27.0	17.0	10.7	6.8	4.3	2.7	4.6
1929	13.1	12.5	12.0	11.4	10.9	10.4	10.0	9.5	9.1	8.7	68.0	42.8	27.0	17.0	10.7	6.8	4.3	2.7	4.6
1930	13.1	12.5	12.0	11.4	10.9	10.4	10.0	9.5	9.1	8.7	68.0	42.8	27.0	17.0	10.7	6.8	4.3	2.7	4.6
1931	13.1	12.5	12.0	11.4	10.9	10.4	10.0	9.5	9.1	8.7	68.0	42.8	26.9	17.0	10.7	6.8	4.3	2.7	4.6
1932	13.1	12.5	12.0	11.4	10.9	10.4	10.0	9.5	9.1	8.7	68.0	42.8	26.9	17.0	10.7	6.7	4.3	2.7	4.6
1933	13.1	12.5	12.0	11.4	10.9	10.4	10.0	9.5	9.1	8.7	68.0	42.7	26.9	16.9	10.7	6.7	4.3	2.7	4.6
1934	13.1	12.5	12.0	11.4	10.9	10.4	10.0	9.5	9.1	8.7	68.0	42.7	26.9	16.9	10.7	6.7	4.2	2.7	4.6
1935	13.1	12.5	11.9	11.4	10.9	10.4	10.0	9.5	9.1	8.7	67.9	42.7	26.8	16.9	10.7	6.7	4.2	2.7	4.6
1936	13.1	12.5	11.9	11.4	10.9	10.4	10.0	9.5	9.1	8.7	67.9	42.7	26.8	16.9	10.6	6.7	4.2	2.7	4.6
1937	13.1	12.5	11.9	11.4	10.9	10.4	9.9	9.5	9.1	8.7	67.9	42.7	26.8	16.9	10.6	6.7	4.2	2.7	4.6
1938	13.1	12.5	11.9	11.4	10.9	10.4	9.9	9.5	9.1	8.7	67.9	42.7	26.8	16.9	10.6	6.7	4.2	2.7	4.6
1939	13.1	12.5	11.9	11.4	10.9	10.4	9.9	9.5	9.1	8.7	67.9	42.7	26.8	16.8	10.6	6.7	4.2	2.7	4.6
1940	13.1	12.5	11.9	11.4	10.9	10.4	9.9	9.5	9.1	8.7	67.9	42.6	26.7	16.8	10.6	6.7	4.2	2.7	4.5
1941	13.0	12.5	11.9	11.4	10.9	10.4	9.9	9.5	9.1	8.7	67.9	42.6	26.7	16.8	10.6	6.7	4.2	2.7	4.5
1942	13.0	12.5	11.9	11.4	10.9	10.4	9.9	9.5	9.1	8.7	67.8	42.6	26.7	16.8	10.6	6.7	4.2	2.7	4.5
1943	13.0	12.4	11.9	11.4	10.9	10.4	9.9	9.5	9.1	8.7	67.8	42.6	26.7	16.8	10.6	6.7	4.2	2.7	4.5
1944	13.0	12.4	11.9	11.4	10.9	10.4	9.9	9.5	9.1	8.6	67.8	42.6	26.7	16.8	10.6	6.7	4.2	2.6	4.5
1945	12.9	12.4	11.9	11.3	10.8	10.4	9.9	9.5	9.0	8.6	67.8	42.6	26.7	16.7	10.5	6.6	4.2	2.6	4.5
1946	12.9	12.4	11.8	11.3	10.8	10.4	9.9	9.5	9.0	8.6	67.7	42.6	26.7	16.7	10.5	6.6	4.2	2.6	4.5
1947	12.8	12.3	11.8	11.3	10.8	10.3	9.9	9.5	9.0	8.6	67.7	42.6	26.7	16.7	10.5	6.6	4.2	2.6	4.5
1948	12.8	12.2	11.7	11.3	10.8	10.3	9.9	9.4	9.0	8.6	67.7	42.6	26.7	16.7	10.5	6.6	4.2	2.6	4.5
1949	12.8	12.2	11.7	11.2	10.8	10.3	9.9	9.4	9.0	8.6	67.6	42.6	26.6	16.7	10.5	6.6	4.2	2.6	4.5
1950	12.8	12.2	11.7	11.2	10.7	10.3	9.8	9.4	9.0	8.6	67.6	42.6	26.6	16.7	10.5	6.6	4.2	2.6	4.5
1951	12.7	12.2	11.6	11.1	10.7	10.2	9.8	9.4	9.0	8.6	67.5	42.5	26.6	16.7	10.5	6.6	4.2	2.6	4.5
1952	12.7	12.2	11.6	11.1	10.6	10.2	9.8	9.4	9.0	8.6	67.5	42.5	26.6	16.7	10.5	6.6	4.2	2.6	4.5
1953	12.7	12.1	11.6	11.1	10.6	10.2	9.7	9.3	8.9	8.6	67.5	42.5	26.6	16.7	10.5	6.6	4.2	2.6	4.5
1954	12.7	12.1	11.6	11.1	10.6	10.1	9.7	9.3	8.9	8.5	67.4	42.5	26.6	16.6	10.4	6.6	4.1	2.6	4.5
1955	12.7	12.1	11.6	11.1	10.6	10.1	9.7	9.3	8.9	8.5	67.3	42.5	26.6	16.6	10.4	6.6	4.1	2.6	4.5
1956	12.6	12.1	11.6	11.1	10.6	10.1	9.7	9.3	8.9	8.5	67.1	42.4	26.6	16.6	10.4	6.5	4.1	2.6	4.4
1957	12.6	12.1	11.6	11.0	10.6	10.1	9.7	9.2	8.8	8.5	67.0	42.3	26.5	16.6	10.4	6.5	4.1	2.6	4.4

Table A.5. Continued. Female numbers at age in Washington (1000s) predicted by the base-case model.

(Yr)	0	1	2	3	4	5	6	7	8	9	10-19	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90+
1958	12.6	12.1	11.5	11.0	10.6	10.1	9.6	9.2	8.8	8.4	66.8	42.2	26.4	16.5	10.3	6.5	4.1	2.6	4.4
1959	12.6	12.0	11.5	11.0	10.5	10.1	9.6	9.2	8.8	8.4	66.6	42.1	26.3	16.4	10.3	6.5	4.1	2.6	4.4
1960	12.5	12.0	11.5	11.0	10.5	10.1	9.6	9.2	8.8	8.4	66.4	42.0	26.2	16.4	10.3	6.4	4.1	2.6	4.4
1961	12.5	12.0	11.4	11.0	10.5	10.0	9.6	9.2	8.8	8.4	66.2	41.9	26.2	16.3	10.2	6.4	4.0	2.5	4.4
1962	12.5	11.9	11.4	10.9	10.5	10.0	9.6	9.2	8.8	8.4	66.0	41.8	26.1	16.3	10.2	6.4	4.0	2.5	4.3
1963	12.4	11.9	11.4	10.9	10.4	10.0	9.6	9.2	8.8	8.4	65.8	41.7	26.0	16.2	10.1	6.4	4.0	2.5	4.3
1964	12.4	11.9	11.4	10.9	10.4	10.0	9.5	9.1	8.7	8.4	65.6	41.5	25.8	16.1	10.0	6.3	4.0	2.5	4.3
1965	12.4	11.9	11.3	10.9	10.4	9.9	9.5	9.1	8.7	8.3	65.4	41.2	25.6	16.0	10.0	6.3	3.9	2.5	4.2
1966	12.3	11.8	11.3	10.8	10.4	9.9	9.5	9.1	8.7	8.3	65.3	41.0	25.5	15.9	9.9	6.2	3.9	2.5	4.2
1967	12.3	11.8	11.3	10.8	10.3	9.9	9.5	9.1	8.7	8.3	65.1	40.8	25.3	15.7	9.8	6.1	3.9	2.4	4.2
1968	12.3	11.8	11.3	10.8	10.3	9.9	9.5	9.0	8.7	8.3	65.0	40.6	25.1	15.6	9.7	6.1	3.8	2.4	4.1
1969	12.3	11.7	11.2	10.7	10.3	9.9	9.4	9.0	8.6	8.3	64.8	40.4	25.0	15.5	9.7	6.0	3.8	2.4	4.1
1970	12.2	11.7	11.2	10.7	10.3	9.9	9.4	9.0	8.6	8.2	64.7	40.2	24.8	15.4	9.6	6.0	3.8	2.4	4.1
1971	12.1	11.6	11.2	10.7	10.2	9.8	9.4	9.0	8.6	8.2	64.5	39.9	24.6	15.3	9.5	5.9	3.7	2.3	4.0
1972	12.1	11.6	11.1	10.7	10.2	9.8	9.4	9.0	8.6	8.2	64.3	39.6	24.4	15.1	9.4	5.9	3.7	2.3	4.0
1973	12.0	11.5	11.1	10.6	10.2	9.8	9.3	8.9	8.6	8.2	64.0	39.3	24.1	14.9	9.3	5.8	3.6	2.3	3.9
1974	11.9	11.4	11.0	10.6	10.1	9.7	9.3	8.9	8.5	8.2	63.8	39.0	23.8	14.7	9.1	5.7	3.6	2.2	3.8
1975	11.8	11.4	10.9	10.5	10.1	9.7	9.3	8.9	8.5	8.1	63.5	38.6	23.5	14.4	8.9	5.6	3.5	2.2	3.8
1976	11.7	11.3	10.8	10.4	10.0	9.6	9.2	8.9	8.5	8.1	63.4	38.4	23.2	14.2	8.8	5.5	3.4	2.2	3.7
1977	11.6	11.2	10.7	10.4	10.0	9.6	9.2	8.8	8.5	8.1	63.1	38.0	22.9	14.0	8.7	5.4	3.4	2.1	3.6
1978	11.5	11.1	10.7	10.3	9.9	9.5	9.1	8.8	8.4	8.1	62.6	37.3	22.2	13.5	8.4	5.2	3.3	2.0	3.5
1979	11.2	10.9	10.6	10.2	9.8	9.4	9.1	8.7	8.4	8.0	62.1	36.5	21.4	13.0	8.0	5.0	3.1	2.0	3.3
1980	11.0	10.7	10.4	10.1	9.7	9.4	9.0	8.7	8.3	8.0	61.6	35.6	20.6	12.5	7.7	4.8	3.0	1.9	3.2
1981	10.8	10.5	10.2	10.0	9.6	9.3	8.9	8.6	8.2	7.9	60.9	34.5	19.7	11.8	7.2	4.5	2.8	1.8	3.0
1982	10.5	10.3	10.0	9.8	9.5	9.2	8.9	8.5	8.2	7.9	60.9	34.4	19.4	11.6	7.1	4.4	2.7	1.7	2.9
1983	10.1	10.0	9.8	9.6	9.3	9.1	8.8	8.5	8.1	7.8	60.8	34.2	19.1	11.4	6.9	4.3	2.7	1.7	2.9
1984	9.8	9.6	9.6	9.4	9.1	8.9	8.7	8.4	8.1	7.7	60.4	33.8	18.6	11.0	6.7	4.1	2.6	1.6	2.7
1985	9.5	9.4	9.2	9.1	9.0	8.7	8.5	8.3	8.0	7.7	59.9	33.2	18.1	10.6	6.4	4.0	2.5	1.5	2.6
1986	9.2	9.1	8.9	8.8	8.7	8.6	8.3	8.1	7.9	7.6	59.1	32.4	17.2	10.0	6.0	3.7	2.3	1.4	2.5
1987	9.0	8.8	8.7	8.5	8.4	8.3	8.2	7.9	7.7	7.5	58.7	32.0	16.8	9.6	5.8	3.6	2.2	1.4	2.4
1988	8.8	8.6	8.4	8.3	8.1	8.0	7.9	7.8	7.6	7.3	57.9	31.1	16.0	9.0	5.4	3.3	2.1	1.3	2.2
1989	8.5	8.4	8.2	8.0	7.9	7.8	7.6	7.6	7.4	7.2	57.0	30.3	15.3	8.5	5.1	3.1	1.9	1.2	2.0
1990	8.1	8.1	8.0	7.9	7.7	7.6	7.4	7.3	7.2	7.0	55.5	28.6	14.0	7.6	4.5	2.8	1.7	1.1	1.8
1991	7.8	7.7	7.7	7.6	7.5	7.3	7.2	7.1	6.9	6.8	54.5	27.7	13.2	7.1	4.2	2.5	1.6	1.0	1.7
1992	7.4	7.5	7.4	7.4	7.3	7.1	7.0	6.9	6.7	6.6	53.3	26.8	12.4	6.5	3.8	2.3	1.4	0.9	1.5
1993	6.8	7.0	7.1	7.0	7.0	7.0	6.8	6.6	6.5	6.4	51.5	25.2	11.2	5.8	3.4	2.0	1.3	0.8	1.3
1994	6.4	6.5	6.7	6.8	6.7	6.7	6.6	6.5	6.3	6.2	49.8	23.7	10.2	5.1	2.9	1.8	1.1	0.7	1.1
1995	6.1	6.1	6.2	6.4	6.5	6.4	6.4	6.3	6.2	6.0	48.7	23.1	9.6	4.7	2.7	1.6	1.0	0.6	1.0
1996	5.7	5.8	5.8	6.0	6.1	6.2	6.1	6.1	6.0	5.9	47.5	22.6	9.2	4.4	2.5	1.5	0.9	0.6	0.9
1997	5.4	5.4	5.5	5.5	5.7	5.8	5.9	5.8	5.8	5.7	46.3	22.1	8.7	4.1	2.2	1.3	0.8	0.5	0.8
1998	5.0	5.2	5.2	5.3	5.3	5.4	5.6	5.6	5.5	5.5	44.9	21.4	8.2	3.7	2.0	1.2	0.7	0.5	0.8
1999	4.9	4.8	4.9	5.0	5.0	5.0	5.2	5.3	5.4	5.2	43.9	21.3	8.0	3.5	1.9	1.1	0.7	0.4	0.7

Table A.5. Continued. Female numbers at age in Washington (1000s) predicted by the base-case model.

$\begin{aligned} & \text { Age } \\ & \text { (Yr) } \\ & \hline \end{aligned}$	0	1	2	3	4	5	6	7	8	9	10-19	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90+
2000	4.8	4.7	4.6	4.7	4.7	4.8	4.8	4.9	5.0	5.1	41.7	19.7	7.1	3.0	1.6	0.9	0.6	0.3	0.6
2001	4.8	4.5	4.5	4.4	4.5	4.5	4.6	4.6	4.7	4.8	40.7	19.6	6.9	2.9	1.5	0.9	0.5	0.3	0.5
2002	4.9	4.6	4.3	4.3	4.2	4.3	4.3	4.4	4.3	4.4	38.7	18.4	6.3	2.5	1.3	0.7	0.4	0.3	0.4
2003	5.0	4.6	4.4	4.1	4.1	4.0	4.1	4.1	4.2	4.1	38.0	19.0	6.5	2.5	1.2	0.7	0.4	0.3	0.4
2004	5.1	4.8	4.4	4.2	3.9	3.9	3.8	3.9	3.9	4.0	37.2	19.7	6.8	2.6	1.2	0.7	0.4	0.3	0.4
2005	5.3	4.9	4.6	4.2	4.0	3.8	3.7	3.6	3.7	3.7	36.2	20.3	7.1	2.6	1.2	0.7	0.4	0.3	0.4
2006	5.4	5.0	4.7	4.3	4.0	3.8	3.6	3.6	3.5	3.5	34.9	20.7	7.4	2.7	1.2	0.7	0.4	0.2	0.4
2007	5.5	5.2	4.8	4.5	4.2	3.9	3.7	3.4	3.4	3.3	33.6	21.3	7.8	2.8	1.2	0.7	0.4	0.2	0.4
2008	5.6	5.3	4.9	4.6	4.3	4.0	3.7	3.5	3.3	3.3	32.1	21.7	8.2	2.8	1.2	0.7	0.4	0.2	0.4
2009	5.7	5.4	5.0	4.7	4.4	4.1	3.8	3.5	3.3	3.1	30.7	22.0	8.6	2.9	1.3	0.7	0.4	0.2	0.4
2010	5.9	5.5	5.1	4.8	4.5	4.2	3.9	3.6	3.4	3.2	29.4	22.3	9.1	3.1	1.3	0.7	0.4	0.2	0.4

Table A.6. Male numbers at age in Washington (1000s) predicted by the base-case model.

$(\mathrm{Yr})$	0	1	2	3	4	5	6	7	8	9	10-19	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90+
1916	14.1	13.5	12.9	12.3	11.7	11.2	10.7	10.2	9.7	9.3	72.5	45.4	28.5	17.9	11.2	7.0	4.4	2.8	4.6
1917	14.1	13.5	12.9	12.3	11.7	11.2	10.7	10.2	9.7	9.3	72.5	45.4	28.5	17.9	11.2	7.0	4.4	2.8	4.6
1918	14.1	13.5	12.9	12.3	11.7	11.2	10.7	10.2	9.7	9.3	72.5	45.4	28.5	17.9	11.2	7.0	4.4	2.8	4.6
1919	14.1	13.5	12.9	12.3	11.7	11.2	10.7	10.2	9.7	9.3	72.5	45.4	28.5	17.9	11.2	7.0	4.4	2.8	4.6
1920	14.1	13.5	12.9	12.3	11.7	11.2	10.7	10.2	9.7	9.3	72.5	45.4	28.5	17.9	11.2	7.0	4.4	2.8	4.6
1921	14.1	13.5	12.9	12.3	11.7	11.2	10.7	10.2	9.7	9.3	72.5	45.4	28.5	17.9	11.2	7.0	4.4	2.8	4.6
1922	14.1	13.5	12.9	12.3	11.7	11.2	10.7	10.2	9.7	9.3	72.5	45.4	28.5	17.9	11.2	7.0	4.4	2.8	4.6
1923	14.1	13.5	12.9	12.3	11.7	11.2	10.7	10.2	9.7	9.3	72.5	45.4	28.5	17.9	11.2	7.0	4.4	2.8	4.6
1924	14.1	13.5	12.9	12.3	11.7	11.2	10.7	10.2	9.7	9.3	72.5	45.4	28.5	17.9	11.2	7.0	4.4	2.8	4.6
1925	14.1	13.5	12.9	12.3	11.7	11.2	10.7	10.2	9.7	9.3	72.5	45.4	28.5	17.9	11.2	7.0	4.4	2.8	4.6
1926	14.1	13.5	12.9	12.3	11.7	11.2	10.7	10.2	9.7	9.3	72.4	45.4	28.5	17.8	11.2	7.0	4.4	2.8	4.6
1927	14.1	13.5	12.9	12.3	11.7	11.2	10.7	10.2	9.7	9.3	72.4	45.4	28.4	17.8	11.2	7.0	4.4	2.8	4.6
1928	14.1	13.5	12.9	12.3	11.7	11.2	10.7	10.2	9.7	9.3	72.4	45.3	28.4	17.8	11.2	7.0	4.4	2.8	4.6
1929	14.1	13.5	12.9	12.3	11.7	11.2	10.7	10.2	9.7	9.3	72.4	45.3	28.4	17.8	11.2	7.0	4.4	2.8	4.6
1930	14.1	13.5	12.8	12.3	11.7	11.2	10.7	10.2	9.7	9.3	72.4	45.3	28.3	17.8	11.1	7.0	4.4	2.7	4.6
1931	14.1	13.5	12.8	12.3	11.7	11.2	10.7	10.2	9.7	9.3	72.3	45.2	28.3	17.7	11.1	7.0	4.4	2.7	4.6
1932	14.1	13.4	12.8	12.3	11.7	11.2	10.7	10.2	9.7	9.3	72.3	45.2	28.3	17.7	11.1	7.0	4.4	2.7	4.6
1933	14.1	13.4	12.8	12.3	11.7	11.2	10.7	10.2	9.7	9.3	72.3	45.2	28.3	17.7	11.1	7.0	4.4	2.7	4.6
1934	14.1	13.4	12.8	12.3	11.7	11.2	10.7	10.2	9.7	9.3	72.3	45.1	28.2	17.7	11.1	7.0	4.4	2.7	4.6
1935	14.1	13.4	12.8	12.2	11.7	11.2	10.7	10.2	9.7	9.3	72.3	45.1	28.2	17.7	11.1	6.9	4.4	2.7	4.6
1936	14.1	13.4	12.8	12.2	11.7	11.2	10.7	10.2	9.7	9.3	72.3	45.1	28.2	17.7	11.1	6.9	4.4	2.7	4.6
1937	14.1	13.4	12.8	12.2	11.7	11.2	10.6	10.2	9.7	9.3	72.3	45.1	28.2	17.6	11.1	6.9	4.3	2.7	4.6
1938	14.0	13.4	12.8	12.2	11.7	11.2	10.6	10.2	9.7	9.3	72.3	45.1	28.1	17.6	11.0	6.9	4.3	2.7	4.6
1939	14.0	13.4	12.8	12.2	11.7	11.1	10.6	10.2	9.7	9.3	72.3	45.1	28.1	17.6	11.0	6.9	4.3	2.7	4.6
1940	14.0	13.4	12.8	12.2	11.7	11.1	10.6	10.2	9.7	9.3	72.2	45.1	28.1	17.6	11.0	6.9	4.3	2.7	4.6
1941	14.0	13.4	12.8	12.2	11.7	11.1	10.6	10.2	9.7	9.3	72.2	45.1	28.1	17.6	11.0	6.9	4.3	2.7	4.6
1942	14.0	13.4	12.8	12.2	11.7	11.1	10.6	10.1	9.7	9.2	72.2	45.0	28.0	17.5	11.0	6.9	4.3	2.7	4.6
1943	14.0	13.4	12.8	12.2	11.7	11.1	10.6	10.1	9.7	9.2	72.2	45.0	28.0	17.5	11.0	6.9	4.3	2.7	4.6
1944	14.0	13.4	12.8	12.2	11.6	11.1	10.6	10.1	9.7	9.2	72.2	45.0	28.0	17.5	11.0	6.9	4.3	2.7	4.5
1945	14.0	13.4	12.8	12.2	11.6	11.1	10.6	10.1	9.7	9.2	72.2	45.0	28.0	17.5	11.0	6.9	4.3	2.7	4.5
1946	13.9	13.3	12.8	12.2	11.6	11.1	10.6	10.1	9.7	9.2	72.1	45.0	28.0	17.5	10.9	6.9	4.3	2.7	4.5
1947	13.9	13.3	12.7	12.2	11.6	11.1	10.6	10.1	9.7	9.2	72.1	45.0	28.0	17.5	10.9	6.9	4.3	2.7	4.5
1948	13.8	13.2	12.7	12.1	11.6	11.1	10.6	10.1	9.7	9.2	72.1	45.0	28.0	17.4	10.9	6.8	4.3	2.7	4.5
1949	13.8	13.2	12.6	12.1	11.6	11.1	10.6	10.1	9.7	9.2	72.0	45.0	28.0	17.4	10.9	6.8	4.3	2.7	4.5
1950	13.8	13.2	12.6	12.1	11.5	11.1	10.6	10.1	9.7	9.2	72.0	45.0	28.0	17.4	10.9	6.8	4.3	2.7	4.5
1951	13.8	13.2	12.6	12.0	11.5	11.0	10.6	10.1	9.6	9.2	72.0	45.0	28.0	17.4	10.9	6.8	4.3	2.7	4.5
1952	13.8	13.2	12.6	12.0	11.5	11.0	10.5	10.1	9.6	9.2	71.9	45.0	28.0	17.4	10.9	6.8	4.3	2.7	4.5
1953	13.7	13.1	12.6	12.0	11.5	11.0	10.5	10.0	9.6	9.2	71.9	45.0	27.9	17.4	10.9	6.8	4.3	2.7	4.5
1954	13.7	13.1	12.5	12.0	11.5	10.9	10.5	10.0	9.6	9.2	71.9	44.9	27.9	17.4	10.9	6.8	4.3	2.7	4.5
1955	13.7	13.1	12.5	12.0	11.4	10.9	10.4	10.0	9.5	9.1	71.8	44.9	27.9	17.4	10.8	6.8	4.3	2.7	4.5
1956	13.7	13.1	12.5	12.0	11.4	10.9	10.4	10.0	9.5	9.1	71.7	44.8	27.9	17.3	10.8	6.8	4.2	2.7	4.5
1957	13.7	13.1	12.5	11.9	11.4	10.9	10.4	10.0	9.5	9.1	71.5	44.7	27.8	17.3	10.8	6.7	4.2	2.7	4.5

Table A.6. Continued. Male numbers at age in Washington (1000s) predicted by the base-case model.

(Yr)	0	1	2	3	4	5	6	7	8	9	10-19	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90+
1958	13.6	13.0	12.5	11.9	11.4	10.9	10.4	9.9	9.5	9.1	71.4	44.6	27.7	17.2	10.7	6.7	4.2	2.6	4.4
1959	13.6	13.0	12.4	11.9	11.4	10.9	10.4	9.9	9.5	9.1	71.2	44.5	27.7	17.2	10.7	6.7	4.2	2.6	4.4
1960	13.6	13.0	12.4	11.9	11.4	10.9	10.4	9.9	9.5	9.1	71.0	44.4	27.6	17.1	10.6	6.7	4.2	2.6	4.4
1961	13.5	12.9	12.4	11.9	11.3	10.8	10.4	9.9	9.5	9.0	70.8	44.2	27.5	17.0	10.6	6.6	4.2	2.6	4.4
1962	13.5	12.9	12.4	11.8	11.3	10.8	10.3	9.9	9.4	9.0	70.7	44.1	27.4	17.0	10.6	6.6	4.1	2.6	4.4
1963	13.5	12.9	12.3	11.8	11.3	10.8	10.3	9.9	9.4	9.0	70.5	44.0	27.3	16.9	10.5	6.6	4.1	2.6	4.3
1964	13.5	12.9	12.3	11.8	11.3	10.8	10.3	9.9	9.4	9.0	70.3	43.8	27.1	16.8	10.4	6.5	4.1	2.6	4.3
1965	13.4	12.8	12.3	11.7	11.2	10.7	10.3	9.8	9.4	9.0	70.0	43.6	26.9	16.7	10.4	6.5	4.0	2.5	4.3
1966	13.4	12.8	12.3	11.7	11.2	10.7	10.2	9.8	9.4	9.0	69.9	43.3	26.7	16.6	10.3	6.4	4.0	2.5	4.2
1967	13.4	12.8	12.2	11.7	11.2	10.7	10.2	9.8	9.3	8.9	69.7	43.1	26.5	16.4	10.2	6.4	4.0	2.5	4.2
1968	13.3	12.8	12.2	11.7	11.2	10.7	10.2	9.8	9.3	8.9	69.5	42.9	26.4	16.3	10.1	6.3	3.9	2.5	4.2
1969	13.3	12.7	12.2	11.6	11.1	10.7	10.2	9.7	9.3	8.9	69.4	42.6	26.2	16.2	10.0	6.3	3.9	2.5	4.1
1970	13.2	12.7	12.1	11.6	11.1	10.6	10.2	9.7	9.3	8.9	69.2	42.4	26.0	16.1	10.0	6.2	3.9	2.4	4.1
1971	13.2	12.6	12.1	11.6	11.1	10.6	10.1	9.7	9.3	8.9	69.0	42.2	25.8	15.9	9.9	6.1	3.8	2.4	4.0
1972	13.1	12.6	12.0	11.5	11.1	10.6	10.1	9.7	9.2	8.8	68.8	41.8	25.5	15.7	9.8	6.1	3.8	2.4	4.0
1973	13.0	12.5	12.0	11.5	11.0	10.5	10.1	9.7	9.2	8.8	68.5	41.5	25.2	15.5	9.6	6.0	3.7	2.3	3.9
1974	12.9	12.4	11.9	11.4	11.0	10.5	10.1	9.6	9.2	8.8	68.2	41.1	24.9	15.3	9.5	5.9	3.7	2.3	3.9
1975	12.8	12.3	11.8	11.4	10.9	10.5	10.0	9.6	9.2	8.8	67.9	40.7	24.5	15.1	9.3	5.8	3.6	2.3	3.8
1976	12.7	12.2	11.7	11.3	10.9	10.4	10.0	9.6	9.2	8.7	67.8	40.4	24.3	14.9	9.2	5.7	3.6	2.2	3.7
1977	12.5	12.1	11.6	11.2	10.8	10.4	9.9	9.5	9.1	8.7	67.5	40.0	23.9	14.6	9.0	5.6	3.5	2.2	3.7
1978	12.4	11.9	11.5	11.1	10.7	10.3	9.9	9.5	9.1	8.7	66.8	39.1	23.2	14.1	8.7	5.4	3.4	2.1	3.5
1979	12.1	11.8	11.4	11.0	10.6	10.2	9.8	9.4	9.0	8.6	66.2	38.2	22.4	13.6	8.4	5.2	3.2	2.0	3.4
1980	11.9	11.6	11.3	10.9	10.5	10.1	9.7	9.3	9.0	8.6	65.6	37.1	21.5	13.0	8.0	5.0	3.1	1.9	3.2
1981	11.6	11.3	11.0	10.8	10.4	10.0	9.6	9.3	8.9	8.5	64.8	35.9	20.5	12.3	7.6	4.7	2.9	1.8	3.1
1982	11.3	11.1	10.8	10.5	10.3	9.9	9.6	9.2	8.8	8.5	64.8	35.7	20.2	12.1	7.4	4.6	2.9	1.8	3.0
1983	10.9	10.8	10.6	10.3	10.1	9.8	9.4	9.1	8.8	8.4	64.7	35.5	19.9	11.9	7.3	4.5	2.8	1.7	2.9
1984	10.5	10.4	10.3	10.1	9.8	9.6	9.3	9.0	8.7	8.3	64.3	35.0	19.3	11.5	7.0	4.3	2.7	1.7	2.8
1985	10.2	10.0	9.9	9.8	9.6	9.4	9.1	8.9	8.6	8.2	63.7	34.4	18.7	11.0	6.7	4.2	2.6	1.6	2.7
1986	9.9	9.8	9.6	9.5	9.4	9.2	8.9	8.7	8.5	8.1	62.8	33.3	17.8	10.4	6.3	3.9	2.4	1.5	2.5
1987	9.7	9.5	9.3	9.1	9.0	8.9	8.8	8.5	8.3	8.1	62.3	32.9	17.3	10.1	6.1	3.8	2.3	1.5	2.4
1988	9.4	9.3	9.0	8.9	8.7	8.6	8.5	8.4	8.1	7.9	61.3	31.9	16.5	9.5	5.7	3.5	2.2	1.4	2.3
1989	9.1	9.0	8.8	8.6	8.5	8.3	8.2	8.1	7.9	7.7	60.3	31.0	15.7	8.9	5.4	3.3	2.0	1.3	2.1
1990	8.6	8.7	8.6	8.4	8.2	8.1	7.9	7.8	7.7	7.5	58.4	29.1	14.4	8.0	4.8	3.0	1.8	1.1	1.9
1991	8.3	8.2	8.3	8.2	8.0	7.8	7.7	7.5	7.4	7.3	57.3	28.2	13.5	7.5	4.5	2.7	1.7	1.1	1.8
1992	7.8	8.0	7.9	7.9	7.8	7.7	7.5	7.3	7.1	7.0	55.9	27.1	12.7	6.9	4.1	2.5	1.6	1.0	1.6
1993	7.3	7.5	7.6	7.5	7.5	7.4	7.3	7.1	7.0	6.7	53.8	25.3	11.5	6.2	3.6	2.2	1.4	0.8	1.4
1994	6.7	6.9	7.1	7.3	7.1	7.2	7.1	6.9	6.7	6.6	51.8	23.7	10.4	5.5	3.2	1.9	1.2	0.7	1.2
1995	6.4	6.4	6.6	6.8	6.9	6.8	6.8	6.7	6.6	6.4	50.6	23.1	9.9	5.1	2.9	1.8	1.1	0.7	1.1
1996	6.0	6.1	6.1	6.3	6.5	6.6	6.5	6.5	6.4	6.2	49.5	22.5	9.4	4.7	2.7	1.6	1.0	0.6	1.0
1997	5.7	5.7	5.8	5.8	6.0	6.2	6.3	6.2	6.2	6.1	48.2	22.0	8.9	4.4	2.5	1.5	0.9	0.6	1.0
1998	5.2	5.4	5.5	5.6	5.6	5.7	5.9	6.0	5.9	5.8	46.8	21.3	8.4	4.0	2.3	1.4	0.8	0.5	0.9
1999	5.2	5.0	5.2	5.2	5.3	5.3	5.5	5.6	5.7	5.6	45.7	21.2	8.1	3.8	2.1	1.3	0.8	0.5	0.8

Table A.6. Continued. Male numbers at age in Washington (1000s) predicted by the base-case model.

Age $(\mathrm{Yr})$	0	1	2	3	4	5	6	7	8	9	10-19	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90+
2000	4.9	4.9	4.8	4.9	5.0	5.1	5.1	5.2	5.3	5.4	43.3	19.5	7.2	3.3	1.8	1.1	0.7	0.4	0.7
2001	5.0	4.7	4.7	4.6	4.7	4.7	4.8	4.8	4.9	5.0	42.2	19.4	7.1	3.1	1.7	1.0	0.6	0.4	0.6
2002	5.0	4.8	4.5	4.5	4.3	4.5	4.5	4.6	4.6	4.6	40.1	18.2	6.4	2.8	1.5	0.9	0.5	0.3	0.5
2003	5.2	4.8	4.6	4.3	4.3	4.1	4.3	4.3	4.4	4.3	39.4	18.7	6.6	2.8	1.4	0.8	0.5	0.3	0.5
2004	5.3	4.9	4.6	4.4	4.1	4.1	4.0	4.1	4.1	4.1	38.6	19.4	6.8	2.8	1.4	0.8	0.5	0.3	0.5
2005	5.5	5.1	4.7	4.4	4.2	3.9	3.9	3.8	3.9	3.9	37.6	20.0	7.1	2.8	1.4	0.8	0.5	0.3	0.5
2006	5.6	5.2	4.8	4.5	4.2	4.0	3.7	3.7	3.6	3.7	36.2	20.4	7.3	2.8	1.4	0.8	0.5	0.3	0.5
2007	5.7	5.3	5.0	4.6	4.3	4.0	3.8	3.6	3.5	3.4	34.9	21.1	7.7	2.9	1.4	0.8	0.5	0.3	0.5
2008	5.8	5.5	5.1	4.7	4.4	4.1	3.8	3.6	3.4	3.4	33.4	21.6	8.0	3.0	1.4	0.8	0.5	0.3	0.5
2009	5.9	5.6	5.2	4.9	4.5	4.2	3.9	3.6	3.4	3.2	31.7	21.8	8.3	3.0	1.4	0.8	0.5	0.3	0.5
2009	4.9	4.9	4.8	4.9	5.0	5.1	5.1	5.2	5.3	5.4	43.3	19.5	7.2	3.3	1.8	1.1	0.7	0.4	0.7

```
13. Appendix B: SS Data file
#C Data file for 2011 yelloweye assessment
#C updated from 2009 model by Ian Taylor
#C designed to run in SSv3.21e
#
Global model specifications
#
1916 # Start year
2010 # End year
1 # Number of seasons/year
12 # Number of months/season (vector, by season)
1 # Spawning occurs at beginning of season
6 # Number of fishing fleets
6 # Number of surveys
3 # Number of areas
#
Fleet Section
1_CARC%2_CACM%3_ORRC%4_ORCM%5_WARC%6_WACM%7_ORRCOB%8_CACPFV%9_IPHCWA%10_NWFSCOR
%11_IPHCOR%12_WATRI
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 # Fleet timing (proportion of
season)
1 1 2 2 3 3 2 1 3 2 2 3 # Area of each fleet
111 1 1 1 # Units for catch by fishing fleet:
1=Biomass(mt),2=Numbers(1000s)
0.1 0.1 0.1 0.1 0.1 0.1 # SE of log(catch) by fishing fleet
#
More global specs
2 # Number of genders (1=combined,2=females and males)
100 # Accumulator age (plus group for population dynamics)
#
Catch section
Initial equilibrium catch (landings + discard) by fishing fleet
0 0 0 0 0 0
#
95 # Number of lines catch data
Catch (by fleet) Year Season
#CA rec CA comm OR rec OR comm WA rec WA comm Year Season
0.00
```




```
0.00 2.16
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.73 5.66 0.00 7.46 0.00 1.00 1929 1
1.18
2.35
2.94
3.53 5.7.78
4.70
5.61
4.81
```

6.85	4.57	0.00	11.15	0.00	1.00	1940	1	
6.25	5.35	0.00	15.98	0.00	1.00	1941	1	
6.78	3.37	0.00	23.85	0.00	1.00	1942	1	
7.30	5.89	0.00	66.05	0.00	1.00	1943	1	
7.83	24.88	0.00	46.97	0.00	1.00	1944	1	
8.36	58.56	0.00	62.52	0.00	1.00	1945	1	
8.88	57.74	0.00	42.38	0.00	1.00	1946	1	
5.02	16.28	0.00	25.53	0.00	1.00	1947	1	
10.12	23.30	0.00	20.73	0.00	1.00	1948	1	
13.09	9.89	0.00	15.93	0.00	1.00	1949	1	
15.95	8.03	0.00	17.79	0.00	1.00	1950	1	
17.91	16.99	0.00	15.10	0.00	1.00	1951	1	
15.95	14.15	0.00	14.88	0.00	1.00	1952	1	
13.97	11.77	0.00	11.32	0.00	1.00	1953	1	
18.74	11.78	0.00	14.23	0.00	1.00	1954	1	
24.06	6.98	6.20	15.04	1.00	2.00	1955	1	
27.15	10.40	6.50	18.06	1.00	2.00	1956	1	
24.78	13.17	6.70	25.89	1.00	2.00	1957	1	
35.91	13.41	7.00	18.30	2.00	2.00	1958	1	
30.41	10.25	7.20	20.64	2.00	2.00	1959	1	
22.05	8.88	7.50	25.32	2.00	2.00	1960	1	
17.68	5.25	7.70	24.63	2.00	2.00	1961	1	
22.08	5.43	8.00	28.28	2.00	2.00	1962	1	
23.10	10.86	8.20	8.28	3.00	4.00	1963	1	
20.82	7.52	8.50	1.94	3.00	4.00	1964	1	
31.51	9.38	8.70	70.16	3.00	4.00	1965	1	
35.34	8.97	9.00	3.86	3.00	4.00	1966	1	
36.60	7.85	9.20	11.35	3.00	4.00	1967	1	
42.79	7.66	9.50	7.93	3.00	4.00	1968	1	
44.97	25.70	9.70	55.36	3.00	4.00	1969	1	
51.89	27.70	10.00	6.31	4.00	5.10	1970	,	
46.17	46.50	13.10	17.97	4.00	6.41	1971	1	
59.61	63.66	16.30	14.82	4.00	7.31	1972	1	
75.02	49.51	7.40	14.98	4.00	9.21	1973	1	
80.47	56.38	12.80	14.86	4.00	10.31	1974	1	
81.34	60.24	6.20	9.87	4.00	7.10	1975	1	
88.56	57.96	19.40	14.86	4.30	10.30	1976	1	
79.78	57.45	19.90	17.13	8.80	17.88	1977	1	
74.46	154.20	24.5	041.9	14.50	23.90	01978		
85.49	99.33	38.80	67.38	3.50	28.50	1979	1	
80.19	42.07	31.50	76.22	2.40	35.06	1980	1	
43.58	169.44	36.00	0106.		. 409	. 7019	981	1
79.60	154.33	56.9	156.	563.	. 4012	2.6019	982	1
38.36	62.69	63.80	142.78	6.70	16.9	991983		
71.26	53.66	43.70	82.56	12.20	13.42	1984		
121.87	12.22	226.80	132.	958.	. 8026	6.4119	985	1
77.31	33.51	27.40	56.89	9.00	14.94	1986	1	
57.83	54.31	29.80	73.72	10.50	25.09	1987	1	
60.07	65.44	9.40	110.73	8.30	25.5	561988		
54.44	51.25	16.90	170.21	14.6	6039.5	501989		
40.06	81.32	18.70	61.12	9.90	26.27	1990		
27.38	147.30	17.2	137.	7418	8.0020	0.3619	991	1
16.41	111.10	29.4	0165.	8816	. 2033	3.8519		,
7.13	52.92	27.73	183.18	18.0	. 0029.7	761993		
13.78	56.02	21.57	102.19	10.3	3019.5	581994		
10.08	51.40	16.81	148.34	9.90	18.0	071995		
12.74	76.54	8.17	92.52	10.80	16.89	1996	1	
14.58	68.68	15.38	115.42	11.4	4018.6	681997		
4.84	21.89	18.78	41.47	14.40	5.57	1998	1	
9.40	23.49	18.05	61.35	10.60	32.92	1999	1	
5.71	4.02	9.52	3.64	10.10	7.86	2000	1	
6.37	4.35	4.83	6.23	12.50	21.84	2001	1	
2.49	0.89	3.14	1.56	3.70	1.55	2002	1	



```
2009 WA Recreational CPUE from WDFW (unchanged for 2011; N=10)
1990 1 5 6.9 0.700
1991 1 5 16.03 1.700
1992 1 5 15.29 1.240
1993 1 5 13.19 1.010
1994 1 5 7.15 0.420
1995 1 5 5.7 0.460
1996 1 5 5.72 0.500
1997 1 5 8.75 1.050
1998 1 5 11.06 1.240
1999 1 5 6.88 0.850
2011 Oregon Recreational Charter observer CPUE (logit MCMC run with 2
additional years; N=7)
2004 1 7 0.00036 0.515
2005 1 7 0.000317 0.532
2006 1 7 0.000817 0.483
2007 1 7 0.000644 0.490
2008 1 7 0.000958 0.488
2009 1 7 0.000861 0.495
2010 1 7 0.000578 0.530
2009 CA CPFV CPUE from WDFW (unchanged for 2011; N=11)
1988 1 8 26.19 0.211
1989 1 8 25.52 0.130
1990 1 8 32.16 0.265
1991 1 8 31.59 0.157
1992 1 8 20.88 0.130
1993 1 8 23.63 0.156
1994 1 8 21.67 0.132
1995 1 8 16.33 0.159
1996 1 8 17.9 0.154
1997 1 8 13.31 0.137
1998 1 8 10.13 0.248
2011 IPHC Washington-only (logit MCMC run with 2 additional years; N=11)
1999 1 9 0.001212 0.804
2001 1 9 0.010848 0.299
2002 1 9 0.003173 0.245
2003 1 9 0.012624 0.100
2004 1 9 0.003107 0.230
2005 1 9 0.010863 0.115
2006 1 9 0.004373 0.209
2007 1 9 0.005872 0.186
2008 1 9 0.002519 0.286
2009 1 9 0.004642 0.175
2010 1 9 0.003463 0.189
2009 NWFSC Trawl survey Oregon-only (updated for 2011 with 2 additional
years; N=8)
2003 1 10 1932.07 0.524
2004 110}10167.55 0.64
2005 1 10 159.98 0.583
2006 1 10}40472.51 0.506
2007 1 10 167.14 0.652
2008 1 10 115.32 0.515
2009 110 200.33 1.800
2010 1 10 289.57 0.505
2011 IPHC Oregon-only (logit MCMC run with 2 additional years; N=11)
1999 1 11 0.033 0.123
2001 1 11 0.021291 0.181
2002 1 11 0.017846 0.084
2003 1 11 0.019456 0.068
2004 1 11 0.017913 0.078
2005 1 11 0.008298 0.111
2006 1 11 0.009636 0.119
2007 1 11 0.014336 0.097
```

```
2008 1 11 0.017317 0.094
2009 1 11 0.005687 0.135
2010 1 11 0.007392 0.111
2009 Triennial Trawl survey Washington-only (updated for 2011 by running in
new GLMM software, separating between 92/95; N=9)
1980 1 12 72.24 0.896
1983 1 12 664.57 0.400
1986 1 12 327.13 0.298
1989 1 12 635.54 0.376
1992 1 12 71.47 0.538
1995 1 12 18.96 0.854
1998 1 12 63.08 0.554
2001 1 12 107.21 0.521
2004 1 12 121.86 0.648
#
Discard observation section
0 #_N_fleets_with_discard
#_discard_units (1=same_as_catchunits(bio/num); 2=fraction; 3=numbers)
#_discard_errtype: >0 for DF of T-dist(read CV below); 0 for normal with CV; -
1 for normal with se; -2 for lognormal
#_Fleet units errtype
1 2 30 # FISHERY1
0 # Number of discard observations all fleets and years # N_discard_obs
#
Mean body weight observation section
0 # Number of mean body weight observations # N_meanbodywt_obs
1000 #_DF_meanwt
#
Population size structure
3 # Length bin method: 1=Use data bins,2=generate from min/max/width read
below,3=Read count and vector below
41 # N population bins
Lower edge of bins
8}1
48
88
#
-1 # Minimum proportion for compressing tails of observed compositional data
0.001 # Constant added to expected frequencies
0 # Combine males and females at and below this bin number
#
37 # Number of data length bins
Lower edge of data length bins by bin
\begin{tabular}{llllllllllllllllllll}
16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 & 32 & 34 & 36 & 38 & 40 & 42 & 44 & 46 & 48 & 50 & 52 & 54
\end{tabular}
56
168 # Total number of length observations all fleets and years
Partition: 1=discarded catch, 2=retained catch, 0=whole catch (R+D)
Gender: 0=sexes combined into length bins, 1=females only (0s male bins),
2=males only (0s for female bins), 3=both males and females, total should sum
to 1.0
Year Seas Type Gender Partition Nsamp Data: females then males
Fleet 1: 2009 CA recreational (updated for 2011 with 2 additional years, and
recalculated sample sizes; N=18)
1993 1 1 0 0 36.6 0 0 0 0 1 1 1 0 1 1 4 5 4 4 2 0 1 1 2 0 1 1 0 1 2 0 0 0 0 0
0 0
0 0 0 0
1994 1 1 0 0 45.4 0 0 0 0 0 2 3 2 4 9 7 4 3 9 8 2 2 2 0 2 1 0 1 0 0 0 0 0 0 0
0 0
0 0 0 0
1995 1 1 0 0 46.5 0 0 1 0 0 1 1 7 4 3 3 5 9 2 3 2 0 1 1 2 0 0 0 1 0 1 0 0 0 0
0 0
0 0 0 0
```

 0000000000000000000000000000000000000000 0000
 000000000000000000000000000000000000000000 000
 00000000000000000000000000000000000000000 0000
 000000000000000000000000000000000000000000000 00000
 00000000000000000000000000000000000000000 0000
 00000000000000000000000000000000000000000 0000
 00000000000000000000000000000000000000000 0000
2003110015.1100001011033110110001000000000 000000000000000000000000000000000000000000 0000
20041100013.1000100100102311100210000010000 00000000000000000000000000000000000000000 0000
2005110053.900000011032547569441211101000000 0000000000000000000000000000000000000000 0000
 0000000000000000000000000000000000000000 0000000

 00000
20081100022.7000000001320335330201001000000 00000000000000000000000000000000000000000000 0000
 0000000000000000000000000000000000000000 0000
 00000000000000000000000000000000000000000 0000
\# Fleet 2: 2009 CA commercial: Port and observer (updated for 2011 with
additional observations in 2009, but 0 samples from 2008 and 2010; $\mathrm{N}=31$ )
197812004.100000000000000012206100100101000 000000000000000000000000000000000000000000000 000
1979120023.3000000113006974977320000100000 0000000000000000000000000000000000000000 0000
1980120022.80000000000101200501413554201000 00000000000000000000000000000000000000000 0000
 0000000000000000000000000000000000000000 0000000
1982120012.50000000000010214221210101101000 0000000000000000000000000000000000000000000 0000
1983120025.9000000131021324334111033411000

0000100000000000000000000000000000000000 0000
1984120023.10000011101002300004063301011100 0000000000000000000000000000000000000000000 0000
1985120023.7000000010201143312320002111000000 0000000000000000000000000000000000000000000 0000
1986120023.2000000000111210030310121124000000 00000000000000000000000000000000000000000 0000
 000000000000000000000000000000000000000000 0000
1988120016.9000000000011000211133120020121000 00000000000000000000000000000000000000000 0000
 000000000000000000000000000000000000000000 000
 0000000000000000000000000000000000000000 0000
 1216131063120000000000000000000000000000 0000000000000000000

 0000000000000000000
$\begin{array}{lllllllllllllllllllllll}1993 & 1 & 2 & 0 & 0 & 195 & 0 & 0 & 0 & 2 & 5 & 14 & 33 & 28 & 54 & 45 & 52 & 43 & 59 & 52 & 57 & 39 & 42\end{array} 43$
 0000000000000000000000

 00000000000000000000000
$\begin{array}{llllllllllllllllllllllll}1995 & 1 & 2 & 0 & 0 & 89.2 & 0 & 0 & 1 & 0 & 1 & 4 & 11 & 16 & 24 & 13 & 40 & 35 & 29 & 41 & 26 & 31 & 22 & 20\end{array}$
 0000000000000000000
$\begin{array}{lllllllllllllllllllllll}1996 & 1 & 2 & 0 & 0 & 152.6 & 0 & 0 & 0 & 3 & 3 & 7 & 14 & 32 & 37 & 30 & 48 & 56 & 57 & 40 & 47 & 26 & 28 \\ 25\end{array}$
 000000000000000000000

 00000000000000000
 00000000000000000000000000000000000000000 0000

 000000000000000000
 00000000000000000000000000000000000000000 0000
 10010000000000000000000000000000000000000 000000000
 0000000000000000000000000000000000000000 0000
 000000000000000000000000000000000000000000 000
2004120034.8000001114595598454221201011000
 0000
2005120019.5000001021343357713510241100000 0000000000000000000000000000000000000000000 0000
200612009.900001102232233323100000000000000 0000000000000000000000000000000000000000000 000
 00000000000000000000000000000000000000000 00000
 0000000000000000000000000000000000000000 000 \# new for 2011
\# Fleet 3: 2009 OR recreational lengths (no new data for 2011; $N=28$ )
\# Sexed
 00000000000021411103242124122113112110000 00000
197913301070000000322421023322353086230100000 0000000000210023121101226467225111000000 000
 000000000000000122276342362231031320000000 00000
 00000000000021242353731253456321211000000 000
 0000000001000213535253512222371112200000 0000
 0000000000103012254334220204352110000000 000
198913303100100000200522020100100000000000 0000000001001003010211012000000200000000 000
\# Unsexed
1980130025000001000311021100021013042011000 00000000000000000000000000000000000000000 000
 00000000000000000000000000000000000000000 000

 000
 00000000000000000000000000000000000000000 000
 4221020000000000000000000000000000000000 0000000000
 00000000000000000000000000000000000000000 00000
 0000000000000000000000000000000000000000 000
 0100000000000000000000000000000000000000000 000
19881300380000000514122273220132010000000
 000
19891300810003224274329656374112401010100 00100000000000000000000000000000000000000 000
 4021000000010000000000000000000000000000 0000000000
 200000000000000000000000000000000000000000 000000000
 0000000000000000000000000000000000000000 00000
 00000000000000000000000000000000000000000 0000
 0000000000000000000000000000000000000000000 00000
 0000000000000000000000000000000000000000 000000000
 4431000000000000000000000000000000000000 0000000000000
 0000000000000000000000000000000000000000 00000

 00000000000000000

 00000000000000000
$\begin{array}{llllllllllllllllllllllll}2003 & 1 & 3 & 0 & 0 & 490 & 0 & 0 & 1 & 1 & 3 & 5 & 13 & 5 & 11 & 19 & 19 & 30 & 37 & 36 & 42 & 44 & 48 & 39 \\ 36\end{array}$
 0000000000000000000
\# Fleet 4: 2009 OR commercial (updated for 2011 with 2009 data, but no samples in 2010; $\mathrm{N}=16$ )
199214302.800000000000001000100000000021200 000000000000000000000000112100000010000000 000
 0000000000000001226006334403112000000000 0000
 00000000000000006591341422433203310110000 000000

 0100000000000

 000000
 0000000000000000023588988910865040020101 000000
 0000000000000001323791163941403002010000 000000



1000000000
 0000000000000020100000011000000010000000 000
200314306.1000000002011010000000000000000000 000000000000218652010000000000000000000000 000
 0000000000000010000120231603530120000000 0000
2005143027.4000000000021024101030000000000 0000000000000102310014512200110100000000 0000
 00000000000000001000111021110110000000000 000
2007143033.700000000000001000000000020000000 0000000000000000000000110000000000000000 000
 0000000000000000001001011212010000000000 000
20091430014.3000000010011220000111100000000100 0000000000000001010030020200010101000000 0000 \# new for 2011
\# Fleet 5: 2009 WA recreational (no new data for 2009 or 2010; $N=8$ )
199815304.50000000000024020200002000000000 0000000000000000100031220010100020000000 000
1999153017.1000000000203245024036241411000 0000000000000000310743340140362430100000 0000
2000153033.1000000002047899796745524331100 0000000000000011164294786588464441000000 0000
2001153023.900000000000005565221427313210000 00000000000000111133444383534123010011000 0000
2004153066.7000000000000011110000200000001000
 000
 0000000000000000000001001020000000000000 000
20061530010000000000000010000000000000000000 00000000000000000000000000000000000000000 00
2008153033.80000000000100010000000100000000000 0000000000000100000000000010000000001000 000
\# Fleet 6: 2009 WA commercial (updated with 2009 and 2010 observations for
2011; $N=17$ )
\# unsexed
198016002.600000000000000000000120000100000 00000000000000000000000000000000000000000 000
 0100000000000000000000000000000000000000 000

 00000000000000000000


3100000000000000000000000000000000000000 0000000000

 00000
 0000000000000000000000000000000000000000 0000

 0000000000000000

 00000000000000000 \# sexed

 10000000
2003163032.1000000000001324353210122100200 0000000000000000000013145524010010000000 0000
200416302500000001000000130426320021140000 00000000000000000000151431131000011000000 000
2005163019.2000000001000110111210001100000
 0000
 0000000000010000000020033131153324000200 000000
 0000000000000000101001254024100100000000 000
 0000000000000000000000001000000000000000 00
 00000000000000000000000011223001000000000000 000 \# new for 2011
 0000000000000000000000133243100200000000 000 \# new for 2011
\# Fleet 7: 2009 Oregon recreational observer (updated with 2009 and 2010 observations for 2011; $\mathrm{N}=7$ )
20041700013.900111000120043321120000000100000 00000000000000000000000000000000000000000 0000
 00000000000000000000000000000000000000000 0000
2006170030.300121623124212431244011110001010 0000000000000000000000000000000000000000 0000
 000000000000000000000000000000000000000000 0000
 0000000000000000000000000000000000000000 0000
2009170018.4100012343161053000010010000000 00000000000000000000000000000000000000000000 0000 \# new for 2011
2010170014.8000000003321223300001000000000
 0000 \# new for 2011
\# Fleet 8: 2009 CA recreational CPFV (unchanged for 2011; $\mathrm{N}=12$ )
1987180019.20000001401000251111120003000001000
 0000
$1988 \quad 1800099.1 \begin{array}{llllllllllllllllll} & 0 & 0 & 2 & 4 & 9 & 6 & 19 & 18 & 14 & 27 & 13 & 22 & 19 & 17 & 11 & 11 & 10\end{array} 8$
 0000000000000000000

 00000000000000000
 0000000000000000000000000000000000000000 000000
 0000000000000000000000000000000000000000 00000000
 32100000000000000000000000000000000000000 000000000000

 0000000000000

232310110000000000000000000000000000000000 00000000000000

 0000000000
 2000000000000000000000000000000000000000 000000000
 00000000000000000000000000000000000000000 000000000
 00000000000000000000000000000000000000000000 0000
\#Fleet 9: 2009 WA IPHC (updated with 2009 and 2010 observations for 2011; N=8)
200319309900000000000100133222444451200100
 00000
20041930170000000000000000121000002400000 00000000000000000000100001101012000000000 000
200519307200000000000000012240412244111000 00000000000000000000001141102675411000000 0000
 0000000000000000001001000235223000000000 000

 861130000000000
200819308300000000000000000102224216212100000
 00000
 0000000000000000000000201624212100000000 000
 0000000000000000000000102223510000000000

000
\#Fleet 10: 2009 NWFSC OR only (updated with 2009 and 2010 observations for
2011--early values unchanged by elimination of stations; $N=8$ )
 00000000000100001132121020000000000000000 0000
 000000000000000000100000000200000000000000000 0000

 0000
20061103010.5000000020000021311213021110000000 00000000000001111110110221102000000000000 00000
 0000000110000001000100110001000000000000 000
 000000000000221010013000000000000000000000 000
2009110301.500000000000000100000010000000000 0000000000000000000001200000010100000000000 0000
 00000001010100010000101100000100000000000 0000
\#Fleet 11: 2009 OR IPHC (updated with 2009 and 2010 observations for 2011; N=6)

 2101000000000

 000000000
 0000000000000000000113475324510000000000 0000
 00000000000000000001010508753132100000000 0000
2007111301030000000000000112627632731000000
 00000


13107301000000000
 0000000000000000000110176443222000000000 0000
 0000000000000000000020284953352000000000 0000
\#Fleet 12: 2009 WA Triennial (unchanged for 2011; $N=7$ )
 00000000000000001000001000200021723601000 00000
 000000000010100011100000022100000221000000000 00000
19921212304.500000001001000001001000000000000
 0000
1995112305.5010000010000001000000100000000

0000000000000000000001000100000100000000 0000
19981123011.300000010000002022000101000000 0000000000000000101010200211000000010000 00000
20011123011.5000000000012122113200000001000 00000000000000000000111101100001000000000 00000
2004112304.7010000000000001100202000100000 0000000000000000000000010010000000000000 0000
\#
64 \# Number of age bins for data inputs

	wer	edg	of	ag	bin			is											
23	45	67	89	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65

\#
1 \# Number of ageing error types
\# Vectors of: Average age at true age (to accumulator age)
\# SD of ageing precision at true age
\# Accumulator age $=100$
$\begin{array}{lllllllllllllllllll}0.5 & 1.5 & 2.5 & 3.5 & 4.5 & 5.5 & 6.5 & 7.5 & 8.5 & 9.5 & 10.5 & 11.5 & 12.5 & 13.5 & 14.5 & 15.5\end{array}$
$\begin{array}{lllllllllllll}16.5 & 17.5 & 18.5 & 19.5 & 20.5 & 21.5 & 22.5 & 23.5 & 24.5 & 25.5 & 26.5 & 27.5 & 28.5\end{array}$

| 29.5 | 30.5 | 31.5 | 32.5 | 33.5 | 34.5 | 35.5 | 36.5 | 37.5 | 38.5 | 39.5 | 40.5 | 41.5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllllllllllll}42.5 & 43.5 & 44.5 & 45.5 & 46.5 & 47.5 & 48.5 & 49.5 & 50.5 & 51.5 & 52.5 & 53.5 & 54.5\end{array}$
$\begin{array}{lllllllllllll}55.5 & 56.5 & 57.5 & 58.5 & 59.5 & 60.5 & 61.5 & 62.5 & 63.5 & 64.5 & 65.5 & 66.5 & 67.5\end{array}$
$\begin{array}{llllllllllllll}68.5 & 69.5 & 70.5 & 71.5 & 72.5 & 73.5 & 74.5 & 75.5 & 76.5 & 77.5 & 78.5 & 79.5 & 80.5\end{array}$
$\begin{array}{lllllllllllll}81.5 & 82.5 & 83.5 & 84.5 & 85.5 & 86.5 & 87.5 & 88.5 & 89.5 & 90.5 & 91.5 & 92.5 & 93.5\end{array}$
$\begin{array}{lllllll}94.5 & 95.5 & 96.5 & 97.5 & 98.5 & 99.5 & 100.5\end{array}$
$0.3430 .3430 .4390 .5340 .628 \quad 0.7210 .8120 .9030 .9931 .0821 .171 .2571 .343$

$2.4522 .5252 .5972 .6682 .7392 .8082 .8772 .9463 .013 \quad 3.08 \quad 3.1463 .2113 .276$

4.114 .1654 .2194 .2734 .3264 .3784 .434 .4814 .5324 .5824 .6324 .6814 .73
$\begin{array}{lllllllllllllllllllll}4.778 & 4.825 & 4.872 & 4.919 & 4.965 & 5.01 & 5.055 & 5.1 & 5.144 & 5.187 & 5.23 & 5.273 & 5.315\end{array}$
$\begin{array}{lllllllllllllllllllllll}5.357 & 5.398 & 5.439 & 5.479 & 5.519 & 5.558 & 5.597 & 5.636 & 5.674 & 5.712 & 5.749 & 5.786 & 5.822\end{array}$
5.8595 .8945 .935 .9655 .9996 .0336 .0676 .1016 .1346 .167
\#
906 \# Number of age comp observations
2 \# Length bin refers to: 1=population length bin indices; 2=data length bin indices; 3= actual lengths
0 \#_combine males into females at or below this bin number \#
\# Year Season Type Gender Partition ageerr Lbin_lo Lbin_hi Nsamps Data: females then males
\# Fleet 1: 2009 CA recreational (no new data for 2011; $N=4$ )
\# Conditional
 0000010000000000000000000000000000000000000 000000000000000000000000000000000000000000000 000000000000000000000

 0000000000000000000000000000000000000000000 000000000000000000000
\# Ghost marginals
 00000100000000000000000000000000000000000000
 000000000000000000000
 0000000000000000000000000000100000000000
 000000000000000000000
\# Fleet 2: 2009 CA commercial (no new data for 2011; $N=70$ )
\# Conditional

 00000000000000000000000000000000000000000 0000000000000000000
 0000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000

 00000001000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 0000000000000000100000000000000000000000000 000000000000000000000

 000000000000000000010000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000
 000000000000000000000

 0000000010000000000000000000000000000000000 000000000000000000000
197912201171710000000000000000000000000000
 00000000000000100000000000000000000000000000 000000000000000000000
 000000000000010000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000
1979122011818100000000000000000000000000000
 00000000000000000010000000000000000000000 000000000000000000000

 000000000000000000000000001000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 000000000000000000010000000000000000000000 000000000000000000000

 0000010000000000000000000000000000000000

000000000000000000000
 0000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000 000000000000000000000

 000000000000000000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000
 000000000000000000000
 00000000000000000010000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000000
198012201232310000000000000000000000000000
 000000000000000000000000000000000000000010 000000000000000000000

 0000001000000000000000000000000000000000 000000000000000000000
198112201161610000000000000000000000000000 00000000000000000000000000000000000000000000 00000000010000000000000000000000000000000 000000000000000000000


 000000000000000000000
 0000000000000000000000000000000000000000000 00000000001000000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 0000000000100000000000000000000000000000 000000000000000000000
198212101881000000000100000000000000000000
 00000000000000000000000000000000000000000 0000000000000000000

 00000000000000000000000000000000000000000 0000000000000000000
 0000000000000000000000000000000000000000
 0000000000000000000
 00000000000000000000000000000000000000000000
 0000000000000000000

 0000000000000000000000000000000000000000 000000000000000000000
1985121011212100000000000001000000000000000
 00000000000000000000000000000000000000000 000000000000000000000


 000000000000000000000
 0000000000000000000000000000000000000000000 00000010000000000000000000000000000000000 000000000000000000000

 00000000001000010000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000
 000000000000000000000
 000000000000000000000000000000000000001000 00000000000000000000000000000000000000000 000000000000000000000
198612101551000001000000000000000000000000 000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 0000000000000000000
 0000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000000

 00100000000000000000000000000000000000000 000000000000000000000
1986122011515100000000000000000000000000000 0000000000000000000000000000000000000000000 0000000001000000000000000000000000000000 000000000000000000000
19881210199100000000100000000000000000000 0000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 0000000000000000000

 00000000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 0000000000000000000010000000000000000000000 000000000000000000000
20011210177100001000000000000000000000000
 00000000000000000000000000000000000000000 0000000000000000000
2001 1 2 1 0 1 9 9 2 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000 0000000000000000000

 000000000000000000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 10000000000000000000000000000000000000000 0000000000000000000
2001 1 2 2 0 1 8 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 1000000000000000000000000000000000000000 0000000000000000000
 000000000000000000000000000000000000000000 10000000000000000000000000000000000000000 0000000000000000000

 10300000000000000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 00100000000000000000000000000000000000000 00000000000000000000000

 000000000000000000000000000000000000000000 000000000000000000000
20051210118181000000000000000000100000000000 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000 000000000000000000000

 000000000000000000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000
 000000000000000000000 \# Ghost marginals
 000000000000000000000000000000000000000000 000000010000000001001000000000000000000000 000000000000000000000
 0000000000000010000000000000000000000000000 000010101000010000110000001000000000000000 000000000000000000000
 000000000000000010000000000000000000000000 0000010000000000000000000000000100000010

0000000000000000000000

 000000100120000000000000000000000000000000 000000000000000000000

 000000000000000000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000 000000000000000000000
$198512301137-10000001000001100100010000000$ 00000000000000000000000000000000000000001000 00100010001000010000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000000 0010000001000000000000000000000000000000 000000000000000000000
$198812301137-10000000002101000000000000000$ 00000000000000000000000000000000000000000000 000000000000000000001000000000000000000000 000000000000000000000

 2170000000000000000000000000000000000000 000000000000000000000
$200512301137-1000000000000000001101000010000$ 00001000000000000000000000000000000000000000 00000000000000000001000100000000000000000 000000000000000000000
\# Fleet 3: 2009 OR recreational (no new data for 2011; $N=187$ )
\# Conditional
1979131011919100000000000000000000000000000 00001000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000
 002110000000000000000000000000000000000000 00000000000000000000000000000000000000000000 000000000000000000000
 0000000000000000001000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000010000000000 00000000000000000000000000000000000000000 000000000000000000000
19791310127271000000000000000000000000000 00000000000000000000000000000000000000001000 00000000000000000000000000000000000000000 000000000000000000000

 0000000000000000000000000000000000000000 000000000000000000000
1979132011818100000000000000000000000000000
 00000000000000000000000100000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 00000000000000000000000000000000001000000 000000000000000000000
 0000000000000000000000000000000000000000000 00000000000000000000001010000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 000000000000000000000000000000000001000000 000000000000000000000
 00000000000000000000000000000000000000000000 00000000000000000000000010000000000000000 000000000000000000000
1979132012525100000000000000000000000000000 0000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 000100000000000000000
 000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000 0000000000000000000
19841310177300010110000000000000000000000

 0000000000000000000
19841310188500000230000000000000000000000 0000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000 0000000000000000000
19841310199400000020011000000000000000000 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 0000000000000000000
 00000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000000
19841310111115000000021020000000000000000
 00000000000000000000000000000000000000000000 000000000000000000000
1984131001121240000000120000010000000000000000
 00000000000000000000000000000000000000000 000000000000000000000
198413101131340000000000021000001000000000
 00000000000000000000000000000000000000000 000000000000000000000


 000000000000000000000
 0000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 0000000000000000000000000000000000000000

000000000000000000000
1984131011717100000000000000000000000000010 0000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000 000000000000000000000

 000000000000000000000000000000000000000000 000000000000000000000
 0001000000000000000000000000000000000000000
 000000000000000000000
 00000000000000100000000000000000000000000000
 000000000000000000000
1984131012121100000000000000000000000010000
 000000000000000000000000000000000000000000 000000000000000000000
19841310122223000000000000000000000000001
 000000000000000000000000000000000000000000 000000000000000000000

 0000000000000000000000000000000000000000 000000000000000000000
198413101242410000000000000000000000000000 00000000000000000000000000000000000000001000 00000000000000000000000000000000000000000 000000000000000000000


 000000000000000000000
 0000000000000000000000000000000000100000000 00000000000000000000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000010000 00000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 10000000000000000000000000000000000000000 0000000000000000000
 000000000000000000000000000000000000000000 11000000000000000000000000000000000000000 0000000000000000000
198413201991000000000000000000000000000000 000000000000000000000000000000000000000000 00010000000000000000000000000000000000000 0000000000000000000

 0001000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000
 000000000000000000000
1984132011212100000000000000000000000000000

 000000000000000000000

 0000000001100000000000000000000000000000 000000000000000000000
198413201141430000000000000000000000000000
 000000003000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 00000101000000000000000000000000000000000 000000000000000000000
19841320116164000000000000000000000000000 0000000000000000000000000000000000000000000 0000000011010010000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 00000000001010000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000
 000000000000000000000
 000000000000000000000000000000000000000000 00000000000010000000000000000000000000000 000000000000000000000

 000000000000000000000000000000001000000000 00000000000000000000000
 0000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 001000000000000000001

 000000000000000000000000000000010000000000 000000000000000000000
19851310166100000001000000000000000000000 0000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 0000000000000000000
 0000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 0000000000000000000
19851310018810010000000000000000000000000000 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000 0000000000000000000
 0000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000 000000000000000000000
19851310111112000000011000000000000000000
 00000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 00000000000000000000000
 000010200000001000000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000000

 000000000000000000000000000000000000000000 000000000000000000000

 0000000000000000000000000000000000000000 000000000000000000000
 001001010000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000000000000
 00000000000000000000010000000000000000000000 00000000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000010000 00000000000000000000000000000000000000000000 000000000000000000000

 000000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000001000 00000000000000000000000000000000000000000000 000000000000000000000
1985131012828100000000000000000000000000000
 00000000000000000000000000000000000000000 000000000000000000000

 0000000000000000000000000000000000000000 0000000000000000000
19851320199100000000000000000000000000000
 10000000000000000000000000000000000000000 0000000000000000000
 000000000000000000000000000000000000000000 00000001000000000000000000000000000000000 000000000000000000000

 00001000000000000000000000000000000000000 000000000000000000000

 0000001000000000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 00000000011000000000000000000000000000000 000000000000000000000
1985132011414100000000000000000000000000000 0000000000000000000000000000000000000000000 0000000000001000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000
 000000000000000000000

 00000000100100000000000000000000000000000 000000000000000000000
1985132011717100000000000000000000000000000 000000000000000000000000000000000000000000 00000000000100000000000000000000000000000000 000000000000000000000
19851320119192000000000000000000000000000 00000000000000000000000000000000000000000000 00000000000010000000100000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 00000000000000000000000010000000000000000 000000000000000000000
19851320121212000000000000000000000000000
 00000000000000000000000000001000010000000000 000000000000000000000
 000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000010001000000000001
198513201242410000000000000000000000000000
 00000000000000000000000000000000000000000 000000000000000000100
 000000000000000000000000000000000000000000
 000000000000000000001
 0000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000000000001
 000000000000000000000000000000000000000000 0000000000000000000000000000000000000000

000000000000000000000
 0000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000 000000000000000000000

 000000000000000000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000
 000000000000000000000

 000000000000000000000000000000000000000000 000000000000000000000
198613101161620000000000001010000000000000

 000000000000000000000
198613101171720000000000000001100000000000

 000000000000000000000

 0000000000000000000000000000000000000000000 000000000000000000000

 000000000000000000000000000000000000000000000 000000000000000000000
 000000100000000000000000000000000000000000 0000000000000000000000000000000000000000000 000000000000000000000
 00000000001000000000000000000000000000000000 00000000000000000000000000000000000000000000 000000000000000000000
 01000000000010000000000000101000100000001000
 000000000000000000000
 000000001000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000000000000
 010000000000000000000000000000000000001000 0000000000000000000000000000000000000000 000000000000000000000

 0000000000000000000000000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000 0000000000000000000
 0000000000000000000000000000000000000000
 0000000000000000000
19861320199100000000000000000000000000000

 0000000000000000000

 1000101000000000000000000000000000000000 000000000000000000000


 000000000000000000000

 00000001110000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 0000011000000000000000000000000000000000 000000000000000000000

 00000000020000001000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 0000000000010000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 00000000000110000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 00000000000000000001000000000000000000000 0000000000000000000000
 0000000000000000000000000000000000000000000 0000000000000000000000000000001001000000 000000000000000000000

 00000000000000000000000001000000000000000 000010000000000000002
 0000000000000000000000000000000000000000000 00000000000000000000000000000000000000001 000000000000000000000
 000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000 000000000000000000010
 00000000000000000000000000000000000000000000
 000000000000000000000
 0000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000 0000000000000000000
19871310199100000000010000000000000000000
 00000000000000000000000000000000000000000 0000000000000000000
 000000000000000000000000000000000000000000000
 000000000000000000000
 0000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 0000000000000000000000
 00000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 00000000000000000000000
 000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000000

 000000000000000000000000000000000000000000 000000000000000000000

 0000000000000000000000000000000000000000 000000000000000000000
 0000100000000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000000000000

 0000000000000000000000000000000000000000000 000000000000000000000
 00000001010000000000000000000000000000000
 000000000000000000000

 000000000000000000000000000000000000000000 000000000000000000000
 00000000000001000000000000000000000000001000 00000000000000000000000000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000 000000000000000000000

 0000000000000000000000000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000001000 00000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000010 10000000000000000000000000000000000000000 0000000000000000000

 00000001000000000000000000000000000000000 0000000000000000000
 00000000000000000000000000000000000000000000 00000100000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000
 000000000000000000000
 0000000000000000000000000000000000000000000
 000000000000000000000
 00000000000000000000000000000000000000000000
 000000000000000000000
 0000000000000000000000000000000000000000000 0000100010000000000000000000000000000000000 000000000000000000000


 000000000000000000000

 0000000000100000000000000000000000000000000 000000000000000000000
19871320117171000000000000000000000000000

 000000000000000000000
1987132001181810000000000000000000000000000000 000000000000000000000000000000000000000000 0000000000010000000000000000000000000000 000000000000000000000
1987132012020100000000000000000000000000000 00000000000000000000000000000000000000000000 00000000000000000010000000000000000000000 000000000000000000000

 000000000000000000000000000000000010000100 000000000000000000000
 00000000000000000000000000000000000000000000 000000000000000000001000000000000001100000 000000000000000000000

 0000000000000000000000000000000000000000

100000000000000000000
 0000000000000000000000000000000000000000000 00000000000000000000000000000000000100000 000000000000000000000

 000000000000000000000000000000000000000000 000000000000000000001
 0000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000 0000000000000000000
19891310112125000001102001000000000000000 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000
1989131011313100000000100000000000000000000 000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000000
1989131011414100000000000100000000000000000
 000000000000000000000000000000000000000000 000000000000000000000

 0000000000000000000000000000000000000000 000000000000000000000
19891320144100000000000000000000000000000 00000000000000000000000000000000000000000000
 0000000000000000000
 000000000000000000000000000000000000000000 01000000000000000000000000000000000000000 0000000000000000000
198913201101020000000000000000000000000000
 0001010000000000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000000
 000000000000000000000

 00000000100000000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 00000000000000000000000001000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000001
 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 0000000000000000000
 0000000000000000000000000000000000000000
 000000000000000000000

 00000000000000000000000000000000000000000 000000000000000000000

 0000000000000000000000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000 000000000000000000000


 000000000000000000000
2001 1 31011616300000000000100001001000000000 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000 000000000000000000000
 000000000000000000000000010000000000000000 00000000000000000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 00000001000000000000000000000000000000000 0000000000000000000
 000000000000000000000000000000000000000000 00000000101000000000000000000000000000000 00000000000000000000000
 0000000000000000000000000000000000000000000 0000010000001000000000000000000000000000 000000000000000000000

 000000001000010000000000000000000000000000 000000000000000000000
20011132011717100000000000000000000000000000
 0000000000001000000000000000000000000000 0000000000000000000000
 0000000000000000000000000000000000000000000 000000000000001000000000010000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 0000000000000010100000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 0000000000000010000000000000000000000000000 000000000000000000000
\# Ghost marginals
 002120000000000001001000000000100000001000 0000000000000000000000112000000002000000 000100000000000000000

 00023120512212110000000000000000200000000 0001000000000000000001

 1010101131322000000010001100011000000000 0000100001000000000103
 0200001012111000000000000010100100000006000 11022132230210001001000000100001011000001 000010000000000000012

 101022112111111020010100000000000010210100 100000000000000000001
 0000000000000000000000000000000000000000000 000302001000000000000000100000000000000000 000000000000000000001


 000000000000000000000
\# Fleet 4: 2009 OR commercial (no new data for 2011; $N=75$ )
\# Conditional
2001 1 4 1 0 1 7 7 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 0000000000000000000
 000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 00000000000000000000000
 0000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000000
2001 1 4 2 0 1 8 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000000000000000000000000000000000000000000 011000000000000000000000000000000000000000 0000000000000000000
 0000000000000000000000000000000000000000000 0100000000000000000000000000000000000000 0000000000000000000
 0000000000000000000000000000000000000000000 00010000000000000000000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000
 0000000000000000000
20021420118181000000000000000000000000000
 00000000000010000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000001

 000000000000000000000000000000000000000000 0000000000000000000
 0000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 00000000000000000000000
2003 1 4 2 0 1 7 7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000000000000000000000000000000000000000 0002000000000000000000000000000000000000 0000000000000000000
 0000000000000000000000000000000000000000000 00000100000000000000000000000000000000000 0000000000000000000
20031420199800000000000000000000000000000
 1 15100000000000000000000000000000000000000 0000000000000000000
 0000000000000000000000000000000000000000000 00001400010000000000000000000000000000000 000000000000000000000

 00002111000000000000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 0000110000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 00000000000010000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000 0000000000000000000

 00000000000000000000000000000000000000000 000000000000000000000

 0000000000000000000000000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000001000000000001000 000000000000000000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 00100000000000000000000000000000000000000 0000000000000000000
 0000000000000000000000000000000000000000000 00000000000000000000000100000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000
 000000000000000000000

 000000000000000100000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 00000000000000000000000000000000100000000000 000000000000000000000
20041420122221000000000000000000000000000 00000000000000000000000000000000000000000000 00000000000000000100000000000000000000000 000000000000000000000

 0000000000000000000000000000000000000100000 000000000000000000000
20051410111112000000101000000000000000000
 00000000000000000000000000000000000000000000 000000000000000000000
20051441011212100000000000010000000000000000000 000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000
2005141011414100000000000100000000000000000
 00000000000000000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 0000000000000000000000000000000000000000

0000000000000000000000
2005141012020200000000000000000000000010001 0000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 10000000000000000000000000000000000000000 0000000000000000000
 0000000000000000000000000000000000000000000
 0000000000000000000
200514201101020000000000000000000000000000 00000000000000000000000000000000000000000000 010000100000000000000000000000000000000000000 000000000000000000000

 00000010000000000000000000000000000000000 000000000000000000000
200514200141410000000000000000000000000000
 000001000000000000000000000000000000000000 000000000000000000000

 0000020000001000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 00000010000000001000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 00000000010000000000000000000000000000000 000000000000000000000

 00000000000000001000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000000 00000000000000000200000000000000000000000 000000000000000000000


 000000000000000000000
 00000000000000000000000000000000000000000000 00000000000000000000000000100000000000000 000000000000000000000
 000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 0000000000000000000

 0000000000000000000000000000000000000000 000000000000000000000
 0000000001000000000000000000000000000000
 000000000000000000000
200614201151510000000000000000000000000000

 000000000000000000000

 0000000000000100000000000000000000000000 000000000000000000000
2006142011717100000000000000000000000000000 0000000000000000000000000000000000000000000
 000000000000000000000


 000000000000000000000
200614201202010000000000000000000000000000 0000000000000000000000000000000000000000000 00000000000000000001000000000000000000000 000000000000000000000

 000000000000000000000000010000000000000000 000000000000000000000
 000000000000000000000000000000000000000000
 000000000000000000001
 000000000000000000000000000000000000000000 00000000000000000000000000010000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000

 0000000000000000000000000000000000000000 000000000000000000000

 00000000000000000100000000000000000000000 000000000000000000000

 0000000000000100000000000000000000000000 000000000000000000000
\# Ghost marginals

 00031000000000000000000000000000000000000 000000000000000000000

 0001000000001000000000000000000000000000 000000000000000000001

 0011991201001000000000000000000000000000 000000000000000000000
 000000000000000000000000001000000000001000 000010000000100010100010000000010000100000 000000000000000000000
 00000000000000000000000000000000000000000000 01100421010010011200000011000000000000000 000000000000000000000
 000000000100000000000000000000000000000000
 000000000000000000001
 0000001000000000000000000000000000000000000 00000000000001000100000000000000000000000 000000000000000000000
\# Fleet 5: 2009 WA rec (no new data for 2009 or 2010; $N=143$ )
\# Conditional
 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000
 000000000000000000000
 000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000 0000000000000000000000
 00000000000000000000000000000000000000000000 00001000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 00000000002100000000000000000000000000000 000000000000000000000

 00000000100000000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 000000000100001000000000000000000000000000 000000000000000000000

 00000000000000110000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000 000001000000000000000
19981520123231000000000000000000000000000
 00000000000000000000000100000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000001000000000000001

 000000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 00000000000000000000000
 000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000000000000
 01000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000 000000000000000000000
 21000000001000100000000000000000000000000 00000000000000000000000000000000000000000000 000000000000000000000


 000000000000000000000
 0001000000000010000002000000000000000000000 00000000000000000000000000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000 000000000000000000000

 0000000000000000000000000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000001000 00000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 00000021000000000000000000000000000000000 000000000000000000000

 0000000100000000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 00000000120121000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 0000000000200110000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 000000000001110000000000000000000000000000 000000000000000000000


 000000000000000000000
 0000000000000000000000000000000000000000000
 000000000000000000000
 00000000000000000000000000000000000000000000 00000000000000000000001000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 00000000000000000001110001000000000000000 000000000000000000000
19991520122223000000000000000000000000000
 0000000000000000000000000100001100000000000 000000000000000000000
 000000000000000000000000000000000000000000 0000000000000000000000001101000000000200 100000000000000000000
199915201242420000000000000000000000000000 00000000000000000000000000000000000000000000 000000000000000000000000000000000000100000 000000000010000000000


 000001000000010100001
 0000000000000000000000000000000000000000000 000000000000000000000000000000000000000100 001000000000001000000
 000000000000000000000000000000000000000000 0000000000000000000000000000000000000000

000000000000000000001
20001510199200000000020000000000000000000 0000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000 0000000000000000000

 000000000000000000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000
200015101131380000000001121110110000000000

 000000000000000000000
200015101141490000000000111003101010000000
 00000000000000000000000000000000000000000 000000000000000000000
20001510115159000000000000022210011000000

 000000000000000000000

 0000000000000000000000000000000000000000 000000000000000000000
200015101171790000000000000210111010002100
 00000000000000000000000000000000000000000 000000000000000000000
 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 000000000000000000000
 010011000000000000000000000000000000000000 0000000000000000000000000000000000000000000 000000000000000000000
 01011000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000
 0030100000000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000000000000
 0000001000001000010010000000000000000000000 00000000000000000000000000000000000000000 0000000000000000000000

 00000000000000000000000000000000000000000 0000000000000000000000
 0100000000000000000002000000000000010000000 0000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000010000000000100010000
 000000000000000000000
20001510126263000000000000000000000000000

 000000000000000000000

 0000000000000000000000000000000000000000 000000000000000000000

 000000000000000000000000000000000000000000000 000000000000000000000
200015200188100000000000000000000000000000000
 1000000000000000000000000000000000000000 0000000000000000000
 0000000000000000000000000000000000000000000 00010000000000000000000000000000000000000 0000000000000000000

 00000000000100000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 0000001211001000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 00010000000002100000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 00000000000101000000000000000000000000000 0000000000000000000000
 0000000000000000000000000000000000000000000 00000000111221010000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 00000000110100100000000000000000000000000 000000000000000000000

 00000000000100300101000100000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 00000000011200210010000000000000000000000 000000000000000000000


 000000000000000000000
 0000000000000000000000000000000000000000000 00000000000010001100010100000000000000000 000000000000000000000
2000 1 5 2 0 1 20 20 80000000000000000000000000000
 0000000000000000000001131000110000000000000 000000000000000000000

 00000000000000100000003110200000000000000 000000000000000000000
 000000000000000000000000000000000000000000 00000000000000000000100110000000000001000 000000000000000000000

 0000000000000000000000002101000000110000 0000000000000000000000
 0000000000000000000000000000000000000000000 0000000000000000000000001000000000011001 00000000000000000000000
 000000000000000000000000000000000000000000 0000000000000000000000000000000000000010 000000110000010000000
 00000000000000000000000000000000000000000000 000000000000000000000000000000100000010000 000100010000000000000

 000000000000000000000000000000000001000000 000000000000000000000
 00000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000 0000000000000000000000

 000000000000000000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000 000000000000000000000
2001145101181820000000000000000000000100000
 00000000000000000000000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000 000000000000000000000
 000000000100000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000
 0001010000001100100000000000000000000001000 00000000000000000000000000000000000000000 000000000000000000000

 000000000000000000000000000000000000000000 000000000000000000000
 00000000000000100000000000000000000000002000 00000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000100000000000000100000 00000000000000000000000000000000000000000000 000000000000000000000
 000000000000000000000001000000000000000000 0000000000000000000000000000000000000000000 000000000000000000000


 0000000000000000000
 0000000000000000000000000000000000000000000 00001000000000000000000000000000000000000000 00000000000000000000
2001155201101010000000000000000000000000000

 000000000000000000000
 00000000000000000000000000000000000000000000 00000010000000000000000000000000000000000000 000000000000000000000
200115520112123000000000000000000000000000

 000000000000000000000
 000000000000000000000000000000000000000000 00000011100000000000000000000000000000000 000000000000000000000
2001 1 52011414400000000000000000000000000000 00000000000000000000000000000000000000000000 00000000012100000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 00000000011111000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000
 000000000000000000000
 00000000000000000000000000000000000000000000 0000000000012230000000000000000000000000

000000000000000000000
 0000000000000000000000000000000000000000000 000000000001000200000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000
 000000000000000000000
 00000000000000000000000000000000000000000000
 000000000000000000000

 00000000000000000000200000101000000000000 000000000000000000000
2001155201222210000000000000000000000000000

 000000000000000000000
200112520123232000000000000000000000000000 00000000000000000000000000000000000000000000
 000000000000000000000

 0000000000000000000000000000000000000000 000010000000000000002

 00000000000000000000000000000000001000000 000000000000000000000
 000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000100
 0000000000000000000000000000000000000000000
 000000000000000000001
 000000000000000000000000000000000000000000000
 000000000000000000000

 00000000000000000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 0000000000000000000000
 000000000000000100000000000000000000000000 00000000000000000000000000000000000000000 0000000000000000000000

 0000000001000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000
 000000000000000000000


 000000000000000000000

 00000000000000000000000000000000000001000 000000000000000000000
2004152012626100000000000000000000000000000
 000000000000000000000000000000000000000000000 001000000000000000000
20051520011616100000000000000000000000000000000
 0000000000000100000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 00000000000000001000000000000000000000000 000000000000000000000

 00000000000000101000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000
 000000000000000000000
 0000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 00000000000000000000000
 0000001000000000000000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 10000000000000000000000000000000000000000 0000000000000000000


 000000000000000000000
 0000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000000000001 \# Ghost marginals
 00000000000000000000000000010000000000001000 0000100011210120000000010000000000000000 000002000000000000001
 420100000011002000001021200001000000000012000 0000002212327320000211112102100000010000 101001000010011100002


0011011234286382231327246312010001132011 000100120000010000000

 0001103213464434111020100110101002000000 0000100000000000001003

 0000000001001000100000000000000000001000 001000000000000000000
 0000000000000000000000000000000000000000000 00000000000001102000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000 000000000000000000000
 000000100000000000000000000000000000000000 00100000000000010000000000000000000000000 000000000000000000001
\# Fleet 6: 2009 WA commercial (updated for 2011 with 21 new obs in 2009 and 2010 + 2 marginals; $N=200$ )
\# Conditional
 00000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 0000000000000000000000
 000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000000000000


 000000000000000000000

 00000000000000000000000000000000000000000 000000000000000000000

 0000000000000000000000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 00000000000100000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 00000000000100000000000000000000000000000 000000000000000000000

 000000000000000100000000000000000000000000 0000000000000000000000
 00000000000000000000000000000000000000000000 000000000000000000000001000000000000000000000 000000000000000000000
1993162012828100000000000000000000000000000 0000000000000000000000000000000000000000000 0000000000000000000000000000100000000000 000000000000000000000
 000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000 000010000000000000000

 000000000000000000000000000000000000000000 000000100000000000000
 0000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000 000000000000000000001
 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000
2001 1 6101171740000000000000000012010000000 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000
 000000000000000000000
 101000000000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000000000000
 0020100010000000000000000000000000000000000 0000000000000000000000000000000000000000

0000000000000000000000
 0320100001000000000000000000000000000000000 0000000000000000000000000000000000000000000 000000000000000000000
 00100000000000000000000010000000000000000000
 000000000000000000000
2001 1 610123 23 3000000000000000000000000000000

 000000000000000000000
 0000000001000100000000000000001000000100000
 000000000000000000000

 000000000000000000000000000000000000000000 000000000000000000000
200111610126261000000000000000000000000000

 000000000000000000000

 0000000101000200010000000000000000000000 000000000000000000000


 000000000000000000000
 000000000000000000000000000000000000000000 00000000000101313220100000000000000000000 00000000000000000000000
 0000000000000000000000000000000000000000000 0000000000001011000001200010000000000000000 000000000000000000000
 000000000000000000000000000000000000000000000 0000000000011001232101000000000000000000 00000000000000000000000

 00000000000001000001110102001020000000000 0000000000000000000000
 0000000000000000000000000000000000000000000 0000000000000010002000001230021000100000 000000000000000000000000
 000000000000000000000000000000000000000000 00000000000000000000201011001000100000000 00000000000000000000000

 00000000000000000000000100000100000100000 000000000000000000000
 0000000000000000000000000000000000000000
 010001000000000000001
 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000 000100000100010001100

 0000000000000000000000000000000000000000 000000000000000000001

 000000000000000000000000000000000000000000000 000000000000000000001


 000000000000000000000
 0000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000
 000000000000000000000
 000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 0000000000000000000000
 0000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000 000000000000000000000
 000010000000000000000000000000000000000000 0000000000000000000000000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000001000 0000000000000000000000000000000000000000000 000000000000000000000
20021610126261000000000000000000000000000
 00000000000000000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000001000
 000000000000000000000
 0000000000000000000000000000000000000000000 010000000000000000000000000000000000000000 0000000000000000000
 0000000000000000000000000000000000000000000 00000001000000000000000000000000000000000 00000000000000000000000

 0000000001000000000000000000000000000000 00000000000000000000000
 000000000000000000000000000000000000000000 00000000001001111000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000
 000000000000000000000

 0000000100001000001000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 00000000100010030000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 00000000000101110020000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 000000000000003101001010000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 0000000000000122443102000000000000000000 00000000000000000000000

 00000000000000100000000010000000000000000000 000000000000000000000

 0000000000000000000000010100001000000000 000000000000000000000

 000000000000000000000001000001000010000000 000000000000000000000

 00000000000000000000000000010010000000000 000000000000000000000
 0000000000000000000000000000000000000000000 00000000000000000000000000000010000000000 000000000000000000000

 00000000000000000000000000000000000000000 0000000000000100000000

 00000000000000000000000000000000000000000 0000000000000000000002
 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000001000000001
2002162013030100000000000000000000000000000 0000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000001
 0000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000 000000000000000000000

 000000000000000000000000000000000000000000 000000000000000000000
20031161011616100000000000000000000100000000 0000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000000000000
200311610117171000000000000000100000000000 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000
200311610118182000000000000000011000000000000 00000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000000
200311610119191000000000000000000000000100
 00000000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000010000 00000000000000000000000000000000000000000 000000000000000000000

 00000000000001000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 000000000100000000000000100000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 000000001000000100000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 0000000001000100000100000000000000000000

0000000000000000000000
 0000000000000000000000000000000000000000000 0000000000000000000000000000000010000000000 000000000000000000000


 0000000000000000000
 00000000000000000000000000000000000000000000
 000000000000000000000
2004116101151530000000000000000010000011000 0000000000000000000000000000000000000000000
 000000000000000000000

 000000000000000000000000000000000000000000 000000000000000000000
20041610118182000000000000000000100100000

 000000000000000000000

 0000000000000000000000000000000000000000 000000000000000000000
20041610120203000000000000000000001000011 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000
 000000000100000000000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000000
 0000100000000000000000000000000000000001000
 000000000000000000000
 000000000000000000000000000000000000000010000 00000000000000000000000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 00000000010000000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 000000000002100000100000000000000000000000 0000000000000000000000

 00000000000000010000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000
 000000000000000000000
 00000000000000000000000000000000000000000000
 000000000000000000000

 00000000000000000010000000000000000000000 000000000000000000000


 000000000000000000000
 0000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000001
 0000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000010000000000

 00000000000000000000000000000000000000000 0000000000000000000
 0000000000000000000000000000000000000000000
 000000000000000000000
 0000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000001000 00000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000001000 0000000000000000000000000000000000000000000 000000000000000000000

 0000000010000000000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000
 000000000000000000000
20051620117171000000000000000000000000000
 00000000000001000000000000000000000000000 000000000000000000000

 00000000000000021000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 000000000000000000000000001000000000000000 000000000000000000000

 00000000000000000000000000000000000000000 000000000000000000001
 0000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 00000000000000000000001
 000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000001
 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 0000000000000000000

 00000000000000000000000000000000000000000 000000000000000000000
 0000000001000000000000000000000000000000000 00000000000000000000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000 000000000000000000000
 100000000000000000000000000000000000000000 00000000000000000000000000000000000000000000 0000000000000000000000
 00000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000000000000
 00001000000000100000000000000000000000000000 00000000000000000000000000000000000000000000 0000000000000000000000
20061610119198000000000000010010010001200
 00000000000000000000000000000000000000000000 000000000000000000000

 0000000000000000000000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000 000000000000000000000
 000100001000000000000000000000000000001000 0000000000000000000000000000000000000000 000000000000000000000
 0000000000010000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000
 00000000000000000000000000010000010000000000 00000000000000000000000000000000000000000 000000000000000000000
 0100000000000000000000000000000000000001000 00000000000000000000000000000000000000000 000000000000000000000
200616101282820000000000000000000000000000 0000000000000000000110000000000000000000000 00000000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000010 0000000000000000000000000000000000000000000 0000000000000000000


 000000000000000000000

 0000000000001000000100000000000000000000000 000000000000000000000
200616201171730000000000000000000000000000 00000000000000000000000000000000000000000000
 000000000000000000000

 0000000010000000000000000000000000000000000 000000000000000000000
20061620119193000000000000000000000000000
 00000000000000000000101100000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 0000000000100011010122000010000001000000 0000000000000000000000
 00000000000000000000000000000000000000000000 000000000000000110001100000001000000000000 000000000000000000000

 00000000000000101000000100000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000
 000000000000000000000
 00000000000000000000000000000000000000000000 0000000000000000000000000010001000000000

0000000000000000000000
 0000000000000000000000000000000000000000000 000000000000000000000000001110000000000000 000100000000000000000


 000000000000010100000
 1000000000000000000000000000000000000000000
 000000000000000000000

 000000000000000000000000000000000000000000000 000000000000000000000
2007161012020200000000000000000000000001010 00000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000000


 000000000000000000000

 0000000000000000000000000000000000000000 000000000000000000000
200716201111110000000000000000000000000000 00000000000000000000000000000000000000000000 00000000000100000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 00000000010000000000000000000000000000000 000000000000000000000
200716201161610000000000000000000000000000 0000000000000000000000000000000000000000000 00000000000000001000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000000
 000000000000000000000

 0000000000000000010000000110200000000000 000000000000000000000
 00000000000000000000000000000000000000000000 00000000000000000000000200010000010000000 000000000000000000000
 000000000000000000000000000000000000000000 000000000000000000000010000001000000000000 0000000000000000000000

 0000000000000000000000000000000000002000000 010000100000000000000
 0000000000000000000000000000000000000000
 000000000000000000000
2008162012020100000000000000000000000000000
 00000000000000001000000000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000 000000000000000000000 \# new for 2011

 00000000000000000000000000000000000000000 000000000000000000000 \# new for 2012

 00000000000000000000000000000000000000000 000000000000000000000 \# new for 2013
 000000000100000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000 \# new for 2014

 000000000000000000001000000000000000000000 000000000000000000000 \# new for 2015
 000000000000000000000000000000000000000000 00000000000000000100000000000000000000000 000000000000000000000 \# new for 2016
 000000000000000000000000000000000000000000 000000000000000000000200000000000000000000 000000000000000000000 \# new for 2017
 000000000000000000000000000000000000000000 000000000000000000100010000010000000000000 00000000000000000000000 \# new for 2018
 0000000000000000000000000000000000000000000 00000000000000000000000000000010000000000 000000000000000000000 \# new for 2019
 0000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000000000000 \# new for 2020
2010 1 6101191920000000000000000000000100010 00000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 0000000000000000000000 \# new for 2021
 000000000001000000000000000000000000000000 0000000000000000000000000000000000000000000 000000000000000000000 \# new for 2022
 00000000000000000000001000000000000000000000 00000000000000000000000000000000000000000000 000000000000000000000 \# new for 2023
 0000000000000000000000000000000000000000000 0000000000000000000000000000001000000000000 000000000000000000000 \# new for 2024
20101620118183000000000000000000000000000
 0000000000000000001010000000000000000001000 000000000000000000000 \# new for 2025
 00000000000000000000000000000000000000000000
 000000000000000000000 \# new for 2026
 0000000000000000000000000000000000000000000 00000000000000000000010000000000100000000 0000000000000000000000 \# new for 2027
 000000000000000000000000000000000000000000 000000000000000000000100000010000001000000 001000000000000000000 \# new for 2028
 0000000000000000000000000000000000000000000 00000000000000000000000100000000000000000 10100000000000000000000 \# new for 2029
 000000000000000000000000000000000000000000 00000000000000000000000000000000000000001 000000000000000000000 \# new for 2030
 00000000000000000000000000000000000000000000 000000000000000000000000000000000000000010 000000000000000000100 \# new for 2011
\# Ghost marginals

 0000000000020010000000100000001000000000000 000010100000000000001


 010101000100010001103
 000010000000001000000000000100000000000002000 0001100211215579642030210111021010000000 000000000001010000004

 0000000012200020100010001000000010000000000 000000000000000000000

 0000000001021021003020000000000000000000 000000000010000000001
 00000000000000000000000000000000000000002000 00000001000101021000000000100000000000000 000000000000000000003
$2006163011 \begin{array}{llllllllllllllllllllllllllll} & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 2 & 0 & 2 & 5 & 1 & 2 & 1 & 1 & 3 & 2 & 0 & 4 & 2\end{array}$ 1102000012003010000001100000010000010001003000 1000000111002124304341110222001010000000 000100000000010100000
 120000001000000000000000001000000000000000 0000000001010000110000400120410012000000 010000100000000000000
 00000000000000000000000000000000000000000000 0000000000000001000000000000000000000000

0000000000000000000000
 000000000100000000000000000000000000000000 00000000000000000011112010000010100000000000 000000000000000000000 \# new for 2011
 0000000000100000000001000000000000000000000 0000000000000000010121020020100101001011 102000000000000000100 \# new for 2011
\# Fleet 9: 2009 WA IPHC marginal age (updated for 2011 with 32 new observations +2 ghost marginals; $\mathrm{N}=106$ ) \# Marginal

 00000000000000000000000000000000000000000000 0000000000000000000000


 000000000000000000000

 00000000000000000000000000000000000000000000 0000000000000000000000
\# Conditional

 0000000000000000000000000000000000000000000 000000000000000000000
2006191011919100000000000000000000000001000
 000000000000000000000000000000000000000000000 000000000000000000000
 0010000000000000000000000000000000000000000 0000000000000000000000000000000000000000000 000000000000000000000
 11000101000000000000000000000000000000000
 000000000000000000000
 0000001000000000000000000000000000000000000
 000000000000000000000
 0000000000000000000000000100000000000000000 000000000000000000000000000000000000000000 000000000000000000000
 00000000000000000000000000000000000000001000 0000000000000000000000000000000000000000 000000000000000000000
200619101252510000000000000000000000000000
 00000000000000000000000000000000000000000 0000000000000000000000


 000000000000000000000
 0000000000000000000000000000000000001000
 000000000000000000000
200619201131310000000000000000000000000000

 000000000000000000000

 00000000000000000000100000000000000000000 000000000000000000000
200619201202020000000000000000000000000000

 000000000000000000000

 00000000000000000000011010000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 0000000000000000000010100000010020000000 000000000000000000000

 000000000000000000000000000000000001001000 000000000000000000000
 000000000000000000000000000000000000000000 00000000000000000000000000000010000000000 000000000000000000001
 000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000110000001
 000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 0000000000000000000000
20071191011616400000000000000000001000010100 0100000000000000000000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000000
 000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000000000000
20071910118189000000000000000000000002010 2001011110000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000
 1001100000000011000000000000000000000000000 0000000000000000000000000000000000000000000 0000000000000000000000
20071910120209000000000000000000000000000
 00000000000000000000000000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000000 0000000000000000000000
20071010122221200000000000000000000000100
 00000000000000000000000000000000000000000 0000000000000000000000
 0000000020100000000100000000000010100000000 000000000000000000000000000000000000000000 000000000000000000000
 000000000100000000010000110000010000000000 000000000000000000000000000000000000000000 0000000000000000000000
 000000000000000000000000000001100010000000 00000000000000000000000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000 0000000000000000000000000
 000000000000000000000000000000000000001000 0000000000000000000000000000000000000000 000000000000000000000

 000000000000000000000000000000000000000000 0000000000000000000000

 0000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 000000000000000000000100000000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 00000000000000001000000000100000000000000000 000000000000000000000
200711920117171000000000000000000000000000000 000000000000000000000000000000000000000000 0000000000000000001000000000000000000000000 000000000000000000000

 00000000000000001010111500000100000000000 0000000000000000000000
 00000000000000000000000000000000000000000000 000000000000000000001122521020000000000000 0000000000000000000000

 0000000000000000001003243320002000100000 00000000000000000000000

 000000000000000000020122100351101121111111 1000000000000000000000


 1220020000000000000001
 00000000000000000000000000000000000000000000 00000000000000000000001000010000101031002 1201101010010100001001
 0000000000000000000000000000000000000000000 00000000000000000000000000000000010000100 000000000000000010005


 000000100010010000002
 000000000000000000000000000000000000000000 00000000000000000000000020000000000000000 00000000000000000000009


 000000000000000000003
 00000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000 000000000000000000000

 000000000000000000000000000000000000000000 000000000000000000000

 0000000000000000000000000000000000000000000 000000000000000000000
200819101202040000000000000000000000000000 000000000000120000000000000000000000000010000
 000000000000000000000

 0000000000000000000000000000000000000000000 000000000000000000000
20081910122221000000000000000000000000000

 000000000000000000000

 00000000000000000000000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000 000000000000000000000
 000000000000000000000000000010000000001000 000000000000000000000000000000000000000000 000000000000000000000
 000000001000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 0000000000000000000000100000000000000000

000000000000000000000
2008119201191950000000000000000000000000000 0000000000000000000000000000000000000000000 0000000000000000001001011000000000000001000 000000000000000000000
 00000000000000000000000000000000000000000000 00000000000000000101101012010001000000000 000000000000000000000
 00000000000000000000000000000000000000000000
 100000000000000000000
200819201222260000000000000000000000000000 0000000000000000000000000000000000000000000 000000000000000100000000110000110000010000 000000000000000000000

 0000000000000000000000000000001000100001010 0200100000110000000001
200819201242412000000000000000000000000000

 0101001001000000000000

 0000000000000000000000000000000000100000 000000000000020000001
2008192012626100000000000000000000000000000
 00000000000000000000000000000001000000000 000000000000000000000
 000000000000000000000000000000000000000000 0000000000000000000000000000100000001000 010000000000000000000

 00000000000000000000000000000000000000000000 000000000000000000000

 00000000000000000000000000000000000000000 0000000000000000000000
 000001000000000000000000000000000000000000 000000000000000000000000000000000000000000 000000000000000000000
 1000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000010000000000 00000000000000000000000000000000000000000 0000000000000000000000

 0000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000010000
 000000000000000000000
 000000000000000000000000000000000000000000000 00000000000000000100000010000000000000000 000000000000000000000

 00000000000000000000000010000000000000000 000000000000000000000


 000000000000000000000


 000000000000000000000
20091420122224000000000000000000000000000 0000000000000000000000000000000000000000000 00000000000000000000000000000001101001000 000000000000000000000

 00000000000000000000000000000000100000000 000000010000000000000
 000000000000000000000000000000000000000000
 000000000000001000000
 000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 000000010001000000000
 000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 00000000000000000000001
 0000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000
20101091011818100000000000000000000000000000 0000000000100000000000000000000000000000000 0000000000000000000000000000000000000000 000000000000000000000

 0000000000000000000000000000000000000000000 000000000000000000000
 00010100000000000000000000000000000000000000 00000000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000 000000000000000000000
20101010124241000000000000000000000000000

 000000000000000000000

 0000000000000000000000000000000000000000000 000000000000000000000
 0000000000000000000000000000000000000001000 000000000000000000000000000000000000000000 000000000000000000000

 00000000000000000000000000100000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 00000000000000000000000000000000001001000 0000000000000000000000
 000000000000000000000000000000000000000000 0000000000000000000000101000000000000000 000000000000000000000
 00000000000000000000000000000000000000000000 00000000000000000000000101000000000000000 000000000000000000000
 0000000000000000000000000000000000000000000 000000000000000000000000100000000000100010 000000000000000000000
 0000000000000000000000000000000000000000000 000000000000000000000000100000000000010002 000000100000000000000


 001000000000000000000
\# Ghost marginals

 000000000010000022110085521301153020100100 000002000000131010003
$20071193011 \begin{array}{lllllllllllllllllllllllllll} & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & 0 & 1 & 5 & 6 & 3 & 5\end{array}$

 644435521134110041111001420029
$200811930011 \begin{array}{lllllllllllllllllllllllllllll} & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 2 & 1 & 2 & 3 & 7 & 3 & 2\end{array}$ 6251423313133522111120112010010011101112700 00000000010000002235131710 6457644212230322102611221219


 000000020001001000001
 000101000001000000000000000000000000000000 00000000000000000000001312000000000210112 001000100000000000000
\# Fleet 11: 2009 OR IPHC (updated for 2011 with 41 new observations +2 ghost marginals; N=121)
\# Marginal










 000000000000000000000000
\# Conditional


 000000000000000000000000000






 000000000000000000000000

 $0 \quad 0 \quad 0$ $0 \quad 0 \quad 0$

 $0 \quad 0 \quad 0$ 00000000000000000000000000


 000000000000000000000000000

 $0 \quad 0 \quad 0$ 000000000000000000000000000


 00000000000000000000000000
 $0 \quad 0 \quad 1 \quad 0 \quad 0$
 000000000000000000000000000


 000000000000000000000000000






 000000000000000000000000


 0000000000000000000000
 00000000000000000000000000000000000000000000 00000000000000000000010111200000011000000000 0000000000000000000000

 000000000000000000000100000100010000000000 00000000000000110000000
 0000000000000000000000000000000000000000000
 0000000000000000000001

 00000000000000000000000000000010000000000 0000000000000000000000
 0000000000000000000000000000000000000000000 0000000000000000000000100000100000000000000 0000000000000000010000

 0000000000000000000000000000000000000000000 0000001000000010000000
 000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 0000001000000000000000
 000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 00000000000000000000000
 000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 000000000000000000000000
$20071111 \begin{array}{llllllllllllllllllllllllllllll}1 & 1 & 1 & 16 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 1 & 1\end{array}$ 0000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 0000000000000000000000
 000000100000000000000000000000000000000000 000000000000000000000000000000000000000000 0000000000000000000000
 0021101000000000000000000000000000000000000
 0000000000000000000000
 00000000022001000000000000000000000000000 0000000000000000000000000000000000000000000 0000000000000000000000

 00000000000000000000000000000000000000000000 0000000000000000000000
 000000000101000000000000000000000000000000 0000000000000000000000000000000000000000000 0000000000000000000000

 00000000000000000000000000000000000000000 0000000000000000000000

 00000000000000000000000000000000000000000000 0000000000000000000000
 0000000000000000000000000000000000000000100 000000000000000000000000000000000000000000 0000000000000000000000
 0000000000000000000000000000000000000000000 00000000000000100000000000000000000000000 0000000000000000000000

 0000000000001001000000000100000000000000 0000000000000000000000
 000000000000000000000000000000000000000000 0000000000001000011000300000000000000000 0000000000000000000000
 0000000000000000000000000000000000000000000 000000000000000100110110000000000000000000 0000000000000000000000

 00000000000000000001200100000000000000000 00000000000000000000000
 000000000000000000000000000000000000000000 00000000000000000002010010000200000000000 0000000000000000000000
 00000000000000000000000000000000000000000000 00000000000000000000001110000101000010000 0100001000000000000000
 00000000000000000000000000000000000000000 00000000000000000000010201000020101000000 01000000000001000000000
 00000000000000000000000000000000000000000000 00000000000000000000000000000000000100000 0000002000010000001003
 0000000000000000000000000000000000000000000 00000000000000000000000000001100010000000 1000010000010000000003
200711120124241000000000000000000000000000 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 0000000000000000000001
 000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000 0000000000000000000001

 00000000000000000000000000000000000000000 0000000000000000000000

 00000000000000000000000000000000000000000 0000000000000000000000

 00000000000000000000000000000000000000000 0000000000000000000000
 1010001000000000000001000000000000000000000
 00000000000000000000000
 1200200000001000100000000000000000000000000 00000000000000000000000000000000000000000 00000000000000000000000
 10211001210000020000000100000000000000000
 00000000000000000000000
 01000101000101020000010000010000000000000 0000000000000000000000000000000000000000000 0000000000000000000000
 0000001100101010100010000000000000000000040
 00000000000000000000000
 0000010000100000000000000000000000100012000 00000000000000000000000000000000000000000000 0000000000000000000000
2008111100122226000000000000000000000000000
 00000000000000000000000000000000000000000 0000000000000000000000

 0000000000000000000000000000000000000000000 0000000000000000000000

 00000000000000000000000000000000000000000000 0000000000000000000000
 000000000000000000000000000000000000000100 00000000000000000000000000000000000000000 0000000000000000000000
2008111100126261000000000000000000000000000 0000000000000000000000000000000000000100000
 0000000000000000000000
 000000000000000000000000000000000000000000 000000001000000100000000000000000000000000 0000000000000000000000
 0000000000000000000000000000000000000000000 000000000000000110000000000000000000000000 0000000000000000000000
 00000000000000000000000000000000000000000000 0000000000000001000001000000000000000000

00000000000000000000000
 0000000000000000000000000000000000000000000 0000000000000010001011000130000000000000000 0000000000000000000000
 00000000000000000000000000000000000000000000 00000000000000010000002442102001121001000 00000000000000000001000

 00000000000000000010100023223011101101010000 00000001000000000010000

 0000000000000000000002023310013000021100 00000000000000000000000

 00000000000000000000010200001002202020010 32010010001000100001000


 01000000010000000000010

 000000000000000001000010000000010000000001 01000000000000120000101
2008111200123231300000000000000000000000000
 00000000000000000000000000100100000000000 00000011010100021000013
 000000000000000000000000000000000000000000 0000000000000000000000000000001000100001 00000000010000000110004
20081112012525600000000000000000000000000 0000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000 0000000000000000000006
 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 00000000000000000000003

 000000000000000000000000000000000000000000 0000100000000000000000
 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 00000000000000000000000
 000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 00000000000000000000000
 01000000000000100000000000000000000000000000 0000000000000000000000000000000000000000 0000000000000000000000
 1000010000000000000000000000000000000000
 0000000000000000000000

 00000000000000000000000000000000000000000000 0000000000000000000000

 00000000000000000000000000000000000000000 0000000000000000000000
20091111001202010000000000000000000000000000

 0000000000000000000000

 00000000000000000000000000000000000000000 0000000000000000000000
 0000000000000000000000000000001000000000000 00000000000000000000000000000000000000000 0000000000000000000000
 00000000000000000000000000000000000000000000 00000000000010000000000000000000000000000 0000000000000000000000
 000000000000000000000000000000000000000000
 0000000000000000000000
 000000000000000000000000000000000000000000 00000000000001000000000000000000000000000 00000000000000000000000
 000000000000000000000000000000000000000000 00000000000000000020012110000000000000000 00000000000000000000000
 0000000000000000000000000000000000000000000 0000000000000000000002201100000000000000 0000000000000000000000
 0000000000000000000000000000000000000000000 00000000000000000000000010010000100000100000 0000000000000000000000
 0000000000000000000000000000000000000000000 0000000000000000000000100001001010000000 00000000000000000000000
 0000000000000000000000000000000000000000000
 0100000000000000000000
 00000000000000000000000000000000000000000000 00000000000000000000000000010000000000000100 0000000000000000000000
 0000000000000000000000000000000000000000000
 0000000010000000000000
20091112012424200000000000000000000000000
 00000000000000000000000000000000000000000 0000000000000200000000
 0000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000 0000000000000000000000
 0000000000000000000000000000000000000000000 000000000000000000000000000000000000000000 0000000000000000000000
 0000000000000000000000000000000000000000000 00000000000000000000000000000000000000000 0000000000000000000000

 0000000000000000000000000000000000000000 0000000000000000000000
 21001100000000000000000000000000000000000 0000000000000000000000000000000000000000 0000000000000000000000

 000000000000000000000000000000000000000000 00000000000000000000000
 000010001001000010000100000000000000000000 000000000000000000000000000000000000000000 00000000000000000000000
 0000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000 0000000000000000000000
 00000001000100000000000000000000000000000000 00000000000000000000000000000000000000000 0000000000000000000000
 000000000000000000000000000000000000000100 0000000000000000000000000000000000000000000 0000000000000000000000
 0000000000000000000000000000000000001000000 00000000000000000000000000000000000000000000 0000000000000000000000
 0000000000000000000000000000000000000000000 00000000000200000000000000000000000000000000 0000000000000000000000
 00000000000000000000000000000000000000000000
 0000000000000000000000
 00000000000000000000000000000000000000000000 00000000000020000010112010000000000000000 0000000000000000000000

 00000000000000100001000001000000000001000 0000000000000000000000

```
2010 1 11 2 0 1 19 19 9 0
0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 1 2 0 1 0 0 0 1 0 0 0
0 0
2010 1 11 2 0 1 20 20 5 0
0 0
0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2010 1 11 2 0 1 21 21 3 0
0 0
0 1 0 0 0
100000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2010 1 11 2 0 1 22 22 3 0
0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
2010 1 11 2 0 1 23 23 5 0
0 0
0 1 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2010 1 11 2 0 1 24 24 2 0
0 0
0 0
0 2
Ghost marginals
2006 1 11 3 0 1 1 37 -1 0 1 1 1 0
0 0 1 0 2 1 1 0 2 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 3 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 6 3 3 2 0 3 0 1 1 4 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 1 0 1 0 0 0 1
2007 1 11 3 0 1 1 37 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 4 4 1 1 1
0 0 2 1 1 1 3 0 0 3 2 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 2 0 1 0 0 1 0 0 4 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 2 0 1 4 3 3 3 5 4 1 1 0 1 6 0 2 0 2 0 1 1 0 0 0 0
2 1 0 0 0 1 3 0 0 0 0 2 1 0 0 0 0 0 1 0 0 8
2008 1 11 3 0 0 1 1 37 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 3 7 3
2 5 1 4 1 3 2 2 3 3 0 3 1 2 0 0 5 1 1 0 1 1 1 2 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1 22 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 3 3 1 1 1 6 8 11 8 12 4 3 2 2 10 4 3 6 3 5 5
1 24 3 4 0 1 0 1 2 2 0 3 1 1 00 0 2 4 1 1 2 2 1 2 17
2009 1 11 3 0 1 1 37 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 2 2 1 2
2 1 1 0 0 2 0 0 1 0 0 2 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 2 0 0 3 6 1 5 1 0 1 0 1 1 0 1 0 2 0 1 1 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0
2010
2 2 1 0 2 1 0 1 1 0 1 2 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 2 0 2 1 1 0 1 0 1 1 1 3 3 2 1 1 2 0 0 1 3 1 1 0 2 1 3 0 0 0
1001000010 100000000000 5
#
0 # No Mean Size-at-Age observations
0 # Total number of environmental variables
0 # Total number of environmental observations
0 # No Weight frequency data
0 # No tagging data
0 # No morph composition data
#
999 # End data file
```




```
Cohort growth deviation
 0 0 0 0 0 0 0 0 0 0
#9 # Recruitment split annual deviation phase
Spawner-recruit parameters
```



```
rec devs # Index of environmental variable to be used for S-R parameter
0 # Env. target parameter: 0=none, 1=rec devs, 2=R0, 3=steepness
Recruitment residuals
1 # Dev type: 0=none, 1=zero-sum, 2=simple deviations (no sum constraint)
1916 # Start year recruitment residuals
1916 # End year recruitment residuals
-8 # Phase
1 # Use advanced recruitment options: 0=no, 1=yes
0 # First year for early rec devs
-8 # Phase for early rec devs
-8 # Phase for forecast recruit deviations
1 # Lambda for forecast recr devs before endyr+1
-1965 # Last year with no bias correction in MPD
-1970 # First year with full bias correction (linear ramp from entry above)
-1990 # Last year for full bias correction in MPD
-1995 # First recent year with no bias correction in MPD
1.0 # max bias adjustment
0 # placeholder
-4 # Lower bound rec devs
Upper bound rec devs
0 # Read N initial values for rec devs
Fishing mortality setup
0.09 # F ballpark for tuning early phases
1999 # F ballpark year (neg value to disable)
1 # F method: 1=Pope's; 2=Instan. F; 3=Hybrid
0.9 # max F or harvest rate, depends on F_Method
#5 # F method=3: N iterations for tuning
\begin{tabular}{llrllll}
\# Initial F by fleet \\
\# Lo & Hi & Init & Prior & P_type & SD & Phase \\
0 & 1 & 0.00 & 0.01 & -1 & 99 & -1 \\
0 & 1 & 0.00 & 0.01 & -1 & 99 & -1 \\
0 & 1 & 0.00 & 0.01 & -1 & 99 & -1 \\
0 & 1 & 0.00 & 0.01 & -1 & 99 & -1 \\
0 & 1 & 0.00 & 0.01 & -1 & 99 & -1 \\
0 & 1 & 0.00 & 0.01 & -1 & 99 & -1 \\
\#_Q_setup \\
\# Q_type options: <0=mirror, \(0=m e d i a n \_f l o a t, ~ 1=m e a n \_f l o a t, ~ 2=p a r a m e t e r, ~ \# ~\)
\end{tabular}
```

1	0	0	0	\#	1_CARC
0	0	0	0	\#	2_CACM
1	0	0	0	\#	3_ORRC
0	0	0	0	\#	4_ORCM
1	0	0	0	\#	5_WARC
0	0	0	0	\#	6_WACM
0	0	0	0	\#	7_ORRCOB
1	0	0	0	\#	8_CACPFV
0	0	0	0	\#	9_IPHCWA
0	0	0	0	\#	10_NWFSCOR
0	0	0	0	\#	11_IPHCOR
0	0	0	4	\#	12_WATRI

\# Q parameters
1 \# Par setup: 0=read one parm for each fleet with random q; 1=read a parm for each year of index

\# Lo		Init	Prior	Prior	Prior	Param	
\# bnd	bnd	value		type	SD	phase	
\# Non-linear parameters							
-6	6	0	0	-1	99	1 \#1_CARC	
-6	6	$\bigcirc$	0	-1	99	1 \#3_ORRC	
-6	6	0	0	-1	99	8 \#5_WARC	
-6	6	0	0	-1	99	1 \#8_CACPFV	
\# Early period							
-10	2	-0.0003	0	-1	99	1 \# Triennial	(log) base
parameter (1980)							
-4	4	0	0	-1	99	-50 \# Triennial	1983 deviation
-4	4	0	0	-1	99	-50 \# Triennial	1986 deviation
-4	4	0	0	-1	99	-50 \# Triennial	1989 deviation
-4	4	$\bigcirc$	0	-1	99	-50 \# Triennial	1992 deviation
\# Late period							
-4	4	-0.6	0	-1	99	1 \# Triennial	1995 deviation
-4	4	0	0	-1	99	-50 \# Triennial	1998 deviation
-4	4	0	0	-1	99	-50 \# Triennial	2001 deviation
-4	4	$\bigcirc$	0	-1	99	-50 \# Triennial	2004 deviation

[^1]| 100 | 00 | \#6_WACM |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 00 | \#7_ORRCOB |  |  |  |  |  |  |  |
| 100 | 00 | \#8_CACPFV |  |  |  |  |  |  |  |
| 100 | 00 | \#9_IPHCWA |  |  |  |  |  |  |  |
| 100 | 00 | \#10_NWFSCOR |  |  |  |  |  |  |  |
| 100 | 00 | \#11_IPHCOR |  |  |  |  |  |  |  |
| 100 | 00 | \#12_WATRI |  |  |  |  |  |  |  |
| \# Selectivity and retention parameters |  |  |  |  |  |  |  |  |  |
| \# Lo | Hi | Init | Prior | Prior | Prior | Param | Env | Use | Dev |
| Dev | Dev | Block | block |  |  |  |  |  |  |
| \# bnd | bnd | value | mean | type | SD | phase | var | dev | minyr |
| maxyr | SD | design | switch |  |  |  |  |  |  |
| \#1_CARC |  |  |  |  |  |  |  |  |  |
| 10 | 70 | 30 | 30 | -1 | 99 | 4 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | \#infl_ | r_log | ic |  |  |  |
| 0.001 | 50 | 11 | 15 | -1 | 99 | 5 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | \#95\%wi | _for | gistic |  |  |  |
| \#2_CACM |  |  |  |  |  |  |  |  |  |
| 10 | 70 | 38 | 30 | -1 | 99 | 4 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | \#infl_ | r_log | ic |  |  |  |
| 0.001 | 50 | 14 | 15 | -1 | 99 | 5 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | \#95\%wi | _for | gistic |  |  |  |
| \#3_ORRC |  |  |  |  |  |  |  |  |  |
| 10 | 70 | 36 | 30 | -1 | 99 | 4 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | \#infl_ | r_log | ic |  |  |  |
| 0.001 | 50 | 11 | 15 | -1 | 99 | 5 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | \#95\%wi | _for | gistic |  |  |  |
| \#4_ORCM |  |  |  |  |  |  |  |  |  |
| 10 | 70 | 36 | 30 | -1 | 99 | 4 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | \#infl_ | r_log | ic |  |  |  |
| 0.001 | 50 | 11 | 15 | -1 | 99 | 5 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | \#95\%wi | _for | gistic |  |  |  |
| \#5_WARC |  |  |  |  |  |  |  |  |  |
| 10 | 70 | 33 | 30 | -1 | 99 | 4 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | \#infl_ | r_log | ic |  |  |  |
| 0.001 | 50 | 31 | 15 | -1 | 99 | 5 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | \#95\%wi | h_for | gistic |  |  |  |
| \#6_WACM |  |  |  |  |  |  |  |  |  |
| 10 | 70 | 52 | 30 | -1 | 99 | 4 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | \#infl_ | r_log | ic |  |  |  |
| 0.001 | 50 | 18 | 15 | -1 | 99 | 5 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | \#95\%wi | _for | gistic |  |  |  |
| \#7_ORRCOB |  |  |  |  |  |  |  |  |  |
| 10 | 70 | 22.1792 | 22.1792 | -1 |  | 4 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | \#infl | r_log | ic |  |  |  |
| 0.001 | 50 | 3.6938 | 3.6938 | -1 | 5 | 5 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | \#95\%wi | _for | gistic |  |  |  |
| \#8_CACPFV |  |  |  |  |  |  |  |  |  |
| -2 | 0 | -1 | 5 | -1 |  | -50 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | \#minsi | BinCa | V_8 |  |  |  |
| -2 | 0 | -1 | 6 | -1 |  | -50 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | \#maxsi | BinCa | V_8 |  |  |  |
| \#9_IPHCWA |  |  |  |  |  |  |  |  |  |
| 10 | 70 | 62 | 30 | -1 | 99 | 4 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | \#infl | r_log | ic |  |  |  |
| 0.001 | 60 | 10 | 15 | -1 | 99 | 5 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | \#95\%wi | _for | gistic |  |  |  |
| \#10_NWFSCOR |  |  |  |  |  |  |  |  |  |
| 20 | 70 | 46 | 30 | -1 | 99 | 4 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | \#Peak |  |  |  |  |  |
| -4 | 4 | -4 | 0 | -1 | 99 | -50 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | \#Top |  |  |  |  |  |


0	8	6	4	-1	99	4		0	0	0
0	0	0	0	\#A	width					
0	12	4.5	4	-1	99	5		0	0	$\bigcirc$
0	0	0	0	\#D	width					
-1000	-998	-999	0	-1	99	-50		0	0	0
0	0	0	0	\#In						
-1000	-998	-999	0	-1	99	-50		0	0	0
0	0	0	0	\#F						
\#11_IPHCOR										
10	70	47	30	-1	99	4		0	0	0
0	0	0	0	\#infl_for_logistic						
0.001	60	6	15	-1	99	5		0	0	0
0	0	0	0	\#95\%width_for_logistic						
\#12_WATRI										
20	87	87	30	-1	99	-4		0	0	$\bigcirc$
0	0	0	0	\#P						
-4	4	-4	0	-1	99	-50		0	0	0
0	0	0	0	\#Top						
0	8	6	4	-1	99	4		0	0	0
0	0	0	0	\#A	width					
0	12	12	4	-1	99	-5		0	0	0
0	0	0	0	\#Desc width						
-10	10	-2.88182			182	-1		2	4	0
0	0	0	0	0	0	\#In				
-10	10	10	0	-1	99	-50		0	0	0
0	0	0	0	\#Final						

\#1 \# selex block setup: 0=read one line for all, 1=read one line for each \# Time block parameters
\#1 \# Selex parameter adjustment method: 1=standard,2=logistic transform

```
0 # Tagging flag: 0=none,1=read parameters for tagging
Likelihood related quantities
variance/sample size adjustment by fleet
1 # Do variance adjustments
\begin{tabular}{llllllllllll}
\(\# 1\) & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{tabular}
 0.15 0 0.08 0 0.00 0 0.00 0.02 0.48 0.16 0.48 0.41 # constant added to survey
CV
\begin{tabular}{clccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \# constant \\
added & to & discard & SD & & & & & & & & & \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \# constant
\end{tabular}
added to body weight SD
 1.28 2.25 0.54 2.16 5.49 1.57 1.44 1.52 0.62 2.79 0.73 2.08 #
multiplicative scalar for length comps
 1.0
multiplicative scalar for age comps
 1
multiplicative scalar for length at age obs
removed for SSv3.20: 1000 # DF discard_like fraction data t-distribution
removed for SSv3.20: 1000 # DF mean body weight data t-distribution
DF_for_meanbodywt_like
1 # Max N lambda phases: read this N values for each item below
1 # SD offset (CPUE, discard, mean body weight, recruitment devs): 0=omit
log(s) term, 1=include
0 # N changes to default Lambdas = 1.0
Component codes:
1=survey
2=discard
3=mean body weight
4=length frequency
```

```
5=age frequency
6=Weight frequency
7=size at age
8=catch
9=initial equilibrium catch
10=rec devs
11=parameter priors
12=parameter deviations
13=Crash penalty
14=Morph composition
15=Tag composition
16=Tag return
Component fleet/survey phase value wtfreq_method
0 # extra SD reporting placeholder
999 # end of control file
```

```
15. Appendix D: SS Starter file
#C Yelloweye 2011 starter file
yelloweye_data.SS }\quad\mathrm{ # Data file
0 # Read initial values from .par file: 0=no,1=yes
1 # DOS display detail: 0,1,2
2 # Report file detail: 0,1,2
0 # Detailed checkup.sso file (0,1)
Write parameter iteration trace file during minimization
0 # Write cumulative report: 0=skip,1=short,2=full
Include prior likelihood for non-estimated parameters
Use Soft Boundaries to aid convergence (0,1) (recommended)
 # N bootstrap datafiles to create
 # Last phase for estimation
 # MCMC burn-in
 # MCMC thinning interval
 # Jitter initial parameter values by this fraction
 # Min year for spbio sd_report (-1 for styr, init, virgin)
 # Max year for spbio sd_report (-1 for endyr; -2 for
-2 # Max year
0 # N individual SD years
0.0001 # Ending convergence criteria
0 # Retrospective year relative to end year
Min age for summary biomass
1 # Depletion basis: denom is: 0=skip; 1=rel X*B0; 2=rel X*Bmsy; 3=rel
X*B_styr
Fraction (X) for Depletion denominator (e.g. 0.4)
1 # (1-SPR)_reporting: 0=skip; 1=(1-SPR)/(1-SPR_tgt); 2=(1-SPR)/(1-
SPR_MSY); 3=(1-SPR)/(1-SPR_Btarget); 4=rawSPR
1 # F_std reporting: 0=skip; 1=exploit(Bio); 2=exploit(Num);
3=sum(frates)
0 # F_report_basis: 0=raw; 1=F/Fspr; 2=F/Fmsy ; 3=F/Fbtgt
999 # end of file marker
```


## 15. Appendix E: SS Forecast file

\#C Yelloweye 2011 forecast file
\# for all year entries except rebuilder; enter either: actual year, -999 for
styr, 0 for endyr, neg number for rel. endyr
1 \# Benchmarks: 0=skip; 1=calc F_spr,F_btgt,F_msy
1 \# MSY: 1= set to $F(S P R)$; 2=calc $F(M S Y) ; 3=$ set to $F(B t g t) ; 4=$ set to $F(e n d y r)$
0.76 \# SPR target (e.g. 0.40)
0.4 \# Biomass target (e.g. 0.40)
\#_Bmark_years: beg_bio, end_bio, beg_selex, end_selex, beg_relF, end_relF
(enter actual year, or values of 0 or -integer to be rel. endyr)
$0000-3-1$
\# 201020102010201020072009 \# after processing
1 \#Bmark_relF_Basis: 1 = use year range; 2 = set relF same as forecast below
\#
1 \# Forecast: 0=none; 1=F(SPR); 2=F(MSY) 3=F(Btgt); 4=Ave F (uses first-last
relf yrs); 5=input annual F scalar
12 \# N forecast years
0.2 \# F scalar (only used for Do_Forecast==5)
\#_Fcast_years: beg_selex, end_selex, beg_relF, end_relF (enter actual year,
or values of 0 or -integer to be rel. endyr)
0 0-3-1
\# 2010201020072009 \# after processing
1 \# Control rule method (1=catch=f(SSB) west coast; 2=F=f(SSB) )
\# next two inputs for 40-10 rule turned off (set low) for SPR-based projections

```
0.02 # Control rule Biomass level for constant F (as frac of Bzero, e.g. 0.40);
(Must be > the no F level below)
0.01 # Control rule Biomass level for no F (as frac of Bzero, e.g. 0.10)
1 # Control rule target as fraction of Flimit (e.g. 0.75)
3 #_N forecast loops (1=OFL only; 2=ABC; 3=get F from forecast ABC catch with
allocations applied)
3 #_First forecast loop with stochastic recruitment
0 #_Forecast loop control #3 (reserved for future bells&whistles)
0 #_Forecast loop control #4 (reserved for future bells&whistles)
0 #_Forecast loop control #5 (reserved for future bells&whistles)
2013 #FirstYear for caps and allocations (should be after years with fixed
inputs)
0.0001 # stddev of log(realized catch/target catch) in forecast (set value>0.0
to cause active impl_error)
1 # Do West Coast gfish rebuilder output (0/1)
2013 # Rebuilder: first year catch could have been set to zero (Ydecl)(-1 to
set to 1999)
2011 # Rebuilder: year for current age structure (Yinit) (-1 to set to
endyear+1)
1 # fleet relative F: 1=use first-last alloc year; 2=read seas(row) x
fleet(col) below
Note that fleet allocation is used directly as average F if Do_Forecast=4
2 # basis for fcast catch tuning and for fcast catch caps and allocation
(2=deadbio; 3=retainbio; 5=deadnum; 6=retainnum)
Conditional input if relative F choice = 2
Fleet relative F: rows are seasons, columns are fleets
#_Fleet: 1_CARC 2_CACM 3_ORRC 4_ORCM 5_WARC 6_WACM
0.20728 0.114339 0.0873403 0.106986 0.312051 0.172003
max totalcatch by fleet (-1 to have no max) must enter value for each fleet
 -1 -1 -1 -1 -1 -1
max totalcatch by area (-1 to have no max); must enter value for each fleet
 -1 -1 -1
fleet assignment to allocation group (enter group ID# for each fleet, 0 for
not included in an alloc group)
 0 0 0 0 0 0
#_Conditional on >1 allocation group
allocation fraction for each of: 0 allocation groups
no allocation groups
12 # Number of forecast catch levels to input (else calc catch from forecast F)
2 # basis for input Fcast catch: 2=dead catch; 3=retained catch; 99=input
Hrate(F) (units are from fleetunits; note new codes in SSV3.20)
Input fixed catch values
#Year Seas Fleet Catch(or_F)
 2011 1 1 4.83
 2011 1 2 2.55
 2011 1 3 2.91
 2011 1 4 3.13
 2011 1 5 2.33
 2011 1 6 1.26
 2012 1 1 4.83
 2012 1 2 2.55
 2012 1 3 2.91
 2012 1 4 3.13
 2012 1 5 2.33
 2012 1 6 1.26
#
999 # verify end of input
```


[^0]:    ${ }^{1}$ Includes research catches.
    ${ }^{2}$ Includes the Columbia and Vancouver INPFC areas only.
    ${ }^{3}$ Includes the Columbia, Vancouver and Eureka INPFC areas only.

[^1]:    \# Selectivity section
    \# Size-based setup
    \# A=Selex option: 1-24
    \# B=Do_retention: 0=no, 1=yes
    \# C=Male offset to female: 0=no, 1=yes
    \# D=Mirror selex (\#)
    \# A B C D
    1000 \#1_CARC
    1000 \#2_CACM
    1000 \#3_ORRC
    1000 \#4_ORCM
    1000 \#5_WARC
    1000 \#6_WACM
    1000 \#7_ORRCOB
    50001 \#8_CACPFV
    1000 \#9_IPHCWA
    24000 \#10_NWFSCOR
    1000 \#11_IPHCOR
    24000 \#12_WATRI
    \#_Age selex
    10000 \#1_CARC
    10000 \#2_CACM
    10000 \#3_ORRC
    100000 \#4_ORCM
    10000 \#5 WARC

