Rebuilding Update for Pacific Ocean Perch in 2009

November 6, 2009

Owen S. Hamel
Groundfish Team, Fishery Resource Analysis and Monitoring Division, National Marine Fisheries Service
Northwest Fisheries Science Center
2727 Montlake Boulevard East
Seattle, Washington 98112

1. Introduction

The Pacific Fishery Management Council (PFMC) adopted Amendment 11 to its Groundfish Management Plan in 1998. This amendment established a definition for an overfished stock of 25% of the unfished spawning biomass $\left(0.25 B_{0}\right)$. NMFS determined that a rebuilding plan was required for Pacific ocean perch (Sebastes alutus) in March 1999 based on the most recent stock assessment at that time (Ianelli and Zimmerman 1998). The PFMC began developing a rebuilding plan for Pacific ocean perch and submitted this plan to NMFS in February 2000. However, NMFS deferred adoption of the plan until the stock assessment was updated and reviewed, later that year (Ianelli et al. 2000).

A full stock assessment for Pacific ocean perch stock was conducted in 2003 (Hamel et al., 2003), and subsequently updated every two years (Hamel 2005, 2007, 2009). This assessment, similar to that of Ianelli et al. (2000), involves fitting an age-structured population dynamics model to catch, catchrate, length-frequency, age-composition, and survey data. Ianelli et al. (2000), Hamel et al. (2003), and Hamel $(2005,2007,2009)$ presented results based on maximum likelihood and Bayesian estimation frameworks. Punt (2002) conducted a rebuilding analysis based upon the estimates corresponding to the maximum of the posterior density function (the MPD estimates) from Ianelli et al.'s Model 1c because the STAR panel selected this model variant as the "best assessment" (PFMC 2000). In contrast, the STAR panel that evaluated the 2003 assessment of Pacific ocean perch endorsed both the MPD estimates and the distributions for the model outputs that arose from the application of the MCMC algorithm to sample equally likely parameter vectors from the posterior distribution (PFMC 2003). Punt et al. (2003) conducted a rebuilding analysis with runs based upon both the MPD estimates and the MCMC outputs. The PFMC adopted a rebuilding plan based upon the results of the MCMC analysis. This rebuilding analysis was updated in 2005 and 2007. For this update, rebuilding plan parameters are those specified after the rebuilding analyses in 2005/7.

Management under rebuilding has been effective. While catch exceed the OY in 2001 (by 3 mt) and 2007 (by 6 mt), total catch for 2000-2008 (1376 mt) was only 47% of the combined OYs (2938 mt).

2. Specifications

2.1 Selection of B_{0}

The unfished spawning stock biomass, B_{0}, is determined from the fitted stock-recruitment relationship in order to be more consistent with the assumptions underlying the original stock assessment. The MPD estimate of B_{0} is $36,983 \mathrm{mt}$ of spawning output while the posterior median and 90% intervals for B_{0} are $34,573 \mathrm{mt}$ and $(27,620 ; 44,097)$. The values for B_{0} are slightly lower than those on which the previous rebuilding analyses were based (Table 1). The MPD depletion estimate at the start of 2009 is 0.275 while the posterior median and 90% intervals are $0.311(0.228 ; 0.398)$

Table 1. MPD and posterior median estimates of unfished spawning stock biomass $\left(B_{0}\right)$ and depletion for the 2003, 2005, 2007 and 2009 stock assessments.

	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 9}$
B_{0} MPD (mt)	39,198	37,838	36,983	37,780
$\mathrm{~B}_{0}$ Posterior Median (mt)	37,230	35,371	34,573	35,391
$\mathrm{~B}_{0} 90 \%$ Interval (mt)	29,035	28,022	27,620	27,728
	47,393	44,866	44,097	45,189
Depletion MPD	25.4%	23.4%	27.5%	28.6%
Depletion Posterior Median	27.7%	27.6%	31.1%	33.2%
Depletion 90\% Intervals	20.1%	19.8%	22.8%	23.8%
	38.4%	37.1%	39.8%	45.3%

2.2 Generation of future recruitment

Recruitment in the assessment and projection models for Pacific ocean perch relate to the abundance of 3 year olds. The assessment of Pacific ocean perch by Hamel et al. (2003) and its updates (Hamel $2005,2007,2009$) include the assumption that, apriori, recruitment is related to spawning output according to a Beverton-Holt stock-recruitment relationship. The rebuilding analysis conducted by Punt et al. (2003) included three different approaches: 1) basing the projections on resampling historical recruitments or from those for the years 1965-2001, 2) basing the projections on resampling historical recruits per spawner for those same years, and 3) assuming a Beverton-Holt spawner recruit relationship. The first approach was chosen by the Council for the final rebuilding plan.

The rationale for generating future recruitment by sampling historical recruitment for the rebuilding analysis conducted by Punt (2002) was that 1965-1998 was a period of relative stability in recruitment. In contrast to recruitment, recruits/spawning output showed an increasing trend over time. Resampling historical recruitment (3 year olds from the years 1965-2007; year classes 19622004) is used exclusively for the analyses in this document in order to remain consistent with the adopted rebuilding plan. Figure 1 plots the MPD estimates of recruitment and recruits / spawning output from the assessments conducted by Hamel et al. (2003) and Hamel (2005, 2007, 2009). Hamel (2009) estimated steepness for Pacific ocean perch to be 0.51 .

Figure 1: Recruitment: Pacific ocean perch assessments conducted in 2003, 2005, 2007 and 2009.

2.3 Mean generation time

The mean generation time is defined as the mean age weighted by net spawning output (see Figure 2 for net spawning output versus age (MPD estimates)). The best estimate of the mean generation time for the full posterior is 28 years. This is unchanged from the previous rebuilding analyses (Table 3).

Figure 2: Relationship between net spawning output and age for Pacific Ocean perch.

2.4 The harvest strategies

Table 2 summarizes the options considered in the rebuilding analyses. These include a no catch option (case 1), using the calculated SPR from the last rebuilding analysis (case 2), using the implied SPR in the current analysis from the 2009-10 OYs (189/200 mt; case 3), or using the ABC harvest rule (Case 4). The other 7 cases using values of $T_{\text {target }}$ near the calculated $T_{50 \%}$ for cases 2 and 3 (cases 5-7), and a spread of cases from $T_{\min }$ to $T_{\max }$ (cases 8-11). I report the probability of recovering by 2031, choosing the date halfway between $T_{\min }$ and $T_{\max }$.

Case	Name	$\mathbf{T}_{\text {50\% }}$	$\mathbf{2 0 1 1} \mathbf{~ O Y}$	SPR	$\mathbf{P}_{\text {2031 }}$
1	$\mathrm{~T}_{\mathrm{F}=0}$	2018	0	1.000	0.855
2	SPR from 2005/7 rebuilding	2020	180	0.864	0.771
3	SPR from 2009-10 OYs	2021	204	0.848	0.754
4	ABC rule	2065	1026	0.500	0.351
5	$\mathrm{~T}_{\text {target }}=2019$	2019	111	0.912	0.807
6	$\mathrm{~T}_{\text {target }}=2020$	2020	198	0.852	0.757
7	$\mathrm{~T}_{\text {target }}=2021$	2021	265	0.811	0.714
8	$\mathrm{~T}_{\text {target }}=2024$	2024	404	0.736	0.633
9	$\mathrm{~T}_{\text {target }}=2031$	2031	635	0.636	0.500
10	$\mathrm{~T}_{\text {target }}=2038$	2038	751	0.595	0.435
11	$\mathrm{~T}_{\text {target }}=2045\left(\mathrm{~T}_{\mathrm{MAX}}\right)$	2045	836	0.568	0.402

2.5 Other specifications

The calculations in this document were performed using Version 2.8 and 3.12a of the rebuilding software developed by Punt $(2005,2009)$ and the results are based on 3,000 Monte Carlo replicates (3 simulations for each of 1,000 samples for the posterior).

The definition of "recovery by year y " in this analysis is that the spawning output reaches $0.4 B_{0}$ by year y (even if it subsequently drops below this level due to recruitment variability). Appendix 1 lists the MPD estimates for the biological and technological parameters and the age-structure of the population at the start of 2000 and 2009. Appendix 2 lists the MPD time-series of recruitment and
spawning output. The input to the rebuilding programs is given as Appendix 3 and 4. The catch for 2009 and 2010 were set to 189 and 200 mt (the Council-selected OYs for 2009-2010).

3. Results

3.1 Time-to-recovery

The median year for rebuilding to the target level in the absence of fishing since the year of overfished declaration, $T_{\text {min }}$, is 2017. Figure 3 shows the distribution for the number of years beyond the year 2000 that it would have taken to recover to $0.4 B_{0}$ had there been no harvest since 2000. $T_{\text {max }}$, the maximum permissible time period for rebuilding the stock to its target biomass, is 2042 when using the new information on the depletion level and the age-structure of the population in 2000. Table 3 gives summary statistics from the 2003, 2005 and 2007 rebuilding plans and the current analysis for full posterior results. The difference between the 2007 and 2009 results are largely due to the relatively low NWFSC trawl survey indices for POP in 2007 and 2008, coupled with a small data error in the 2007 assessment which was corrected in the current assessment. The results for the 2009 rebuilding analysis are relatively close to those from 2005. While the rebuilding timeline has changed substantially from the 2007 version, the resulting catch from a SPR $=0.864$ policy has a much smaller change. $T_{F=0}$ (zero catch from 2011 onward) is greater than $T_{\min }$ due to a decade of catches in the interim.

Figure 3: Distribution of time to recovery used to calculate $T_{\text {min }}$, the median year for rebuilding to the target level $0.4 B_{0}$ in the absence of fishing since 2000 for the base-case analysis.

Table 3: Summary statistics

Value	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 9}$
$\mathrm{T}_{\min }$	2014	2015	2009	2017
Mean generation time	28 years	28 years	28 years	28 years
$\mathrm{T}_{\text {max }}$	2042	2043	2037	2045
$\mathrm{~T}_{\mathrm{F}=0}$ (No fishing mortality beginning	2014	2015	2010	2018
in 2004, 2007, 2009, or 2011)	70.0	92.9		
$\mathrm{P}_{\text {MAX }}$	2027	2017		
$\mathrm{~T}_{\text {TARGET }}$		86.4%		
$\mathrm{SPR}_{\text {TARGET }}$				

3.2 OYs and fishing mortalities

Table 4 gives the probabilities of recovery at 2031 and $T_{\max }$ (2045) and 10 year projected OY values based on the SPR for each of the 11 cases explored in this rebuilding analysis.

Table 4: Ten year OY/ABC projections.

Case	1		2		3		4	5		6		7		8		9		10		11	
RUN	$\mathrm{F}=0$		SPR’07		OY'9-10		ABC	2019		2020		2021		2024		2031		2038		2045	
SPR	1		0.864		0.848		0.5	0.912		0.852		0.811		0.736		0.636		0.595		0.568	
F	0		0.0079		0.0090		0.0450	0.0048		0.0087		0.0116		0.0177		0.0279		0.0330		0.0368	
T50\%	2018		2020		2021		2065	2019		2020		2021		2024		2031		2038		2045	
P2031	85.5		77.1		75.4		35.1	80.7		75.7		71.4		63.3		50.0		43.5		40.2	
P2045	95.8		89.7		88.7		42.7	92.9		88.9		85.6		78.1		62.7		55.0		50.0	
10 Year projected OYs and ABCs at SPR rate above:																					
2011	0	1026	180	1026	204	1026	1026	111	1026	198	1026	265	1026	404	1026	635	1026	751	1026	836	1026
2012	0	1057	183	1049	208	1048	1007	113	1052	202	1048	269	1045	408	1039	635	1028	747	1023	829	1019
2013	0	1073	185	1057	210	1054	983	115	1063	204	1055	271	1049	408	1036	628	1015	735	1004	812	996
2014	0	1097	187	1072	212	1069	964	117	1081	206	1070	273	1061	409	1043	625	1012	729	998	803	987
2015	0	1122	191	1089	216	1085	946	119	1102	210	1086	278	1074	414	1050	628	1010	729	992	801	978
2016	0	1150	194	1110	219	1104	933	121	1125	213	1105	281	1091	418	1062	627	1013	726	990	795	973
2017	0	1177	198	1129	224	1123	927	124	1147	218	1124	287	1107	424	1072	632	1018	729	991	797	971
2018	0	1204	202	1151	229	1144	926	127	1171	222	1146	292	1125	431	1086	639	1025	734	995	800	973
2019	0	1236	207	1174	234	1167	926	130	1198	227	1168	299	1147	438	1105	645	1036	739	1004	804	980
2020	0	1273	212	1203	239	1194	924	133	1231	232	1196	304	1171	445	1120	650	1044	743	1007	808	982

References

Hamel, O.S. 2009. Status and future prospects for the Pacific Ocean Perch resource in waters off Washington and Oregon as assessed in 2009. Pacific Fishery Management Council, Portland, OR.

Hamel O.S. 2007. Rebuilding update for Pacific Ocean Perch. Pacific Fishery Management Council, Portland, OR.

Hamel, O.S. 2007. Status and future prospects for the Pacific Ocean Perch resource in waters off Washington and Oregon as assessed in 2007. Pacific Fishery Management Council, Portland, OR.

Hamel O.S. 2005. Rebuilding update for Pacific Ocean Perch. Pacific Fishery Management Council, Portland, OR.

Hamel, O.S. 2005. Status and future prospects for the Pacific Ocean Perch resource in waters off Washington and Oregon as assessed in 2005. Pacific Fishery Management Council, Portland, OR.

Hamel, O.S., Stewart, I.J. and A.E. Punt. 2003. Status and future prospects for the Pacific Ocean Perch resource in waters off Washington and Oregon as assessed in 2003. Pacific Fishery Management Council, Portland, OR.

Ianelli, J.N., Wilkins, M. and S. Harley. 2000. Status and future prospects for the Pacific Ocean Perch resource in waters off Washington and Oregon as assessed in 2000. In: Appendix to "Status of the Pacific coast groundfish fishery through 2000 and recommended Acceptable Biological Catches for 2001". Stock Assessment and Fishery Evaluation. Pacific Fishery Management Council, Portland, OR.

Ianelli, J.N. and M. Zimmerman. 1998. Status and future prospects for the Pacific Ocean perch resource in waters off Washington and Oregon as assessed in 1998. In: "Status of the Pacific coast groundfish fishery through 1998 and recommended Acceptable Biological Catches for 1999". Stock Assessment and Fishery Evaluation. Pacific Fishery Management Council, Portland, OR.

Pacific Fishery Management Council. 2003. Pacific Ocean Perch STAR Panel Report.
Pacific Fishery Management Council. 2000. Pacific Ocean Perch STAR Panel Report. In "Status of the Pacific Coast Groundfish Fishery Through 2000 and Recommended Biological Catches for 2001: Stock Assessment and Fishery Evaluation". (Document prepared for the Council and its advisory entities) Pacific Fishery Management Council, Portland, OR.

Punt, A.E. 2005/2009. SSC default rebuilding analysis. Technical specifications and user manual. Ver. 2.8 and Ver. 3.12a

Punt, A.E. 2002. Revised Rebuilding Analysis for Pacific Ocean Perch (July 2002). Pacific Fishery Management Council, 7700 Ambassador Place NE, Suite 200, Portland, OR.

Punt, A.E., O.S. Hamel and I.J. Stewart. Rebuilding Analysis for Pacific Ocean Perch for 2003. Pacific Fishery Management Council, Portland, OR.

DRAFT

Appendix 1 : Biological and technological parameters used for the rebuilding analyses based on the MPD estimates.

Age	Fecundity	Weight (kg)	Selectivity	Natural mortality	N (2000)	N (2009)
3	0.000	0.169	0.001	0.0524	730	1,620
4	0.000	0.241	0.004	0.0524	430	1,540
5	0.000	0.317	0.016	0.0524	2,580	1,930
6	0.004	0.396	0.062	0.0524	3,540	620
7	0.028	0.474	0.197	0.0524	530	580
8	0.137	0.550	0.408	0.0524	440	930
9	0.274	0.622	0.598	0.0524	2,080	2,630
10	0.339	0.690	0.779	0.0524	2,340	5,300
11	0.375	0.752	0.915	0.0524	1,360	940
12	0.404	0.809	0.989	0.0524	1,590	450
13	0.431	0.861	1.000	0.0524	930	260
14	0.454	0.908	0.979	0.0524	250	1,550
15	0.475	0.950	0.979	0.0524	1,270	2,110
16	0.494	0.987	0.979	0.0524	780	310
17	0.510	1.021	0.979	0.0524	300	250
18	0.525	1.050	0.979	0.0524	240	1,200
19	0.538	1.076	0.979	0.0524	1,140	1,340
20	0.550	1.099	0.979	0.0524	410	780
21	0.560	1.119	0.979	0.0524	470	910
22	0.569	1.137	0.979	0.0524	270	530
23	0.576	1.153	0.979	0.0524	120	140
24	0.583	1.166	0.979	0.0524	130	730
$25+$	0.589	1.178	0.979	0.0524	3,260	4,090

DRAFT

Appendix 2 : MPD historical series of spawning output and recruitment.

Year	$\begin{gathered} \text { Recruitment } \\ \text { (age 3) } \end{gathered}$	Spawning output
1956	3,810	33,483
1957	46,540	32,280
1958	4,120	31,161
1959	18,630	30,732
1960	8,860	30,451
1961	4,180	30,606
1962	3,610	32,342
1963	4,870	33,959
1964	14,420	33,573
1965	10,270	33,217
1966	6,870	30,673
1967	4,490	21,904
1968	3,440	16,061
1969	3,850	14,180
1970	2,820	15,863
1971	4,030	16,683
1972	5,120	17,054
1973	7,440	17,215
1974	4,030	16,882
1975	1,490	16,615
1976	1,490	16,675
1977	1,570	16,645
1978	1,660	17,048
1979	1,170	16,913
1980	940	16,394
1981	1,930	15,548
1982	2,930	14,735
1983	2,260	14,140
1984	5,460	13,015
1985	1,020	11,987
1986	1,090	11,126
1987	2,480	10,510
1988	3,520	10,195
1989	600	9,888
1990	1,970	9,499
1991	3,000	9,091
1992	2,290	8,514
1993	3,570	8,252
1994	2,930	7,825
1995	580	7,477
1996	650	7,362
1997	4,140	7,349
1998	2,860	7,500
1999	450	7,669
2000	730	7,711
2001	1,450	7,811
2002	7,710	8,025
2003	3,620	8,448
2004	1,210	8,676
2005	710	8,708
2006	720	8,884
2007	2,150	9,528
2008	1,620	10,342
2009		10,794

DRAFT

Appendix 3: Input File Ver. 2.8 (2005) (for SPR based on 2007-2010 specifications)

```
#Title
POP Re2009
# Number of sexes
1
# Age range to consider (minimum age; maximum age)
3 25
# Number of fleets
1
# First year of projection
2009
# Year declared overfished
2000
# Is the maximum age a plus-group (1=Yes;2=No)
1
# Generate future recruitments using historical recruitments (1) historical recruits/spawner (2) or
a stock-recruitment (3)
1
# Constant fishing mortality (1) or constant Catch (2) projections
1
# Fishing mortality based on SPR (1) or actual rate (2)
1
# Pre-specify the year of recovery (or -1) to ignore
34
# Fecundity-at-age
## 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
3.84E-06 4.03E-05 0.000392248 0.003560962 0.028260766 0.1374925 0.273954602 0.338584679 0.375081501
0.404469053 0.430553194 0.453991276 0.4749965 0.493739 0.510395 0.52515 0.53818 0.549655 0.559745
0.568595 0.576345 0.58313 0.589055
# Age specific information (Females then males) weight selectivity
#
0.169105 0.240603 0.317273 0.395966 0.474162 0.54997 0.62206 0.689572 0.752022 0.80921 0.861146
0.907988 0.949993 0.987478 1.02079 1.0503 1.07636 1.09931 1.11949 1.13719 1.15269 1.16626 1.17811
\begin{tabular}{ccccccccc}
0.001053831 & 0.004071712 & 0.016086685 & 0.062376525 & 0.197451646 & 0.407541849 & 0.597679152 \\
0.77855632 & 0.914572718 & 0.989329767 & 1 & 0.97908111 & 0.97908111 & 0.97908111 \\
0.97908111 & 0.97908111 & 0.97908111 & 0.97908111 & 0.97908111 & 0.97908111
\end{tabular}
# M and current age-structure
#
0.0524459 0.0524459 0.0524459 0.0524459 0.0524459 0.0524459 0.0524459
    0.0524459 0.0524459 0.0524459 0.0524459 0.0524459 0.0524459
    0.0524459 0.0524459 0.0524459 0.0524459 0.0524459 0.0524459
    0.0524459 0.0524459 0.0524459 0.0524459
1621.2 1538.351934.49618.412576.981928.787 2627.6 5297.23 942.499445.726 259.836 1550.73 2105.33
    308.998254.4361196.521337.2 775.886 909.249530.029141.388729.503 4091.12
# Age-structure at declaration
728.677 427.942 2576.32 3536.44 525.92 438.302 2081.86 2341.981360.891591.29 925.018 246.453 1271.6
    782.641 298.887 243.973 1141.13 414.899473.571 271.56 115.097 125.361 3264.12
# Year for Tmin Age-structure
2 0 0 0
# Number of simulations
3000
# recruitment and biomass
```


DRAFT

\# Number of historical assessment years
55
\# Historical data
\# year recruitment spawner in $B 0$ in R project in R / S project

1955	5.05071377801	0	0
1956	3.8100533482 .70	0	0
1957	46.53932279 .70	0	0
1958	4.1227731160 .80	0	0
1959	18.627930731 .80	0	1
1960	8.8612430450 .60	0	1
1961	4.1778230605 .60	0	1
1962	3.6061732342 .10	0	1
1963	4.8739533958 .90	0	1
1964	14.420933572 .90	0	1
1965	10.265733217 .20	1	1
1966	6.8653730673 .10	1	1
1967	4.4932221903 .80	1	1
1968	3.4363316060 .90	1	1
1969	3.8502814179 .70	1	1
1970	2.8241315862 .90	1	1
1971	4.0255416682 .50	1	1
1972	5.1163817054 .40	1	1
1973	7.4430417214 .70	1	1
1974	4.0303316881 .60	1	1
1975	1.4889116615 .40	1	1
1976	1.4915516675 .40	1	1
1977	1.56796166450	1	1
1978	1.65985170480	1	1
1979	1.1715216912 .90	1	1
1980	0.93929516393 .50	1	1
1981	1.9302415547 .90	1	1
1982	2.9306614734 .70	1	1
1983	2.2586314140 .40	1	1
1984	5.46058130150	1	1
1985	1.0196211987 .40	1	1
1986	1.0880211126 .40	1	1
1987	2.4794410510 .40	1	1
1988	3.5163910194 .90	1	1
1989	0.5974519888 .320	1	1
1990	1.972599499 .190	1	1
1991	3.004269091 .120	1	1
1992	2.287698513 .580	1	1
1993	3.570318252 .420	1	1
1994	2.932327825 .350	1	1
1995	0.5762527476 .510	1	1
1996	0.6509197362 .10	1	1
1997	4.142777348 .730	1	1
1998	2.861897499 .760	1	1
1999	0.4510067668 .720	1	1
2000	0.7286777711 .220	1	1
2001	1.453137811 .130	1	1
2002	7.711698025 .190	1	1
2003	3.615498448 .110	1	1
2004	1.209418675 .660	1	1
2005	0.7120268708 .420	1	1
2006	0.723888884 .160	1	1
2007	2.14859528 .150	1	1
2008	1.621210341 .60	0	0
2009	1.621210794 .10	0	0

\# Number of years with pre-specified catches
2
\# catches for years with pre-specified catches
2009189
2010200
\# Number of future recruitments to override
0
\# Process for overriding (-1 for average otherwise index in data list)
\# Which probability to product detailed results for (1=0.5; 2=0.6; etc.) 3

DRAFT

```
# Steepness sigma-R Auto-correlation
0.514 1 0
# Target SPR rate (FMSY Proxy)
0.5
# Target SPR information: Use (1=Yes) and power
0 20
# Discount rate (for cumulative catch)
0.1
# Truncate the series when 0.4B0 is reached (1=Yes)
0
# Set F to FMSY once 0.4B0 is reached (1=Yes)
# Percentage of FMSY which defines Ftarget
0.9
# Maximum possible F for projection (-1 to set to FMSY)
-1
# Conduct MacCall transition policy (1=Yes)
0
# Defintion of recovery (1=now only;2=now or before)
2
# Results for rec probs by Tmax (1) or 0.5 prob for various Ttargets (2)
1
"# Definition of the ""40-10"" rule"
10 40
# Produce the risk-reward plots (1=Yes)
0
# Calculate coefficients of variation (1=Yes)
1
# Number of replicates to use
10
# Random number seed
-99004
# Conduct projections for multiple starting values (0=No;else yes)
1
# File with multiple parameter vectors
mcmcreb.dat
# Number of parameter vectors
1000
# User-specific projection (1=Yes); Output replaced (1->9)
1 5 0 0 0.1
# Catches and Fs (Year; 1/2/3 (F or C or SPR); value); Final row is -1
2011 3 0.864
-1 -1 -1
# Split of Fs
2009 1
-1 1
# Time varying weight-at-age (1=Yes; 0=No)
0
# File with time series of weight-at-age data
HakWght.Csv
```


DRAFT

DRAFT

1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968
	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981
	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007

5050.713810 .05465394122 .7718627 .98861 .244177 .823606 .174873 .9514420 .910265 .76865 .374493 .22 3436.333850 .282824 .134025 .545116 .387443 .044030 .331488 .911491 .551567 .961659 .851171 .52 939.2951930 .242930 .662258 .635460 .581019 .621088 .022479 .443516 .39597 .4511972 .593004 .26 2287.693570 .312932 .32576 .252650 .9194142 .772861 .89451 .006728 .6771453 .137711 .693615 .49 $1209.41712 .026723 .88 \quad 2148.5 \quad 1621.2 \quad 1621.2$
$37780 \quad 33482.732279 .731160 .830731 .830450 .630605 .632342 .133958 .933572 .933217 .230673 .121903 .8$ $16060.914179 .715862 .916682 .517054 .417214 .716881 .616615 .416675 .416645 \quad 17048 \quad 16912.9$ $16393.515547 .914734 .714140 .413015 \quad 11987.411126 .410510 .410194 .99888 .329499 .199091 .12$ 8513.588252 .427825 .357476 .517362 .17348 .737499 .767668 .727711 .227811 .138025 .198448 .11 8675.668708 .428884 .169528 .1510341 .610794 .1

1	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0											
0	0	0	0	0	0	0	0	0	0	1	1	1	1
	1	1	1	1	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1	1	1	1	1	1
	0	0											
0	0	0	0	1	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1	1	1	1	1	1

[^0]
DRAFT

```
# Random number seed
-99004
# File with multiple parameter vectors
mcmcreb.dat
# User-specific projection (1=Yes); Output replaced (1->9)
0 5 0 0 0.1
# Catches and Fs (Year; 1/2/3 (F or C or SPR); value); Final row is -1
2011 3 0.864
-1 
# Fixed Catch project (1=yes)
O
# Split of Fs
2009 1
-1 1
#prespecified inputs:
20202024 2031 2038 2045
# Years for which probability of recovery is needed
2019 2020 2021 2022 2024 2031 2038 2045
# Time-varying weight at age (1=yes,0=no)
0
# File with time series of weight-at-age data
HakWght.Csv
# Use bisection (0) or linear interpolation (1)
0
# Target Depletion
0.4
# CV of implementation error
O
```


[^0]: \# Number of years with pre-specified catches
 2
 \# catches for years with pre-specified catches
 2009189
 2010200
 \# Number of future recruitments to override
 9
 \# Process for overriding (-1 for average otherwise index in data list)
 200112001
 200212002
 200312003
 200412004
 200512005
 200612006
 200712007
 200812008
 200912009
 \# Which probability to product detailed results for (1=0.5; $2=0.6$; etc.)
 3
 \# Steepness sigma-R Auto-correlation
 0.51410
 \# Target SPR rate (FMSY Proxy)
 0.5
 \# Discount rate (for cumulative catch)
 0.1
 \# Truncate the series when 0.4 BO is reached ($1=\mathrm{Yes}$)
 \# Set F to FMSY once 0.4 BO is reached ($1=$ Yes)
 \# Maximum possible F for projection (-1 to set to FMSY)
 -1
 \# Definition of recovery (1=now only;2=now or before)
 2
 \#Projection Type
 4
 \# Definition of the ""40-10"" rule
 1040
 \# Calculate coefficients of variation (1=Yes)
 0
 \# Number of replicates to use
 10

