
# STATUS OF THE U.S. WEST COAST FISHERIES FOR HIGHLY MIGRATORY SPECIES THROUGH 2009



# STOCK ASSESSMENT AND FISHERY EVALUATION

# SEPTEMBER 2010

### PACIFIC FISHERY MANAGEMENT COUNCIL

7700 NE Ambassador Place, Suite 101 Portland, Oregon 97220 www.pcouncil.org Cover illustration by Roy Allen, Southwest Fisheries Science Center, National Marine Fisheries Service, La Jolla, California

Printed: October 8, 2010



Prepared by the Pacific Fishery Management Council in conjunction with the National Marine Fisheries Service, Southwest Region under National Oceanic and Atmospheric Administration award number NA10NMF4410014.

# **Table of Contents**

| 1.0 Introdu | ction                                                                   | 1   |
|-------------|-------------------------------------------------------------------------|-----|
| 1.1 The     | Fishery Management Plan                                                 | 1   |
| 1.2 Purp    | ose of the SAFE Report                                                  | 1   |
| 1.3 The     | Management Cycle                                                        | 2   |
| 1.4 High    | ly Migratory Species Management Team                                    | 2   |
| 1.5 Cour    | cil Highly Migratory Species Activities, September 2009-June 2010       | 3   |
| 2.0 Descrip | tion of the Fisheries                                                   | 7   |
| 2.1 Com     | mercial Fisheries                                                       | 7   |
| 2.1.1       | California                                                              | 7   |
|             | Surface Hook-and-Line Fishery for Albacore                              |     |
| 2.1.1.2     | Coastal Purse Seine Fishery for Yellowfin, Skipjack, and Bluefin Tunas  | 8   |
| 2.1.1.3     | Harpoon Fishery for Swordfish                                           | 10  |
| 2.1.1.4     | Drift Gillnet Fishery for Swordfish and Shark                           | 11  |
| 2.1.1.5     | High Seas Longline Fishery for Swordfish                                | 15  |
| 2.1.2       | Oregon                                                                  | 15  |
| 2.1.2.1     | Surface Hook-and-Line Fishery for Albacore                              | 15  |
| 2.1.2.2     | Drift Gillnet Fishery for Swordfish and Shark                           | 17  |
| 2.1.3       | Washington                                                              |     |
| 2.2 Desc    | ription of West Coast Recreational Fisheries                            | 19  |
| 2.2.1       | California                                                              | 19  |
| 2.2.2       | Oregon                                                                  |     |
| 2.2.3       | Washington                                                              |     |
| 2.3 High    | ly Migratory Species Taken in Non-HMS Fisheries                         |     |
| 2.3.1       | California                                                              |     |
| 2.3.2       | Oregon                                                                  |     |
|             | tions Currently In Place                                                |     |
|             | mary of the HMS FMP Management Measures and Regulations                 |     |
| 3.1.2       | HMS Commercial Gear                                                     |     |
| 3.1.3       | HMS Recreational Gear                                                   |     |
| 3.1.4       | Landings and Gear Use Regulations                                       |     |
| 3.1.5       | Incidental Landings                                                     |     |
| 3.1.6       | Status of HMS Permits                                                   |     |
|             | HMS Data Collection                                                     |     |
|             | Observer Requirements                                                   |     |
|             | U.S. Pacific Albacore Logbook and HMS Permits Compliance Check for 2009 |     |
| 3.1.9.1     | Enforcement of Regulations                                              |     |
|             | Compliance Check                                                        |     |
|             | ected Resources Regulations                                             |     |
|             | national Regulatory Aspects of the HMS FMP                              |     |
|             | The Inter-American Tropical Tuna Commission                             |     |
| 3.3.1.1     | An Update of IATTC Resolutions                                          |     |
| 3.3.2       | Western and Central Pacific Fisheries Commission                        |     |
|             | An Update of WCPFC Conservation and Management Measures                 |     |
|             | The U.SCanada Albacore Treaty                                           |     |
|             | tch and Other Monitored Species                                         |     |
|             | cal Summaries of Catch, Revenue, and Effort                             |     |
| 4.1 Com     | mercial Fisheries                                                       |     |
| 4.2 Recr    | eational Fisheries                                                      | 109 |

| 5.0 Updated Status of the H     | Highly Migratory Species Management Unit Species                | 123   |
|---------------------------------|-----------------------------------------------------------------|-------|
| 5.1 Control Rules for Ma        | anagement                                                       | 123   |
| 5.2 Recent and Projected        | Assessment Schedule                                             | 125   |
| 5.3 Conclusions from 20         | 09 Pacific HMS stock assessments                                | 125   |
| 5.3.1 Bigeye Tuna               |                                                                 | 125   |
| 5.3.1.1 Bigeye Tuna (           | EPO)                                                            | 125   |
|                                 | WCPO)                                                           |       |
|                                 |                                                                 |       |
| 5.3.2.1 Skipjack Tuna           | (EPO)                                                           | 126   |
|                                 |                                                                 |       |
| 5.3.3.1 Yellowfin Tur           | a (EPO) - update                                                | 127   |
|                                 | a (WCPO)                                                        |       |
|                                 |                                                                 |       |
|                                 | (EPO)                                                           |       |
| 5.3.5 Swordfish                 | · · · · · · · · · · · · · · · · · · ·                           | 128   |
|                                 | 20)                                                             |       |
| 5.3.6 Blue Shark                | · · · · · · · · · · · · · · · · · · ·                           | 129   |
| 5.4 Links to Information<br>130 | n or Most Recent Pacific HMS Stock Assessments through August 2 | 2010. |
|                                 |                                                                 |       |
|                                 | ds                                                              |       |
|                                 | leeds                                                           |       |
|                                 | Issues                                                          |       |
|                                 | Albacore                                                        |       |
|                                 |                                                                 |       |
|                                 |                                                                 |       |
|                                 | ith Protected Species and Prohibited Species                    |       |
|                                 | sues                                                            |       |
| ÷ .                             |                                                                 |       |
|                                 |                                                                 |       |
| *                               | 1 Tuna                                                          |       |
| 6.1.3 Other Priority S          | tocks and Issues                                                | 139   |
| •                               | nit Species Catch Data                                          |       |
|                                 | IN Data Cleanup                                                 |       |
|                                 | of Released Fish                                                |       |
| 6.1.3.4 Essential Fish          | Habitat (EFH)                                                   | 140   |
|                                 | nent Review                                                     |       |
| 6.1.3.6 Tropical Tuna           | Species and Dorado                                              | 140   |
| 6.1.3.7 Pelagic and Bi          | geye Thresher Sharks                                            | 141   |
| 6.2 Research Updates            |                                                                 | . 141 |
| 6.2.1 Albacore                  |                                                                 | 141   |
| 6.2.2 Common Thres              | her Shark                                                       | 142   |
| 6.2.3 Shortfin Mako             | and Blue Sharks                                                 | 143   |
|                                 |                                                                 |       |
| 6.2.5 Sea Turtles               |                                                                 | 145   |
|                                 | Information Program (MRIP) Projects                             |       |
| 7.0 Commonly-used Web I         | Links in Highly Migratory Species Management and research       | . 147 |

# List of Tables

| Table 1-1. HMS FMP management unit species.    1                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2-1. Annual commercial landings (round mt) and number of deliveries for albacore landed in                                          |
| California's major port complexes by the surface hook-and-line fleet, 2008–097                                                            |
| Table 2-2. Monthly commercial landings (round mt) and ex-vessel revenue for albacore landed in                                            |
| California ports by the surface hook-and-line fleet, 2008–09                                                                              |
| Table 2–3. Annual commercial landings (round mt) and number of deliveries for swordfish landed in                                         |
| California's major port complexes by the harpoon fleet, 2008–09                                                                           |
| Table 2–4. Monthly commercial landings (round mt) and ex-vessel revenue (dollars) for swordfish landed                                    |
| in California by the harpoon fleet, 2008–09.                                                                                              |
| Table 2–5. Annual drift gillnet permits issued and number of active vessels, 1981–2009                                                    |
|                                                                                                                                           |
| Table 2–6. Annual commercial landings (round mt) and number of deliveries for swordfish landed in                                         |
| California's major port complexes by the drift gillnet fleet, 2008–09                                                                     |
| Table 2-7. Monthly commercial landings (round mt) and ex-vessel revenue for swordfish landed in                                           |
| California by the drift gillnet fleet, 2008–09                                                                                            |
| Table 2-8. Annual commercial landings (round mt) and number of deliveries for common thresher shark                                       |
| landed in California's major port complexes by the large mesh drift gillnet fleet, 2008–0914                                              |
| Table 2-9. Monthly commercial landings (round mt) and ex-vessel revenue for common thresher shark                                         |
| landed in California ports by the large mesh drift gillnet fleet, 2008–09                                                                 |
| Table 2-10. Oregon commercial albacore landings (mt) by month, 2007-2009.    16                                                           |
| Table 2-11. Oregon commercial albacore landings (mt) by port, 2007-2009                                                                   |
| Table 2-12. Ex-vessel price-per-pound for albacore tuna in Oregon, 2007-2009                                                              |
|                                                                                                                                           |
| Table 2–13. Washington commercial albacore landings (mt) by port group, 2004–09 (listed in order of                                       |
| annual average).                                                                                                                          |
| Table 2–14. U.S. and Canadian albacore landings into Washington, 2004–09.    19                                                           |
| Table 2-15. California's recreational daily possession limits for highly migratory MUS included within                                    |
| the fishery management plan                                                                                                               |
| Table 2-16. Annual number of highly migratory MUS kept and thrown back by recreational anglers                                            |
| fishing from California commercial passenger fishing vessels (CPFV) in U.S. EEZ waters , 2008-09.                                         |
|                                                                                                                                           |
| Table 2-17. Estimated number of highly migratory MUS kept and thrown back alive by recreational                                           |
| anglers fishing from California private vessels in U.S. EEZ waters, 2008–09                                                               |
| Table 2-18. Oregon albacore fishing effort (angler trips) for charter and private boats, and combined, by                                 |
| year and port, 2007-2009                                                                                                                  |
| Table 2-19. Oregon albacore catch (number of fish) for charter and private boats, and combined, by year                                   |
| and port, 2007-2009                                                                                                                       |
| Table 2-20. Oregon albacore catch per unit of effort (number of fish/ angler trip), for charter and private                               |
| boats, and combined, by year, by port, 2007-2009.                                                                                         |
| Table 2–21. Washington albacore fishing effort (angler trips) for charter and private boats, and                                          |
| combined, by year and port area, 2007–09.                                                                                                 |
|                                                                                                                                           |
| Table 2–22. Washington albacore catch (number of fish) for charter and private boats, and combined, by                                    |
| year and port area, 2007–09.                                                                                                              |
| Table 2–23. Washington albacore catch per unit of effort (number of fish/angler trip) for charter and                                     |
| private boats, and combined, by year and port, 2007–09                                                                                    |
| Table 2-24. Washington albacore catch per unit of effort (number of fish/angler trip) and average weight                                  |
| (pounds) per tuna caught by year, 2005–09 as reported in charter logbook program25                                                        |
|                                                                                                                                           |
| Table 2–25. Landings (mt) of HMS Species in non-HMS gears                                                                                 |
| Table 2–25. Landings (mt) of HMS Species in non-HMS gears.26Table 2-26. Landings (mt) of HMS Species with non-HMS gear in Oregon, 2009.26 |

| Table 3-2. Prohibited Species covered under the HMS FMP final rule                                       |
|----------------------------------------------------------------------------------------------------------|
| Table 3-3. HMS permits recorded in the permit database for each year since the regulation became         |
| effective on February 10, 2005                                                                           |
| Table 3-4. Anticipated incidental takes of listed species in the HMS fisheries                           |
| Table 3-5. NMFS California/Oregon Drift Gillnet Observer Program Observed Catch - 2009/2010 Fishing      |
| Season May 1, 2009, through January 31, 2010 (Source: NMFS SWR Observer Program)                         |
| Table 4–1. West Coast commercial HMS landings, revenues, and average prices by species, 2008–2009.       |
|                                                                                                          |
| Table 4–2. West Coast commercial HMS landings, revenues, and average prices by fishery, 2008-2009.       |
|                                                                                                          |
| Table 4–3. West Coast commercial HMS landings and revenues, 1981–2009                                    |
| Table 4-4. West Coast commercial landings of HMS by all HMS and non-HMS gears, 1981-200946               |
| Table 4-5. West Coast nominal commercial ex-vessel revenues from HMS landings by all HMS and             |
| non-HMS gears, 1981–2009                                                                                 |
| Table 4-6. West Coast real commercial ex-vessel revenues (2009 \$) from HMS landings by all HMS and      |
| non-HMS gears, 1981–2009                                                                                 |
| Table 4–7. West Coast commercial landings of albacore, other tunas, swordfish, and sharks, 1981–2009.    |
|                                                                                                          |
| Table 4-8. West Coast commercial revenues for albacore, other tunas, swordfish, and sharks, 1981-2009.   |
|                                                                                                          |
| Table 4-9. Commercial landings (round mt) in the West Coast albacore surface hook-and-line (troll and    |
| baitboat) fishery, with Canadian vessels excluded, 1981–2009                                             |
| Table 4-10. Commercial landings (round mt) in the West Coast albacore surface hook-and-line (troll and   |
| baitboat) fishery, 1981–2009                                                                             |
| Table 4–11. Commercial landings (round mt) in the West Coast drift gillnet fishery, 1981–2009            |
| Table 4–12. Commercial landings (round mt) in the West Coast harpoon fishery, 1981–2009                  |
| Table 4–13. Commercial landings (round mt) in the West Coast purse seine fishery, 1981–2009              |
| Table 4-14. Nominal commercial ex-vessel revenues (\$) for the West Coast albacore surface hook-and-     |
| line (troll and baitboat) fishery, with Canadian vessels excluded, 1981–200958                           |
| Table 4-15. Nominal commercial ex-vessel revenues (\$) for the West Coast albacore surface hook-and-     |
| line (troll and baitboat) fishery, 1981–2009                                                             |
| Table 4-16. Nominal commercial ex-vessel revenues (\$) for the West Coast drift gillnet fishery, 1981-   |
| 2009                                                                                                     |
| Table 4–17. Nominal commercial ex-vessel revenues (\$) for the West Coast harpoon fishery, 1981–2009.    |
|                                                                                                          |
| Table 4-18. Nominal commercial ex-vessel revenues (\$) for the West Coast purse seine fishery, 1981-     |
| 2009                                                                                                     |
| Table 4-19. Real commercial ex-vessel revenues (2009 \$) for the West Coast albacore surface hook-and-   |
| line (troll and baitboat) fishery, with Canadian vessels excluded, 1981–2009                             |
| Table 4-20. Real commercial ex-vessel revenues (2009 \$) for the West Coast albacore surface hook-and-   |
| line (troll and baitboat) fishery, 1981–200964                                                           |
| Table 4-21. Real commercial ex-vessel revenues (2009 \$) for the West Coast drift gillnet fishery, 1981- |
| 2009                                                                                                     |
| Table 4-22. Real commercial ex-vessel revenues (2009 \$) for the West Coast harpoon fishery, 1981-       |
| 2009                                                                                                     |
| Table 4-23. Real commercial ex-vessel revenues (2009 \$) for the West Coast purse seine fishery, 1981-   |
| 2009                                                                                                     |
| Table 4–24. West Coast commercial tuna landings by fishery, 1981–2009                                    |
| Table 4–25. West Coast commercial tuna revenues by fishery, 1981–2009.                                   |
| Table 4–26. Species composition of coastwide commercial tuna landings, 1981–200973                       |
| Table 4–27. Species composition of coastwide commercial tuna revenues, 1981–2009                         |

| Table 4–28. West Coast commercial swordfish landings by fishery, 1981–2009                                                                                    | 77         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Table 4–29. West Coast commercial swordfish revenues by fishery, 1981–2009                                                                                    | 79         |
| Table 4-30. Species composition of coastwide commercial shark landings, 1981-2009                                                                             |            |
| Table 4–31. Species composition of coastwide commercial shark revenues, 1981–2009                                                                             |            |
| Table 4–32. Commercial landings (round mt) of the albacore surface hook-and-line (troll and fishery in California, with Canadian vessels excluded, 1981–2009. | baitboat)  |
| Table 4–33. Commercial landings (round mt) of the albacore surface hook-and-line (troll and                                                                   |            |
| fishery in California, 1981–2009.                                                                                                                             |            |
| Table 4–34. Commercial landings (round mt) of the albacore surface hook-and-line (troll and                                                                   |            |
| fishery in Oregon, with Canadian vessels excluded, 1981–2009                                                                                                  |            |
| Table 4–35. Commercial landings (round mt) of the albacore surface hook-and-line (troll and                                                                   |            |
| fishery in Oregon, 1981–2009.                                                                                                                                 |            |
| Table 4-36. Commercial landings (round mt) of the albacore surface hook-and-line (troll and                                                                   | baitboat)  |
| fishery in Washington, with Canadian vessels excluded, 1981–2009.                                                                                             |            |
| Table 4-37. Commercial landings (round mt) of the albacore surface hook-and-line (troll and                                                                   |            |
| fishery in Washington, 1981–2009.                                                                                                                             |            |
| Table 4–38. Nominal commercial ex-vessel revenues (\$) of the albacore surface hook-and-line                                                                  | (troll and |
| baitboat) fishery in California, with Canadian vessels excluded, 1981-2009                                                                                    | 90         |
| Table 4–39. Nominal commercial ex-vessel revenues (\$) of the albacore surface hook-and-line                                                                  | (troll and |
| baitboat) fishery in California, 1981-2009                                                                                                                    | 91         |
| Table 4–40. Nominal commercial ex-vessel revenues (\$) of the albacore surface hook-and-line                                                                  | (troll and |
| baitboat) fishery in Oregon, with Canadian vessels excluded, 1981-2009.                                                                                       |            |
| Table 4–41. Nominal commercial ex-vessel revenues (\$) of the albacore surface hook-and-line                                                                  | (troll and |
| baitboat) fishery in Oregon, 1981-2009.                                                                                                                       |            |
| Table 4–42. Nominal commercial ex-vessel revenues (\$) of the albacore surface hook-and-line                                                                  |            |
| baitboat) fishery in Washington, with Canadian vessels excluded, 1981-2009                                                                                    |            |
| Table 4–43. Nominal commercial ex-vessel revenues (\$) of the albacore surface hook-and-line                                                                  |            |
| baitboat) fishery in Washington, 1981-2009                                                                                                                    |            |
| Table 4-44. Real commercial ex-vessel revenues (2009 \$) of the albacore surface hook-and-l                                                                   |            |
| and baitboat) fishery in California, with Canadian vessels excluded, 1981-2009.                                                                               |            |
| Table 4–45. Real commercial ex-vessel revenues (2009 \$) of the albacore surface hook-and-l                                                                   |            |
| and baitboat) fishery in California, 1981-2009.                                                                                                               |            |
| Table 4–46. Real commercial ex-vessel revenues (2009 \$) of the albacore surface hook-and-l                                                                   |            |
| and baitboat) fishery in Oregon, with Canadian vessels excluded, 1981-2009.                                                                                   |            |
| Table 4–47. Real commercial ex-vessel revenues (2009 \$) of the albacore surface hook-and-l                                                                   | -          |
| and baitboat) fishery in Oregon, 1981-2009.                                                                                                                   |            |
| Table 4–48. Real commercial ex-vessel revenues (2009 \$) of the albacore surface hook-and-l                                                                   |            |
| and baitboat) fishery in Washington, with Canadian vessels excluded, 1981-2009                                                                                |            |
| Table 4–49. Real commercial ex-vessel revenues (2009 \$) of the albacore surface hook-and-l                                                                   |            |
| and baitboat) fishery in Washington, 1981-2009<br>Table 4–50. Commercial catch and effort fishery statistics for the U.S. South Pacific albae                 |            |
|                                                                                                                                                               |            |
| fishery, 1986-2009<br>Table 4–51. Percentages of commercial catch and effort by fishing areas for U.S. albacore trol                                          |            |
| 1995–2009.                                                                                                                                                    |            |
| Table 4–52. Number of vessels with West Coast commercial HMS landings by fishery (HMS                                                                         |            |
| species), 1981-2009.                                                                                                                                          |            |
| Table 4–53. Number of vessels with commercial HMS landings in California by fishery (HM                                                                       |            |
| species), 1981-2009.                                                                                                                                          |            |
| Table 4–54. Number of vessels with commercial HMS landings in Oregon by fishery (HMS                                                                          |            |
| species), 1981-2009.                                                                                                                                          | 0          |
| Table 4–55. Number of vessels with commercial HMS landings in Washington by fishery (HM                                                                       |            |

# List of Figures

# Acronyms

| ACL     | annual catch limit                                                                     |
|---------|----------------------------------------------------------------------------------------|
| AFRF    | Albacore Fishermen's Research Foundation                                               |
| ASCALA  | Age-Structure Catch-At-Length Analysis                                                 |
| В       | biomass                                                                                |
| $B_0$   | initial (unfished) biomass                                                             |
| BO      | Biological Opinion                                                                     |
| BREP    | Bycatch Reduction Engineering Program                                                  |
| CDFG    | California Department of Fish and Game                                                 |
| CFR     | Code of Federal Regulations                                                            |
| CMM     | Conservation and Management Measure                                                    |
| Council | Pacific Fishery Management Council                                                     |
| CPFV    | commercial passenger fishing vessel                                                    |
| CPUE    | catch per unit of effort                                                               |
| CRFS    | California Recreational Fisheries Survey                                               |
| DGN     | drift gillnet                                                                          |
| EEZ     | exclusive economic zone                                                                |
| EFH     | essential fish habitat                                                                 |
| EPO     | eastern Pacific Ocean                                                                  |
| ESA     | Endangered Species Act                                                                 |
| F       | fishing mortality rate                                                                 |
| FL      | fork length                                                                            |
| FMP     | fishery management plan                                                                |
| FR      | Federal Register                                                                       |
| HAPC    | Habitat Area of Particular Concern                                                     |
| HMS     | highly migratory species                                                               |
| HMS FMP | Fishery Management Plan for U.S. West Coast Fisheries for Highly<br>Migratory Species  |
| HMSAS   | Highly Migratory Species Advisory Subpanel                                             |
| HMSMT   | Highly Migratory Species Management Team                                               |
| IATTC   | Inter-American Tropical Tuna Commission                                                |
| ISC     | International Scientific Committee for Tuna and Tuna-like Species in the North Pacific |
| IUU     | illegal, unregulated, and unreported fishing                                           |
| LOF     | List of Fisheries                                                                      |
| MFMT    | maximum fishing mortality threshold                                                    |
| MMPA    | Marine Mammal Protection Act                                                           |
| MRIP    | Marine Recreational Information Program                                                |
| MSA     | Magnuson-Stevens Act, Magnuson-Stevens Fishery Conservation and Management Act         |
| MSST    | minimum stock size threshold                                                           |
| MSY     | maximum sustainable yield                                                              |

| МТ       | metric ton                                                                   |
|----------|------------------------------------------------------------------------------|
| MUS      | management unit species                                                      |
| NMFS     | National Marine Fisheries Service                                            |
| NOAA     | National Oceanic and Atmospheric Administration                              |
| NPO      | North Pacific Ocean                                                          |
| NRIFSF   | National Research Institute of Far Seas Fisheries (Japan)                    |
| ODFW     | Oregon Department of Fish and Wildlife                                       |
| OMB      | Office of Management and Budget                                              |
| OSP      | Washington Ocean Sampling Program                                            |
| OY       | optimum yield                                                                |
| PacFIN   | Pacific Fisheries Information Network                                        |
| PIER     | Pfleger Institute of Environmental Research                                  |
| PIFSC    | NMFS Pacific Islands Fisheries Science Center                                |
| PIRO     | NMFS Pacific Islands Regional Office                                         |
| PSA Tag  | pop-up satellite archival tag                                                |
| PSMFC    | Pacific States Marine Fisheries Commission                                   |
| RecFIN   | Recreational Fisheries Information Network                                   |
| RFMO     | regional fishery management organization                                     |
| SAC      | IATTC Scientific Advisory Committee                                          |
| SAFE     | stock assessment and fishery evaluation                                      |
| SBR      | spawning biomass ratio                                                       |
| SCB      | Southern California Bight                                                    |
| SEPO     | Southeast Pacific Ocean                                                      |
| SLUTH    | Swordfish-Leatherback Sea Turtle Utilization of Temperate Habitat (Workshop) |
| SPOT Tag | smart position and/or temperature tag                                        |
| SSB      | spawning stock biomass                                                       |
| SST      | sea surface temperature                                                      |
| SWFSC    | Southwest Fisheries Science Center (NMFS)                                    |
| SWR      | Southwest Regional Office (NMFS)                                             |
| WCPFC    | Western and Central Pacific Fisheries Commission                             |
| WCPO     | western and central Pacific Ocean                                            |
| WDFW     | Washington Department of Fish and Wildlife                                   |
|          |                                                                              |

### 1.0 INTRODUCTION

#### 1.1 The Fishery Management Plan

The Fishery Management Plan (FMP) for U.S. West Coast Fisheries for Highly Migratory Species (HMS) was developed by the Pacific Fishery Management Council (Council) in response to the need to coordinate state, Federal, and international management of the stocks listed in Table 1–1.<sup>1</sup> The National Marine Fisheries Service (NMFS), on behalf of the U.S. Secretary of Commerce, partially approved the HMS FMP on February 4, 2004. The majority of HMS FMP implementing regulations became effective on April 7, 2004. Reporting and recordkeeping provisions became effective on February 10, 2005. A list of current HMS FMP regulations is provided in Table 3-1 on page 27.

On June 7, 2007, NMFS approved Amendment 1 to the HMS FMP. The FMP was amended to incorporate recommended international measures to end overfishing of the Pacific stock of bigeye tuna (*Thunnus obesus*) in response to formal notification from NMFS that overfishing was occurring on this stock. Amendment 1 also served as a means to substantially reorganize the original combined FMP and Final Environmental Impact Statement, published in August 2003. Much of the descriptive material in the combined document was moved to a series of appendices, substantially shortening the body of the FMP. An electronic copy of the current FMP and the aforementioned appendices are available on the Council's website at <a href="http://www.pcouncil.org/hms/hmsfmp.html">http://www.pcouncil.org/hms/hmsfmp.html</a>.

| Common Name                            | Scientific Name       |  |  |
|----------------------------------------|-----------------------|--|--|
| striped marlin                         | Tetrapturus audax     |  |  |
| swordfish                              | Xiphias gladius       |  |  |
| common thresher shark                  | Alopias vulpinus      |  |  |
| pelagic thresher shark                 | Alopias pelagicus     |  |  |
| bigeye thresher shark                  | Alopias superciliosus |  |  |
| shortfin mako shark (bonito shark)     | Isurus oxyrinchus     |  |  |
| blue shark                             | Prionace glauca       |  |  |
| North Pacific albacore                 | Thunnus alalunga      |  |  |
| yellowfin tuna                         | Thunnus albacares     |  |  |
| bigeye tuna                            | Thunnus obesus        |  |  |
| skipjack tuna                          | Katsuwonus pelamis    |  |  |
| Pacific bluefin tuna                   | Thunnus orientalis    |  |  |
| dorado (a.k.a. mahi mahi, dolphinfish) | Coryphaena hippurus   |  |  |

| Table 1-1. | HMS FMP | management | unit species. |
|------------|---------|------------|---------------|
|            |         | management | and species.  |

#### 1.2 Purpose of the SAFE Report

Federal regulations (40 CFR 600.315(e)) pursuant to National Standard 2 in the Magnuson-Stevens Act (MSA), state that "Conservation and management measures shall be based upon the best scientific information available...," which the Council addresses in part by the annual requirement to prepare a Stock Assessment and Fishery Evaluation (SAFE) report for each FMP. Section 4.3 in the HMS FMP describes the requirements for a SAFE report. The SAFE report is produced annually and summarizes

<sup>&</sup>lt;sup>1</sup> Throughout this document "West Coast" is used to denote the geographic region comprising the coastal areas of Washington, Oregon, and California.

biological and socioeconomic conditions related to HMS stocks and fisheries. The Council may use this information in making decisions about needed management measures.

#### 1.3 The Management Cycle

The HMS FMP also establishes an annual cycle for the delivery of the SAFE report to the Council, intended to coincide with the management cycle: a draft report is provided in June for initial decisionmaking on the need for new harvest specifications and management measures. The final report is delivered in September to provide the recommendations and information necessary to develop and implement any harvest specifications and management measures. NMFS implements the Council's recommended management measures through the Federal regulatory process. Any such measures become effective at the start of the next fishing year, April 1 of the following year, or when the rulemaking process is complete, and stay in unless action is taken to modify the action. Council meetings in 2006 initiated the first biennial management cycle under the HMS FMP with consideration of measures to be implemented during the April 1, 2007–March 31, 2009, biennium. In 2008 the Council considered management changes for the second biennial period, April 1, 2009–March 31, 2011.

#### 1.4 Highly Migratory Species Management Team

This SAFE report was prepared by the members of the Highly Migratory Species Management Team (HMSMT). The HMSMT members at the time this report was published (September 2010), and their primary responsibilities in preparing the report, are listed below.

Mr. Brian Hallman (designee: Mr. Ricardo Belmondo) Assistant Director Inter-American Tropical Tuna Commission

Mr. Craig Heberer, (chapter 3, description of FMP management, compliance, and regulatory measures; Chapter 6, research and data needs) Fisheries Biologist, NMFS Southwest Region

Ms. Leeanne M. Laughlin (chapter 2, description of California fisheries) Associate Marine Biologist, California Department of Fish and Game

Dr. Suzy Kohin (chapter 5) Research Fishery Biologist, NMFS Southwest Fisheries Science Center

Ms. Cyreis Schmitt (chapter 2 description of Oregon fisheries) Oregon Department of Fish and Wildlife representative

Dr. Stephen Stohs, Team Chair (chapter 4) Industry Economist, NMFS Southwest Fisheries Science Center

Ms. Lorna Wargo (chapter 2, description of Washington fisheries, chapter 6, research and data needs) Marine Resources Policy Coordinator, Washington Department of Fish and Wildlife

Ms. Heidi Hermsmeyer (chapter 3, description of international regulatory aspects of the HMS FMP) Fishery Policy Analyst, NMFS Southwest Region

Changes in HMSMT membership through June 2010: Ms. Lorna Wargo replaced Mr. Corey Niles as the

Washington Department of Fish and Wildlife member of the HMSMT in November 2009. Dr. Kevin Piner, NMFS SWFSC, left the HMSMT in September 2009 and Dr. Suzy Kohin was appointed in his place in April 2010. Ms. Heidi Hermsmeyer, NMFS Southwest Region, replaced Mr. Lyle Enriquez in June 2010.

In addition to HMSMT members, the following people contributed to this SAFE report:

Dr. Kit Dahl (chapter 1, compilation of the report) Staff Officer, Pacific Fishery Management Council

Mr. Craig D'Angelo (section 3.1.6) Contractor, NMFS Southwest Region

Ms. Donna Dealy (chapter 4, commercial fisheries data) Computer Specialist, NMFS Southwest Fisheries Science Center

Ms. Elizabeth Petras (section 3.2) Natural Resources Specialist, NMFS Southwest Region Protected Resources Division

#### 1.5 Council Highly Migratory Species Activities, September 2009-June 2010

*Note:* Written materials distributed at Council meetings are available at <u>http://www.pcouncil.org/bb/bbarchives.html</u> and summaries of decisions taken at these meetings are available at <u>http://www.pcouncil.org/decisions/archivedecisions.html</u>.

#### **Biennial Harvest Specifications**

In June 2010 the Council initiated the third cycle for adopting biennial harvest specifications and management measures since the HMS FMP was implemented. The Council decided to consider a regulatory change proposed by the Washington Department of Fish and Wildlife (WDFW). The WDFW proposal would place a per-trip limit on the Washington recreational albacore tuna fishery. Consistent with the biennial process, the HMSMT will prepare a draft regulatory analysis to help the Council adopt a range of alternatives for public review at the September Council meeting. Final action is scheduled for the November 2010 meeting. If approved by NMFS after notice-and-comment rulemaking, regulations to implement the Council's proposal would then become effective on or after April 1, 2011, at which point Washington would have to adopt conforming measures for state waters.

#### **Recommendations to Regional Fishery Management Organizations**

At their November 2009 meeting, the Council made recommendations to the U.S. delegation to the Western and Central Pacific Fishery Commission (WCPFC), which met December 7-11, 2009, in Tahiti, French Polynesia. The Council supported the adoption of complementary measures between the WCPFC and the Inter-American Tropical Tuna Commission (IATTC) to not increase fishing effort on Pacific bluefin tuna, especially on age 0+ recruits; recommended that WCPFC requirements for transshipment vessels specify that observers are only required on the carrier vessel and not on the fishing vessel, if an albacore troll vessel; and encouraged continued support of research on the North Pacific albacore stock.

At their June 2010 meeting the Council made the following recommendations for action in the IATTC and/or WCPFC forums.

- The U.S. delegation to the IATTC should develop a proposal for managing the purse seine fishery through a total allowable catch limit.
- The U.S. delegation to the WCPFC Northern Committee should propose a more effective and comprehensive Pacific bluefin tuna conservation measure, specifically to address juvenile mortality, for adoption by the WCPFC.
- The United States should pursue participation in the coordination meeting on bluefin tuna conservation between Japan, Mexico and the IATTC secretariat scheduled for August 30, and should encourage the IATTC to move forward with a proposal for a bluefin tuna conservation measure.
- The United States should support proposals that would increase compliance with IATTC management measures, especially those related to illegal, unreported, and unregulated (IUU) fishing.
- The U.S. delegations to the IATTC and WCPFC should advocate for more comprehensive data reporting and collection by members of the IATTC and WCPFC.

The Northern Committee meeting occurs September 7-11, 2010, in Fukuoka, Japan. The IATTC annual meeting occurs September 27 to October 1, 2010, in Antigua, Guatemala.

The Council also asked the NMFS Southwest Region to work with the NMFS Pacific Islands Regional Office to reexamine regulations related to vessel monitoring system requirements for vessels that have a WCPFC Area Endorsement on their High Seas Fishing Compliance Act permit, in order to consider how to reduce their financial impact on U.S. West Coast albacore vessels.

#### Amendment 2 to the HMS FMP

When the MSA was reauthorized in 2007 new provisions were added relative to National Standard 1 ("Conservation and management measures shall prevent overfishing while achieving, on a continuing basis, the optimum yield from each fishery for the United States fishing industry."). Specifically, §303(a)(15) states that FMPs shall "...establish a mechanism for specifying annual catch limits in the plan ..., implementing regulations, or annual specifications, at a level such that overfishing does not occur in the fishery, including measures to ensure accountability." NMFS published a final rule in the Federal Register on January 16, 2009, (74 FR 3178) with detailed guidance on implementing this and other new MSA provisions related to preventing overfishing.

In November 2009 the HMSMT presented a preliminary range of alternatives for Amendment 2 and sought Council guidance. In April 2010 the Council adopted a range of alternatives for public review and in June 2010 took final action to adopt a preferred alternative. The Council proposed the following changes to the HMS FMP to comply with the revised National Standard 1 Guidelines:

- Defining management unit species as: albacore tuna, bigeye tuna, skipjack tuna, bluefin tuna, yellowfin tuna, striped marlin, swordfish, blue shark, common thresher shark, shortfin mako shark, and dorado (dolphin);
- Defining ecosystem component species as: bigeye thresher shark, common mola, escolar, lancetfishes, louvar, pelagic stingray, pelagic thresher shark, and wahoo;
- Applying the international exception to all management unit species;
- Adding language describing the need for the Council to coordinate with the Western Pacific Fishery Management Council to determine the primary FMP at the stock level for managed species found in both the HMS FMP and the Pelagics FMP. The Council approved the current listing of Council lead roles for various species, noting the listing was not to be a permanent feature of the FMP;

- Adding language describing how maximum sustainable yield (MSY) or MSY proxies are to be estimated using methods consistent with data availability category and specification of Acceptable Biological Catch (ABCs) and Annual Catch Limits (ACLs), as described in National Standard 1 Guidelines, in the case any managed species become no longer subject to the international exception at some future point;
- Adding language describing that estimates of MSY and optimum yield (OY) (currently included in the FMP) can be adjusted through the biennial management process described in the HMS FMP based on new information, which provides for NMFS review of Council recommendations;
- While not a change to the FMP, the Council confirmed that status determination criteria and OY will be estimated using methods as currently described in the FMP.

These changes are subject to review and approval/disapproval by NMFS with the expectation that the revised FMP would become effective in 2011 along with accompanying federal regulations.

#### Limited Entry for the West Coast North Pacific Albacore Fishery

In early 2009 NMFS commissioned a study of potential management options for the U.S. West Coast North Pacific albacore fisheries. The HMSMT and HMSAS reviewed drafts of the "white paper" in 2009 and a finalized version was submitted to the Council at their April 2010 meeting. Based on information in the paper the Council considered the necessity of establishing a license limitation, or limited entry program for the West Coast albacore fishery.

In April 2009 the Council conducted scoping on the issue and decided it was not necessary to proceed with development of a limited entry program at this time. It directed the HMSMT, with assistance from the HMSAS and support from NMFS, to gather additional information about characteristics of domestic and international albacore fishing fleets. This information would be used to develop any U.S. proposals for albacore conservation and management at the international RFMO level and appropriate domestic management measures, should action be necessary in response to an updated stock assessment expected in 2011. The Council asked to receive a report on these matters in the first half of 2011.

Related to the limited entry question, the Council considered whether to take action to change the current March 9, 2000, control date for HMS fisheries but concluded that no action was necessary, since a limited entry program will not be developed in the foreseeable future.

#### Critical Habitat Designation for Pacific Leatherback Sea Turtles

On January 5, 2010, NMFS published a proposed rule to designate critical habitat for the endangered leatherback sea turtle (*Dermochelys coriacea*), in selected areas of the U.S. West Coast Exclusive Economic Zone (EEZ). Critical habitat is defined in the Endangered Species Act (ESA) as areas whose physical and biological features are essential to the conservation of the species and which may require special management considerations or protection. Such areas may be within the area occupied by the species at the time of ESA listing or outside that area, if warranted. Section 7 of the ESA requires Federal agencies to ensure they do not fund, authorize, or carry out any actions that will destroy or adversely modify critical habitat.

The proposed rule identified two areas for designation covering approximately 70,600 square miles of marine habitat off the West Coast. The comment period on the proposed rule was extended to April 23, 2010 (75 FR 7434), allowing the Council to develop comments at the April 2010 meeting. Council comments included:

- Support of the finding that fishing does not adversely affect the functions (known as Primary Constituent Elements), of passage and prey, which were identified for leatherback critical habitat. Impacts of fishing on leatherbacks are best addressed through the provisions in Section 7 of the ESA.
- Concern about the 70,600 square mile extent of the area proposed for critical habitat designation and the potential precedent setting nature of such a designation. The Council noted that marine critical habitat designation for leatherbacks in the Caribbean is based on the location of nesting beaches, which appears inconsistent with the proposed West Coast designation.
- Concern that the proposed rule and supporting biological and socioeconomic reports did not provide sufficient explanation of the methodology used to determine which areas to designate, the boundaries of those areas, and their extent.
- A recommendation that Tribal Usual and Accustomed Areas in marine areas not be included in the designation.
- Concern about inter-annual variation in oceanographic conditions not being addressed in the designation.
- Suggestion that future developments in ecosystem-based management be applied to critical habitat designations.

### 2.0 DESCRIPTION OF THE FISHERIES

#### 2.1 Commercial Fisheries

#### 2.1.1 California

#### 2.1.1.1 Surface Hook-and-Line Fishery for Albacore

Albacore is an economically valuable fishery in California and has been a target of commercial fishermen for more than 100 years. Troll and live bait are the principal commercial gears, although some albacore is caught using purse seine, longline, and drift gillnet gear as well. Since 1980, the number of surface hookand-line vessels landing albacore in California ports has ranged annually from a high of 1,310 in 1981 to a low of 67 in 2008. The fishing season varies from year to year, depending on oceanographic conditions, which strongly influence the occurrence of fish within range of the California-based fleet, and economics. A typical season runs July through October, with landings peaking in the fall. A general resident or nonresident commercial fishing license and a current California Department of Fish and Game (CDFG) vessel registration are required to catch and land albacore in the state of California. Additionally, the HMS FMP requires a federal permit with a surface hook-and-line gear endorsement for all U.S. commercial and recreational charter fishing vessels that fish for HMS within the West Coast exclusive economic zone (EEZ, 3–200 nautical miles) and to U.S. vessels that pursue HMS on the high seas (seaward of the EEZ) and land their catch in California, Oregon, or Washington.

In 2009, 130 commercial surface hook-and-line vessels landed over 348 mt of albacore compared to 72 vessels that landed 383 mt in 2008 (Table 2–1). The volume and number of landings varied throughout ports in California. More than half of the 2009 landings were delivered to the Eureka area. An increase in albacore fishing vessels may have occurred as closures of salmon fisheries in 2009 found salmon fishermen targeting albacore instead. In 2008, the highest share of landings was delivered to Los Angeles (Table 2–1). Nominal landings occurred from January through June. Landings substantially increased in July, peaked in August, and declined the rest of the year (Table 2–2), though remaining at significant levels through November. Ex-vessel revenue was \$0.89 million in 2009, a decrease of around seven percent compared to about \$0.96 million in 2008.

|                           | 2008<br>Landings  |          |                   | 2009<br>ndings |
|---------------------------|-------------------|----------|-------------------|----------------|
| Port Complex <sup>1</sup> | (mt) <sup>2</sup> | (number) | (mt) <sup>2</sup> | (number)       |
| Eureka                    | 111               | 94       | 206               | 233            |
| Fort Bragg                | *                 | *        | 12                | 35             |
| Bodega Bay                | *                 | *        | 8                 | 10             |
| San Francisco             | 8                 | 8        | 22                | 61             |
| Monterey                  | 33                | 20       | 37                | 63             |
| Morro Bay                 | 8                 | 8        | *                 | *              |
| Santa Barbara             | *                 | *        | 7                 | 35             |
| Los Angeles               | 215               | 14       | 51                | 16             |
| San Diego                 | 2                 | 21       | 6                 | 18             |
| Total                     | 383               | 199      | 348               | 475            |

 Table 2–1.
 Annual commercial landings (round mt) and number of deliveries for albacore landed in

 California's major port complexes by the surface hook-and-line fleet, 2008–09.

Source: California's Commercial Fisheries Information System (CFIS), market receipt data, extracted May 18, 2010. Additional processing information:

<sup>1</sup>- Port Complex: composed of two or more ports within one of the nine geographic statistical reporting areas.

<sup>2</sup>-Landings in pounds are converted to round weight mt by dividing the landed weights by 2000 for short ton (ST), and then multiplying the conversion factor of 0.9072 for MT.

\* -Withheld for data confidentiality reasons.

In 2001, the last operational cannery in the Port of Los Angeles closed its doors, ending a West Coast tuna-canning dynasty. Changing global market conditions and a dynamic raw material/finished goods supply environment forced the plants to close. Without domestic-based cannery operations, a majority of the albacore are landed fresh or frozen, then exported to overseas markets for processing. There were 477 mt of fresh and frozen albacore valued at about \$1.3 million exported from California in 2009, up from 113 mt valued at \$0.3 million in 2008.

|           | 2008                          |                                    | 20                            | 09                                 |
|-----------|-------------------------------|------------------------------------|-------------------------------|------------------------------------|
| Month     | Landings<br>(mt) <sup>1</sup> | Ex-vessel<br>(dollar) <sup>2</sup> | Landings<br>(mt) <sup>1</sup> | Ex-vessel<br>(dollar) <sup>2</sup> |
| January   |                               |                                    | 2                             | 3,498                              |
| February  | *                             | *                                  |                               |                                    |
| March     | *                             | *                                  | *                             | *                                  |
| April     | *                             | *                                  | *                             | *                                  |
| May       |                               |                                    | *                             | *                                  |
| June      | *                             | *                                  | *                             | *                                  |
| July      | 7                             | 15,065                             | 53                            | 131,604                            |
| August    | 61                            | 141,195                            | 134                           | 318,460                            |
| September | 60                            | 171,303                            | 76                            | 236,406                            |
| October   | 249                           | 623,172                            | 52                            | 127,400                            |
| November  | 4                             | 9,533                              | 27                            | 66,618                             |
| December  | *                             | *                                  | *                             | *                                  |
| Total     | 383                           | 963,005                            | 348                           | 890,742                            |

| Table 2–2. Monthly commercial landings (round mt) and ex-vessel revenue for albacore landed in California |
|-----------------------------------------------------------------------------------------------------------|
| ports by the surface hook-and-line fleet, 2008–09.                                                        |

Source: California's Commercial Fisheries Information System (CFIS), market receipt data, extracted May 18, 2010.

Additional processing information:

<sup>1</sup>-Landings in pounds are converted to round weight mt by dividing the landed weights by 2000 for ST, and then multiplying the conversion factor of 0.9072 for MT.

<sup>2</sup>-Ex-vessel revenues are nominal (not adjusted for inflation).

\* -Withheld due to data confidentiality requirements.

The recent decline in landings and revenues does not necessarily reflect a decline in the albacore population but more likely reflects a shift in fishing effort by California-based vessels into waters off Oregon and Washington where albacore have been more available due to favorable oceanographic conditions. Additionally, industry representatives have indicated that in recent years lower operating costs and better landing facilities outside of California have resulted in a decrease in California landings.

#### 2.1.1.2 Coastal Purse Seine Fishery for Yellowfin, Skipjack, and Bluefin Tunas

U.S. West Coast catch of yellowfin, skipjack, and bluefin tuna represents a relatively minor component of overall EPO tuna catch. More than 90 percent of the catch for these species in the U.S. EEZ portion of the eastern Pacific Ocean (EPO) is made by small coastal purse seine vessels operating in the Southern California Bight (SCB) from May to October. These vessels primarily target small pelagic species, especially Pacific mackerel, Pacific sardine, anchovy, and market squid. However, they will target the tropical yellowfin and skipjack tunas when intrusions of warm water from the south bring these species within range of the coastal purse seine fleet. Similarly, purse seine vessel operators will target the higher-valued temperate water bluefin tuna when they enter the coastal waters of the SCB. Since 1981, the

number of purse seine vessels that have landed tuna in California has ranged from a high of 51 in 1986 to a low of fewer than three in 2008. The decline in the number of domestic vessel correlates with the relocation of large cannery operations. Increased labor costs for domestic production has contributed to these facilities being moved overseas, where labor costs are less. Currently there are no canneries functioning as primary offloaders of tuna in California. A general resident or non-resident commercial fishing license and a current CDFG vessel registration are required to catch and land tuna caught in purse seine gear. Additionally, the HMS FMP requires a logbook and federal permit with a purse seine gear endorsement for all U.S. vessels that fish for HMS within the West Coast EEZ and to U.S. vessels that pursue HMS on the high seas (seaward of the EEZ) and land their catch in California, Oregon, or Washington.

<u>Yellowfin Tuna</u>: Less than three boats landed yellowfin tuna in 2009, similar to 2008. Landings and revenue for yellowfin tuna for 2008-2009 could not be reported because of federal data confidentiality rules that do not allow reporting information unless aggregated for three or more vessels. However, the annual landing trend has been one of decline since 1976, when more than 125,000 mt of fish were landed in California ports.

In 2009, California landings of yellowfin tuna originated from waters within the US EEZ. About 203 mt of yellowfin was exported in 2009; exports of fresh yellowfin from California went to Japan and the Philippines in 2009; frozen products also went to Indonesia for processing.

**Skipjack Tuna**: In 2009, less than three vessels landed skipjack, similar to 2008. Landings and revenue for skipjack tuna for 2007-2008 could not be reported because of federal data confidentiality rules that do not allow reporting information unless aggregated for three or more vessels. However, the annual landings trend has been one of decline following the historic high of 79,111 mt in 1980. Annual landings and ex-vessel revenues have been relatively flat since 1985, averaging 2,641 mt and \$2.7 million.

Skipjack landed in California are caught primarily in the SCB and seaward of the Mexican EEZ. There were 600 mt of exports of frozen skipjack tuna from California reportedly valued at about \$734 thousand in 2009, an increase from 169 mt valued at about \$201 thousand in 2008, with most going to New Zealand, Russia, and Spain.

**Bluefin Tuna**: In 2009, six vessels landed 410 mt of bluefin tuna with an ex-vessel revenue of \$426 thousand; all landings occurred in the Los Angeles area and the majority of the landings took place in August (173 mt / \$190 thousand) and September (190 mt / \$196 thousand). In 2008, there were no bluefin tuna landed by purse seine vessels in California, although a small amount (less than 2 mt) was landed incidentally by other gears. In 2009, 54 mt of bluefin valued at \$198 thousand were exported. All exports of bluefin tuna from California were frozen, and went mostly to Canada, with a small amount exported to Italy.

#### 2.1.1.3 Harpoon Fishery for Swordfish

California's harpoon fishery for swordfish developed in the early 1900s. Prior to 1980, harpoon and hook-and-line were the only legal gears for commercially harvesting swordfish. At that time, harpoon gear accounted for the majority of swordfish landings in California ports. In the early 1980s, a limited entry drift gill net fishery was authorized by the State Legislature and soon afterward drift gillnets replaced harpoons as the primary method for catching swordfish, and the number of harpoon permits decreased from a high of 1,223 in 1979 to a low of 25 in 2001. Fishing effort typically occurs in the SCB from May to December, peaking in August, depending on weather conditions and the availability of fish in coastal waters. Some vessel operators work in conjunction with a spotter airplane to increase the search area and to locate swordfish difficult to see from the vessel. This practice tends to increase the catch-per-unit-effort compared to vessels that do not use a spotter plane.

To participate in the harpoon fishery a state permit and logbook are required in addition to a general resident or non-resident commercial fishing license and a current CDFG vessel registration. Additionally, the HMS FMP requires a federal permit with a harpoon gear endorsement for all U.S. vessels that fish for HMS within the West Coast EEZ and to U.S. vessels that pursue HMS on the high seas (seaward of the EEZ) and land their catch in California, Oregon, or Washington.

| Table 2-3. Annual commercial landings (round mt) and number of deliveries for | swordfish | landed in |
|-------------------------------------------------------------------------------|-----------|-----------|
| California's major port complexes by the harpoon fleet, 2008–09.              |           |           |

|                           | 2008<br>Landings  |          | La                | 2009<br>ndings |
|---------------------------|-------------------|----------|-------------------|----------------|
| Port Complex <sup>1</sup> | (mt) <sup>2</sup> | (number) | (mt) <sup>2</sup> | (number)       |
| Santa Barbara             | 3                 | 11       | 1                 | 3              |
| Los Angeles               | 25                | 128      | 28                | 127            |
| San Diego                 | 20                | 78       | 21                | 98             |
| Total                     | 48                | 217      | 49                | 228            |

Source: California's Commercial Fisheries Information System (CFIS), market receipt data, extracted May 18, 2010. Additional processing information:

<sup>1</sup>- Port Complex: comprised of two or more ports within one of the nine geographic statistical reporting areas.

 $^{2}$ -Landings in pounds are converted to round weight in mt by dividing the landed weights by 2000 for ST, and then multiplying the conversion factor of 0.9072 for MT. A conversion factor of 1.45 was multiplied by the reported dressed weight to obtain a round weight estimate.

|           | 2008                          |                                    |                               | 09                                 |
|-----------|-------------------------------|------------------------------------|-------------------------------|------------------------------------|
| Month     | Landings<br>(mt) <sup>1</sup> | Ex-vessel<br>(dollar) <sup>2</sup> | Landings<br>(mt) <sup>1</sup> | Ex-vessel<br>(dollar) <sup>2</sup> |
| January   |                               |                                    |                               |                                    |
| February  |                               |                                    |                               |                                    |
| March     |                               |                                    |                               |                                    |
| April     |                               |                                    |                               |                                    |
| May       | *                             | *                                  |                               |                                    |
| June      | 4                             | 50,509                             | *                             | *                                  |
| July      | 13                            | 144,723                            | 9                             | 96,438                             |
| August    | 15                            | 138,669                            | 10                            | 106,352                            |
| September | 6                             | 56,373                             | 17                            | 143,398                            |
| October   | 4                             | 35,384                             | 10                            | 82,526                             |
| November  | 3                             | 22,147                             | 2                             | 16,110                             |
| December  | *                             | *                                  | *                             | *                                  |
| Total     | 48                            | 457,045                            | 49                            | 459,558                            |

Table 2–4. Monthly commercial landings (round mt) and ex-vessel revenue (dollars) for swordfish landed in California by the harpoon fleet, 2008–09.

Source: California's Commercial Fisheries Information System (CFIS), market receipt data, extracted May 18, 2010. Additional processing information:

<sup>1</sup>-Landings in pounds are converted to round weight mt by dividing the landed weights by 2000 for ST, and then multiplying the conversion factor of 0.9072 for mt. A conversion factor of 1.45 was multiplied by the reported dressed weight to obtain a round weight estimate.

<sup>2</sup>-Ex-vessel revenues are nominal (not adjusted for inflation).

\* -Withheld for data confidentiality reasons.

In 2009, 28 harpoon vessels landed 48 mt of swordfish, comparable to 2008, when 31 vessels landed a similar amount (Table 2–3). Fishing effort was concentrated in coastal waters off San Diego and Orange Counties in the SCB, especially from fishing blocks between the coast and Santa Catalina and San Clemente Islands. Landings occurred June through December, peaking in August (Table 2–4).

The ex-vessel revenue for 2009 was \$459,558 comparable to 2008 with a similar amount (Table 2–4). Because harpoon vessels spend less time on the water and are a low-volume fishery, their catch is often fresher than drift-gillnet-caught fish, so markets tend to pay more for harpooned fish. The average exvessel price-per-pound of landed weight for harpooned fish was \$6.14 compared to \$2.81 for drift gillnet caught fish in 2009. Harpooned swordfish support domestic seafood restaurant businesses and is advertised as a bycatch-free fishery, although some mako and thresher shark is taken as well.

#### 2.1.1.4 Drift Gillnet Fishery for Swordfish and Shark

**Swordfish**: California's swordfish fishery transformed from primarily a harpoon fishery to a drift gillnet fishery in the early 1980s; landings soared to a historical high of 2,367 mt by 1985. The drift gillnet fishery is managed by a limited entry permit system, with mandatory gear standards and seasonal area closures used to address various conservation concerns. The permit is linked to an individual fisherman, not a vessel, and is only transferable under very restrictive conditions; thus the value of the vessel does not become artificially inflated. To keep a permit active, current permittees are required to purchase a permit from one consecutive year to the next; however, they are not required to make landings using drift gillnet gear. In addition, a general resident or non-resident commercial fishing license and a current vessel registration are required to catch and land fish caught in drift gillnet gear. A logbook is also required. The HMS FMP requires a federal permit with a drift gillnet gear endorsement for all U.S. vessels that fish for HMS within the West Coast EEZ and to U.S. vessels that pursue HMS on the high seas (seaward of the EEZ) and land their catch in California, Oregon, or Washington.

About 150 permits were initially issued when the limited entry program was established in 1980. The number of permits has declined from a high of 251 in 1986 to a low of 84 as of 2009, and only 46 vessels participated in the swordfish fishery in 2009 (Table 2–5). Annual fishing effort has also decreased from a high of 11,243 sets in the 1986 fishing season to 1,043 sets in 2005. Industry representatives attribute the decline in vessel participation and annual effort to regulations implemented to protect threatened and endangered marine mammals, sea turtles, and seabirds.

|      | Active <sup>1</sup> | Permits |      | Active <sup>1</sup> | Permits |
|------|---------------------|---------|------|---------------------|---------|
| Year | Vessels             | Issued  | Year | Vessels             | Issued  |
| 1980 | 100                 | *       | 1995 | 117                 | 185     |
| 1981 | 118                 | *       | 1996 | 111                 | 167     |
| 1982 | 166                 | *       | 1997 | 108                 | 120     |
| 1983 | 193                 | *       | 1998 | 98                  | 148     |
| 1984 | 214                 | 226     | 1999 | 84                  | 136     |
| 1985 | 228                 | 229     | 2000 | 78                  | 127     |
| 1986 | 204                 | 251     | 2001 | 69                  | 114     |
| 1987 | 185                 | 218     | 2002 | 50                  | 106     |
| 1988 | 154                 | 207     | 2003 | 43                  | 100     |
| 1989 | 144                 | 189     | 2004 | 40                  | 96      |
| 1990 | 134                 | 183     | 2005 | 42                  | 90      |
| 1991 | 114                 | 165     | 2006 | 45                  | 88      |
| 1992 | 119                 | 149     | 2007 | 46                  | 86      |
| 1993 | 123                 | 117     | 2008 | 46                  | 85      |
| 1994 | 138                 | 162     | 2009 | 46                  | 84      |

 Table 2–5. Annual drift gillnet permits issued and number of active vessels, 1981–2009.

Source: CDFG License and Revenue Branch (LRB), extracted May 18, 2010.

Additional processing information:

i.

<sup>1</sup>-some vessels only land thresher and/or swordfish from year to year so the highest number of active vessels for both components of the fishery were reported for this gear.

\*-actual number of permits issued by LRB not available but the California State Legislature set a cap of 150 in 1982.

Historically, the California drift gillnet fleet operated within EEZ waters adjacent to the state and as far north as the Columbia River, Oregon, during El Niño years. Fishing activity is highly dependent on seasonal oceanographic conditions that create temperature fronts which concentrate feed for swordfish. Because of the seasonal migratory pattern of swordfish and seasonal fishing restrictions, over 90 percent of the fishing effort occurs from August 15 through January 31.

In 2001, NMFS implemented two Pacific sea turtle conservation areas on the West Coast with seasonal drift gillnet restrictions to protect endangered leatherback and loggerhead turtles. The larger of the two closures spans the EPO north of Point Conception, California (34°27' N. latitude) to mid-Oregon (45° N. latitude) and west to 129° W. longitude. Drift gillnet fishing is prohibited annually within this conservation area from August 15 to November 15 to protect leatherbacks sea turtles. A smaller closure was implemented to protect Pacific loggerhead turtles from drift gillnet gear during a forecasted or occurring El Niño event, and is located south of Point Conception, California and west of 120° W. longitude from June 1 - August 31 (72 FR 31756). Since the closure was enacted the number of active participants in the drift gillnet fishery declined by nearly half, from 78 vessels in 2000 to 40 in 2004, and has remained under 50 vessels since then.

Table 2–6. Annual commercial landings (round mt) and number of deliveries for swordfish landed in California's major port complexes by the drift gillnet fleet, 2008–09.

|                           | 2008<br>Landings |          | 2009<br>Landings  |          |
|---------------------------|------------------|----------|-------------------|----------|
| Port Complex <sup>1</sup> | $(mt)^2$         | (number) | (mt) <sup>2</sup> | (number) |
| Bodega Bay                |                  |          |                   |          |
| San Francisco             |                  |          |                   |          |
| Monterey                  | 18               | 8        | 8                 | 7        |
| Morro Bay                 | 46               | 28       | 45                | 35       |
| Santa Barbara             | 21               | 22       | 8                 | 17       |
| Los Angeles               | 72               | 32       | 18                | 30       |
| San Diego                 | 249              | 279      | 173               | 223      |
| Total                     | 406              | 369      | 252               | 312      |

Source: California's Commercial Fisheries Information System (CFIS), market receipt data, extracted May 18, 2010, Additional processing information:

<sup>1</sup>- Port Complex: comprised of two or more ports within one of the nine geographic statistical reporting areas.

 $^{2}$ -Landings in pounds are converted to round weight mt by dividing the landed weights by 2000 for ST, and then multiplying the conversion factor of 0.9072 for MT. A conversion factor of 1.45 was multiplied by the reported dressed weight to obtain a round weight.

\* -Withheld for data confidentiality reasons.

Table 2–7. Monthly commercial landings (round mt) and ex-vessel revenue for swordfish landed in California by the drift gillnet fleet, 2008–09.

|           | 2008 20                       |                                    | 09                            |                                    |
|-----------|-------------------------------|------------------------------------|-------------------------------|------------------------------------|
| Month     | Landings<br>(mt) <sup>1</sup> | Ex-vessel<br>(dollar) <sup>2</sup> | Landings<br>(mt) <sup>1</sup> | Ex-vessel<br>(dollar) <sup>2</sup> |
| January   | 10                            | 79,079                             | 16                            | 63,936                             |
| February  | *                             | *                                  |                               |                                    |
| March     |                               |                                    |                               |                                    |
| April     |                               |                                    |                               |                                    |
| May       |                               |                                    |                               |                                    |
| June      |                               |                                    |                               |                                    |
| July      |                               |                                    |                               |                                    |
| August    | *                             | *                                  | 1                             | 5,643                              |
| September | 27                            | 169,361                            | 21                            | 92,054                             |
| October   | 95                            | 431,121                            | 29                            | 126,529                            |
| November  | 155                           | 611,537                            | 64                            | 295,558                            |
| December  | 118                           | 403,318                            | 121                           | 488,706                            |
| Total     | 406                           | 1,703,446                          | 252                           | 1,072,426                          |

Source: California's Commercial Fisheries Information System (CFIS), market receipt data, extracted May 18, 2010. Additional processing information:

<sup>1</sup>-Landings in pounds are converted to round weight mt by dividing the landed weights by 2000 for ST, and then multiplying the conversion factor of 0.9072 for MT. A conversion factor of 1.45 was multiplied by the reported dressed weight to obtain a round weight.

<sup>2</sup>-Ex-vessel revenues are nominal (not adjusted for inflation).

\* -Withheld for data confidentiality reasons.

In 2009, 32 drift gillnet vessels landed 405 mt of swordfish compared to 37 vessels that landed 405 mt in 2008 (Table 2–6). Landings occurred at ports from San Diego to Monterey, and the majority occurred from October to December. About 68 percent of the reported effort occurred in the SCB.

The ex-vessel revenue was \$1.1 million in 2009 compared to \$1.7 million in 2009 (Table 2-7). The

revenue decline was primarily driven by a decreased number of landings, as the ex-vessel price per pound of landings increased from \$1.90 in 2008 to \$1.94 in 2009, while the number of landings decreased from 406 mts in 2008 to 252 mts for 2009. Most of the swordfish landed in California supports the domestic seafood restaurant businesses.

**Thresher Shark**: Initial development of the drift gillnet fishery in the late 1970s was founded on catches of common thresher shark. The thresher shark fishery rapidly expanded, peaking in 1985, when 228 vessels landed more than 1,000 mt of shark. Following 1985, swordfish replaced thresher shark as the primary target species because there was a greater demand for swordfish and it commands a higher price-per-pound. Annual thresher shark landings declined in subsequent years because to protect the swordfish to maximize economic returns and the implementation of management measures to protect the thresher shark resource.

Table 2–8. Annual commercial landings (round mt) and number of deliveries for common thresher shark landed in California's major port complexes by the large mesh drift gillnet fleet, 2008–09.

|                           | 2008<br>Landings |          | 2009<br>Landings  |          |
|---------------------------|------------------|----------|-------------------|----------|
| Port Complex <sup>1</sup> | $(mt)^2$         | (number) | (mt) <sup>2</sup> | (number) |
| Bodega Bay                | 0                | 0        | 0                 | 0        |
| Monterey                  | 1                | 5        | *                 | *        |
| Morro Bay                 | 16               | 16       | *                 | *        |
| Santa Barbara             | 28               | 50       | 7                 | 15       |
| Los Angeles               | 18               | 27       | 9                 | 20       |
| San Diego                 | 35               | 100      | 18                | 79       |
| Total                     | 98               | 198      | 39                | 125      |

Source: California's Commercial Fisheries Information System (CFIS), market receipt data, extracted May 18, 2010. Additional processing information:

<sup>1</sup>- Port Complex: comprised of two or more ports within one of the nine geographic statistical reporting areas.

 $^{2}$ -Landings in pounds are converted to round weight mt by dividing the landed weights by 2000 for ST, and then multiplying the conversion factor of 0.9072 for MT. A conversion factor of 1.70 was multiplied by the reported dressed weight to obtain a round weight.

\* -Withheld for data confidentiality reasons.

In 2009, 32 drift gillnet vessels landed 39 mt of common thresher shark compared to 39 vessels that landed 98 mt in 2008 (Table 2–8). Landings occurred throughout the open season but a majority occurred in January (finishing the previous season), then October through December at ports from San Diego to Monterey (Table 2–8). Fishing effort was focused in the SCB.

The ex-vessel revenue for 2009 was \$64,936 compared to \$175,681 in 2008 (Table 2–9). Fresh thresher shark landings support domestic seafood restaurant businesses. The decline in revenues was not only due to a drop in landings from 98 to 39 mt, but also because the ex-vessel price declined from \$0.82 to \$0.76 per pound of landings.

| Table 2-9. Monthly commercial landings (round mt) and ex-vessel revenue for common thresher | shark |
|---------------------------------------------------------------------------------------------|-------|
| landed in California ports by the large mesh drift gillnet fleet, 2008–09.                  |       |

|           | 2008                          |                                    | 20                            | 009                                |
|-----------|-------------------------------|------------------------------------|-------------------------------|------------------------------------|
| Month     | Landings<br>(mt) <sup>1</sup> | Ex-vessel<br>(dollar) <sup>2</sup> | Landings<br>(mt) <sup>1</sup> | Ex-vessel<br>(dollar) <sup>2</sup> |
| January   | 13                            | 26,846                             | 8                             | 16,034                             |
| February  | 3                             | 7,022                              |                               |                                    |
| March     |                               |                                    |                               |                                    |
| April     |                               |                                    |                               |                                    |
| May       | *                             | *                                  |                               |                                    |
| June      | >1                            | 783                                |                               |                                    |
| July      | *                             | *                                  |                               |                                    |
| August    | 7                             | 13,118                             | 3                             | 5,425                              |
| September | 8                             | 15,595                             | 1                             | 1,976                              |
| October   | 34                            | 54,789                             | 1                             | 1,708                              |
| November  | 15                            | 27,476                             | 13                            | 19,434                             |
| December  | 17                            | 29,566                             | 13                            | 20,359                             |
| Total     | 98                            | 175,681                            | 39                            | 64,936                             |

Source: California's Commercial Fisheries Information System (CFIS), market receipt data, extracted May 18, 2010. Additional processing information:

<sup>1</sup>-Landings in pounds are converted to round weight mt by dividing the landed weights by 2000 for ST, and then multiplying the conversion factor of 0.9072 for MT. A conversion factor of 1.70 was multiplied by the reported dressed weight to obtain a round weight.

<sup>2</sup>-Ex-vessel revenues are nominal (not adjusted for inflation).

#### 2.1.1.5 High Seas Longline Fishery for Swordfish

California prohibits pelagic longline fishing within the EEZ and the retention of striped marlin. Vessels operating outside of the EEZ can land fish in California ports if the operator has a general resident or non-resident commercial fishing license and a current CDFG vessel registration. The operator must comply with the High Seas Fishing Compliance Act, which requires U.S. vessel operators to maintain logbooks if they fish beyond the EEZ. Additionally, the HMS FMP requires a federal permit with a pelagic longline gear endorsement for all U.S. vessels that pursue HMS on the high seas (seaward of the EEZ) and land their catch in California, Oregon, and Washington. Under federal regulations only vessels permitted under the Western Pacific Fishery Management Council's Pelagics FMP may use shallow-set longline gear to target swordfish, and may land their catch on the West Coast. Targeting tunas with deep-set longline gear is permitted outside the EEZ under the HMS FMP.

In recent years, federal regulations were promulgated to protect endangered sea turtles east and west of 150° W longitude and north of the equator have impacted the number of landings of swordfish in California ports. In 2009, 4 longline vessels landed 106 mt of swordfish with an ex-vessel value of \$386,008; in 2008, five longline vessels landed 58 mt with a value of \$195,496; Annual longline-caught swordfish landings and ex-vessel revenues have been declining since 2000 when landings and ex-vessel revenue totaled 1,873 mt and \$8.0 million, respectively (Tables 4–13 and 4–19).

#### 2.1.2 Oregon

#### 2.1.2.1 Surface Hook-and-Line Fishery for Albacore

Albacore has been fished commercially off of Oregon since the mid-1930s when the fishery expanded north from the traditional grounds off southern California. For many years, both bait boats and jig boats

fished for albacore off Oregon, but in recent years, predominantly jig-caught (troll-caught) fish have been landed. The current fleet consists primarily of small to medium (20 ft to 60 ft) "combination" boats, which may fish crab, salmon, or bottom fish at other times of the year, and large freezer boats (most longer than 60 ft) that travel the north and south Pacific, principally fishing albacore.

Oregon albacore landings have been highly variable through the years, ranging from a low of 12.3 mt in 1936 to a high of over 17,000 mt in 1968. In the last decade, annual landings in Oregon have averaged nearly 4,000 mt.

Sampling of Oregon's commercial albacore fishery is a cooperative effort between the ODFW, NMFS, and Pacific States Marine Fisheries Commission.

Commercial landings of albacore into Oregon totaled 4,599 mt in 2009, 14 percent more than the 4,026 mt landed in 2008, but similar to 2007 landings (Table 2-10). Landings of albacore into Oregon ports began with a small landing in mid-June and continued through early October. The peak of landings occurred during the first week of August. Rough ocean conditions at the end of July and in mid-September caused two brief declines in landings. About the middle of August, successful troll fishing from jig boats became increasingly difficult and many left the fishery for the remainder of the season. The few boats which continued jig fishing in late October and early November experienced excellent fishing before unfavorable weather ended the season. Large schools of fish were present 50 to 75 miles offshore from Oregon's major ports through the first week of November, and bait vessels had excellent success fishing on these schools.

A total of 418 vessels made at least one landing of albacore in 2009, up 24 percent from 377 vessels in 2008. These vessels made 1,314 landings in 2009, which is a 31 percent increase from 902 landings in 2008.

Newport received the majority of Oregon deliveries in 2009 and half of the statewide total landed. Astoria had 26 percent of the landings by weight, followed by Charleston with 20 percent. Eleven other ports also receiving deliveries are displayed in Table 2-11. The average landing in 2009 was 3.5 mt, down 20 percent from the 4.4 mt average in 2008.

| Month     | 2007   | 2008   | 2009   |
|-----------|--------|--------|--------|
| May       | 0      | 0      | 0      |
| June      | 45.3   | 0      | 22.1   |
| July      | 1513.0 | 1107.0 | 1610.0 |
| August    | 1805.8 | 1859.6 | 1932.0 |
| September | 1015.3 | 686.8  | 819.8  |
| October   | 336.6  | 371.8  | 195.6  |
| November  | 22.9   | 1.0    | 19.3   |
| Total     | 4738.9 | 4026.2 | 4598.8 |

 Table 2-10. Oregon commercial albacore landings (mt) by month, 2007-2009.

Data source: ODFW fish ticket landings data, extracted July 2010.

| Port           | 2007   | 2008   | 2009   |
|----------------|--------|--------|--------|
| Astoria        | 1297.6 | 1213.8 | 1184.4 |
| Garibaldi      | 186.1  | 103.7  | 97.5   |
| Pacific City   | 2.8    | 3.5    | 4.5    |
| Depoe Bay      | 5.5    | 1.6    | 2.9    |
| Newport        | 2166.3 | 1469.0 | 2297.7 |
| Florence       | 21.7   | 11.5   | 9.1    |
| Winchester Bay | 52.6   | 61.0   | 40.1   |
| Charleston     | 975.5  | 1140.0 | 922.1  |
| Bandon         | 1.5    | 1.4    | 1.3    |
| Port Orford    | 12.1   | 3.4    | 12.1   |
| Gold Beach     | 4.6    | 0.8    | 5.8    |
| Brookings      | 12.6   | 16.4   | 20.3   |
| Smaller Ports  | 0.0    | 0.0    | 1.0    |
| Total          | 4738.9 | 4026.2 | 4598.8 |

Table 2-11. Oregon commercial albacore landings (mt) by port, 2007-2009.

Data source: ODFW fish ticket landings data, extracted July 2010.

Albacore markets and prices (Table 2-12) were much weaker during 2009 than in 2008. Ex-vessel revenue generated from albacore in 2009 totaled \$10.2 million, down 4 percent from 2008's ex-vessel value of \$10.7 million. The average, weighted, price per pound for albacore in Oregon for 2009 was \$1.01 per pound. This is down \$0.19 per pound from 2008 but \$0.23 per pound higher than the 25-year average of \$0.78 per pound (1985-2009). At the start of the season, prices for blast frozen albacore were \$1.15 per pound, lower than in 2008, and quickly diminished further with the first wave of landings, when dealers paid \$0.85 - \$0.95 per pound. These lower prices represented prices in the brine frozen market, where a majority of blast frozen fish were sold in 2009. Brine markets started with prices ranging from \$0.80 to \$0.95, and by the end of July had increased to prices of \$0.90 to \$1.05. Additional demand from Spain, Portugal and France triggered another boost in prices in early August, with prices ranging from \$1.00 to \$1.15 per pound. Fresh, iced prices at the beginning of the season ranged from \$0.90 to \$1.00 per pound, dropping as low as \$0.80 at larger dealers for most of July and August. These prices did increase slightly in late August and September to a range of \$0.85 to \$1.00. Demand and prices for fresh fish at alternative, smaller markets were strong throughout the 2009 season in all Oregon ports, with prices ranging from \$1.00 to \$1.75 per pound. To improve the value of their albacore, some local commercial fishers sold their catches directly off their vessels to the public, and received between \$1.50 and \$2.25 per pound. Demand remained strong in this market throughout the albacore season.

| Table 2 12 Er wagaal  | price-per-pound for albacore | tuna in Onegan 2007 2000    |
|-----------------------|------------------------------|-----------------------------|
| Table 2-12. Ex-vessel | price-per-pound for albacore | ; tuna m Oregon, 2007-2009. |
|                       | L . L . L                    |                             |

| Product Form       | 2007             | 2008             | 2009             |
|--------------------|------------------|------------------|------------------|
| frozen             | \$0.90 to \$1.20 | \$0.90 to \$1.45 | \$0.85 to \$1.15 |
| fresh              | \$0.65 to \$1.00 | \$0.90 to \$1.50 | \$0.80 to \$1.75 |
| off-vessel (whole) | \$1.75 to \$2.00 | \$1.75 to \$2.25 | \$1.50 to \$2.25 |

<sup>1</sup>Ex-vessel revenues are nominal values (not adjusted for inflation). Data source: ODFW fish ticket landings data, December 2009.

#### 2.1.2.2 Drift Gillnet Fishery for Swordfish and Shark

The Oregon commercial DGN fishery historically existed as an extension of the California fishery. In Oregon, the DGN fishery for swordfish has been managed under the Developmental Fisheries Program,

which authorized up to ten annual permits to fish for swordfish with DGN gear. For the past several years, the fishery was inactive and no one had applied for permits. As part of a substantial reduction in the Developmental Fisheries Program, the Oregon Fish and Wildlife Commission removed swordfish from the program, beginning in 2009. Consequently, state permits to fish with DGN gear off Oregon are no longer allowed.

#### 2.1.3 Washington

The commercial and recreational highly migratory species fisheries off the Washington coast are primarily for albacore tuna, although there are occasional smaller landings of thresher shark and blue shark. While there is not a fixed season, albacore fisheries generally begin in early to mid-July and continue until the tuna are no longer accessible off the Washington coast, usually around late September.

The albacore fisheries off Washington include commercial troll, bait boats, charter boats, and recreational fishing boats. There is no state commercial fishing license requirement for albacore tuna in Washington; however, a delivery permit is required to land commercially caught albacore into Washington. If fishers do not already have a fishing permit, which includes a delivery permit, fishers will need to purchase a delivery permit from the state.

Ilwaco and Westport are the two Washington ports with the highest HMS landings of albacore from the commercial surface hook-and-line fishery and account for more than 90 percent of the annual landings into the state (Table 2-13). Several other ports along the coast and in Puget Sound receive albacore landings as well.<sup>1</sup> Landings at these ports vary and are a direct reflection of market conditions. Many vessels, particularly in Westport, sell their product directly to the public off the dock rather than to fish buyers for processing.

| Table 2–13. Washington commercial albacore landings (mt) by port group, 2004–09 (listed in order of annual |  |
|------------------------------------------------------------------------------------------------------------|--|
| average).                                                                                                  |  |

| Port Group                     | 2004    | 2005    | 2006    | 2007    | 2008    | 2009    |
|--------------------------------|---------|---------|---------|---------|---------|---------|
| Ilwaco & Columbia River        | 4,267.1 | 1,658.1 | 5,534.3 | 2,698.0 | 2662.0  | 2,922.0 |
| Westport & Grays Harbor        | 3,213.3 | 2,842.9 | 2,673.9 | 3,119.3 | 3917.7  | 4,186.7 |
| North Puget Sound <sup>a</sup> | 753.8   | 298.6   | 334.4   | 85.4    | 131.3   | 170.1   |
| South Puget Sound <sup>b</sup> | 7.8     | 5.8     | 63.2    | 9.4     | 6.5     | 11.5    |
| Willapa Bay & Pacific County   | 29.8    | 14.0    | 22.3    | 7.0     | 5.2     | 3.2     |
| Neah Bay & La Push             | 1.3     | 3.9     | 7.2     | 36.5    | 2.4     | 5.7     |
| Total                          | 8,309.7 | 4,904.3 | 8,707.1 | 5,980.4 | 6,725.1 | 7,299.2 |

Data source: WDFW fish ticket landings data, extracted May 2010. (a) Port Angeles to Anacortes.

(b) Everett to Olympia.

In recent years, large amounts of albacore tuna have been landed into Washington, and in general, the tuna fishery has remained stable since the early 1990s. Variability in tuna landings has likely been an indication of changes in availability of tuna, rather than effort, as the number of participating vessels and the effort expended has been fairly consistent. Total ex-vessel revenues for the state surpassed \$16 million in 2009. Vessels were paid an average of \$1.16 per pound in 2008 but in 2009 vessels were paid an average of \$1.16 per pound in 2008 but in 2009 vessels were paid an average of \$1.01 per pound. This is up from the 2004–2007 price of \$0.86 per pound, perhaps because

<sup>&</sup>lt;sup>1</sup> In Washington, port of landing is not directly recorded on the marine fish receiving ticket and so must be indirectly assigned based on the address of the fish dealer or buyer. Therefore some landings may be wrongly attributed.

of the extreme spike in fuel prices in the summer of 2008. Washington, Oregon, and California all saw marine diesel prices reach or exceed an average pre-tax price of \$4.40 per gallon in 2008 and then fall back to around \$2.35 per gallon in 2009.<sup>2</sup>

As provided for under the U.S.–Canada albacore treaty, some Washington ports also receive albacore landings from Canadian vessels (Table 2-14). Canadian landings into the state rebounded slightly in 2008 and 2009 but were still short of 2004 levels. Anecdotal evidence suggests this drop was attributable to new rules implemented by U.S. Customs and Border Protection under the U.S. Trade Act of 2002 rather than to any shift in Canadian catch or effort.

|      | U.S. Ve | ssels      | Canadian Vessels |           | Tot     | al         |
|------|---------|------------|------------------|-----------|---------|------------|
|      | mt      | \$         | mt               | \$        | mt      | \$         |
| 2004 | 7,433.8 | 13,437,940 | 875.9            | 2,367,778 | 8,309.7 | 15,805,718 |
| 2005 | 4,520.8 | 9,786,500  | 383.5            | 1,069,562 | 4,904.3 | 10,856,062 |
| 2006 | 8,542.6 | 14,758,745 | 164.5            | 355,611   | 8,707.1 | 15,114,357 |
| 2007 | 5,905.4 | 10,277,642 | 75.0             | 168,055   | 5,980.4 | 10,445,697 |
| 2008 | 6,340.8 | 16,065,465 | 384.3            | 1,159,756 | 6,725.1 | 17,225,833 |
| 2009 | 6,864.1 | 15,246,286 | 435.1            | 1,078,547 | 7,299.2 | 16,324,833 |

 Table 2–14. U.S. and Canadian albacore landings into Washington, 2004–09.

Data source: WDFW fish ticket landings data, extracted May 2010.

Note: U.S. landings include landings by tribal fishers and landings of albacore caught by U.S. vessels in Canadian waters.

#### 2.2 Description of West Coast Recreational Fisheries

#### 2.2.1 California

Recreational anglers in California take the entire suite of management unit species (MUS) included within the HMS FMP using rod-and-reel gear almost exclusively; a nominal amount of fish, primarily tunas and dorado, are taken by free divers using spear guns. Fishing occurs in the EEZ waters of the U.S. as well as Mexico aboard commercial passenger fishing vessels (CPFVs) and private boats. A fishing season is dependent on oceanographic conditions, which strongly influence the availability of fish within range of the California-based fleet; a typical season begins in late spring and runs through fall. Anglers 16 years and older must have a resident or non-resident annual or short-term recreational fishing license to catch and land any ocean fish in California, and an Ocean Enhancement Stamp is required if fishing within ocean waters south of Point Arguello, Southern California. California does not have size or slot limit restrictions but it does have daily possession limits for some of the MUS. Table 2–15 shows the daily possession limits for MUS for California recreational anglers for 2009.

<sup>&</sup>lt;sup>2</sup> Pacific States Marine Fisheries Commission's Fisheries Economics Data Program (<u>http://www.psmfc.org/efin/proj\_desc.html</u>).

| Species               | 1-Fish | 2-fish | 10-fish <sup>2</sup> | 25-fish | No limit <sup>1</sup> |
|-----------------------|--------|--------|----------------------|---------|-----------------------|
| Tunas                 |        |        |                      |         |                       |
| Albacore <sup>3</sup> |        |        | Х                    | Х       |                       |
| Bigeye                |        |        | Х                    |         |                       |
| Bluefin <sup>3</sup>  |        |        | Х                    |         |                       |
| Skipjack              |        |        |                      |         | Х                     |
| Yellowfin             |        |        | Х                    |         |                       |
| Billfishes            |        |        |                      |         |                       |
| Striped Marlin        | Х      |        |                      |         |                       |
| Swordfish             |        | Х      |                      |         |                       |
| Sharks                |        |        |                      |         |                       |
| Blue                  |        | Х      |                      |         |                       |
| Common Thresher       |        | Х      |                      |         |                       |
| Mako                  |        | Х      |                      |         |                       |
| Other Fish            |        |        |                      |         |                       |
| Dorado                |        |        | Х                    |         |                       |

Table 2–15. California's recreational daily possession limits for highly migratory MUS included within the fishery management plan.

<sup>1</sup>-In general, no more than 20 finfish in combination of all species, with not more than 10 of any one species, may be taken or possessed by any one person, unless otherwise authorized, e.g. skipjack tunas (CCR, Title 14, 27.60). <sup>2</sup>-California authorizes boat limits for two or more persons that are licensed to fish in ocean waters off California (CCR, Title 14,

 $^{2}$ -California authorizes boat limits for two or more persons that are licensed to fish in ocean waters off California (CCR, Title 14, Section 27.60). This authorization does not apply to fishing trips originating in California where fish are taken in other jurisdictions.

 $^{3}$ - Prior to November 2008, these species had no limit; however, since then new regulations have become effective: albacore south of Point Conception – 10 fish, albacore north of Point Conception – 25 fish; bluefin tuna - 10 fish statewide. These limits are in addition to the general 20 fish bag limit.

Vessel operators that charge a fee to passengers to sport fish from any vessel must have a CPFV license and a current CDFG vessel registration, and the operator must submit a monthly log of their fishing activity. Additionally, the HMS FMP requires a Federal permit with a recreational gear endorsement for all U.S. CPFVs that fish for HMS within the West Coast EEZ and that pursue HMS on the high seas and land their catch in California, Oregon, and Washington.

Fishery statistics are available from both PSMFC, through their Recreational Fisheries Information Network (RecFIN) website,<sup>3</sup> and the CDFG CPFV logbook program. The RecFIN provides estimates based on field sampling of catch and a telephone survey for effort—California data is provided by the California Recreational Fisheries Survey (CRFS) program—while the state's logbook program provides a record of fishing activity for most CPFVs. The fact that catches of highly migratory MUS constitute a relatively rare event is why logbooks are preferred over CRFS in determining the catch of these species by anglers fishing from CPFVs. Logbooks also have the advantage of supplying catch information on MUS taken in Mexico. However, CRFS data are the best available for making catch estimates of anglers fishing from private boats.

<sup>&</sup>lt;sup>3</sup> www.psmfc.org/recfin

Table 2-16. Annual number of highly migratory MUS kept and thrown back by recreational anglers fishing from California commercial passenger fishing vessels (CPFV) in U.S. EEZ waters , 2008–09.

|                              | Nur    | 2008<br>nber of Fish        | Nun    | 2009<br>nber of Fish        |
|------------------------------|--------|-----------------------------|--------|-----------------------------|
| Species                      | (kept) | (thrown back <sup>2</sup> ) | (kept) | (thrown back <sup>2</sup> ) |
| Tunas                        |        |                             |        |                             |
| Albacore                     | 4,530  | 6                           | 3,358  | 236                         |
| Bigeye                       | 0      | 0                           | 0      | 0                           |
| Bluefin                      | 3,158  | 86                          | 1,961  | 6                           |
| Skipjack                     | 821    | 122                         | 1,720  | 339                         |
| Yellowfin                    | 5,597  | 59                          | 5,515  | 97                          |
| Billfishes                   |        |                             |        |                             |
| Striped Marlin               | 1      | 0                           | 4      | 0                           |
| Swordfish                    | 2      | 0                           | 0      | 0                           |
| Sharks                       |        |                             |        |                             |
| Blue                         | 17     | 246                         | 11     | 291                         |
| Common Thresher <sup>1</sup> | 45     | 99                          | 40     | 0                           |
| Shortfin Mako                | 104    | 275                         | 43     | 304                         |
| Other Fish                   |        |                             |        |                             |
| Dorado                       | 5,621  | 270                         | 1,342  | 78                          |
| Total                        | 19,896 | 1,163                       | 13,994 | 1,351                       |

Source: California's Commercial Fisheries Information System (CFIS), CPFV logbook data, extracted August 6, 2010. Additional Processing Information:

<sup>1</sup>-The annual totals for common thresher shark included 1 pelagic thresher kept in 2009.

<sup>2</sup>-The condition (live or dead) of fish thrown back is not available; includes "lost to seals."

With the exception of sharks, most HMS MUS are caught by anglers fishing from CPFVs in the Mexican EEZ (Table 4–63). However, for some species the entire reported catch for the fleet comes from California (U.S. waters). In 2009, approximately 145 CPFVs logged 734 days at-sea within the U.S. EEZ compared to 121 CPFVs that logged 903 days at-sea in 2008. The total number of MUS kept by anglers decreased from 19,896 fish in 2008 to 13,994 fish in 2009 (Table 2–16); the number of most MUS caught declined except for yellowfin tuna, which remained about the same and skipjack tuna which increased. Tunas made up about 90 percent of the numbers of MUS caught in 2009.

Catch estimates for private boats are presented in Table 2–17. The estimates are for vessels fishing exclusively in the U.S. EEZ. Many private vessels fish in the EEZ of Mexico but the total number and catch of these vessels is unknown, although RecFIN does capture some of this data. In 2009, about 17,000 MUS were caught by private boaters compared to 42,000 MUS caught in 2008 (including released and thrown back fish); however, at the time of this update, angler-reported kept dead fish (B1) did not appear to be up-to-date for 2009. In 2009, 74 percent of the total shortfin mako sharks captured were released alive; for thresher sharks 47 percent of the total were caught and released. Blue sharks were released alive at a much higher rate, 99 percent in 2009, presumably because they are not usually the target species and have little value as a food fish. Sharks assume much greater importance when ranking catches among private boaters, because they are best fished by one or two anglers from a small vessel. By contrast, CPFVs are two to three times larger than private boats and may carry 20 times the number of anglers as a private boat. Private boat catch estimates from RecFIN must be used with caution because sampling anglers that pursue HMS is a rare occurrence and as such can lead to significantly higher or lower catch estimates than the actual catch level.

 Table 2–17. Estimated number of highly migratory MUS kept and thrown back alive by recreational anglers fishing from California private vessels in U.S. EEZ waters, 2008–09.

|                 | Ν                    | 2008<br>umber of Fish            |                                   | Nun                  | 2009<br>nber of Fish          |                                   |
|-----------------|----------------------|----------------------------------|-----------------------------------|----------------------|-------------------------------|-----------------------------------|
| Species         | (kept <sup>1</sup> ) | (reported<br>dead <sup>2</sup> ) | (released<br>alive <sup>2</sup> ) | (kept <sup>1</sup> ) | (reported dead <sup>2</sup> ) | (released<br>alive <sup>2</sup> ) |
| Tunas           |                      |                                  |                                   |                      |                               |                                   |
| Albacore        | 2,052                | 1,523                            | 28                                | 7,969                | 0                             | 33                                |
| Bigeye          | 0                    | 9                                | 15                                | 0                    | 0                             | 14                                |
| Bluefin         | 68                   | 332                              | 0                                 | 142                  | 0                             | 7                                 |
| Skipjack        | 240                  | 25                               | 148                               | 244                  | 0                             | 1,640                             |
| Yellowfin       | 2,974                | 3,741                            | 133                               | 1,346                | 0                             | 242                               |
| Billfishes      |                      |                                  |                                   |                      |                               |                                   |
| Striped Marlin  | 0                    | 0                                | 111                               | 7                    | 0                             | 51                                |
| Swordfish       | 0                    | 0                                | 0                                 | 0                    | 0                             | 0                                 |
| Sharks          |                      |                                  |                                   |                      |                               |                                   |
| Blue            | 28                   | 17                               | 2,353                             | 17                   | 0                             | 1,431                             |
| Common Thresher | 624                  | 176                              | 585                               | 800                  | 0                             | 700                               |
| Shortfin Mako   | 306                  | 98                               | 1,523                             | 332                  | 0                             | 924                               |
| Other Fish      |                      |                                  |                                   |                      |                               |                                   |
| Dorado          | 9,535                | 7,362                            | 7,877                             | 630                  | 0                             | 319                               |
| Total           | 15,827               | 13,283                           | 12,773                            | 11,487               | 0                             | 5,361                             |

Source: Pacific States Marine Fisheries Commission, Recreational Fisheries Information System, California Recreational Fisheries Survey data, extracted August 6, 2010.

Additional Processing Information:

<sup>1</sup>-Examined by sampler.

<sup>2</sup>-The angler reported the fish as dead or thrown back alive after capture; not available for 2009.

#### 2.2.2 Oregon

Recreational fishing for albacore off Oregon in 2009 was excellent, consistent with recent record-setting years. Catches have ranged from a low of 2,901 fish in 2000 to a high of 58,922 fish in 2007. In 2009, recreational fishers landed an estimated 42,055 albacore, with a total weight of 366.4 mt, the second highest catch on record and far above the previous five-year average (2004-2008) of 18,000 albacore.

Access to albacore for recreational vessels off Oregon is highly variable due to distance to the fish, weather conditions, fuel prices, and other factors. Compared to 2008, sport fishing effort and catches in 2009 were 46 percent and 73 percent higher, respectively, even though 2008 was also a good year for the fishery. Weather and ocean conditions were much calmer in 2009 than in 2008 and allowed more sport vessels to target albacore. Large schools of albacore moved within sport fishing range about three weeks earlier than in 2008. Also, fuel prices were lower than in 2008. All these factors combined led to increased sport fishing activity and success in 2009.

Private boats accounted for approximately 80 percent of the total recreational landings (Table 2-18). Newport accounted for 31 percent of all recreational trips and 34 percent of the catch, although Coos Bay was a close second (Tables 2-18 and 2-19). Anglers from private boats were more successful, averaging 4.4 albacore per trip, compared to anglers from charter boats, who averaged 3.2 albacore per trip.

| Port             |       | Charter |       |       | Private |       | C      | Combined |        |
|------------------|-------|---------|-------|-------|---------|-------|--------|----------|--------|
|                  | 2007  | 2008    | 2009  | 2007  | 2008    | 2009  | 2007   | 2008     | 2009   |
| Astoria          | 311   | 390     | 330   | 338   | 422     | 59    | 649    | 812      | 389    |
| Garibaldi        | 111   | 164     | 117   | 1,263 | 960     | 1,059 | 1,374  | 1,124    | 1,176  |
| Pacific City     | 9     | 5       | 1     | 209   | 35      | 92    | 218    | 40       | 93     |
| Depoe Bay        | 683   | 245     | 432   | 1,644 | 743     | 694   | 2,327  | 988      | 1,126  |
| Newport          | 1,463 | 1,089   | 1,260 | 2,415 | 1,475   | 1,991 | 3,878  | 2,564    | 3,251  |
| Florence         | 0     | 0       | 0     | 30    | 67      | 15    | 30     | 67       | 15     |
| Winchester Bay   | 12    | 0       | 12    | 367   | 231     | 370   | 379    | 231      | 382    |
| Coos Bay         | 69    | 109     | 240   | 1,712 | 960     | 2,962 | 1,781  | 1,069    | 3,202  |
| Bandon           | 231   | 107     | 222   | 132   | 0       | 239   | 363    | 107      | 461    |
| Gold Beach       | 30    | 0       | 48    | 12    | 0       | 28    | 42     | 0        | 76     |
| Brookings        | 57    | 14      | 20    | 932   | 85      | 166   | 989    | 99       | 186    |
| Total            | 2,976 | 2,123   | 2,682 | 9,054 | 4,978   | 7,675 | 12,030 | 7,101    | 10,357 |
| Private boat (%) |       |         |       |       |         |       | 75%    | 70%      | 74%    |

Table 2-18. Oregon albacore fishing effort (angler trips) for charter and private boats, and combined, by year and port, 2007-2009.

Data Source: ODFW Ocean Recreational Boat Survey, extracted December 2009. NS = no sampling in port.

Table 2-19. Oregon albacore catch (number of fish) for charter and private boats, and combined, by year and port, 2007-2009.

| Port             | Charter |       |       | Charter Private |        |        |        | C      | ombined | k |
|------------------|---------|-------|-------|-----------------|--------|--------|--------|--------|---------|---|
|                  | 2007    | 2008  | 2009  | 2007            | 2008   | 2009   | 2007   | 2008   | 2009    |   |
| Astoria          | 907     | 1,167 | 1,016 | 1,832           | 1,809  | 247    | 2,739  | 2,976  | 1,263   |   |
| Garibaldi        | 628     | 440   | 322   | 4,943           | 3,993  | 4,119  | 5,571  | 4,433  | 4,441   |   |
| Pacific City     | 70      | 98    | 4     | 1,910           | 314    | 767    | 1,980  | 412    | 771     |   |
| Depoe Bay        | 2,139   | 670   | 942   | 9,100           | 2,666  | 3,458  | 11,239 | 3,336  | 4,400   |   |
| Newport          | 4,920   | 3,126 | 3,419 | 14,825          | 6,267  | 10,887 | 19,745 | 9,393  | 14,306  |   |
| Florence         | 0       | 0     | 0     | 65              | 287    | 41     | 65     | 287    | 41      |   |
| Winchester Bay   | 36      | 0     | 31    | 1,571           | 460    | 969    | 1,607  | 460    | 1,000   |   |
| Coos Bay         | 301     | 269   | 850   | 8,370           | 2,153  | 12,036 | 8,671  | 2,422  | 12,886  |   |
| Bandon           | 1,607   | 333   | 1,727 | 624             | 0      | 813    | 2,231  | 333    | 2,540   |   |
| Gold Beach       | 256     | 0     | 161   | 210             | 0      | 21     | 466    | 0      | 182     |   |
| Brookings        | 319     | 81    | 41    | 4,289           | 136    | 184    | 4,608  | 217    | 225     |   |
| Total            | 11,183  | 6,184 | 8,513 | 47,739          | 18,085 | 33,542 | 58,922 | 24,269 | 42,055  |   |
| Private boat (%) |         |       |       |                 |        |        | 81%    | 75%    | 80%     |   |

Data Source: ODFW Ocean Recreational Boat Survey, extracted December 2009.

| Port         |      | Charter |      |      | Private |      | 0    | Combined |      |
|--------------|------|---------|------|------|---------|------|------|----------|------|
|              | 2007 | 2008    | 2009 | 2007 | 2008    | 2009 | 2007 | 2008     | 2009 |
| Astoria      | 2.9  | 3.0     | 3.1  | 5.4  | 4.3     | 4.2  | 4.2  | 3.7      | 3.2  |
| Garibaldi    | 5.7  | 2.7     | 2.8  | 3.9  | 4.2     | 3.9  | 4.1  | 3.9      | 3.8  |
| Pacific City | 7.8  | 19.6    | 4.0  | 9.1  | 9.0     | 8.3  | 9.1  | 10.3     | 8.3  |
| Depoe Bay    | 3.1  | 2.7     | 2.2  | 5.5  | 3.6     | 5.0  | 4.8  | 3.4      | 3.9  |
| Newport      | 3.4  | 2.9     | 2.7  | 6.1  | 4.2     | 5.5  | 5.1  | 3.7      | 4.4  |
| Florence     | -    | -       | -    | 2.2  | 4.3     | 2.7  | 2.2  | 4.3      | 2.7  |
| Winchester   | 3.0  | -       | 2.6  | 4.3  | 2.0     | 2.6  | 4.2  | 2.0      | 2.6  |
| Bay          |      |         |      |      |         |      |      |          |      |
| Coos Bay     | 4.4  | 2.5     | 3.5  | 4.9  | 2.2     | 4.1  | 4.9  | 2.3      | 4.0  |
| Bandon       | 7.0  | 3.1     | 7.8  | 4.7  | -       | 3.4  | 6.1  | 3.1      | 5.5  |
| Gold Beach   | 8.5  | -       | 3.4  | 17.5 | -       | 0.8  | 11.1 | -        | 2.4  |
| Brookings    | 5.6  | 5.8     | 2.1  | 4.6  | 1.6     | 1.1  | 4.7  | 2.2      | 1.2  |
| Overall      | 3.8  | 2.9     | 3.2  | 5.3  | 3.6     | 4.4  | 4.9  | 3.4      | 4.1  |

Table 2-20. Oregon albacore catch per unit of effort (number of fish/ angler trip), for charter and private boats, and combined, by year, by port, 2007-2009.

Data Source: ODFW Ocean Recreational Boat Survey, extracted December 2009.

#### 2.2.3 Washington

The recreational albacore fishery in Washington leveled off in 2008 and 2009 with slightly fewer trips taken and a slight drop in the catch from 2007 (Table 2-21and 2-22). Catch per unit effort dropped slightly in both the charter and private boat fleets to below 2007 levels (Table 2-23).

| Table 2–21. | . Washington albacore fishing effort (angler trips) for char | rter and private boats, and combined, |
|-------------|--------------------------------------------------------------|---------------------------------------|
| by year and | d port area, 2007–09.                                        | _                                     |

| Port Area        | Charter |       |       | Private |       |       | Combined |       |       |
|------------------|---------|-------|-------|---------|-------|-------|----------|-------|-------|
|                  | 2007    | 2008  | 2009  | 2007    | 2008  | 2009  | 2007     | 2008  | 2009  |
| North Coast      | 63      | 63    | 48    | 305     | 165   | 194   | 368      | 228   | 242   |
| Westport         | 1,026   | 919   | 1013  | 456     | 635   | 550   | 1,482    | 1,554 | 1,563 |
| Ilwaco           | 637     | 516   | 568   | 1,105   | 1,130 | 1082  | 1,742    | 1,646 | 1,650 |
| Total            | 1,726   | 1,498 | 1,629 | 1,866   | 1,930 | 1,826 | 3,592    | 3,428 | 3,455 |
| Private boat (%) | _       | _     | —     | _       | _     | _     | 51.9%    | 56.3% | 52.9% |

Data source: WDFW Ocean Sampling Program, extracted May 2010.

| Table 2–22.  | Washington albacore catch | (number of fish) for | r charter and private | e boats, and combined, by |
|--------------|---------------------------|----------------------|-----------------------|---------------------------|
| year and por | rt area, 2007–09.         |                      |                       |                           |

| Port Area        | Charter |        |        | Private |       |       | Combined |        |        |
|------------------|---------|--------|--------|---------|-------|-------|----------|--------|--------|
|                  | 2007    | 2008   | 2009   | 2007    | 2008  | 2009  | 2007     | 2008   | 2009   |
| North Coast      | 223     | 240    | 406    | 1,065   | 474   | 1,158 | 1,287    | 714    | 1,564  |
| Westport         | 12,668  | 10,981 | 12,978 | 1,971   | 2,439 | 2,134 | 14,639   | 13,420 | 15,112 |
| Ilwaco           | 3,029   | 2,575  | 3,887  | 6,127   | 4,818 | 4,044 | 9,156    | 7,393  | 7,931  |
| Total            | 15,920  | 13,796 | 17,271 | 9,163   | 7,731 | 7,336 | 25,083   | 21,527 | 24,607 |
| Private boat (%) | _       | _      | _      | _       | _     | —     | 36.5%    | 35.9%  | 29.8%  |

Data source: WDFW Ocean Sampling Program, extracted May 2010.

| Port Area   | Charter |      |      | Private |      |      | Combined |      |      |
|-------------|---------|------|------|---------|------|------|----------|------|------|
|             | 2007    | 2008 | 2009 | 2007    | 2008 | 2009 | 2007     | 2008 | 2009 |
| North Coast | 3.5     | 3.8  | 8.5  | 3.5     | 2.9  | 6.0  | 3.5      | 3.1  | 6.5  |
| Westport    | 12.3    | 11.9 | 12.8 | 4.3     | 3.8  | 3.9  | 9.9      | 8.6  | 9.7  |
| Ilwaco      | 4.8     | 5.0  | 6.8  | 5.5     | 4.3  | 3.7  | 5.3      | 4.5  | 4.8  |
| Total       | 9.2     | 9.2  | 10.6 | 4.9     | 4.0  | 4.0  | 7.0      | 6.3  | 7.1  |

Table 2–23. Washington albacore catch per unit of effort (number of fish/angler trip) for charter and private boats, and combined, by year and port, 2007–09.

Data source: WDFW Ocean Sampling Program, extracted May 2010.

It appears that private boat effort has remained fairly constant (Table 2-21). However, the private boat sector's proportion of the overall albacore catch decreased slightly compared to 2007 (Table 2-22).

Beginning in 2005, a mandatory charter boat tuna logbook program was implemented to provide additional information on location and effort in the charter albacore fishery.<sup>4</sup> Average catch per angler as reported in logbooks was 12.0 in 2005, then increased to 12.8 in 2006 and 2007 and declined in both 2008 and 2009 to 12.1 and 11.6, respectively (Table 2-24). The average weight (pounds) per tuna caught and reported in the logbooks was 19.1 in 2005, and subsequently decreased to 16.1 in 2006, increased to 19.8 in 2007 and decreased to 18.2 in both 2008 and 2009.

| Table 2–24.  | Washington albacore catch per unit of effort (number of fish/angler trip) and average weight |
|--------------|----------------------------------------------------------------------------------------------|
| (pounds) per | r tuna caught by year, 2005–09 as reported in charter logbook program.                       |

| Year | Average CPUE | Average Weight per Albacore<br>(pounds) |
|------|--------------|-----------------------------------------|
| 2005 | 12.0         | 19.1                                    |
| 2006 | 12.8         | 16.1                                    |
| 2007 | 12.8         | 19.8                                    |
| 2008 | 12.1         | 18.2                                    |
| 2009 | 11.6         | 18.2                                    |

#### 2.3 Highly Migratory Species Taken in Non-HMS Fisheries

#### 2.3.1 California

In California, HMS MUS are occasionally taken by fisheries targeting other species (Table 2-25). In 2009, about 100 kg of albacore were taken incidentally to groundfish trolling for sablefish and rockfish, and about 400 kg were taken incidentally to coastal pelagic species. About 500 kg of thresher shark was taken incidentally to trawling for halibut and other groundfish. However, 2.2 mt was taken in set longline gear, and about 55 mt was taken in set gillnet and small mesh drift gill net fisheries. Although the amount of thresher shark taken in set gill net gear is significant, they are caught incidentally to fisheries for California halibut and white seabass, which command a much higher ex-vessel price; set gill net is not subject to the restrictions on HMS that small mesh drift gill net is. Both thresher shark and albacore were also taken in coastal pelagic species (CPS) purse seines; however, less than three vessels landed both species, and landings could not be reported because of Federal data confidentiality rules.

<sup>&</sup>lt;sup>4</sup> This logbook data does not factor into Washington's official catch of record, which is calculated from data collected and analyzed by the Ocean Sampling Program (OSP).

|                | CPS Purse<br>Seine | Troll<br>(other fish) | Trawl | Set<br>Longline | Set<br>Gillnet | Small mesh<br>DGN |
|----------------|--------------------|-----------------------|-------|-----------------|----------------|-------------------|
| Albacore tuna  | *                  | 0.1                   |       |                 | .1             |                   |
| Thresher Shark | *                  |                       | 0.5   | 2.2             | 45.3           | 9.5               |
| Mako shark     |                    |                       |       |                 | 3.4            | 13.6              |
| Blue shark     |                    |                       |       |                 |                | 1.4               |

Table 2–25. Landings (mt) of HMS Species in non-HMS gears.

\*-Withheld for data confidentiality reasons.

Source: California's Commercial Fisheries Information System (CFIS), market receipt data, extracted May 18, 2010. Additional processing information:

<sup>1</sup>-Landings in pounds are converted to round weight mt by dividing the landed weights by 2000 for ST, and then multiplying the conversion factor of 0.9072 for mt. A conversion factor of 1.7 for thresher and 1.45 for make was multiplied by the reported dressed weight to obtain a round weight.

#### 2.3.2 Oregon

In Oregon, most Highly Migratory Species (MUS) are rarely landed by gears targeting other species. During 2009, less than 1 mt of these HMS species, consisting of small amounts of blue shark and other unidentified shark species, were landed by non-HMS fisheries (Table 2-26). Very small amounts of blue shark and unidentified sharks were taken incidentally by bottom longline gear targeting sablefish. Approximately 0.5 mt of unidentified sharks were also taken with midwater trawl gear.

Table 2-26. Landings (mt) of HMS Species with non-HMS gear in Oregon, 2009.

| Species     | Bottom<br>Longline | Midwater<br>Trawl | Bottom<br>Trawl | Baitfish Net | Total |
|-------------|--------------------|-------------------|-----------------|--------------|-------|
| Blue Shark  | 0.01               | 0                 | 0               | 0            | 0.01  |
| Unid. shark | <0.01              | 0.54              | 0               | 0            | 0.54  |

Data source: ODFW fish ticket landings data, extracted July 2010.

# 3.0 REGULATIONS CURRENTLY IN PLACE

### 3.1 Summary of the HMS FMP Management Measures and Regulations

On April 7, 2004, NMFS published a final rule to implement the approved provisions of the HMS FMP (69 FR 18444), with the exception of the Reports and Record Keeping requirements, which were granted a delayed effectiveness pending collection-of-information clearance by the Office of Management and Budget (OMB). Clearance of these delayed requirements, which covers logbooks, permits, vessel monitoring systems, and pre-trip notifications, was received by OMB and became effective on February 10, 2005 (70 FR 7022). In addition, five HMS FMP regulatory amendments have been prepared and finalized since the original final rule was put in place (Table 3-1).

| Title of Regulation                                                                                                                                                    | Federal Register<br>Number | Date<br>Published | Date<br>Effective |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------|-------------------|
| Revised Method for Renewing and Replacing Permits Issued under the HMS FMP.                                                                                            | 72 FR 10935                | 6/12/07           | 4/11/07           |
| Amended Regulatory Text Governing Closures of the<br>Swordfish Drift Gillnet Fishery in the Pacific Loggerhead<br>Sea Turtle Conservation Area during an El NiZo Event | 72 FR 31756                | 6/8/07            | 7/9/07            |
| Amended Vessel Identification Regulations for HMS Recreational Charter Vessels                                                                                         | 72 FR 43563                | 8/6/07            | 9/5/07            |
| Daily Bag Limits for Sport Caught Albacore and Bluefin<br>Tuna in the EEZ off California                                                                               | 72 FR 58258                | 10/15/07          | 11/14/07          |
| Establishment of an HMS Permit Fee                                                                                                                                     | 74 FR 37177                | 7/28/09           | 08/27/09          |

#### Table 3-1. History of HMS FMP regulatory amendments.

A textual summary of the HMS regulations contained in Table 3.1 can be found in the 2009 HMS SAFE report which is available on-line (http://www.pcouncil.org/highly-migratory-species/stock-assessment-and-fishery-evaluation-safe-documents/). Copies of the current suite of HMS FMP regulations along with an HMS FMP Compliance Guide can be found on the NMFS Southwest Region website at: http://swr.nmfs.noaa.gov. Since fishery rules frequently change, fishermen must familiarize themselves with the latest regulations and are responsible for complying with the current official regulations set forth in the Code of Federal Regulations at 50 CFR Part 660.<sup>1</sup>

The HMS FMP regulations are necessary for Federal management of U.S. fishing vessels targeting HMS within the West Coast EEZ of California, Oregon, and Washington and the adjacent high seas waters. This HMS FMP applies to all U.S. vessels that fish for HMS within the EEZ off California, Oregon, or Washington and to U.S. vessels that pursue HMS on the high seas (seaward of the EEZ) and land their fish in California, Oregon, or Washington. The HMS FMP does not apply to U.S. vessels that fish for HMS on high seas and land into a non-U.S. port. Additional restrictions apply under the High Seas Fishing Compliance Act<sup>2</sup> and for Western Pacific longline permitted vessels landing into West Coast ports.<sup>3</sup>

Regulations for HMS in Washington, Oregon, and California vary from state to state. The HMS FMP contains Federal measures for HMS fisheries, which provide a region-wide management regime applicable to all vessels landing in West Coast ports. State regulations not superseded by the initial Federal regulations will continue to remain in effect until such time as the Council determines they should be supplanted by Federal regulations. Some of the state regulations are inconsistent from state to state, but

<sup>&</sup>lt;sup>1</sup> 50 CFR part 660 is available online at <u>http://www.access.gpo.gov/nara/cfr/waisidx\_03/50cfr660\_03.html</u>

<sup>&</sup>lt;sup>2</sup> <u>http://www.nmfs.noaa.gov/ia/services/highseas.htm</u>

<sup>&</sup>lt;sup>3</sup> http://www.wpcouncil.org/pelagic.htm

these inconsistencies do not pose management problems that require immediate Federal action.

The HMS FMP, under the management auspices of the Pacific Council, serves as a mechanism to cooperate with other regional and international management bodies to work towards consistent management of U.S. fisheries in the Pacific Ocean. Federal measures impacting these fisheries, which arise from several different Federal laws, may be more efficiently addressed within the Council framework, and related regulations can be viewed together. An important goal of the HMS FMP is to assure that issues of national and international concern are addressed, and to determine how recommendations of international bodies should be applied to domestic fisheries of the West Coast.

The HMS FMP identifies 13 highly migratory species as management unit species (listed in Table 1–1) and defines the legal gear types and management measures used to harvest them.

The fishing gears described below are authorized for the commercial and recreational harvest of HMS in the EEZ by all permitted vessels, and beyond the EEZ by vessels landing into West Coast ports. Gear that is not defined as legal gear is prohibited from harvesting HMS under the HMS FMP. Specific management measures regulating the use of legal gear types will be developed if necessary, using the framework procedures of the HMS FMP.

#### 3.1.2 HMS Commercial Gear

**Harpoon**: Fishing gear consisting of a pointed dart or iron attached to the end of a line several hundred feet in length, the other end of which is attached to a flotation device. Harpoon gear is attached to a pole or stick that is propelled only by hand, and not by mechanical means.

**Surface Hook-and-Line**: One or more hooks attached to one or more lines (includes troll, rod and reel, handline, albacore jig, live bait, and bait boat; excludes pelagic longline and mousetrap gear<sub>4</sub>). Surface hook-and-line is always attached to the vessel.

**Drift Gillnet**: A panel of netting, suspended vertically in the water by floats along the top and weights along the bottom, which is neither stationary nor anchored to the bottom. The HMS FMP final rule defines drift gillnet gear as 14 inch (35.56 cm) stretched mesh or greater.

**Purse Seine**: A floated and weighted encircling net that is closed by means of a purse line threaded through rings attached to the bottom of the net (includes encircling net, purse seine, ring net, drum purse seine, lampara net).

**Pelagic Longline**: A main line that is suspended horizontally in the water column, which is neither stationary nor anchored, and from which dropper lines with hooks (gangions) are attached.

#### 3.1.3 HMS Recreational Gear

**Rod-and-Reel** (**pole-and-line**): A hand-held (including rod holder) fishing rod with a manually or electrically operated reel attached.

**Spear**: A sharp, pointed, or barbed instrument on a shaft. Spears can be operated manually or shot from a gun or sling.

Hook-and-Line: One or more hooks attached to one or more lines (excludes mousetrap gear).<sup>4</sup>

## 3.1.4 Landings and Gear Use Regulations

At this time there are no quotas for HMS species, although there are harvest guidelines. A quota is a specified numerical harvest objective, the attainment of which triggers the closure of the fishery or fisheries for that species. A harvest guideline is a numerical harvest level that is a general objective and is not a quota. If a harvest guideline has been reached, NMFS will initiate a review of the species in question according to provisions in the HMS FMP and in consideration of Council guidance. The HMS FMP establishes annual harvest guidelines of 340 mt for common thresher sharks and 150 mt for shortfin mako sharks. Because total catches and basic population dynamic parameters for these shark species are poorly known, they are being managed using precautionary harvest guidelines.

The HMS FMP final rule prohibits the retention of the species listed below in Table 3-2. In general, prohibited species must be released immediately if caught while targeting HMS, unless other provisions for their disposition are established in accordance with HMS FMP guidelines.

| Common Name       | Scientific Name         |
|-------------------|-------------------------|
| great white shark | Carcharodon carcharias  |
| basking shark     | Cetorhinus maximus      |
| megamouth shark   | Megachasma pelagio      |
| Pacific halibut   | Hippoglossus stenolepis |
| pink salmon       | Onchorhynchus gorbuscha |
| Chinook salmon    | O. tshawytscha          |
| chum salmon       | O. keta                 |
| sockeye salmon    | O. nerka                |
| coho salmon       | O. kisutch              |

 Table 3-2. Prohibited Species covered under the HMS FMP final rule.

U.S. citizens fishing in waters covered under the HMS FMP are bound by the rules and regulations set forth in the Shark Finning Prohibition Act of 2000.<sup>5</sup> The Act prohibits, among other things, any person subject to U.S. jurisdiction from: 1) engaging in shark finning, 2) possessing shark fins aboard a U.S. fishing vessel without the corresponding carcass, or 3) landing shark fins without a corresponding carcass. The Act requires an annual report to Congress detailing progress made in addressing the elements of the Act. The report highlights work being conducted by NMFS to monitor and conserve HMS shark populations under Pacific Council management. A copy of the Shark Finning Report to Congress for 2009 can be viewed at: www.nmfs.noaa.gov/by\_catch/docs/SharkFinningReport09.pdf

The HMS FMP prohibits the sale of striped marlin by all vessels as a means to provide for and maximize recreational fishing opportunities for this species. Striped marlin is considered to have far greater value as a recreational target species than as a commercial target species. Prohibiting sale removes the incentive for commercial fishermen to take striped marlin.

<sup>&</sup>lt;sup>4</sup> Mousetrap gear means a free-floating set of gear thrown from a vessel, composed of a length of line with a float on one end and one or more hooks or lures on the opposite end.

<sup>&</sup>lt;sup>5</sup> Copies of the Act can be downloaded at: <u>http://www.nmfs.noaa.gov/sfa/hms/hmsdocuments.html</u>. Copies of the Small Entity Compliance Guide Outlining the Regulations to Implement Shark Finning Prohibition Act can be viewed at: <u>http://swr.nmfs.noaa.gov/pir/cg2.htm</u>.

#### 3.1.5 Incidental Landings

The HMS FMP authorizes incidental commercial landings of HMS, within limits, for non-HMS gear such as bottom longline, trawl, pot gear, small mesh drift gillnet, set/trammel gillnets, and others. Incidental catch refers to harvest of HMS that are unavoidably caught while fishing for other species or fishing with gear that is not legal for the harvest of HMS.

Small-mesh drift gillnetters and bottom set net gillnetters are not permitted to land swordfish but would be permitted to land other HMS, with the restriction of 10 fish per landing of each non-swordfish HMS.

Bottom longline (set line) fishery landings are restricted to three HMS sharks, or 20 percent of total landings by weight of HMS sharks, whichever is greater.

For trawl, pot gear, and other non-HMS gear, a maximum of 1 percent of total weight per landing for all HMS shark species combined is allowed (i.e., blue shark, shortfin mako shark, and bigeye, pelagic, and common thresher sharks) or two HMS sharks, whichever is greater.

A drift gillnet vessel with a stretched mesh size less than 14 inches may not target HMS, although an incidental landing of 10 HMS per trip, other than swordfish, will be allowed to minimize bycatch while fishing for state managed species.

Albacore surface hook-and-line vessels may not deploy small-mesh drift gillnets to target albacore as was customarily practiced by selected vessels prior to passage of the HMS FMP final rule.

In Washington, it is unlawful to land thresher shark taken by any means from state and offshore waters of the Pacific Ocean north of the Washington-Oregon boundary and south of the U.S.-Canada boundary. It is unlawful to land any thresher shark in Washington taken south of the Washington-Oregon boundary unless each thresher shark landed is accompanied by a minimum of two swordfish.

In Oregon, it is unlawful to take thresher shark, swordfish or other HMS species for commercial purposes with gillnets in State waters. It is also unlawful, based on a 2009 Oregon State regulation change, to land any of these species in Oregon if taken with gillnets, including fish taken outside State waters. However, thresher shark, swordfish, or other HMS species taken with authorized commercial gear (i.e., approved gear other than gillnet) may be landed in Oregon provided that catch, season and other applicable regulatory measures are adhered to.

#### 3.1.6 Status of HMS Permits

The reporting and recordkeeping requirements of the HMS FMP became effective February 10, 2005, and formalized the requirement for an HMS permit. Title 50, Section 660.707 of the Code of Federal Regulations outlines the required HMS permit with an endorsement for a specific gear for all U.S. commercial and recreational charter fishing vessels fishing for and/or landing HMS off the States of California, Oregon, and Washington. The permit requirements also apply for U.S. commercial fishing vessels that land or transship HMS shoreward of the outer boundary of the U.S. EEZ off the States of California, Oregon, and Washington. The permit must be on board the vessel and available for inspection by an authorized officer.

Table 3-3 shows the number of HMS permits issued to date. Keep in mind that the permit data presented reflects valid permits at the time of SAFE publication and does not necessarily reflect total number of active vessels (i.e., vessels with catch and effort history in a given fishery year).

| Yea  | r | California | Oregon | Washington | Other | Total |
|------|---|------------|--------|------------|-------|-------|
| 2005 | 5 | 677        | 626    | 298        | 135   | 1,736 |
| 2006 | 6 | 800        | 684    | 339        | 152   | 1,975 |
| 2007 | 7 | 785        | 561    | 318        | 108   | 1,772 |
| 2008 | 3 | 826        | 569    | 331        | 84    | 1,810 |
| 2009 | ) | 903        | 650    | 381        | 54    | 1,988 |

 Table 3-3. HMS permits recorded in the permit database for each year since the regulation became effective on February 10, 2005.

Notes: The permits are issued to the vessel owner(s) not to the vessels themselves. The totals indicate the number of permits outstanding in each year and cannot be added across years. "Other" column includes non-west coast home ports/states and permits issued with no home port/state designated.

#### 3.1.7 HMS Data Collection

Catch, effort, and catch disposition data are critical for monitoring HMS fisheries, assessing the status of the stocks, and evaluating the effectiveness of management. All commercial fishing operations conducted with HMS FMP approved gear, including HMS recreational charter vessels, are required to maintain logbooks. All information specified on the logbook forms must be recorded on the forms within 24 hours after the completion of each fishing day. The original logbook form for each day of the fishing trip must be submitted to NMFS or the appropriate state management agency within 30 days of each landing or transshipment of HMS. Each form must be signed and dated by the fishing vessel operator.

A total of 1,220 albacore trips from 466 vessels were submitted to the NMFS Southwest Fisheries Science Center (SWFSC) in La Jolla, California, in 2009 compared to 1,538 trips from 628 vessels in 2008. A total of 10,686 mt of albacore was landed in 2009 compared to 10,672 mt in 2008. A total of 6,143 mt of albacore were recorded as catch in mandatory logbook submissions for 2008 compared to 7,419 mt in 2007. This equates to a 60 percent logbook comparison estimate for 2008 using the landed catch versus logbook reported catch methodology.

CDFG implemented a harpoon logbook and permit program in 1974. The logbook has been modified over time, but the primary focus has been to document catch, effort, and oceanographic conditions on the fishing grounds. According to market receipt data, there were 26 active vessels in 2009 compared to 31 active vessels that fished in 2008. Logbook data from 2009 are not yet available.

The gillnet logbook program was implemented in 1980 to study the development of the drift gillnet shark fishery to determine the effects of the fishery on swordfish and striped marlin. Logbook data for 2009 are not yet available.

Washington recreational charter fishing vessels began completing and submitting logbooks for albacore tuna trips in 2005. According to the logbooks received for 2009, 22 charter vessels completed a total of 189 trips and landed approximately 22,930 albacore. Both catch and effort increased in 2009. In 2007 and 2008 the recreational charter fleet averaged around 105 albacore per vessel trip but in 2009, they averaged 121 albacore per vessel trip. While logbook data are providing additional information on location, effort, and landings in Washington's charter albacore fishery, the official record of catch for albacore comes from dockside sampling by the Washington Ocean Sampling Program (OSP). Results from the OSP data are reported in Chapter 2 for 2005-2007.

Oregon recreational charter fishing vessels began completing and submitting logbooks for albacore tuna trips in 2005. Logbook data for 2009 are not yet available. Non-logbook estimates of Oregon recreational HMS catch and effort for the 2009 are provided in Section 2.2.2.

Based on available logbook data, 145 California CPFVs targeted HMS in 2009. These vessels logged 734 days at-sea within the U.S. EEZ in 2009 compared to 121 CPFVs that logged 903 days at-sea in 2008. In addition to the CPFV logbook program, CDFG implemented its California Recreational Fishery Survey (CRFS) in 2004 to provide catch and effort estimates for marine recreational finfish fisheries. It is a collaborative effort between the CDFG and the PSMFC, and is funded by state and Federal sources. In 2009, CRFS field samplers interviewed 130 CPFV tuna anglers compared to 123 in 2008 (from RecFIN, extracted August 10, 2010).

## 3.1.8 Observer Requirements

All U.S. fishing vessels operating in HMS fisheries (including catcher/processors, at-sea processors, and vessels that embark from a port in Washington, Oregon, or California and land catch in another area), may be required to carry a NMFS-certified observer on board to collect scientific data when directed to do so by the NMFS Regional Administrator. NMFS shall advise the permit holder or the designated agent of any observer requirement at least 24 hours (not including weekends and Federal holidays) before any trip. Pre-season informational letters were sent out to the various HMS fleets explaining the requirements for carrying an observer, which includes, among other things, providing bunk space and food equivalent to that given crew members.

During 2009, the NMFS Southwest Region Observer Program observed the following HMS fisheries:

- Drift gillnet: 7 trips and 101 sets for a coverage rate of approximately 13.2 percent.
- Albacore troll: Albacore trips did not carry federal observers in 2009 due to funding limitations.
- Tuna Purse Seine: No tuna directed trips were conducted by the West Coast-based coastal purse seine fleet in 2009.
- Pelagic tuna longline: 4 trips and 50 sets, 100 percent coverage.
- HMS CPFV: CPFV trips did not carry federal observers in 2009 due to funding limitations.

## 3.1.9 U.S. Pacific Albacore Logbook and HMS Permits Compliance Check for 2009

#### 3.1.9.1 Enforcement of Regulations

Penalties for violating the regulations and prohibitions outlined in the HMS FMP final rule are determined on a case-by-case basis; they can include significant civil penalties and permit sanctions. NOAA has implemented a summary settlement penalty program to increase compliance with logbook reporting requirements, and is developing a civil administrative penalty schedule for the HMS FMP Final Rule. The NOAA Summary Penalty Program for the West Coast HMS fishery can be found at 50 CFR 660, Subpart K. The Program focuses on the reporting compliance for logbooks and sets the penalty schedule for failure to timely complete, or timely submit, a logbook as required by regulation as follows: 1–5 days late, \$500; 6 or more days late, \$100/day.

## 3.1.9.2 Compliance Check

In 2009 769 vessels made commercial landings of HMS species with HMS approved gear. Of those, 83 were identified as having made an HMS commercial landing while not possessing a valid NMFS Pacific HMS permit, for a permit compliance rate of 89 percent. For the 2008 season, 73 commercial vessels were identified as not having possessed a valid HMS permit. The total number of vessels having made HMS landings was 587, resulting in a permit compliance rate of 88 percent. The CPFV portion of the 2009 compliance check identified 20 vessels as having caught HMS without having a valid permit in 2009. For 2008, there were 37 CPFVs identified as having caught HMS without a valid HMS permit.

Vessels which appeared to be in noncompliance with NMFS Pacific HMS regulations were either sent a certified warning letter or referred to the NOAA Fisheries Office for Law Enforcement for investigation.

### 3.2 **Protected Resources Regulations**

Longline and drift gillnet vessels on rare occasions encounter endangered and threatened species of sea turtles and marine mammals while targeting HMS. Longline vessels also on rare occasions encounter a number of sea birds, including the endangered short-tailed albatross. Endangered and threatened marine species are protected through a number of Federal laws, including the ESA and the MMPA. The HMS FMP final rule adopted measures to minimize interactions of HMS gears with protected species and to ensure that the fisheries are operating consistent with Federal law. These measures include time and area closures, gear requirements, and safe handling and release techniques for protected seabirds and sea turtles. Refer to 50 CFR 660.712, 713, and 720 and 50 CFR 229.31 and 223.206 for the complete list and text of the regulations.

Impacts to ESA-listed protected resources were analyzed as part of the section 7 consultation and 2004 biological opinion (BO) on the HMS FMP. The BO included an Incidental Take Statement with anticipated mortalities and entanglements of ESA-listed marine mammals and sea turtles that are likely to interact with the drift gillnet vessels targeting HMS species (see Table 3-4). The BO considered the impacts of the then proposed shallow-set longline fishery and found that the fishery would result in jeopardy to threatened loggerhead sea turtles. As a result, this component of the proposed HMS fishery was prohibited.

| Species Estimated   | Entanglement | Estimated<br>Mortalities | Conditions Resulting in Take           |
|---------------------|--------------|--------------------------|----------------------------------------|
|                     | 412.0        | 0.1.0                    |                                        |
| Fin whale           | 4 in 3 years | 2 in 3 years             |                                        |
| Humpback whale      | 4 in 3 years | 0                        |                                        |
| Sperm whale         | 4 in 3 years | 2 in 3 years             |                                        |
| Green turtle        | 4            | 1                        | SSTs in fishing area similar to Nov 99 |
| Leatherback turtle  | 3            | 2                        | -                                      |
| Loggerhead turtle   | 5            | 2                        | Only in El Niño years                  |
| Olive ridley turtle | 4            | 1                        | SSTs in fishing area similar to Nov 99 |

 Table 3-4. Anticipated incidental takes of listed species in the HMS fisheries.

Note: SST – sea surface temperature.

Except where noted, the anticipated mortalities are annual estimates. Takes of listed marine mammals are rare events and are calculated over a three-year time period, consistent with the MMPA permit required under section 101(a)(5)(E) for incidental take of ESA-listed marine mammals in fisheries. Takes of green, olive ridley, and loggerhead sea turtles are uncommon except under certain environmental conditions (e.g., El Niño or higher than usual sea surface temperatures) when turtles may move into the areas of drift gillnet fishing.

The MMPA requires that all commercial fisheries in the U.S. be categorized and included on an annual List of Fisheries (LOF). The fisheries are placed in one of three categories based upon the level of serious injury and mortality of marine mammals that occurs incidental to each fishery. The current 2010 LOF was published November 16, 2009 (74 FR 58859). The drift gillnet fishery is listed as a category I fishery; the tuna purse seine fishery is listed as a category II fishery. Owners of vessels in these fisheries are required to register with NMFS and obtain a marine mammal authorization to lawfully incidentally take marine mammals. They may also be required to accommodate an observer aboard the vessel upon request by NMFS. Other HMS fisheries are listed under category III. (The pelagic longline fishery was listed as a

category III fishery, from a category II fishery, in the final 2010 LOF.) Any incidental injuries or mortalities of marine mammals occurring during fishing operations must be reported to NMFS. Injury/mortality report forms and instructions for submitting forms to NMFS can be downloaded from: http://www.nmfs.noaa.gov/pr/interactions/mmap/.

On January 5, 2010, NMFS published a proposed rule to designate areas off the U.S. west coast as critical habitat for endangered leatherback sea turtles. Existing leatherback critical habitat is at Sandy Point Beach and adjacent waters on the western end of St. Croix in the U.S. Virgin Islands. This area is a known nesting beach for leatherback sea turtles in the Atlantic Ocean. NMFS was petitioned in October 2007 to designate the drift gillnet leatherback sea turtle conservation area as critical habitat, an area of roughly 200,000 square miles. NMFS is proposing an area of approximately 70,000 square miles from Point Vicente to Point Arena, California and from the Umpqua River in Oregon to Cape Flattery, Washington. NMFS held two public hearings on the proposed critical habitat, presented the information to the Council and various sub-committees in April, and accepted comments through April 23, 2010. A final decision on the proposed critical habitat is expected in 2011.

## 3.3 International Regulatory Aspects of the HMS FMP

Management of Pacific HMS fisheries is complicated by the wide-ranging behavior of the stocks, the many jurisdictions that are involved, and a lack of reliable data. Many HMS are distributed throughout the Pacific Ocean and vessels from the United States and many other nations harvest them. Effective management of the stocks throughout their ranges requires international cooperation. The HMS FMP and its associated fisheries are affected by the conservation and management measures adopted by regional fishery management organizations (RFMOs); in particular, those adopted by the Inter-American Tropical Tuna Commission (IATTC) and the Western and Central Pacific Fisheries Commission (WCPFC). In addition, the U.S.-Canada Albacore Treaty and the associated bilateral negotiations between the United States and Canada affect the HMS FMP and albacore fisheries based out of the U.S. West Coast.

## 3.3.1 The Inter-American Tropical Tuna Commission

The IATTC is an international convention that was established in 1950 for the conservation and management of fisheries for tunas, tuna-like species, and other species of fish taken incidentally by tuna fishing vessels in the eastern Pacific Ocean (EPO). Currently, there are 16 member nations to the IATTC Convention: Colombia, Costa Rica, Ecuador, El Salvador, France, Guatemala, Japan, Mexico, Nicaragua, Panama, Peru, Republic of Korea, Spain, United States, Vanuatu, and Venezuela. Belize, Canada, China, Cook Islands, the European Union, and Kiribati are Cooperating Non-Parties, and Chinese Taipei (Taiwan) is a Cooperating Fishing Entity.

The IATTC is responsible for the conservation and management of fisheries for tunas and other species taken by tuna-fishing vessels in the EPO. The Tuna Conventions Act of 1950 provides the United States with the Federal authority to implement the measures adopted by the IATTC. The HMS FMP can at times be used to implement or supplement recommendations of the IATTC or other international fishery management bodies, particularly for U.S. fisheries based out of the west coast that primarily operate in domestic waters.

In 2003, the IATTC adopted a resolution that approved the Antigua Convention, a major revision of the original convention establishing the IATTC. This new text brings the convention current with respect to internationally accepted laws on the conservation and management of oceanic resources, including a mandate to take a more ecosystem-based approach to management. The Antigua Convention will enter into force on August 27, 2010. Implementing legislation packages for the Antigua Convention have been

sent to the House Committee on Foreign Affairs and the Senate Commerce Science and Transportation Committee; however, Congress has not yet passed such legislation.

IATTC resolutions are domestically implemented in regulations at 50 CFR 300, Subpart C.

The next IATTC meeting is scheduled for September 27-October 1, 2010, in Antigua, Guatemala.

#### 3.3.1.1 An Update of IATTC Resolutions

Since the Antigua Convention enters into force on August 27, 2010, the Parties to the IATTC decided to hold the annual meeting in September 2010 rather than in June as has been the practice in the past. Therefore, if resolutions are adopted at the September meeting, they are not reflected in this 2010 HMS SAFE; however, updates will be provided in next year's document and will also appear on the IATTC website as they become available.

The active IATTC Resolutions may be accessed at the following IATTC website: <u>http://www.iattc.org/ResolutionsActiveENG.htm</u>.

#### Proposals that will likely be discussed at the September 2010 IATTC meeting

<u>Seabird Proposal</u> – The U.S. delegation, in cooperation with the European Union, presented a proposal at the 2009 IATTC annual meeting on mitigation measures to prevent/reduce sea bird bycatch in longline fisheries. The proposal was modeled after the technical specifications the WCPFC adopted last year. The proposal was not adopted in 2009; thus it will likely be discussed again at the 2010 meeting.

<u>Proposal to Modify the IUU Vessel Listing Procedures</u> – The U.S. delegation introduced a proposal at the June 2009 annual meeting to revise the IATTC measure that establishes a list of vessels presumed to have engaged in illegal, unregulated and unreported (IUU) fishing activities. The measure currently in place lacks some of the necessary details to provide clear guidance to the Secretariat on the creation and management of the IUU list and does not ensure due process for the vessels and their flag states. The proposal received support and many members submitted comments to further revise the proposal; however, it was not adopted. It will likely be revisited at the 2010 meeting.

<u>Proposal to Prohibit Fishing on Data Buoys</u> – The U.S. delegation is considering whether to present a proposal which would, if adopted, require that Commission members prohibit their fishing vessels from fishing in the vicinity of data buoys on the high seas in the Convention Area. This measure is meant to prevent vandalism and damage to data buoys.

#### 3.3.2 Western and Central Pacific Fisheries Commission

The Convention on the Conservation and Management of Highly Migratory Fish Stocks in the Western and Central Pacific Ocean (WCPO) entered into force in June 2004. The objective of the Convention is to ensure, through effective management, the long-term conservation and sustainable use of highly migratory fish stock in the WCPO. The United States signed the Convention in 2000 and ratified it in 2007, thereby becoming a member of the WCPFC. The U.S. domestic procedures for ratification of the Convention were completed in June 2007.

There are 25 Members of the Commission: Australia, China, Canada, Cook Islands, European Union, Federated States of Micronesia, Fiji, France, Japan, Kiribati, Korea, Republic of Marshall Islands, Nauru, New Zealand, Niue, Palau, Papua New Guinea, Philippines, Samoa, Solomon Islands, Chinese Taipei, Tonga, Tuvalu, the United States, and Vanuatu. American Samoa, Guam, French Polynesia, New Caledonia, Tokelau, Wallis, Futuna, and the Commonwealth of the Northern Mariana Islands are Participating Territories, and Belize, Indonesia, Senegal, Mexico, El Salvador, Ecuador, and Vietnam are Cooperating Non-members.

WCPFC conservation and management measures are accessible on the following WCPFC website: http://www.wcpfc.int/conservation-and-management-measures. The NOAA Fisheries Pacific Islands Regional Office (PIRO) has the lead on implementing the measures adopted by the WCPFC. Documentation and background information on recent rulemakings can be found at http://www.fpir.noaa.gov/IFD/ifd\_documents\_data.html.

WCPFC conservation and management measures are domestically implemented in regulations at 50 CFR 300, Subpart O.

The next meeting of the WCPFC will be in December 2010 in Pohnpei, Federated States of Micronesia.

#### 3.3.2.1 An Update of WCPFC Conservation and Management Measures

The last WCPFC annual meeting was held in December 2009 in Tahiti. Several conservation and management measures (CMMs) were adopted and a number of existing measures were revised. Each of these decisions is summarized below.

*CMM* 2009-01 - *WCPFC Record of Fishing Vessels and Authorization to Fish* - This measure replaces CMM 2004-01. The changes relate primarily to the operation in the Convention Area of carrier and bunker vessels that are not flagged to members or cooperating non-members of the Commission. Regulatory action appears to be needed to ensure that U.S. vessels conduct transshipment and bunkering in the Convention Area only with authorized vessels (see paragraph 2 in the CMM).

*CMM* 2009-02 - *Conservation and Management Measure on the Application of High Seas FAD Closures and Catch Retention* - This new measure adds specificity to the seasonal FAD closure and catch retention elements of CMM 2008-01, which is aimed at conserving bigeye tuna and yellowfin tuna stocks. Although not reflected in CMM 2009-02 itself, the Commission decided that any member that had already implemented those elements in a manner compatible with, but not necessarily identical to, the new measure would be given some flexibility in implementing CMM 2009-02 for 2010. The United States is apparently the only member of the Commission to have promulgated regulations implementing the seasonal FAD closure and catch retention elements of CMM 2008-01 (see the final rule at 74 FR 38544).

*CMM* 2009-03 - *Conservation and Management for Swordfish* - This measure replaces CMM 2008-05. The main changes are a new provision for cases in which annual catch limits are exceeded, and adjustments to the specification of Commission members' baseline catches. None of the changes raise the need for regulatory action. However, the United States will periodically review the need for regulatory action with respect to the most substantive elements of the measure - namely, the measure's limits on swordfish catches and the number of vessels fishing for swordfish in the South Pacific Ocean.

*CMM* 2009-04 - *Conservation and Management of Sharks* - This measure replaces CMM 2008-06. The only change is the addition of silky shark as a "key shark species," which is relevant in terms of reporting and research.

*CMM* 2009-05 - *Conservation and Management Measure Prohibiting Fishing on Data Buoys* - This new measure requires that Commission members prohibit their fishing vessels from fishing in the vicinity of data buoys on the high seas in the Convention Area.

*CMM* 2009-06 - *Conservation and Management Measure on the Regulation of Transshipment* - This new measure regulates transshipment activities in the Convention Area and includes notice and reporting requirements for vessels involved in transshipment, both at sea and at port. NOAA Fisheries Service intends to develop and implement appropriate regulations to implement this measure under authority of the Act.

*CMM* 2009-07 - *Conservation and Management Measure for Pacific Bluefin Tuna* - This new measure requires that Commission members limit fishing effort in the North Pacific Ocean for Pacific bluefin tuna during 2010.

*CMM 2009-08 - Charter Notification Scheme -* This new measure requires that Commission members notify the Commission of any charter arrangements involving vessels flagged to other nations.

#### 3.3.3 The U.S.-Canada Albacore Treaty

The Treaty entered into force in 1982 and has been renegotiated several times to address limitations on the catch or effort on North Pacific albacore tuna by fishing vessels of one country operating in the jurisdiction of the other country. The Treaty allows fishing in the host country beyond 12 nautical miles during a fishing season that runs from June through October. The Treaty requires that the United States and Canada annually exchange lists of fishing vessels that may fish for albacore tuna in each other's waters. The vessels agree to abide by the provisions of the Treaty, which include vessel marking, recordkeeping, and reporting. The Treaty also allows the fishing vessels of each country to enter designated fishing ports of the other country to conduct several types of business transactions including the landing of albacore without payment of duties; transshipment of catches to any port of the flag state; selling catches for export or locally; and obtaining fuel, supplies, repairs, and equipment on the same basis as albacore tuna vessels of the other country. The Treaty allows Canadian albacore vessels to land their catch in the ports of Bellingham and Westport, Washington; Astoria, Coos Bay, and Newport, Oregon; and Eureka, California.

The current 3-year fishing regime (2009-2011), which allows 110 Canadian vessels to fish in the U.S. EEZ and an unlimited number of U.S. vessels in the Canadian EEZ, ends December 2011. It is expected that renegotiation meetings will begin in May 2011. Canada and the United States held consultations to review the 2009 fishing season, to discuss management arrangements, and to exchange updates on the status of the recently renewed Pacific Albacore Treaty in Victoria, British Columbia in May 2009. Both parties agreed to provide the other with a list of vessels authorized to fish off each other's coast. Canada's list is to be provided by June 1<sup>st</sup> in each applicable year (i.e., 2009-2011), and the United States is to provide a provisional list, which can be amended throughout the season, by July 1<sup>st</sup> in each applicable year.

Canada highlighted a number of Marine Protected Areas at the 2009 meeting, including the Bowie Seamount, where most commercial fishing is prohibited. This affects both Canadian and U.S. fleets. Information on Marine Protected Areas is available on the following Department of Fisheries and Oceans Canada website: http://www.dfo-mpo.gc.ca/oceans/marineareas-zonesmarines/mpa-zpm/index-eng.htm. Canada and the United States agreed that it was not necessary for Canadian vessels to hail to Shipcom, and that Tofino (the Canadian Coast Guard) hails were sufficient and hail information could be provided to the United States. Vessels need only hail in and hail out with Tofino at the start and stop of the harvesting season (this simplifies matters for harvesters following schools back and forth across the border who were concerned about being required to hail continuously as they moved back and forth from Canada to the United States).

The International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean (ISC) will complete its full stock assessment on North Pacific albacore in 2011. The next bilateral meeting between the United States and Canada will be hosted by the United States in the spring of 2010.

U.S-Canada Albacore Treaty measures are domestically implemented in regulations at 50 CFR 300, Subpart L.

Tables 4-9 (Canadian vessels excluded) and 4-10 (all landings) provide data on the commercial landings in the West Coast albacore surface hook-and-line fishery from 1981-2009 all landings, and Tables 4-19 and 4-20 provide the real commercial ex-vessel revenues.

#### 3.4 Bycatch and Other Monitored Species

NMFS monitors catch and bycatch in HMS fisheries through onboard observer programs. During the 2009/2010 fishing year, observers were placed on deep-set pelagic longline and drift gillnet fishing vessels. Less than three vessels participated in the deep-set pelagic longline fishery, so data confidentiality rules prevent those observations from being reported here. Observer coverage in this fishery was 100 percent. The drift gillnet fishery for swordfish and sharks has been observed by NMFS since 1990.

Table 3–5 summarizes the total catch and final disposition, by species, of all fish, marine mammals, sea turtles, and seabirds observed caught in the California/Oregon drift gillnet fishery during the 2009/2010 fishing season. Data were collected at sea by contract observers, and represent a total of 108 sets. Estimated total fishing effort for the season was 832 sets.

|                             | Total  | Number | Nun   | nber F | Returned | Number  | Catch per |
|-----------------------------|--------|--------|-------|--------|----------|---------|-----------|
| Species                     | Caught | Kept   | Alive | Dead   | Unknown  | Damaged | 100 Sets  |
| Swordfish                   | 227    | 220    | 0     | 7      | 0        | 20      | 210.2     |
| Striped Marlin              | 1      | 0      | 0     | 1      | 0        | 0       | 0.9       |
| Unidentified Billfish       | 1      | 0      | 0     | 1      | 0        | 0       | 0.9       |
| Albacore                    | 69     | 68     | 0     | 1      | 0        | 16      | 63.9      |
| Bluefin Tuna                | 50     | 49     | 0     | 1      | 0        | 9       | 46.3      |
| Skipjack Tuna               | 4      | 3      | 0     | 1      | 0        | 1       | 3.7       |
| Yellowfin Tuna              | 3      | 3      | 0     | 0      | 0        | 0       | 2.8       |
| Unidentified Tuna           | 3      | 1      | 0     | 2      | 0        | 2       | 2.8       |
| Common Thresher Shark       | 22     | 22     | 0     | 0      | 0        | 1       | 20.4      |
| Bigeye Thresher Shark       | 14     | 6      | 0     | 8      | 0        | 0       | 13.0      |
| Longfin Mako Shark          | 4      | 4      | 0     | 0      | 0        | 0       | 3.7       |
| Shortfin Mako Shark         | 100    | 97     | 1     | 2      | 0        | 1       | 92.6      |
| Blue Shark                  | 65     | 0      | 22    | 42     | 1        | 1       | 60.2      |
| Hammerhead Shark            | 1      | 0      | 0     | 1      | 0        | 0       | 0.9       |
| Salmon Shark                | 1      | 0      | 0     | 1      | 0        | 0       | 0.9       |
| Spiny Dogfish               | 1      | 0      | 1     | 0      | 0        | 0       | 0.9       |
| Common Mola                 | 1462   | 0      | 1455  | 5      | 2        | 2       | 1353.7    |
| Louvar                      | 17     | 17     | 0     | 0      | 0        | 5       | 15.7      |
| Opah                        | 306    | 303    | 0     | 3      | 0        | 28      | 283.3     |
| Pacific Bonito              | 15     | 8      | 0     | 7      | 0        | 0       | 13.9      |
| Pacific Mackerel            | 38     | 27     | 8     | 3      | 0        | 2       |           |
| Pacific Pomfret             | 9      | 9      | 0     | 0      | 0        | 2       | 8.3       |
| Pelagic Stingray            | 1      | 0      | 1     | 0      | 0        | 0       |           |
| Bullet Mackerel             | 33     | 28     | 0     | 4      | 1        | 0       | 30.6      |
| Crestfish                   | 1      | 1      | 0     | 0      | 0        | 0       | 0.9       |
| Yellowtail                  | 3      | 3      | 0     | 0      | 0        | 0       | 2.8       |
| Remora                      | 1      | 0      | 1     | 0      | 0        | 0       | 0.9       |
| Leatherback Sea Turtle      | 1      | 0      | 1     | 0      | 0        | 0       | 0.9       |
| Unidentified Common Dolphin | 1      | 0      | 0     | 1      | 0        | 0       | 0.9       |
| Pacific White-sided Dolphin | 2      | 0      | 0     | 2      | 0        | 0       | 1.9       |
| California Sea Lion         | 5      | 0      | 0     | 5      | 0        | 0       | 4.6       |

Table 3-5. NMFS California/Oregon Drift Gillnet Observer Program Observed Catch - 2009/2010 FishingSeason May 1, 2009, through January 31, 2010 (Source: NMFS SWR Observer Program).

# 4.0 STATISTICAL SUMMARIES OF CATCH, REVENUE, AND EFFORT

#### 4.1 Commercial Fisheries

|                  |            | 2008      |                |            | 2009      |                |
|------------------|------------|-----------|----------------|------------|-----------|----------------|
|                  |            | Ex-vessel | Average        |            | Ex-vessel | Average        |
|                  | Landings   | revenue   | price          | Landings   | revenue   | price          |
| Species          | (round mt) | (\$1000)  | (\$/ round lb) | (round mt) | (\$1000)  | (\$/ round lb) |
| Tunas            |            |           |                |            |           |                |
| Albacore         | 11,131     | \$28,853  | \$1.18         | 12,264     | \$27,470  | \$1.02         |
| Yellowfin        | 65         | \$126     | \$0.88         | 45         | \$166     | \$1.68         |
| Skipjack         | 3          | \$4       | \$0.56         | 5          | \$5       | \$0.48         |
| Bigeye           | 27         | \$206     | \$3.45         | 12         | \$97      | \$3.67         |
| Bluefin          | 1          | \$3       | N.A.           | 415        | \$442     | \$0.48         |
| Unspecified Tuna | 1          | \$3       | N.A.           |            |           | N.A.           |
| Tunas subtotal   | 11,228     | \$29,195  | \$1.18         | 12,741     | \$28,180  | \$1.00         |
| Swordfish        | 531        | \$2,373   | \$2.03         | 407        | \$1,924   | \$2.14         |
| Sharks           |            |           |                |            |           |                |
| Common Thresher  | 147        | \$281     | \$0.87         | 105        | \$195     | \$0.84         |
| Pelagic Thresher | <0.5       | <\$0.5    | N.A.           | <0.5       | <\$0.5    | N.A.           |
| Bigeye Thresher  | 6          | \$5       | N.A.           | 7          | \$5       | N.A.           |
| Shortfin Mako    | 35         | \$67      | \$0.87         | 29         | \$52      | \$0.82         |
| Blue             | <0.5       | <\$0.5    | N.A.           | 1          | <\$0.5    | N.A.           |
| Sharks subtotal  | 188        | \$353     | \$0.85         | 142        | \$252     | \$0.82         |
| Dorado           | 2          | \$9       | N.A.           | 1          | \$4       | N.A.           |
| Total HMS        | 11,949     | \$31,930  | \$1.21         | 13,291     | \$30,360  | \$1.04         |

Table 4–1. West Coast commercial HMS landings, revenues, and average prices by species, 2008–2009.

**Interpretation**: The total West Coast commercial HMS catch was 13.3 thousand mt in 2009, up 11 percent from 11.9 thousand mt in 2008. Tunas represented 96 percent of the total catch by weight in 2009. Albacore tuna catch was up 10 percent from the catch in the previous year, and was once again the largest component of tuna catch, representing about 96 percent of the total by weight. Bluefin was the next largest component of tuna catch at 415 mt.

Swordfish was the category with the next largest share of landings behind tuna at 3 percent of the total weight. Swordfish landings by weight were down by 23 percent (124 mt) from 2008 to 2009. Common thresher shark again comprised the largest component of commercial shark landings by weight in 2009. Total commercial shark landings by weight decreased by 24 percent (46 mt) from 2008 to 2009.

Total current dollar West Coast commercial HMS ex-vessel revenue of \$30.4 million declined from \$31.9

million in the previous year, for a decrease of 5 percent (\$1.5 million). Tunas comprised 93 percent of the 2009 revenue total. Albacore generated by far the most important component of revenue for any single species, at \$27.5 million. Swordfish was the next highest contributor to total revenue at \$1.9 million. The average price for tuna was 15 percent lower in 2009 than in 2008. The overall average West Coast commercial HMS fish price decreased from \$1.21 in 2008 to \$1.04 in 2009, or roughly 14 percent.

**Source and Calculations**: The data were extracted from PacFIN on August 9, 2010 (landings and revenues), and represent the latest two years of current dollar revenues and landings data shown in Tables 4-4 and 4–5. Landings in pounds were converted to round weight in metric tons by multiplying the landed weights by the conversion factors in each fish ticket line, then dividing by 2204.6. Revenues were computed for each species as the sum total of landed weights in pounds multiplied by the prices per pound in each fish ticket line. Aquaculture fish ticket / fish ticket line information is excluded from the data. Average prices are estimated as revenue divided by round pounds, where the latter are metric tons multiplied by 2204.6. Estimated averages are subject to rounding error for categories with small revenues or landings.

|                         |            | 2008      |                | 2009       |           |                |  |  |  |
|-------------------------|------------|-----------|----------------|------------|-----------|----------------|--|--|--|
|                         |            | Ex-vessel | Average        |            | Ex-vessel | Average        |  |  |  |
|                         | Landings   | revenue   | price          | Landings   | revenue   | price          |  |  |  |
| Fishery                 | (round mt) | (\$1000)  | (\$/ round lb) | (round mt) | (\$1000)  | (\$/ round lb) |  |  |  |
| Surface Hook-and-line** | 9,777      | \$24,915  | \$1.16         | 11,579     | \$25,819  | \$1.01         |  |  |  |
| Drift gillnet           | 670        | \$2,355   | \$1.59         | 446        | \$1,477   | \$1.50         |  |  |  |
| Harpoon                 | 49         | \$460     | \$4.26         | 50         | \$462     | \$4.19         |  |  |  |
| Longline                | *          | *         | *              | ***        | ***       | ***            |  |  |  |
| Purse seine             | *          | *         | *              | 943        | \$820     | \$0.39         |  |  |  |
| Total HMS               | 10,496     | \$27,730  | \$1.20         | 13,018     | \$28,579  | \$1.00         |  |  |  |

Table 4–2. West Coast commercial HMS landings, revenues, and average prices by fishery, 2008-2009.

\* Not reported due to data confidentiality requirements (fewer than three vessels).

\*\* Canadian vessels are excluded.

\*\*\* Not produced for 2009, due to no new data which is not confidential.

**Interpretation**: Table 4–2 shows that the total West Coast commercial HMS catch for the indicated fisheries was 13.0 thousand mt in 2009, up 23 percent (about 2.4 thousand metric tons) from 2008. The surface hook-and-line fishery represented 89 percent of the total catch.

Total current dollar West Coast commercial HMS ex-vessel revenue for these fisheries of \$28.6 million increased from \$28.2 million in the previous year, for a percentage increase of 1.4 percent (\$388 thousand). The overall average West Coast commercial HMS fish price per round metric ton of catch for these fisheries decreased from \$1.20 in 2008 to \$1.00 in 2009 (17 percent decline).

**Source and Calculations**: The data were extracted from PacFIN on various dates in August 2009, and represent the latest two years of current dollar revenues and landings data in Tables 4–9 through 4–18. Landings in pounds were converted to round weight in metric tons by multiplying the landed weights by the conversion factors in each fish ticket line, then dividing by 2204.6. Revenues were computed for each species as the sum total of landed weights in pounds multiplied by the prices per pound in each fish ticket line. Aquaculture fish ticket / fish ticket line information is excluded from the data. Average prices are estimated as revenue divided by round pounds, where the latter are metric tons multiplied by 2204.6. Estimated averages are subject to rounding error for categories with small revenues or landings. Data for Canadian surface hook-and-line vessels fishing in the U.S. EEZ are excluded from the table.

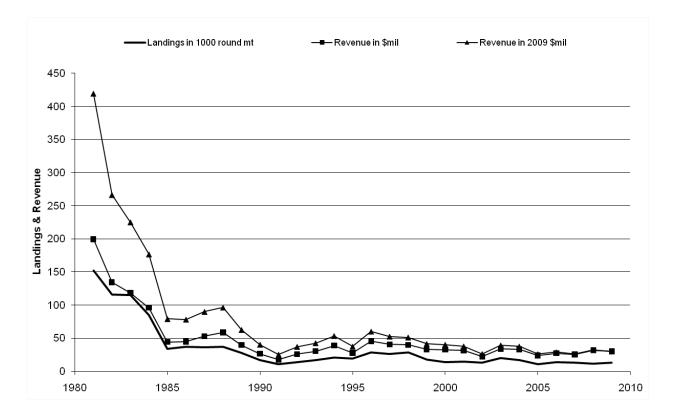



Figure 4–1. West Coast commercial HMS landings and revenues, 1981–2009.

**Interpretation**: Figure 4–1 shows aggregate Pacific Coast HMS commercial landings in thousands of round metric tons against aggregate revenues in millions of both current and 2009 dollars from 1981 through 2009, and the accompanying tables below (Tables 4–3 through 4–6) show commercial landings and revenues by species. Data for the graph are displayed in the far right columns of the three accompanying tables.

The most striking feature of Figure 4-1 is a precipitous drop in both commercial landings and revenues over the period from 1981 through 1985. Landings fell from a level of about 150,000 mt in 1981 to a level which remained permanently below 50,000 mt from 1985 onwards. Revenues in real (2009) dollars fell from \$528 million in 1981 to a level permanently below \$200 million after 1984. Landings have recently occurred at levels between 10-20 mt, while real revenues since 2001 have ranged between \$25 million and \$40 million in 2009 dollars.

The drops in landings and revenues are primarily explained by the substantial decline in tuna landings during the 1980s for species other than albacore. This drop in tuna landings reflects a decline in purse seine landings and revenues, which is largely explained by structural changes in the tuna purse seine fishing industry after 1980. In 1980, there were 20 U.S. tuna processing plants in operation; this number declined to seven in 1990, while the U.S. fleet of purse seiners in the Eastern Pacific Ocean (EPO) declined from 135 vessels in 1981 to fewer than 20 vessels in years after 1998.

<u>Source and Calculations</u>: The data were extracted from PacFIN on August 9, 2010 (landings and revenues). Landings in pounds were converted to round weight in metric tons by multiplying the landed weights by the conversion factors in each fish ticket line then dividing by 2204.6. Current dollar revenues were computed as the sum total of landed weights in pounds multiplied by the prices per pound in each fish ticket line. Aquaculture fish ticket / fish ticket line information is excluded from the data. Revenues in current dollars were adjusted to 2009 dollars using the implicit GDP deflator as calculated by the Bureau of Economic Analysis. Data for the graph were calculated by summing revenues and landings across all species in each year.

|      | Landings        | Revenue  | Revenue       |
|------|-----------------|----------|---------------|
| Year | (1000 round mt) | (\$mil.) | (2009 \$mil.) |
| 1981 | 152             | \$200    | \$419         |
| 1982 | 116             | \$134    | \$266         |
| 1983 | 115             | \$118    | \$225         |
| 1984 | 85              | \$96     | \$177         |
| 1985 | 34              | \$44     | \$79          |
| 1986 | 37              | \$45     | \$78          |
| 1987 | 36              | \$53     | \$90          |
| 1988 | 37              | \$59     | \$97          |
| 1989 | 28              | \$40     | \$63          |
| 1990 | 17              | \$27     | \$41          |
| 1991 | 11              | \$17     | \$26          |
| 1992 | 14              | \$26     | \$37          |
| 1993 | 17              | \$31     | \$43          |
| 1994 | 21              | \$39     | \$54          |
| 1995 | 19              | \$28     | \$38          |
| 1996 | 29              | \$46     | \$60          |
| 1997 | 26              | \$41     | \$53          |
| 1998 | 29              | \$40     | \$51          |
| 1999 | 18              | \$33     | \$42          |
| 2000 | 14              | \$33     | \$41          |
| 2001 | 15              | \$31     | \$38          |
| 2002 | 13              | \$22     | \$26          |
| 2003 | 20              | \$34     | \$39          |
| 2004 | 17              | \$33     | \$38          |
| 2005 | 11              | \$24     | \$26          |
| 2006 | 14              | \$27     | \$29          |
| 2007 | 13              | \$26     | \$26          |
| 2008 | 12              | \$32     | \$32          |
| 2009 | 13              | \$30     | \$30          |

 Table 4–3. West Coast commercial HMS landings and revenues, 1981–2009.

|      |          |           |          |        |         | La          | andings (ro | und mt)  |          |          |          |       |        |         |
|------|----------|-----------|----------|--------|---------|-------------|-------------|----------|----------|----------|----------|-------|--------|---------|
|      |          |           | Tur      | nas    |         |             |             |          | S        | harks    |          |       |        |         |
|      |          |           |          |        |         |             |             | Common   | Pelagic  | Bigeye   | Shortfin |       |        |         |
| Year | Albacore | Yellowfin | Skipjack | Bigeye | Bluefin | Unspecified | Swordfish   | Thresher | Thresher | Thresher | Mako     | Blue  | Dorado | Total   |
| 1981 | 13,712   | 76,091    | 57,869   | 1,168  | 868     | 40          | 749         | 1,521    |          |          | 182      | 92    | 4      | 152,296 |
| 1982 | 5,410    | 61,769    | 41,904   | 968    | 2,404   | 51          | 1,112       | 1,848    |          | 28       | 351      | 27    | 1      | 115,873 |
| 1983 | 9,578    | 55,741    | 44,995   | 21     | 764     | 55          | 1,763       | 1,331    | 9        |          | 217      | 7     | 1      | 114,578 |
| 1984 | 12,654   | 35,063    | 31,251   | 126    |         | 1,014       | 2,890       | 1,279    | 9        | 57       | 160      | 2     | 4      | 85,144  |
| 1985 | 7,301    | 15,025    | 2,977    | 7      | 3,254   | 468         | 3,418       | 1,190    | <0.5     | 95       | 149      | 1     | <0.5   | 33,885  |
| 1986 | 5,243    | 21,517    | 1,361    | 29     | 4,731   | 143         | 2,530       | 974      | <0.5     | 48       | 312      | 2     | 2      | 36,892  |
| 1987 | 3,160    | 23,201    | 5,724    | 50     | 823     | 129         | 1,803       | 562      | 2        | 20       | 403      | 2     | <0.5   | 35,879  |
| 1988 | 4,912    | 19,520    | 8,863    | 6      | 804     | 11          | 1,636       | 500      | 1        | 9        | 322      | 3     | <0.5   | 36,587  |
| 1989 | 2,214    | 17,615    | 4,505    | 1      | 1,019   | 77          | 1,358       | 504      | <0.5     | 17       | 255      | 6     | <0.5   | 27,571  |
| 1990 | 3,028    | 8,509     | 2,256    | 2      | 925     | 46          | 1,236       | 357      | 1        | 31       | 373      | 20    | 1      | 16,785  |
| 1991 | 1,676    | 4,178     | 3,407    | 7      | 104     | 11          | 1,029       | 584      |          | 32       | 219      | 1     | <0.5   | 11,248  |
| 1992 | 4,902    | 3,350     | 2,586    | 7      | 1,087   | 10          | 1,546       | 292      | <0.5     | 22       | 142      | 1     | 3      | 13,948  |
| 1993 | 6,166    | 3,795     | 4,539    | 26     | 559     | 16          | 1,767       | 275      | 1        | 44       | 122      | < 0.5 | 17     | 17,327  |
| 1994 | 10,751   | 5,056     | 2,111    | 47     | 916     | 33          | 1,700       | 330      | <0.5     | 37       | 128      | 12    | 41     | 21,162  |
| 1995 | 6,530    | 3,038     | 7,037    | 49     | 714     | 1           | 1,162       | 270      | 5        | 31       | 95       | 5     | 5      | 18,942  |
| 1996 | 14,173   | 3,347     | 5,455    | 62     | 4,688   | 3           | 1,198       | 319      | 1        | 20       | 96       | 1     | 10     | 29,373  |
| 1997 | 11,292   | 4,775     | 6,070    | 82     | 2,251   | 11          | 1,459       | 320      | 35       | 32       | 132      | 1     | 5      | 26,465  |
| 1998 | 13,915   | 5,799     | 5,846    | 53     | 1,949   | 12          | 1,408       | 361      | 2        | 11       | 100      | 3     | 3      | 29,462  |
| 1999 | 9,770    | 1,353     | 3,759    | 108    | 186     | 12          | 2,033       | 320      | 10       | -        | 63       | <0.5  | 17     | 17,636  |
| 2000 | 9,074    | 1,159     | 780      |        |         | 1           | 2,645       | 296      | 3        |          | 80       | 1     | 43     | 14,486  |
| 2001 | 11,191   | 655       | 58       | 53     | 196     | 1           | 2,195       | 373      | 2        |          | 46       | 2     | 16     | 14,790  |
| 2002 | 10,029   | 544       | 236      | -      |         | 2           | 1,725       | 301      | 2        |          | 82       | 41    | <0.5   | 12,983  |
| 2003 | 16,671   | 465       | 349      | 35     | 36      | <0.5        | 2,135       | 301      | 4        | 6        | 70       | 1     | 6      | 20,079  |
| 2004 | 14,540   | 488       | 307      | 22     | 10      | 9           | 1,186       | 115      | 2        | 5        |          | 1     | 1      | 16,740  |
| 2005 | 9,055    | 285       | 523      | 10     | 207     | <0.5        | 297         | 179      | <0.5     | 10       | 33       | 1     | <0.5   | 10,600  |
| 2006 | 12,786   | 77        | 48       | 35     | 1       | 1           | 541         | 160      | <0.5     | 4        | 46       | < 0.5 | 3      | 13,702  |
| 2007 | 11,586   | 104       | 5        |        | 45      | <0.5        | 550         | 204      | 2        | 5        |          | 10    | 2      | 12,571  |
| 2008 | 11,131   | 65        | 3        | 27     | 1       | 1           | 531         | 147      | <0.5     | 6        | 35       | <0.5  | 2      | 11,949  |
| 2009 | 12,264   | 45        | 5        | 12     | 415     |             | 407         | 105      | <0.5     | 7        | 29       | 1     | 1      | 13,291  |

Blank cells indicate no data exists. Any calculated or derived zeros are due to rounding of summarized data to less than half of the unit shown. Source: PacFIN, extracted Aug. 9, 2010.

Additional processing info:

Landings in lbs are converted to round weight in mt by multiplying the landed weights by the conversion factors in

each fish ticket line and then dividing by 2204.6.

Aquaculture fish ticket/fish ticket line info is excluded.

Table 4–5. West Coast nominal commercial ex-vessel revenues from HMS landings by all HMS and non-HMS gears, 1981–2009.

|      |            |            |            |           |           |             | Revenues ( | 6)        |          |          |          |        |        |             |
|------|------------|------------|------------|-----------|-----------|-------------|------------|-----------|----------|----------|----------|--------|--------|-------------|
|      |            |            | Tun        | as        |           |             |            |           |          | Sharks   |          |        |        |             |
|      |            |            |            |           |           |             |            | Common    | Pelagic  | Bigeye   | Shortfin |        |        |             |
| Year | Albacore   | Yellowfin  | Skipjack   | Bigeye    | Bluefin   | Unspecified | Swordfish  | Thresher  | Thresher | Thresher | Mako     | Blue   | Dorado | Total       |
| 1981 | 26,524,145 | 98,722,280 | 66,331,030 | 1,569,755 | 1,239,005 | 72,694      | 3,355,010  | 1,475,634 |          |          | 162,347  | 59,064 | 2,801  | 199,513,765 |
| 1982 | 8,033,073  | 74,468,306 | 40,507,405 | 1,208,147 | 2,690,102 | 98,923      | 5,115,995  | 1,980,592 |          | 15,168   | 339,209  | 18,826 | 956    | 134,476,702 |
| 1983 | 12,242,167 | 59,475,802 | 36,652,119 | 45,946    | 1,062,909 | 95,490      | 6,800,233  | 1,474,213 | 8,449    | 91,455   | 229,826  | 4,645  | 695    | 118,183,949 |
| 1984 | 17,208,448 | 37,038,204 | 24,790,704 | 174,405   | 904,956   | 2,590,391   | 11,621,524 | 1,642,178 | 7,723    | 47,119   | 189,794  | 2,470  | 4,272  | 96,222,188  |
| 1985 | 8,292,769  | 14,690,108 | 2,118,170  | 17,693    | 2,819,048 | 1,028,867   | 13,415,105 | 1,817,135 | 716      | 96,433   | 192,917  | 2,132  | 377    | 44,491,470  |
| 1986 | 6,178,084  | 18,079,443 | 904,609    | 90,227    | 4,636,698 | 198,248     | 12,726,490 | 1,690,791 | 194      | 66,647   | 428,259  | 1,320  | 757    | 45,001,767  |
| 1987 | 5,127,832  | 27,878,667 | 4,426,717  | 176,504   | 2,057,402 | 448,231     | 11,115,940 | 1,184,091 | 1,840    | 22,123   | 715,138  | 1,853  | 357    | 53,156,695  |
| 1988 | 9,117,601  | 27,030,132 | 9,249,827  | 26,156    | 2,070,411 | 80,548      | 9,719,489  | 979,905   | 821      | 9,764    | 649,799  | 2,275  | 527    | 58,937,255  |
| 1989 | 3,785,613  | 20,824,242 | 3,944,894  | 2,415     | 1,271,718 | 127,320     | 8,259,204  | 944,161   | 149      | 24,711   | 552,576  | 3,465  | 485    | 39,740,953  |
| 1990 | 5,620,990  | 9,383,584  | 1,898,875  | 8,771     | 1,149,381 | 56,750      | 7,146,946  | 638,630   | 1,682    | 34,628   | 739,193  | 10,303 | 1,943  | 26,691,676  |
| 1991 | 2,823,937  | 3,996,935  | 2,692,345  | 42,810    | 116,371   | 21,161      | 6,342,361  | 968,877   |          | 25,179   | 415,168  | 894    | 1,167  | 17,447,205  |
| 1992 | 11,483,392 | 3,677,441  | 1,410,546  | 44,731    | 1,129,626 | 21,228      | 7,566,616  | 464,018   | 602      | 14,629   | 231,063  | 1,816  | 6,247  | 26,051,955  |
| 1993 | 11,697,562 | 4,821,735  | 3,282,778  | 211,513   | 752,369   | 72,678      | 8,953,927  | 458,513   | 462      | 28,190   | 221,401  | 622    | 42,223 | 30,543,973  |
| 1994 | 20,188,895 | 4,522,321  | 1,751,209  | 307,147   | 1,674,099 | 55,245      | 9,596,037  | 584,318   | 42       | 33,478   | 247,088  | 16,057 | 74,889 | 39,050,825  |
| 1995 | 11,572,603 | 3,044,670  | 4,752,641  | 258,727   | 1,057,948 | 5,136       | 6,569,451  | 477,901   | 8,777    | 24,896   | 165,215  | 2,796  | 5,479  | 27,946,240  |
| 1996 | 27,222,294 | 3,230,957  | 3,986,113  | 260,306   | 4,035,455 | 28,296      | 6,063,794  | 603,006   | 1,557    | 17,745   | 167,111  | 587    | 9,815  | 45,627,036  |
| 1997 | 19,924,121 | 4,991,131  | 5,504,526  | 359,780   | 2,773,705 | 21,895      | 6,147,707  | 591,268   | 62,496   | 34,768   | 227,426  | 327    | 10,858 | 40,650,008  |
| 1998 | 18,895,247 | 5,861,959  | 5,213,131  | 271,919   | 2,965,485 | 61,688      | 5,981,719  | 625,489   | 2,584    | 9,428    | 176,313  | 5,996  | 10,492 | 40,081,450  |
| 1999 | 17,771,262 | 1,468,209  | 2,748,208  | 657,121   | 1,061,233 | 60,572      | 8,445,728  | 617,691   | 18,424   | 5,876    | 111,119  | 73     | 47,854 | 33,013,370  |
| 2000 | 17,188,570 | 1,329,357  | 483,242    | 576,919   | 580,722   | 2,298       | 11,753,472 | 589,035   | 2,738    | 4,636    | 133,621  | 720    | 63,293 | 32,708,623  |
| 2001 | 20,680,501 | 465,558    | 33,633     | 320,855   | 473,557   | 3,069       | 8,696,689  | 595,548   | 2,767    | 8,428    | 75,799   | 1,294  | 19,397 | 31,377,095  |
| 2002 | 14,256,910 | 588,677    | 128,245    | 87,304    | 43,477    | 6,325       | 6,403,254  | 503,487   | 1,946    |          | 124,521  | 18,510 | 725    | 22,163,381  |
| 2003 | 24,435,697 | 451,273    | 159,961    | 262,768   | 76,106    | 21          | 7,851,693  | 487,796   | 2,814    | 3,779    | 115,728  | 390    | 10,370 | 33,858,396  |
| 2004 | 27,414,167 | 446,577    | 109,254    | 147,696   | 38,312    | 54,879      | 4,835,731  | 197,188   | 2,500    | 4,060    | 98,827   | 489    | 5,637  | 33,355,317  |
| 2005 | 20,823,045 | 315,699    | 292,193    | 60,141    | 136,847   | 913         | 1,899,245  | 271,767   | 588      | 6,234    | 57,788   | 426    | 1,290  | 23,866,176  |
| 2006 | 23,776,441 | 174,912    | 40,350     | 205,677   | 3,790     | 1,895       | 2,748,856  | 301,669   | 271      | 4,509    | 79,586   | 309    | 17,984 | 27,356,249  |
| 2007 | 21,633,438 | 149,568    | 4,361      | 94,734    | 58,106    | 46          | 3,131,178  | 337,770   | 2,903    | 4,334    | 78,569   | 1,984  | 10,092 | 25,507,083  |
| 2008 | 28,853,123 | 125,508    | 3,675      | 205,536   | 3,340     | 3,485       | 2,372,762  | 280,885   | 434      | 5,459    | 67,255   | 177    | 9,192  | 31,930,831  |
| 2009 | 27,469,749 | 166,286    | 5,332      | 97,103    | 441,540   |             | 1,923,879  | 195,492   | 72       | 5,453    | 52,428   | 2,361  | 3,770  | 30,363,465  |

Source: PacFIN, extracted Aug. 9, 2010.

Additional processing info:

Landed weights in lbs are multiplied by the prices per pound in each fish ticket line.

Aquaculture fish ticket/fish ticket line info is excluded.

#### Table 4–6. West Coast real commercial ex-vessel revenues (2009 \$) from HMS landings by all HMS and non-HMS gears, 1981–2009.

|      |            |             |             |           |           | Re          | venues (200 | 9 \$)     |          |          |           |         |         |             |
|------|------------|-------------|-------------|-----------|-----------|-------------|-------------|-----------|----------|----------|-----------|---------|---------|-------------|
|      |            |             | Tuna        | IS        |           |             |             |           |          | Sharks   |           |         |         |             |
|      |            |             |             |           |           |             |             | Common    | Pelagic  | Bigeye   | Shortfin  |         |         |             |
| Year | Albacore   | Yellowfin   | Skipjack    | Bigeye    | Bluefin   | Unspecified | Swordfish   | Thresher  | Thresher | Thresher | Mako      | Blue    | Dorado  | Total       |
| 1981 | 55,746,417 | 207,486,928 | 139,409,478 | 3,299,190 | 2,604,047 | 152,782     | 7,051,302   | 3,101,374 |          |          | 341,209   | 124,136 | 5,887   | 419,322,750 |
| 1982 | 15,913,378 | 147,520,417 | 80,244,463  | 2,393,317 | 5,329,046 | 195,964     | 10,134,696  | 3,923,519 |          | 30,048   | 671,968   | 37,293  | 1,893   | 266,396,002 |
| 1983 | 23,327,300 | 113,330,416 | 69,840,167  | 87,549    | 2,025,360 | 181,956     | 12,957,761  | 2,809,095 | 16,100   | 174,266  | 437,930   | 8,851   | 1,324   | 225,198,075 |
| 1984 | 31,604,129 | 68,022,414  | 45,529,300  | 320,302   | 1,661,995 | 4,757,376   | 21,343,478  | 3,015,937 | 14,183   | 86,536   | 348,565   | 4,537   | 7,845   | 176,716,597 |
| 1985 | 14,782,119 | 26,185,577  | 3,775,704   | 31,538    | 5,025,041 | 1,833,988   | 23,912,844  | 3,239,100 | 1,277    | 171,894  | 343,880   | 3,800   | 671     | 79,307,433  |
| 1986 | 10,774,475 | 31,530,245  | 1,577,623   | 157,354   | 8,086,324 | 345,742     | 22,194,786  | 2,948,711 | 339      | 116,231  | 746,876   | 2,303   | 1,320   | 78,482,329  |
| 1987 | 8,691,241  | 47,251,977  | 7,502,910   | 299,160   | 3,487,122 | 759,713     | 18,840,576  | 2,006,933 | 3,118    | 37,496   | 1,212,099 | 3,141   | 605     | 90,096,091  |
| 1988 | 14,939,540 | 44,289,911  | 15,156,197  | 42,858    | 3,392,448 | 131,980     | 15,925,757  | 1,605,613 | 1,345    | 15,998   | 1,064,720 | 3,727   | 863     | 96,570,957  |
| 1989 | 5,976,655  | 32,876,922  | 6,228,125   | 3,812     | 2,007,764 | 201,011     | 13,039,476  | 1,490,624 | 235      | 39,013   | 872,396   | 5,471   | 766     | 62,742,270  |
| 1990 | 8,545,136  | 14,265,102  | 2,886,706   | 13,334    | 1,747,310 | 86,272      | 10,864,922  | 970,857   | 2,557    | 52,642   | 1,123,736 | 15,663  | 2,953   | 40,577,190  |
| 1991 | 4,146,142  | 5,868,352   | 3,952,936   | 62,855    | 170,858   | 31,069      | 9,311,939   | 1,422,518 |          | 36,968   | 609,554   | 1,312   | 1,714   | 25,616,217  |
| 1992 | 16,468,366 | 5,273,829   | 2,022,868   | 64,149    | 1,620,000 | 30,443      | 10,851,307  | 665,449   | 864      | 20,979   | 331,368   | 2,604   | 8,959   | 37,361,185  |
| 1993 | 16,413,023 | 6,765,448   | 4,606,115   | 296,778   | 1,055,661 | 101,976     | 12,563,388  | 643,346   | 648      | 39,554   | 310,651   | 872     | 59,244  | 42,856,704  |
| 1994 | 27,743,432 | 6,214,540   | 2,406,498   | 422,079   | 2,300,534 | 75,917      | 13,186,803  | 802,966   | 58       | 46,005   | 339,546   | 22,065  | 102,912 | 53,663,355  |
| 1995 | 15,577,606 | 4,098,358   | 6,397,417   | 348,266   | 1,424,079 | 6,914       | 8,842,981   | 643,291   | 11,815   | 33,512   | 222,393   | 3,763   | 7,375   | 37,617,770  |
| 1996 | 35,960,759 | 4,268,107   | 5,265,671   | 343,865   | 5,330,852 | 37,378      | 8,010,296   | 796,573   | 2,057    | 23,442   | 220,755   | 775     | 12,966  | 60,273,496  |
| 1997 | 25,862,047 | 6,478,622   | 7,145,024   | 467,005   | 3,600,344 | 28,421      | 7,979,890   | 767,482   | 81,121   | 45,129   | 295,205   | 424     | 14,094  | 52,764,808  |
| 1998 | 24,252,659 | 7,524,013   | 6,691,222   | 349,017   | 3,806,295 | 79,178      | 7,677,730   | 802,836   | 3,317    | 12,101   | 226,304   | 7,696   | 13,466  | 51,445,834  |
| 1999 | 22,481,039 | 1,857,317   | 3,476,543   | 831,273   | 1,342,483 | 76,625      | 10,684,033  | 781,393   | 23,307   | 7,433    | 140,568   | 93      | 60,537  | 41,762,644  |
| 2000 | 21,283,519 | 1,646,059   | 598,368     | 714,363   | 719,071   | 2,846       | 14,553,581  | 729,364   | 3,390    | 5,741    | 165,454   | 892     | 78,371  | 40,501,019  |
| 2001 | 25,039,958 | 563,698     | 40,723      | 388,491   | 573,383   | 3,715       | 10,529,954  | 721,090   | 3,350    | 10,205   | 91,778    | 1,566   | 23,486  | 37,991,397  |
| 2002 | 16,986,667 | 701,390     | 152,800     | 104,020   | 51,802    | 7,537       | 7,629,279   | 599,889   | 2,318    |          | 148,363   | 22,054  | 863     | 26,406,982  |
| 2003 | 28,503,088 | 526,389     | 186,587     | 306,507   | 88,774    | 24          | 9,158,630   | 568,991   | 3,282    | 4,408    | 134,991   | 455     | 12,097  | 39,494,223  |
| 2004 | 31,095,924 | 506,553     | 123,927     | 167,531   | 43,458    | 62,249      | 5,485,176   | 223,671   | 2,836    | 4,605    | 112,099   | 555     | 6,394   | 37,834,978  |
| 2005 | 22,854,840 | 346,503     | 320,704     | 66,010    | 150,199   | 1,002       | 2,084,563   | 298,284   | 645      | 6,842    | 63,427    | 467     | 1,416   | 26,194,902  |
| 2006 | 25,275,264 | 185,938     | 42,894      | 218,643   | 4,029     | 2,014       | 2,922,139   | 320,685   | 288      | 4,793    | 84,602    | 328     | 19,118  | 29,080,735  |
| 2007 | 22,355,521 | 154,561     | 4,507       | 97,896    | 60,046    | 47          | 3,235,690   | 349,044   | 2,999    | 4,478    | 81,192    | 2,051   | 10,429  | 26,358,461  |
| 2008 | 29,191,748 | 126,981     | 3,718       | 207,949   | 3,379     | 3,526       | 2,400,610   | 284,181   | 439      | 5,524    | 68,044    | 179     | 9,300   | 32,305,578  |
| 2009 | 27,469,749 | 166,286     | 5,332       | 97,103    | 441,540   |             | 1,923,879   | 195,492   | 72       | 5,453    | 52,428    | 2,361   | 3,770   | 30,363,465  |

Source: PacFIN, extracted Aug. 9, 2010.

Additional processing info:

Real values are calculated to eliminate the effects of inflation by dividing current nominal values by the current year GDP implicit price deflator,

with a base year of 2009.

Landed weights in lbs are multiplied by the prices per pound in each fish ticket line and then divided by the corresponding deflator. Aquaculture fish ticket/fish ticket line info is excluded.

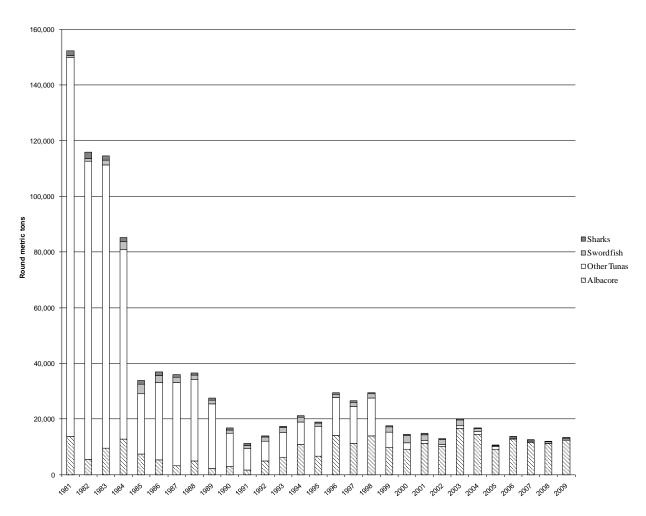



Figure 4–2. West Coast commercial landings of albacore, other tunas, swordfish, and sharks, 1981–2009.

**Interpretation**: Figure 4–2 shows West Coast HMS commercial landings in round metric tons grouped into categories of similar species. The accompanying table shows the numeric values for the landings in metric tons.

The principal species targeted are the tunas, with albacore gradually supplanting other tunas as a share of the catch over the period from 1981 through 2009. Swordfish, followed by sharks, comprises a far smaller share of recent total landings, with a steadily declining share over time.

The most striking feature of Figure 4-2 is a large drop in aggregate commercial landings from a level of about 150,000 mt in 1981 to a level which stabilized near 20,000 mt by 1990. The drop is primarily explained by the substantial decline in tuna landings during the 1980s for species other than albacore.

**Source and Calculations**: The data were extracted from PacFIN on August 9, 2010. They replicate a portion of Table 4–4, which displays West Coast commercial landings of HMS by species. Landings in pounds were converted to round weight in metric tons by multiplying the landed weights by the conversion factors in each fish ticket line and then dividing by 2204.6. Aquaculture fish ticket / fish ticket line information is excluded from the data.

|      |          | Land        | ings (round m | t)     |         |
|------|----------|-------------|---------------|--------|---------|
| Year | Albacore | Other Tunas | Swordfish     | Sharks | Total   |
| 1981 | 13,712   | 136,036     | 749           | 1,795  | 152,292 |
| 1982 | 5,410    | 107,096     | 1,112         | 2,254  | 115,872 |
| 1983 | 9,578    | 101,576     | 1,763         | 1,660  | 114,577 |
| 1984 | 12,654   | 68,089      | 2,890         | 1,507  | 85,140  |
| 1985 | 7,301    | 21,731      | 3,418         | 1,435  | 33,885  |
| 1986 | 5,243    | 27,781      | 2,530         | 1,336  | 36,890  |
| 1987 | 3,160    | 29,927      | 1,803         | 989    | 35,879  |
| 1988 | 4,912    | 29,204      | 1,636         | 835    | 36,587  |
| 1989 | 2,214    | 23,217      | 1,358         | 782    | 27,571  |
| 1990 | 3,028    | 11,738      | 1,236         | 782    | 16,784  |
| 1991 | 1,676    | 7,707       | 1,029         | 836    | 11,248  |
| 1992 | 4,902    | 7,040       | 1,546         | 457    | 13,945  |
| 1993 | 6,166    | 8,935       | 1,767         | 442    | 17,310  |
| 1994 | 10,751   | 8,163       | 1,700         | 507    | 21,121  |
| 1995 | 6,530    | 10,839      | 1,162         | 406    | 18,937  |
| 1996 | 14,173   | 13,555      | 1,198         | 437    | 29,363  |
| 1997 | 11,292   | 13,189      | 1,459         | 520    | 26,460  |
| 1998 | 13,915   | 13,659      | 1,408         | 477    | 29,459  |
| 1999 | 9,770    | 5,418       | 2,033         | 398    | 17,619  |
| 2000 | 9,074    | 2,339       | 2,645         | 385    | 14,443  |
| 2001 | 11,191   | 963         | 2,195         | 425    | 14,774  |
| 2002 | 10,029   | 803         | 1,725         | 426    | 12,983  |
| 2003 | 16,671   | 885         | 2,135         | 382    | 20,073  |
| 2004 | 14,540   | 836         | 1,186         | 177    | 16,739  |
| 2005 | 9,055    | 1,025       | 297           | 223    | 10,600  |
| 2006 | 12,786   | 162         | 541           | 210    | 13,699  |
| 2007 | 11,586   | 167         | 550           | 266    | 12,569  |
| 2008 | 11,131   | 97          | 531           | 188    | 11,947  |
| 2009 | 12,264   | 477         | 407           | 142    | 13,290  |

 Table 4–7. West Coast commercial landings of albacore, other tunas, swordfish, and sharks, 1981–2009.

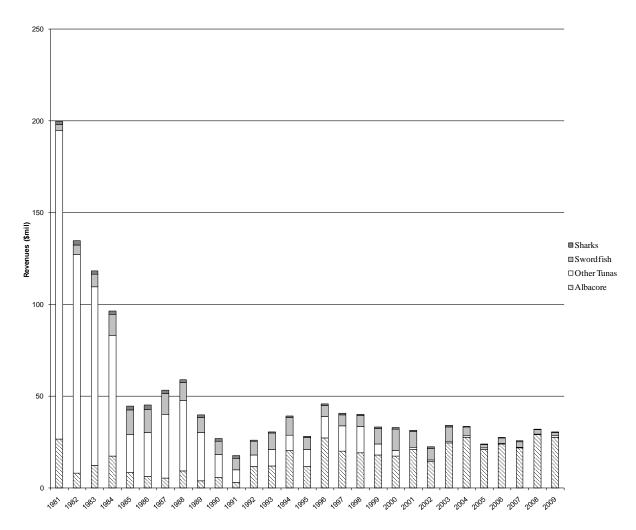



Figure 4–3. West Coast commercial revenues for albacore, other tunas, swordfish, and sharks, 1981–2009.

**Interpretation:** Figure 4–3 shows West Coast HMS commercial revenues in current dollars grouped into categories of similar species. Table 4–8 shows the numeric values for the revenues. Tables 4–9 through 4–23 show landings as well as nominal and real ex-vessel revenues by fishery.

The principal component of revenues is the tunas, with albacore gradually supplanting other tunas as a share of the revenues over the period from 1981 through 2009.

<u>Source and Calculations</u>: The data were extracted from PacFIN on August 9, 2010. Aquaculture fish ticket / fish ticket line information is excluded from the data. Data were obtained by copying from or summing across applicable columns of Table 4–5. Current dollar revenues were computed as the sum total of landed weights in pounds multiplied by the prices per pound in each fish ticket line. Aquaculture fish ticket / fish ticket line information is excluded from the data.

|      |            |             | Revenues (\$) |           |             |
|------|------------|-------------|---------------|-----------|-------------|
| Year | Albacore   | Other Tunas | Swordfish     | Sharks    | Total       |
| 1981 | 26,524,145 | 167,934,764 | 3,355,010     | 1,697,045 | 199,510,964 |
| 1982 | 8,033,073  | 118,972,883 | 5,115,995     | 2,353,795 | 134,475,746 |
| 1983 | 12,242,167 | 97,332,266  | 6,800,233     | 1,808,588 | 118,183,254 |
| 1984 | 17,208,448 | 65,498,660  | 11,621,524    | 1,889,284 | 96,217,916  |
| 1985 | 8,292,769  | 20,673,886  | 13,415,105    | 2,109,333 | 44,491,093  |
| 1986 | 6,178,084  | 23,909,225  | 12,726,490    | 2,187,211 | 45,001,010  |
| 1987 | 5,127,832  | 34,987,521  | 11,115,940    | 1,925,045 | 53,156,338  |
| 1988 | 9,117,601  | 38,457,074  | 9,719,489     | 1,642,564 | 58,936,728  |
| 1989 | 3,785,613  | 26,170,589  | 8,259,204     | 1,525,062 | 39,740,468  |
| 1990 | 5,620,990  | 12,497,361  | 7,146,946     | 1,424,436 | 26,689,733  |
| 1991 | 2,823,937  | 6,869,622   | 6,342,361     | 1,410,118 | 17,446,038  |
| 1992 | 11,483,392 | 6,283,572   | 7,566,616     | 712,128   | 26,045,708  |
| 1993 | 11,697,562 | 9,141,073   | 8,953,927     | 709,188   | 30,501,750  |
| 1994 | 20,188,895 | 8,310,021   | 9,596,037     | 880,983   | 38,975,936  |
| 1995 | 11,572,603 | 9,119,122   | 6,569,451     | 679,585   | 27,940,761  |
| 1996 | 27,222,294 | 11,541,127  | 6,063,794     | 790,006   | 45,617,221  |
| 1997 | 19,924,121 | 13,651,037  | 6,147,707     | 916,285   | 40,639,150  |
| 1998 | 18,895,247 | 14,374,182  | 5,981,719     | 819,810   | 40,070,958  |
| 1999 | 17,771,262 | 5,995,343   | 8,445,728     | 753,183   | 32,965,516  |
| 2000 | 17,188,570 | 2,972,538   | 11,753,472    | 730,750   | 32,645,330  |
| 2001 | 20,680,501 | 1,296,672   | 8,696,689     | 683,836   | 31,357,698  |
| 2002 | 14,256,910 | 854,028     | 6,403,254     | 648,464   | 22,162,656  |
| 2003 | 24,435,697 | 950,129     | 7,851,693     | 610,507   | 33,848,026  |
| 2004 | 27,414,167 | 796,718     | 4,835,731     | 303,064   | 33,349,680  |
| 2005 | 20,823,045 | 805,793     | 1,899,245     | 336,803   | 23,864,886  |
| 2006 | 23,776,441 | 426,624     | 2,748,856     | 386,344   | 27,338,265  |
| 2007 | 21,633,438 | 306,815     | 3,131,178     | 425,560   | 25,496,991  |
| 2008 | 28,853,123 | 341,544     | 2,372,762     | 354,210   | 31,921,639  |
| 2009 | 27,469,749 | 710,261     | 1,923,879     | 255,806   | 30,359,695  |

Table 4–8. West Coast commercial revenues for albacore, other tunas, swordfish, and sharks, 1981–2009.

|      |          |             |           |            |        |            | Coastal  |        |       |        |
|------|----------|-------------|-----------|------------|--------|------------|----------|--------|-------|--------|
| Year | Albacore | Other Tunas | Swordfish | HMS Sharks | Dorado | Groundfish | Pelagics | Salmon | Other | Total  |
| 1981 | 13,493   | 14          |           | <0.5       | <0.5   | 4          | 2        | 37     | 1     | 13,551 |
| 1982 | 4,977    | 4           | 4         | 2          | 1      | 4          | <0.5     | 3      | <0.5  | 4,995  |
| 1983 | 9,309    | 16          | 3         | 1          | <0.5   | 23         | 34       | 14     | 1     | 9,401  |
| 1984 | 8,909    | 13          | 25        | 5          | <0.5   | 5          | 2        | 1      | 4     | 8,964  |
| 1985 | 7,010    | 2           | 11        | 4          | <0.5   | 4          | <0.5     | 2      | 2     | 7,035  |
| 1986 | 4,980    | 2           | 1         | <0.5       |        | 20         | <0.5     | 2      | 1     | 5,006  |
| 1987 | 2,891    | <0.5        | 5         | 2          |        | 2          | 1        | 1      | 1     | 2,903  |
| 1988 | 4,629    | <0.5        | 18        | 2          |        | 1          | <0.5     | 2      | 1     | 4,653  |
| 1989 | 2,167    | 1           | 7         | 8          | <0.5   | 10         | <0.5     | 2      | 2     | 2,197  |
| 1990 | 2,926    | <0.5        | 2         | <0.5       | <0.5   | 3          | <0.5     | 1      | 1     | 2,933  |
| 1991 | 1,641    | <0.5        | 2         | 1          |        | <0.5       |          | 1      | <0.5  | 1,645  |
| 1992 | 4,756    | 1           | 13        | 2          | <0.5   | 7          |          | 1      | <0.5  | 4,780  |
| 1993 | 5,778    | 18          | 90        | 5          | 9      | 4          |          | 3      | 2     | 5,909  |
| 1994 | 10,606   | <0.5        | 1         | <0.5       | <0.5   | 1          |          | <0.5   | 1     | 10,609 |
| 1995 | 6,407    | 1           | 1         | <0.5       | <0.5   | <0.5       | <0.5     | 8      | 1     | 6,418  |
| 1996 | 13,207   | 42          | <0.5      | <0.5       |        | <0.5       |          | 10     | 1     | 13,260 |
| 1997 | 10,825   | 8           | 1         | 1          | <0.5   | 5          | <0.5     | 12     | 2     | 10,854 |
| 1998 | 12,724   | 116         | 4         | 3          | <0.5   | 2          | <0.5     | 5      | 2     | 12,856 |
| 1999 | 8,794    | 24          | 15        | 1          | <0.5   | 1          | <0.5     | 2      | 4     | 8,841  |
| 2000 | 8,098    | 2           | 22        | <0.5       | <0.5   | 1          | <0.5     | 3      | 1     | 8,127  |
| 2001 | 10,220   | 10          | <0.5      | 1          | <0.5   | 3          | <0.5     | 9      | 6     | 10,249 |
| 2002 | 9,293    | 2           | 2         | <0.5       | <0.5   | <0.5       | <0.5     | 7      | 4     | 9,308  |
| 2003 | 13,490   | 3           |           | <0.5       | <0.5   | 1          | <0.5     | 4      | 2     | 13,500 |
| 2004 | 13,393   | 1           |           | <0.5       | <0.5   | <0.5       | <0.5     | 4      | 3     | 13,401 |
| 2005 | 8,217    | <0.5        |           | <0.5       |        | 1          |          | 3      | 1     | 8,222  |
| 2006 | 12,374   | 1           |           | <0.5       | <0.5   | <0.5       | <0.5     | <0.5   | 1     | 12,376 |
| 2007 | 11,143   | <0.5        |           |            | <0.5   | <0.5       | <0.5     | 1      | 1     | 11,145 |
| 2008 | 9,768    | 6           | <0.5      |            | <0.5   | <0.5       | <0.5     | <0.5   | 3     | 9,777  |
| 2009 | 11,569   | 7           | <0.5      | <0.5       | <0.5   | <0.5       | <0.5     | 1      | 2     | 11,579 |

Table 4–9. Commercial landings (round mt) in the West Coast albacore surface hook-and-line (troll and baitboat) fishery, with Canadian vessels excluded, 1981–2009.

Source: PacFIN, extracted Aug. 19, 2010.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line (troll and baitboat) fishery were used.

Landings in lbs are converted to round weight in mt by multiplying the landed weights by the conversion factors in each fish ticket line and then dividing by 2204.6.

Canadian vessels were excluded by outer joining the fish ticket tables with the state vessel table and checking the "idtype." Aquaculture fish ticket/fish ticket line info is excluded.

|      |          |             |           |                   |        |            | Coastal  |        |       |        |
|------|----------|-------------|-----------|-------------------|--------|------------|----------|--------|-------|--------|
| Year | Albacore | Other Tunas | Swordfish | <b>HMS Sharks</b> | Dorado | Groundfish | Pelagics | Salmon | Other | Total  |
| 1981 | 13,493   | 14          |           | <0.5              | <0.5   | 4          | 2        | 37     | 1     | 13,551 |
| 1982 | 4,988    | 4           | 4         | 2                 | 1      | 4          | <0.5     | 3      | <0.5  | 5,006  |
| 1983 | 9,341    | 16          | 3         | 1                 | <0.5   | 23         | 34       | 14     | 1     | 9,433  |
| 1984 | 8,912    | 13          | 25        | 5                 | <0.5   | 5          | 2        | 1      | 4     | 8,967  |
| 1985 | 7,010    | 2           | 11        | 4                 | <0.5   | 4          | <0.5     | 2      | 2     | 7,035  |
| 1986 | 4,980    | 2           | 1         | <0.5              |        | 20         | <0.5     | 2      | 1     | 5,006  |
| 1987 | 2,891    | <0.5        | 5         | 2                 |        | 2          | 1        | 1      | 1     | 2,903  |
| 1988 | 4,630    | <0.5        | 18        | 2                 |        | 1          | <0.5     | 2      | 1     | 4,654  |
| 1989 | 2,167    | 1           | 7         | 8                 | <0.5   | 10         | <0.5     | 2      | 2     | 2,197  |
| 1990 | 2,926    | <0.5        | 2         | <0.5              | <0.5   | 3          | <0.5     | 1      | 1     | 2,933  |
| 1991 | 1,641    | <0.5        | 2         | 1                 |        | < 0.5      |          | 1      | <0.5  | 1,645  |
| 1992 | 4,815    | 1           | 13        | 2                 | <0.5   | 7          |          | 1      | <0.5  | 4,839  |
| 1993 | 5,800    | 18          | 90        | 5                 | 9      | 4          |          | 3      | 1     | 5,930  |
| 1994 | 10,629   | <0.5        | 1         | <0.5              | <0.5   | 1          |          | <0.5   | 1     | 10,632 |
| 1995 | 6,474    | 1           | 1         | <0.5              | <0.5   | < 0.5      | <0.5     | 8      | 1     | 6,485  |
| 1996 | 14,075   | 42          | <0.5      | <0.5              |        | < 0.5      |          | 10     | 1     | 14,128 |
| 1997 | 11,223   | 8           | 1         | 1                 | <0.5   | 5          | <0.5     | 12     | 3     | 11,253 |
| 1998 | 13,685   | 116         | 4         | 3                 | <0.5   | 2          | <0.5     | 5      | 2     | ,      |
| 1999 | 9,506    | 24          | 15        | 1                 | <0.5   | 1          | <0.5     | 2      | 5     | 9,554  |
| 2000 | 8,986    | 2           | 22        | <0.5              | <0.5   | 1          | <0.5     | 3      | 2     | 9,016  |
| 2001 | 11,015   | 10          | <0.5      | 1                 | <0.5   | 3          | <0.5     | 9      | 6     | 11,044 |
| 2002 | 9,995    | 2           | 2         | <0.5              | <0.5   | < 0.5      | <0.5     | 7      | 4     | 10,010 |
| 2003 | 16,608   | 3           |           | <0.5              | <0.5   | 1          | <0.5     | 4      | 2     | ,      |
| 2004 | 14,523   | 1           |           | <0.5              | <0.5   | <0.5       | <0.5     | 4      | 3     | 14,531 |
| 2005 | 9,028    | <0.5        |           | <0.5              |        | 1          |          | 3      | 1     | 9,033  |
| 2006 | 12,772   | 1           |           | <0.5              | <0.5   |            | <0.5     | <0.5   | 1     | 12,774 |
| 2007 | 11,500   | <0.5        |           |                   | <0.5   | <0.5       | <0.5     | 1      | 1     | 11,502 |
| 2008 | 11,128   | 6           | <0.5      |                   | <0.5   | <0.5       | <0.5     | <0.5   | 3     | ,      |
| 2009 | 12,219   | 7           | <0.5      | <0.5              | <0.5   | <0.5       | <0.5     | 1      | 2     | 12,229 |

Table 4–10. Commercial landings (round mt) in the West Coast albacore surface hook-and-line (troll and baitboat) fishery, 1981–2009.

Source: PacFIN, extracted Aug. 19, 2010.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line

(troll and baitboat) fishery were used.

Landings in lbs are converted to round weight in mt by multiplying the landed weights by the conversion factors in each fish ticket line and then dividing by 2204.6.

|      |        | Sharks<br>Common Pelagic Bigeye Shortfin |          |          |          |      |          | 1       | Tunas  |         |       |        |         |          |       |       |
|------|--------|------------------------------------------|----------|----------|----------|------|----------|---------|--------|---------|-------|--------|---------|----------|-------|-------|
|      | Sword- | Common                                   | Pelagic  | Bigeye   | Shortfin |      |          | Yellow- |        |         |       |        | Ground- | Coastal  |       |       |
| Year | fish   | Thresher                                 | Thresher | Thresher | Mako     | Blue | Albacore | fin     | Bigeye | Bluefin | Other | Dorado | fish    | Pelagics | Other | Total |
| 1981 | 270    | 808                                      |          |          | 91       | 9    |          | 1       | 1      | <0.5    | 4     |        | 6       | 7        | 88    | 1,285 |
| 1982 | 208    | 634                                      |          | 13       | 125      | 1    | 5        | 1       | 1      | <0.5    | 8     |        | 5       | 2        | 14    | 1,017 |
| 1983 | 244    | 150                                      |          | 17       | 38       |      | 7        | 3       | 1      | 1       | 6     |        | <0.5    | 7        | 18    | 492   |
| 1984 | 286    | 95                                       |          | 2        | 11       |      | 10       | 2       | <0.5   | 1       | 1     |        | 5       | <0.5     | 13    | 426   |
| 1985 | 197    | 110                                      |          | 2        | 15       |      | 7        | <0.5    |        | <0.5    | <0.5  |        | 1       | <0.5     | 13    | 345   |
| 1986 | 78     | 455                                      |          | 2        | 21       |      | 8        | 1       | <0.5   | 1       |       |        | <0.5    | <0.5     | 10    | 576   |
| 1987 | 6      | 94                                       | <0.5     | 1        | 2        |      | 1        |         |        | <0.5    |       |        | 2       | <0.5     | 4     | 110   |
| 1988 | 1      | 81                                       |          |          |          |      | 4        |         |        |         |       |        | <0.5    |          | <0.5  | 86    |
| 1989 |        | *                                        |          |          |          |      |          |         |        |         |       |        |         |          |       | *     |
| 1990 |        |                                          |          |          |          |      |          |         |        |         |       |        |         |          |       |       |
| 1991 | 51     | 8                                        |          | 4        | 2        |      | <0.5     | <0.5    |        | <0.5    | <0.5  |        |         |          | 2     | 67    |
| 1992 | 60     | 2                                        |          | <0.5     | 5        |      | 1        | <0.5    | <0.5   | <0.5    | <0.5  |        |         | <0.5     | 4     | 72    |
| 1993 | 162    | 16                                       | <0.5     | 7        | 11       |      | 15       |         |        | 6       | 1     |        | <0.5    |          | 10    | 228   |
| 1994 | 762    | 268                                      | <0.5     | 32       | 71       | <0.5 | 52       | <0.5    | <0.5   | 24      | 2     | <0.5   | 4       | 2        | 113   | 1,330 |
| 1995 | 701    | 202                                      | 5        | 29       | 75       | <0.5 | 31       | 1       | <0.5   | 17      | 12    | <0.5   | 2       | 2        | 92    | 1,169 |
| 1996 | 734    | 241                                      | 1        | 20       | 80       | <0.5 | 63       | 1       | <0.5   | 38      | 2     |        | 1       | 6        | 131   | 1,318 |
| 1997 | 664    | 249                                      | 34       | 27       | 114      | <0.5 | 43       | 3       | 2      | 51      | 2     | <0.5   | 1       | 4        | 108   | 1,302 |
| 1998 | 906    | 281                                      | 2        | 9        | 81       | 1    | 63       | 1       | 4      | 36      | 4     | < 0.5  | 1       | 2        | 151   | 1,542 |
| 1999 | 597    | 152                                      | 7        | 4        | 46       | <0.5 | 94       | <0.5    | 1      | 16      | 1     |        | 1       | <0.5     | 106   | 1,025 |
| 2000 | 635    | 155                                      | 3        | 3        | 52       | <0.5 | 40       | 1       | 2      | 26      | <0.5  | <0.5   | 2       | 2        | 87    | 1,008 |
| 2001 | 351    | 273                                      | 1        | <0.5     | 26       |      | 51       | 3       | <0.5   | 13      | <0.5  |        | 2       | 1        | 64    | 785   |
| 2002 | 298    | 216                                      | 2        |          | 59       |      | 14       | 1       |        | 3       | <0.5  |        | 3       | 1        | 71    | 668   |
| 2003 | 199    | 241                                      | 4        | 6        | 50       | <0.5 | 8        | <0.5    | 6      | 9       | 7     |        | 1       | 1        | 54    | 586   |
| 2004 | 182    | 68                                       | <0.5     | 5        | 23       |      | 10       | <0.5    |        | 9       | <0.5  |        | 2       | 1        | 45    | 345   |
| 2005 | 220    | 155                                      |          | 9        | 19       |      | 8        | 1       |        | 5       | <0.5  | <0.5   | 1       | <0.5     | 52    | 470   |
| 2006 | 443    | 98                                       | <0.5     | 4        | 35       |      | 3        | <0.5    |        | 1       | 3     | <0.5   | 1       | 2        | 107   | 697   |
| 2007 | 478    | 167                                      | 2        | 4        | 33       | <0.5 | 3        | <0.5    |        | 2       | <0.5  |        | 2       | <0.5     | 138   | 829   |
| 2008 | 405    | 110                                      |          | 6        | 25       |      | 1        | <0.5    |        | 1       | <0.5  | <0.5   | 3       | 4        | 115   | 670   |
| 2009 | 250    | 48                                       |          | 6        | 22       | 1    | 3        | <0.5    |        | 2       |       |        | <0.5    | <0.5     | 114   | 446   |

Table 4–11. Commercial landings (round mt) in the West Coast drift gillnet fishery, 1981–2009.

\* Not reported due to data confidentiality requirements (fewer than three vessels).

Blank cells indicate no data exists. Any calculated or derived zeros are due to rounding of summarized data to less than half of the unit shown. Source: PacFIN, extracted Aug. 23, 2010.

Note 1: There is no drift gillnet gear for Washington.

Note 2: Significant swordfish and shark landings by drift gillnet gear prior to 1994 have been mis-assigned to California

entangling net, trammel net, several trawl, encircling net, set gillnet and unknown gears, and therefore are not reported here. Additional processing info:

Only fish tickets where at least 1 lb of swordfish or any HMS shark was landed for the drift gillnet fishery were used. Landings in lbs are converted to round weight in mt by multiplying the landed weights by the conversion factors in each fish ticket line and then dividing by 2204.6.

|      |           |            | Tur      | nas   |        |       |       |
|------|-----------|------------|----------|-------|--------|-------|-------|
| Year | Swordfish | HMS Sharks | Albacore | Other | Dorado | Other | Total |
| 1981 | 272       | 10         | 2        | <0.5  |        | 4     | 288   |
| 1982 | 156       | 2          |          | <0.5  |        | 1     | 159   |
| 1983 | 58        | 1          |          |       |        | 44    | 103   |
| 1984 | 105       | 7          | <0.5     | <0.5  |        | 1     | 113   |
| 1985 | 275       | 1          | <0.5     | <0.5  |        | 1     | 277   |
| 1986 | 296       | 1          | <0.5     | <0.5  |        | 1     | 298   |
| 1987 | 237       | 3          | 1        | 1     |        | 40    | 282   |
| 1988 | 199       | 3          | 1        |       |        | <0.5  | 203   |
| 1989 | 62        | 1          | <0.5     | <0.5  |        | <0.5  | 63    |
| 1990 | 65        | 3          |          | <0.5  |        | <0.5  | 68    |
| 1991 | 20        | 1          |          |       |        | <0.5  | 21    |
| 1992 | 75        | 3          | <0.5     | <0.5  |        | 1     | 79    |
| 1993 | 169       | 1          | 1        |       |        | 1     | 172   |
| 1994 | 157       | 1          | <0.5     |       |        | <0.5  | 158   |
| 1995 | 97        | 2          |          |       |        | <0.5  | 99    |
| 1996 | 81        | 1          | <0.5     |       |        | 1     | 83    |
| 1997 | 84        | 3          | <0.5     |       | <0.5   | <0.5  | 87    |
| 1998 | 48        | 1          |          |       |        | <0.5  | 49    |
| 1999 | 81        | <0.5       |          |       |        | 2     | 83    |
| 2000 | 90        | <0.5       | <0.5     |       |        | 5     | 95    |
| 2001 | 52        | 1          |          |       | <0.5   | 1     | 54    |
| 2002 | 90        | 1          |          |       |        | 1     | 92    |
| 2003 | 107       | <0.5       |          |       |        | <0.5  | 107   |
| 2004 | 69        | 1          |          |       |        | <0.5  | 70    |
| 2005 | 76        | 1          |          |       |        | 1     | 78    |
| 2006 | 72        | 3          |          |       |        | <0.5  | 75    |
| 2007 | 59        | <0.5       |          |       |        |       | 59    |
| 2008 | 48        | 1          |          |       |        |       | 49    |
| 2009 | 49        | 1          |          |       |        | <0.5  | 50    |

Table 4–12. Commercial landings (round mt) in the West Coast harpoon fishery, 1981–2009.

Source: PacFIN, extracted Aug. 19, 2010.

Note 1: Only California has harpoon landings.

Note 2: Some of the non-swordfish species may have been taken by dual-gear permit holders,

who may have fished with drift gillnets but landed under harpoon.

Additional processing info:

Landings in lbs are converted to round weight in mt by multiplying the landed weights

by the conversion factors in each fish ticket line and then dividing by 2204.6.

|      |          |           | Tur      | as     |         |             | Sword- | HMS    |        | Ground- | Coastal  |       |         |
|------|----------|-----------|----------|--------|---------|-------------|--------|--------|--------|---------|----------|-------|---------|
| Year | Albacore | Yellowfin | Skipjack | Bigeye | Bluefin | Unspecified | fish   | sharks | Dorado | fish    | Pelagics | Other | Total   |
| 1981 | 181      | 75,063    | 54,338   | 1,156  |         | 28          |        |        |        |         | 203      | 2     | 131,825 |
| 1982 | 367      | 60,665    | 39,905   | 962    | 2,400   | 27          |        |        |        |         | 29       |       | 104,355 |
| 1983 | 11       | 52,217    | 42,191   |        | 754     | 12          | 1      | <0.5   |        |         | 25       | 1     | 95,212  |
| 1984 | 3,552    | 33,326    | 29,941   | 117    | 624     | 1,011       | 23     | 1      |        |         | 268      | 2     | 68,865  |
| 1985 | 22       | 14,609    | 2,504    | 1      | 3,240   | 467         | 1      | <0.5   |        |         | 308      | <0.5  | 21,152  |
| 1986 | 54       | 21,018    | 977      | 8      | 4,698   | 136         | 41     | 2      |        |         | 65       | 1     | 27,000  |
| 1987 | 43       | 21,527    | 5,353    | 42     | 820     | 122         |        | 3      |        |         | 13       | 8     | 27,931  |
| 1988 | 151      | 18,470    | 7,391    | <0.5   | 795     | 7           |        |        |        |         | 63       |       | 26,878  |
| 1989 | 24       | 16,118    | 3,565    |        | 1,007   | 70          | 1      | <0.5   | <0.5   |         | 29       | <0.5  | 20,814  |
| 1990 | 71       | 8,354     | 2,244    |        | 876     | 39          |        |        |        |         | 137      |       | 11,721  |
| 1991 |          | 3,497     | 2,957    |        | 100     | 8           |        |        |        |         | 94       | 3     | 6,659   |
| 1992 | 8        | 1,721     | 1,159    | 1      | 1,064   | 3           | -      | 2      | 1      | <0.5    | 323      | 7     | 4,299   |
| 1993 | 1        | 951       | 1,619    | 2      | 497     | <0.5        | 17     | 1      | <0.5   | <0.5    | 91       | 11    | 3,190   |
| 1994 |          | 3,566     | 1,283    |        | 880     | 8           |        |        |        |         | 66       | 123   | 5,926   |
| 1995 |          | 2,795     | 5,616    |        | 689     |             |        |        |        |         | 38       | 39    | 9,177   |
| 1996 | 11       | 2,683     | 5,049    |        | 4,639   |             |        |        |        |         | 244      | 53    | 12,679  |
| 1997 | 2        | 4,659     | 5,926    |        | 2,189   | 7           | 1      | 1      | 1      |         | 33       | 73    | 12,892  |
| 1998 | 136      | 3,753     | 5,310    |        | 1,739   |             |        |        |        |         | 256      | 159   | 11,353  |
| 1999 | 48       | 1,297     | 3,742    |        | 99      |             |        |        |        |         | 56       | 89    | 5,331   |
| 2000 | 4        | 1,152     | 775      |        | 255     |             |        |        |        |         | 218      |       | 2,404   |
| 2001 | 51       | 631       | 55       |        | 149     |             |        |        |        |         | 42       |       | 928     |
| 2002 | <0.5     | 541       | 236      |        |         |             | 1      |        |        |         |          | <0.5  | 778     |
| 2003 | 44       | 463       | 337      |        | 19      |             |        |        |        |         |          |       | 862     |
| 2004 | 1        | 484       | 306      |        |         |             |        |        |        |         |          |       | 791     |
| 2005 |          | 283       | 522      |        | 201     |             |        |        |        |         | 19       |       | 1,026   |
| 2006 |          | *         | *        |        |         |             |        |        |        |         |          |       | *       |
| 2007 | 77       | 99        | 5        |        | 42      |             |        |        |        |         | 140      |       | 364     |
| 2008 | *        | *         | *        |        |         |             |        |        |        |         | *        |       | *       |
| 2009 | 39       | 15        | 4        |        | 410     |             |        |        |        |         | 474      |       | 943     |

Table 4–13. Commercial landings (round mt) in the West Coast purse seine fishery, 1981–2009.

\* Not reported due to data confidentiality requirements (fewer than three vessels).

Blank cells indicate no data exists. Any calculated or derived zeros are due to rounding of

summarized data to less than half of the unit shown.

Source: PacFIN, extracted Aug. 24, 2010.

Note: There is no purse seine gear for Washington.

Additional processing info:

Only fish tickets where at least 1 lb of any HMS tuna was landed for the purse seine fishery were used.

Landings in lbs are converted to round weight in mt by multiplying the landed weights by the conversion factors in

each fish ticket line and then dividing by 2204.6.

|      |            |             |           |                   |        |            | Coastal  |         |        |            |
|------|------------|-------------|-----------|-------------------|--------|------------|----------|---------|--------|------------|
| Year | Albacore   | Other Tunas | Swordfish | <b>HMS Sharks</b> | Dorado | Groundfish | Pelagics | Salmon  | Other  | Total      |
| 1981 | 26,087,739 | 17,982      |           | 173               | 72     | 2,508      | 991      | 133,177 | 1,406  | 26,244,048 |
| 1982 | 7,349,782  | 5,500       | 13,219    | 2,771             | 557    | 5,676      | 13       | 13,834  | 535    | 7,391,887  |
| 1983 | 11,879,532 | 14,586      | 7,531     | 1,597             | 33     | 20,309     | 15,495   | 36,075  | 3,880  | 11,979,038 |
| 1984 | 12,146,877 | 20,053      | 96,217    | 6,080             | 706    | 6,947      | 928      | 6,422   | 4,278  | 12,288,508 |
| 1985 | 7,994,910  | 4,278       | 30,921    | 7,017             | 6      | 6,384      | 239      | 10,802  | 2,311  | 8,056,868  |
| 1986 | 5,867,829  | 7,248       | 6,427     | 180               |        | 19,050     | 160      | 9,451   | 659    | 5,911,004  |
| 1987 | 4,690,640  | 1,150       | 33,310    | 3,440             |        | 2,305      | 657      | 6,838   | 436    | 4,738,776  |
| 1988 | 8,547,233  | 952         | 96,331    | 3,566             |        | 766        | 614      | 11,362  | 538    | 8,661,362  |
| 1989 | 3,692,159  | 1,833       | 34,556    | 11,295            | 31     | 18,112     | 1        | 8,305   | 2,504  | 3,768,796  |
| 1990 | 5,414,995  | 79          | 13,332    | 560               | 74     | 6,163      | 85       | 2,792   | 1,529  | 5,439,609  |
| 1991 | 2,760,714  | 71          | 11,721    | 602               |        | 189        |          | 3,479   | 1,084  | 2,777,860  |
| 1992 | 11,078,583 | 2,195       | 55,452    | 2,361             | 281    | 6,144      |          | 6,120   | 670    | 11,151,806 |
| 1993 | 10,882,080 | 154,056     | 442,687   | 7,992             | 23,216 | 4,992      |          | 10,385  | 1,806  | 11,527,214 |
| 1994 | 19,936,113 | 603         | 6,797     | 302               | 180    | 590        |          | 537     | 345    | 19,945,467 |
| 1995 | 11,359,888 | 914         | 3,204     | 173               | 21     | 152        | 16       | 22,290  | 3,028  | 11,389,686 |
| 1996 | 25,487,600 | 38,596      | 2,608     | 295               |        | 440        |          | 26,524  | 998    | 25,557,061 |
| 1997 | 19,093,866 |             | 4,390     | 1,628             | 371    | 11,951     | 89       | 37,637  | 3,725  | 19,168,606 |
| 1998 | 17,503,716 | 138,138     | 17,122    | 5,018             | 525    | 4,788      | 279      | 16,340  | 5,264  | 17,691,190 |
| 1999 | 16,139,022 | 115,448     | 77,899    | 2,623             | 1,413  | 4,347      | 455      | 9,742   | 7,708  | 16,358,657 |
| 2000 | 15,344,331 | 4,497       | 97,814    | 223               | 298    | 1,889      | 522      | 9,445   | 5,233  | 15,464,252 |
| 2001 | 18,743,953 | 27,752      | 2,037     | 2,210             | 544    | 7,801      | 178      | 33,018  | 12,398 | 18,829,891 |
| 2002 | 13,168,361 | 6,838       | 9,996     | 664               | 170    | 904        | 1,241    | 21,797  | 7,789  | 13,217,760 |
| 2003 | 19,626,793 | 11,045      |           | 62                | 567    | 2,764      | 558      | 14,013  | 5,709  | 19,661,511 |
| 2004 | 24,324,409 | 2,513       |           | 520               | 655    | 1,834      | 1,241    | 22,741  | 3,332  | 24,357,245 |
| 2005 | 18,507,118 | 1,437       |           | 181               |        | 1,587      |          | 12,332  | 3,318  | 18,525,973 |
| 2006 | 22,832,059 | 1,575       |           | 252               | 167    | 985        | 124      | 3,480   | 991    | 22,839,633 |
| 2007 | 20,669,326 | 1,222       |           |                   | 223    | 1,942      | 82       | 3,958   | 1,420  | 20,678,173 |
| 2008 | 24,847,705 | 49,130      | 1,200     |                   | 479    | 1,308      | 3,193    | 5,091   | 6,629  | 24,914,735 |
| 2009 | 25,801,651 | 11,286      | 291       | 639               | 42     | 252        | 92       | 3,446   | 1,754  | 25,819,453 |

Table 4–14. Nominal commercial ex-vessel revenues (\$) for the West Coast albacore surface hook-and-line (troll and baitboat) fishery, with Canadian vessels excluded, 1981–2009.

Source: PacFIN, extracted Aug. 19, 2010.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line (troll and baitboat) fishery were used.

Landed weights in lbs are multiplied by the prices per pound in each fish ticket line.

Canadian vessels were excluded by outer joining the fish ticket tables with the state vessel table and checking the "idtype." Aquaculture fish ticket/fish ticket line info is excluded.

|      |            |             |           |                   |        |            | Coastal  |         |        |            |
|------|------------|-------------|-----------|-------------------|--------|------------|----------|---------|--------|------------|
| Year | Albacore   | Other Tunas | Swordfish | <b>HMS Sharks</b> | Dorado | Groundfish | Pelagics | Salmon  | Other  | Total      |
| 1981 | 26,087,739 | 17,982      |           | 173               | 72     | 2,508      | 991      | 133,177 | 1,406  | 26,244,048 |
| 1982 | 7,364,640  | 5,500       | 13,219    | 2,771             | 557    | 5,676      | 13       | 13,834  | 535    | 7,406,745  |
| 1983 | 11,917,582 | 14,586      | 7,531     | 1,597             | 33     | 20,309     | 15,495   | 36,075  | 3,879  | 12,017,087 |
| 1984 | 12,150,161 | 20,053      | 96,217    | 6,080             | 706    | 6,947      | 928      | 6,422   | 4,278  | 12,291,792 |
| 1985 | 7,994,910  | 4,278       | 30,921    | 7,017             | 6      | 6,384      | 239      | 10,802  | 2,311  | 8,056,868  |
| 1986 | 5,867,829  | 7,248       | 6,427     | 180               |        | 19,050     | 160      | 9,451   | 659    | 5,911,004  |
| 1987 | 4,690,640  | 1,150       | 33,310    | 3,440             |        | 2,305      | 657      | 6,838   | 436    | 4,738,776  |
| 1988 | 8,550,083  | 952         | 96,331    | 3,566             |        | 766        | 614      | 11,362  | 538    | 8,664,212  |
| 1989 | 3,692,159  | 1,833       | 34,556    | 11,295            | 31     | 18,112     | 1        | 8,305   | 2,504  | 3,768,796  |
| 1990 | 5,414,995  | 79          | 13,332    | 560               | 74     | 6,163      | 85       | 2,792   | 1,529  | 5,439,609  |
| 1991 | 2,760,714  | 71          | 11,721    | 602               |        | 189        |          | 3,479   | 1,084  | 2,777,860  |
| 1992 | 11,218,614 | 2,195       | 55,452    | 2,361             | 281    | 6,144      |          | 6,120   | 670    | 11,291,837 |
| 1993 | 10,923,548 | 154,056     | 442,687   | 7,992             | 23,216 | 4,992      |          | 10,385  | 1,806  | 11,568,682 |
| 1994 | 19,977,732 | 603         | 6,797     | 302               | 180    | 590        |          | 537     | 345    | 19,987,086 |
| 1995 | 11,481,279 | 914         | 3,204     | 173               | 21     | 152        | 16       | 22,290  | 3,029  | 11,511,078 |
| 1996 | 27,080,019 | 38,596      | 2,608     | 295               |        | 440        |          | 26,524  | 997    | 27,149,479 |
| 1997 | 19,811,178 | 15,026      | 4,390     | 1,628             | 484    | 11,951     | 89       | 37,637  | 3,725  | 19,886,108 |
| 1998 | 18,604,129 | 138,138     | 17,122    | 5,018             | 525    | 4,788      | 279      | 16,340  | 5,263  | 18,791,602 |
| 1999 | 17,402,696 | 115,448     | 77,899    | 2,623             | 1,413  | 4,347      | 455      | 9,742   | 7,708  | 17,622,331 |
| 2000 | 17,040,770 | 4,497       | 97,814    | 223               | 298    | 1,889      | 522      | 9,445   | 5,233  | 17,160,691 |
| 2001 | 20,406,546 | 27,752      | 2,037     | 2,210             | 544    | 7,801      | 178      | 33,018  | 12,398 | 20,492,484 |
| 2002 | 14,210,280 | 6,838       | 9,996     | 664               | 170    | 904        | 1,241    | 21,797  | 7,789  | 14,259,679 |
| 2003 | 24,385,886 | 11,045      |           | 62                | 567    | 2,764      | 558      | 14,013  | 5,708  | 24,420,603 |
| 2004 | 27,375,701 | 2,513       |           | 520               | 655    | 1,834      | 1,241    | 22,741  | 3,332  | 27,408,537 |
| 2005 | 20,762,541 | 1,437       |           | 181               |        | 1,587      |          | 12,332  | 3,318  | 20,781,396 |
| 2006 | 23,731,153 | 1,575       |           | 252               | 167    | 985        | 124      | 3,480   | 991    | 23,738,727 |
| 2007 | 21,494,041 | 1,222       |           |                   | 223    | 1,942      | 82       | 3,958   | 1,421  | 21,502,889 |
| 2008 | 28,847,990 | 49,130      | 1,200     |                   | 479    | 1,308      | 3,193    | 5,091   | 6,630  | 28,915,021 |
| 2009 | 27,414,388 | 11,286      | 291       | 639               | 42     | 252        | 92       | 3,446   | 1,754  | 27,432,190 |

Table 4–15. Nominal commercial ex-vessel revenues (\$) for the West Coast albacore surface hook-and-line (troll and baitboat) fishery, 1981–2009.

Source: PacFIN, extracted Aug. 19, 2010.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line (troll and baitboat) fishery were used.

Landed weights in lbs are multiplied by the prices per pound in each fish ticket line.

|      |           |          | 5        | Sharks   |          |       |          |         | Tunas  |         |        |        |         |          |         |           |
|------|-----------|----------|----------|----------|----------|-------|----------|---------|--------|---------|--------|--------|---------|----------|---------|-----------|
|      | Sword-    | Common   | Pelagic  | Bigeye   | Shortfin |       |          | Yellow- |        |         |        |        | Ground- | Coastal  |         |           |
| Year | fish      | Thresher | Thresher | Thresher | Mako     | Blue  | Albacore | fin     | Bigeye | Bluefin | Other  | Dorado | fish    | Pelagics | Other   | Total     |
| 1981 | 1,110,316 | 766,185  |          |          | 78,538   | 5,109 |          | 2,611   | 1,422  | 779     | 7,379  |        | 6,569   | 4,419    | 144,187 | 2,127,514 |
| 1982 | 1,000,168 | 675,288  |          | 6,837    | 116,517  | 653   | 7,330    | 2,454   | 1,950  | 304     | 13,142 |        | 5,820   | 904      | 19,749  | 1,851,116 |
| 1983 | 958,547   | 166,931  |          | 25,634   | 37,715   |       | 11,142   | 6,611   | 1,469  | 1,404   | 8,761  |        | 714     | 5,677    | 20,152  | 1,244,757 |
| 1984 | 1,096,570 | 144,390  |          | 2,427    | 13,638   |       | 15,242   | 3,440   | 671    | 1,445   | 466    |        | 8,410   | 293      | 9,482   | 1,296,474 |
| 1985 | 793,604   | 181,145  |          | 2,456    | 19,129   |       | 7,399    | 597     |        | 84      | 230    |        | 1,151   | 126      | 12,258  | 1,018,179 |
| 1986 | 377,053   | 673,561  |          | 2,756    | 29,629   |       | 8,793    | 2,954   | 240    | 1,584   |        |        | 311     | 65       | 10,565  | 1,107,511 |
| 1987 | 37,173    | 160,473  | 104      | 1,649    | 3,517    |       | 1,710    |         |        | 82      |        |        | 4,792   | 122      | 5,242   | 214,864   |
| 1988 | 3,324     | 134,924  |          |          |          |       | 7,092    |         |        |         |        |        | 444     |          | 140     | 145,924   |
| 1989 |           | *        |          |          |          |       |          |         |        |         |        |        |         |          |         | *         |
| 1990 |           |          |          |          |          |       |          |         |        |         |        |        |         |          |         |           |
| 1991 | 361,574   | 11,891   |          | 1,849    | 3,238    |       | 851      | 540     |        | 249     | 416    |        |         |          | 707     | 381,315   |
| 1992 | 241,122   | 2,748    |          | 74       | 7,744    |       | 1,080    | 1,004   | 270    | 1,236   | 49     |        |         | 310      | 3,498   | 259,135   |
| 1993 | 918,433   | 25,086   | 118      | 5,221    | 21,315   |       | 23,922   |         |        | 22,230  | 1,281  |        | 1,019   |          | 10,951  | 1,029,576 |
| 1994 | 4,536,655 | 489,369  | 42       | 27,214   | 128,658  | 7     | 91,871   | 1,004   | 2,332  | 119,757 | 9,234  | 40     | 5,498   | 851      | 155,380 | 5,567,912 |
| 1995 | 4,190,568 | 347,670  | 8,681    | 22,921   | 131,822  | 105   | 49,903   | 2,423   | 2,794  | 72,431  | 9,663  | 13     | 1,655   | 1,654    | 136,335 | 4,978,638 |
| 1996 | 3,919,232 | 448,255  | 1,557    | 16,802   | 138,997  | 56    | 106,175  | 2,393   | 1,246  | 117,324 | 2,928  |        | 1,084   | 2,557    | 205,989 | 4,964,595 |
| 1997 | 3,166,095 | 438,116  | 61,815   | 24,976   | 192,721  | 6     | 69,147   | 11,359  | 18,445 | 227,816 | 2,196  | 494    | 2,268   | 3,506    | 143,043 | 4,362,003 |
| 1998 | 3,967,255 | 484,999  | 2,440    | 7,744    | 139,352  | 4,810 | 76,514   | 3,765   | 19,454 | 178,318 | 7,335  | 2,457  | 1,481   | 1,761    | 212,564 | 5,110,249 |
| 1999 | 2,785,199 | 277,240  | 13,704   | 3,899    | 80,790   | 19    | 101,957  | 909     | 9,899  | 76,870  | 1,655  |        | 1,304   | 122      | 188,600 | 3,542,167 |
| 2000 | 2,750,462 | 287,306  | 2,143    | 2,999    | 86,543   | 164   | 66,123   | 943     | 17,921 | 103,172 | 732    | 545    | 1,298   | 2,253    | 138,393 | 3,460,997 |
| 2001 | 1,541,152 | 449,885  | 465      | 402      | 42,706   |       | 70,729   | 4,040   | 673    | 33,467  | 516    |        | 1,273   | 399      | 107,926 | 2,253,633 |
| 2002 | 1,499,163 | 368,415  | 1,725    |          | 86,811   |       | 19,518   | 1,517   |        | 9,662   | 88     |        | 2,429   | 833      | 199,253 | 2,189,414 |
| 2003 | 1,032,796 | 390,859  | 2,676    | 3,577    | 81,652   | 11    | 13,466   | -       | 36,417 | 26,316  | 3,824  |        | 825     | 279      | 133,917 | 1,727,132 |
| 2004 | 944,192   | 111,421  | 227      | 3,795    | 40,804   |       | 23,390   | 697     |        | 31,074  | 144    |        | 2,024   | 386      | 120,036 | 1,278,190 |
| 2005 | 1,184,545 | 225,273  |          | 6,094    | 30,020   |       | 17,819   | 4,188   |        | 16,488  | 105    | 90     | 1,182   | 9        | 198,205 | 1,684,018 |
| 2006 | 1,996,530 | 183,839  | 218      | 3,828    | 56,660   |       | 4,079    | 1,755   |        | 2,959   | 2,970  | 87     | 1,346   | 1,951    | 291,604 | 2,547,826 |
| 2007 | 2,469,238 | 259,852  | 2,870    | 3,758    | 53,815   | 157   | 7,129    | 102     |        | 11,602  | 79     |        | 2,349   | 349      | 419,552 | 3,230,852 |
| 2008 | 1,708,969 | 198,218  |          | 5,419    | 46,066   |       | 1,705    | 813     |        | 2,515   | 102    | 52     | 3,129   | 3,096    | 385,191 | 2,355,275 |
| 2009 | 1,070,068 | 80,797   |          | 4,687    | 36,935   | 2,309 | 7,993    | 16      |        | 7,161   |        |        | 241     | 59       | 266,576 | 1,476,842 |

Table 4–16. Nominal commercial ex-vessel revenues (\$) for the West Coast drift gillnet fishery, 1981–2009.

\* Not reported due to data confidentiality requirements (fewer than three vessels).

Blank cells indicate no data exists. Any calculated or derived zeros are due to rounding of summarized data to less than half of the unit shown. Source: PacFIN, extracted Aug. 23, 2010.

Note 1: There is no drift gillnet gear for Washington.

Note 2: Significant swordfish and shark landings by drift gillnet gear prior to 1994 have been mis-assigned to California

entangling net, trammel net, several trawl, encircling net, set gillnet and unknown gears, and therefore corresponding revenues are not reported here. Additional processing info:

Only fish tickets where at least 1 lb of swordfish or any HMS shark was landed for the drift gillnet fishery were used.

Landed weights in lbs are multiplied by the prices per pound in each fish ticket line.

|      |           |                   | Tur      | nas   |        |        |           |
|------|-----------|-------------------|----------|-------|--------|--------|-----------|
| Year | Swordfish | <b>HMS Sharks</b> | Albacore | Other | Dorado | Other  | Total     |
| 1981 | 1,371,646 | 10,204            | 3,952    | 385   |        | 12,029 | 1,398,216 |
| 1982 | 839,886   | 1,988             |          | 146   |        | 1,233  | 843,253   |
| 1983 | 318,044   | 1,962             |          |       |        | 9,752  | 329,758   |
| 1984 | 583,079   | 8,473             | 330      | 150   |        | 2,026  | 594,058   |
| 1985 | 1,280,993 | 1,721             | 225      | 247   |        | 1,751  | 1,284,937 |
| 1986 | 1,796,277 | 2,433             | 53       | 337   |        | 1,203  | 1,800,303 |
| 1987 | 1,647,710 | 5,053             | 4,150    | 2,076 |        | 84,568 | 1,743,557 |
| 1988 | 1,477,860 | 6,429             | 8,552    |       |        | 882    | 1,493,723 |
| 1989 | 500,435   | 1,527             | 2,106    | 65    |        | 1,256  | 505,389   |
| 1990 | 539,322   | 5,869             |          | 108   |        | 811    | 546,110   |
| 1991 | 179,949   | 2,025             |          |       |        | 70     | 182,044   |
| 1992 | 586,740   | 6,126             | 1,236    | 133   |        | 1,336  | 595,571   |
| 1993 | 1,132,762 | 1,890             | 7,730    |       |        | 1,000  | 1,143,382 |
| 1994 | 1,273,087 | 1,613             | 2,490    |       |        | 2,888  | 1,280,078 |
| 1995 | 760,108   | 4,078             |          |       |        | 1,752  | 765,938   |
| 1996 | 633,027   | 3,217             | 216      |       |        | 652    | 637,112   |
| 1997 | 683,211   | 5,567             | 200      |       | 90     | 675    | 689,743   |
| 1998 | 402,914   | 1,603             |          |       |        | 766    | 405,283   |
| 1999 | 608,982   | 811               |          |       |        | 5,851  | 615,644   |
| 2000 | 750,533   | 798               | 302      |       |        | 8,381  | 760,014   |
| 2001 | 468,289   | 1,152             |          |       | 50     | 2,748  | 472,239   |
| 2002 | 678,934   | 1,259             |          |       |        | 1,141  | 681,334   |
| 2003 | 839,197   | 562               |          |       |        | 1,768  | 841,527   |
| 2004 | 670,001   | 2,457             |          |       |        | 1,643  | 674,101   |
| 2005 | 709,760   | 1,229             |          |       |        | 1,921  | 712,910   |
| 2006 | 680,036   | 5,013             |          |       |        | 709    | 685,758   |
| 2007 | 597,707   | 1,305             |          |       |        |        | 599,012   |
| 2008 | 458,482   | 1,436             |          |       |        |        | 459,918   |
| 2009 | 459,656   | 1,846             |          |       |        | 589    | 462,091   |

Table 4–17. Nominal commercial ex-vessel revenues (\$) for the West Coast harpoon fishery, 1981–2009.

Blank cells indicate no data exists. Any calculated or derived zeros are due to rounding of

summarized data to less than half of the unit shown.

Source: PacFIN, extracted Aug. 19, 2010.

Note 1: Only California has revenues from harpoon landings.

Note 2: Some of the non-swordfish species may have been taken by dual-gear permit holders,

who may have fished with drift gillnets but landed under harpoon.

Additional processing info:

Landed weights in lbs are multiplied by the prices per pound in each fish ticket line.

|      |           |            | Tuna       | as        |           |             | Sword-  | HMS    |        | Ground- | Coastal  |         |             |
|------|-----------|------------|------------|-----------|-----------|-------------|---------|--------|--------|---------|----------|---------|-------------|
| Year | Albacore  | Yellowfin  | Skipjack   | Bigeye    | Bluefin   | Unspecified | fish    | Sharks | Dorado | fish    | Pelagics | Other   | Total       |
| 1981 | 362,636   | 97,391,144 | 62,318,736 | 1,552,545 | 1,219,984 | 54,643      |         |        |        |         | 119,029  | 1,456   | 163,020,173 |
| 1982 | 575,736   | 73,205,578 | 38,822,258 | 1,196,824 | 2,680,401 | 54,040      |         |        |        |         | 5,155    |         | 116,539,991 |
| 1983 | 15,349    | 55,980,011 | 34,377,044 |           | 1,042,089 | 24,989      | 1,796   | 261    |        |         | 6,638    | 587     | 91,448,764  |
| 1984 | 4,822,262 | 35,503,573 | 23,741,980 | 143,266   | 878,031   | 2,580,939   | 87,097  | 651    |        |         | 60,118   | 6,054   | 67,823,971  |
| 1985 | 28,953    | 14,191,940 | 1,713,118  | 810       | 2,797,571 | 1,026,024   | 7,080   |        |        |         | 50,191   | 956     | 19,817,103  |
| 1986 | 64,622    | 17,655,730 | 643,905    | 13,335    | 4,575,913 | 182,575     | 182,606 | 2,595  |        |         | 8,204    | 2,452   | 23,331,937  |
| 1987 | 69,499    | 26,028,704 | 4,116,606  | 150,602   | 2,049,722 | 427,505     |         | 900    |        |         | 2,005    | 8,980   | 32,854,523  |
| 1988 | 266,685   | 25,754,782 | 7,772,435  | 680       | 2,037,504 |             |         |        |        |         | 25,342   |         | 35,925,150  |
| 1989 | 45,978    | 19,139,726 | 3,113,729  |           | 1,231,363 | 112,194     | 6,955   | 270    | 128    |         | 6,300    | 138     | 23,656,781  |
| 1990 | 139,859   | 9,225,983  | 1,889,065  |           | 1,069,829 | 32,343      |         |        |        |         | 43,459   |         | 12,400,537  |
| 1991 |           | 3,399,732  | 2,298,693  |           | 98,226    | 7,985       |         |        |        |         | 36,458   | 3,315   | 5,844,409   |
| 1992 | 19,291    | 1,686,917  | 551,315    | 2,927     | 1,087,353 | 2,936       | 51,873  | 3,524  | 2,597  | 220     | 62,091   | 11,397  | 3,482,441   |
| 1993 | 1,202     | 1,051,265  | 1,047,039  | 4,229     | 569,367   | 880         | 98,722  | 1,599  | 175    | 14      | 16,833   | 10,658  | 2,801,983   |
| 1994 |           | 3,135,039  | 1,078,217  |           | 1,463,167 | 3,393       |         |        |        |         | 36,342   | 125,354 | 5,841,512   |
| 1995 |           | 2,811,700  | 3,801,888  |           | 943,602   |             |         |        |        |         | 15,670   | 20,463  | 7,593,323   |
| 1996 | 875       | 2,669,391  | 3,643,203  |           | 3,865,969 |             |         |        |        |         | 69,959   | 25,249  | 10,274,646  |
| 1997 | 3,654     | 4,795,089  | 5,326,959  |           | 2,504,396 | 4,195       | 6,666   | 1,909  | 1,425  |         | 17,321   | 51,754  | 12,713,368  |
| 1998 | 162,925   | 3,808,379  | 4,717,085  |           | 2,294,031 |             |         |        |        |         | 165,275  | 109,262 | 11,256,957  |
| 1999 | 33,416    | 1,397,578  | 2,732,409  |           | 360,132   |             |         |        |        |         | 5,340    | 59,908  | 4,588,783   |
| 2000 | 6,615     | 1,306,040  | 475,592    |           | 296,687   |             |         |        |        |         | 24,484   |         | 2,109,419   |
| 2001 | 62,841    | 411,133    | 28,595     |           | 336,831   |             |         |        |        |         | 5,092    |         | 844,492     |
| 2002 | 358       | 577,814    | 128,094    |           |           |             | 2,623   |        |        |         |          | 45      | 708,934     |
| 2003 | 16,153    | 442,370    | 152,188    |           | 14,874    |             |         |        |        |         |          |         | 625,584     |
| 2004 | 1,537     | 435,085    | 108,853    |           |           |             |         |        |        |         |          |         | 545,475     |
| 2005 |           | 304,037    | 291,183    |           | 119,162   |             |         |        |        |         | 1,708    |         | 716,090     |
| 2006 |           | *          | *          |           |           |             |         |        |        |         |          |         | *           |
| 2007 | 119,394   | 119,395    | 3,958      |           | 45,267    |             |         |        |        |         | 55,587   |         | 343,600     |
| 2008 | *         | *          | *          |           |           |             |         |        |        |         | *        |         | *           |
| 2009 | 41,701    | 14,185     | 3,655      |           | 426,260   |             |         |        |        |         | 334,695  |         | 820,495     |

Table 4–18. Nominal commercial ex-vessel revenues (\$) for the West Coast purse seine fishery, 1981–2009.

\* Not reported due to data confidentiality requirements (fewer than three vessels).

Blank cells indicate no data exists. Any calculated or derived zeros are due to rounding of summarized data to less than half of the unit shown.

Source: PacFIN, extracted Aug. 24, 2010.

Note: There is no purse seine gear for Washington.

Additional processing info:

Only fish tickets where at least 1 lb of any HMS tuna was landed for the purse seine fishery were used.

Landed weights in lbs are multiplied by the prices per pound in each fish ticket line.

|      |            |             |           |                   |        |            | Coastal  |         |        |            |
|------|------------|-------------|-----------|-------------------|--------|------------|----------|---------|--------|------------|
| Year | Albacore   | Other Tunas | Swordfish | <b>HMS Sharks</b> | Dorado | Groundfish | Pelagics | Salmon  | Other  | Total      |
| 1981 | 54,829,211 | 37,793      |           | 363               | 150    | 5,270      | 2,084    | 279,900 | 2,960  | 55,157,731 |
| 1982 | 14,559,789 | 10,895      | 26,187    | 5,488             | 1,103  | 11,245     | 25       | 27,405  | 1,062  | 14,643,199 |
| 1983 | 22,636,304 | 27,793      | 14,349    | 3,044             | 63     | 38,699     | 29,525   | 68,740  | 7,393  | 22,825,910 |
| 1984 | 22,308,314 | 36,829      | 176,708   | 11,165            | 1,297  | 12,758     | 1,704    | 11,795  | 7,857  | 22,568,427 |
| 1985 | 14,251,177 | 7,625       | 55,118    | 12,509            | 11     | 11,379     | 427      | 19,255  | 4,117  | 14,361,618 |
| 1986 | 10,233,395 | 12,640      | 11,208    | 314               |        | 33,224     | 280      | 16,483  | 1,148  | 10,308,692 |
| 1987 | 7,950,237  | 1,948       | 56,457    | 5,830             |        | 3,906      | 1,113    | 11,589  | 744    | 8,031,824  |
| 1988 | 14,004,969 | 1,559       | 157,842   | 5,843             |        | 1,256      | 1,005    | 18,618  | 882    | 14,191,974 |
| 1989 | 5,829,112  | 2,895       | 54,557    | 17,832            | 48     | 28,594     | 2        | 13,111  | 3,953  | 5,950,104  |
| 1990 | 8,231,977  | 120         | 20,267    | 851               | 112    | 9,369      | 130      | 4,244   | 2,326  | 8,269,396  |
| 1991 | 4,053,317  | 104         | 17,210    | 883               |        | 278        |          | 5,108   | 1,590  | 4,078,490  |
| 1992 | 15,887,829 | 3,148       | 79,523    | 3,386             | 403    | 8,811      |          | 8,777   | 961    | 15,992,838 |
| 1993 | 15,268,809 | 216,158     | 621,141   | 11,213            | 32,574 | 7,004      |          | 14,571  | 2,536  | 16,174,006 |
| 1994 | 27,396,060 | 829         | 9,341     | 415               | 247    | 811        |          | 738     | 473    | 27,408,914 |
| 1995 | 15,291,274 | 1,230       | 4,313     | 232               | 28     | 204        | 22       | 30,004  | 4,079  | 15,331,386 |
| 1996 | 33,669,221 | 50,986      | 3,445     | 389               |        | 581        |          | 35,039  | 1,317  | 33,760,978 |
| 1997 | 24,784,353 | 19,405      | 5,699     | 2,113             | 482    | 15,513     | 116      | 48,854  | 4,834  | 24,881,369 |
| 1998 | 22,466,585 | 177,304     | 21,976    | 6,441             | 674    | 6,146      | 358      | 20,972  | 6,757  | 22,707,213 |
| 1999 | 20,416,220 | 146,044     | 98,543    | 3,318             | 1,788  | 5,499      | 575      | 12,324  | 9,752  | 20,694,063 |
| 2000 | 18,999,914 | 5,568       | 121,117   | 276               | 369    | 2,339      | 646      | 11,695  | 6,481  | 19,148,405 |
| 2001 | 22,695,184 | 33,602      | 2,466     | 2,676             | 658    | 9,446      | 215      | 39,979  | 15,012 | 22,799,238 |
| 2002 | 15,689,695 | 8,147       | 11,910    | 791               | 202    | 1,077      | 1,479    | 25,970  | 9,281  | 15,748,552 |
| 2003 | 22,893,728 | 12,883      |           | 72                | 661    | 3,224      | 651      | 16,346  | 6,659  | 22,934,224 |
| 2004 | 27,591,208 | 2,851       |           | 589               | 743    | 2,080      | 1,408    | 25,795  | 3,780  | 27,628,454 |
| 2005 | 20,312,938 | 1,577       |           | 199               |        | 1,741      |          | 13,535  | 3,643  | 20,333,633 |
| 2006 | 24,271,350 | 1,674       |           | 268               | 177    | 1,047      | 132      | 3,699   | 1,055  | 24,279,402 |
| 2007 | 21,359,229 | 1,263       |           |                   | 231    | 2,007      | 85       | 4,090   | 1,466  | 21,368,371 |
| 2008 | 25,139,321 | 49,707      | 1,214     |                   | 484    | 1,323      | 3,231    | 5,151   | 6,707  | 25,207,138 |
| 2009 | 25,801,651 | 11,286      | 291       | 639               | 42     | 252        | 92       | 3,446   | 1,754  | 25,819,453 |

Table 4–19. Real commercial ex-vessel revenues (2009 \$) for the West Coast albacore surface hook-and-line (troll and baitboat) fishery, with Canadian vessels excluded, 1981–2009.

Blank cells indicate no data exists. Any calculated or derived zeros are due to rounding of summarized data to less than half of the unit shown.

Source: PacFIN, extracted Aug. 19, 2010.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line (troll and baitboat) fishery were used.

Real values are calculated to eliminate the effects of inflation by dividing current nominal values by the current year GDP implicit price deflator, with a base year of 2009.

Landed weights in lbs are multiplied by the prices per pound in each fish ticket line and then divided by the corresponding deflator. Canadian vessels were excluded by outer joining the fish ticket tables with the state vessel table and cheking the "idtype." Aquaculture fish ticket/fish ticket line info is excluded.

|      |            |             |           |                   |        |            | Coastal  |         |        |            |
|------|------------|-------------|-----------|-------------------|--------|------------|----------|---------|--------|------------|
| Year | Albacore   | Other Tunas | Swordfish | <b>HMS Sharks</b> | Dorado | Groundfish | Pelagics | Salmon  | Other  | Total      |
| 1981 | 54,829,211 | 37,793      |           | 363               | 150    | 5,270      | 2,084    | 279,900 | 2,960  | 55,157,731 |
| 1982 | 14,589,223 | 10,895      | 26,187    | 5,488             | 1,103  | 11,245     | 25       | 27,405  | 1,061  | 14,672,632 |
| 1983 | 22,708,807 | 27,793      | 14,349    | 3,044             | 63     | 38,699     | 29,525   | 68,740  | 7,393  | 22,898,413 |
| 1984 | 22,314,345 | 36,829      | 176,708   | 11,165            | 1,297  | 12,758     | 1,704    | 11,795  | 7,857  | 22,574,458 |
| 1985 | 14,251,177 | 7,625       | 55,118    | 12,509            | 11     | 11,379     | 427      | 19,255  | 4,117  | 14,361,618 |
| 1986 | 10,233,395 | 12,640      | 11,208    | 314               |        | 33,224     | 280      | 16,483  | 1,148  | 10,308,692 |
| 1987 | 7,950,237  | 1,948       | 56,457    | 5,830             |        | 3,906      | 1,113    | 11,589  | 744    | 8,031,824  |
| 1988 | 14,009,639 | 1,559       | 157,842   | 5,843             |        | 1,256      | 1,005    | 18,618  | 882    | 14,196,644 |
| 1989 | 5,829,112  | 2,895       | 54,557    | 17,832            | 48     | 28,594     | 2        | 13,111  | 3,953  | 5,950,104  |
| 1990 | 8,231,977  | 120         | 20,267    | 851               | 112    | 9,369      | 130      | 4,244   | 2,326  | 8,269,396  |
| 1991 | 4,053,317  | 104         | 17,210    | 883               |        | 278        |          | 5,108   | 1,590  | 4,078,490  |
| 1992 | 16,088,647 | 3,148       | 79,523    | 3,386             | 403    | 8,811      |          | 8,777   | 962    | 16,193,657 |
| 1993 | 15,326,993 | 216,158     | 621,141   | 11,213            | 32,574 | 7,004      |          | 14,571  | 2,536  | 16,232,190 |
| 1994 | 27,453,253 | 829         | 9,341     | 415               | 247    | 811        |          | 738     | 473    | 27,466,107 |
| 1995 | 15,454,677 | 1,230       | 4,313     | 232               | 28     | 204        | 22       | 30,004  | 4,078  | 15,494,788 |
| 1996 | 35,772,812 | 50,986      | 3,445     | 389               |        | 581        |          | 35,039  | 1,317  | 35,864,569 |
| 1997 | 25,715,444 | 19,504      | 5,699     | 2,113             | 628    | 15,513     | 116      | 48,854  | 4,834  | 25,812,705 |
| 1998 | 23,879,000 | 177,304     | 21,976    | 6,441             | 674    | 6,146      | 358      | 20,972  | 6,757  | 24,119,628 |
| 1999 | 22,014,796 | 146,044     | 98,543    | 3,318             | 1,788  | 5,499      | 575      | 12,324  | 9,752  | 22,292,639 |
| 2000 | 21,100,508 | 5,568       | 121,117   | 276               | 369    | 2,339      | 646      | 11,695  | 6,481  | 21,248,999 |
| 2001 | 24,708,253 | 33,602      | 2,466     | 2,676             | 658    | 9,446      | 215      | 39,979  | 15,012 | 24,812,307 |
| 2002 | 16,931,109 | 8,147       | 11,910    | 791               | 202    | 1,077      | 1,479    | 25,970  | 9,281  | 16,989,966 |
| 2003 | 28,444,985 | 12,883      |           | 72                | 661    | 3,224      | 651      | 16,346  | 6,659  | 28,485,481 |
| 2004 | 31,052,293 | 2,851       |           | 589               | 743    | 2,080      | 1,408    | 25,795  | 3,779  | 31,089,538 |
| 2005 | 22,788,432 | 1,577       |           | 199               |        | 1,741      |          | 13,535  | 3,643  | 22,809,127 |
| 2006 | 25,227,121 | 1,674       |           | 268               | 177    | 1,047      | 132      | 3,699   | 1,055  | 25,235,173 |
| 2007 | 22,211,472 | 1,263       |           |                   | 231    | 2,007      | 85       | 4,090   | 1,467  | 22,220,615 |
| 2008 | 29,186,554 | 49,707      | 1,214     |                   | 484    | 1,323      | 3,231    | 5,151   | 6,707  | 29,254,371 |
| 2009 | 27,414,388 | 11,286      | 291       | 639               | 42     | 252        | 92       | 3,446   | 1,754  | 27,432,190 |

Table 4–20. Real commercial ex-vessel revenues (2009 \$) for the West Coast albacore surface hook-and-line (troll and baitboat) fishery, 1981–2009.

Blank cells indicate no data exists. Any calculated or derived zeros are due to rounding of summarized data to less

than half of the unit shown.

Source: PacFIN, extracted Aug. 19, 2010.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line (troll and baitboat) fishery were used.

Real values are calculated to eliminate the effects of inflation by dividing current nominal values by the current year GDP implicit price deflator, with a base year of 2009.

Landed weights in lbs are multiplied by the prices per pound in each fish ticket line and then divided by the corresponding deflator. Aquaculture fish ticket/fish ticket line info is excluded.

|      |           |           | (        | Sharks   |          |        |          |         | Tunas  |         |        |        |         |          |         |           |
|------|-----------|-----------|----------|----------|----------|--------|----------|---------|--------|---------|--------|--------|---------|----------|---------|-----------|
|      | Sword-    | Common    | Pelagic  | Bigeye   | Shortfin |        |          | Yellow- |        |         |        |        | Ground- | Coastal  |         |           |
| Year | fish      | Thresher  | Thresher | Thresher | Mako     | Blue   | Albacore | fin     | Bigeye | Bluefin | Other  | Dorado | fish    | Pelagics | Other   | Total     |
| 1981 | 2,333,578 | 1,610,310 |          |          | 165,066  | 10,739 |          | 5,488   | 2,989  | 1,636   | 15,508 |        | 13,807  | 9,287    | 303,037 | 4,471,445 |
| 1982 | 1,981,315 | 1,337,734 |          | 13,544   | 230,818  | 1,294  | 14,521   | 4,862   | 3,863  | 602     | 26,034 |        | 11,530  | 1,791    | 39,121  | 3,667,029 |
| 1983 | 1,826,500 | 318,084   |          | 48,845   | 71,865   |        | 21,231   | 12,597  | 2,800  | 2,674   | 16,694 |        | 1,360   | 10,818   | 38,402  | 2,371,870 |
| 1984 | 2,013,902 | 265,179   |          | 4,457    | 25,047   |        | 27,992   | 6,318   | 1,232  | 2,653   | 856    |        | 15,446  | 538      | 17,417  | 2,381,037 |
| 1985 | 1,414,624 | 322,897   |          | 4,378    | 34,098   |        | 13,189   | 1,064   |        | 150     | 410    |        | 2,052   | 225      | 21,849  | 1,814,936 |
| 1986 | 657,574   | 1,174,678 |          | 4,806    | 51,673   |        | 15,335   | 5,151   | 418    | 2,763   |        |        | 543     | 113      | 18,426  | 1,931,480 |
| 1987 | 63,005    | 271,988   | 176      | 2,795    | 5,960    |        | 2,899    |         |        | 139     |        |        | 8,122   | 207      | 8,885   | 364,176   |
| 1988 | 5,447     | 221,078   |          |          |          |        | 11,620   |         |        |         |        |        | 728     |          | 229     | 239,102   |
| 1989 |           | *         |          |          |          |        |          |         |        |         |        |        |         |          |         | *         |
| 1990 |           |           |          |          |          |        |          |         |        |         |        |        |         |          |         |           |
| 1991 | 530,867   | 17,458    |          | 2,714    | 4,754    |        | 1,249    | 793     |        | 366     | 611    |        |         |          | 1,039   | 559,851   |
| 1992 | 345,793   | 3,941     |          | 107      | 11,105   |        | 1,549    | 1,440   | 387    | 1,772   | 71     |        |         | 445      | 5,016   | 371,626   |
| 1993 | 1,288,667 | 35,198    | 166      | 7,325    | 29,907   |        | 33,565   |         |        | 31,191  | 1,798  |        | 1,429   |          | ,       | 1,444,613 |
|      | 6,234,238 | 672,488   | 58       | 37,397   | 176,800  | 9      | 126,248  | 1,380   | 3,205  | ,       | ,      | 54     | 7,555   | ,        | ,       | 7,651,383 |
| 1995 | 5,640,824 | 467,990   | 11,685   | 30,853   | ,        | 141    | 67,173   | 3,262   | 3,761  | 97,497  |        | 17     | 2,228   |          |         | 6,701,626 |
| 1996 | 5,177,321 | 592,146   | 2,057    | 22,196   | 183,616  | 74     | 140,257  | 3,161   | 1,645  | 154,986 | 3,867  |        | 1,432   | 3,377    | 272,115 | 6,558,250 |
|      | 4,109,677 | 568,686   | 80,237   | ,        | 250,157  | 7      | 89,755   | , -     | 23,942 | ,       | 2,851  | 641    | 2,943   | ,        | ,       | 5,661,997 |
|      | 5,092,100 | 622,512   | 3,131    | ,        | 178,863  | 6,174  | 98,209   |         | 24,970 |         | 9,415  | 3,153  | 1,901   | 2,260    | 272,833 | 6,559,169 |
| 1999 | 3,523,338 | 350,715   | 17,335   | 4,932    | 102,201  | 24     | 128,977  |         | 12,523 | 97,243  | 2,094  |        | 1,650   | 154      | 238,584 | 4,480,920 |
| 2000 | 3,405,723 | 355,753   | 2,653    | 3,713    | 107,161  | 203    | 81,876   | 1,167   | 22,191 | 127,751 | 906    | 674    | 1,607   | 2,789    | 171,367 | 4,285,534 |
|      | 1,866,027 | 544,721   | 563      | 486      | 51,709   |        | 85,639   | 4,891   | 815    | - / -   | 624    |        | 1,542   |          | ,       | 2,728,700 |
| 2002 | 1,786,206 | 438,955   | 2,055    |          | 103,433  |        | 23,255   | 1,807   |        | 11,512  | 105    |        | 2,894   |          | - ,     | 2,608,619 |
| 2003 | 1,204,708 | 455,919   | 3,122    | 4,173    | 95,243   | 13     | 15,708   |         | 42,479 | 30,696  | 4,460  |        | 962     | 325      | 156,207 | 2,014,618 |
| 2004 | 1,070,998 | 126,385   | 257      | 4,305    | 46,284   |        | 26,531   | 791     |        | 35,248  | 164    |        | 2,295   | 437      | 136,158 | 1,449,853 |
| 2005 | 1,300,127 | 247,254   |          | 6,689    | 32,949   |        | 19,558   | 4,596   |        | 18,096  | 115    | 99     | 1,297   |          | ,       | 1,848,335 |
| 2006 | 2,122,388 | 195,428   | 231      | 4,070    | /-       |        | 4,336    | 1,866   |        | 3,145   | 3,157  | 92     | 1,431   | 2,074    |         | 2,708,436 |
| 2007 | 2,551,657 | 268,525   | 2,965    | 3,883    | 55,611   | 162    | 7,367    | 105     |        | 11,989  | 82     |        | 2,427   | 360      | 433,559 | 3,338,692 |
| 2008 | 1,729,026 | 200,544   |          | 5,483    | 46,607   |        | 1,725    | 822     |        | 2,544   | 104    | 53     | 3,166   | ,        |         | 2,382,917 |
| 2009 | 1,070,068 | 80,797    |          | 4,687    | 36,935   | 2,309  | 7,993    | 16      |        | 7,161   |        |        | 241     | 59       | 266,576 | 1,476,842 |

Table 4–21. Real commercial ex-vessel revenues (2009 \$) for the West Coast drift gillnet fishery, 1981–2009.

\* Not reported due to data confidentiality requirements (fewer than three vessels).

Blank cells indicate no data exists. Any calculated or derived zeros are due to rounding of summarized data to less than half of the unit shown.

Source: PacFIN, extracted Aug. 23, 2010.

Note 1: There is no drift gillnet gear for Washington.

Note 2: Significant swordfish and shark landings by drift gillnet gear prior to 1994 have been mis-assigned to California

entangling net, trammel net, several trawl, encircling net, set gillnet and unknown gears, and therefore corresponding revenues are not reported here. Additional processing info:

Only fish tickets where at least 1 lb of swordfish or any HMS shark was landed for the drift gillnet fishery were used.

Real values are calculated to eliminate the effects of inflation by dividing current nominal values by the current year GDP implicit price deflator, with a base year of 2009.

Landed weights in lbs are multiplied by the prices per pound in each fish ticket line and then divided by the corresponding deflator.

|      |           |            | Tur      | nas   |        |         |           |
|------|-----------|------------|----------|-------|--------|---------|-----------|
| Year | Swordfish | HMS Sharks | Albacore | Other | Dorado | Other   | Total     |
| 1981 | 2,882,820 | 21,447     | 8,306    | 810   |        | 25,280  | 2,938,663 |
| 1982 | 1,663,799 | 3,938      |          | 290   |        | 2,443   | 1,670,470 |
| 1983 | 606,029   | 3,738      |          |       |        | 18,583  | 628,350   |
| 1984 | 1,070,852 | 15,561     | 606      | 275   |        | 3,721   | 1,091,015 |
| 1985 | 2,283,409 | 3,068      | 402      | 440   |        | 3,121   | 2,290,440 |
| 1986 | 3,132,677 | 4,243      | 92       | 588   |        | 2,098   | 3,139,698 |
| 1987 | 2,792,729 | 8,564      | 7,034    | 3,518 |        | 143,337 | 2,955,182 |
| 1988 | 2,421,530 | 10,535     | 14,012   |       |        | 1,445   | 2,447,522 |
| 1989 | 790,078   | 2,411      | 3,325    | 103   |        | 1,981   | 797,898   |
| 1990 | 819,888   | 8,922      |          | 163   |        | 1,233   | 830,206   |
| 1991 | 264,204   | 2,973      |          |       |        | 102     | 267,279   |
| 1992 | 841,446   | 8,786      | 1,773    | 191   |        | 1,914   | 854,110   |
| 1993 | 1,589,395 | 2,652      | 10,845   |       |        | 1,405   | 1,604,297 |
| 1994 | 1,749,466 | 2,216      | 3,422    |       |        | 3,969   | 1,759,073 |
| 1995 | 1,023,164 | 5,490      |          |       |        | 2,358   | 1,031,012 |
| 1996 | 836,231   | 4,249      | 285      |       |        | 863     | 841,628   |
| 1997 | 886,826   | 7,227      | 259      |       | 117    | 876     | 895,305   |
| 1998 | 517,154   | 2,057      |          |       |        | 983     | 520,194   |
| 1999 | 770,376   | 1,026      |          |       |        | 7,401   | 778,803   |
| 2000 | 929,338   | 988        | 374      |       |        | 10,377  | 941,077   |
| 2001 | 567,004   | 1,395      |          |       | 61     | 3,327   | 571,787   |
| 2002 | 808,929   | 1,500      |          |       |        | 1,359   | 811,788   |
| 2003 | 978,884   | 656        |          |       |        | 2,062   | 981,602   |
| 2004 | 759,983   | 2,786      |          |       |        | 1,865   | 764,634   |
| 2005 | 779,015   | 1,349      |          |       |        | 2,108   | 782,472   |
| 2006 | 722,904   | 5,328      |          |       |        | 755     | 728,987   |
| 2007 | 617,658   | 1,349      |          |       |        |         | 619,006   |
| 2008 | 463,863   | 1,452      |          |       |        |         | 465,316   |
| 2009 | 459,656   | 1,846      |          |       |        | 589     | 462,091   |

Table 4–22. Real commercial ex-vessel revenues (2009 \$) for the West Coast harpoon fishery, 1981–2009.

Source: PacFIN, extracted Aug. 19, 2010.

Note 1: Only California has revenues from harpoon landings.

Note 2: Some of the non-swordfish species may have been taken by dual-gear permit holders,

who may have fished with drift gillnets but landed under harpoon.

Additional processing info:

Real values are calculated to eliminate the effects of inflation by dividing current nominal values

by the current year GDP implicit price deflator, with a base year of 2009.

Landed weights in lbs are multiplied by the prices per pound in each fish ticket line and then

divided by the corresponding deflator.

|      |           |             | Tuna        | IS        |           |             | Sword-  | HMS    |        | Ground- | Coastal  |         |             |
|------|-----------|-------------|-------------|-----------|-----------|-------------|---------|--------|--------|---------|----------|---------|-------------|
| Year | Albacore  | Yellowfin   | Skipjack    | Bigeye    | Bluefin   | Unspecified | fish    | Sharks | Dorado | fish    | Pelagics | Other   | Total       |
| 1981 | 762,161   | 204,689,248 | 130,976,746 | 3,263,020 | 2,564,070 | 114,845     |         |        |        |         | 250,166  | 3,058   | 342,623,314 |
| 1982 | 1,140,523 | 145,018,974 | 76,906,216  | 2,370,888 | 5,309,827 | 107,051     |         |        |        |         | 10,211   |         | 230,863,691 |
| 1983 | 29,248    | 106,669,228 | 65,505,039  |           | 1,985,688 | 47,616      | 3,421   | 497    |        |         | 12,649   | 1,118   | 174,254,504 |
| 1984 | 8,856,313 | 65,203,991  | 43,603,270  | 263,115   | 1,612,545 | 4,740,016   | 159,957 | 1,195  |        |         | 110,409  | 11,120  | 124,561,931 |
| 1985 | 51,609    | 25,297,576  | 3,053,685   | 1,443     | 4,986,758 | 1,828,920   | 12,620  | 820    |        |         | 89,466   | 1,707   | 35,324,604  |
| 1986 | 112,699   | 30,791,298  | 1,122,960   | 23,256    | 7,980,316 | 318,407     | 318,462 | 4,525  |        |         | 14,307   | 4,277   | 40,690,507  |
| 1987 | 117,794   | 44,116,447  | 6,977,298   | 255,257   | 3,474,105 | 724,585     |         | 1,525  |        |         | 3,398    | 15,224  | 55,685,633  |
| 1988 | 436,973   | 42,200,200  | 12,735,433  | 1,113     | 3,338,528 | 110,968     |         |        |        |         | 41,523   |         | 58,864,739  |
| 1989 | 72,588    | 30,217,439  | 4,915,897   |           | 1,944,053 | 177,129     | 10,980  | 426    | 202    |         | 9,946    | 221     | 37,348,881  |
| 1990 | 212,616   | 14,025,514  | 2,871,792   |           | 1,626,374 | 49,168      |         |        |        |         | 66,068   |         | 18,851,531  |
| 1991 |           | 4,991,531   | 3,374,972   |           | 144,217   | 11,723      |         |        |        |         | 53,528   | 4,867   | 8,580,838   |
| 1992 | 27,665    | 2,419,213   | 790,643     | 4,198     | 1,559,376 | 4,211       | 74,391  | 5,054  | 3,724  | 316     | 89,044   | 16,344  | 4,994,179   |
| 1993 | 1,686     | 1,475,045   | 1,469,116   | 5,934     | 798,887   | 1,235       | 138,519 | 2,244  | 246    | 19      | 23,619   | 14,954  | 3,931,504   |
| 1994 |           | 4,308,147   | 1,481,677   |           | 2,010,674 | 4,663       |         |        |        |         | 49,941   | 172,261 | 8,027,363   |
| 1995 |           | 3,784,763   | 5,117,631   |           | 1,270,160 |             |         |        |        |         | 21,093   | 27,545  | 10,221,192  |
| 1996 | 1,156     | 3,526,276   | 4,812,685   |           | 5,106,961 |             |         |        |        |         | 92,416   | 33,354  | 13,572,848  |
| 1997 | 4,743     | 6,224,155   | 6,914,537   |           | 3,250,774 | 5,445       | 8,653   | 2,478  | 1,849  |         | 22,482   | 67,178  | 16,502,294  |
| 1998 | 209,119   | 4,888,177   | 6,054,531   |           | 2,944,462 |             |         |        |        |         | 212,136  | 140,243 | 14,448,668  |
| 1999 | 42,272    | 1,767,967   | 3,456,558   |           | 455,575   |             |         |        |        |         | 6,755    | 75,785  | 5,804,912   |
| 2000 | 8,191     | 1,617,187   | 588,895     |           | 367,369   |             |         |        |        |         | 30,317   |         | 2,611,960   |
| 2001 | 76,088    | 497,800     | 34,623      |           | 407,835   |             |         |        |        |         | 6,166    |         | 1,022,512   |
| 2002 | 426       | 688,448     |             |           |           |             | 3,125   |        |        |         |          | 54      | 844,673     |
| 2003 | 18,842    | 516,004     | 177,520     |           | 17,349    |             |         |        |        |         |          |         | 729,714     |
| 2004 | 1,743     | 493,518     | 123,472     |           |           |             |         |        |        |         |          |         | 618,733     |
| 2005 |           | 333,703     | 319,595     |           | 130,789   |             |         |        |        |         | 1,874    |         | 785,962     |
| 2006 |           | *           | *           |           |           |             |         |        |        |         |          |         | *           |
| 2007 | 123,379   | 123,380     | 4,090       |           | 46,778    |             |         |        |        |         | 57,442   |         | 355,069     |
| 2008 | *         | *           | *           |           |           |             |         |        |        |         | *        |         | *           |
| 2009 | 41,701    | 14,185      | 3,655       |           | 426,260   |             |         |        |        |         | 334,695  |         | 820,495     |

Table 4–23. Real commercial ex-vessel revenues (2009 \$) for the West Coast purse seine fishery, 1981–2009.

\* Not reported due to data confidentiality requirements (fewer than three vessels).

Blank cells indicate no data exists. Any calculated or derived zeros are due to rounding of summarized data to less than half of the unit shown.

Source: PacFIN, extracted Aug. 24, 2010.

Note: There is no purse seine gear for Washington.

Additional processing info:

Only fish tickets where at least 1 lb of any HMS tuna was landed for the purse seine fishery were used.

Real values are calculated to eliminate the effects of inflation by dividing current nominal values by the current year GDP implicit price deflator, with a base year of 2009.

Landed weights in lbs are multiplied by the prices per pound in each fish ticket line and then divided by the corresponding deflator.

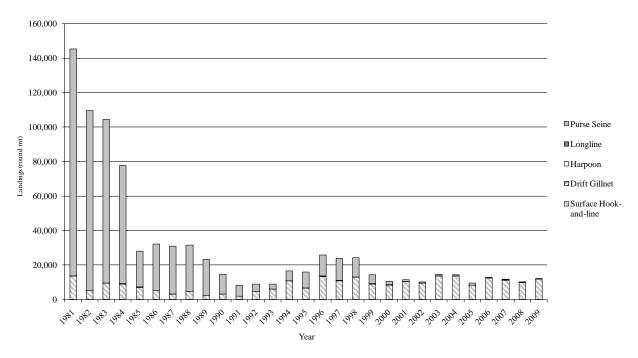



Figure 4–4. West Coast commercial tuna landings by fishery, 1981–2009.

**Interpretation:** Figure 4–4 and Table 4–24 display West Coast commercial tuna landings by fishery over the years 1981–2009 for the surface hook-and-line, drift gillnet, harpoon, longline, and purse seine fisheries, respectively.

**Source and Calculations**: The data were extracted from PacFIN on various dates in July and August 2009. Landings in pounds were converted to round weight in metric tons by multiplying the landed weights by the conversion factors in each fish ticket line and then dividing by 2204.6. Aquaculture fish ticket / fish ticket line information is excluded from the data. Canadian surface hook-and-line fishery data are also excluded.

|      |               | Lar           | dings (rou | und mt)  |             |         |
|------|---------------|---------------|------------|----------|-------------|---------|
|      | Surface       |               |            |          |             |         |
| Year | Hook-and-line | Drift Gillnet | Harpoon    | Longline | Purse Seine | Total   |
| 1981 | 13,507        | 6             | 2          | 26       | 131,620     | 145,161 |
| 1982 | 4,981         | 15            |            | 43       | 104,326     | 109,365 |
| 1983 | 9,325         | 18            |            | 9        | 95,185      | 104,537 |
| 1984 | 8,922         | 14            | <0.5       | 3        | 68,571      | 77,510  |
| 1985 | 7,012         | 7             | <0.5       |          | 20,843      | 27,862  |
| 1986 | 4,982         | 10            | <0.5       |          | 26,891      | 31,883  |
| 1987 | 2,891         | 1             | 1          |          | 27,907      | 30,801  |
| 1988 | 4,629         | 4             | 1          |          | 26,814      | 31,448  |
| 1989 | 2,168         |               | <0.5       |          | 20,784      | 22,952  |
| 1990 | 2,926         |               |            | 1        | 11,584      | 14,511  |
| 1991 | 1,641         |               |            | 2        | 6,562       | 8,205   |
| 1992 | 4,757         | 1             | <0.5       | 1        | 3,956       | 8,715   |
| 1993 | 5,796         | 22            | 1          | 5        | 3,070       | 8,894   |
| 1994 | 10,606        | 78            | <0.5       | 104      | 5,737       | 16,525  |
| 1995 | 6,408         | 61            |            | 61       | 9,100       | 15,630  |
| 1996 | 13,249        | 104           | <0.5       | 71       | 12,382      | 25,806  |
| 1997 | 10,833        | 101           | <0.5       | 89       | 12,783      | 23,806  |
| 1998 | 12,840        | 108           |            | 106      | 10,938      | 23,992  |
| 1999 | 8,818         | 112           |            | 228      | 5,186       | 14,344  |
| 2000 | 8,100         | 69            | <0.5       | 122      | 2,186       | 10,477  |
| 2001 | 10,230        | 67            |            | 95       | 886         | 11,278  |
| 2002 | 9,295         | 18            |            | 14       | 777         | 10,104  |
| 2003 | 13,493        | 30            |            | 31       | 863         | 14,417  |
| 2004 | 13,394        | 19            |            | 33       | 791         | 14,237  |
| 2005 | 8,217         | 14            |            | 17       | 1,006       | 9,254   |
| 2006 | 12,375        | 7             |            | 65       |             | 12,447  |
| 2007 | 11,143        | 5             |            | 18       | 223         | 11,389  |
| 2008 | 9,774         | 2             |            | 26       |             | 9,802   |
| 2009 | 11,576        | 5             |            | ***      | 468         | 12,049  |

 Table 4–24. West Coast commercial tuna landings by fishery, 1981–2009.

\* Not reported due to data confidentiality requirements (fewer than three vessels).

\*\*\* Not produced for 2009, due to no new data which is not confidential.

Blank cells indicate no data exists. Any calculated or derived zeros are due to rounding of summarized data to less than half of the unit shown.

Source: PacFIN, extracted August 2010, various dates.

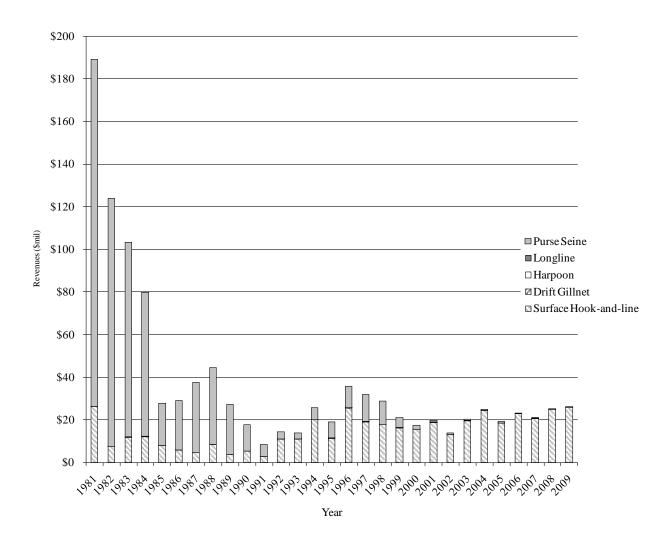



Figure 4–5. West Coast commercial tuna revenues by fishery, 1981–2009.

**Interpretation:** Figure 4–5 and Table 4–25 display West Coast commercial tuna revenues by fishery over the years 1981–2009 for the surface hook-and-line, drift gillnet, harpoon, longline, and purse seine fisheries, respectively.

**Source and Calculations**: The data were extracted from PacFIN on various dates in August 2009. Aquaculture fish ticket / fish ticket line information is excluded from the data. Canadian surface hookand-line fishery data are also excluded.

|      | Revenues (\$) |         |         |          |             |             |  |  |  |  |
|------|---------------|---------|---------|----------|-------------|-------------|--|--|--|--|
|      | Surface       | Drift   |         |          | Purse       |             |  |  |  |  |
| Year | Hook-and-line | Gillnet | Harpoon | Longline | Seine       | Total       |  |  |  |  |
| 1981 | 26,105,721    | 2,611   | 4,337   | 49,477   | 162,899,688 | 189,061,834 |  |  |  |  |
| 1982 | 7,355,282     | 9,784   | 146     | 73,415   | 116,534,837 | 123,973,464 |  |  |  |  |
| 1983 | 11,894,118    | 17,753  |         | 16,549   | 91,439,482  | 103,367,90  |  |  |  |  |
| 1984 | 12,166,930    | 18,682  | 480     | 4,364    | 67,670,051  | 79,860,50   |  |  |  |  |
| 1985 | 7,999,188     | 7,996   | 472     | 740      | 19,758,416  | 27,766,81   |  |  |  |  |
| 1986 | 5,875,077     | 11,747  | 390     |          | 23,136,080  | 29,023,29   |  |  |  |  |
| 1987 | 4,691,790     | 1,710   | 6,226   | 164      | 32,842,638  | 37,542,52   |  |  |  |  |
| 1988 | 8,548,185     | 7,092   | 8,552   |          | 35,899,810  | 44,463,63   |  |  |  |  |
| 1989 | 3,693,992     |         | 2,171   |          | 23,642,990  | 27,339,15   |  |  |  |  |
| 1990 | 5,415,074     |         | 108     | 45       | 12,357,079  | 17,772,30   |  |  |  |  |
| 1991 | 2,760,785     | 1,391   |         | 873      | 5,804,636   | 8,567,68    |  |  |  |  |
| 1992 | 11,080,778    | 2,084   | 1,369   | 1,790    | 3,350,739   | 14,436,76   |  |  |  |  |
| 1993 | 11,036,136    | 23,922  | 7,730   | 10,592   | 2,673,982   | 13,752,36   |  |  |  |  |
| 1994 | 19,936,716    | 92,875  | 2,490   | 104,222  | 5,679,816   | 25,816,11   |  |  |  |  |
| 1995 | 11,360,802    | 52,326  |         | 31,071   | 7,557,190   | 19,001,38   |  |  |  |  |
| 1996 | 25,526,196    | 108,568 | 216     | 16,116   | 10,179,438  | 35,830,53   |  |  |  |  |
| 1997 | 19,108,815    | 80,506  | 200     | 20,355   | 12,634,293  | 31,844,16   |  |  |  |  |
| 1998 | 17,641,854    | 80,279  |         | 27,185   | 10,982,420  | 28,731,73   |  |  |  |  |
| 1999 | 16,254,470    | 102,866 |         | 150,985  | 4,523,535   | 21,031,85   |  |  |  |  |
| 2000 | 15,348,828    | 67,066  | 302     | 38,632   | 2,084,934   | 17,539,76   |  |  |  |  |
| 2001 | 18,771,705    | 74,769  |         | 79,286   | 839,400     | 19,765,16   |  |  |  |  |
| 2002 | 13,175,199    | 21,035  |         | 11,051   | 706,266     | 13,913,55   |  |  |  |  |
| 2003 | 19,637,838    | 13,983  |         | 3,975    | 625,585     | 20,281,38   |  |  |  |  |
| 2004 | 24,326,922    | 24,087  |         | 5,589    | 545,475     | 24,902,07   |  |  |  |  |
| 2005 | 18,508,555    | 22,007  |         | 21,150   | 714,382     | 19,266,09   |  |  |  |  |
| 2006 | 22,833,634    | 5,834   |         | 142,325  |             | 22,981,79   |  |  |  |  |
| 2007 | 20,670,548    | 7,231   |         | 31,293   | 288,014     | 20,997,08   |  |  |  |  |
| 2008 | 24,896,835    | 2,518   |         | 13,921   |             | 24,913,27   |  |  |  |  |
| 2009 | 25,812,937    | 8,009   |         | ***      | 485,801     | 26,306,74   |  |  |  |  |

 Table 4–25. West Coast commercial tuna revenues by fishery, 1981–2009.

\* Not reported due to data confidentiality requirements (fewer than three vessels).

\*\* Not reported do to data confidentiality requirements based on non-PacFIN data sources (mandatory logbooks, permits, etc).

\*\*\* Not produced for 2009, due to no new data which is not confidential.

Blank cells indicate no data exists. Any calculated or derived zeros are due to rounding of

summarized data to less than half of the unit shown.

Source: PacFIN, extracted August 2010 (various dates).

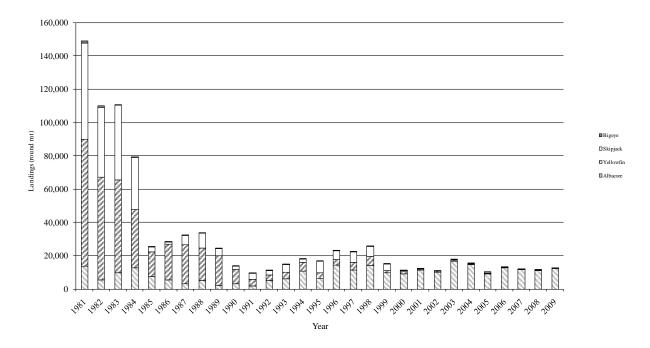



Figure 4–6. Species composition of coastwide commercial tuna landings, 1981–2009.

**Interpretation**: Figure 4–6 shows West Coast HMS commercial tuna landings in round metric tons for all gear types from 1981 through 2009 for the four principal species. The landings of these species, and other tuna species which comprise a smaller part of the catch, are shown in accompanying Table 4-26.

The principal species of tuna targeted by commercial fishers consists of four varieties: albacore, yellowfin, skipjack, and bluefin. The levels of yellowfin and skipjack landings declined precipitously during the 1980s and by 1996 albacore had supplanted yellowfin and skipjack as the most important constituent of commercial landings. By 2000, yellowfin, skipjack, and bluefin landings had all declined to far below their levels in the early 1980s; only albacore landings remained near their long-term average.

<u>Source and Calculations</u>: The data were extracted from PacFIN on August 9, 2010. They represent a portion of West Coast commercial landings by species, displayed in Table 4–4. Landings in pounds were converted to round weight in metric tons by multiplying the landed weights by the conversion factors in each fish ticket line and then dividing by 2204.6. Aquaculture fish ticket / fish ticket line information is excluded from the data.

|      |          | Landings (round mt) |          |        |         |                     |         |  |  |  |  |  |
|------|----------|---------------------|----------|--------|---------|---------------------|---------|--|--|--|--|--|
| Year | Albacore | Yellowfin           | Skipjack | Bigeye | Bluefin | Unspecified<br>Tuna | Total   |  |  |  |  |  |
| 1981 |          |                     |          |        | 868     | 40                  |         |  |  |  |  |  |
|      | 13,712   | 76,091              | 57,869   | 1,168  |         |                     | 149,748 |  |  |  |  |  |
| 1982 | 5,410    | 61,769              | 41,904   | 968    | 2,404   | 51                  | 112,500 |  |  |  |  |  |
| 1983 | 9,578    | 55,741              | 44,995   | 21     | 764     | 55                  | 111,154 |  |  |  |  |  |
| 1984 | 12,654   | 35,063              | 31,251   | 126    | 635     | 1,014               | 80,743  |  |  |  |  |  |
| 1985 | 7,301    | 15,025              | 2,977    | 7      | 3,254   | 468                 | 29,032  |  |  |  |  |  |
| 1986 | 5,243    | 21,517              | 1,361    | 29     | 4,731   | 143                 | 33,024  |  |  |  |  |  |
| 1987 | 3,160    | 23,201              | 5,724    | 50     | 823     | 129                 | 33,087  |  |  |  |  |  |
| 1988 | 4,912    | 19,520              | 8,863    | 6      | 804     | 11                  | 34,116  |  |  |  |  |  |
| 1989 | 2,214    | 17,615              | 4,505    | 1      | 1,019   | 77                  | 25,431  |  |  |  |  |  |
| 1990 | 3,028    | 8,509               | 2,256    | 2      | 925     | 46                  | 14,766  |  |  |  |  |  |
| 1991 | 1,676    | 4,178               | 3,407    | 7      | 104     | 11                  | 9,383   |  |  |  |  |  |
| 1992 | 4,902    | 3,350               | 2,586    | 7      | 1,087   | 10                  | 11,942  |  |  |  |  |  |
| 1993 | 6,166    | 3,795               | 4,539    | 26     | 559     | 16                  | 15,101  |  |  |  |  |  |
| 1994 | 10,751   | 5,056               | 2,111    | 47     | 916     | 33                  | 18,914  |  |  |  |  |  |
| 1995 | 6,530    | 3,038               | 7,037    | 49     | 714     | 1                   | 17,369  |  |  |  |  |  |
| 1996 | 14,173   | 3,347               | 5,455    | 62     | 4,688   | 3                   | 27,728  |  |  |  |  |  |
| 1997 | 11,292   | 4,775               | 6,070    | 82     | 2,251   | 11                  | 24,481  |  |  |  |  |  |
| 1998 | 13,915   | 5,799               | 5,846    | 53     | 1,949   | 12                  | 27,574  |  |  |  |  |  |
| 1999 | 9,770    | 1,353               | 3,759    | 108    | 186     | 12                  | 15,188  |  |  |  |  |  |
| 2000 | 9,074    | 1,159               | 780      | 86     | 313     | 1                   | 11,413  |  |  |  |  |  |
| 2001 | 11,191   | 655                 | 58       | 53     | 196     | 1                   | 12,154  |  |  |  |  |  |
| 2002 | 10,029   | 544                 | 236      | 10     | 11      | 2                   | 10,832  |  |  |  |  |  |
| 2003 | 16,671   | 465                 | 349      | 35     | 36      | <0.5                | 17,556  |  |  |  |  |  |
| 2004 | 14,540   | 488                 | 307      | 22     | 10      | 9                   | 15,376  |  |  |  |  |  |
| 2005 | 9,055    | 285                 | 523      | 10     | 207     | <0.5                | 10,080  |  |  |  |  |  |
| 2006 | 12,786   | 77                  | 48       | 35     | 1       | 1                   | 12,948  |  |  |  |  |  |
| 2007 | 11,586   | 104                 | 5        | 13     | 45      | <0.5                | 11,753  |  |  |  |  |  |
| 2008 | 11,131   | 65                  | 3        | 27     | 1       | 1                   | 11,228  |  |  |  |  |  |
| 2009 | 12,264   | 45                  | 5        | 12     | 415     |                     | 12,741  |  |  |  |  |  |

Table 4–26. Species composition of coastwide commercial tuna landings, 1981–2009.

Source: PacFIN, extracted August 9, 2010.

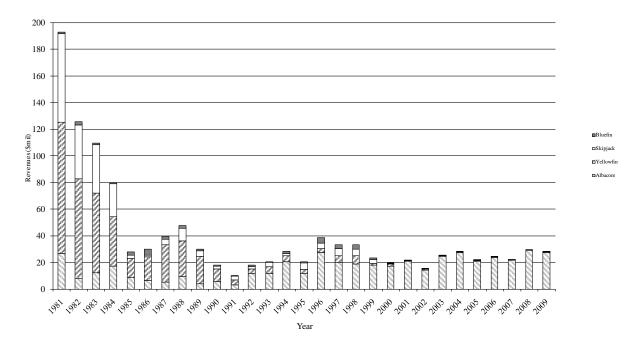



Figure 4–7. Species composition of coastwide commercial tuna revenues, 1981–2009.

**Interpretation**: Figure 4–7 shows West Coast HMS commercial tuna revenues in current dollars from 1981 through 2009 for the four principal species across all gear types. The revenues of these species and other tuna species, which comprise a smaller part of the catch, are shown in accompanying Table 4-27.

The principal species of tuna targeted by commercial fishers consists of four varieties: albacore, yellowfin, skipjack, and bluefin. The levels of yellowfin and skipjack revenues declined precipitously during the 1980s, and by 1992 albacore had supplanted yellowfin and skipjack as the most important component of commercial revenues.

<u>Source and Calculations</u>: The data were extracted from PacFIN on August 9, 2010. They represent a portion of Table 4-5, which tabulates West Coast commercial current dollar revenues by species. Current dollar revenues were computed as the sum total of landed weights in pounds multiplied by the prices per pound in each fish ticket line. Aquaculture fish ticket / fish ticket line information is excluded from the data.

|      |            |            |            | Revenues (\$ | 5)        |             |             |
|------|------------|------------|------------|--------------|-----------|-------------|-------------|
|      |            |            |            |              |           | Unspecified |             |
| Year | Albacore   | Yellowfin  | Skipjack   | Bigeye       | Bluefin   | Tuna        | Total       |
| 1981 | 26,524,145 | 98,722,280 | 66,331,030 | 1,569,755    | 1,239,005 | 72,694      | 194,458,909 |
| 1982 | 8,033,073  | 74,468,306 | 40,507,405 | 1,208,147    | 2,690,102 | 98,923      | 127,005,956 |
| 1983 | 12,242,167 | 59,475,802 | 36,652,119 | 45,946       | 1,062,909 | 95,490      | 109,574,433 |
| 1984 | 17,208,448 | 37,038,204 | 24,790,704 | 174,405      | 904,956   | 2,590,391   | 82,707,108  |
| 1985 | 8,292,769  | 14,690,108 | 2,118,170  | 17,693       | 2,819,048 | 1,028,867   | 28,966,655  |
| 1986 | 6,178,084  | 18,079,443 | 904,609    | 90,227       | 4,636,698 | 198,248     | 30,087,309  |
| 1987 | 5,127,832  | 27,878,667 | 4,426,717  | 176,504      | 2,057,402 | 448,231     | 40,115,353  |
| 1988 | 9,117,601  | 27,030,132 | 9,249,827  | 26,156       | 2,070,411 | 80,548      | 47,574,675  |
| 1989 | 3,785,613  | 20,824,242 | 3,944,894  | 2,415        | 1,271,718 | 127,320     | 29,956,202  |
| 1990 | 5,620,990  | 9,383,584  | 1,898,875  | 8,771        | 1,149,381 | 56,750      | 18,118,351  |
| 1991 | 2,823,937  | 3,996,935  | 2,692,345  | 42,810       | 116,371   | 21,161      | 9,693,559   |
| 1992 | 11,483,392 | 3,677,441  | 1,410,546  | 44,731       | 1,129,626 | 21,228      | 17,766,964  |
| 1993 | 11,697,562 | 4,821,735  | 3,282,778  | 211,513      | 752,369   | 72,678      | 20,838,635  |
| 1994 | 20,188,895 | 4,522,321  | 1,751,209  | 307,147      | 1,674,099 | 55,245      | 28,498,916  |
| 1995 | 11,572,603 | 3,044,670  | 4,752,641  | 258,727      | 1,057,948 | 5,136       | 20,691,725  |
| 1996 | 27,222,294 | 3,230,957  | 3,986,113  | 260,306      | 4,035,455 | 28,296      | 38,763,421  |
| 1997 | 19,924,121 | 4,991,131  | 5,504,526  | 359,780      | 2,773,705 | 21,895      | 33,575,158  |
| 1998 | 18,895,247 | 5,861,959  | 5,213,131  | 271,919      | 2,965,485 | 61,688      | 33,269,429  |
| 1999 | 17,771,262 | 1,468,209  | 2,748,208  | 657,121      | 1,061,233 | 60,572      | 23,766,605  |
| 2000 | 17,188,570 | 1,329,357  | 483,242    | 576,919      | 580,722   | 2,298       | 20,161,108  |
| 2001 | 20,680,501 | 465,558    | 33,633     | 320,855      | 473,557   | 3,069       | 21,977,173  |
| 2002 | 14,256,910 | 588,677    | 128,245    | 87,304       | 43,477    | 6,325       | 15,110,938  |
| 2003 | 24,435,697 | 451,273    | 159,961    | 262,768      | 76,106    | 21          | 25,385,826  |
| 2004 | 27,414,167 | 446,577    | 109,254    | 147,696      | 38,312    | 54,879      | 28,210,885  |
| 2005 | 20,823,045 | 315,699    | 292,193    | 60,141       | 136,847   | 913         | 21,628,838  |
| 2006 | 23,776,441 | 174,912    | 40,350     | 205,677      | 3,790     | 1,895       | 24,203,065  |
| 2007 | 21,633,438 | 149,568    | 4,361      | 94,734       | 58,106    | 46          | 21,940,253  |
| 2008 | 28,853,123 | 125,508    | 3,675      | 205,536      | 3,340     | 3,485       | 29,194,667  |
| 2009 | 27,469,749 | 166,286    | 5,332      | 97,103       | 441,540   |             | 28,180,010  |

 Table 4–27. Species composition of coastwide commercial tuna revenues, 1981–2009.

Source: PacFIN, extracted August 9, 2010.

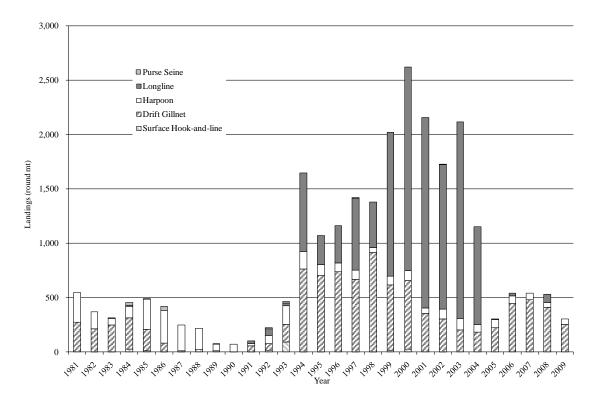



Figure 4–8. West Coast commercial swordfish landings by fishery, 1981–2009.

**Interpretation:** Figure 4–8 and Table 4–28 display West Coast commercial swordfish landings by fishery over the years 1981–2009 for the surface hook-and-line, drift gillnet, harpoon, longline, and purse seine fisheries, respectively.

**Source and Calculations**: The data were extracted from PacFIN on various dates in July and August 2009. Landings in pounds were converted to round weight in metric tons by multiplying the landed weights by the conversion factors in each fish ticket line and then dividing by 2204.6. Aquaculture fish ticket / fish ticket line information is excluded from the data. Canadian surface hook-and-line fishery data are also excluded.

|      |               |         | Landings (ro | ound mt) |       |       |
|------|---------------|---------|--------------|----------|-------|-------|
|      | Surface       | Drift   |              |          | Purse |       |
| Year | Hook-and-line | Gillnet | Harpoon      | Longline | Seine | Total |
| 1981 |               | 270     | 272          | <0.5     |       | 542   |
| 1982 | 4             | 208     | 156          | <0.5     |       | 368   |
| 1983 | 3             | 244     | 58           | <0.5     | 1     | 306   |
| 1984 | 25            | 286     | 105          | 12       | 23    | 451   |
| 1985 | 11            | 197     | 275          | <0.5     | 1     | 484   |
| 1986 | 1             | 78      | 296          |          | 41    | 416   |
| 1987 | 5             | 6       | 237          |          |       | 248   |
| 1988 | 18            | 1       | 199          | <0.5     |       | 218   |
| 1989 | 7             |         | 62           |          | 1     | 70    |
| 1990 | 2             |         | 65           |          |       | 67    |
| 1991 | 2             | 51      | 20           | 27       |       | 100   |
| 1992 | 13            | 60      | 75           | 63       | 10    | 221   |
| 1993 | 90            | 162     | 169          | 27       | 17    | 465   |
| 1994 | 1             | 762     | 157          | 722      |       | 1,642 |
| 1995 | 1             | 701     | 97           | 271      |       | 1,070 |
| 1996 | <0.5          | 734     | 81           | 346      |       | 1,161 |
| 1997 | 1             | 664     | 84           | 663      | 1     | 1,413 |
| 1998 | 4             | 906     | 48           | 418      |       | 1,376 |
| 1999 | 15            | 597     | 81           | 1,325    |       | 2,018 |
| 2000 | 22            | 635     | 90           | 1,873    |       | 2,620 |
| 2001 | <0.5          | 351     | 52           | 1,749    |       | 2,152 |
| 2002 | 2             | 298     | 90           | 1,331    | 1     | 1,722 |
| 2003 |               | 199     | 107          | 1,810    |       | 2,116 |
| 2004 |               | 182     | 69           | 898      |       | 1,149 |
| 2005 |               | 220     | 76           | 1        |       | 297   |
| 2006 |               | 443     | 72           | 25       |       | 540   |
| 2007 |               | 478     | 59           | <0.5     |       | 537   |
| 2008 | <0.5          | 405     | 48           | 77       |       | 530   |
| 2009 | <0.5          | 250     | 49           | ***      |       | 299   |

Table 4–28. West Coast commercial swordfish landings by fishery, 1981–2009.

\*\*\* Not produced for 2009, due to no new data which is not confidential.

Source: PacFIN, extracted August 2010 (various dates).

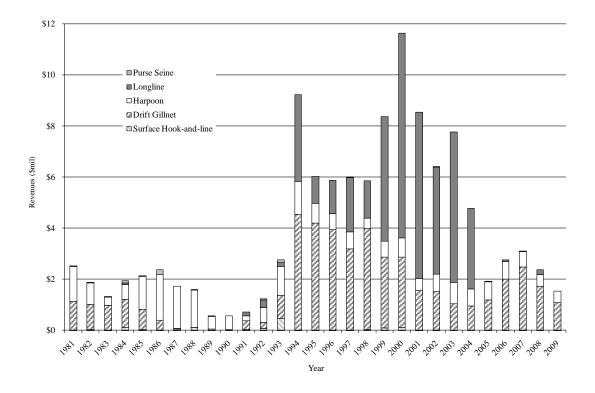



Figure 4–9. West Coast commercial swordfish revenues by fishery, 1981–2009.

**Interpretation:** Figure 4–9 and Table 4–29 display West Coast commercial swordfish revenues by fishery in current dollars over the years 1981–2009 for the surface hook-and-line, drift gillnet, harpoon, longline, and purse seine fisheries, respectively.

<u>Source and Calculations</u>: The data were extracted from PacFIN on various dates in August 2009. Aquaculture fish ticket / fish ticket line information is excluded from the data. Canadian surface hookand-line fishery data are also excluded.

|      |               |           | Revenue   | es (\$)   |         |            |
|------|---------------|-----------|-----------|-----------|---------|------------|
|      | Surface       | Drift     |           |           | Purse   |            |
| Year | Hook-and-line | Gillnet   | Harpoon   | Longline  | Seine   | Total      |
| 1981 |               | 1,110,316 | 1,371,646 | 1,544     |         | 2,483,506  |
| 1982 | 13,219        | 1,000,168 | 839,886   | 306       |         | 1,853,579  |
| 1983 | 7,531         | 958,547   | 318,044   | 506       | 1,796   | 1,286,424  |
| 1984 | 96,217        | 1,096,570 | 583,079   | 62,804    | 87,097  | 1,925,767  |
| 1985 | 30,921        | 793,604   | 1,280,993 | 752       | 7,080   | 2,113,350  |
| 1986 | 6,427         | 377,053   | 1,796,277 |           | 182,606 | 2,362,363  |
| 1987 | 33,310        | 37,173    | 1,647,710 |           |         | 1,718,193  |
| 1988 | 96,331        | 3,324     | 1,477,860 | 1,601     |         | 1,579,116  |
| 1989 | 34,556        |           | 500,435   |           | 6,955   | 541,946    |
| 1990 | 13,332        |           | 539,322   |           |         | 552,654    |
| 1991 | 11,721        | 361,574   | 179,949   | 146,305   |         | 699,549    |
| 1992 | 55,452        | 241,122   | 586,740   | 298,852   | 51,873  | 1,234,039  |
| 1993 | 442,687       | 918,433   | 1,132,762 | 153,383   | 98,722  | 2,745,987  |
| 1994 | 6,797         | 4,536,655 | 1,273,087 | 3,401,896 |         | 9,218,435  |
| 1995 | 3,204         | 4,190,568 | 760,108   | 1,064,427 |         | 6,018,307  |
| 1996 | 2,608         | 3,919,232 | 633,027   | 1,319,868 |         | 5,874,735  |
| 1997 | 4,390         | 3,166,095 | 683,211   | 2,115,438 | 6,666   | 5,975,800  |
| 1998 | 17,122        | 3,967,255 | 402,914   | 1,454,529 |         | 5,841,820  |
| 1999 | 77,899        | 2,785,199 | 608,982   | 4,893,372 |         | 8,365,452  |
| 2000 | 97,814        | 2,750,462 | 750,533   | 8,028,596 |         | 11,627,405 |
| 2001 | 2,037         | 1,541,152 | 468,289   | 6,527,196 |         | 8,538,674  |
| 2002 | 9,996         | 1,499,163 | 678,934   | 4,190,669 | 2,623   | 6,381,385  |
| 2003 |               | 1,032,796 | 839,197   | 5,879,612 |         | 7,751,605  |
| 2004 |               | 944,192   | 670,001   | 3,160,052 |         | 4,774,245  |
| 2005 |               | 1,184,545 | 709,760   | 4,939     |         | 1,899,244  |
| 2006 |               | 1,996,530 | 680,036   | 68,553    |         | 2,745,119  |
| 2007 |               | 2,469,238 | 597,707   | 3,312     |         | 3,070,257  |
| 2008 | 1,200         | 1,708,969 | 458,482   | 195,469   |         | 2,364,120  |
| 2009 | 291           | 1,070,068 | 459,656   | ***       |         | 1,530,015  |

 Table 4–29. West Coast commercial swordfish revenues by fishery, 1981–2009.

\*\*\* Not produced for 2009, due to no new data which is not confidential.

Source: PacFIN, extracted August 2010 (various dates).

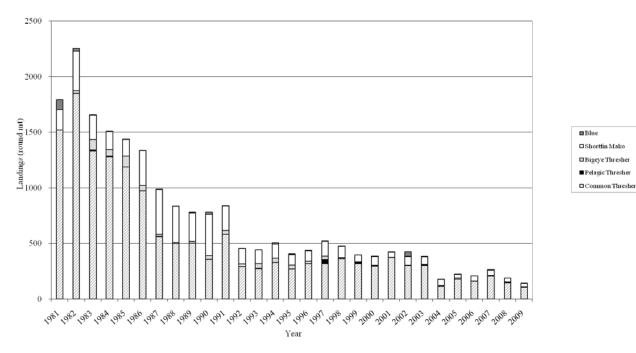



Figure 4–10. Species composition of coastwide commercial shark landings, 1981–2009.

**Interpretation:** Figure 4–10 shows West Coast commercial shark landings in round metric tons for all gear types from 1981 through 2009. The numeric data used to produce the graph are shown below in Table 4–30.

The graph shows a general pattern of decline in landings from a level as high as 2,000 metric tons in the early 1980s down to a level near or below 500 metric tons from 1992 onwards. The decline was primarily driven by a downward trend in common thresher landings, and to a lesser extent by a similar decline in shortfin mako landings. In both 2004 and 2005, total West Coast commercial shark landings were below 250. In a broader sense, the decline in landings reflects a decrease in drift gillnet vessels.

**Source and Calculations**: The data were extracted from PacFIN on August 9, 2010. They represent a portion of Table 4–4, which displays West Coast commercial landings by species. Landings in pounds were converted to round weight in metric tons by multiplying the landed weights by the conversion factors in each fish ticket line and then dividing by 2204.6. Aquaculture fish ticket / fish ticket line information is excluded from the data.

|      |          | Landings (round mt) |          |          |      |       |  |  |  |  |  |  |
|------|----------|---------------------|----------|----------|------|-------|--|--|--|--|--|--|
|      | Common   | Pelagic             | Bigeye   | Shortfin |      |       |  |  |  |  |  |  |
| Year | Thresher | Thresher            | Thresher | Mako     | Blue | Total |  |  |  |  |  |  |
| 1981 | 1521     |                     |          | 182      | 92   | 179   |  |  |  |  |  |  |
| 1982 | 1848     |                     | 28       | 351      | 27   | 225   |  |  |  |  |  |  |
| 1983 | 1331     | 9                   | 96       | 217      | 7    | 166   |  |  |  |  |  |  |
| 1984 | 1279     | 9                   | 57       | 160      | 2    | 150   |  |  |  |  |  |  |
| 1985 | 1190     | <0.5                | 95       | 149      | 1    | 143   |  |  |  |  |  |  |
| 1986 | 974      | <0.5                | 48       | 312      | 2    | 133   |  |  |  |  |  |  |
| 1987 | 562      | 2                   | 20       | 403      | 2    | 98    |  |  |  |  |  |  |
| 1988 | 500      | 1                   | 9        | 322      | 3    | 83    |  |  |  |  |  |  |
| 1989 | 504      | <0.5                | 17       | 255      | 6    | 78    |  |  |  |  |  |  |
| 1990 | 357      | 1                   | 31       | 373      | 20   | 78    |  |  |  |  |  |  |
| 1991 | 584      |                     | 32       | 219      | 1    | 83    |  |  |  |  |  |  |
| 1992 | 292      | <0.5                | 22       | 142      | 1    | 45    |  |  |  |  |  |  |
| 1993 | 275      | 1                   | 44       | 122      | <0.5 | 44    |  |  |  |  |  |  |
| 1994 | 330      | <0.5                | 37       | 128      | 12   | 50    |  |  |  |  |  |  |
| 1995 | 270      | 5                   | 31       | 95       | 5    | 4(    |  |  |  |  |  |  |
| 1996 | 319      | 1                   | 20       | 96       | 1    | 43    |  |  |  |  |  |  |
| 1997 | 320      | 35                  | 32       | 132      | 1    | 52    |  |  |  |  |  |  |
| 1998 | 361      | 2                   | 11       | 100      | 3    | 47    |  |  |  |  |  |  |
| 1999 | 320      | 10                  | 5        | 63       | <0.5 | 39    |  |  |  |  |  |  |
| 2000 | 296      | 3                   | 5        | 80       | 1    | 38    |  |  |  |  |  |  |
| 2001 | 373      | 2                   | 2        | 46       | 2    | 42    |  |  |  |  |  |  |
| 2002 | 301      | 2                   |          | 82       | 41   | 42    |  |  |  |  |  |  |
| 2003 | 301      | 4                   | 6        | 70       | 1    | 38    |  |  |  |  |  |  |
| 2004 | 115      | 2                   | 5        | 54       | 1    | 17    |  |  |  |  |  |  |
| 2005 | 179      | <0.5                | 10       | 33       | 1    | 22    |  |  |  |  |  |  |
| 2006 | 160      | <0.5                | 4        | 46       | <0.5 | 21    |  |  |  |  |  |  |
| 2007 | 204      | 2                   | 5        | 45       | 10   | 26    |  |  |  |  |  |  |
| 2008 | 147      | <0.5                | 6        | 35       | <0.5 | 18    |  |  |  |  |  |  |
| 2009 | 105      | <0.5                | 7        | 29       | 1    | 14    |  |  |  |  |  |  |

 Table 4–30.
 Species composition of coastwide commercial shark landings, 1981–2009.

Source: PacFIN, extracted August 9, 2010.

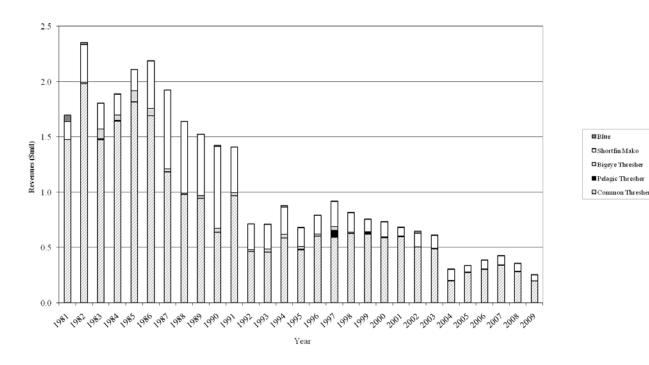



Figure 4–11. Species composition of coastwide commercial shark revenues, 1981–2009.

**Interpretation**: Figure 4–11 shows West Coast commercial shark revenues in current dollars by species for all gear types from 1981 through 2009. The numeric data used to produce the graph are shown in Table 4–31.

The graph shows a long-term downward trend in commercial shark revenues from levels approaching \$2.5 million in the early 1980s to a level below \$500 thousand after 2004. The decline was primarily driven by a downward trend in common thresher revenue, and to a lesser extent by a similar decline in shortfin mako revenue. A key factor underlying the decline in revenues is a drop in the number of drift gillnet vessels.

<u>Source and Calculations</u>: The data were extracted from PacFIN on August 9, 2010. They represent a portion of the Table 4–5, which displays West Coast commercial current dollar revenues by species. Current dollar revenues were computed as the sum total of landed weights in pounds multiplied by the prices per pound in each fish ticket line. Aquaculture fish ticket / fish ticket line information is excluded from the data.

|      | Revenues (\$)           Common         Pelagic         Bigeye         Shortfin |          |          |          |        |           |  |  |
|------|--------------------------------------------------------------------------------|----------|----------|----------|--------|-----------|--|--|
|      | Common                                                                         | Pelagic  | Bigeye   | Shortfin |        |           |  |  |
| Year | Thresher                                                                       | Thresher | Thresher | Mako     | Blue   | Total     |  |  |
| 1981 | 1,475,634                                                                      |          |          | 162,347  | 59,064 | 1,697,045 |  |  |
| 1982 | 1,980,592                                                                      |          | 15,168   | 339,209  | 18,826 | 2,353,795 |  |  |
| 1983 | 1,474,213                                                                      | 8,449    | 91,455   | 229,826  | 4,645  | 1,808,588 |  |  |
| 1984 | 1,642,178                                                                      | 7,723    | 47,119   | 189,794  | 2,470  | 1,889,284 |  |  |
| 1985 | 1,817,135                                                                      | 716      | 96,433   | 192,917  | 2,132  | 2,109,333 |  |  |
| 1986 | 1,690,791                                                                      | 194      | 66,647   | 428,259  | 1,320  | 2,187,211 |  |  |
| 1987 | 1,184,091                                                                      | 1,840    | 22,123   | 715,138  | 1,853  | 1,925,045 |  |  |
| 1988 | 979,905                                                                        | 821      | 9,764    | 649,799  | 2,275  | 1,642,564 |  |  |
| 1989 | 944,161                                                                        | 149      | 24,711   | 552,576  | 3,465  | 1,525,062 |  |  |
| 1990 | 638,630                                                                        | 1,682    | 34,628   | 739,193  | 10,303 | 1,424,436 |  |  |
| 1991 | 968,877                                                                        |          | 25,179   | 415,168  | 894    | 1,410,118 |  |  |
| 1992 | 464,018                                                                        | 602      | 14,629   | 231,063  | 1,816  | 712,128   |  |  |
| 1993 | 458,513                                                                        | 462      | 28,190   | 221,401  | 622    | 709,188   |  |  |
| 1994 | 584,318                                                                        | 42       | 33,478   | 247,088  | 16,057 | 880,983   |  |  |
| 1995 | 477,901                                                                        | 8,777    | 24,896   | 165,215  | 2,796  | 679,585   |  |  |
| 1996 | 603,006                                                                        | 1,557    | 17,745   | 167,111  | 587    | 790,006   |  |  |
| 1997 | 591,268                                                                        | 62,496   | 34,768   | 227,426  | 327    | 916,285   |  |  |
| 1998 | 625,489                                                                        | 2,584    | 9,428    | 176,313  | 5,996  | 819,810   |  |  |
| 1999 | 617,691                                                                        | 18,424   | 5,876    | 111,119  | 73     | 753,183   |  |  |
| 2000 | 589,035                                                                        | 2,738    | 4,636    | 133,621  | 720    | 730,750   |  |  |
| 2001 | 595,548                                                                        | 2,767    | 8,428    | 75,799   | 1,294  | 683,836   |  |  |
| 2002 | 503,487                                                                        | 1,946    |          | 124,521  | 18,510 | 648,464   |  |  |
| 2003 | 487,796                                                                        | 2,814    | 3,779    | 115,728  | 390    | 610,507   |  |  |
| 2004 | 197,188                                                                        | 2,500    | 4,060    | 98,827   | 489    | 303,064   |  |  |
| 2005 | 271,767                                                                        | 588      | 6,234    | 57,788   | 426    | 336,803   |  |  |
| 2006 | 301,669                                                                        | 271      | 4,509    | 79,586   | 309    | 386,344   |  |  |
| 2007 | 337,770                                                                        | 2,903    | 4,334    | 78,569   | 1,984  | 425,560   |  |  |
| 2008 | 280,885                                                                        | 434      | 5,459    | 67,255   | 177    | 354,210   |  |  |
| 2009 | 195,492                                                                        | 72       | 5,453    | 52,428   | 2,361  | 255,806   |  |  |

 Table 4–31. Species composition of coastwide commercial shark revenues, 1981–2009.

Source: PacFIN, extracted August 9, 2010.

|      |          |             |           |            |        |            | Coastal  |        |       |       |
|------|----------|-------------|-----------|------------|--------|------------|----------|--------|-------|-------|
| Year | Albacore | Other Tunas | Swordfish | HMS Sharks | Dorado | Groundfish | Pelagics | Salmon | Other | Total |
| 1981 | 9,113    | 14          |           | <0.5       | <0.5   | 1          | 2        | 3      | 2     | 9,135 |
| 1982 | 3,859    | 3           | 4         | 2          | 1      | 4          | <0.5     | 2      | <0.5  | 3,875 |
| 1983 | 7,270    | 16          | 3         | 1          | <0.5   | 20         | 34       | 4      | 1     | 7,349 |
| 1984 | 8,109    | 13          | 25        | 5          | <0.5   | 5          | 2        | <0.5   | 4     | 8,163 |
| 1985 | 6,147    | 2           | 11        | 4          | <0.5   | 4          | <0.5     | 2      | 1     | 6,171 |
| 1986 | 3,019    | 2           | 1         | <0.5       |        | 20         | <0.5     | 2      | <0.5  | 3,044 |
| 1987 | 1,324    | <0.5        | 5         | 2          |        | 2          | 1        | 1      | <0.5  | 1,335 |
| 1988 | 931      | <0.5        | 17        | 2          |        | <0.5       |          | <0.5   | 1     | 951   |
| 1989 | 823      | 1           | 7         | 8          | <0.5   | 10         | <0.5     | 2      | 1     | 852   |
| 1990 | 758      | <0.5        | 2         | <0.5       | <0.5   | 3          | <0.5     | <0.5   | 2     | 765   |
| 1991 | 642      | <0.5        | 2         | 1          |        | <0.5       |          |        | 1     | 646   |
| 1992 | 1,184    | <0.5        | 13        | 2          | <0.5   | 6          |          | <0.5   | 2     | 1,207 |
| 1993 | 1,461    | 18          | 89        | 5          | 9      | 3          |          |        | 1     | 1,586 |
| 1994 | 3,055    | <0.5        | 1         | <0.5       | <0.5   | 1          |          | <0.5   | <0.5  | 3,057 |
| 1995 | 777      | <0.5        | <0.5      | <0.5       |        | <0.5       | <0.5     | <0.5   | 3     | 780   |
| 1996 | 5,038    | 42          | <0.5      | <0.5       |        | <0.5       |          | <0.5   | 2     | 5,082 |
| 1997 | 3,288    | 7           | 1         | 1          | <0.5   | 5          | <0.5     | 3      | 2     | 3,307 |
| 1998 | 2,232    | 116         | 4         | 3          | <0.5   | 1          | <0.5     | 1      |       |       |
| 1999 | 5,339    | 6           | 15        | 1          | <0.5   | 1          | <0.5     | <0.5   | 5     | 5,367 |
| 2000 | 1,798    | 2           | 22        | <0.5       | <0.5   | 1          | <0.5     | 1      | 2     | 1,826 |
| 2001 | 2,796    | 8           | <0.5      | 1          | <0.5   | 2          | <0.5     |        |       | ,     |
| 2002 | 2,659    | 2           | 2         | <0.5       |        | <0.5       | <0.5     | -      |       | ,     |
| 2003 | 1,696    | 3           |           | <0.5       | <0.5   | 1          | <0.5     | 2      | 3     | 1,705 |
| 2004 | 1,336    | 1           |           | <0.5       | <0.5   | <0.5       | <0.5     | 2      | 2     | 1,341 |
| 2005 | 455      | <0.5        |           |            |        | 1          |          | <0.5   |       | 457   |
| 2006 | 201      | 1           |           | <0.5       | <0.5   | <0.5       | <0.5     | <0.5   | <0.5  | 202   |
| 2007 | 772      | <0.5        |           |            | <0.5   | <0.5       | <0.5     | <0.5   | <0.5  | 772   |
| 2008 | 376      | 1           |           |            | <0.5   | <0.5       | <0.5     |        | 1     | 378   |
| 2009 | 346      | 7           | <0.5      | <0.5       | <0.5   |            | <0.5     |        | 1     | 354   |

 Table 4–32.
 Commercial landings (round mt) of the albacore surface hook-and-line (troll and baitboat)

 fishery in California, with Canadian vessels excluded, 1981–2009.

Source: PacFIN, extracted Aug. 25, 2010.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line (troll and baitboat) fishery were used.

Landings in lbs are converted to round weight in mt by multiplying the landed weights by the conversion factors in each fish ticket line and then dividing by 2204.6.

Canadian vessels were excluded by outer joining the fish ticket tables with the state vessel table and checking the "idtype."

|      |          |             |           |            |        |            | Coastal  |        |       |       |
|------|----------|-------------|-----------|------------|--------|------------|----------|--------|-------|-------|
| Year | Albacore | Other Tunas | Swordfish | HMS Sharks | Dorado | Groundfish | Pelagics | Salmon | Other | Total |
| 1981 | 9,113    | 14          |           | <0.5       | <0.5   | 1          | 2        | 3      | 2     | 9,135 |
| 1982 | 3,859    | 3           | 4         | 2          | 1      | 4          | <0.5     | 2      | <0.5  | 3,875 |
| 1983 | 7,270    | 16          | 3         | 1          | <0.5   | 20         | 34       | 4      | 1     | 7,349 |
| 1984 | 8,109    | 13          | 25        | 5          | <0.5   | 5          | 2        | <0.5   | 4     | 8,163 |
| 1985 | 6,147    | 2           | 11        | 4          | <0.5   | 4          | <0.5     | 2      | 1     | 6,171 |
| 1986 | 3,019    | 2           | 1         | <0.5       |        | 20         | <0.5     | 2      | <0.5  | 3,044 |
| 1987 | 1,324    | <0.5        | 5         | 2          |        | 2          | 1        | 1      | <0.5  | 1,335 |
| 1988 | 931      | <0.5        | 17        | 2          |        | <0.5       |          | <0.5   | 1     | 951   |
| 1989 | 823      | 1           | 7         | 8          | <0.5   | 10         | <0.5     | 2      | 1     | 852   |
| 1990 | 758      | <0.5        | 2         | <0.5       | <0.5   | 3          | <0.5     | <0.5   | 2     | 765   |
| 1991 | 642      | <0.5        | 2         | 1          |        | <0.5       |          |        | 1     | 646   |
| 1992 | 1,184    | <0.5        | 13        | 2          | <0.5   | 6          |          | <0.5   | 2     | 1,207 |
| 1993 | 1,461    | 18          | 89        | 5          | 9      | 3          |          |        | 1     | 1,586 |
| 1994 | 3,055    | <0.5        | 1         | <0.5       | <0.5   | 1          |          | <0.5   | <0.5  | 3,057 |
| 1995 | 777      | <0.5        | <0.5      | <0.5       |        | <0.5       | <0.5     | <0.5   | 3     | 780   |
| 1996 | 5,047    | 42          | <0.5      | <0.5       |        | <0.5       |          | <0.5   | 2     | 5,091 |
| 1997 | 3,290    | 7           | 1         | 1          | <0.5   | 5          | <0.5     | 3      |       | 0,000 |
| 1998 | 2,232    | 116         | 4         | 3          | <0.5   | 1          | <0.5     | 1      | 2     | 2,359 |
| 1999 | 5,360    | 6           | 15        | 1          | <0.5   | 1          | <0.5     | <0.5   | 5     | 5,388 |
| 2000 | 1,798    | 2           | 22        | <0.5       | <0.5   | 1          | <0.5     | 1      | 2     | 1,826 |
| 2001 | 2,796    | 8           | <0.5      | 1          | <0.5   | 2          | <0.5     | 3      |       | ,     |
| 2002 | 2,659    | 2           | 2         | <0.5       | <0.5   | <0.5       | <0.5     | 3      | 3     | 2,669 |
| 2003 | 1,696    | 3           |           | <0.5       | <0.5   | 1          | <0.5     | 2      | 3     | ,     |
| 2004 | 1,336    | 1           |           | <0.5       | <0.5   | <0.5       | <0.5     | 2      | 2     | 1,341 |
| 2005 | 455      | <0.5        |           |            |        | 1          |          | <0.5   |       | 457   |
| 2006 | 201      | 1           |           | <0.5       | <0.5   | <0.5       | <0.5     | <0.5   | <0.5  | 202   |
| 2007 | 772      | <0.5        |           |            | <0.5   | <0.5       | <0.5     | <0.5   | <0.5  | 772   |
| 2008 | 376      | 1           |           |            | <0.5   | <0.5       | <0.5     |        | 1     | 378   |
| 2009 | 346      | 7           | <0.5      | <0.5       | <0.5   |            | <0.5     |        | 1     | 354   |

Table 4–33. Commercial landings (round mt) of the albacore surface hook-and-line (troll and baitboat) fishery in California, 1981–2009.

Source: PacFIN, extracted Aug. 26, 2010.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line (troll and baitboat) fishery were used.

Landings in lbs are converted to round weight in mt by multiplying the landed weights by the conversion factors in each fish ticket line and then dividing by 2204.6.

|      |          |             |           |                   |        |            | Coastal  |        |       |       |
|------|----------|-------------|-----------|-------------------|--------|------------|----------|--------|-------|-------|
| Year | Albacore | Other Tunas | Swordfish | <b>HMS Sharks</b> | Dorado | Groundfish | Pelagics | Salmon | Other | Total |
| 1981 | 3,505    |             |           |                   |        | 1          |          | 25     | <0.5  | 3,531 |
| 1982 | 853      | <0.5        |           |                   |        | <0.5       |          | 1      | <0.5  | 854   |
| 1983 | 1,509    | <0.5        |           |                   |        | 3          | <0.5     | 5      | <0.5  | 1,517 |
| 1984 | 733      | <0.5        |           |                   |        | <0.5       |          | 1      | <0.5  | 734   |
| 1985 | 692      |             |           |                   |        | <0.5       |          | <0.5   | <0.5  | 692   |
| 1986 | 1,116    | <0.5        |           |                   |        | <0.5       |          | 1      |       | 1,117 |
| 1987 | 1,038    |             |           |                   |        |            |          | 1      |       | 1,038 |
| 1988 | 1,794    |             |           |                   |        | <0.5       |          | 2      | <0.5  | 1,796 |
| 1989 | 490      |             |           |                   |        | <0.5       |          | <0.5   |       | 490   |
| 1990 | 943      |             |           |                   |        | <0.5       | <0.5     | 1      |       | 944   |
| 1991 | 571      |             |           |                   |        |            |          | 1      | <0.5  | 572   |
| 1992 | 1,719    |             |           | <0.5              |        | <0.5       |          | 1      |       | 1,720 |
| 1993 | 2,147    |             |           |                   |        | 1          |          | 3      |       | 2,151 |
| 1994 | 2,131    |             |           | <0.5              |        |            |          | <0.5   | <0.5  | 2,131 |
| 1995 | 2,283    | 1           |           |                   | <0.5   | <0.5       |          | 6      |       | 2,290 |
| 1996 | 3,595    | <0.5        |           |                   |        | <0.5       |          | 10     |       | 3,606 |
| 1997 | 3,867    | <0.5        |           |                   | <0.5   | 1          |          | 9      |       | 3,877 |
| 1998 | 4,292    |             |           | <0.5              |        | 1          |          | 4      | <0.5  | 4,296 |
| 1999 | 1,632    | 6           |           | <0.5              |        | <0.5       |          | 2      |       | 1,640 |
| 2000 | 3,282    | <0.5        |           | <0.5              |        | <0.5       |          | 2      |       | 3,284 |
| 2001 | 3,572    | <0.5        |           | <0.5              |        | <0.5       |          | 6      |       | 3,579 |
| 2002 | 1,924    |             |           |                   |        |            |          | 3      |       | 1,927 |
| 2003 | 3,807    | <0.5        |           |                   |        |            |          | 1      |       | 3,809 |
| 2004 | 4,632    | <0.5        |           | <0.5              |        | <0.5       | <0.5     | 2      |       | 4,635 |
| 2005 | 3,258    |             |           | <0.5              |        | <0.5       |          | 1      |       | 3,260 |
| 2006 | 3,680    | <0.5        |           | <0.5              |        | <0.5       | <0.5     |        | 1     | 3,681 |
| 2007 | 4,469    |             |           |                   | <0.5   | <0.5       | <0.5     | <0.5   | 1     | 4,470 |
| 2008 | 3,196    | 5           | <0.5      |                   | <0.5   | <0.5       |          |        | 1     | 3,202 |
| 2009 | 4,416    | <0.5        |           | <0.5              |        | <0.5       |          | <0.5   | 1     | 4,417 |

 Table 4–34.
 Commercial landings (round mt) of the albacore surface hook-and-line (troll and baitboat)

 fishery in Oregon, with Canadian vessels excluded, 1981–2009.

Source: PacFIN, extracted Aug. 25, 2010.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line (troll and baitboat) fishery were used.

Landings in lbs are converted to round weight in mt by multiplying the landed weights by the conversion factors in each fish ticket line and then dividing by 2204.6.

Canadian vessels were excluded by outer joining the fish ticket tables with the state vessel table and checking the "idtype."

|      |          |                    |           |                   |        |            | Coastal  |        |       |       |
|------|----------|--------------------|-----------|-------------------|--------|------------|----------|--------|-------|-------|
| Year | Albacore | <b>Other Tunas</b> | Swordfish | <b>HMS Sharks</b> | Dorado | Groundfish | Pelagics | Salmon | Other | Total |
| 1981 | 3,505    |                    |           |                   |        | 1          |          | 25     | <0.5  | 3,531 |
| 1982 | 863      | <0.5               |           |                   |        | <0.5       |          | 1      | 1     | 865   |
| 1983 | 1,540    | <0.5               |           |                   |        | 3          | <0.5     | 5      | 1     | 1,549 |
| 1984 | 736      | <0.5               |           |                   |        | <0.5       |          | 1      | <0.5  | 737   |
| 1985 | 692      |                    |           |                   |        | <0.5       |          | <0.5   | <0.5  | 692   |
| 1986 | 1,116    | <0.5               |           |                   |        | <0.5       |          | 1      |       | 1,117 |
| 1987 | 1,038    |                    |           |                   |        |            |          | 1      |       | 1,038 |
| 1988 | 1,795    |                    |           |                   |        | <0.5       |          | 2      | 1010  | 1,797 |
| 1989 | 490      |                    |           |                   |        | <0.5       |          | <0.5   |       | 490   |
| 1990 | 943      |                    |           |                   |        | <0.5       | <0.5     | 1      |       | 944   |
| 1991 | 571      |                    |           |                   |        |            |          | 1      | <0.5  | 572   |
| 1992 | 1,767    |                    |           | <0.5              |        | <0.5       |          | 1      |       | 1,768 |
| 1993 | 2,157    |                    |           |                   |        | 1          |          | 3      |       | 2,160 |
| 1994 | 2,131    |                    |           | <0.5              |        |            |          | <0.5   | <0.5  | 2,131 |
| 1995 | 2,283    | 1                  |           |                   | <0.5   | <0.5       |          | 6      |       | 2,290 |
| 1996 | 4,059    | <0.5               |           |                   |        | <0.5       |          | 10     |       | 4,069 |
| 1997 | 4,158    | <0.5               |           |                   | <0.5   | 1          |          | 9      |       | 4,169 |
| 1998 | 4,810    |                    |           | <0.5              |        | 1          |          | 4      |       | 4,814 |
| 1999 | 2,065    | 6                  |           | <0.5              |        | <0.5       |          | 2      |       | 2,073 |
| 2000 | 3,972    | <0.5               |           | <0.5              |        | <0.5       |          | 2      |       | 3,974 |
| 2001 | 4,064    | <0.5               |           | <0.5              |        | <0.5       |          | 6      |       | 4,070 |
| 2002 | 1,978    |                    |           |                   |        |            |          | 3      |       | 1,982 |
| 2003 | 4,118    | <0.5               |           |                   |        |            |          | 1      |       | 4,120 |
| 2004 | 4,878    | <0.5               |           | <0.5              |        | <0.5       |          | 2      |       | 4,880 |
| 2005 | 3,668    |                    |           | <0.5              |        | <0.5       |          | 1      |       | 3,670 |
| 2006 | 3,864    | <0.5               |           | <0.5              |        | <0.5       | <0.5     |        | <0.5  | 3,864 |
| 2007 | 4,748    |                    |           |                   | <0.5   |            |          | <0.5   |       | .,    |
| 2008 | 4,026    | 5                  | <0.5      |                   | <0.5   |            |          |        | 2     | .,    |
| 2009 | 4,574    | <0.5               |           | <0.5              |        | <0.5       |          | <0.5   |       | 4,575 |

Table 4–35. Commercial landings (round mt) of the albacore surface hook-and-line (troll and baitboat) fishery in Oregon, 1981–2009.

Source: PacFIN, extracted Aug. 26, 2010.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line (troll and baitboat) fishery were used.

Landings in lbs are converted to round weight in mt by multiplying the landed weights by the conversion factors in each fish ticket line and then dividing by 2204.6.

|      |          |             |           |            |        |            | Coastal  |        |       |       |
|------|----------|-------------|-----------|------------|--------|------------|----------|--------|-------|-------|
| Year | Albacore | Other Tunas | Swordfish | HMS Sharks | Dorado | Groundfish | Pelagics | Salmon | Other | Total |
| 1981 | 875      |             |           |            | N.A.   | 1          |          | 9      | <0.5  | 885   |
| 1982 | 266      |             |           |            | N.A.   |            |          |        |       | 266   |
| 1983 | 530      |             |           |            | N.A.   | 1          |          | 4      |       | 535   |
| 1984 | 67       |             |           |            | N.A.   |            |          |        |       | 67    |
| 1985 | 172      |             |           |            | N.A.   |            |          |        |       | 172   |
| 1986 | 845      |             |           |            | N.A.   |            |          |        |       | 845   |
| 1987 | 529      |             |           |            | N.A.   |            |          |        | <0.5  | 529   |
| 1988 | 1,904    |             | 1         |            | N.A.   | <0.5       | <0.5     | <0.5   | 1     | 1,906 |
| 1989 | 855      |             |           |            | N.A.   | <0.5       |          |        |       | 855   |
| 1990 | 1,225    |             |           |            | N.A.   |            |          |        |       | 1,225 |
| 1991 | 428      | <0.5        |           |            | N.A.   | <0.5       |          | <0.5   |       | 428   |
| 1992 | 1,852    | <0.5        |           |            | N.A.   | <0.5       |          |        | 1     | 1,853 |
| 1993 | 2,171    |             | 1         | <0.5       | N.A.   | <0.5       |          | <0.5   | <0.5  | 2,172 |
| 1994 | 5,420    |             |           |            | N.A.   |            |          |        |       | 5,420 |
| 1995 | 3,347    |             | <0.5      |            | N.A.   |            |          | 1      | <0.5  | 3,348 |
| 1996 | 4,573    |             |           |            | N.A.   |            |          |        |       | 4,573 |
| 1997 | 3,670    |             |           |            | N.A.   | <0.5       |          |        |       | 3,670 |
| 1998 | 6,201    |             |           |            | N.A.   |            |          |        |       | 6,201 |
| 1999 | 1,822    | 12          |           |            | N.A.   |            |          |        | <0.5  | 1,834 |
| 2000 | 3,017    |             |           |            | N.A.   |            |          |        |       | 3,017 |
| 2001 | 3,852    | 1           |           |            | N.A.   | 1          |          | <0.5   |       | 3,853 |
| 2002 | 4,710    |             |           |            | N.A.   | <0.5       |          | 1      | 1     | 4,712 |
| 2003 | 7,986    |             |           |            | N.A.   |            |          |        |       | 7,986 |
| 2004 | 7,425    |             |           |            | N.A.   |            |          |        | <0.5  | 7,425 |
| 2005 | 4,504    |             |           |            | N.A.   |            |          | 1      | <0.5  | 4,505 |
| 2006 | 8,493    |             |           |            | N.A.   |            |          |        |       | 8,493 |
| 2007 | 5,902    |             |           |            | N.A.   |            |          | <0.5   | 1     | 5,903 |
| 2008 | 6,197    |             |           |            | N.A.   | <0.5       |          | <0.5   |       | 6,197 |
| 2009 | 6,807    |             |           |            | N.A.   |            |          | 1      |       | 6,808 |

 Table 4–36.
 Commercial landings (round mt) of the albacore surface hook-and-line (troll and baitboat)

 fishery in Washington, with Canadian vessels excluded, 1981–2009.

Blank cells indicate no data exists. Any calculated or derived zeros are due to rounding of summarized data to less than half of the unit shown.

Source: PacFIN, extracted Aug. 25, 2010.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line (troll and baitboat) fishery were used.

Landings in lbs are converted to round weight in mt by multiplying the landed weights by the conversion factors in each fish ticket line and then dividing by 2204.6.

Canadian vessels were excluded by outer joining the fish ticket tables with the state vessel table and checking the "idtype."

|      |          |             |           |            |        |            | Coastal  |        |       |        |
|------|----------|-------------|-----------|------------|--------|------------|----------|--------|-------|--------|
| Year | Albacore | Other Tunas | Swordfish | HMS Sharks | Dorado | Groundfish | Pelagics | Salmon | Other | Total  |
| 1981 | 875      |             |           |            | N.A.   | 1          |          | 9      | <0.5  | 885    |
| 1982 | 266      |             |           |            | N.A.   |            |          |        |       | 266    |
| 1983 | 530      |             |           |            | N.A.   | 1          |          | 4      |       | 535    |
| 1984 | 67       |             |           |            | N.A.   |            |          |        |       | 67     |
| 1985 | 172      |             |           |            | N.A.   |            |          |        |       | 172    |
| 1986 | 845      |             |           |            | N.A.   |            |          |        |       | 845    |
| 1987 | 529      |             |           |            | N.A.   |            |          |        | <0.5  | 529    |
| 1988 | 1,904    |             | 1         |            | N.A.   | <0.5       | <0.5     | <0.5   | 1     | 1,906  |
| 1989 | 855      |             |           |            | N.A.   | <0.5       |          |        |       | 855    |
| 1990 | 1,225    |             |           |            | N.A.   |            |          |        |       | 1,225  |
| 1991 | 428      | <0.5        |           |            | N.A.   | <0.5       |          | <0.5   |       | 428    |
| 1992 | 1,864    | <0.5        |           |            | N.A.   | <0.5       |          |        | <0.5  | 1,864  |
| 1993 | 2,183    |             | 1         | <0.5       | N.A.   | <0.5       |          | <0.5   | <0.5  | 2,184  |
| 1994 | 5,443    |             |           |            | N.A.   |            |          |        |       | 5,443  |
| 1995 | 3,414    |             | <0.5      |            | N.A.   |            |          | 1      | <0.5  | 3,415  |
| 1996 | 4,969    |             |           |            | N.A.   |            |          |        |       | 4,969  |
| 1997 | 3,775    |             |           |            | N.A.   | <0.5       |          |        |       | 3,775  |
| 1998 | 6,644    |             |           |            | N.A.   |            |          |        |       | 6,644  |
| 1999 | 2,081    | 12          |           |            | N.A.   |            |          |        | <0.5  | 2,093  |
| 2000 | 3,216    |             |           |            | N.A.   |            |          |        |       | 3,216  |
| 2001 | 4,156    | 1           |           |            | N.A.   | 1          |          | <0.5   |       | 4,157  |
| 2002 | 5,358    |             |           |            | N.A.   | <0.5       |          | 1      | <0.5  | 5,359  |
| 2003 | 10,793   |             |           |            | N.A.   |            |          | <0.5   |       | 10,793 |
| 2004 | 8,310    |             |           |            | N.A.   |            |          |        | <0.5  | 8,310  |
| 2005 | 4,904    |             |           |            | N.A.   |            |          | 1      | <0.5  | 4,905  |
| 2006 | 8,707    |             |           |            | N.A.   |            |          |        |       | 8,707  |
| 2007 | 5,980    |             |           |            | N.A.   |            |          | <0.5   | 1     | 5,981  |
| 2008 | 6,725    |             |           |            | N.A.   | <0.5       |          | <0.5   |       | 6,726  |
| 2009 | 7,299    |             |           |            | N.A.   |            |          | 1      |       | 7,300  |

Table 4–37. Commercial landings (round mt) of the albacore surface hook-and-line (troll and baitboat) fishery in Washington, 1981–2009.

Source: PacFIN, extracted Aug. 26, 2010.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line (troll and baitboat) fishery were used.

Landings in lbs are converted to round weight in mt by multiplying the landed weights by the conversion factors in each fish ticket line and then dividing by 2204.6.

|      |            |             |           |            |        |            | Coastal  |        |        |            |
|------|------------|-------------|-----------|------------|--------|------------|----------|--------|--------|------------|
| Year | Albacore   | Other Tunas | Swordfish | HMS Sharks | Dorado | Groundfish | Pelagics | Salmon | Other  | Total      |
| 1981 | 17,731,395 | 17,982      |           | 173        | 72     | 1,444      | 991      | 16,689 | 1,091  | 17,769,837 |
| 1982 | 5,735,370  | 5,258       | 13,219    | 2,771      | 557    | 5,671      | 13       | 10,001 | 332    | 5,773,192  |
| 1983 | 9,394,970  | 14,511      | 7,531     | 1,597      | 33     | 18,504     | 15,429   | 14,994 | 3,713  | 9,471,282  |
| 1984 | 11,157,988 | 19,870      | 96,217    | 6,080      | 706    | 6,854      | 928      | 2,154  | 3,559  | 11,294,356 |
| 1985 | 6,973,498  | 4,278       | 30,921    | 7,017      | 6      | 6,375      | 239      | 10,104 | 1,976  | 7,034,414  |
| 1986 | 3,598,008  | 7,124       | 6,427     | 180        |        | 18,967     | 160      | 6,309  | 660    | 3,637,835  |
| 1987 | 2,173,044  | 1,150       | 33,310    | 3,440      |        | 2,305      | 657      | 3,089  | 402    | 2,217,397  |
| 1988 | 1,728,315  | 952         | 89,636    | 3,566      |        | 664        |          | 1,860  | 421    | 1,825,414  |
| 1989 | 1,455,484  | 1,833       | 34,556    | 11,295     | 31     | 18,058     | 1        | 7,412  | 2,504  | 1,531,174  |
| 1990 | 1,457,546  | 79          | 13,332    | 560        | 74     | 6,059      | 83       | 39     | 1,529  | 1,479,301  |
| 1991 | 1,089,097  | 56          | 11,721    | 602        |        | 185        |          |        | 774    | 1,102,435  |
| 1992 | 2,889,632  | 2,124       | 55,452    | 2,321      | 281    | 6,004      |          | 1,259  | 614    | 2,957,687  |
| 1993 | 2,902,857  | 154,056     | 437,415   | 7,144      | 23,216 | 3,917      |          |        | 1,741  | 3,530,346  |
| 1994 | 6,415,286  | 603         | 6,797     | 275        | 180    | 590        |          | 529    | 326    | 6,424,586  |
| 1995 | 1,418,582  | 592         | 2,953     | 173        |        | 47         | 16       | 710    | 2,992  | 1,426,065  |
| 1996 | 10,571,220 | 38,548      | 2,608     | 295        |        | 60         |          | 1,567  | 996    | 10,615,294 |
| 1997 | 5,675,955  | 14,095      | 4,390     | 1,628      | 266    | 11,221     | 89       | 8,581  | 3,726  | 5,719,951  |
| 1998 | 3,097,075  | 138,138     | 17,122    | 5,018      | 525    | 3,979      | 279      | 4,144  | 5,215  | 3,271,495  |
| 1999 | 9,931,533  | 53,721      | 77,899    | 2,556      | 1,413  | 4,033      | 455      | 1,603  | 7,556  | 10,080,769 |
| 2000 | 3,682,725  | 3,841       | 97,814    | 223        | 298    | 1,887      | 522      | 2,501  | 5,233  | 3,795,044  |
| 2001 | 4,917,834  | 25,961      | 2,037     | 2,002      | 544    | 6,140      | 178      | 10,462 | 12,397 | 4,977,555  |
| 2002 | 3,861,585  | 6,838       | 9,996     | 664        | 170    | 827        | 1,241    | 9,544  | 6,168  | 3,897,033  |
| 2003 | 2,570,926  | 10,929      |           | 62         | 567    | 2,764      | 558      | 9,127  | 5,707  | 2,600,640  |
| 2004 | 2,407,735  | 2,383       |           | 319        | 655    | 1,783      | 1,059    | 12,366 | 3,101  | 2,429,401  |
| 2005 | 1,059,355  | 1,437       |           |            |        | 1,557      |          | 1,337  | 2,614  | 1,066,300  |
| 2006 | 504,401    | 1,569       |           | 42         | 167    | 221        | 124      | 3,480  | 927    | 510,931    |
| 2007 | 1,575,242  | 1,222       |           |            | 208    | 6          | 60       | 1,178  | 702    | 1,578,618  |
| 2008 | 956,535    | 2,834       |           |            | 371    | 53         | 3,193    |        | 1,290  | 964,276    |
| 2009 | 898,030    | 11,217      | 291       | 549        | 42     |            | 92       |        | 1,357  | 911,578    |

Table 4–38. Nominal commercial ex-vessel revenues (\$) of the albacore surface hook-and-line (troll and baitboat) fishery in California, with Canadian vessels excluded, 1981-2009.

Source: PacFIN, extracted Aug. 25, 2010.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line (troll and baitboat) fishery were used.

Landed weights in lbs are multiplied by the prices per pound in each fish ticket line.

Canadian vessels were excluded by outer joining the fish ticket tables with the state vessel table and checking the "idtype."

|      |            |             |           |                   |        |            | Coastal  |        |        |            |
|------|------------|-------------|-----------|-------------------|--------|------------|----------|--------|--------|------------|
| Year | Albacore   | Other Tunas | Swordfish | <b>HMS Sharks</b> | Dorado | Groundfish | Pelagics | Salmon | Other  | Total      |
| 1981 | 17,731,395 | 17,982      |           | 173               | 72     | 1,444      | 991      | 16,689 | 1,091  | 17,769,837 |
| 1982 | 5,735,370  | 5,258       | 13,219    | 2,771             | 557    | 5,671      | 13       | 10,001 | 332    | 5,773,192  |
| 1983 | 9,394,970  | 14,511      | 7,531     | 1,597             | 33     | 18,504     | 15,429   | 14,994 | 3,713  | 9,471,282  |
| 1984 | 11,157,988 | 19,870      | 96,217    | 6,080             | 706    | 6,854      | 928      | 2,154  | 3,559  | 11,294,356 |
| 1985 | 6,973,498  | 4,278       | 30,921    | 7,017             | 6      | 6,375      | 239      | 10,104 | 1,976  | 7,034,414  |
| 1986 | 3,598,008  | 7,124       | 6,427     | 180               |        | 18,967     | 160      | 6,309  | 660    | 3,637,835  |
| 1987 | 2,173,044  | 1,150       | 33,310    | 3,440             |        | 2,305      | 657      | 3,089  | 402    | 2,217,397  |
| 1988 | 1,728,315  | 952         | 89,636    | 3,566             |        | 664        |          | 1,860  | 421    | 1,825,414  |
| 1989 | 1,455,484  | 1,833       | 34,556    | 11,295            | 31     | 18,058     | 1        | 7,412  | 2,504  | 1,531,174  |
| 1990 | 1,457,546  | 79          | 13,332    | 560               | 74     | 6,059      | 83       | 39     | 1,529  | 1,479,301  |
| 1991 | 1,089,097  | 56          | 11,721    | 602               |        | 185        |          |        | 774    | 1,102,435  |
| 1992 | 2,889,632  | 2,124       | 55,452    | 2,321             | 281    | 6,004      |          | 1,259  | 614    | 2,957,687  |
| 1993 | 2,902,857  | 154,056     | 437,415   | 7,144             | 23,216 | 3,917      |          |        | 1,741  | 3,530,346  |
| 1994 | 6,415,286  | 603         | 6,797     | 275               | 180    | 590        |          | 529    | 326    | 6,424,586  |
| 1995 | 1,418,582  | 592         | 2,953     | 173               |        | 47         | 16       | 710    | 2,992  | 1,426,065  |
| 1996 | 10,587,510 | 38,548      | 2,608     | 295               |        | 60         |          | 1,567  | 997    | 10,631,585 |
| 1997 | 5,678,124  | 14,095      | 4,390     | 1,628             | 266    | 11,221     | 89       | 8,581  | 3,726  | 5,722,120  |
| 1998 | 3,097,075  | 138,138     | 17,122    | 5,018             | 525    | 3,979      | 279      | 4,144  | 5,215  | 3,271,495  |
| 1999 | 9,968,024  | 53,721      | 77,899    | 2,556             | 1,413  | 4,033      | 455      | 1,603  | 7,555  | 10,117,259 |
| 2000 | 3,682,725  | 3,841       | 97,814    | 223               | 298    | 1,887      | 522      | 2,501  | 5,233  | 3,795,044  |
| 2001 | 4,917,834  | 25,961      | 2,037     | 2,002             | 544    | 6,140      | 178      | 10,462 | 12,397 | 4,977,555  |
| 2002 | 3,861,585  | 6,838       | 9,996     | 664               | 170    | 827        | 1,241    | 9,544  | 6,168  | 3,897,033  |
| 2003 | 2,570,926  | 10,929      |           | 62                | 567    | 2,764      | 558      | 9,127  | 5,707  | 2,600,640  |
| 2004 | 2,407,735  | 2,383       |           | 319               | 655    | 1,783      | 1,059    | 12,366 | 3,101  | 2,429,401  |
| 2005 | 1,059,355  | 1,437       |           |                   |        | 1,557      |          | 1,337  | 2,614  | 1,066,300  |
| 2006 | 504,401    | 1,569       |           | 42                | 167    | 221        | 124      | 3,480  | 927    | 510,931    |
| 2007 | 1,575,242  | 1,222       |           |                   | 208    | 6          | 60       | 1,178  | 702    | 1,578,618  |
| 2008 | 956,535    | 2,834       |           |                   | 371    | 53         | 3,193    |        | 1,290  | 964,276    |
| 2009 | 898,030    | 11,217      | 291       | 549               | 42     |            | 92       |        | 1,357  | 911,578    |

Table 4–39. Nominal commercial ex-vessel revenues (\$) of the albacore surface hook-and-line (troll and baitboat) fishery in California, 1981-2009.

Source: PacFIN, extracted Aug. 26, 2010.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line (troll and baitboat) fishery were used.

Landed weights in lbs are multiplied by the prices per pound in each fish ticket line.

|      |           |             |           |                   |        |            | Coastal  |        |       |           |
|------|-----------|-------------|-----------|-------------------|--------|------------|----------|--------|-------|-----------|
| Year | Albacore  | Other Tunas | Swordfish | <b>HMS Sharks</b> | Dorado | Groundfish | Pelagics | Salmon | Other | Total     |
| 1981 | 6,686,230 |             |           |                   |        | 748        |          | 87,410 | 298   | 6,774,686 |
| 1982 | 1,250,455 | 242         |           |                   |        | 5          |          | 3,833  | 202   | 1,254,737 |
| 1983 | 1,845,205 | 75          |           |                   |        | 1,426      | 65       | 16,699 | 167   | 1,863,637 |
| 1984 | 898,066   | 183         |           |                   |        | 92         |          | 4,269  | 720   | 903,330   |
| 1985 | 822,379   |             |           |                   |        | 8          |          | 698    | 336   | 823,421   |
| 1986 | 1,324,977 | 124         |           |                   |        | 83         |          | 3,142  |       | 1,328,326 |
| 1987 | 1,679,449 |             |           |                   |        |            |          | 3,749  |       | 1,683,198 |
| 1988 | 3,318,399 |             |           |                   |        | 73         |          | 9,451  | 66    | 3,327,989 |
| 1989 | 886,505   |             |           |                   |        | 39         |          | 893    |       | 887,437   |
| 1990 | 1,763,611 |             |           |                   |        | 104        | 2        | 2,753  |       | 1,766,471 |
| 1991 | 979,262   |             |           |                   |        |            |          | 2,604  | 311   | 982,177   |
| 1992 | 3,856,956 |             |           | 40                |        | 133        |          | 4,862  |       | 3,861,991 |
| 1993 | 3,864,366 |             |           |                   |        | 908        |          | 10,358 |       | 3,875,632 |
| 1994 | 3,749,780 |             |           | 27                |        |            |          | 8      | 19    | 3,749,834 |
| 1995 | 4,049,908 | 323         |           |                   | 21     | 105        |          | 19,802 |       | 4,070,158 |
| 1996 | 6,572,323 | 49          |           |                   |        | 380        |          | 24,958 |       | 6,597,709 |
| 1997 | 6,815,587 | 854         |           |                   | 105    | 717        |          | 29,056 |       | 6,846,319 |
| 1998 | 5,936,402 |             |           | <0.5              |        | 809        |          | 12,196 | 48    | 5,949,455 |
| 1999 | 3,008,900 | 35,377      |           | 67                |        | 314        |          | 8,140  |       | 3,052,796 |
| 2000 | 6,171,331 | 656         |           | <0.5              |        | 3          |          | 6,943  |       | 6,178,933 |
| 2001 | 6,509,649 | 1,036       |           | 208               |        | 528        |          | 22,477 |       | 6,533,898 |
| 2002 | 2,871,875 |             |           |                   |        |            |          | 10,002 |       | 2,881,877 |
| 2003 | 5,694,424 | 116         |           |                   |        |            |          | 4,887  |       | 5,699,427 |
| 2004 | 8,484,606 | 130         |           | 200               |        | 51         | 182      | 10,375 |       | 8,495,544 |
| 2005 | 7,674,185 |             |           | 181               |        | 30         |          | 6,939  |       | 7,681,335 |
| 2006 | 7,602,928 | 6           |           | 210               |        | 764        | <0.5     |        | 64    | 7,603,972 |
| 2007 | 8,818,890 |             |           |                   | 15     | 1,936      | 22       | 204    | 408   | 8,821,475 |
| 2008 | 8,250,123 | 46,296      | 1,200     |                   | 108    | 1,211      |          |        | 5,340 | 8,304,278 |
| 2009 | 9,782,752 | 69          |           | 90                |        | 252        |          | 842    | 397   | 9,784,402 |

Table 4–40. Nominal commercial ex-vessel revenues (\$) of the albacore surface hook-and-line (troll and baitboat) fishery in Oregon, with Canadian vessels excluded, 1981-2009.

Blank cells indicate no data exists. Any calculated or derived zeros are due to rounding of summarized data to less than half of the unit shown.

Source: PacFIN, extracted Aug. 25, 2010.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line (troll and baitboat) fishery were used.

Landed weights in lbs are multiplied by the prices per pound in each fish ticket line.

Canadian vessels were excluded by outer joining the fish ticket tables with the state vessel table and checking the "idtype."

|      |            |                    |           |                   |        |            | Coastal  |        |       |            |
|------|------------|--------------------|-----------|-------------------|--------|------------|----------|--------|-------|------------|
| Year | Albacore   | <b>Other Tunas</b> | Swordfish | <b>HMS Sharks</b> | Dorado | Groundfish | Pelagics | Salmon | Other | Total      |
| 1981 | 6,686,230  |                    |           |                   |        | 748        |          | 87,410 | 298   | 6,774,686  |
| 1982 | 1,265,313  | 242                |           |                   |        | 5          |          | 3,833  | 202   | 1,269,595  |
| 1983 | 1,883,255  | 75                 |           |                   |        | 1,426      | 65       | 16,699 | 166   | 1,901,686  |
| 1984 | 901,350    | 183                |           |                   |        | 92         |          | 4,269  | 720   | 906,614    |
| 1985 | 822,379    |                    |           |                   |        | 8          |          | 698    | 336   | 823,421    |
| 1986 | 1,324,977  | 124                |           |                   |        | 83         |          | 3,142  |       | 1,328,326  |
| 1987 | 1,679,449  |                    |           |                   |        |            |          | 3,749  |       | 1,683,198  |
| 1988 | 3,321,249  |                    |           |                   |        | 73         |          | 9,451  | 66    | 3,330,839  |
| 1989 | 886,505    |                    |           |                   |        | 39         |          | 893    |       | 887,437    |
| 1990 | 1,763,611  |                    |           |                   |        | 104        | 2        | 2,753  |       | 1,766,471  |
| 1991 | 979,262    |                    |           |                   |        |            |          | 2,604  | 311   | 982,177    |
| 1992 | 3,968,734  |                    |           | 40                |        | 133        |          | 4,862  |       | 3,973,769  |
| 1993 | 3,882,548  |                    |           |                   |        | 908        |          | 10,358 |       | 3,893,814  |
| 1994 | 3,749,780  |                    |           | 27                |        |            |          | 8      | 19    | 3,749,834  |
| 1995 | 4,049,908  | 323                |           |                   | 21     | 105        |          | 19,802 |       | 4,070,158  |
| 1996 | 7,429,668  | 49                 |           |                   |        | 380        |          | 24,958 |       | 7,455,054  |
| 1997 | 7,341,599  | 931                |           |                   | 218    | 717        |          | 29,056 |       | 7,372,520  |
| 1998 | 6,540,414  |                    |           | <0.5              |        | 809        |          | 12,196 | 48    | 6,553,467  |
| 1999 | 3,783,515  | 35,377             |           | 67                |        | 314        |          | 8,140  |       | 3,827,411  |
| 2000 | 7,488,665  | 656                |           | <0.5              |        | 3          |          | 6,943  |       | 7,496,267  |
| 2001 | 7,558,629  | 1,036              |           | 208               |        | 528        |          | 22,477 |       | 7,582,878  |
| 2002 | 2,951,707  |                    |           |                   |        |            |          | 10,002 |       | 2,961,709  |
| 2003 | 6,158,462  | 116                |           |                   |        |            |          | 4,887  |       | 6,163,464  |
| 2004 | 9,144,548  | 130                |           | 200               |        | 51         | 182      | 10,375 |       | 9,155,486  |
| 2005 | 8,815,478  |                    |           | 181               |        | 30         |          | 6,939  |       | 8,822,628  |
| 2006 | 8,048,157  | 6                  |           | 210               |        | 764        | <0.5     |        | 64    | 8,049,201  |
| 2007 | 9,467,854  |                    |           |                   | 15     | 1,936      | 22       | 204    | 408   | 9,470,439  |
| 2008 | 10,666,183 | 46,296             | 1,200     |                   | 108    | 1,211      |          |        | 5,340 | 10,720,338 |
| 2009 | 10,190,661 | 69                 |           | 90                |        | 252        |          | 842    | 398   | 10,192,312 |

Table 4–41. Nominal commercial ex-vessel revenues (\$) of the albacore surface hook-and-line (troll and baitboat) fishery in Oregon, 1981-2009.

Source: PacFIN, extracted Aug. 26, 2010.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line (troll and baitboat) fishery were used.

Landed weights in lbs are multiplied by the prices per pound in each fish ticket line. Aquaculture fish ticket/fish ticket line info is excluded.

|      |            |             |           |                   |        |            | Coastal  |        |       |            |
|------|------------|-------------|-----------|-------------------|--------|------------|----------|--------|-------|------------|
| Year | Albacore   | Other Tunas | Swordfish | <b>HMS Sharks</b> | Dorado | Groundfish | Pelagics | Salmon | Other | Total      |
| 1981 | 1,670,113  |             |           |                   | N.A.   | 315        |          | 29,078 | 20    | 1,699,526  |
| 1982 | 363,957    |             |           |                   | N.A.   |            |          |        |       | 363,957    |
| 1983 | 639,357    |             |           |                   | N.A.   | 379        |          | 4,382  |       | 644,119    |
| 1984 | 90,823     |             |           |                   | N.A.   |            |          |        |       | 90,823     |
| 1985 | 199,032    |             |           |                   | N.A.   |            |          |        |       | 199,032    |
| 1986 | 944,843    |             |           |                   | N.A.   |            |          |        |       | 944,843    |
| 1987 | 838,147    |             |           |                   | N.A.   |            |          |        | 35    | 838,182    |
| 1988 | 3,500,519  |             | 6,695     |                   | N.A.   | 29         | 614      | 51     | 51    | 3,507,959  |
| 1989 | 1,350,170  |             |           |                   | N.A.   | 15         |          |        |       | 1,350,185  |
| 1990 | 2,193,837  |             |           |                   | N.A.   |            |          |        |       | 2,193,837  |
| 1991 | 692,354    | 15          |           |                   | N.A.   | 4          |          | 875    |       | 693,248    |
| 1992 | 4,331,995  | 72          |           |                   | N.A.   | 6          |          |        | 55    | 4,332,128  |
| 1993 | 4,114,857  |             | 5,272     | 848               | N.A.   | 167        |          | 28     | 64    | 4,121,236  |
| 1994 | 9,771,047  |             |           |                   | N.A.   |            |          |        |       | 9,771,047  |
| 1995 | 5,891,398  |             | 251       |                   | N.A.   |            |          | 1,779  | 35    | 5,893,463  |
| 1996 | 8,344,058  |             |           |                   | N.A.   |            |          |        |       | 8,344,058  |
| 1997 | 6,602,324  |             |           |                   | N.A.   | 13         |          |        |       | 6,602,336  |
| 1998 | 8,470,240  |             |           |                   | N.A.   |            |          |        |       | 8,470,240  |
| 1999 | 3,198,589  | 26,351      |           |                   | N.A.   |            |          |        | 152   | 3,225,092  |
| 2000 | 5,490,275  |             |           |                   | N.A.   |            |          |        |       | 5,490,275  |
| 2001 | 7,316,469  | 755         |           |                   | N.A.   | 1,133      |          | 80     |       | 7,318,437  |
| 2002 | 6,434,901  |             |           |                   | N.A.   | 77         |          | 2,251  | 1,621 | 6,438,850  |
| 2003 | 11,361,444 |             |           |                   | N.A.   |            |          |        |       | 11,361,444 |
| 2004 | 13,432,068 |             |           |                   | N.A.   |            |          |        | 232   | 13,432,300 |
| 2005 | 9,773,578  |             |           |                   | N.A.   |            |          | 4,057  | 704   | 9,778,339  |
| 2006 | 14,724,730 |             |           |                   | N.A.   |            |          |        |       | 14,724,730 |
| 2007 | 10,275,193 |             |           |                   | N.A.   |            |          | 2,576  | 311   | 10,278,080 |
| 2008 | 15,641,047 |             |           |                   | N.A.   | 44         |          | 5,091  |       | 15,646,182 |
| 2009 | 15,120,869 |             |           |                   | N.A.   |            |          | 2,603  |       | 15,123,472 |

Table 4–42. Nominal commercial ex-vessel revenues (\$) of the albacore surface hook-and-line (troll and baitboat) fishery in Washington, with Canadian vessels excluded, 1981-2009.

Blank cells indicate no data exists. Any calculated or derived zeros are due to rounding of summarized data to less than half of the unit shown.

Source: PacFIN, extracted Aug. 25, 2010.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line (troll and baitboat) fishery were used.

Landed weights in lbs are multiplied by the prices per pound in each fish ticket line.

Canadian vessels were excluded by outer joining the fish ticket tables with the state vessel table and checking the "idtype."

|      |            |                    |           |                   |        |            | Coastal  |        |       |            |
|------|------------|--------------------|-----------|-------------------|--------|------------|----------|--------|-------|------------|
| Year | Albacore   | <b>Other Tunas</b> | Swordfish | <b>HMS Sharks</b> | Dorado | Groundfish | Pelagics | Salmon | Other | Total      |
| 1981 | 1,670,113  |                    |           |                   | N.A.   | 315        |          | 29,078 | 20    | 1,699,526  |
| 1982 | 363,957    |                    |           |                   | N.A.   |            |          |        |       | 363,957    |
| 1983 | 639,357    |                    |           |                   | N.A.   | 379        |          | 4,382  |       | 644,119    |
| 1984 | 90,823     |                    |           |                   | N.A.   |            |          |        |       | 90,823     |
| 1985 | 199,032    |                    |           |                   | N.A.   |            |          |        |       | 199,032    |
| 1986 | 944,843    |                    |           |                   | N.A.   |            |          |        |       | 944,843    |
| 1987 | 838,147    |                    |           |                   | N.A.   |            |          |        | 35    | 838,182    |
| 1988 | 3,500,519  |                    | 6,695     |                   | N.A.   | 29         | 614      | 51     | 51    | 3,507,959  |
| 1989 | 1,350,170  |                    |           |                   | N.A.   | 15         |          |        |       | 1,350,185  |
| 1990 | 2,193,837  |                    |           |                   | N.A.   |            |          |        |       | 2,193,837  |
| 1991 | 692,354    | 15                 |           |                   | N.A.   | 4          |          | 875    |       | 693,248    |
| 1992 | 4,360,248  | 72                 |           |                   | N.A.   | 6          |          |        | 55    | 4,360,381  |
| 1993 | 4,138,143  |                    | 5,272     | 848               | N.A.   | 167        |          | 28     | 64    | 4,144,522  |
| 1994 | 9,812,666  |                    |           |                   | N.A.   |            |          |        |       | 9,812,666  |
| 1995 | 6,012,790  |                    | 251       |                   | N.A.   |            |          | 1,779  | 34    | 6,014,854  |
| 1996 | 9,062,840  |                    |           |                   | N.A.   |            |          |        |       | 9,062,840  |
| 1997 | 6,791,456  |                    |           |                   | N.A.   | 13         |          |        |       | 6,791,468  |
| 1998 | 8,966,640  |                    |           |                   | N.A.   |            |          |        |       | 8,966,640  |
| 1999 | 3,651,158  | 26,351             |           |                   | N.A.   |            |          |        | 152   | 3,677,661  |
| 2000 | 5,869,381  |                    |           |                   | N.A.   |            |          |        |       | 5,869,381  |
| 2001 | 7,930,083  | 755                |           |                   | N.A.   | 1,133      |          | 80     |       | 7,932,051  |
| 2002 | 7,396,988  |                    |           |                   | N.A.   | 77         |          | 2,251  | 1,621 | 7,400,937  |
| 2003 | 15,656,498 |                    |           |                   | N.A.   |            |          | <0.5   |       | 15,656,498 |
| 2004 | 15,823,418 |                    |           |                   | N.A.   |            |          |        | 232   | 15,823,650 |
| 2005 | 10,887,708 |                    |           |                   | N.A.   |            |          | 4,057  | 703   | 10,892,468 |
| 2006 | 15,178,595 |                    |           |                   | N.A.   |            |          |        |       | 15,178,595 |
| 2007 | 10,450,945 |                    |           |                   | N.A.   |            |          | 2,576  | 310   | 10,453,831 |
|      | 17,225,272 |                    |           |                   | N.A.   | 44         |          | 5,091  |       | 17,230,407 |
| 2009 | 16,325,697 |                    |           |                   | N.A.   |            |          | 2,603  |       | 16,328,300 |

Table 4–43. Nominal commercial ex-vessel revenues (\$) of the albacore surface hook-and-line (troll and baitboat) fishery in Washington, 1981-2009.

Source: PacFIN, extracted Aug. 26, 2010.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line (troll and baitboat) fishery were used.

Landed weights in lbs are multiplied by the prices per pound in each fish ticket line. Aquaculture fish ticket/fish ticket line info is excluded.

|      |            |             |           |            |        |            | Coastal  |        |        |            |
|------|------------|-------------|-----------|------------|--------|------------|----------|--------|--------|------------|
| Year | Albacore   | Other Tunas | Swordfish | HMS Sharks | Dorado | Groundfish | Pelagics | Salmon | Other  | Total      |
| 1981 | 37,266,488 | 37,793      |           | 363        | 150    | 3,036      | 2,084    | 35,075 | 2,293  | 37,347,282 |
| 1982 | 11,361,669 | 10,415      | 26,187    | 5,488      | 1,103  | 11,235     | 25       | 19,812 | 660    | 11,436,594 |
| 1983 | 17,902,001 | 27,650      | 14,349    | 3,044      | 63     | 35,260     | 29,401   | 28,571 | 7,074  | 18,047,413 |
| 1984 | 20,492,173 | 36,492      | 176,708   | 11,165     | 1,297  | 12,589     | 1,704    | 3,955  | 6,535  | 20,742,618 |
| 1985 | 12,430,479 | 7,625       | 55,118    | 12,509     | 11     | 11,364     | 427      | 18,011 | 3,518  | 12,539,062 |
| 1986 | 6,274,866  | 12,424      | 11,208    | 314        |        | 33,079     | 280      | 11,003 | 1,149  | 6,344,323  |
| 1987 | 3,683,125  | 1,948       | 56,457    | 5,830      |        | 3,906      | 1,113    | 5,236  | 685    | 3,758,300  |
| 1988 | 2,831,910  | 1,559       | 146,872   | 5,843      |        | 1,089      |          | 3,048  | 690    | 2,991,011  |
| 1989 | 2,297,891  | 2,895       | 54,557    | 17,832     | 48     | 28,509     | 2        | 11,702 | 3,953  | 2,417,389  |
| 1990 | 2,215,789  | 120         | 20,267    | 851        | 112    | 9,211      | 126      | 59     | 2,326  | 2,248,861  |
| 1991 | 1,599,027  | 82          | 17,210    | 883        |        | 272        |          |        | 1,136  | 1,618,610  |
| 1992 | 4,144,029  | 3,046       | 79,523    | 3,328      | 403    | 8,611      |          | 1,805  | 883    | 4,241,628  |
| 1993 | 4,073,042  | 216,158     | 613,743   | 10,024     | 32,574 | 5,496      |          |        | 2,444  | 4,953,481  |
| 1994 | 8,815,839  | 829         | 9,341     | 378        | 247    | 811        |          | 727    | 446    | 8,828,618  |
| 1995 | 1,909,519  | 796         | 3,975     | 232        |        | 63         | 22       | 955    | 4,031  | 1,919,593  |
| 1996 | 13,964,623 | 50,922      | 3,445     | 389        |        | 79         |          | 2,070  | 1,318  | 14,022,846 |
| 1997 | 7,367,543  | 18,296      | 5,699     | 2,113      | 346    | 14,565     | 116      | 11,139 | 4,834  | 7,424,651  |
| 1998 | 3,975,195  | 177,304     | 21,976    | 6,441      | 674    | 5,108      | 358      | 5,318  | 6,696  | 4,199,070  |
| 1999 | 12,563,610 | 67,958      | 98,543    | 3,233      | 1,788  | 5,102      | 575      | 2,028  | 9,559  | 12,752,396 |
| 2000 | 4,560,085  | 4,756       | 121,117   | 276        | 369    | 2,336      | 646      | 3,097  | 6,481  | 4,699,163  |
| 2001 | 5,954,515  | 31,433      | 2,466     | 2,424      | 658    | 7,435      | 215      | 12,667 | 15,013 | 6,026,826  |
| 2002 | 4,600,959  | 8,147       | 11,910    | 791        | 202    | 985        | 1,479    | 11,372 | 7,349  | 4,643,194  |
| 2003 | 2,998,864  | 12,748      |           | 72         | 661    | 3,224      | 651      | 10,646 | 6,658  | 3,033,524  |
| 2004 | 2,731,097  | 2,703       |           | 362        | 743    | 2,023      | 1,201    | 14,027 | 3,517  | 2,755,673  |
| 2005 | 1,162,721  | 1,577       |           |            |        | 1,708      |          | 1,467  | 2,870  | 1,170,343  |
| 2006 | 536,198    | 1,668       |           | 45         | 177    | 234        | 132      | 3,699  | 987    | 543,140    |
| 2007 | 1,627,821  | 1,263       |           |            | 215    | 6          | 62       | 1,217  | 725    | 1,631,309  |
| 2008 | 967,762    | 2,867       |           |            | 375    | 53         | 3,231    |        | 1,305  | 975,593    |
| 2009 | 898,030    | 11,217      | 291       | 549        | 42     |            | 92       |        | 1,357  | 911,578    |

Table 4–44. Real commercial ex-vessel revenues (2009 \$) of the albacore surface hook-and-line (troll and baitboat) fishery in California, with Canadian vessels excluded, 1981-2009.

Source: PacFIN, extracted Aug. 25, 2010.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line (troll and baitboat) fishery were used.

Real values are calculated to eliminate the effects of inflation by dividing current nominal values by the current year GDP implicit price deflator, with a base year of 2009.

Landed weights in lbs are multiplied by the prices per pound in each fish ticket line and then divided by the corresponding deflator.

Canadian vessels were excluded by outer joining the fish ticket tables with the state vessel table and checking the "idtype."

|      |            |             |           |            |        |            | Coastal  |        |        |            |
|------|------------|-------------|-----------|------------|--------|------------|----------|--------|--------|------------|
| Year | Albacore   | Other Tunas | Swordfish | HMS Sharks | Dorado | Groundfish | Pelagics | Salmon | Other  | Total      |
| 1981 | 37,266,488 | 37,793      |           | 363        | 150    | 3,036      | 2,084    | 35,075 | 2,293  | 37,347,282 |
| 1982 | 11,361,669 | 10,415      | 26,187    | 5,488      | 1,103  | 11,235     | 25       | 19,812 | 660    | 11,436,594 |
| 1983 | 17,902,001 | 27,650      | 14,349    | 3,044      | 63     | 35,260     | 29,401   | 28,571 | 7,074  | 18,047,413 |
| 1984 | 20,492,173 | 36,492      | 176,708   | 11,165     | 1,297  | 12,589     | 1,704    | 3,955  | 6,535  | 20,742,618 |
| 1985 | 12,430,479 | 7,625       | 55,118    | 12,509     | 11     | 11,364     | 427      | 18,011 | 3,518  | 12,539,062 |
| 1986 | 6,274,866  | 12,424      | 11,208    | 314        |        | 33,079     | 280      | 11,003 | 1,149  | 6,344,323  |
| 1987 | 3,683,125  | 1,948       | 56,457    | 5,830      |        | 3,906      | 1,113    | 5,236  | 685    | 3,758,300  |
| 1988 | 2,831,910  | 1,559       | 146,872   | 5,843      |        | 1,089      |          | 3,048  | 690    | 2,991,011  |
| 1989 | 2,297,891  | 2,895       | 54,557    | 17,832     | 48     | 28,509     | 2        | 11,702 | 3,953  | 2,417,389  |
| 1990 | 2,215,789  | 120         | 20,267    | 851        | 112    | 9,211      | 126      | 59     | 2,326  | 2,248,861  |
| 1991 | 1,599,027  | 82          | 17,210    | 883        |        | 272        |          |        | 1,136  | 1,618,610  |
| 1992 | 4,144,029  | 3,046       | 79,523    | 3,328      | 403    | 8,611      |          | 1,805  | 883    | 4,241,628  |
| 1993 | 4,073,042  | 216,158     | 613,743   | 10,024     | 32,574 | 5,496      |          |        | 2,444  | 4,953,481  |
| 1994 | 8,815,839  | 829         | 9,341     | 378        | 247    | 811        |          | 727    | 446    | 8,828,618  |
| 1995 | 1,909,519  | 796         | 3,975     | 232        |        | 63         | 22       | 955    | 4,031  | 1,919,593  |
| 1996 | 13,986,143 | 50,922      | 3,445     | 389        |        | 79         |          | 2,070  | 1,318  | 14,044,366 |
| 1997 | 7,370,358  | 18,296      | 5,699     | 2,113      | 346    | 14,565     | 116      | 11,139 | 4,834  | 7,427,466  |
| 1998 | 3,975,195  | 177,304     | 21,976    | 6,441      | 674    | 5,108      | 358      | 5,318  | 6,696  | 4,199,070  |
| 1999 | 12,609,771 | 67,958      | 98,543    | 3,233      | 1,788  | 5,102      | 575      | 2,028  | 9,558  | 12,798,556 |
| 2000 | 4,560,085  | 4,756       | 121,117   | 276        | 369    | 2,336      | 646      | 3,097  | 6,481  | 4,699,163  |
| 2001 | 5,954,515  | 31,433      | 2,466     | 2,424      | 658    | 7,435      | 215      | 12,667 | 15,013 | 6,026,826  |
| 2002 | 4,600,959  | 8,147       | 11,910    | 791        | 202    | 985        | 1,479    | 11,372 | 7,349  | 4,643,194  |
| 2003 | 2,998,864  | 12,748      |           | 72         | 661    | 3,224      | 651      | 10,646 | 6,658  | 3,033,524  |
| 2004 | 2,731,097  | 2,703       |           | 362        | 743    | 2,023      | 1,201    | 14,027 | 3,517  | 2,755,673  |
| 2005 | 1,162,721  | 1,577       |           |            |        | 1,708      |          | 1,467  | 2,870  | 1,170,343  |
| 2006 | 536,198    | 1,668       |           | 45         | 177    | 234        | 132      | 3,699  | 987    | 543,140    |
| 2007 | 1,627,821  | 1,263       |           |            | 215    | 6          | 62       | 1,217  | 725    | 1,631,309  |
| 2008 | 967,762    | 2,867       |           |            | 375    | 53         | 3,231    |        | 1,305  | 975,593    |
| 2009 | 898,030    | 11,217      | 291       | 549        | 42     |            | 92       |        | 1,357  | 911,578    |

Table 4–45. Real commercial ex-vessel revenues (2009 \$) of the albacore surface hook-and-line (troll and baitboat) fishery in California, 1981-2009.

Source: PacFIN, extracted Aug. 26, 2010.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line (troll and baitboat) fishery were used.

Real values are calculated to eliminate the effects of inflation by dividing current nominal values by the current year GDP implicit price deflator, with a base year of 2009.

Landed weights in lbs are multiplied by the prices per pound in each fish ticket line and then divided by the corresponding deflator.

|      |            |             |           |            |        |            | Coastal  |         |       |            |
|------|------------|-------------|-----------|------------|--------|------------|----------|---------|-------|------------|
| Year | Albacore   | Other Tunas | Swordfish | HMS Sharks | Dorado | Groundfish | Pelagics | Salmon  | Other | Total      |
| 1981 | 14,052,606 |             |           |            |        | 1,573      |          | 183,712 | 625   | 14,238,516 |
| 1982 | 2,477,129  | 480         |           |            |        | 10         |          | 7,593   | 401   | 2,485,613  |
| 1983 | 3,516,016  | 143         |           |            |        | 2,716      | 125      | 31,819  | 318   | 3,551,137  |
| 1984 | 1,649,341  | 336         |           |            |        | 170        |          | 7,840   | 1,321 | 1,659,008  |
| 1985 | 1,465,916  |             |           |            |        | 15         |          | 1,244   | 599   | 1,467,774  |
| 1986 | 2,310,738  | 216         |           |            |        | 145        |          | 5,479   |       | 2,316,578  |
| 1987 | 2,846,524  |             |           |            |        |            |          | 6,354   |       | 2,852,877  |
| 1988 | 5,437,324  |             |           |            |        | 120        |          | 15,486  | 108   | 5,453,038  |
| 1989 | 1,399,598  |             |           |            |        | 62         |          | 1,409   |       | 1,401,069  |
| 1990 | 2,681,075  |             |           |            |        | 158        | 3        | 4,185   |       | 2,685,422  |
| 1991 | 1,437,766  |             |           |            |        |            |          | 3,824   | 455   | 1,442,045  |
| 1992 | 5,531,273  |             |           | 57         |        | 191        |          | 6,972   |       | 5,538,493  |
| 1993 | 5,422,150  |             |           |            |        | 1,275      |          | 14,533  |       | 5,437,957  |
| 1994 | 5,152,920  |             |           | 36         |        |            |          | 11      | 28    | 5,152,995  |
| 1995 | 5,451,485  | 434         |           |            | 28     | 142        |          | 26,655  |       | 5,478,743  |
| 1996 | 8,682,065  | 64          |           |            |        | 502        |          | 32,969  |       | 8,715,599  |
| 1997 | 8,846,816  | 1,109       |           |            | 136    | 931        |          | 37,716  |       | 8,886,708  |
| 1998 | 7,619,563  |             |           | <0.5       |        | 1,038      |          | 15,654  | 62    | 7,636,317  |
| 1999 | 3,806,325  | 44,752      |           | 84         |        | 397        |          | 10,297  |       | 3,861,855  |
| 2000 | 7,641,569  | 812         |           | <0.5       |        | 3          |          | 8,598   |       | 7,650,982  |
| 2001 | 7,881,886  | 1,254       |           | 252        |        | 640        |          | 27,215  |       | 7,911,246  |
| 2002 | 3,421,750  |             |           |            |        |            |          | 11,917  |       | 3,433,667  |
| 2003 | 6,642,277  | 135         |           |            |        |            |          | 5,700   |       | 6,648,112  |
| 2004 | 9,624,099  | 147         |           | 227        |        | 57         | 207      | 11,768  |       | 9,636,506  |
| 2005 | 8,422,989  |             |           | 199        |        | 33         |          | 7,616   |       | 8,430,836  |
| 2006 | 8,082,202  | 6           |           | 223        |        | 812        | <0.5     |         | 69    | 8,083,312  |
| 2007 | 9,113,248  |             |           |            | 16     | 2,000      | 23       | 211     | 422   | 9,115,920  |
| 2008 | 8,346,947  | 46,839      |           |            | 109    | 1,225      |          |         | 5,404 | 8,401,738  |
| 2009 | 9,782,752  | 69          |           | 90         |        | 252        |          | 842     | 397   | 9,784,402  |

Table 4–46. Real commercial ex-vessel revenues (2009 \$) of the albacore surface hook-and-line (troll and baitboat) fishery in Oregon, with Canadian vessels excluded, 1981-2009.

Blank cells indicate no data exists. Any calculated or derived zeros are due to rounding of summarized data to less than half of the unit shown.

Source: PacFIN, extracted Aug. 25, 2010.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line (troll and baitboat) fishery were used.

Real values are calculated to eliminate the effects of inflation by dividing current nominal values by the current year GDP implicit price deflator, with a base year of 2009.

Landed weights in lbs are multiplied by the prices per pound in each fish ticket line and then divided by the corresponding deflator.

Canadian vessels were excluded by outer joining the fish ticket tables with the state vessel table and checking the "idtype."

|      |            |                    |           |                   |        |            | Coastal  |         |       |            |
|------|------------|--------------------|-----------|-------------------|--------|------------|----------|---------|-------|------------|
| Year | Albacore   | <b>Other Tunas</b> | Swordfish | <b>HMS Sharks</b> | Dorado | Groundfish | Pelagics | Salmon  | Other | Total      |
| 1981 | 14,052,606 |                    |           |                   |        | 1,573      |          | 183,712 | 625   | 14,238,516 |
| 1982 | 2,506,562  | 480                |           |                   |        | 10         |          | 7,593   | 401   | 2,515,046  |
| 1983 | 3,588,519  | 143                |           |                   |        | 2,716      | 125      | 31,819  | 318   | 3,623,640  |
| 1984 | 1,655,372  | 336                |           |                   |        | 170        |          | 7,840   | 1,322 | 1,665,040  |
| 1985 | 1,465,916  |                    |           |                   |        | 15         |          | 1,244   | 599   | 1,467,774  |
| 1986 | 2,310,738  | 216                |           |                   |        | 145        |          | 5,479   |       | 2,316,578  |
| 1987 | 2,846,524  |                    |           |                   |        |            |          | 6,354   |       | 2,852,877  |
| 1988 | 5,441,994  |                    |           |                   |        | 120        |          | 15,486  | 108   | 5,457,708  |
| 1989 | 1,399,598  |                    |           |                   |        | 62         |          | 1,409   |       | 1,401,069  |
| 1990 | 2,681,075  |                    |           |                   |        | 158        | 3        | 4,185   |       | 2,685,422  |
| 1991 | 1,437,766  |                    |           |                   |        |            |          | 3,824   | 455   | 1,442,045  |
| 1992 | 5,691,573  |                    |           | 57                |        | 191        |          | 6,972   |       | 5,698,794  |
| 1993 | 5,447,661  |                    |           |                   |        | 1,275      |          | 14,533  |       | 5,463,468  |
| 1994 | 5,152,920  |                    |           | 36                |        |            |          | 11      | 28    | 5,152,995  |
| 1995 | 5,451,485  | 434                |           |                   | 28     | 142        |          | 26,655  |       | 5,478,743  |
| 1996 | 9,814,621  | 64                 |           |                   |        | 502        |          | 32,969  |       | 9,848,156  |
| 1997 | 9,529,593  | 1,208              |           |                   | 282    | 931        |          | 37,716  |       | 9,569,730  |
| 1998 | 8,394,832  |                    |           | <0.5              |        | 1,038      |          | 15,654  | 62    | 8,411,586  |
| 1999 | 4,786,230  | 44,752             |           | 84                |        | 397        |          | 10,297  |       | 4,841,760  |
| 2000 | 9,272,740  | 812                |           | <0.5              |        | 3          |          | 8,598   |       | 9,282,153  |
| 2001 | 9,151,990  | 1,254              |           | 252               |        | 640        |          | 27,215  |       | 9,181,351  |
| 2002 | 3,516,868  |                    |           |                   |        |            |          | 11,917  |       | 3,528,784  |
| 2003 | 7,183,555  | 135                |           |                   |        |            |          | 5,700   |       | 7,189,390  |
| 2004 | 10,372,673 | 147                |           | 227               |        | 57         | 207      | 11,768  |       | 10,385,080 |
| 2005 | 9,675,643  |                    |           | 199               |        | 33         |          | 7,616   |       | 9,683,490  |
| 2006 | 8,555,498  | 6                  |           | 223               |        | 812        | <0.5     |         | 69    | 8,556,608  |
| 2007 | 9,783,873  |                    |           |                   | 16     | 2,000      | 23       | 211     | 422   | 9,786,545  |
| 2008 | 10,791,363 | 46,839             | 1,214     |                   | 109    | 1,225      |          |         | 5,403 | 10,846,153 |
| 2009 | 10,190,661 | 69                 |           | 90                |        | 252        |          | 842     | 398   | 10,192,312 |

Table 4–47. Real commercial ex-vessel revenues (2009 \$) of the albacore surface hook-and-line (troll and baitboat) fishery in Oregon, 1981-2009.

Blank cells indicate no data exists. Any calculated or derived zeros are due to rounding of summarized data to less than half of the unit shown.

Source: PacFIN, extracted Aug. 26, 2010.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line (troll and baitboat) fishery were used.

Real values are calculated to eliminate the effects of inflation by dividing current nominal values by the current year GDP implicit price deflator, with a base year of 2009.

Landed weights in lbs are multiplied by the prices per pound in each fish ticket line and then divided by the corresponding deflator.

|      |            |             |           |            |        |            | Coastal  |        |       |            |
|------|------------|-------------|-----------|------------|--------|------------|----------|--------|-------|------------|
| Year | Albacore   | Other Tunas | Swordfish | HMS Sharks | Dorado | Groundfish | Pelagics | Salmon | Other | Total      |
| 1981 | 3,510,117  |             |           |            | N.A.   | 662        |          | 61,113 | 42    | 3,571,934  |
| 1982 | 720,992    |             |           |            | N.A.   |            |          |        |       | 720,992    |
| 1983 | 1,218,288  |             |           |            | N.A.   | 723        |          | 8,350  |       | 1,227,360  |
| 1984 | 166,800    |             |           |            | N.A.   |            |          |        |       | 166,800    |
| 1985 | 354,782    |             |           |            | N.A.   |            |          |        |       | 354,782    |
| 1986 | 1,647,791  |             |           |            | N.A.   |            |          |        |       | 1,647,791  |
| 1987 | 1,420,588  |             |           |            | N.A.   |            |          |        | 59    | 1,420,647  |
| 1988 | 5,735,735  |             | 10,970    |            | N.A.   | 47         | 1,005    | 84     | 84    | 5,747,925  |
| 1989 | 2,131,623  |             |           |            | N.A.   | 24         |          |        |       | 2,131,647  |
| 1990 | 3,335,113  |             |           |            | N.A.   |            |          |        |       | 3,335,113  |
| 1991 | 1,016,523  | 22          |           |            | N.A.   | 6          |          | 1,285  |       | 1,017,836  |
| 1992 | 6,212,527  | 103         |           |            | N.A.   | 9          |          |        | 78    | 6,212,717  |
| 1993 | 5,773,617  |             | 7,397     | 1,189      | N.A.   | 234        |          | 39     | 92    | 5,782,568  |
| 1994 | 13,427,301 |             |           |            | N.A.   |            |          |        |       | 13,427,301 |
| 1995 | 7,930,271  |             | 338       |            | N.A.   |            |          | 2,394  | 47    | 7,933,050  |
| 1996 | 11,022,533 |             |           |            | N.A.   |            |          |        |       | 11,022,533 |
| 1997 | 8,569,994  |             |           |            | N.A.   | 16         |          |        |       | 8,570,011  |
| 1998 | 10,871,826 |             |           |            | N.A.   |            |          |        |       | 10,871,826 |
| 1999 | 4,046,286  | 33,335      |           |            | N.A.   |            |          |        | 192   | 4,079,813  |
| 2000 | 6,798,260  |             |           |            | N.A.   |            |          |        |       | 6,798,260  |
| 2001 | 8,858,783  | 914         |           |            | N.A.   | 1,372      |          | 97     |       | 8,861,166  |
| 2002 | 7,666,985  |             |           |            | N.A.   | 92         |          | 2,682  | 1,931 | 7,671,690  |
| 2003 | 13,252,588 |             |           |            | N.A.   |            |          |        |       | 13,252,588 |
| 2004 | 15,236,012 |             |           |            | N.A.   |            |          |        | 263   | 15,236,275 |
| 2005 | 10,727,229 |             |           |            | N.A.   |            |          | 4,452  | 773   | 10,732,454 |
| 2006 | 15,652,950 |             |           |            | N.A.   |            |          |        |       | 15,652,950 |
| 2007 | 10,618,160 |             |           |            | N.A.   |            |          | 2,662  | 321   | 10,621,143 |
| 2008 | 15,824,612 |             |           |            | N.A.   | 45         |          | 5,151  |       | 15,829,808 |
| 2009 | 15,120,869 |             |           |            | N.A.   |            |          | 2,603  |       | 15,123,472 |

Table 4–48. Real commercial ex-vessel revenues (2009 \$) of the albacore surface hook-and-line (troll and baitboat) fishery in Washington, with Canadian vessels excluded, 1981-2009.

Blank cells indicate no data exists. Any calculated or derived zeros are due to rounding of summarized data to less than half of the unit shown.

Source: PacFIN, extracted Aug. 25, 2010.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line (troll and baitboat) fishery were used.

Real values are calculated to eliminate the effects of inflation by dividing current nominal values by the current year GDP implicit price deflator, with a base year of 2009.

Landed weights in lbs are multiplied by the prices per pound in each fish ticket line and then divided by the corresponding deflator.

Canadian vessels were excluded by outer joining the fish ticket tables with the state vessel table and checking the "idtype."

|      |            |             |           |                   |        |            | Coastal  |        |       |            |
|------|------------|-------------|-----------|-------------------|--------|------------|----------|--------|-------|------------|
| Year | Albacore   | Other Tunas | Swordfish | <b>HMS Sharks</b> | Dorado | Groundfish | Pelagics | Salmon | Other | Total      |
| 1981 | 3,510,117  |             |           |                   | N.A.   | 662        |          | 61,113 | 42    | 3,571,934  |
| 1982 | 720,992    |             |           |                   | N.A.   |            |          |        |       | 720,992    |
| 1983 | 1,218,288  |             |           |                   | N.A.   | 723        |          | 8,350  |       | 1,227,360  |
| 1984 | 166,800    |             |           |                   | N.A.   |            |          |        |       | 166,800    |
| 1985 | 354,782    |             |           |                   | N.A.   |            |          |        |       | 354,782    |
| 1986 | 1,647,791  |             |           |                   | N.A.   |            |          |        |       | 1,647,791  |
| 1987 | 1,420,588  |             |           |                   | N.A.   |            |          |        | 59    | 1,420,647  |
| 1988 | 5,735,735  |             | 10,970    |                   | N.A.   | 47         | 1,005    | 84     | 84    | 5,747,925  |
| 1989 | 2,131,623  |             |           |                   | N.A.   | 24         |          |        |       | 2,131,647  |
| 1990 | 3,335,113  |             |           |                   | N.A.   |            |          |        |       | 3,335,113  |
| 1991 | 1,016,523  | 22          |           |                   | N.A.   | 6          |          | 1,285  |       | 1,017,836  |
| 1992 | 6,253,045  | 103         |           |                   | N.A.   | 9          |          |        | 78    | 6,253,235  |
| 1993 | 5,806,290  |             | 7,397     | 1,189             | N.A.   | 234        |          | 39     | 92    | 5,815,241  |
| 1994 | 13,484,494 |             |           |                   | N.A.   |            |          |        |       | 13,484,494 |
| 1995 | 8,093,673  |             | 338       |                   | N.A.   |            |          | 2,394  | 47    | 8,096,452  |
| 1996 | 11,972,047 |             |           |                   | N.A.   |            |          |        |       | 11,972,047 |
| 1997 | 8,815,493  |             |           |                   | N.A.   | 16         |          |        |       | 8,815,509  |
| 1998 | 11,508,972 |             |           |                   | N.A.   |            |          |        |       | 11,508,972 |
| 1999 | 4,618,795  | 33,335      |           |                   | N.A.   |            |          |        | 193   | 4,652,323  |
| 2000 | 7,267,683  |             |           |                   | N.A.   |            |          |        |       | 7,267,683  |
| 2001 | 9,601,747  | 914         |           |                   | N.A.   | 1,372      |          | 97     |       | 9,604,130  |
| 2002 | 8,813,282  |             |           |                   | N.A.   | 92         |          | 2,682  | ,     | 8,817,987  |
| 2003 | 18,262,567 |             |           |                   | N.A.   |            |          | <0.5   |       | 18,262,567 |
| 2004 | 17,948,523 |             |           |                   | N.A.   |            |          |        | 263   | 17,948,786 |
| 2005 | 11,950,069 |             |           |                   | N.A.   |            |          | 4,452  | 773   | 11,955,294 |
| 2006 | 16,135,426 |             |           |                   | N.A.   |            |          |        |       | 16,135,426 |
| 2007 | 10,799,778 |             |           |                   | N.A.   |            |          | 2,662  | 321   | 10,802,761 |
| 2008 | 17,427,430 |             |           |                   | N.A.   | 45         |          | 5,151  |       | 17,432,626 |
| 2009 | 16,325,697 |             |           |                   | N.A.   |            |          | 2,603  |       | 16,328,300 |

Table 4–49. Real commercial ex-vessel revenues (2009 \$) of the albacore surface hook-and-line (troll and baitboat) fishery in Washington, 1981-2009.

Blank cells indicate no data exists. Any calculated or derived zeros are due to rounding of summarized data to less than half of the unit shown.

Source: PacFIN, extracted Aug. 26, 2010.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line (troll and baitboat) fishery were used.

Real values are calculated to eliminate the effects of inflation by dividing current nominal values by the current year GDP implicit price deflator, with a base year of 2009.

Landed weights in lbs are multiplied by the prices per pound in each fish ticket line and then divided by the corresponding deflator.

| Fishing Season | No. Trips | Catch (mt) | No. Days | No. Vessels |
|----------------|-----------|------------|----------|-------------|
| 1986-1987      | 16        | 751        | 565      | 7           |
| 1987-1988      | 91        | 3,558      | 3,163    | 43          |
| 1988-1989      | 80        | 3,239      | 3,749    | 43          |
| 1989-1990      | 76        | 3,995      | 3,537    | 39          |
| 1990-1991      | 78        | 5,221      | 6,997    | 56          |
| 1991-1992      | 65        | 3,097      | 6,867    | 55          |
| 1992-1993      | 45        | 1,036      | 4,687    | 44          |
| 1993-1994      | 17        | 2,236      | 3,848    | 14          |
| 1994-1995      | 29        | 1,953      | 1,894    | 21          |
| 1995-1996      | 55        | 1,964      | 4,152    | 53          |
| 1996-1997      | 26        | 1,617      | 3,189    | 26          |
| 1997-1998      | 38        | 1,701      | 5,384    | 36          |
| 1998-1999      | 24        | 1,241      | 2,505    | 21          |
| 1999-2000      | 39        | 2,562      | 4,958    | 36          |
| 2000-2001      | 39        | 2,128      | 6,377    | 33          |
| 2001-2002      | 12        | 1,218      | 3,602    | 12          |
| 2002-2003      | 14        | 1,678      | 2,289    | 14          |
| 2003-2004      | 12        | 995        | 1,488    | 11          |
| 2004-2005      | 8         | 725        | 1,491    | 8           |
| 2005-2006      | 10        | 600        | 1,310    | 8           |
| 2006-2007      | 6         | 271        | 813      | 6           |
| 2007-2008      | 3         | 150        | 254      | 3           |
| 2008-2009      | 4         | 237        | 197      | 4           |

Table 4–50.Commercial catch and effort fishery statistics for the U.S. South Pacific albacore troll fishery,1986-2009.

Source: Childers, SWFSC, August 12, 2010.

Note 1: Total catches for the U.S. South Pacific albacore troll fishery may catch from November and December of the previous year.

Note 2: Total catches for seasons before 1996-97 may contain catch from non-U.S. vessels.

|      |          | Catch      |           |          | Effort     |           |
|------|----------|------------|-----------|----------|------------|-----------|
| Year | U.S. EEZ | Canada EEZ | High-Seas | U.S. EEZ | Canada EEZ | High-Seas |
| 1995 | 5        | 6          | 89        | 16       | 10         | 73        |
| 1996 | 14       | 0          | 86        | 27       | 0          | 73        |
| 1997 | 17       | 4          | 80        | 30       | 4          | 66        |
| 1998 | 15       | 0          | 85        | 26       | 0          | 74        |
| 1999 | 65       | 1          | 34        | 62       | 1          | 37        |
| 2000 | 70       | 0          | 30        | 69       | 1          | 31        |
| 2001 | 57       | 0          | 43        | 67       | 1          | 33        |
| 2002 | 64       | 2          | 34        | 73       | 2          | 25        |
| 2003 | 86       | 1          | 13        | 87       | 1          | 12        |
| 2004 | 93       | 1          | 6         | 89       | 2          | 9         |
| 2005 | 92       | 2          | 6         | 89       | 3          | 8         |
| 2006 | 82       | 1          | 16        | 90       | 1          | 9         |
| 2007 | 99       | 1          | 0         | 97       | 2          | 2         |
| 2008 | 78       | 6          | 16        | 85       | 4          | 11        |
| 2009 | 94       | 2          | 4         | 94       | 2          | 4         |

Table 4–51. Percentages of commercial catch and effort by fishing areas for U.S. albacore troll vessels, 1995–2009.

Zeros mean no catch or effort.

Source: Childers, SWFSC, August 12, 2010.

Note: Data for 2008 and 2009 are preliminary.

|      | Albacore              | Swordfish & HMS Shark      | Any Species          | HMS Species | HMS Tuna                 | Any         |
|------|-----------------------|----------------------------|----------------------|-------------|--------------------------|-------------|
| Year | Surface Hook-and-Line | Drift Gillnet <sup>1</sup> | Harpoon <sup>2</sup> | Longline    | Purse Seine <sup>3</sup> | HMS Fishery |
| 1981 | 1,837                 | 130                        | 190                  | 27          | 135                      | 2,170       |
| 1982 | 761                   | 130                        | 162                  | 28          | 124                      | 1,113       |
| 1983 | 1,629                 | 122                        | 93                   | 19          | 111                      | 1,887       |
| 1984 | 1,126                 | 103                        | 114                  | 14          | 78                       | 1,310       |
| 1985 | 792                   | 97                         | 101                  | 12          | 53                       | 994         |
| 1986 | 419                   | 64                         | 114                  | 6           | 51                       | 621         |
| 1987 | 486                   | 36                         | 101                  | 8           | 47                       | 655         |
| 1988 | 533                   | 6                          | 84                   | 14          | 43                       | 672         |
| 1989 | 338                   | *                          | 45                   | 4           | 38                       | 422         |
| 1990 | 368                   |                            | 52                   | 5           | 33                       | 453         |
| 1991 | 172                   | 12                         | 33                   | 13          | 18                       | 240         |
| 1992 | 610                   | 19                         | 48                   | 20          | 29                       | 704         |
| 1993 | 610                   | 74                         | 42                   | 12          | 26                       | 726         |
| 1994 | 718                   | 151                        | 51                   | 44          | 25                       | 906         |
| 1995 | 477                   | 133                        | 43                   | 36          | 22                       | 656         |
| 1996 | 726                   | 132                        | 31                   | 29          | 23                       | 870         |
| 1997 | 1,200                 | 121                        | 32                   | 52          | 34                       | 1,347       |
| 1998 | 866                   | 112                        | 30                   | 70          | 33                       | 1,020       |
| 1999 | 827                   | 97                         | 33                   | 53          | 14                       | 923         |
| 2000 | 763                   | 90                         | 36                   | 70          | 16                       | 895         |
| 2001 | 981                   | 82                         | 25                   | 56          | 15                       | 1,075       |
| 2002 | 736                   | 63                         | 32                   | 36          | 4                        | 829         |
| 2003 | 888                   | 54                         | 35                   | 40          | 3                        | 975         |
| 2004 | 780                   | 46                         | 29                   | 40          | 11                       | 878         |
| 2005 | 599                   | 45                         | 25                   | **          | 8                        | 664         |
| 2006 | 635                   | 44                         | 24                   | **          | *                        | 708         |
| 2007 | 679                   | 49                         | 28                   | **          | 4                        | 748         |
| 2008 | 523                   | 50                         | 32                   | **          | *                        | 598         |
| 2009 | 679                   | 49                         | 27                   | **          | 8                        | 759         |

Table 4–52. Number of vessels with West Coast commercial HMS landings by fishery (HMS gear & species),1981-2009.

\*\* Not reported due to data confidentiality requirements based on non-PacFIN data sources (mandatory logbooks,

permits, etc.)

Blank cells indicate no data exists. Any calculated or derived zeros are due to rounding of summarized data to less than half of the unit shown.

Source: PacFIN, extracted Aug. 10, 2010.

<sup>1</sup>There is no drift gillnet gear for Washington. Significant swordfish and shark landings by drift gillnet gear prior to 1994 have been mis-assigned to California entangling net, trammel net, several trawl, encircling net, set gillnet and unknown gears, and therefore are not reported here.

<sup>2</sup>Only California has harpoon landings. Some of the non-swordfish species may have been taken by dual-gear permit holders, who may have fished with drift gillnets but landed under harpoon.

<sup>3</sup>There is no purse seine gear for Washington.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line (troll and baitboat) fishery were used.

Only fish tickets where at least 1 lb of swordfish or any HMS shark was landed for the drift gillnet fishery were used. Only fish tickets where at least 1 lb of any highly migratory species (except striped marlin) was landed for the longline fishery were used.

Only fish tickets where at least 1 lb of any HMS tuna was landed for the purse seine fishery were used. Aquaculture fish ticket/fish ticket line info is excluded.

Table 4–53. Number of vessels with commercial HMS landings in California by fishery (HMS gear & species), 1981-2009.

|      | Albacore              | Swordfish & HMS Shark      | Any Species          | HMS Species | HMS Tuna    | Any         |
|------|-----------------------|----------------------------|----------------------|-------------|-------------|-------------|
| Year | Surface Hook-and-Line | Drift Gillnet <sup>1</sup> | Harpoon <sup>2</sup> | Longline    | Purse Seine | HMS Fishery |
| 1981 | 1,310                 | 130                        | 190                  | 27          | 135         | 1,646       |
| 1982 | 602                   | 130                        | 162                  | 28          | 124         | 954         |
| 1983 | 1,243                 | 122                        | 93                   | 19          | 111         | 1,501       |
| 1984 | 993                   | 103                        | 114                  | 14          | 78          | 1,178       |
| 1985 | 724                   | *                          | 101                  | 6           | 53          | 919         |
| 1986 | 344                   | 35                         | 114                  | *           | 51          | 525         |
| 1987 | 289                   | 16                         | 101                  | *           | 47          | 445         |
| 1988 | 149                   | *                          | 84                   | *           | 43          | 286         |
| 1989 | 180                   | *                          | 45                   | 4           | 38          | 264         |
| 1990 | 103                   |                            | 52                   | 5           | 33          | 189         |
| 1991 | 76                    | 12                         | 33                   | *           | 18          | 143         |
| 1992 | 139                   | 19                         | 48                   | *           | 29          | 237         |
| 1993 | 202                   | 74                         | 42                   | 12          | 26          | 319         |
| 1994 | 271                   | 151                        | 51                   | 44          | 25          | 466         |
| 1995 | 137                   | 133                        | 43                   | 36          | 22          | 330         |
| 1996 | 290                   | 132                        | 31                   | *           | 23          | 439         |
| 1997 | 612                   | 121                        | 32                   | 52          | 34          | 768         |
| 1998 | 382                   | 111                        | 30                   | *           | 33          | 550         |
| 1999 | 446                   | 95                         | 33                   | 53          | 14          | 544         |
| 2000 | 349                   | *                          | 36                   | *           | 16          | 483         |
| 2001 | 474                   | 82                         | 25                   | *           | 15          | 571         |
| 2002 | 321                   | 63                         | 32                   | *           | 4           | 416         |
| 2003 | 325                   | *                          | 35                   | 40          | *           | 416         |
| 2004 | 191                   | *                          | 29                   | *           | 11          | 292         |
| 2005 | 97                    | 45                         | 25                   | **          | 8           | 169         |
| 2006 | 80                    | 44                         | 24                   | **          | *           | 160         |
| 2007 | 155                   | 49                         | 28                   | **          | 4           | 230         |
| 2008 | 67                    | 50                         | 32                   | **          | *           | 148         |
| 2009 | 127                   | 49                         | 27                   | **          | 8           | 212         |

\*\* Not reported due to data confidentiality requirements based on non-PacFIN data sources (mandatory logbooks, permits, etc.)

Blank cells indicate no data exists. Any calculated or derived zeros are due to rounding of summarized data to less than half of the unit shown.

Source: PacFIN, extracted Aug. 12, 2010.

<sup>1</sup>Significant swordfish and shark landings by drift gillnet gear prior to 1994 have been mis-assigned to California entanglin net, trammel net, several trawl, encircling net, set gillnet and unknown gears, and therefore are not reported here. <sup>2</sup>Some of the non-swordfish species may have been taken by dual-gear permit holders, who may have fished with drift gillnets but landed under harpoon.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line (troll and baitboat) fishery were used.

Only fish tickets where at least 1 lb of swordfish or any HMS shark was landed for the drift gillnet fishery were used. Only fish tickets where at least 1 lb of any highly migratory species (except striped marlin) was landed for the longline fishery were used.

Only fish tickets where at least 1 lb of any HMS tuna was landed for the purse seine fishery were used. Aquaculture fish ticket/fish ticket line info is excluded.

Table 4–54. Number of vessels with commercial HMS landings in Oregon by fishery (HMS gear & species),1981-2009.

|      | Albacore              | Swordfish & HMS Shark | HMS Species      | HMS Tuna    | Any                |
|------|-----------------------|-----------------------|------------------|-------------|--------------------|
| Year | Surface Hook-and-Line | Drift Gillnet         | Pelagic Longline | Purse Seine | <b>HMS</b> Fishery |
| 1981 | 681                   |                       |                  |             | 681                |
| 1982 | 192                   |                       |                  |             | 192                |
| 1983 | 407                   |                       |                  |             | 407                |
| 1984 | 177                   |                       |                  |             | 177                |
| 1985 | 89                    | *                     |                  |             | *                  |
| 1986 | 90                    | 33                    |                  |             | 122                |
| 1987 | 170                   | 20                    | *                |             | 187                |
| 1988 | 262                   | *                     |                  |             | *                  |
| 1989 | 134                   |                       |                  |             | 134                |
| 1990 | 211                   |                       |                  |             | 211                |
| 1991 | 71                    |                       |                  |             | 71                 |
| 1992 | 352                   |                       |                  |             | 352                |
| 1993 | 367                   |                       |                  |             | 367                |
| 1994 | 328                   |                       |                  |             | 328                |
| 1995 | 230                   | 3                     |                  |             | 231                |
| 1996 | 385                   | 3                     |                  |             | 385                |
| 1997 | 498                   | 4                     |                  |             | 499                |
| 1998 | 373                   | 6                     |                  |             | 374                |
| 1999 | 309                   | 4                     |                  |             | 309                |
| 2000 | 375                   | *                     |                  |             | *                  |
| 2001 | 473                   |                       | *                |             | *                  |
| 2002 | 269                   |                       |                  |             | 269                |
| 2003 | 385                   | *                     |                  | *           | *                  |
| 2004 | 450                   | *                     |                  |             | *                  |
| 2005 | 383                   |                       |                  |             | 383                |
| 2006 | 368                   |                       |                  |             | 368                |
| 2007 | 413                   |                       |                  |             | 413                |
| 2008 | 337                   |                       |                  |             | 337                |
| 2009 | 417                   |                       |                  |             | 417                |

Blank cells indicate no data exists. Any calculated or derived zeros are due to rounding of summarized data to less than half of the unit shown.

Source: PacFIN, extracted Aug. 12, 2010.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line (troll and baitboat) fishery were used.

Only fish tickets where at least 1 lb of swordfish or any HMS shark was landed for the drift gillnet fishery were used.

Only fish tickets where at least 1 lb of any highly migratory species (except striped marlin) was landed for the pelagic longline fishery were used.

Only fish tickets where at least 1 lb of any HMS tuna was landed for the purse seine fishery were used. Aquaculture fish ticket/fish ticket line info is excluded.

Table 4–55. Number of vessels with commercial HMS landings in Washington by fishery (HMS gear & species), 1981-2009.

|      | Albacore              | HMS Species | Any         |
|------|-----------------------|-------------|-------------|
| Year | Surface Hook-and-Line | Longline    | HMS Fishery |
| 1981 | 251                   |             | 251         |
| 1982 | 61                    |             | 61          |
| 1983 | 157                   |             | 157         |
| 1984 | 45                    |             | 45          |
| 1985 | 32                    | 6           | 38          |
| 1986 | 47                    | *           | *           |
| 1987 | 89                    | *           | *           |
| 1988 | 223                   | *           | *           |
| 1989 | 77                    |             | 77          |
| 1990 | 103                   |             | 103         |
| 1991 | 42                    | *           | *           |
| 1992 | 229                   | *           | *           |
| 1993 | 208                   |             | 208         |
| 1994 | 265                   |             | 265         |
| 1995 | 207                   |             | 207         |
| 1996 | 215                   | *           | *           |
| 1997 | 247                   |             | 247         |
| 1998 | 220                   | *           | *           |
| 1999 | 187                   |             | 187         |
| 2000 | 179                   | *           | *           |
| 2001 | 205                   | *           | *           |
| 2002 | 241                   | *           | *           |
| 2003 | 325                   |             | 325         |
| 2004 | 301                   | *           | *           |
| 2005 | 225                   |             | 225         |
| 2006 | 313                   |             | 313         |
| 2007 | 221                   |             | 221         |
| 2008 | 225                   |             | 225         |
| 2009 | 272                   |             | 272         |

Blank cells indicate no data exists. Any calculated or derived zeros are due to rounding of summarized data to less than half of the unit shown.

Source: PacFIN, extracted Aug. 12, 2010.

Additional processing info:

Only fish tickets where at least 1 lb of albacore was landed for the albacore surface hook-and-line (troll and baitboat) fishery were used.

Only fish tickets where at least 1 lb of any highly migratory species (except striped marlin) was landed for the longline fishery were used.

| Port Group Area            | Albacore | Other<br>Tunas | Sharks | Swordfish |
|----------------------------|----------|----------------|--------|-----------|
| Puget Sound                | 172      |                |        |           |
| North Washington Coast     | 15       |                |        |           |
| South and Central WA Coast | 7,112    |                |        |           |
| Astoria                    | 1,211    |                |        |           |
| Tillamook                  | 102      |                |        |           |
| Newport                    | 2,275    |                |        |           |
| Coos Bay                   | 947      | 1              | 2      |           |
| Brookings                  | 38       |                | 2      |           |
| Crescent City              | 100      |                |        |           |
| Eureka                     | 106      |                |        |           |
| Fort Bragg                 | 12       |                |        |           |
| Bodega Bay                 | 8        |                |        |           |
| San Francisco              | 22       |                |        | 114       |
| Monterey                   | 38       |                |        |           |
| Morro Bay                  | 9        | 2              | 13     | 45        |
| Santa Barbara              | 1        | 36             | 56     | 9         |
| Los Angeles                | 90       | 437            | 18     | 46        |
| San Diego                  | 6        | 2              | 54     | 193       |
| Total                      | 12,264   | 478            | 143    | 407       |

Table 4-56. Selected West Coast HMS landings (round mt) by port group area, 2009.

| Month     | Albacore | Other<br>Tunas | Sharks | Swordfish |
|-----------|----------|----------------|--------|-----------|
| January   | 2        | 12             | 16     | 96        |
| February  |          | *              | 2      |           |
| March     | *        | *              | 4      |           |
| April     | *        | 6              | 4      | 1         |
| Мау       | *        | *              | 6      |           |
| June      | 29       | *              | 16     |           |
| July      | 3,308    | <0.5           | 17     | 9         |
| August    | 4,814    | 177            | 18     | 11        |
| September | 3,253    | 209            | 9      | 37        |
| October   | 731      | 2              | 9      | 39        |
| November  | 92       | <0.5           | 21     | 66        |
| December  | 1        | 8              | 20     | 148       |
| Total     | 12,264   | 478            | 143    | 407       |

Blank cells indicate no data exists. Any calculated or derived zeros are due to rounding of summarized data to less than half of the unit shown.

Source: PacFIN accessed August 9, 2010.

Additional processing info:

Landings in lbs are converted to round weight in mt by multiplying the landed weights by the conversion factors in each fish ticket line and then dividing by 2204.6. Aquaculture fish ticket/fish ticket line info is excluded.

#### 4.2 Recreational Fisheries

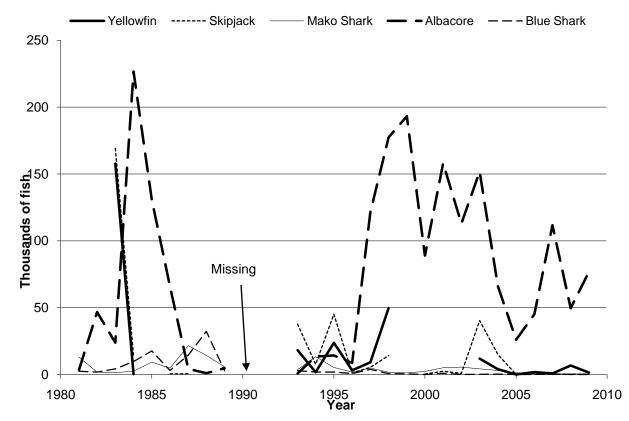



Figure 4–12. Catches by species (thousands of fish) in U.S. EEZ waters for the West Coast recreational private sport fishing fleet, 1981–2009.

**Interpretation**: Figure 4–12 shows West Coast recreational private sport fishing fleet HMS catches in U.S. EEZ waters by species, in thousands of fish. Table 4-58 shows the numeric values, with added columns for species representing negligible shares of the overall catch (i.e., bluefin tuna, bigeye tuna, swordfish, marlin, common thresher shark, and dorado).

Albacore represented the largest share of overall private sport fishing boat catch in 2009. Yellowfin tuna was the next most important historic component of the catch.

**Source and Calculations**: The data were extracted from RecFIN on August 2, 2010. The data represent thousands of fish caught for each species. Tables were created for each species by requesting "examined" and "dead" catch types (RecFIN codes A + B1) summed across the range of waves within each year from 1981 through 2009, then copied to a Microsoft Excel notebook where they were summarized. The primary source for the data was the Marine Recreational Fisheries Statistics Survey (MRFSS) survey for years 1981 through 2003 and the California Recreational Fisheries Survey (CRFS) for 2004–09. MRFSS and CRFS data are generally not comparable due to different sampling methodologies. Blank table entries represent missing values (including the years 1990–92 for which no data are available). Data for 2009 are preliminary and may be incomplete.

| Year | Yellowfin | Skipjack | Bluefin | Albacore | Bigeye<br>Tuna | Swordfish | Marlin | Mako | Common<br>Thresher | Blue<br>Shark | Dorado |
|------|-----------|----------|---------|----------|----------------|-----------|--------|------|--------------------|---------------|--------|
| 1981 |           |          |         | 3.5      |                |           |        | 13.0 |                    | 2.4           |        |
| 1982 |           |          |         | 46.7     | 2.5            | 1.2       | 0.8    | 1.9  | 2.2                | 1.8           |        |
| 1983 | 157.8     | 169.2    | 3.7     | 23.9     | 1.3            |           | 0.4    | 1.4  | 3.2                | 4.2           | 6.5    |
| 1984 | 0.3       | 14.0     | 12.3    | 226.6    | 0.6            |           | 1.2    | 2.6  | 0.8                | 9.7           | 8.9    |
| 1985 |           |          | 0.8     | 130.7    |                |           | 0.7    | 9.3  | 0.5                | 17.7          |        |
| 1986 |           | 0.5      | 0.2     | 65.8     |                |           |        | 4.8  | 1.4                | 3.0           |        |
| 1987 |           | 0.5      |         | 4.2      |                |           | 0.9    | 21.6 | 4.8                | 14.5          |        |
| 1988 |           |          |         | 1.0      |                |           | 0.8    | 14.3 | 1.4                | 32.2          |        |
| 1989 | 7.0       | 5.8      |         | 4.7      |                |           |        | 5.8  | 0.8                | 2.9           |        |
| 1990 |           |          |         |          |                |           |        |      |                    |               |        |
| 1991 |           |          |         |          |                |           |        |      |                    |               |        |
| 1992 |           |          |         |          |                |           |        |      |                    |               |        |
| 1993 | 18.2      | 37.8     | 6.5     | 0.8      |                |           | 0.3    | 3.6  | 2.7                | 2.9           | 13.3   |
| 1994 | 1.7       | 7.7      |         | 13.4     |                |           | 0.4    | 13.3 | 3.6                | 1.8           | 1.0    |
| 1995 | 23.7      | 45.2     |         | 14.3     |                |           | 0.3    | 5.3  | 2.7                | 1.9           |        |
| 1996 | 3.2       | 1.0      |         | 8.7      |                |           |        | 1.9  | 0.7                | 0.8           | 2.7    |
| 1997 | 9.2       | 5.4      | 0.1     | 121.4    |                |           | 0.4    | 4.8  | 0.5                | 3.9           | 19.8   |
| 1998 | 49.7      | 14.2     | 3.6     | 177.4    |                |           |        | 1.7  | 0.8                | 0.6           | 13.9   |
| 1999 |           |          | 1.3     | 193.2    |                |           |        | 1.3  | 1.5                | 0.5           | 1.1    |
| 2000 | 114.2     | 0.4      | 6.3     | 89.0     | 0.4            |           |        | 2.3  | 2.3                | 0.0           | 85.4   |
| 2001 |           | 2.5      | 2.9     | 158.0    |                |           | 0.5    | 5.1  | 2.2                | 0.9           |        |
| 2002 |           | 0.9      | 4.8     | 112.9    |                |           |        | 5.6  | 1.6                | 0.1           | 0.2    |
| 2003 | 11.9      | 40.4     | 0.2     | 151.8    | 0.2            |           |        | 4.2  | 2.2                | 0.2           | 0.2    |
| 2004 | 4.0       | 15.0     | 0.1     | 66.1     | 0.0            |           | 0.0    | 3.0  | 4.6                | 0.3           | 3.2    |
| 2005 | 0.1       | 0.0      | 0.3     | 26.0     |                |           | 0.0    | 1.3  | 0.3                | 0.1           | 0.2    |
| 2006 | 1.8       | 0.6      | 0.2     | 45.0     |                |           | 0.0    | 1.5  | 0.9                | 0.1           | 16.1   |
| 2007 | 0.8       | 0.1      | 0.0     | 111.7    |                | 0.0       |        | 0.7  | 1.6                | 0.4           | 0.3    |
| 2008 | 6.7       | 0.3      | 0.4     | 49.6     |                |           |        | 0.4  | 1.2                | 0.1           | 17.0   |
| 2009 | 1.5       | 0.3      | 0.2     | 76.8     |                |           | 0.0    | 0.4  | 1.7                | 0.1           | 0.7    |

Table 4–58. Catches by species (thousands of fish) in U.S. EEZ waters for the West Coast recreational private sport fishing fleet, 1981–2009.

Data were extracted from RecFin by going to the link entitled "Summarize Marine Recreational Estimates." Blank cells indicate no data exists. Any calculated or derived zeros are due to rounding of summarized data to less than half of the unit shown. No private recreational vessel catch data were available for the years 1990 to 1992. Extracted August 2, 2010.

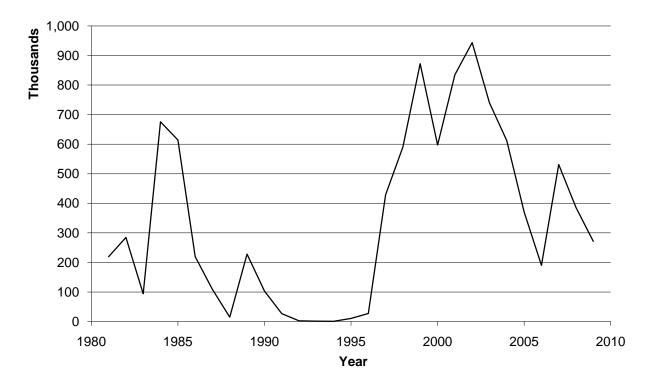



Figure 4–13. Albacore fishing hours (in thousands) for the California CPFV fleet, 1981–2009.

**Interpretation**: Figure 4–13 shows the total number of recorded hours of albacore fishing time for passengers on boats in the CPFV fleet for each year from 1981–2009 including effort in California and Mexico waters. Table 4–59 shows the numeric values which are displayed in the graph. The fishing time shows a wide range of variation over the period, from a low of 891 hours in 1994 to a high of 943,755 hours in 2002, with a steady decline from 2002 through 2006. Albacore hours for 2009 decreased to 271,175 hours, continuing to trend down from 2007 and 2008 levels.

<u>Source and Calculations</u>: The data were extracted from the CPFV logbook database, by selecting trip logs with the market code indicating albacore was caught. For the selected records, albacore hours were computed as the number of fishing hours multiplied by the number of passengers. The computed albacore hours were summarized in a Microsoft Excel notebook to produce the data shown in the graph above and in the table below.

| Year | Albacore Hours |
|------|----------------|
| 1981 | 219,274        |
| 1982 | 284,584        |
| 1983 | 94,051         |
| 1984 | 675,921        |
| 1985 | 614,060        |
| 1986 | 219,414        |
| 1987 | 108,287        |
| 1988 | 14,775         |
| 1989 | 227,960        |
| 1990 | 103,158        |
| 1991 | 26,487         |
| 1992 | 2,248          |
| 1993 | 1,458          |
| 1994 | 891            |
| 1995 | 10,464         |
| 1996 | 27,148         |
| 1997 | 429,092        |
| 1998 | 590,152        |
| 1999 | 872,207        |
| 2000 | 597,276        |
| 2001 | 835,143        |
| 2002 | 943,755        |
| 2003 | 740,230        |
| 2004 | 612,312        |
| 2005 | 370,636        |
| 2006 | 190,450        |
| 2007 | 531,004        |
| 2008 | 385,724        |
| 2009 | 271,175        |

 Table 4–59.
 Albacore fishing hours for the California CPFV fleet, 1981–2009.

Source: CPFV Logbook Database. Extracted June 28, 2010.

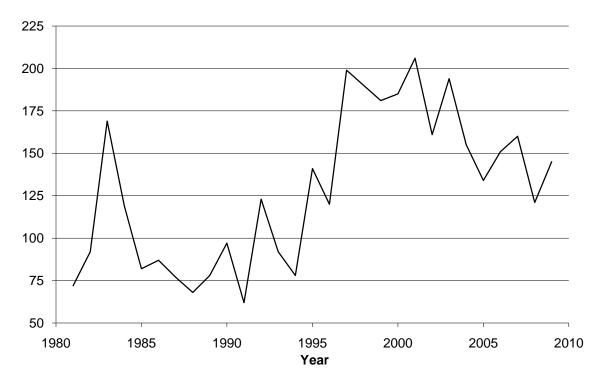



Figure 4–14. Number of CPFV vessels targeting HMS in California waters, 1981–2009.

**Interpretation:** Figure 4–14 shows the number of vessels in the California CPFV fleet which targeted HMS in California waters within each year from 1981 through 2009. The accompanying Table 4–60 displays the numeric values.

The number of vessels targeting HMS in California waters peaked at 206 in 2001 before falling to a level of 121 vessels in 2008. A slight rebound to a level of 145 vessels was seen in 2009.

<u>Source and Calculations</u>: The data were extracted from the CPFV logbook database. The raw data were copied to a Microsoft Excel notebook where they were summarized and graphed.

| Year | Vessels |
|------|---------|
| 1981 | 72      |
| 1982 | 92      |
| 1983 | 169     |
| 1984 | 119     |
| 1985 | 82      |
| 1986 | 87      |
| 1987 | 77      |
| 1988 | 68      |
| 1989 | 78      |
| 1990 | 97      |
| 1991 | 62      |
| 1992 | 123     |
| 1993 | 92      |
| 1994 | 78      |
| 1995 | 141     |
| 1996 | 120     |
| 1997 | 199     |
| 1998 | 190     |
| 1999 | 181     |
| 2000 | 185     |
| 2001 | 206     |
| 2002 | 161     |
| 2003 | 194     |
| 2004 | 155     |
| 2005 | 134     |
| 2006 | 151     |
| 2007 | 160     |
| 2008 | 121     |
| 2009 | 145     |

 Table 4–60. Number of CPFV vessels targeting HMS in California waters, 1981–2009.

Source: CPFV Logbook Database. Extracted June 28, 2010.

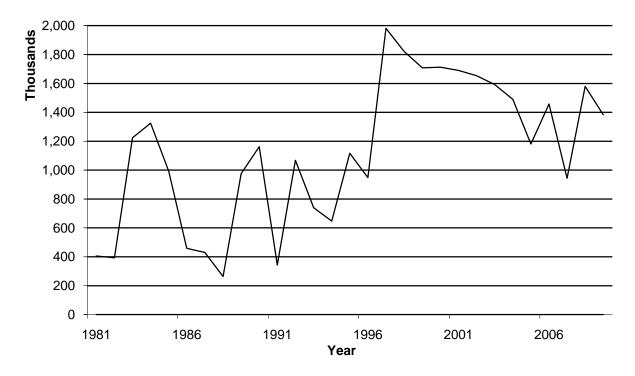



Figure 4–15. Number of angler hours (in thousands) for the California CPFV fleet, 1981–2009.

**Interpretation:** Figure 4–15 shows the number of angler hours for the California CPFV fleet which targeted HMS in each year from 1981 to 2009, including effort in California and Mexico waters. Table 4–61 displays the numeric values.

The number of angler hours shows a sizable variation over time, from as low as 263,433 in 1988 to as high as 1,982,207 in 1997. Since 1997, the number of angler hours gradually declined to a 2008 level of about 900,000 hours but subsequently rebounded to levels above 1,000,000 hours in 2008 and 2009.

**Source and Calculations**: The data were extracted from the CPFV logbook database. The raw data were copied to a Microsoft Excel notebook where they were summarized and graphed.

| Year | Angler Hours |
|------|--------------|
| 1981 | 406,100      |
| 1982 | 393,620      |
| 1983 | 1,224,248    |
| 1984 | 1,324,407    |
| 1985 | 993,614      |
| 1986 | 458,523      |
| 1987 | 430,448      |
| 1988 | 263,433      |
| 1989 | 975,549      |
| 1990 | 1,162,217    |
| 1991 | 343,925      |
| 1992 | 1,068,365    |
| 1993 | 740,005      |
| 1994 | 647,049      |
| 1995 | 1,116,193    |
| 1996 | 948,204      |
| 1997 | 1,982,207    |
| 1998 | 1,821,848    |
| 1999 | 1,708,633    |
| 2000 | 1,712,145    |
| 2001 | 1,690,471    |
| 2002 | 1,654,025    |
| 2003 | 1,593,126    |
| 2004 | 1,490,142    |
| 2005 | 1,180,789    |
| 2006 | 1,457,769    |
| 2007 | 943,911      |
| 2008 | 1,579,081    |
| 2009 | 1,384,082    |

 Table 4–61. Number of angler hours for the California CPFV fleet, 1981–2009.

Source: CPFV Logbook Database. Extracted June 28, 2010.

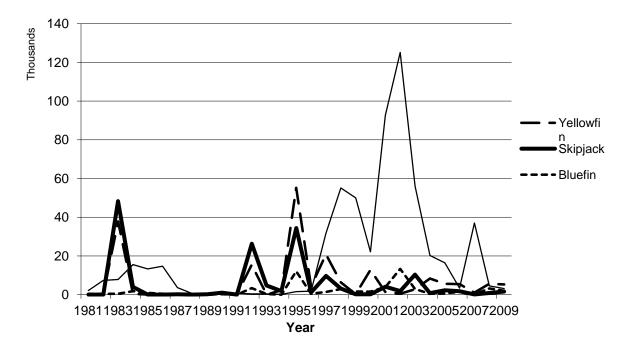
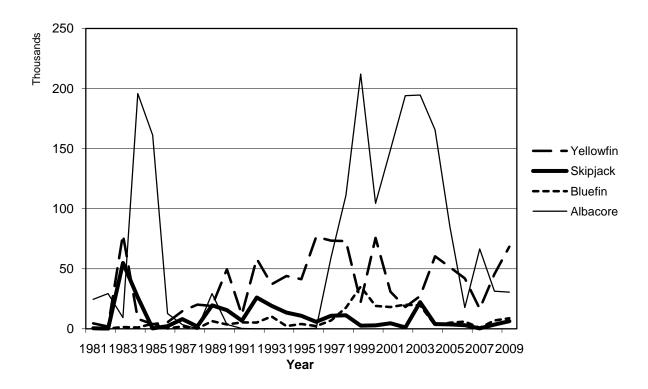



Figure 4–16. Catch in number of fish by species for the California CPFV fleet in California waters, 1981–2009.

**Interpretation**: Figure 4–16 shows California CPFV fleet HMS catches by species which were caught in California waters. The graph only displays the four most important constituents of the catch, all of which are tuna species.

Table 4–62, shown below, displays the numeric values, with added columns for species representing minor shares of the overall catch (i.e., bluefin tuna, bigeye tuna, swordfish, marlin, mako shark, thresher shark, blue shark, and dorado). The table displays catch data for California CPFVs fishing in California waters.

The principal species targeted are the tunas, with albacore of increasing importance relative to other species of tuna in recent years; however, in 2008-2009 the number of albacore caught in California waters dropped to a level below the numbers of yellowfin tuna which were caught. Blue shark was the most important shark species in the catch from the late 1980s through the early 1990s, but its share of the catch has declined to below that of shortfin mako and thresher shark in recent periods.


<u>Source and Calculations</u>: The data were extracted from the CPFV logbook database. Blank table entries represent year / species combinations for which no catch was recorded.

| Year | Yellowfin | Skipjack | Bluefin | Albacore | Bigeye | Swordfish | Marlin | Mako | Thresher | Blue Shark | Dorado |
|------|-----------|----------|---------|----------|--------|-----------|--------|------|----------|------------|--------|
| 1981 | 81        | 17       | 419     | 2,127    | 25     |           | 37     | 34   | 7        | 100        | 35     |
| 1982 | 129       | 8        | 392     | 7,352    | 9      |           | 13     | 18   | 36       | 83         |        |
| 1983 | 37,816    | 48,254   | 443     | 7,833    | 176    |           | 28     | 28   | 136      | 22         | 1,258  |
| 1984 | 421       | 3,993    | 1,765   | 15,527   | 26     | 2         | 9      | 49   | 16       | 35         | 527    |
| 1985 | 43        | 40       | 850     | 13,309   |        |           | 7      | 18   | 29       | 19         | 5      |
| 1986 |           |          | 443     | 14,706   | 37     |           | 13     | 58   | 13       | 217        | 11     |
| 1987 | 1         | 167      | 5       | 3,580    | 7      |           | 8      | 296  | 15       | 645        |        |
| 1988 | 9         | 2        | 147     | 547      | 2      | 2         | 2      | 115  | 15       | 882        | 1      |
| 1989 | 17        | 165      | 88      | 367      | 2      |           | 7      | 302  | 45       | 4,469      | 1      |
| 1990 | 216       | 1,008    | 198     | 275      | 5      |           | 7      | 231  | 51       | 2,675      | 7,147  |
| 1991 | 60        | 18       |         | 741      |        |           | 1      | 129  | 50       | 5,802      |        |
| 1992 | 15,457    | 26,326   | 3,325   | 379      | 7      |           | 12     | 130  | 29       | 1,109      | 1,912  |
| 1993 | 73        | 4,743    | 316     | 393      |        | 3         | 1      | 297  | 163      | 694        | 707    |
| 1994 | 2,285     | 1,797    | 10      | 171      |        |           | 5      | 269  | 30       | 497        | 64     |
| 1995 | 55,205    | 34,368   | 12,062  | 1,554    | 11     | 1         | 21     | 161  | 59       | 521        | 1,354  |
| 1996 | 4,203     | 1,199    | 439     | 1,826    |        |           | 5      | 237  | 31       | 439        | 646    |
| 1997 | 20,838    | 9,694    | 1,354   | 31,685   | 33     |           | 12     | 356  | 47       | 500        | 5,715  |
| 1998 | 6,339     | 3,162    | 2,828   | 55,065   | 27     |           | 6      | 150  | 28       | 94         | 378    |
| 1999 | 230       | 171      | 1,623   | 49,954   | 14     |           | 1      | 70   | 47       | 150        | 392    |
| 2000 | 12,786    | 190      | 1,562   | 22,150   | 60     |           | 2      | 83   | 40       | 149        | 4,343  |
| 2001 | 1,385     | 4,080    | 3,829   | 92,519   | 2      | 1         |        | 193  | 14       | 140        | 755    |
| 2002 | 509       | 1,817    | 13,245  | 125,138  | 2      | 2         | 2      | 189  | 11       | 15         | 298    |
| 2003 | 2,788     | 10,363   | 2,858   | 56,004   |        |           |        | 79   | 26       | 47         | 74     |
| 2004 | 8,330     | 735      | 485     | 20,197   | 63     | 2         | 1      | 250  | 18       | 6          | 671    |
| 2005 | 5,634     | 2,224    | 723     | 16,426   | 2      |           | 4      | 121  | 23       | 26         | 668    |
| 2006 | 5,407     | 1,765    | 1,349   | 3,402    | 4      | 3         | 2      | 178  | 27       | 18         | 11,329 |
| 2007 | 1,083     | 67       | 176     | 36,974   |        |           | 93     | 108  | 40       | 19         | 72     |
| 2008 | 5,597     | 821      | 3,158   | 4,530    |        | 2         | 1      | 77   | 45       | 17         | 5,621  |
| 2009 | 5,300     | 1,611    | 1,944   | 3,141    |        |           | 4      | 43   | 39       | 11         | 1,289  |

Table 4–62. Catch in number of fish by species for the California Commercial Passenger Fishing Vessel fleet in California waters, 1981–2009.

Blank cells indicate no data exists. Any calculated or derived zeros are due to rounding of summarized data to less than half of the unit shown.

Source: CPFV Logbook Database, extracted June 28, 2010.



#### Figure 4–17. Catch in number of fish by species for the California CPFV fleet in Mexico waters, 1981–2009.

**Interpretation**: Figure 4–17 shows California CPFV fleet HMS catches by species which were caught in Mexico waters. The graph only displays the four most important constituents of the catch, all of which are tuna species.

Table 4–63, shown below, displays the numeric values, with added columns for species representing minor shares of the overall catch (i.e., bluefin tuna, bigeye tuna, marlin, mako shark, thresher shark, blue shark, and dorado). The table displays catch data for California CPFVs fishing in Mexico waters. For several species (e.g., dorado and the tunas), recent catch in Mexico waters far exceeds that taken in California waters for the CPFV fleet.

Albacore was an increasingly important component of the catch relative to other species of tuna in recent years; however, in 2008-2009 the number of albacore caught was exceeded by the number of yellowfin tuna caught.

<u>Source and Calculations</u>: The data were extracted from the CPFV logbook database. Blank table entries represent year / species combinations for which no catch was recorded.

|      | Yellowfin | Skipjack | Bluefin | Albacore | Bigeye | Swordfish | Str Marlin | Mako Shk | Thresher | Blue Shk | Dorado |
|------|-----------|----------|---------|----------|--------|-----------|------------|----------|----------|----------|--------|
| 1981 | 4,478     | 418      | 123     | 24,521   | 217    | 1         | 30         | 3        |          | 1        | 1,246  |
| 1982 | 1,906     | 24       | 273     | 29,338   | 129    |           | 20         | 8        |          | 2        | 1,099  |
| 1983 | 78,482    | 54,786   | 1,469   | 9,328    | 2,077  |           | 37         | 1        |          | 6        | 3,734  |
| 1984 | 8,227     | 26,364   | 1,069   | 195,758  | 511    |           | 278        | 13       |          |          | 6,005  |
| 1985 | 3,882     | 317      | 4,298   | 161,194  | 659    |           | 64         | 8        |          | 1        | 1,357  |
| 1986 | 5,505     | 2,249    | 250     | 12,616   | 1,478  |           | 30         | 8        |          | 2        | 1,855  |
| 1987 | 14,796    | 8,038    | 1,946   | 3,466    | 628    |           | 160        | 8        |          | 6        | 3,518  |
| 1988 | 20,056    | 1,896    | 183     | 12       | 426    |           | 132        | 17       |          | 62       | 3,348  |
| 1989 | 19,059    | 19,571   | 6,431   | 29,361   | 42     |           | 33         | 8        | 1        | 6        | 2,340  |
| 1990 | 49,524    | 15,523   | 3,558   | 3,568    | 2,191  |           | 101        | 12       |          | 2        | 24,574 |
| 1991 | 11,702    | 6,788    | 5,330   | 272      | 256    |           | 11         | 10       |          |          | 1,301  |
| 1992 | 58,282    | 25,976   | 5,261   | 1        | 42     |           | 13         | 6        | 1        | 1        | 20,815 |
| 1993 | 37,069    | 19,080   | 10,219  |          | 46     |           | 29         | 11       |          | 1        | 8,245  |
| 1994 | 43,999    | 13,513   | 2,233   |          | 15     |           | 37         | 17       |          | 4        | 5,151  |
| 1995 | 41,271    | 10,904   | 3,963   | 1        | 27     |           | 18         | 17       |          | 10       | 3,971  |
| 1996 | 76,511    | 5,791    | 2,300   | 364      | 132    |           | 16         | 53       | 1        | 55       | 24,284 |
| 1997 | 73,326    | 10,804   | 6,984   | 59,529   | 253    |           | 12         | 19       | 2        | 32       | 24,162 |
| 1998 | 72,952    | 11,298   | 17,639  | 111,233  | 1,939  | 3         | 11         | 34       |          | 88       | 6,372  |
| 1999 | 22,418    | 2,632    | 35,174  | 211,947  | 1,092  | 1         | 2          | 27       |          | 72       | 3,745  |
| 2000 | 75,660    | 2,834    | 19,030  | 104,394  | 503    |           | 1          | 36       |          | 9        | 12,101 |
| 2001 | 30,925    | 4,649    | 18,078  | 148,994  | 9      |           |            | 49       |          | 72       | 3,448  |
| 2002 | 18,085    | 1,113    | 20,153  | 193,999  | 6      |           | 1          | 24       |          |          | 2,409  |
| 2003 | 27,267    | 22,189   | 19,433  | 194,549  | 66     | 2         | 4          | 37       |          |          | 3,143  |
| 2004 | 60,338    | 3,934    | 2,906   | 165,570  | 400    |           | 3          | 54       |          |          | 7,668  |
| 2005 | 51,314    | 3,682    | 5,034   | 84,657   | 37     |           | 14         | 41       |          |          | 6,033  |
| 2006 | 41,920    | 2,968    | 6,047   | 17,691   | 7      |           | 13         | 65       |          | 7        | 35,042 |
| 2007 | 16,713    | 375      | 839     | 66,459   |        |           | 1          | 27       |          |          | 6,374  |
| 2008 | 45,511    | 3,471    | 6,908   | 31,323   | 1      |           | 4          | 52       |          |          | 23,523 |
| 2009 | 68,273    | 6,328    | 8,810   | 30,463   | 4      |           | 3          | 8        |          |          | 15,727 |

 Table 4–63. Catch in number of fish by species for the California Commercial Passenger Fishing Vessel fleet in Mexico waters, 1981–2009.

Blank cells indicate no data exists. Any calculated or derived zeros are due to rounding of summarized data to less than half

of the unit shown.

Source: CPFV Logbook Database, extracted June 28, 2010.

| AGID | CATEGORY | SPID | MGRP <sup>1</sup> | DESCRIPTION                                   |
|------|----------|------|-------------------|-----------------------------------------------|
| С    | 5        | ALBC | HMSP              | TUNA, ALBACORE                                |
| 0    | 375      | ALBC | HMSP              | TUNA, ALBACORE                                |
| W    | 101      | ALBC | HMSP              | ALBACORE TUNA THUNNUS ALALUNGA                |
| С    | 1        | YTNA | HMSP              | TUNA, YELLOWFIN                               |
| 0    | 376      | YTNA | HMSP              | TUNA, YELLOWFIN                               |
| С    | 2        | STNA | HMSP              | TUNA, SKIPJACK                                |
| 0    | 372      | STNA | HMSP              | TUNA, SKIPJACK                                |
| W    | 104      | STNA | HMSP              | SKIPJACK TUNA                                 |
| С    | 8        | ETNA | HMSP              | TUNA, BIGEYE                                  |
| 0    | 377      | ETNA | HMSP              | TUNA, BIGEYE                                  |
| С    | 4        | BTNA | HMSP              | TUNA, BLUEFIN                                 |
| 0    | 378      | BTNA | HMSP              | TUNA, BLUEFIN                                 |
| W    | 102      | BTNA | HMSP              | BLUEFIN TUNA (THUNNUS THYNNUS)                |
| С    | 6        | UTNA | HMSP              | TUNA, UNSPECIFIED                             |
| С    | 91       | SWRD | HMSP              | SWORDFISH                                     |
| 0    | 385      | SWRD | HMSP              | SWORDFISH                                     |
| W    | 106      | SWRD | HMSP              |                                               |
| С    | 155      | TSRK | HMSP              | SHARK, COMMON THRESHER                        |
| 0    | 023      | TSRK | HMSP              | SHARK, THRESHER                               |
| W    | 287      | TSRK | HMSP              | THRESHER SHARK ALOPIUS VULPINUS               |
| W    | 387      |      |                   | THRESHER SHARK (REDUCTION) ALOPIUS VULPINUS   |
| W    | 487      | TSRK | HMSP              | THRESHER SHARK (ANIMAL FOOD) ALOPIUS VULPINUS |
| С    | 98       | PSRK | HMSP              | SHARK, PELAGIC THRESHER                       |
| С    | 97       | ISRK | HMSP              | SHARK, BIGEYE THRESHER                        |
| С    | 151      | MAKO | HMSP              | SHARK, BONITO (MAKO)                          |
| 0    | 026      | MAKO | HMSP              | SHARK, SHORTFIN MAKO                          |
| С    | 167      | BSRK | HMSP              | SHARK, BLUE                                   |
| 0    | 031      | BSRK | HMSP              | SHARK, BLUE                                   |
| W    | 282      | BSRK | HMSP              | BLUE SHARK PRIONACE GLAUCA                    |
| W    | 382      | BSRK | HMSP              | BLUE SHARK (REDUCTION) PRIONACE GLAUCA        |
| W    | 482      | BSRK | HMSP              | BLUE SHARK (ANIMAL FOOD) PRIONACE GLAUCA      |
| С    | 481      | DRDO | HMSP              | DOLPHINFISH                                   |
| 0    | 292      | DRDO | HMSP              | DOLPHINFISH                                   |

Table 4-64. PacFIN species codes used to extract commercial fisheries data for this HMS SAFE report.

AGID = agency id (C=CDFG, O=ODFW, W=WDFW) CATEGORY = state species character code SPID = PacFIN species ID MGRP = PacFIN species management group DESCRIPTION = state species description

<sup>1</sup>PacFIN species codes in the HMSP management group that are not used include: C 92 MRLN HMSP MARLIN, STRIPED

O 388 MRLN HMSP MARLIN, STRIPED

| AGID  | GEAR          | GRID    | GRGROUP    | DESCRIPTION        |
|-------|---------------|---------|------------|--------------------|
| SUDE  |               |         |            |                    |
|       |               | •       | •          |                    |
| С     | 001           | POL     | HKL        |                    |
| С     | 002           | POL     | HKL        |                    |
| С     | 006           | POL     | HKL        | JIG (ALBACORE)     |
| С     | 007           | TRL     | TLS        | TROLL (ALBACORE)   |
| С     | 009           | TRL     | TLS        | TROLL, (SALMON)    |
| 0     | 120           | TRL     | TLS        | OCEAN TROLL        |
| 0     | 170           | POL     | HKL        | TUNA BAITBOAT      |
| W     | 41            | TRL     | TLS        | TROLL (SALMON)     |
| DRIFT | GILLNET (SWO  | ORDFISH | I & SHARK) |                    |
| С     | 065           | DGN     | NET        | GILL NET, DRIFT    |
| 0     | 140           | GLN     | NET        | OCEAN GILLNET      |
| HARP  |               |         |            |                    |
| C     |               | OTU     | MSC        |                    |
| C     | 012           | OTH     | MSC        | HARPOON/SPEAR      |
| LONG  | LINE (HMS)    |         |            |                    |
| С     | 005           | LGL     | HKL        | LONG LINE, SET     |
| 0     | 150           | LGL     | HKL        | PELAGIC LONGLINE   |
| W     | 43            | LGL     | HKL        | SET LINE/LONG LINE |
|       |               | 、       |            |                    |
|       | E SEINE (TUNA |         |            |                    |
| С     | 070           | SEN     | NET        | ENCIRCLING NETS    |
| С     | 071           | SEN     | NET        | PURSE SEINE        |
| С     | 073           | SEN     | NET        | DRUM PURSE SEINE   |
| С     | 075           | SEN     | NET        | LAMPARA NET        |
| 0     | 160           | SEN     | NET        | TUNA SEINE         |

 Table 4-65. PacFIN gear codes used to extract commercial fisheries data for this HMS SAFE report.

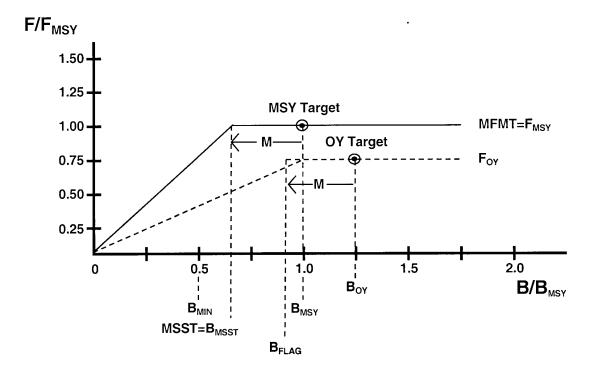
AGID = agency id (C=CDFG, O=ODFW, W=WDFW) GEAR = state gear character code GRID = PacFIN gear ID GRGROUP = PacFIN gear group DESCRIPTION = state gear description

## 5.0 UPDATED STATUS OF THE HIGHLY MIGRATORY SPECIES MANAGEMENT UNIT SPECIES

This chapter contains a brief review of the stock status for each species with respect to the Counciladopted Control Rules. Section 5.1 summarizes the adopted Control Rules and the Status Determination Criteria. In Section 5.2, a table of the recent and upcoming assessment efforts of various international scientific bodies responsible for assessing several of the stocks is presented. Section 5.3 contains summaries or excerpts from the results of stock assessments conducted in 2009. Stock structure is not fully understood for many of the species that range throughout the Pacific, thus some assessments for WCPO populations are also included, although those populations and their fisheries are not specifically managed under the HMS FMP. The summaries are derived from the assessments or reports of working group meetings associated with the assessments and do not necessarily represent the conclusions of the Council's HMSMT or NMFS. In many cases there has been minimal outside review of the assessment. Nevertheless, they represent the best available information for those species in 2009 to compare to past and future work. A table summarizes the current stock status of the management unit species with respect to overfishing and overfished criteria. The conclusions presented in the table should be reasonably accurate, but should also be treated with caution.

Assessments of stock status always involve assumptions, use of uncertain parameters, and particular interpretations of fishery statistics. There are no universally-accepted standards by which to determine confidence for particular assessments, and "ground-truthing" (i.e., comparing assessment estimates to actual population counts) will never be possible over the broad range occupied by highly migratory species. Furthermore, for most of these species, the scientific bodies developing the assessments have not agreed upon appropriate biological reference points for use in the context of managing fisheries. Therefore, explicit definitions for both overfished and sustainable exploitation levels are not currently available.

Finally, Section 5.4 provides links to assessments that have already been produced in 2010 by the respective RFMOs so that readers can access the most recent publicly available assessments of the management unit species. These assessments will be reported on in the 2010 HMS SAFE Report (to be published in September 2011).


## 5.1 Control Rules for Management

The Control Rules and Status Determination Criteria implemented in the HMS FMP are based on the Technical Guidance for National Standard 1 of the Magnuson-Stevens Fishery Conservation and Management Act (Restrepo, et al. 1998). The following is a summary of the Control Rules for Management adopted for the HMS FMP.

In general, a default maximum sustainable yield (MSY) control rule was adopted for most MUS, with an optimum yield (OY) target control rule for the vulnerable species (Figure 5–1).

For the less vulnerable species managed under the MSY Control Rule, the minimum stock size threshold (MSST), the minimum biomass at which recovery measures are to begin, is the ratio  $B_{MSST}/B_{MSY}$ . It specifies a lower biomass level that allows remedial action not to be triggered each time B drops below  $B_{MSY}$ , simply from natural variation. In terms of  $B_{MSY}$  the recommended level of  $B_{MSST}$  is:

| $B_{MSST} = (1-M)B_{MSY}$ | when M (natural mortality) $\leq 0.5$ , and |
|---------------------------|---------------------------------------------|
| $B_{MSST} = 0.5 B_{MSY}$  | when $M > 0.5$                              |



(i.e., whichever is greater).  $B_{MSST}$  must not be less than  $B_{MIN} = 0.5B_{MSY}$  and should allow recovery back to  $B_{MSY}$  within 10 years when F (fishing mortality) is reduced to zero (to the extent possible).

Figure 5-1. General model of MSY and OY Control Rules, from Restrepo, et al. 1998.

For the vulnerable species, which in this FMP includes the pelagic sharks, bluefin tuna, and striped marlin, there is a Minimum Biomass Flag ( $B_{FLAG}$ ) for the OY Control Rule equal to (1-M) $B_{OY}$  or 0.5 $B_{OY}$  (whichever is greater).  $B_{FLAG}$ , which would then be equivalent to 1.25( $B_{MSST}/B_{MSY}$ ), serves as a warning call to halt biomass reduction that would jeopardize obtaining OY (which is defined as MSY reduced by relevant socioeconomic factors, ecological considerations, and fishery-biological constraints so as to provide the greatest long-term benefits to the Nation) on average. In this FMP, the OY for vulnerable species is set at 0.75MSY (or MSY proxy), and any harvest guideline is set equal to OY.

Rebuilding of overfished stocks is a unilateral requirement by the Magnuson-Stevens Act (MSA), but internationally-fished stocks require cooperative catch reductions among the fishing nations for this rebuilding to be effective. U.S. responsibility in the rebuilding, however, will be greater the more localized the stock and the greater the domestic take of the stock's production.

Under the Magnuson-Stevens Reauthorization Act of 2006, the National Standard 1 guidelines have been revised regarding establishing annual catch limits (ACLs) and control rules. In 2009, the Council began considering a framework process under the HMS FMP to meet the new NS1 Guidelines. Implementation of the new framework is expected in 2011 and will be reported on in the 2010 HMS SAFE document.

| TUNAS<br>Albacore (NPO)2006 (2011)ISC (ISC)Bluefin (NPO)2008 (2012)ISC (ISC)Bigeye (EPO)2009 (2010)IATTC (IATTC)Bigeye (WCPO)2009 (2010)IATTC (IATTC)Skipjack (EPO)2009 (2010)IATTC (IATTC)Skipjack (WCPO)2009 (2010)IATTC (IATTC)Yellowfin (EPO)2009 (2010)IATTC (IATTC)Yellowfin (WCPO)2009 (2010)IATTC (IATTC)Striped Marlin (EPO)2003 (2010)IATTC (IATTC)Striped Marlin (NPO)2007 (2011)ISC (ISC)Swordfish (SEPO)2006IATTCSwordfish (NPO)2009 (2012)ISC (ISC)Swordfish (NPO)2009 (2012)ISC (ISC)Shortfin MakoBlue (NPO)2001Blue (NPO)2009NMFS and NRIFSF JapanOTHER<br>Dorado (EPO)2009NMFS and NRIFSF Japan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Species (Stock)  | Date (Next Anticipated)               | Organization Responsible for the Assessment |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------|---------------------------------------------|
| Albacore (NPO)       2006 (2011)       ISC (ISC)         Bluefin (NPO)       2008 (2012)       ISC (ISC)         Bigeye (EPO)       2009 (2010)       IATTC (IATTC)         Bigeye (WCPO)       2009 (2010)       WCPFC (WCPFC)         Skipjack (EPO)       2009 (2010)       IATTC (IATTC)         Skipjack (WCPO)       2008 (2010)       IATTC (IATTC)         Skipjack (WCPO)       2009 (2010)       IATTC (IATTC)         Yellowfin (EPO)       2009 (2011)       WCPFC (WCPFC)         Yellowfin (WCPO)       2009 (2011)       WCPFC (WCPFC)         BILLFISHES       Striped Marlin (EPO)       2003 (2010)       IATTC (IATTC)         Striped Marlin (NPO)       2007 (2011)       ISC (ISC)         Swordfish (SEPO)       2006       IATTC         Swordfish (NPO)       2009 (2012)       ISC (ISC)         SharkKS       Common Thresher (WA/OR/CA EEZ)       2001       NMFS         Pelagic Thresher       Sigeye Thresher       Shortfin Mako       June         Blue (NPO)       2009       2009       NMFS and NRIFSF Japan         OTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TUNAS            |                                       |                                             |
| Bigeye (EPO)2009 (2010)IATTC (IATTC)Bigeye (WCPO)2009 (2010)WCPFC (WCPFC)Skipjack (EPO)2009 (2010)IATTC (IATTC)Skipjack (WCPO)2008 (2010)WCPFC (WCPFC)Yellowfin (EPO)2009 (2010)IATTC (IATTC)Yellowfin (WCPO)2009 (2011)WCPFC (WCPFC)BILLFISHESStriped Marlin (EPO)2003 (2010)IATTC (IATTC)Striped Marlin (NPO)2007 (2011)ISC (ISC)Swordfish (SEPO)2006IATTCSwordfish (NPO)2009 (2012)ISC (ISC)SHARKSCommon Thresher (WA/OR/CA EEZ)2001NMFSPelagic ThresherBigeye ThresherShortfin MakoBiue (NPO)20092009NMFS and NRIFSF JapanOTHER2009NMFS and NRIFSF Japan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 2006 (2011)                           | ISC (ISC)                                   |
| Bigeye (WCPO)2009 (2010)WCPFC (WCPFC)Skipjack (EPO)2009 (2010)IATTC (IATTC)Skipjack (WCPO)2008 (2010)WCPFC (WCPFC)Yellowfin (EPO)2009 (2010)IATTC (IATTC)Yellowfin (WCPO)2009 (2011)WCPFC (WCPFC)BILLFISHESStriped Marlin (EPO)2003 (2010)IATTC (IATTC)Striped Marlin (EPO)2003 (2010)IATTC (IATTC)Striped Marlin (NPO)2007 (2011)ISC (ISC)Swordfish (SEPO)2006IATTCSwordfish (NPO)2009 (2012)ISC (ISC)SHARKS2009 (2012)ISC (ISC)Pelagic Thresher2001NMFSBigeye ThresherShortfin MakoBlue (NPO)20092009OTHER2009NMFS and NRIFSF Japan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bluefin (NPO)    | 2008 (2012)                           | ISC (ISC)                                   |
| Skipjack (EPO)2009 (2010)IATTC (IATTC)Skipjack (WCPO)2008 (2010)WCPFC (WCPFC)Yellowfin (EPO)2009 (2010)IATTC (IATTC)Yellowfin (WCPO)2009 (2011)WCPFC (WCPFC)BILLFISHESStriped Marlin (EPO)2003 (2010)IATTC (IATTC)Striped Marlin (NPO)2007 (2011)ISC (ISC)Swordfish (SEPO)2006IATTCSwordfish (NPO)2009 (2012)ISC (ISC)SHARKSCommon Thresher (WA/OR/CA EEZ)2001NMFSPelagic ThresherBigeye ThresherShortfin MakoBlue (NPO)20092009NMFS and NRIFSF JapanOTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bigeye (EPO)     | 2009 (2010)                           | IATTC (IATTC)                               |
| Skipjack (WCPO)2008 (2010)WCPFC (WCPFC)Yellowfin (EPO)2009 (2010)IATTC (IATTC)Yellowfin (WCPO)2009 (2011)WCPFC (WCPFC)BILLFISHESStriped Marlin (EPO)2003 (2010)IATTC (IATTC)Striped Marlin (NPO)2007 (2011)ISC (ISC)Swordfish (SEPO)2006IATTCSwordfish (NPO)2009 (2012)ISC (ISC)Swordfish (NPO)2009 (2012)ISC (ISC)Shortfish (NPO)2001NMFSPelagic Thresher2001NMFSBigeye ThresherShortfin MakoBlue (NPO)20092009OTHERLatterLatter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bigeye (WCPO)    | 2009 (2010)                           | WCPFC (WCPFC)                               |
| Yellowfin (EPO)2009 (2010)IATTC (IATTC)Yellowfin (WCPO)2009 (2011)WCPFC (WCPFC)BILLFISHESStriped Marlin (EPO)2003 (2010)IATTC (IATTC)Striped Marlin (NPO)2007 (2011)ISC (ISC)Swordfish (SEPO)2006IATTCSwordfish (NPO)2009 (2012)ISC (ISC)SHARKS2009 (2012)ISC (ISC)Pelagic Thresher2001NMFSBigeye ThresherShortfin MakoBlue (NPO)20092009OTHERLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Skipjack (EPO)   | 2009 (2010)                           | IATTC (IATTC)                               |
| Yellowfin (WCPO)2009 (2011)WCPFC (WCPFC)BILLFISHESStriped Marlin (EPO)2003 (2010)IATTC (IATTC)Striped Marlin (NPO)2007 (2011)ISC (ISC)Swordfish (SEPO)2006IATTCSwordfish (NPO)2009 (2012)ISC (ISC)SHARKS2009 (2012)ISC (ISC)Common Thresher (WA/OR/CA EEZ)2001NMFSPelagic ThresherShortfin MakoJune 2009Blue (NPO)20092009NMFS and NRIFSF JapanOTHERLine (NPO)2009NMFS and NRIFSF Japan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Skipjack (WCPO)  | 2008 (2010)                           | WCPFC (WCPFC)                               |
| BILLFISHESStriped Marlin (EPO)2003 (2010)IATTC (IATTC)Striped Marlin (NPO)2007 (2011)ISC (ISC)Swordfish (SEPO)2006IATTCSwordfish (NPO)2009 (2012)ISC (ISC)SHARKS2009 (2012)ISC (ISC)SHARKS2001NMFSPelagic Thresher2001NMFSBigeye Thresher20092009Shortfin Mako2009NMFS and NRIFSF JapanOTHERImage: Stript St | Yellowfin (EPO)  | 2009 (2010)                           | IATTC (IATTC)                               |
| Striped Marlin (EPO)2003 (2010)IATTC (IATTC)Striped Marlin (NPO)2007 (2011)ISC (ISC)Swordfish (SEPO)2006IATTCSwordfish (NPO)2009 (2012)ISC (ISC)SHARKS<br>Common Thresher (WA/OR/CA EEZ)2001NMFSPelagic Thresher<br>Bigeye Thresher<br>Shortfin Mako<br>Blue (NPO)20092009OTHER2009NMFS and NRIFSF Japan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yellowfin (WCPO) | 2009 (2011)                           | WCPFC (WCPFC)                               |
| Striped Marlin (EPO)2003 (2010)IATTC (IATTC)Striped Marlin (NPO)2007 (2011)ISC (ISC)Swordfish (SEPO)2006IATTCSwordfish (NPO)2009 (2012)ISC (ISC)SHARKS<br>Common Thresher (WA/OR/CA EEZ)2001NMFSPelagic Thresher<br>Bigeye Thresher<br>Shortfin Mako<br>Blue (NPO)20092009OTHER2009NMFS and NRIFSF Japan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BILLFISHES       |                                       |                                             |
| Striped Marlin (NPO)2007 (2011)ISC (ISC)Swordfish (SEPO)2006IATTCSwordfish (NPO)2009 (2012)ISC (ISC)SHARKS<br>Common Thresher (WA/OR/CA EEZ)2001NMFSPelagic Thresher<br>Bigeye Thresher<br>Shortfin Mako<br>Blue (NPO)2009NMFS and NRIFSF JapanOTHER2009NMFS and NRIFSF Japan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | 2003 (2010)                           | IATTC (IATTC)                               |
| Swordfish (SEPO)2006IATTCSwordfish (NPO)2009 (2012)ISC (ISC)SHARKS<br>Common Thresher (WA/OR/CA EEZ)2001NMFSPelagic Thresher<br>Bigeye Thresher<br>Shortfin Mako<br>Blue (NPO)2009NMFS and NRIFSF JapanOTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | · · · · · · · · · · · · · · · · · · · |                                             |
| SHARKS<br>Common Thresher (WA/OR/CA EEZ)2001NMFSPelagic Thresher<br>Bigeye Thresher<br>Shortfin Mako<br>Blue (NPO)2009NMFS and NRIFSF JapanOTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                | · · · · · · · · · · · · · · · · · · · |                                             |
| Common Thresher (WA/OR/CA EEZ)2001NMFSPelagic ThresherBigeye ThresherShortfin MakoBlue (NPO)2009OTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Swordfish (NPO)  | 2009 (2012)                           | ISC (ISC)                                   |
| Common Thresher (WA/OR/CA EEZ)2001NMFSPelagic ThresherBigeye ThresherShortfin MakoBlue (NPO)2009OTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SHARKS           |                                       |                                             |
| Pelagic ThresherBigeye ThresherShortfin MakoBlue (NPO)2009NMFS and NRIFSF JapanOTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | 2001                                  | NMFS                                        |
| Bigeye Thresher         Shortfin Mako         Blue (NPO)       2009         OTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                       |                                             |
| Shortfin MakoBlue (NPO)2009OTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                |                                       |                                             |
| OTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •••              |                                       |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Blue (NPO)       | 2009                                  | NMFS and NRIFSF Japan                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OTHER            |                                       |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                                       |                                             |

#### 5.2 Recent and Projected Assessment Schedule

Note: Text in parentheses indicates the year the next assessment is anticipated and the organization expected to conduct the assessment. The acronyms listed in this table are defined near the front of this document.

#### 5.3 Conclusions from 2009 Pacific HMS stock assessments

#### 5.3.1 Bigeye Tuna

#### 5.3.1.1 Bigeye Tuna (EPO)

Stock status of bigeye tuna in the Eastern Pacific is assessed every 1–2 years by the IATTC. An updated assessment was conducted in May 2009 (Aires-da-Silva and Maunder 2009) and is based on the assumption that there is a single stock of bigeye tuna in the EPO. Below is a summary from the assessment report which can be downloaded from <u>http://www.iattc.org/PDFFiles2/SAR10c-BET-ENG.pdf</u>.

The results of the base-case stock assessment, which assumes no stock-recruitment relationship, demonstrate a trend seen in previous assessments. At the beginning of January 2009, the spawning biomass of bigeye tuna in the EPO was near the historic low level. At that time the spawning biomass ratio (the ratio of the spawning biomass at that time to that of the unfished stock; SBR) was about 0.17, which is about 11 percent less than the level corresponding to the maximum sustainable yield (MSY).

Recent catches are estimated to have been 19 percent greater than those corresponding to the MSY levels. If fishing mortality (F) is proportional to fishing effort, and the current patterns of age-specific selectivity are maintained, the level of fishing effort corresponding to the MSY is about 81 percent of the current (2006-2008) level of effort.

Catch of bigeye tuna by U.S. West Coast fisheries constitutes less than one percent of the Eastern Pacificwide catch.

#### 5.3.1.2 Bigeye Tuna (WCPO)

An updated assessment of bigeye tuna in the WCPO was conducted by the WCPFC's Scientific Committee in August 2009 (Harley et al. 2009). Below is a summary of the results excerpted from the Report of the Scientific Committee meeting. The assessment can be downloaded from http://www.wcpfc.int/system/files/documents/meetings/scientific-committee/5th-regular-session/stock-assessment-swg/working-papers/SC5-SA-WP-04% 20% 5BBET% 20Assessment% 5D.pdf

The stock status was assessed using MULTIFAN-CL. Based on several model runs selected to represent the status of bigeye tuna in the WCPO, the assessment indicates a continued decline of the WCPO bigeye stock as noted in previous assessments. Fishing mortality in relation to MSY ( $F_{current}/F_{MSY}$ ) is considerably greater than 1, ranging from 1.51–2.01 for a variety of assumptions with similar steepness (~0.98) in the stock recruitment relationship. The range of  $F_{current}/F_{MSY}$  ratios indicates that a 34–50 percent (average of 43 percent when steepness is assumed as 0.98) reduction in fishing mortality is required from the 2004–2007 level in order to reduce fishing mortality to sustainable levels. Current spawning biomass in relation to MSY indicates that the WCPO bigeye stock is not in an overfished state if the spawning biomass reference period is 2004–2007. However, if the spawning biomass period is 2008, then the bigeye stock is overfished. The bigeye stock status is concluded to be in a slightly overfished state, or will be in the near future with high levels of overfishing occurring.

#### 5.3.2 Skipjack Tuna

## 5.3.2.1 Skipjack Tuna (EPO)

Skipjack tuna is a notoriously difficult species to assess due to uncertainties about stock structure, the vulnerabilities of all age classes, and how well fishery CPUE data tracks abundance. Thus, in 2007 the IATTC developed methods to evaluate indicators of skipjack biomass, recruitment, and exploitation rate and used simple indicators of stock status based on relative values of fishery data, such as, CPUE, average weight of fish caught, and effort (Maunder and Deriso 2007). The recent report on updated stock status indicators (Maunder 2009) can be downloaded from <a href="http://iattc.org/PDFFiles2/SAR10b-SKJ.pdf">http://iattc.org/PDFFiles2/SAR10b-SKJ.pdf</a>.

The analyses showed that despite the constantly increasing exploitation rate, the data- and model-based indicators have yet to detect any adverse effects on the EPO skipjack stock. The purse-seine catch has been increasing since 1985, and is currently above the upper reference level. Except for a large peak in 1999, the floating-object CPUE has generally fluctuated around an average level since 1990. The unassociated CPUE has been higher than average since about 2003 and was at its highest level in 2008. The standardized effort indicator of exploitation rate has been increasing since about 1991, but declined in recent years. The biomass, recruitment, and exploitation rate have been increasing over the past 20 years. The average weight is near its lower reference level, which can be a consequence of overexploitation, but it can also be caused by recent recruitments being greater than past recruitments.

Catch of skipjack tuna by U.S. West Coast fisheries constitutes less than 1 percent of the Eastern Pacificwide catch.

#### 5.3.3 Yellowfin Tuna

## 5.3.3.1 Yellowfin Tuna (EPO) - update

Stock status of yellowfin tuna in the Eastern Pacific is assessed every year by the IATTC. An updated assessment was conducted in May 2009 (Maunder and Aires-da-Silva 2009) and is based on the assumption that there is a single stock of yellowfin tuna in the EPO, although it is likely that there is a continuous stock throughout the Pacific Ocean with exchange of individuals at a local level. Fishing is concentrated in the east and west, making separate consideration of the EPO stock relevant for management purposes. Below is a summary excerpted from the assessment report which can be downloaded from <a href="http://iattc.org/PDFFiles2/SAR10a-YFT-ENG.pdf">http://iattc.org/PDFFiles2/SAR10a-YFT-ENG.pdf</a>.

The assessment in 2009 was conducted using Stock Synthesis, which is a departure from the ASCALA model used previously. The base case assessment, which does not include a stock-recruitment relationship, indicates that at the beginning of 2009, the biomass of yellowfin in the EPO appears to have been above the level corresponding to the MSY, and the recent catches have been substantially below the MSY level. If the fishing mortality is proportional to the fishing effort, and the current patterns of age-specific selectivity are maintained, the current (average of 2006-2008) level of fishing effort is less than that estimated to produce the MSY. The effort at MSY is 109 percent of the current level of effort.

In general, the recruitment of yellowfin to the fisheries in the EPO is variable, with a seasonal component. This analysis and previous analyses have indicated that the yellowfin population has experienced two, or possibly three, different recruitment productivity regimes: a period of low recruitment during 1975-1982; a period of high recruitment during 1983-2002; and a period of intermediate or low recruitment during 2003–06. Larger recruitments in 2007 and 2008 have caused the biomass to increase in recent years.

Catch of yellowfin tuna by U.S. West Coast fisheries constitutes less than 1 percent of the Eastern Pacific-wide catch.

## 5.3.3.2 Yellowfin Tuna (WCPO)

An updated assessment of yellowfin tuna in the WCPO was conducted by the WCPFC's Scientific Committee in August 2009 (Langley et al. 2009). Below is a summary of the results excerpted from the Report of the Scientific Committee meeting. The assessment can be downloaded from http://www.wcpfc.int/system/files/documents/meetings/scientific-committee/5th-regular-session/stock-assessment-swg/working-papers/SC5-SA-WP-03% 20% 5BYFT% 20Assessment% 20% 28rev.1% 29% 5D.pdf

The results are similar to those from the previous "Base 2007" assessment. There was a peak in the biomass during the late 1950s following the very high recruitments estimated during the preceding period. Biomass levels subsequently declined throughout the model period with the rate of the decline in biomass increasing from 1980 onwards. A comparison of the principal 2009 model options and the "Base 2007" show that the trends in biomass are generally comparable for the five model options, in particular for the two options without an increase in longline catchability.

The estimates of MSY for the four principal models are 552,000-637,000 mt and considerably higher than recent catches estimates for yellowfin (430,000 mt). The large difference between the MSY and recent catches is partly attributable to the stock assessment model incorporating the higher (preliminary) purse-seine catch estimates (representing an additional catch of approximately 100,000 mt per annum in recent years). The more optimistic models suggest that the stock could potentially support long-term average yields above the recent levels of catch. However, it is important to note that recent (1998-2007) levels of

estimated recruitment are considerably lower (80%) than the long-term average level of recruitment used to calculate the estimates of MSY. If recruitment remains at recent levels, then the overall yield from the fishery will be lower than the MSY estimates.

For a moderate value of steepness (0.75),  $F_{current}/F_{MSY}$  is estimated to be 0.54-0.68 indicating that under equilibrium conditions the stock would remain well above the level capable of producing MSY ( $B_{Fcurrent}/B_{MSY} = 1.39$ -1.59 and  $SB_{Fcurrent}/SB_{MSY} = 1.50$ -1.79), while  $B_{current}/B_{MSY}$  and  $SB_{Fcurrent}/SB_{MSY}$  are estimated to be well above 1.0 (1.41-1.67 and 1.46-1.88, respectively). For lower values of steepness (0.55 and 0.65),  $B_{current}/B_{MSY}$  and  $SB_{current}/SB_{MSY}$  were estimated to be above 1.0 for all the sensitivities considered. Most of the model options with lower values of steepness also yielded estimates of  $F_{current}/F_{MSY}$  below 1.0; however, the  $F_{MSY}$  reference point was approached or slightly exceeded for a subset of the model options that included the lowest value of steepness (0.55) in combination with a number of other factors.

#### 5.3.4 Striped Marlin

## 5.3.4.1 Striped Marlin (EPO)

In 2009, the IATTC conducted analyses of stock status for striped marlin in the EPO based prior assessment results, and on catch and effort data through 2007 (Hinton 2009). Below is a summary excerpted from the report which can be downloaded from <u>http://iattc.org/PDFFiles2/SAR-10d-MLS-ENG.pdf</u>.

The stock structure of striped marlin in the Pacific is uncertain. Recent analyses have considered all catch and effort in the EPO IATTC Convention area. Analyses of stock status have been made using a number of population dynamics models (Hinton and Maunder 2004). The results from these analyses indicated that striped marlin in the EPO was at or above the level expected to provide landings at the MSY level, estimated at about 3300 to 3800 mt. The estimated MSY is substantially greater than the annual catch in recent years and the new record low estimated catch of about 1,400 mt in 2007. There is no indication of increasing fishing effort or catches in the EPO stock area. Based on the findings of Hinton and Maunder (2004), new information, and recent observations of catch and fishing effort presented, it is considered that the striped marlin stocks in the EPO are in good condition, with current and near-term anticipated fishing effort less than the fishing effort at MSY ( $F_{MSY}$ ).

Catch of striped marlin by U.S. West Coast fisheries constitutes about two percent of the Eastern Pacificwide catch.

## 5.3.5 Swordfish

## 5.3.5.1 Swordfish (NPO)

The status and stock structure of NPO swordfish was assessed by the ISC Billfish Working Group in 2009 and was finalized at the 2009 ISC Plenary meeting (ISC 2009). Below is a summary of the assessment results. The full assessment report can be downloaded from http://isc.ac.affrc.go.jp/pdf/ISC9pdf/Annex 7 ISC9 BILLWG May09.pdf.

Modeling based on two stock structure hypotheses was conducted: 1) a single NPO swordfish stock north of the equator; and 2) and two stocks separated by an irregular boundary extending from Mexico to the southwest and including sections of the eastern South Pacific extending to 20°S latitude. Available evidence currently favors the two-stock hypothesis; consequently, the participants concentrated on interpreting results with that scenario although results based on a single NP stock were similar. A number

of stock assessment models were run; however, because analyses using the SS3 model were not completed for the two stock hypothesis, interpretation of results for stock status and conservation advice are based on information from Bayesian Surplus Production analysis only.

Results indicate that the exploitable biomass of swordfish for the Western North Pacific stock has fluctuated above the  $B_{MSY}$  level ( $B_{MSY} = 57,300 \text{ mt} \pm 11,800 \text{ mt}$  and  $MSY = 14,400 \text{ mt} \pm 2,000 \text{ mt}$ ) in most years used in the analysis (1951-2006). Biomass fell below  $B_{MSY}$  for some years in the 1990's but has been above  $B_{MSY}$  in the most recent 5 years (2002-2006). The exploitation rate for the Western North Pacific stock has fluctuated during the period 1951-2006, but has remained below the level required for MSY (harvest rate of swordfish relative to harvest rate at maximum sustainable yield,  $H_{MSY} = 26.2\% \pm 6.2\%$ ). The probability that the exploitation rate in 2006 exceeded the exploitation rate at MSY is low at 1 percent. Projecting exploitable biomass through 2010 by assuming (1) a constant 3-year (2004-2006) average exploitation rate for the fishery and (2) fishing operations largely remaining unchanged results in exploitable biomass levels above  $B_{MSY}$  and sufficient to sustain recent levels of catch. In short, the Western North Pacific stock of swordfish is healthy and well above the level required to sustain recent catches.

Similarly, results indicate that the exploitable biomass of swordfish for the EPO stock (north of 20 °S) has fluctuated above the  $B_{MSY}$  level (EPO  $B_{MSY} = 24,800 \text{ mt} \pm 6,900 \text{ mt}$  and  $MSY = 3,100 \text{ mt} \pm 1,400 \text{ mt}$ ) for most years. The exception was for some years in the 1950s when biomass was below the  $B_{MSY}$ . For the most recent 5 years (2002-2006), the exploitable biomass was well above the  $B_{MSY}$ . The exploitation rate during the period from 1951 to 2006 has remained well below the level required for MSY (EPO  $H_{MSY} = 12.7\% \pm 4.9\%$ ). The probability that this rate in 2006 exceeded the exploitation rate at MSY is low at 1 percent. Projecting exploitable biomass forward until 2010 by assuming (1) a constant 3-year (2004-2006) average exploitation rate and (2) fishing operations unchanged from those observed in 2006 results in exploitable biomass levels above  $B_{MSY}$  which is sufficient to sustain recent levels of catch. In short, the EPO stock of swordfish is in good condition.

Catch of swordfish by U.S. West Coast fisheries constitutes about 5.5 percent of the North Pacific-wide catch.

## 5.3.6 Blue Shark

## 5.3.6.1 Blue Shark (NPO)

The NMFS Pacific Islands Fisheries Science Center (PIFSC) and Japan's National Research Institute of Far Seas Fisheries (NRIFSF) collaborated to complete a stock assessment of North Pacific blue sharks in 2009 (Kleiber et al. 2009). A summary of the results excerpted from assessment report is below. The full assessment report can be downloaded from:

http://www.pifsc.noaa.gov/tech/NOAA\_Tech\_Memo\_PIFSC\_17.pdf.

The assessment was conducted using two models, a surplus production model and an integrated age-and spatial-structured model tested with a variety of structural assumptions. Fishery catch and effort data included in the analysis were from commercial longline and large mesh driftnet fisheries from the years 1971 through 2002 as well as small mesh driftnet fisheries operating primarily in the 1980s. The two models were found to be in general agreement. The trends in abundance in the production model and all alternate runs of the integrated model show the same pattern of decline in the 1980s followed by recovery to above the level at the start of the time series. The integrated model analyses indicated some probability (around 30%) that biomass at the end of the time series was less than  $B_{\rm MSY}$  (overfished) and that there was a lesser probability at that time that fishing mortality was greater than  $F_{\rm MSY}$  (overfishing occurring). There was an increasing trend in total effort expended by longline fisheries toward the end of the time

series, and this trend may have continued thereafter. It would be prudent to assume that the population is at least close to MSY level and fishing mortality may be approaching the MSY level in the future.

# 5.4 Links to Information or Most Recent Pacific HMS Stock Assessments through August 2010.

Note that under the new Antigua Convention, the IATTC has established a Scientific Advisory Committee (SAC) to review EPO stock assessments. The first meeting of the IATTC SAC will be held August 31 - September 3, 2010. Thus, 2010 EPO assessments were not available at the time of this SAFE Report preparation,

| Species (Stock) | Organization<br>Responsible for<br>Assessment | Link to Assessment Report                                                                                                                                                                    |
|-----------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bluefin (NPO)   | ISC; update only                              | http://isc.ac.affrc.go.jp/pdf/ISC10pdf/Annex_7_ISC10_PBFWG_J<br>ul10.pdf                                                                                                                     |
| Bigeye (WCPO)   | WCPFC                                         | http://www.wcpfc.int/system/files/documents/meetings/scientific-<br>committee/6th-regular-session/stock-status-theme/working-<br>papers/WCPFC-SC6-2010-SA-WP-04_BET_Assessment.pdf           |
| Skipjack (WCPO) | WCPFC                                         | http://www.wcpfc.int/system/files/documents/meetings/scientific-<br>committee/6th-regular-session/stock-status-theme/working-<br>papers/WCPFC-SC6-2010-SA-WP-<br>11_SKJ_Assessment_Rev.1.pdf |
| Swordfish (NPO) | ISC; update for<br>EPO substock<br>only       | http://isc.ac.affrc.go.jp/pdf/BILL/BILL Apr10 FINAL WP02.pdf                                                                                                                                 |

#### Table 5-2. Recent stock status with respect to management criteria.

Note that for most of these species, the scientific bodies developing the assessments do not have a consensus biological reference point for use in the context of managing the fisheries. Levels of F and B are provided based on the most recent analyses, but in many cases the analyses have not been updated for several years. Thus, those findings should be viewed cautiously for management purposes.

| Species (stock)                                                                                           | $\frac{F_{Recent}}{F_{MSY}}^{1}$                                                           | Overfishing?<br>(F/F <sub>MSY</sub> >1.0) | $\frac{B_{Recent}}{B_{MSY}}^{\prime}$                    | $\frac{B_{MSST}}{B_{MSY}}$         | Overfished?<br>$(B_{Recent} < B_{MSST})$ | $\frac{{B_{FLAG}}^2}{(1.25 B_{MSST} / B_{MSY})}$ | Assessment                                                                       |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------|------------------------------------|------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------|
| TUNAS                                                                                                     |                                                                                            |                                           |                                                          |                                    |                                          |                                                  |                                                                                  |
| Albacore (NPO)                                                                                            | $1.67 - 2.31^3$                                                                            | Unknown <sup>3</sup>                      | Unknown <sup>3</sup>                                     | 0.7                                | Unknown <sup>3</sup>                     |                                                  | ISC 2007a                                                                        |
| Bluefin (NPO)                                                                                             | 3.33-7.14 <sup>4</sup>                                                                     | Unknown <sup>4</sup>                      | Unknown <sup>4</sup>                                     | 0.75                               | Unknown <sup>4</sup>                     | 0.94                                             | ISC 2008                                                                         |
| Bigeye (EPO)                                                                                              | $1.23^{5}$                                                                                 | Y                                         | $0.99^{5}$                                               | 0.6                                | Ν                                        |                                                  | IATTC, Aires-da-Silva and Maunder 2009                                           |
| Bigeye (WCPO)                                                                                             | $1.79^{6}$                                                                                 | Y                                         | $1.44^{6}$                                               | 0.6                                | Ν                                        |                                                  | WCPFC, Harley et al. 2009                                                        |
| Skipjack (EPO)                                                                                            | Unknown <sup>7</sup>                                                                       | Unlikely <sup>7</sup>                     | Unknown <sup>7</sup>                                     | 0.5                                | Unlikely <sup>7</sup>                    |                                                  | IATTC, Maunder 2009                                                              |
| Skipjack (WCPO)                                                                                           | $0.12^{8}$                                                                                 | Ν                                         | 3.31 <sup>8</sup>                                        | 0.5                                | Ν                                        |                                                  | WCPFC, Langley and Hampton 2008                                                  |
| Yellowfin (EPO)                                                                                           | $0.92^{5}$                                                                                 | Ν                                         | $1.27^{5}$                                               | 0.5                                | Ν                                        |                                                  | IATTC, Maunder and Aires-da-Silva 2009                                           |
| Yellowfin (WCPO)                                                                                          | $0.58^{9}$                                                                                 | Y                                         | $1.57^{9}$                                               | 0.5                                | Ν                                        |                                                  | WCPFC, Langley et al. 2009                                                       |
| <u>BILLFISHES</u><br>Striped Marlin (NPO)<br>Striped Marlin (EPO)<br>Swordfish (NEPO)<br>Swordfish (NWPO) | $\begin{array}{c} \text{Unknown}^{10} \\ < 1.0^{11} \\ 0.23^{12} \\ 0.54^{12} \end{array}$ | Unknown <sup>10</sup><br>N<br>N<br>N      | Unknown<br>$\geq 1.0^{11}$<br>$2.41^{12}$<br>$1.31^{12}$ | 0.5<br>0.5<br>0.61-0.8<br>0.61-0.8 | Unknown<br>N<br>N<br>N                   | 0.63                                             | ISC 2007b<br>IATTC, Hinton and Maunder 2004; Hinton 2009<br>ISC 2009<br>ISC 2009 |
| <u>SHARKS</u>                                                                                             | 10                                                                                         |                                           |                                                          |                                    |                                          |                                                  |                                                                                  |
| C. Thresher (CA,OR,WA)                                                                                    |                                                                                            | Ν                                         | ~1.10                                                    | 0.77                               | Ν                                        | 0.96                                             | NMFS, PFMC HMS plan development team 2002                                        |
| Pelagic Thresher                                                                                          | Unknown <sup>14</sup>                                                                      |                                           | Unknown                                                  | 0.85                               | Unknown                                  | 1.06                                             |                                                                                  |
| Bigeye Thresher                                                                                           | Unknown <sup>15</sup>                                                                      |                                           | Unknown                                                  | 0.78                               | Unknown                                  | 0.97                                             |                                                                                  |
| Shortfin Mako                                                                                             | $< 1.0^{16}_{17}$                                                                          | Ν                                         | >1.0                                                     | 0.71                               | Ν                                        | 0.89                                             | NMFS, PFMC HMS plan development team 2002                                        |
| Blue                                                                                                      | $0.86^{17}$                                                                                | Ν                                         | $1.11^{17}$                                              | 0.78                               | Ν                                        | 0.97                                             | NMFS and NRIFSF Japan, Kleiber et al. 2009                                       |
| <u>OTHER</u><br>Dorado                                                                                    | Unknown <sup>18</sup>                                                                      | Unknown                                   | Unknown                                                  | 0.5                                | Unknown                                  |                                                  |                                                                                  |

Notes:

Measures of F<sub>MSY</sub> and B<sub>MSY</sub> are not available for all species. Various proxies for these values have been used in preparing this table. However, PFMC has not adopted the use of a particular proxy; hence the designation of Overfishing and Overfished should be considered preliminary.

<sup>2</sup> For vulnerable species managed under the OY control rule only: bluefin tuna, striped marlin, and pelagic sharks.

<sup>3</sup> Albacore results are based on a suite of  $F_{MSY}$  proxies ( $F_{40\%}$ ,  $F_{35\%}$ ,  $F_{30\%}$  and  $F_{0.1}$ ), the estimated level of recent (2002-2004) fishing pressure (F=0.75), and constant productivity (R = 27.375 million recruits). However, "Unknown" is indicated because of the lack of accepted reference points for management.

<sup>4</sup> Bluefin analyses are based on a suite of  $F_{MSY}$  proxies commonly used as target reference points ( $F_{40\%}$ ,  $F_{30\%}$ ,  $F_{20\%}$ ,  $F_{0,1}$ , and  $F_{Max}$ ), the estimated level of recent (2002-2004) agespecific fishing mortality. However, "Unknown" is indicated because of the lack of accepted reference points for management indicated that F has exceeded  $F_{Max}$  2-fold during the last 2 decades. However, "Unknown" is indicated because of the lack of a PFMC reference point for management and the implausibility of some parameter estimates in the assessment model that indicate some level of model mis-specification.

- <sup>5</sup> EPO bigeye and EPO yellowfin results are based on base-case assessments assuming no stock-recruitment relationships and estimated recent (2006-2008) fishing effort.
- <sup>6</sup> WCPO bigeye results are based on Run 11, the model most comparable to the 2008 assessment.
- <sup>7</sup> Because of uncertainties in the estimates of growth and natural mortality, MSY-proxy reference points could not be calculated for EPO skipjack; however, based on new methods examining non-MSY based stock condition indicators, the IATTC does not consider there to be a need for management due increasing CPUE indices and high biomass estimates relative to historical levels.
- <sup>8</sup> WCPO skipjack results are from the base-case assessment.
- <sup>9</sup> WCPO yellowfin results are based on the 2009 base-case assessment: "CPUE low, LL sample high, LL Q incr".
- <sup>10.</sup> MSY-proxy reference points were not be calculated for NP striped marlin; however, the declining biomass trend and the level of recent fishing effort relative to many commonly used MSY proxy reference points indicates overfishing may be occurring. The ISC recommended that a plan be developed to reduce F and until that plan is adopted that F not be increased.
- <sup>11</sup> Two production models demonstrate that the EPO striped marlin population is in good condition with fishing effort and landings in decline since the early 1990s.
- <sup>12</sup> Results from Bayesian Surplus Production analysis of two substocks of swordfish: one in the northwestern Pacific Ocean and the second in the northeast Pacific Ocean and provided status updates relative to MSY for each region separately.
- <sup>13</sup> U.S. West Coast EEZ regional catch and CPUE demonstrated the population increasing from estimated low levels in the early 1990s. Recent (2004-08) West Coast commercial landings average 161 mt, which is less than  $0.75 \times MSY$  proxy (MSY proxy = LMSY from the Population Growth Rate method)
- <sup>14</sup> Status unknown, but catches are incidental and occur on the edge of the species' range, predominately during warm water years.
- <sup>15</sup> Status unknown, but catches are incidental and occur on the edge of the species' range.
- <sup>16</sup> Tentative results based on commercial landings and CPUE calculations. Recent (2004–08) West Coast commercial landings average 43 mt, which is less than  $0.75 \times MSY$  proxy (MSY proxy = average landings 1981–99).
- <sup>17</sup> Results for North Pacific blue shark are based on the base-case integrated model conducted with MULTIFAN-CL; F<sub>current</sub> is the average F for the period 1998-2001.
- <sup>18</sup> Status unknown, but dorado are highly productive and widely distributed throughout tropical/subtropical Pacific. Recent (2004-08) West Coast landings average 110 mt.

| Species (stock)      | Stockwide           | U.S. West Coast Catch |              | Average Annual   |
|----------------------|---------------------|-----------------------|--------------|------------------|
| Species (steen)      | Catch               | Commercial            | Recreational | Fractional Catch |
| TUNAS                |                     |                       |              |                  |
| Albacore (NPO)       | 63-93 <sup>1</sup>  | 9–15                  | 0.2-1.6      | 0.17             |
| Bluefin (NPO)        | $20-27^{1}$         | < 0.21                | 0.01-0.1     | < 0.01           |
| Bigeye (EPO)         | $93-118^2$          | < 0.04                | < 0.01       | < 0.01           |
| Skipjack (EPO)       | $201-299^2$         | < 0.53                | < 0.02       | < 0.01           |
| Yellowfin (EPO)      | $177-291^2$         | 0.07-0.5              | 0.1-0.34     | < 0.01           |
| BILLFISHES           |                     |                       |              |                  |
| Striped Marlin (EPO) | $0.35 - 1.5^2$      | $< 0.01^{3}$          | < 0.034      | 0.02             |
| Swordfish (EPO)      | $2.1-15.7^2$        | 0.3–1.2               | <0.01        | 0.09             |
| SHARKS               |                     |                       |              |                  |
| Common Thresher      | Unknown             | 0.1-0.2               | 0.01-0.13    |                  |
| Pelagic Thresher     | Unknown             | < 0.01                |              |                  |
| Bigeye Thresher      | Unknown             | ≤0.01                 |              |                  |
| Shortfin Mako        | Unknown             | 0.03-0.06             | 0.02-0.13    |                  |
| Blue (NPO)           | Unknown             | $< 0.04^{3}$          | < 0.01       |                  |
| OTHER                |                     |                       |              |                  |
| Dorado               | 4–15.7 <sup>2</sup> | < 0.01                | 0.03-0.26    | 0.014            |

Table 5-3. Stockwide and regional catches for HMS management unit species (x1,000 mt round weight), 2004–08.

Notes:

Data for U.S. West Coast catch are from updated commercial, CPFV and private recreational catches with weight conversions of 8.7 kg/albacore, 8.7 kg/bluefin, 10.0 kg/bigeye tuna, 3.0 kg/skipjack, 4.9 kg/yellowfin, 57.9 kg/striped marlin, 113 kg/swordfish, 29.2 kg/common thresher, 16.8 kg/mako, 8 kg/blue shark, and 5.6 kg/dorado.

<sup>1</sup> International Scientific Committee Tenth Plenary Report Catch Tables, July 2010.

<sup>2</sup> IATTC catch tables extracted 8/15/10.

<sup>3</sup> Striped marlin and blue shark commercial catches include estimates from the drift gillnet observed catch.

<sup>4</sup> Striped marlin recreational catch is estimated at 300 fish/year based on club records plus CPFV logbook recorded catch.

#### 5.5 References

Aires-da-Silva A. and M. N. Maunder. 2009. Status of bigeye tuna in the eastern Pacific Ocean in 2008 and outlook for the future. Inter-Amer. Trop. Tuna Comm., Stock Assess. Rep. 10: 116-228. (http://iattc.org/PDFFiles2/SAR10c-BET-ENG.pdf).

Harley, S., S. Hoyle, A. Langley, J. Hampton, and P. Kleiber. 2009. Stock assessment of bigeye tuna in the Western and Central Pacific Ocean. WCPFC-SC5-2009/SA-WP-4. August 10-21, 2009. 98 pages (http://www.wcpfc.int/system/files/documents/meetings/scientific-committee/5th-regular-session/stock-assessment-swg/working-papers/SC5-SA-WP-04% 20% 5BBET% 20Assessment% 5D.pdf).

Hinton, M. G. and M. N. Maunder. 2004. Status of striped marlin in the eastern Pacific Ocean in 2002 and outlook for 2003-2004. Inter-Amer. Trop. Tuna Comm., Stock Asses. Rep. 4: 287-310. (http://iattc.org/PDFFiles2/SAR4\_MLS\_ENG.pdf).

Hinton, M. G. 2009. Status of striped marlin in the eastern Pacific Ocean in 2008 and outlook for the future. Inter-Amer. Trop. Tuna Comm., Stock Asses. Rep. 9: 229-252. (<u>http://iattc.org/PDFFiles2/SAR-10d-MLS-ENG.pdf</u>).

ISC. 2007a. ANNEX 5 (Report of the Albacore Working Group Workshop, November 28 – December 5, 2006, Shimizu, Japan) *of* Report of the seventh meeting of the International Scientific Committee for

Tuna and Tuna-like Species in the North Pacific Ocean, July 25-30, Busan, Korea. (<u>http://www.pcouncil.org/bb/2007/0907/F4a\_ATT2.pdf</u>)

ISC. 2007b. ANNEX 8 (Report of the Marlin and Swordfish Working Group Joint Workshop, March 19-26, 2007, Taipei, Taiwan) *of* Report of the seventh meeting of the International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean, July 25-30, Busan, Korea. (http://isc.ac.affrc.go.jp/pdf/ISC7pdf/Annex\_8\_ISCMARSWOWG\_Mar\_07.pdf).

ISC. 2008. ANNEX 7 (Report of the Pacific Bluefin Tuna Working Group Workshop, May 28 – June 4 2008, Shimizu, Japan and continued July 17 - 18 2008, Takamatsu Japan) *of* Report of the eighth meeting of the International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean, July 22-27, 2008 Takamatsu Japan. (http://isc.ac.affrc.go.jp/pdf/ISC8pdf/Annex\_7\_PBF\_May08\_ISC8.pdf).

ISC. 2009. ANNEX 7 (Report of the Billfish Working Group Workshop, May 19 - 26 2009, Busan Korea) *of* Report of the ninth meeting of the International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean, July 15-20, 2009 Kaohsiung, Taiwan. (http://isc.ac.affrc.go.jp/pdf/ISC9pdf/Annex\_7\_ISC9\_BILLWG\_May09.pdf)

Kleiber, P., S. Clarke, K. Bigelow, H. Nakano, M. McAllister, and Y. Takeuchi. 2009. North Pacific blue shark stock assessment. U.S. Dep. Commer., NOAA Tech. Memo., NOAA-TM-NMFS-PIFSC-17, 74 p.

Langley, A. and J. Hampton. 2008. Stock assessment of skipjack tuna in the western and central Pacific Ocean. WCPFC-SC4-2008/SA-WP-4. 74 pages. (<u>http://www.wcpfc.int/system/files/stock-assessment-specialist-working-group-working-papers/SA-WP-4%20%5BSKJ%20Assessment%5D.pdf</u>)

Langley, A., S. Harley, S. Hoyle, N. Davies, J. Hampton, and P. Kleiber. 2009. Stock assessment of yellowfin tuna in the western and central Pacific Ocean. WCPFC-SC9-2009/SA-WP-3, 10-21 August 2009. (http://www.wcpfc.int/system/files/documents/meetings/scientific-committee/5th-regular-session/stock-assessment-swg/working-papers/SC5-SA-WP-03% 20% 5BYFT% 20Assessment% 20% 28rev.1% 29% 5D.pdf)

Maunder, M. N. 2009. Updated indicators of stock status for skipjack tuna in the Eastern Pacific Ocean. Inter-Amer. Trop. Tuna Comm., Stock Assess. Rep. 10: 110-115. (<u>http://iattc.org/PDFFiles2/SAR10b-SKJ.pdf</u>).

Maunder, M. N. and A. Aires-da-Silva. 2009. Status of yellowfin tuna in the eastern Pacific Ocean in 2008 and outlook for the future. Inter-Amer. Trop. Tuna Comm., Stock Assess. Rep. 10: 3-109. (http://iattc.org/PDFFiles2/SAR10a-YFT-ENG.pdf)

Maunder, M. N. and R. B. Deriso. 2007. Using indicators of stock status when traditional reference points are not available: evaluation and application to skipjack tuna in the eastern Pacific Ocean. Inter-Amer. Trop. Tuna Comm., Stock Assessment Report, 8: 229-248. (<u>http://www.iattc.org/PDFFiles2/SAR8-SKJ-ENG.pdf</u>)

Restrepo, V. R., G. G. Thompson, P. M. Mace et al. 1998. <u>Technical Guidance on the use of</u> precautionary approaches to implementing National Standard 1 of the Magnuson-Stevens Fishery <u>Conservation and Management Act</u>. NOAA Tech. Mem. NMFS-F/SPO-31. U.S. Dept. Commerce, NOAA, NMFS, Washington D.C., 18 pp.

# 6.0 RESEARCH AND DATA NEEDS

#### 6.1 Research and Data Needs

This section is intended to explicitly link HMS research and data needs to the Council's current management priorities. These priorities should be considered in light of two central characteristics of HMS research and data needs. First, the two regional fishery management organizations (RFMOs) involved with management of HMS FMP stocks—the Inter-American Tropical Tuna Commission (IATTC) and Western and Central Pacific Fisheries Commission (WCPFC)—coordinate and conduct their own stock assessments. In addition, a third scientific organization—the International Scientific Committee (ISC) on Tuna and Tuna-like Species in the North Pacific Ocean—provides scientific advice on the status of North Pacific HMS stocks that straddle the 150° W longitude boundary between the RFMOs. Although research and stock assessment of the tunas, billfishes, and pelagic sharks in HMS FMP would ideally consider stocks throughout their entire range; the reality is that not all species in the HMS FMP benefit from international scientific coordination.

Second, there is substantial uncertainty on the status of stocks and/or estimates of MSY for many HMS species. Basic biological and life history data are unknown for some species, and understanding of distribution, abundance, and reproductive behaviors of most is poor. There is insufficient understanding of stock structures relative to the extent of fisheries, on the interchange between stocks, and on survival and fecundity schedules for investigating exploitation effects and species' resiliency to exploitation. There is also a lack of fishery independent indexes of abundance. These data gaps will likely need to be considered closely during implementation of the new MSA National Standard 1 guidelines.

#### 6.1.1 Highest Priority Issues

#### 6.1.1.1 North Pacific Albacore

<u>Fisheries Statistics</u>: Timely annual submission of national fishery data to the ISC Albacore WG data manager is critical for producing timely and up-to-date stock assessments. Additional resources are needed to oversee the submission of these data, to provide database management, and to improve documentation of the entire database system, including metadata catalogs. An electronic fishticket system on the West Coast would greatly improve the availability and timeliness of fishery data. Development of an electronic logbook system could have a similar effect on the availability and timeliness of data from captains' logs. Electronic reporting systems could increase data entry convenience for industry participants and reduce processing time and costs for data managers.

<u>Biological Studies:</u> Biological information is a critical building block for stock assessments should be reviewed and updated regularly to capture changes in population parameters as they occur. Unfortunately, this process has not been followed for North Pacific albacore because of limited resources for routine biological studies. Consequently, the stock assessment models used by the ISC Albacore WG rely on a patchwork of biological information that was developed largely in the 1950s and 1960s.

There is a critical need to reassess the biological information and to conduct contemporary studies to update this information. More specifically, there is a critical need to conduct studies on:

- age and growth with the goal of updating growth rates and comparing with older studies;
- reproductive biology with the goal of updating the maturity ogive;
- development of new indices of abundance particularly from fisheries that regularly catch recruitment age albacore (age 1), e.g. the U.S. recreational fishery;

- migration and habitat utilization, with the goal of better informing fishery effort standardization and fishery selectivity/catchability assumptions;
- an examination of whether there are multiple sub-stocks with juveniles having different migratory behaviors (i.e., juveniles from different spawning localities with different migration routes and timetables);
- environmental factors, as they relate to recruitment, growth, maturity, and catchability of albacore; and
- albacore length data through port sampling.

<u>Stock Assessment and Management Studies:</u> Given recent concerns about whether the North Pacific stock of albacore is at or fast approaching full exploitation, demand for more frequent and more precise information on the status of the stock and the sustainability of the fisheries is likely to increase. With this in mind, the albacore stock assessment needs improvement in several of its facets:

- investigation of competing assessment models using simulation to ascertain each model's strength and weakness when faced with input data generated from a known albacore-like population;
- simulation studies to assist fishery managers in selecting appropriate biological reference points for albacore;
- investigation of CPUE standardization;
- evaluation of the utility of formally adding tagging data into the assessment; and
- develop new indices of abundance from fisheries that regularly catch recruitment age albacore (age 1), such as the U.S. West Coast recreational fishery.

# 6.1.1.2 Swordfish

<u>Fisheries Statistics</u>: The timeliness of data reporting, as outlined above for albacore, is equally important for swordfish.

<u>Biological Studies:</u> All biological studies listed above for albacore are needed for swordfish as well. In addition, age and growth data from locally caught fish should be examined, and the distribution of swordfish by season and age within the outer portions of the EEZ and high seas should be evaluated.

<u>Stock Assessment and Management Studies:</u> All stock assessment and management studies listed above for albacore are also needed for swordfish. In particular, there is a need for additional work on effort standardization.

<u>Economic Studies</u>: Explore economic viability of harpoon gear as an alternative to DGN and longline gear for swordfish. Research the best options to promote developing and testing novel gear (e.g., deep-set buoy gear) to reduce protected species interactions and increase swordfish catch. Gauge the impact on global swordfish production and trade of unilateral measures to limit West Coast fishing effort on swordfish.

# 6.1.1.3 Sharks

Most of the tunas covered in the HMS FMP are being assessed—with varying degrees of completeness and sophistication—on a regular basis. Some of the billfishes—particularly striped marlin and swordfish—are either being assessed or have assessments planned in the near future. On the other hand, stock assessments for sharks have been preliminary at best, and few and far between. Furthermore, comprehensive shark assessments do not appear to be on the near-term planning horizon for the RFMOs or for the ISC. This situation should not be taken to imply that sharks are unimportant. Nor should it be inferred that sharks are less vulnerable to the effects of fishing than are the tunas and billfishes. In fact, because of the key vital rates of most sharks (especially reproductive rates that are lower than those for tunas and billfishes), many HMS shark species are likely to be more vulnerable to overfishing than other HMS.

To understand this *prima facie* inconsistency (i.e., sharks which might be more vulnerable may be either less frequently assessed than less vulnerable tunas and billfish, or even unassessed), it is necessary to understand the nature of the fisheries responsible for most of the catch of sharks over the past several decades. Internationally, these fisheries tend to be either 1) tuna-targeting fisheries that caught sharks as bycatch in their tuna fishing operations and discarded them (without recording numbers or mass) over most of their fishing history; or 2) smaller scale directed shark fisheries that tend not to report shark catch and effort in a manner suitable for stock assessment, e.g. catch reports that aggregate the catch of multiple shark species into a single 'shark' category or do not report the catch and effort at all.

As with the other transboundary species covered by the HMS FMP, most shark species cannot be assessed or managed unilaterally by the Council. Some species are highly oceanic with ranges similar to that of tunas (e.g., blue shark and mako shark). Others are more coastal—with a substantial portion of their habitat shoreward of the U.S. EEZ—but exhibit north-south migrations with significant catches in Mexican waters (e.g., common thresher shark). The net effect is that accounting for the total catch of sharks over their entire period (several decades) and areas of exploitation is not possible. Furthermore, there is a paucity of the biological samples needed to characterize the size of animals taken from the fisheries that account for most of the catch. Active biological studies (age, growth, maturity, food habits, etc.) are ongoing (NMFS, State, non-profit, and academic researchers) and understanding of the biological characteristics for at least some shark species is probably sufficient for stock assessment purposes. However, without an accurate history of total catch, effort, and the corresponding size samples, stock assessment efforts and concomitant management by the Council will be problematic.

The following specific research priorities have been identified for the two highest priority sharks species because of their importance in U.S. West Coast commercial and recreational fisheries:

#### **Common thresher shark:**

- stock structure and boundaries of the species and relationships to other populations;
- the pattern of seasonal migrations for feeding and reproduction, and where and when life stages may be vulnerable;
- improved recreational catch estimates which adaptively sample the pulse nature of fishing effort;
- improved commercial fishery monitoring in Mexican waters;
- age and growth rates, including comparisons of growth rates in other areas; and
- maturity and reproductive schedules.

#### Shortfin mako shark:

- distribution, abundance, and size in areas to the south and west of the West Coast EEZ; and
- age and growth rates (current growth estimates differ widely).

# 6.1.1.4 Interactions with Protected Species and Prohibited Species

More complete catch information and data on interactions with protected and prohibited species are needed for most HMS fisheries. There is inadequate understanding of the fisheries on some HMS stocks that are shared with Mexico (e.g., species composition of shark catches in Mexican fisheries), and

inadequate data exchange with Mexico. These fisheries are likely affecting both protected species and prohibited species of fish.

More work is needed to better understand possible impacts of the HMS fisheries on protected species of sea turtles, birds, and marine mammals. For example, there is a need to investigate the post-release survivorship of protected species, such as turtles and seabirds that are caught as bycatch in the HMS fisheries. In addition, fisheries-independent research is required to better understand distribution and habitat use by turtles and to determine the linkages to ecosystem parameters (oceanographic and biological). This includes data on turtle migration seasonality and routes, genetic stock composition of populations by species, and habitat use in order to better understand turtle life histories and likely periods of interaction with fisheries. Predictive models that integrate oceanography, ecosystem parameters (e.g., prey distribution), and habitat use of turtles are needed. More work on the sizes and structures of turtle populations by species would also enable improved application of the ESA and other laws and regulations to HMS fisheries. Continued research on the abundance and distribution of marine mammals is also critical, particularly for HMS fisheries operating within the West Coast EEZ.

Some specific research priorities include:

- Research habitat use of leatherback turtles and other species of concern to better understand the potential for reducing bycatch;
- Explore whether hotspots or temperature bands can be identified in near-real-time in order to provide information to fishermen regarding places with potentially high interaction risks;
- Explore how regulating the U.S. West Coast Pacific swordfish fishery affects international trade in swordfish and the potential unintended consequences for protected species interactions in foreign fisheries;
- Compare bycatch rates of DGN vs. shallow set longline gear for swordfish, both by mining observer data and conducting gear comparison studies in the fishery areas; and
- Develop probability-based estimates of unobserved bycatch for observer programs with less than 100 percent observer coverage.

# 6.1.2 High Priority Issues

#### 6.1.2.1 Blue shark

As noted above, relatively little assessment and research activity is focused on shark species compared to the existing work being done on other HMS such as tunas. Blue shark was an important shark species in the California CPFV fishery of the late 1980s, but has steeply declined as a share of the catch in recent periods. Blue sharks are encountered in relatively small numbers coastwide in commercial and recreational fisheries. Two specific research needs identified for blue sharks are to: 1) monitor sex and size composition of catches; and, 2) determine the migratory movements of maturing fish from the EEZ to high seas.

# 6.1.2.2 Striped Marlin

<u>Fisheries Statistics</u>: The timeliness of data reporting, as outlined for albacore, is equally important for striped marlin. Additionally, the official striped marlin catch statistics are considerably less well developed than those for albacore, and significant effort is needed to ensure that the total catch from all nations is well estimated.

Biological Studies: All biological studies listed above for albacore are also needed for striped marlin. In

addition,

- Stock structure for striped marlin in the Pacific Ocean is more uncertain than for other HMS species and several stock structure hypotheses are credible. A synoptic, critical review of all available information (fisheries data, icthyoplankton data, and genetic studies) is needed to either resolve the issue or at least to reduce the number of credible hypotheses; and
- Age and growth data from locally caught fish should be examined.

<u>Stock Assessment and Management Studies:</u> All stock assessment and management studies listed above for albacore are also needed for striped marlin. Specific to striped marlin, there is a need for additional work on effort standardization.

# 6.1.2.3 Pacific Bluefin Tuna

<u>Fisheries Statistics</u>: The timeliness of data reporting, as outlined for albacore above, is equally important for bluefin tuna. Additionally:

- the official bluefin catch statistics need further scrutiny (e.g., there are apparent discrepancies between some of the reported catches and the corresponding Japanese import records); and
- increased port sampling of commercial bluefin length frequencies is needed in the EPO, particularly of the fish destined for the pens in farming operations.

<u>Biological Studies:</u> All of biological studies listed above for albacore are also needed for bluefin tuna. In addition, there is a need to develop seasonal and perhaps area-based weight-length relationships as the bluefin condition factor appears to vary both seasonally and regionally.

<u>Stock Assessment and Management Studies:</u> All of stock assessment and management studies listed above for albacore are also needed for bluefin tuna. In particular, there is a need for additional work on effort standardization if credible indices of abundance are to become available for bluefin tuna.

# 6.1.3 Other Priority Stocks and Issues

# 6.1.3.1 Management Unit Species Catch Data

Total catch data are likely inaccurate for most HMS fisheries due to an inadequate at-sea data collection programs, logbook programs, and shoreside sampling programs for West Coast fisheries and unreported catch by international fisheries. Catch data needs include:

- Total catch information (including incidental and bycatch) and protected species interactions for surface hook-and-line, purse seine, and recreational fisheries, and additional at-sea sampling of drift gillnet fisheries;
- Catch composition data for harpoon gear;
- Size composition of bycatch in drift gillnet fisheries; and
- Condition (e.g., live, dead, good, poor) of discarded catch in all HMS fisheries.

Additional work needs to be done to develop ways to adequately sample recreational fisheries, particularly shore-based anglers and private vessels. There is a need to develop methods for sampling private marinas and boat ramps to determine catch, and the level of bycatch and protected species interactions, as well as sample the catch for length and weight of fish caught to convert catches reported in numbers to catches by weight. Better catch and effort estimates are also needed for HMS recreational

fishing tournaments, in particular those tournaments focusing on common thresher and mako sharks.

# 6.1.3.2 Archival PacFIN Data Cleanup

The HMSMT has identified the need to address coding issues with the gear codes for drift gillnet and longline fishing records in the PacFIN data base. A review and subsequent revision of archival PacFIN data is needed to improve the accuracy of historical commercial landings and revenues by gear type.

# 6.1.3.3 Survivability of Released Fish

Little is known of the long-term survivorship of hooked fishes after release, the effectiveness of recreational catch-and-release methods on big game fishes (pelagic sharks, tunas, and billfishes) or of methods to reduce bycatch mortality in longline fishing. Controlled studies of the survivability of hooked and released pelagic sharks and billfishes are needed to determine the physiological responses to different fishing gears, and the effects of time on the line, handling, methods of release, and other factors. Appropriate discard mortality rates, by species, need to be identified in order to quantify total catch (including released catch). Alternative gears and methods to increase survivability of recreationally caught fish and to minimize unwanted bycatch in fisheries should be identified.

# 6.1.3.4 Essential Fish Habitat (EFH)

There is very little specific information on the migratory corridors and habitat dependencies of these large mobile fish; how they are distributed by season and age throughout the Pacific and within the West Coast EEZ, and how oceanographic changes in habitat affect production, recruitment, and migration. Research is needed to better define EFH and to identify specific habitat areas of particular concern (HAPCs), such as pupping grounds, key migratory routes, feeding areas, and where adults aggregate for reproduction. A particularly important need is to identify the pupping areas of thresher and mako sharks, which are presumed to be within the southern portion of the West Coast EEZ, judging from the occurrence of post-partum and young pups in the areas (e.g., NMFS driftnet observer data). Areas where pregnant females congregate may be sensitive to perturbation, and the aggregated females and pups there may be vulnerable to fishing.

# 6.1.3.5 Stock Assessment Review

Pacific HMS stock assessments are carried out by the RFMOs and by the ISC. The processes used to conduct the assessments and to have them critically reviewed varies considerably across the organizations and the species being assessed. In none of these cases, however, does the level of critical peer review approach that of the Council's STAR process. This may become an issue for the Council if international management regulations begin to affect U.S. coastal fisheries to a greater extent than they do at present. The Council may want to consider having some member(s) of its SSC participate in these international processes. This will provide the Council with a better perspective on the stock assessments and the ensuing international management advice.

# 6.1.3.6 Tropical Tuna Species and Dorado

The commercially important tropical tuna species, namely yellowfin, bigeye, and skipjack tuna, are principally harvested in the EPO by vessels from the Central and Latin American fishing fleets. Although a small West Coast based U.S. flag purse seine fishery opportunistically harvests these tunas, the U.S. does not have a fleet active in the main EPO fishery at present. The tropical yellowfin, bigeye and skipjack tunas are no longer taken in large numbers by West Coast based commercial fisheries.

The California commercial passenger fishing vessel (CPFV) fleet is the principal U.S. fishery for dorado which are often taken in the Mexican EEZ. Dorado can be a significant portion of the total CPFV annual catch and was the leading species in 2006, followed by yellowfin tuna and albacore tuna. Specific recommendations on dorado research include:

- Determine the stock structure of dorado in the eastern Pacific, and
- The significance of floating objects and other-species associations relative to life history

# 6.1.3.7 Pelagic and Bigeye Thresher Sharks

These species occur with considerably less frequency than common thresher sharks in U.S. West Coast fisheries. It is of interest to Council-managed fisheries how the different ecologies of these species compare with that of common thresher shark.

# 6.2 Research Updates

The following sections summarize some, but not all, of the research projects being conducted during 2009 at the NMFS Southwest Fisheries Science Center and Southwest Regional Office to study HMS MUS, fisheries, and fishery-related species. Research on other MUS not reported here is ongoing at a number of U.S. West Coast research institutions. See chapter 8 for a list of links to websites of research institutions conducting research on HMS.

# 6.2.1 Albacore

SWFSC scientists are working with the American Fishermen's Research Foundation (AFRF) on monitoring programs and other research efforts to improve knowledge of the biology and migration of North Pacific albacore in the waters off the U.S. Pacific coast. The cooperative research includes:

**Port and onboard sampling:** Since 1961, a biological data collection program, or port sampling program, has been in place for collecting size data from albacore landings made by the U.S. and Canadian troll fleets at ports along the U.S. Pacific coast. State fishery personnel collect the biological data by following sampling and data processing instructions provided by the SWFSC, where the database is maintained. In recent years, with AFRF support, fishermen have collected biological data during selected fishing trips. These data are collected to augment data collected through the port sampling program. Following procedures established by SWFSC scientists, fishermen provided length data from eleven trips during the 2007 season. The sample information provided by the fishermen was found to be generally similar to that collected through the port sampling program.

*Logbook Program:* The logbook sampling program also has been in place through the AFRF since 1961. Fishermen have been voluntarily submitting their fishing records to the SWFSC for decades prior to implementation of the HMS FMP. These data are primarily used to develop relative indices of abundance, which subsequently provide valuable auxiliary information for fine-tuning stock assessment models. A database for logbook data is also maintained at the SWFSC. The logbook coverage rate in 2008 was approximately 88 percent of the landings. In recent years, the SWFSC has also been working with AFRF in the design and testing of an electronic logbook to facilitate submission and data entry for the albacore troll fishery data.

*Archival Tagging:* The Center and AFRF have been working together to use archival tags to study migration patterns and general life history strategies of subadult (ages 2-5) North Pacific albacore. Archival tag data provide detailed information on migratory behavior and distribution. Since 2001, 552 archival tags have been deployed along the U.S. West Coast and northern Baja California, Mexico.

During 2008, one tagging trip was conducted in the northern fishery area off the Columbia River, where 48 tags were deployed. Recovery rates have been very low, with only 22 archival tags recovered to date. Two tags were recovered in 2008, both aboard longline vessels operating in the central Pacific. The data are being analyzed and ultimately will help determine stock structure and improve CPUE standardization based on habitat-use patterns, information critical to developing sound stock assessments regarding the status of this valuable marine resource. For more information see http://swfsc.noaa.gov/albacore\_tag.aspx.

http://swfsc.noaa.gov/albacore\_tag.aspx.

#### 6.2.2 Common Thresher Shark

*Nursery Survey and Pup Abundance Index:* In 2003, the SWFSC began a survey to (1) determine the continuity of thresher pup distribution along the coast of the Southern California Bight and (2) develop a pup abundance index. In 2008, the sixth year of sampling took place. The SWFSC team worked with the F/V *Outer Banks* to sample in the Southern California Bight from Point Conception to the Mexican border. Forty-eight longline sets were made in relatively shallow, near-shore waters. Over the 18-day cruise, 300 common thresher sharks, two spiny dogfish (*Squalus acanthias*), 28 soupfin sharks (*Galeorhinus galeus*), two leopard sharks (*Triakis semifasciata*), and five brown smoothhound (*Mustelus henlei*) were caught. Nearly all of the thresher sharks caught were injected with oxytetracycline (OTC) for age and growth studies, tagged with conventional tags, and released. In addition, satellite tags were deployed on three thresher sharks.

While it is still too early to develop a pre-recruit index, a number of interesting patterns are emerging. Depth-stratified sampling revealed that over half of the neonates<sup>1</sup> were caught in shallow waters from 0 to 46 m and almost all individuals are caught shallower than 90 m. The distribution of thresher sharks is very patchy and areas of high abundance are not consistent across years. In all years a large percentage of the catch has been neonates, which were found in all areas surveyed.

Currently, the SWFSC Fisheries Resources Division is collaborating with Drs. Jeffrey Graham of Scripps Institution of Oceanography and Oscar Sosa-Nishizaki of Mexico's Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) to examine the movements, essential fish habitat, and fisheries for thresher sharks off Baja California, Mexico. Based on tag recoveries and satellite tracks, it is clear that the thresher shark nursery spans the waters of both countries.

**Tagging:** The SWFSC has been using electronic tags to study the movements and behaviors of common thresher sharks as well as blue and shortfin sharks. Use of satellite technology started in 1999 and more recently has been conducted in collaboration with the Tagging of Pacific Pelagics program (www.toppcensus.org), Mexican colleagues at CICESE, and Canadian colleagues at the Department of Fisheries and Oceans Pacific Biological Station in Nanaimo, British Columbia. Overall, during the juvenile shark abundance surveys conducted in the summer of 2008, nine makos, three threshers, and four blue sharks were tagged with pop-up satellite archival tags (PSAT) and/or smart position or temperature tags (SPOT). This brings the total to 77 makos, 66 blue sharks, and 27 common threshers tagged through these collaborative projects. The specific goals of the satellite tagging program are to document and compare the movements and behaviors of these species in the California Current, and to link these data to physical and biological oceanography. This approach will allow us to characterize the habitats the sharks most frequently utilize or prefer and, subsequently, to better understand how populations might shift in response to changes in environmental conditions.

**Post-release Survival in the Recreational Fishery:** The common thresher shark (*Alopias vulpinus*) is the focus of a popular southern California recreational fishery that typically lands individuals by hooking

<sup>&</sup>lt;sup>1</sup> newborns

them in the caudal fin. This technique reduces forward locomotion ability and ram ventilation capacity. In spring 2007, a collaborative NMFS Bycatch Reduction and Engineering Program (BREP) project was initiated by the SWFSC, the Southwest Region Sustainable Fisheries Division, and the Pfleger Institute of Environmental Research to assess the post-capture survivorship of tail-hooked adult and sub-adult common thresher sharks using pop-up satellite archival tags (PSATs) and quantified physiological indicators of capture stress in the blood. Survival of the acute effects of capture was determined from the depth and temperature records of 10-day PSAT deployments. Survivorship estimates were based on 19 common thresher sharks [160-221 cm fork length (FL); ~67 to 151 kg] captured in southern California from 2007 to 2009 using recreational stand-up tackle (36 kg). Five mortalities were observed (~26%), which include two individuals that arrived dead at the boat prior to release. All mortalities occurred in large individuals ( $\geq$ 180 cm FL) with fight times >85 min. The archived depth and temperature data from surviving sharks resembled those from previous common thresher movement studies with a diel depth distribution predominantly within the upper mixed layer. Capture induced stress parameters measured from the blood of eight additional common thresher sharks that were not tagged revealed plasma lactate and hematocrit levels that were significantly elevated with increased fight time. Similarly, all threshers showed relative heat shock protein 70 (hsp 70) values that were elevated when compared to values obtained from blood that was allowed to recover in vitro for 24 h. Collectively, findings indicate that large tail-hooked common thresher sharks with prolonged fight times (>85 min) exhibit a heightened stress response which may contribute to an increased mortality rate. These results suggest that for larger individuals the current caudal-based capture methods used in the southern California recreational fishery may not be suitable for an effective catch-and-release based conservation strategy. An extensive outreach campaign was initiated, including a cooperative effort with a local sportfishing club, to educate thresher shark anglers in the use of modified angling techniques (e.g., the use of circle hooks) to increase the percentage of mouth-hooking interactions. A switch from the current tail-hooking focused fishery to a less stressful mouth hooking focused fishery may lead to a more effective catch-and-release strategy.

# 6.2.3 Shortfin Mako and Blue Sharks

Shortfin Mako Shark Genetic Study: The shortfin mako is a wide-ranging pelagic shark caught globally in temperate and tropical waters. The stock structure within their broad range is poorly understood, especially in the Pacific. In the North Atlantic, thousands of conventional tags have been deployed, and although 608 have been returned, not a single shark was recaptured south of 10°N. This suggests, at a minimum, a northern and southern stock. Although the more limited conventional tag returns in the Pacific reveal movement across the North Pacific from California to as far as Japan, the potential for separation between the North and South Pacific is not known. A study is being conducted using mitochondrial DNA analyses from samples gathered around the Pacific to test the hypothesis that shortfin makos from the North and South Pacific are genetically distinct. In addition, this study will examine corridors of gene flow for shortfin mako sharks in the Pacific Ocean.

To date, 410 samples from seven sites in the Pacific (southern California, Hawaii, Japan, New Zealand, Australia, NW South America, and Chile) and one site in the North Atlantic have been analyzed. The North Atlantic site is significantly different from all Pacific sites. Within the Pacific, analyses reveal that sharks in locations in closest proximity—California/Hawaii, NW South America/Chile, and Australia/New Zealand—show no population subdivision. Divergence was apparent between the Northern and Southern Hemispheres as well as across the North Pacific between California/Hawaii and Japan. After performing isolation by distance analyses, it appears that the corridors of gene flow are following a stepping stone model. With concern about global shark populations, a better understanding of stock structure is critical to developing accurate stock assessments and ensuring effective management. This research is being completed as a part of a master's thesis project at the University of San Diego.

Juvenile Mako and Blue Shark Abundance Survey: The Southern California Bight is a known nursery

area for shortfin mako and blue sharks. The SWFSC has been monitoring the relative abundance of juvenile mako and blue sharks since 1994 using a fishery-independent longline survey. The annual survey was conducted during June and July of 2008 aboard the F/V *Ventura II*. One to two fishing sets were completed daily and a total of 6,007 hooks were fished during 29 sets. Catch included 40 shortfin mako sharks, 233 blue sharks, one common thresher shark, five pelagic rays (*Pteroplatytrygon violacea*), and one bat ray (*Myliobatis californica*). The cruise was conducted in two legs with 85 percent of the shortfin mako sharks caught during the second leg when higher water temperatures were encountered. The overall survey catch rate was 0.184 per 100 hook-hours for shortfin mako and 1.090 per 100 hook-hours for blue sharks. The nominal CPUE for blue sharks was somewhat higher than in 2007; however, there is a declining trend in nominal CPUE for both species over the time series of the survey.

In conjunction with the fisheries-independent survey, additional biological studies were also conducted during the 2008 cruise. Most mako and blue sharks caught were tagged with conventional tags, marked with OTC for age validation and growth studies, and DNA samples were taken for studies of population dynamics. In addition, to obtain more detailed information on movements and define the habitat of Pacific sharks, satellite tags were deployed on both blue and mako sharks (see below).

*Bio-accumulation of mercury in shortfin mako and common thresher sharks*: In recent years there has been considerable concern about the bio-accumulation of mercury (Hg) in top marine predators posing a public health risk. Off the West Coast the two shark species that are regularly consumed and have the potential to have high Hg concentrations are the common thresher shark and the mako shark. In 2004, NMFS initiated a study to test overall Hg levels in mako and thresher sharks as well as to examine potential ontogenetic shifts in Hg concentration.

Over the course of the study 38 common thresher sharks (63 to 241 cm FL) and 33 mako sharks (75 to 330 cm FL) were sampled. For both species we found detectable levels of Hg in the white muscle, but not in the liver and no differences in Hg levels between the sexes suggesting similar bioaccumulation patterns. There were, however, significant interspecific differences with the shortfin mako having considerably higher Hg levels than the common thresher (averages; mako 1.13  $\mu$ g/g, common thresher 0.13  $\mu$ g/g). This likely reflects the shortfin mako foraging at higher trophic levels, and thus accumulating greater levels of Hg, than the common thresher which primarily targets small schooling fish. We found strong linear relationships between body size and Hg level for both species with a significantly greater rate of increase for the shortfin mako. In all common thresher sharks tested, Hg levels were well below the US Food and Drug Administration's established action level of 1.0  $\mu$ g/g for commercial fish. Nearly all shortfin mako s>150 cm FL had muscle Hg levels exceeding this level. The largest mako shark had a concentration of 2.90  $\mu$ g/g. This research is currently in press in the California Cooperative Oceanic Fisheries Investigations Reports.

*Survival of Blue Sharks Released From the Drift Gillnet Fishery*: The SWFSC and Southwest Region have been working on a project to determine the survivability of blue sharks caught and released alive by the California drift gillnet fishery. Blue sharks are the second greatest bycatch species in number (behind the common mola) in this fishery. Roughly 35 percent of the blue sharks caught are released alive, but their fate is unknown. During the 2007-2008 fishing season, seven sharks in various conditions at time of release were tagged with PAT tags. During the 2008-2009 season, three additional blue sharks were tagged. The tagged sharks were tracked and results indicate that survivability is high; nine of the 10 sharks survived for at least 30 days following tagging and the tenth shark survived for at least 17 days, after which it appears the tag was ingested by another animal. Final tagging efforts of smaller sharks and those in the poorest condition will be conducted during the 2009-2010 season to conclude the study. Ultimately, blue shark mortality will be estimated based on condition and size at release. Recent changes to the observer instructions request that the condition of all released sharks be recorded on observed trips

144

so that the mortality estimates can be appropriately estimated for all discarded sharks.

# 6.2.4 Swordfish

**Deep-Set Buoy Project:** The future viability of the west coast swordfish fishery has been raised by stakeholders and fisheries managers as an issue of concern because the fishery has declined substantially in response to, among other factors, the increased regulation of the California/Oregon Swordfish DGN fishery. A major driver of the increased regulation centered on bycatch issues in the fishery including interactions with protected species such as sea turtles and marine mammals. The current suite of swordfish fisheries and their underlying regulatory regime is likely contributing to the underutilization of a healthy swordfish stock. Thus, development of an economically feasible/low bycatch gear for swordfish fishing along the U.S west coast may provide relief to swordfish fishermen and the communities that are supported by them. The Pfleger Institute of Environmental Research (PIER) has been awarded an S-K Grant to capture and tag swordfish off the coast of southern California using experimental deep-set buoy gear. Buoy gear has been successfully fished off the east coast of the U.S. to capture commercial quantities of swordfish without any significant bycatch issues. The PIER research will take place over a two-year span within the southern California Bight with 300 sets of deep-set buoy gear to be deployed in year one utilizing the PIER research vessel and 600 sets of buoy gear in year two using cooperative commercial fishing vessels as the research platform. The research would take place from June-November with the gear set during daylight hours at depths below the thermocline (250-400 meters). The field research is anticipated to commence in June 2011.

*Commercial Swordfish Fishery Cost-and-earnings Survey*: A cost-and-earnings survey of the DGN and harpoon fisheries was developed in 2009 and is currently underway which should provide valuable information about the relative economic viability of harpoon compared to DGN used to target swordfish, providing important data to address one of the issues identified at the Swordfish and Leatherback Sea Turtle Utilization of Temperate Habitat (SLUTH) Workshop held May 28-29, 2008, at UC San Diego's Scripps Institution of Oceanography.

# 6.2.5 Sea Turtles

NMFS, in cooperation with researchers around the world, continues to conduct sea turtle research in the Pacific. Due in part to this work, the understanding of Pacific sea turtles has increased substantially over the past several years. Proceedings of the aforementioned SLUTH workshop were summarized and published in NOAA Administrative Report LJ-09-06 (August 2009). SWFSC and SWR staffs are currently in the planning stages for conducting a second SLUTH workshop in early 2011.

A number of research projects have been planned based on priorities identified at the SLUTH workshop, including a study of the economic viability of harpoon as a substitute for other gears used to target swordfish, and a study of the effect of unilateral reduction in U.S. West Coast effort targeting swordfish on sea turtle bycatch in other fisheries.

# 6.2.6 Marine Recreational Information Program (MRIP) Projects

In the fall of 2008, the HMSMT developed proposals for MRIP funding to support research on the recreational fisheries for albacore and HMS sharks. The purpose of the albacore project is to evaluate the potential use of for-hire sector (CPFV) catch per unit effort (CPUE) estimates to develop an index of abundance for North Pacific albacore. The HMS shark project addresses areas of uncertainty in the current sampling program for HMS shark catch, including the potential use of adaptive sampling methods to more efficiently sample the pulse fishery for thresher sharks, and better sampling of night fishing and tournament effort on HMS sharks. Both projects have received funding, and initial scoping workshops

have been conducted to receive input from state data managers, biologists and industry representatives.

The consultant for the HMS shark project is currently working on design of an alternative sampling plan that will be submitted for review in the fall of 2010. A decision on whether or not to fund field work in support of the sampling plan will be made shortly thereafter. If approved, field sampling would take place in the spring-summer 2011.

A report has been prepared to describe existing sampling programs and to identify what additional sampling would be needed to produce an index of abundance for North Pacific albacore. A funding proposal is under development to support a pilot program which would test sampling methods for obtaining the additional data.

# 7.0 COMMONLY-USED WEB LINKS IN HIGHLY MIGRATORY SPECIES MANAGEMENT AND RESEARCH

#### International Regional Fishery Management Organizations and Scientific Bodies

| International Regional Fishery Management Organizations and Scientific Bodies                   |                               |
|-------------------------------------------------------------------------------------------------|-------------------------------|
| Inter- American Tropical Tuna Commission                                                        | http://iattc.org/             |
| Western and Central Pacific Fisheries Commission                                                | http://www.wcpfc.int/         |
| International Scientific Committee for Tuna and Tuna-like<br>Species in the North Pacific Ocean | http://isc.ac.affrc.go.jp/    |
| U.S. West Coast Regional Fishery Management Councils                                            |                               |
| Pacific Fishery Management Council                                                              | http://www.pcouncil.org/      |
| Western Pacific Fishery Management Council                                                      | http://www.wpcouncil.org/     |
| State and Interstate Fisheries Commissions                                                      |                               |
| California Department of Fish and Game                                                          | http://www.dfg.ca.gov/        |
| Oregon Department of Fish and Wildlife                                                          | http://www.dfw.state.or.us/   |
| Pacific States Marine Fisheries Commission                                                      | http://www.psmfc.org          |
| Washington Department of Fish and Wildlife                                                      | http://wdfw.wa.gov/           |
| Institutions Conducting HMS Research                                                            |                               |
| American Fishermen's Research Foundation                                                        | http://www.afrf.org/          |
| California State University, Long Beach                                                         | http://www.csulb.edu          |
| Centro de Investigación Científica y Educación Superior de<br>Ensenada                          | http://www.cicese.mx/         |
| Inter-American Tropical Tuna Commission                                                         | http://www.iattc.org          |
| Monterey Bay Aquarium                                                                           | http://www.mbayaq.org/        |
| Monterey Bay Aquarium Tuna Research and Conservation<br>Center                                  | http://www.tunaresearch.org   |
| Moss Landing Marine Lab                                                                         | http://www.mlml.calstate.edu/ |
| NOAA Pacific Islands Fisheries Science Center                                                   | http://www.pifsc.noaa.gov     |
| NOAA Southwest Fisheries Science Center                                                         | http://swfsc.noaa.gov         |
| NOAA Southwest Regional Office                                                                  | http://swr.nmfs.noaa.gov      |
| Pfleger Institute of Environmental Research                                                     | http://www.pier.org           |
| Scripps Institute of Oceanography                                                               | http://www-sio.ucsd.edu       |
| Tagging of Pacific Pelagics                                                                     | http://www.toppcensus.org     |
|                                                                                                 |                               |

#### Sport and Commercial Fishing Industry Related Associations

American Albacore Fishing Association Oregon Albacore Commission Sportfishing Association of California United Anglers of Southern California Western Fishboat Owner's Association http://www.americanalbacore.com http://www.oregonalbacore.org/

http://www.unitedanglers.com http://www.wfoa-tuna.org