Status of bocaccio, *Sebastes paucispinis*, in the Conception, Monterey and Eureka INPFC areas for 2009

J.C. Field, E.J. Dick, D. Pearson and A.D. MacCall
General overview

• Last full assessment was 2003, updated in 2005, 2007
• Major changes include
 – Movement to SS3 (v3.03a) from SS1 (an SS2 bypass)
 – Greatly revised catch history and extension of period modeled
 – Revise triennial survey estimate using a GLMM
 – Addition of NWFSC combined trawl survey, SCB hook and line survey, revised juvenile indices (Pier index and juvenile trawl survey index)
• Spatial structure only moderately changed from the past (from Mendocino to Blanco), fleet structure similar (difference is two trawl fisheries rather than one)
• Model seems to behave reasonably well, much faster run times than SS1 models, although likelihood surface can still be somewhat irregular.
• Base run resulting trend highly similar to 2007 model for recent (historical) period, but revised catch history scales depletion.
• Stock structure remains an unresolved problem and a major uncertainty, particularly with respect to the status of bocaccio north of Cape Blanco
Model Structure

- Begin model in 1892 with initial catch based on average of early catch estimates, six fishing fleets (two trawl, southern and northern, hook and line, setnet, recreational south and north). Revised catch history has ~500 tons in 1950, versus 2000 in 2003 model.
- Steepness estimated with prior (prior is 0.74, posterior 0.57)
- Two-sex, single area model, natural mortality fixed at 0.15, new maturity function, growth estimated (except L_{min}), new fecundity, accumulator age 21
- Recruitment deviations estimated 1954 to 2008, sigma-R fixed at 1 (effective ~1.1)
- All catchability coefficients are treated as nuisance parameters (assumed proportional)
- Selectivity curves are a mix of asymptotic and dome-shaped (double normal), based on fit to data (clear rationale for dome for some fisheries, less clear for others), some parameters had to be fixed due to convergence problems (triennial, southern trawl)
- Indices and effective sample sizes tuned (downweighting, but not upweighting), no weighting on lambdas in base model, weighting used for capturing uncertainty
Four of the key indices in this assessment, trawl CPUE, triennial trawl survey, southern recreational CPUE, and the CalCOFI larval abundance index.
Base model estimates modest depletion from init until 1950, spike in abundance during the 1960s, followed by a very steep decline through the 1970s and 1980s. Since the 1999 year class (and moderate 2003, 2005 year classes), biomass has slowly increased, 2009 estimated depletion is 28% of SSB_0.
Major sources of uncertainty in the model relate to the tension between two pessimistic indices (trawl CPUE, triennial survey) and two optimistic indices (southern recreational CPUE and CalCOFI larval abundance).

The two alternative states of nature sequentially increased the emphasis on each of these groups to bracket uncertainty. These scenarios also provided useful contrast between an apparent, but poorly understood, spatial dimension - data suggest that recovery may be taking place more rapidly in the south.

Recovery in the central/northern region may be dependent on an influx of fish from the southern area, although movement/diffusion processes are poorly understood.
Research Needs and Management Concerns

Research needs

• Stock structure is a key uncertainty, particularly with respect to how best to assess abundance or trends north of Blanco

• May be some potential to explore area models, although diffusion or migration patterns and rates will not be well informed

• Ongoing efforts to retrospectively analyze CalCOFI samples from the northern stations collected in the 1950s and 1960s should help in long term

• Development of defensible ageing criteria for bocaccio in the southern area would be beneficial (but challenging)

• Trawl surveys are not well suited to this species, improved survey methodologies would be helpful

• Area closures are impacting distribution of fishing effort, leading to possible problems with some surveys

Management Concerns

• The decision to extend the boundaries of the southern subpopulation was based on the observation that catches (both fishery and survey-derived) do not end abruptly at Cape Mendocino, but rather tend to taper off to the north. As such the fish in this region were more likely to originate from the southern subpopulation than the subpopulation distributed to the north. Either boundary is imperfect.

• The vast majority of the catches and data are derived from the region south of Cape Mendocino. Thus, it would be reasonable to apply (or scale) the results of this assessment to management measures applied to bocaccio solely in this region - practical considerations could preclude the application of these results by management to the small part of the northern range
Stock Structure

• A key uncertainty in this assessment, northern area is very data poor, not modeled.

• Stock has historically been assessed only in the southern area, based on a conceptual model of northern (BC Can, PNW) and southern (CA, BC Mex) population centers

• Past assessments suggested stock structure between CA and OR/WA/BC, but mixing between S. Cal. and Monterey Bay. Matala et al. (2004) suggested population structure related to geographic location throughout the CCS, however a reanalysis (D. Pearse/SWFSC) indicates no genetic separation

• However, there is evidence of demographic independence north/south, differences in growth, maturity, longevity (northern fish grow slower, mature at greater sizes, live longer)

• Additionally, there is a proposed rule to list a separate DPS for the Georgia Basin as endangered under the ESA

Vertical lines in the images above represent individuals, colors represent the probability of membership into distinct groups. Top three panels show bocaccio data from Matala et al., bottom panel shows analysis of genetically-distinct steelhead population (e.g., what structure would look like).
Russian fishery catches (1966-1976), bocaccio catch at left, total tows at right

Assessment area has historically been the region of highest abundance, south of Mendocino (where bocaccio represent 20-30% of all catches)

In Oregon and Washington, bocaccio were ~1-3% of all catches, in Canada up to 4-7%.
NWFSC Combined trawl survey CPUE (2003-2008)
Diffusion of large fish to the north?

Very small fish are typically seen only in South/central California (as far as Monterey), usually in pier fisheries – larger fish increase in FO to north.
These two scenarios formed the basis for the decision table (State 1 upweights trawl CPUE and triennial survey, State 2 upweights southern rec. CPUE and CalCOFI index).

Alternative catch streams based on observed recent catches (low scenario), catches based on the rebuilding plan SPR rate (0.77, base scenario), and catches based on SPR of 0.77 with the optimistic model (high scenario).

Even the pessimistic model with the high catch scenario predicts an increase (albeit modest) in spawning output.

<table>
<thead>
<tr>
<th>Year</th>
<th>Catch with 2008 F</th>
<th>State1 (low biomass)</th>
<th>State2 (high biomass)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>larvae</td>
<td>depletion</td>
<td>larvae</td>
</tr>
<tr>
<td>2009</td>
<td>65</td>
<td>1034540</td>
<td>0.15</td>
</tr>
<tr>
<td>2010</td>
<td>62</td>
<td>1056130</td>
<td>0.15</td>
</tr>
<tr>
<td>2011</td>
<td>62</td>
<td>1059020</td>
<td>0.15</td>
</tr>
<tr>
<td>2012</td>
<td>68</td>
<td>1076100</td>
<td>0.15</td>
</tr>
<tr>
<td>2013</td>
<td>78</td>
<td>1133840</td>
<td>0.16</td>
</tr>
<tr>
<td>2014</td>
<td>90</td>
<td>1224880</td>
<td>0.18</td>
</tr>
<tr>
<td>2015</td>
<td>102</td>
<td>1373490</td>
<td>0.19</td>
</tr>
<tr>
<td>2016</td>
<td>113</td>
<td>1464190</td>
<td>0.21</td>
</tr>
<tr>
<td>2017</td>
<td>123</td>
<td>1600700</td>
<td>0.23</td>
</tr>
<tr>
<td>2018</td>
<td>129</td>
<td>1744400</td>
<td>0.25</td>
</tr>
<tr>
<td>2019</td>
<td>136</td>
<td>1893960</td>
<td>0.27</td>
</tr>
<tr>
<td>2020</td>
<td>142</td>
<td>2048240</td>
<td>0.29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>SPR 0.77 (base)</th>
<th>larvae</th>
<th>depletion</th>
<th>larvae</th>
<th>depletion</th>
<th>larvae</th>
<th>depletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>267</td>
<td>1034540</td>
<td>0.15</td>
<td>2209950</td>
<td>0.28</td>
<td>2658620</td>
<td>0.38</td>
</tr>
<tr>
<td>2010</td>
<td>251</td>
<td>1025030</td>
<td>0.15</td>
<td>2228890</td>
<td>0.28</td>
<td>2684700</td>
<td>0.39</td>
</tr>
<tr>
<td>2011</td>
<td>246</td>
<td>997328</td>
<td>0.14</td>
<td>2206150</td>
<td>0.28</td>
<td>2658370</td>
<td>0.38</td>
</tr>
<tr>
<td>2012</td>
<td>265</td>
<td>986019</td>
<td>0.14</td>
<td>2199380</td>
<td>0.28</td>
<td>2646800</td>
<td>0.38</td>
</tr>
<tr>
<td>2013</td>
<td>299</td>
<td>1013570</td>
<td>0.14</td>
<td>2252490</td>
<td>0.29</td>
<td>2700770</td>
<td>0.39</td>
</tr>
<tr>
<td>2014</td>
<td>339</td>
<td>1068090</td>
<td>0.15</td>
<td>2352740</td>
<td>0.30</td>
<td>2807790</td>
<td>0.41</td>
</tr>
<tr>
<td>2015</td>
<td>377</td>
<td>1136160</td>
<td>0.16</td>
<td>2481040</td>
<td>0.32</td>
<td>2947220</td>
<td>0.43</td>
</tr>
<tr>
<td>2016</td>
<td>413</td>
<td>1210440</td>
<td>0.17</td>
<td>2625210</td>
<td>0.33</td>
<td>3105210</td>
<td>0.45</td>
</tr>
<tr>
<td>2017</td>
<td>445</td>
<td>1287560</td>
<td>0.18</td>
<td>2777630</td>
<td>0.35</td>
<td>3272010</td>
<td>0.47</td>
</tr>
<tr>
<td>2018</td>
<td>474</td>
<td>1365920</td>
<td>0.20</td>
<td>2933000</td>
<td>0.37</td>
<td>3440210</td>
<td>0.50</td>
</tr>
<tr>
<td>2019</td>
<td>500</td>
<td>1444790</td>
<td>0.21</td>
<td>3087910</td>
<td>0.39</td>
<td>3604600</td>
<td>0.52</td>
</tr>
<tr>
<td>2020</td>
<td>517</td>
<td>1523620</td>
<td>0.22</td>
<td>3239680</td>
<td>0.41</td>
<td>3761180</td>
<td>0.54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>SPR 0.77(State 2)</th>
<th>larvae</th>
<th>depletion</th>
<th>larvae</th>
<th>depletion</th>
<th>larvae</th>
<th>depletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>353</td>
<td>1034540</td>
<td>0.15</td>
<td>2209950</td>
<td>0.28</td>
<td>2658620</td>
<td>0.38</td>
</tr>
<tr>
<td>2010</td>
<td>326</td>
<td>1009690</td>
<td>0.14</td>
<td>2213630</td>
<td>0.28</td>
<td>2669450</td>
<td>0.39</td>
</tr>
<tr>
<td>2011</td>
<td>314</td>
<td>967342</td>
<td>0.14</td>
<td>2176350</td>
<td>0.28</td>
<td>2628970</td>
<td>0.38</td>
</tr>
<tr>
<td>2012</td>
<td>328</td>
<td>942839</td>
<td>0.13</td>
<td>2156410</td>
<td>0.27</td>
<td>2603940</td>
<td>0.38</td>
</tr>
<tr>
<td>2013</td>
<td>360</td>
<td>956879</td>
<td>0.14</td>
<td>2196410</td>
<td>0.28</td>
<td>2645010</td>
<td>0.38</td>
</tr>
<tr>
<td>2014</td>
<td>395</td>
<td>995845</td>
<td>0.14</td>
<td>2282340</td>
<td>0.29</td>
<td>2738290</td>
<td>0.40</td>
</tr>
<tr>
<td>2015</td>
<td>429</td>
<td>1045960</td>
<td>0.15</td>
<td>2394880</td>
<td>0.30</td>
<td>2863010</td>
<td>0.41</td>
</tr>
<tr>
<td>2016</td>
<td>459</td>
<td>1100950</td>
<td>0.16</td>
<td>2522930</td>
<td>0.32</td>
<td>3006440</td>
<td>0.43</td>
</tr>
<tr>
<td>2017</td>
<td>479</td>
<td>1158410</td>
<td>0.17</td>
<td>2659810</td>
<td>0.34</td>
<td>3159810</td>
<td>0.46</td>
</tr>
<tr>
<td>2018</td>
<td>497</td>
<td>1217370</td>
<td>0.17</td>
<td>2800930</td>
<td>0.36</td>
<td>3316360</td>
<td>0.48</td>
</tr>
<tr>
<td>2019</td>
<td>512</td>
<td>1277570</td>
<td>0.18</td>
<td>2943370</td>
<td>0.37</td>
<td>3471380</td>
<td>0.50</td>
</tr>
<tr>
<td>2020</td>
<td>527</td>
<td>1338790</td>
<td>0.19</td>
<td>3084810</td>
<td>0.39</td>
<td>3621160</td>
<td>0.52</td>
</tr>
</tbody>
</table>
Status of Cabezon (Scorpaenichthys marmoratus) in California and Oregon Waters as Assessed in 2009

by

Jason M. Cope¹
Meisha Key²

¹Fishery Resource Analysis and Monitoring Division
Northwest Fisheries Science Center
NOAA Fisheries

²California Department of Fish and Game

Contributors:
Base Case: NCS

SB_{1916}: 1036 mt

SB_{2009}: 469 mt

Depletion: 45%
Base Case: CAS

Spawning Output (SB in mt)

Year

Depletion

SB_{1916}: 1207\text{ mt}

SB_{2009}: 410\text{ mt}

Depletion: 34%
Stock structure &
Recruitment deviations

Recruitment deviations

Year
Treating stock structure

Spawning Output (SB in mt) vs. Year

- CA
- CA w/ fleets
- CA w/ recruitment exchange
- SCS+NCS
Assessment comparisons: 2005 vs 2009

CA: NCS + SCS

CA: 1 assessment
Base Case: ORS

Depletion: 52%

SB_{1916}: 409 mt
SB_{2009}: 214 mt
Equilibrium curves

Yield (mt)

Depletion

CAS

NCS

ORS

SCS
Research Recommendations

- Improve estimation
- Age and growth
- Fishery-independent surveys
- Stock structure
- Alternative assessment methods
DRAFT

Status of greenstriped rockfish along the outer coast of CA, OR, and WA

Allan Hicks
Melissa Haltuch
Chantel Wetzel

SSC Meeting
September 14, 2009
Introduction: biology

- *Sebastes elongatus*
- Small rockfish (<45 cm)
- Found with others or alone
- Prefer mud and sand bottoms, but are found in a wide range of habitats
- Maturing fish move to deeper water
Model description

- First assessment for greenstriped rockfish on the West Coast

- 5 commercial fleets
 1. WA/OR trawl (discards)
 2. CA trawl (discards)
 3. Foreign trawl (no discards)
 4. Other-gear (non-trawl, discards)
 5. Recreational (discards included in catches)

- 3 survey series
 1. early Triennial
 2. late Triennial
 3. NWFSC
Fits to abundance indices

- **Catchability (q)**
 - early Triennial = 0.20
 - late Triennial = 0.32
 - NWFSC = 0.84
Two axes of uncertainty

1. Discard fraction
 - affects the absolute biomass

2. Natural mortality
 - affects the level of depletion

<table>
<thead>
<tr>
<th>State of nature (fraction discarded)</th>
<th>State of nature (natural mortality)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low fraction discarded</td>
<td>M=0.06</td>
</tr>
<tr>
<td></td>
<td>M=0.08</td>
</tr>
<tr>
<td></td>
<td>M=0.10</td>
</tr>
<tr>
<td>Base fraction discarded</td>
<td>Base Model</td>
</tr>
<tr>
<td>High fraction discarded</td>
<td></td>
</tr>
</tbody>
</table>
Predicted depletion

![Graph showing predicted depletion over time with management target and minimum stock size threshold.]
Spawning potential ratio
Equilibrium yield curve
<table>
<thead>
<tr>
<th>Year</th>
<th>Landed catch (mt)</th>
<th>Low fraction discarded</th>
<th>Depletion (%)</th>
<th>Spawning output (million)</th>
<th>Base fraction discarded</th>
<th>Depletion (%)</th>
<th>Spawning output (million)</th>
<th>High fraction discarded</th>
<th>Depletion (%)</th>
<th>Spawning output (million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>20</td>
<td>66.9</td>
<td>1,340</td>
<td>88.8</td>
<td>2,904</td>
<td>106.2</td>
<td>9,316</td>
<td>2011</td>
<td>64.7</td>
<td>14,969</td>
</tr>
<tr>
<td>2012</td>
<td>20</td>
<td>68.7</td>
<td>1,375</td>
<td>90.5</td>
<td>2,957</td>
<td>107.3</td>
<td>9,409</td>
<td>2012</td>
<td>66.6</td>
<td>15,306</td>
</tr>
<tr>
<td></td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>20</td>
<td>76.5</td>
<td>1,533</td>
<td>95.3</td>
<td>3,114</td>
<td>107.4</td>
<td>9,418</td>
<td>2019</td>
<td>75.0</td>
<td>16,364</td>
</tr>
<tr>
<td>2020</td>
<td>20</td>
<td>77.3</td>
<td>1,548</td>
<td>95.5</td>
<td>3,121</td>
<td>107.0</td>
<td>9,384</td>
<td>2020</td>
<td>75.8</td>
<td>16,419</td>
</tr>
</tbody>
</table>

State of nature (natural mortality):

- M=0.06
- M=0.08
- M=0.10
Conclusions

- Large amounts of discarding
- Spawning output has been increasing
 - Low recent exploitation rates
 - High recruitment in early and late 1990’s
- Very likely to currently be above 40% unfished spawning output and increasing
Draft status of the U.S. petrale sole resource in 2008

Melissa Haltuch
Allan Hicks

June 2009
Survey Biomass Estimates

The diagram shows the biomass estimates from 1980 to 2005. The x-axis represents the year, and the y-axis represents biomass (000 mt). Different markers and lines represent different surveys and sampling methods:

- AFSC Triennial
- FRAM Triennial
- NWFSC Shelf/Slope

The trends indicate a decrease in biomass over time, with notable variations between different surveys.
Biomass trajectory

The graph shows the spawning biomass depletion trajectory over the years from 1880 to 2000. The spawning biomass is plotted on the vertical axis, while the years are on the horizontal axis.

Key features of the graph include:
- A downward trend in spawning biomass over time, indicating a depletion.
- Key reference points and thresholds are marked on the graph:
 - Management target (40%)
 - Minimum stock size threshold (25%)
 - Bmsy target (18.9%)
 - Minimum Bmsy stock size threshold (9.8%)

The graph illustrates the impact of fishing on fish populations and the importance of monitoring and managing these resources to ensure sustainability.
Recruitment deviations
Fishing Mortality
Model Sensitivity Plots
Comparison between 2009 (blue), 2005 (green) and 1999 (red) assessments
Equilibrium Yield Curve

![Equilibrium Yield Curve Diagram]
Base model projection using 40-10 control rule

<table>
<thead>
<tr>
<th>Year</th>
<th>OY (mt)</th>
<th>Depl B0</th>
<th>Depl Bmsy</th>
<th>OY (mt)</th>
<th>Depl B0</th>
<th>Depl Bmsy</th>
<th>OY (mt)</th>
<th>Depl B0</th>
<th>Depl Bmsy</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>2,433</td>
<td>12%</td>
<td>61%</td>
<td>2,433</td>
<td>12%</td>
<td>61%</td>
<td>2,000</td>
<td>12%</td>
<td>61%</td>
</tr>
<tr>
<td>2010</td>
<td>2,393</td>
<td>10%</td>
<td>52%</td>
<td>1,200</td>
<td>10%</td>
<td>52%</td>
<td>1,200</td>
<td>11%</td>
<td>57%</td>
</tr>
<tr>
<td>2011</td>
<td>0</td>
<td>9%</td>
<td>48%</td>
<td>147</td>
<td>12%</td>
<td>63%</td>
<td>226</td>
<td>13%</td>
<td>68%</td>
</tr>
<tr>
<td>2012</td>
<td>311</td>
<td>14%</td>
<td>75%</td>
<td>529</td>
<td>17%</td>
<td>90%</td>
<td>597</td>
<td>18%</td>
<td>95%</td>
</tr>
<tr>
<td>2013</td>
<td>680</td>
<td>19%</td>
<td>101%</td>
<td>870</td>
<td>22%</td>
<td>115%</td>
<td>926</td>
<td>23%</td>
<td>119%</td>
</tr>
<tr>
<td>2014</td>
<td>997</td>
<td>24%</td>
<td>124%</td>
<td>1,153</td>
<td>26%</td>
<td>136%</td>
<td>1,196</td>
<td>26%</td>
<td>139%</td>
</tr>
<tr>
<td>2015</td>
<td>1,211</td>
<td>27%</td>
<td>143%</td>
<td>1,375</td>
<td>29%</td>
<td>152%</td>
<td>1,453</td>
<td>29%</td>
<td>155%</td>
</tr>
<tr>
<td>2016</td>
<td>1,489</td>
<td>30%</td>
<td>158%</td>
<td>1,540</td>
<td>31%</td>
<td>165%</td>
<td>1,599</td>
<td>32%</td>
<td>167%</td>
</tr>
<tr>
<td>2017</td>
<td>1,621</td>
<td>32%</td>
<td>169%</td>
<td>1,661</td>
<td>33%</td>
<td>174%</td>
<td>1,707</td>
<td>33%</td>
<td>176%</td>
</tr>
<tr>
<td>2018</td>
<td>1,718</td>
<td>33%</td>
<td>177%</td>
<td>1,751</td>
<td>34%</td>
<td>181%</td>
<td>1,788</td>
<td>35%</td>
<td>183%</td>
</tr>
<tr>
<td>2019</td>
<td>1,794</td>
<td>35%</td>
<td>183%</td>
<td>1,821</td>
<td>35%</td>
<td>187%</td>
<td>1,851</td>
<td>36%</td>
<td>188%</td>
</tr>
<tr>
<td>2020</td>
<td>1,838</td>
<td>36%</td>
<td>188%</td>
<td>1,876</td>
<td>36%</td>
<td>191%</td>
<td>1,888</td>
<td>36%</td>
<td>192%</td>
</tr>
</tbody>
</table>
Changes from 2005 Model

- Coast-wide model
- All age data used with new analysis of ageing bias and imprecision
- NWFSC survey index, age, and length data used
- Pikitch and WCGOP discard data used
- Updated catch history
- Recruitment and natural mortality parameters estimated
Management performance

Depletion relative to a 40% of B0 target

Depletion relative to Bmsy
Long term spawning biomass and catch in comparison to MSY based reference points

Graph showing spawning biomass and catch over time from 1951 to 2006.
Alaska Fisheries Science Center’s Trawl Used for the 1977-2004 West Coast Triennial Survey
89/121 PolyNor’ Eastern Trawl

Figure 1. Front opening of the PolyNor’ Eastern. Note: Footrope difference, high Rise opening, and steep taper to

Continuous Disk Footrope – 10” in bosom, 8” in wings
Status of the widow rockfish resource in 2009

Xi He, Donald E. Pearson, E.J. Dick, John C. Field
Stephen V. Ralston, and Alec D. MacCall,

Southwest Fisheries Science Center
Fishery Ecology Division
110 Shaffer Road
Santa Cruz, CA 95060

September 2009
Main differences from 2007 assessment:

1. Full assessment
2. Use SS3 interface — not direct ADMB coded as in previous assessments
3. Time period in model 1916 to 2008 (vs. 1958 to 2006)
4. New data:
 - 2007-08 data: catch, age, and survey
 - Catch: CA re-construction data (1916-68)
 - NWFSC combo survey (2003-08)
5. Selectivity functions and male offsets
6. Age group changed from 20+ to 30+
7. Use hybrid F (fishing mortality)
Brief summary

• Overall trend of the population similar to 2007 assessment;

• Estimated current depletion = 38.5% (35.5% in 2007);

• Low recruitments in recent years.
Catches by four fisheries 1966 to 2008
(all years in next slide)

- Peaked in early 1980s, decreasing since then
- Very low catches in recent years
Base model – spawning output (two areas combined)
Base model – depletion (two areas combined)
Base model – Recruitment deviation (log)

![Graph showing recruitment deviation over years with a focus on the last four years]
Spawning outputs - Comparisons to previous assessments
Brief summary

• Estimated depletion in 2009 is 38.5%, better than estimated 35.5% in 2007;
• Estimated h is 0.40, higher than estimated values of previous assessments (lower than prior);
• Base model is sensitive to key parameters (h, M, proportion of recruitment to northern area);
• Large uncertainties in model – lack of good data in recent years – becoming ‘data-poor’ species?
Overview of the 2009 yelloweye rockfish stock assessment

Ian Stewart
John Wallace
Carey McGilliard

PFMC Meeting
12 September, 2009

Disclaimer: This information has not been formally disseminated by NOAA Fisheries. It does not represent and should not be construed to represent any agency determination or policy.
Yelloweye biology and data sources

Biology:
Very slow-growing (95% of L_{max} at >55 years)
Late-maturing (50% at 13 years)
Fecundity relationship – big fish produce disproportionally more eggs than small ones
Long-lived (Maximum observed age 147 years)

Fishery independent data:
- IPHC longline (1999-2008, OR and WA)
- NWFSC trawl survey (2003-2008, OR)
- Triennial trawl survey (1980-2004, WA)

Fishery data: Recreational and commercial
- Catch estimates: 1916-2008
 (landings and discard combined)
- Historical rec. CPUE: CA, CA charter, OR, WA (~1979-1999)
- Recent recreational CPUE (Oregon observer, 2004-2008)
- Biological data: ages and lengths
 (port samples and observer data)
Assessment model:
Areas: Washington, Oregon, California

Stock structure:
Recruitment linked, adults non-migratory

Parameters:
All biological input parameters recalculated
Growth, steepness (productivity),
natural mortality estimated

Uncertainty:
Catch series before 2000
Estimated steepness
Results – spawning output

Spawning output (Millions eggs)

- **High** (MSY = 107.9 mt)
- **Base** (MSY = 56.1 mt)
- **Low** (MSY = 31.5 mt)
Management reference points

Management target

Overfished threshold

Relative spawning depletion

- 2009 Assessment
- 2007 Update
- 2006 Assessment
- 2005 Assessment
- 2002 Assessment
- 2001 Assessment (N.CA/OR only)

Year

2009 Depletion: 20.3%
Short-term forecast implication: 2011-2012 OYs (mt)

Based on 17 mt OY in 2010, 2005-2007 allocation, and current SPR=71.9% target

Note: These values will be replaced by the rebuilding plan analysis.

<table>
<thead>
<tr>
<th>Axis</th>
<th>Historical catch percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>level</td>
</tr>
<tr>
<td>Steepness</td>
<td>0.3440</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.4168</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5075</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>