

Status of bocaccio, Sebastes paucispinis, in the Conception, Monterey and Eureka INPFC areas for 2009 J.C. Field, E.J. Dick, D. Pearson and A.D. MacCall

General overview

- Last full assessment was 2003, updated in 2005, 2007
- Major changes include
 - Movement to SS3 (v3.03a) from SS1 (an SS2 bypass)
 - Greatly revised catch history and extension of period modeled
 - Revise triennial survey estimate using a GLMM
 - Addition of NWFSC combined trawl survey. SCB hook and line survey, revised juvenile indices (Pier index and juvenile trawl survey index)
- Spatial structure only moderately changed from the past (from Mendocino to Blanco), fleet structure similar (difference is two trawl fisheries rather than one)
- Model seems to behave reasonably well, much faster run times than SS1 models, although likelihood surface can still be somewhat irregular.
- Base run resulting trend highly similar to 2007 model for recent (historical) period, but revised catch history scales depletion.
- Stock structure remains an unresolved problem and a major uncertainty, particularly with respect to the status of bocaccio north of Cape Blanco

Model Structure

• Begin model in 1892 with initial catch based on average of early catch estimates, six fishing fleets (two trawl, southern and northern, hook and line, setnet, recreational south and north). Revised catch history has ~500 tons in 1950, versus 2000 in 2003 model.

• Steepness estimated with prior (prior is 0.74, posterior 0.57)

• Two-sex, single area model, natural mortality fixed at 0.15, new maturity function, growth estimated (except L_{min}), new fecundity, accumulator age 21

• Recruitment deviations estimated 1954 to 2008, sigma-R fixed at 1 (effective ~1.1)

• All catchability coefficients are treated as nuisance parameters (assumed proportional)

• Selectivity curves are a mix of asymptotic and dome-shaped (double normal), based on fit to data (clear rationale for dome for some fisheries, less clear for others), some parameters had to be fixed due to convergence problems (triennial, southern trawl)

• Indices and effective sample sizes tuned (downweighting, but not upweighting), no weighting on lambdas in base model, weighting used for capturing uncertainty

Year

Base model estimates modest depletion from init until 1950, spike in abundance during the 1960s, followed by a very steep decline through the 1970s and 1980s. Since the 1999 year class (and moderate 2003, 2005 year classes), biomass has slowly increased, 2009 estimated depletion is 28% of SSB_0

Major sources of uncertainty in the model relate to the tension between two pessimistic indices (trawl CPUE, triennial survey) and two optimistic indices (southern recreational CPUE and CalCOFI larval abundance).

The two alternative states of nature sequentially increased the emphasis on each of these groups to bracket uncertainty. These scenarios also provided useful contrast between an apparent, but poorly understood, spatial dimension - data suggest that recovery may be taking place more rapidly in the south.

Recovery in the central/northern region may be dependent on an influx of fish from the southern area, although movement/diffusion processes are poorly understood.

Research Needs and Management Concerns

Research needs

• Stock structure is a key uncertainty, particularly with respect to how best to assess abundance or trends north of Blanco

• May be some potential to explore area models, although diffusion or migration patterns and rates will not be well informed

• Ongoing efforts to retrospectively analyze CalCOFI samples from the northern stations collected in the 1950s and 1960s should help in long term

• Development of defensible ageing criteria for bocaccio in the southern area would be beneficial (but challenging)

• Trawl surveys are not well suited to this species, improved survey methodologies would be helpful

• Area closures are impacting distribution of fishing effort, leading to possible problems with some surveys

Management Concerns

• The decision to extend the boundaries of the southern subpopulation was based on the observation that catches (both fishery and survey-derived) do not end abruptly at Cape Mendocino, but rather tend to taper off to the north. As such the fish in this region were more likely to originate from the southern subpopulation than the subpopulation distributed to the north. Either boundary is imperfect.

• The vast majority of the catches and data are derived from the region south of Cape Mendocino. Thus, it would be reasonable to apply (or scale) the results of this assessment to management measures applied to bocaccio solely in this region - practical considerations could preclude the application of these results by management to the small part of the northern range

Stock Structure

• A key uncertainty in this assessment, northern area is very data poor, not modeled.

• Stock has historically been assessed only in the southern area, based on a conceptual model of northern (BC Can, PNW) and southern (CA, BC Mex) population centers

• Past assessments suggested stock structure between CA and OR/WA/BC, but mixing between S. Cal. and Monterey Bay. Matala et al. (2004) suggested population structure related to geographic location throughout the CCS, however a reanalysis (D. Pearse/SWFSC) indicates no genetic separation

• However, there is evidence of demographic independence north/south, differences in growth, maturity, longevity (northern fish grow slower, mature at greater sizes, live longer)

• Additionally, there is a proposed rule to list a separate DPS for the Georgia Basin as endangered under the ESA

Vertical lines in the images above represent individuals, colors represent the probability of membership into distinct groups. Top three panels show bocaccio data from Matala et al., bottom panel shows analysis of genetically-distinct steelhead population (e.g., what structure would look like). Russian fishery catches (1966-1976), bocaccio catch at left, total tows at right

Assessment area has historically been the region of highest abundance, south of Mendocino (where bocaccio represent 20-30% of all catches)

In Oregon and Washington, bocaccio were ~1-3% of all , in Canada up to 4-7%.

50°N

48°N

46°N

44°N

42°N

40°N

38°N

36°N

120°W

15

122°W

5

Triennial trawl survey CPUE (1980-2004)

NWFSC Combined trawl survey CPUE (2003-2008)

Diffusion of large fish to the north?

Very small fish are typically seen only in South/central California (as far as Monterey), usually in pier fisheries – larger fish increase in FO to north.

These two scenarios formed the basis for the decision table (State 1 upweights trawl CPUE and triennial survey, State 2 upweights southern rec. CPUE and CalCOFI index).

Alternative catch streams based on observed recent catches (low scenario), catches based on the rebuilding plan SPR rate (0.77, base scenario), and catches based on SPR of 0.77 with the optimistic model (high scenario).

Even the pessimistic model with the high catch scenario predicts an increase (albeit modest) in spawning output

		Sta	ate1		State2(
		(low bi	omass)	Base	Model	high bi	omass)
catch with	h 2008 F	larvae	depletion	larvae	depletion	larvae	depletion
2009	65	1034540	0.15	2209950	0.28	2658620	0.38
2010	62	1056130	0.15	2259880	0.29	2715680	0.39
2011	62	1059020	0.15	2267600	0.29	2720120	0.39
2012	68	1076100	0.15	2289230	0.29	2736480	0.40
2013	78	1133840	0.16	2371870	0.30	2819550	0.41
2014	90	1224880	0.18	2506410	0.32	2959720	0.43
2015	102	1337490	0.19	2675120	0.34	3137450	0.45
2016	113	1464190	0.21	2865660	0.36	3338590	0.48
2017	123	1600700	0.23	3069460	0.39	3552450	0.51
2018	129	1744400	0.25	3280130	0.42	3770470	0.55
2019	136	1893960	0.27	3493470	0.44	3986640	0.58
2020	142	2048240	0.29	3706040	0.47	4196180	0.61
SPR 0.7	7 (base)	larvae	depletion	larvae	depletion	larvae	depletion
2009	267	1034540	0.15	2209950	0.28	2658620	0.38
2010	251	1025030	0.15	2228890	0.28	2684700	0.39
2011	246	997328	0.14	2206150	0.28	2658730	0.38
2012	265	986019	0.14	2199380	0.28	2646800	0.38
2013	299	1013570	0.14	2252490	0.29	2700770	0.39
2014	339	1068090	0.15	2352740	0.30	2807790	0.41
2015	377	1136160	0.16	2481040	0.32	2947220	0.43
2016	413	1210440	0.17	2625210	0.33	3105210	0.45
2017	445	1287560	0.18	2777630	0.35	3272010	0.47
2018	474	1365920	0.20	2933000	0.37	3440210	0.50
2019	500	1444790	0.21	3087910	0.39	3604600	0.52
2020	517	1523620	0.22	3239680	0.41	3761180	0.54
SPR 0.77	(State 2)	larvae	depletion	larvae	depletion	larvae	depletion
2009	353	1034540	0.15	2209950	0.28	2658620	0.38
2010	326	1009690	0.14	2213630	0.28	2669450	0.39
2011	314	967342	0.14	2176350	0.28	2628970	0.38
2012	328	942839	0.13	2156410	0.27	2603940	0.38
2013	360	956879	0.14	2196410	0.28	2645010	0.38
2014	395	995845	0.14	2282340	0.29	2738290	0.40
2015	429	1045960	0.15	2394880	0.30	2863010	0.41
2016	459	1100950	0.16	2522930	0.32	3006440	0.43
2017	479	1158410	0.17	2659810	0.34	3159810	0.46
2018	497	1217370	0.17	2800930	0.36	3316360	0.48
2019	512	1277570	0.18	2943370	0.37	3471380	0.50
2020	527	1338790	0.19	3084810	0.39	3621160	0.52

Status of Cabezon (Scorpaenichthys marmoratus) in California and Oregon Waters as Assessed in 2009

¹Fishery Resource Analysis and Monitoring Division Northwest Fisheries Science Center NOAA Fisheries

by

Jason M. Cope¹ Meisha Key²

²California Department of Fish and Game

Contributors:

D. Aseltine-Neilson, T. Buell, M. Bellman, W. Dunlap, M. Freeman, J. Grebel, D. Haas, E. Heery, K. Herbinson, K. Hill, D. Malone, R. Nakamura, S. Owen, R. Starr, B. Stenberg, A. Suntsov, J. Thompson, F. Villablanca, T. Wadsworth, J. Wallace, D. Wendt, J. Wilson, and Deb Wilson-Vandenberg

Base Case: NCS

SB₁₉₁₆: 1036 mt SB₂₀₀₉: 469 mt Depletion: 45%

Base Case: CAS

SB₁₉₁₆: 1207 mt SB₂₀₀₉: 410 mt Depletion: 34%

Spawning Output (SB in mt)

Stock structure & Recruitment deviations

Recruitment deviations

Treating stock structure

Assessment comparisons: 2005 vs 2009

CA: 1 assessment

Base Case: ORS

SB₁₉₁₆: 409 mt

SB₂₀₀₉: 214 mt

Depletion: 52%

Equilibrium curves

Research Recommendations

- Improve estimation
- Age and growth
- Fishery-independent surveys
- Stock structure
- Alternative assessment methods

Disclaimer: This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by NOAA Fisheries. It does not represent and should not be construed to represent any agency determination or policy.

DRAFT

Status of greenstriped rockfish along the outer coast of CA, OR, and WA

Allan Hicks Melissa Haltuch Chantel Wetzel

SSC Meeting September 14, 2009

Introduction: biology

- Sebastes elongatus
- Small rockfish (<45 cm)</p>
- Found with others or alone
- Prefer mud and sand bottoms, but are found in a wide range of habitats
- Maturing fish move to deeper water

Landings: All gears

Landings (mt)

Model description

- First assessment for greenstriped rockfish on the West Coast
- 5 commercial fleets
 - 1. WA/OR trawl (discards)
 - 2. CA trawl (discards)
 - 3. Foreign trawl (no discards)
 - 4. Other-gear (non-trawl, discards)
 - 5. Recreational (discards included in catches)
- 3 survey series
 - 1. early Triennial
 - 2. late Triennial
 - 3. NWFSC

Fits to abundance indices

Catchability (q)

- early Triennial = 0.20
- Iate Triennial = 0.32
- NWFSC = 0.84

Axes of uncertainty

Two axes of uncertainty

- 1. Discard fraction
 - affects the absolute biomass
- 2. Natural mortality
 - affects the level of depletion

		State of nature (natural mortality)								
		M=0.06	M=0.08	M=0.10						
State of nature (fraction discarded)	Low fraction discarded									
	Base fraction discarded		Base Model							
	High fraction discarded									

Predicted depletion

Year

Spawning potential ratio

Equilibrium yield curve

Relative depletion

Decision Table

				State of nature (natural mortality)						
				M=0.06		M=0.08		M=0.10		
				Depletion	Spawning	Depletion	Spawning	Depletion	Spawning	
			Landed	(%)	output	(%)	output	(%)	output	
		Year	catch (mt)		(million)		(million)		(million)	
d)		2011	20	66.9	1,340	88.8	2,904	106.2	9,316	
dec	Low	2012	20	68.7	1,375	90.5	2,957	107.3	9,409	
ar	fraction	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	
SC	discarded	2019	20	76.5	1,533	95.3	3,114	107.4	9,418	
di di		2020	20	77.3	1,548	95.5	3,121	107.0	9,384	
on		2011	20	63.9	3,324	86.2	6,113	105.2	17,324	
cti	Base	2012	20	65.9	3,427	88.1	6,249	106.5	17,540	
ira	fraction	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	
e (J	discarded	2019	20	74.7	3,886	94.1	6,675	107.3	17,675	
nre		2020	20	75.5	3,930	94.5	6,697	107.0	17,614	
lat		2011	20	64.7	7,903	85.9	14,969	105.5	46,891	
f n	High	2012	20	66.6	8,133	87.9	15,306	106.8	47,469	
6 O	fraction	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	
ati	discarded	2019	20	75.0	9,155	93.9	16,364	107.6	47,818	
St		2020	20	75.8	9,253	94.2	16,419	107.2	47,650	

Conclusions

- Large amounts of discarding
- Spawning output has been increasing
 - Low recent exploitation rates
 - High recruitment in early and late 1990's
- Very likely to currently be above 40% unfished spawning output and increasing

Draft status of the U.S. petrale sole resource in 2008

Melissa Haltuch Allan Hicks

June 2009

Survey Biomass Estimates

Biomass trajectory

Recruitment deviations

Fishing Mortality

Model Sensitivity Plots

Comparison between 2009 (blue), 2005 (green) and 1999 (red) assessments

Equilibrium Yield Curve

Relative depletion

Base model projection using 40-10 control rule

	No current modification		Modify 2010 catch			Modify 2009 & 2010 catches			
Year	OY (mt)	Depl B0	Depl Bmsy	OY (mt)	Depl B0	Depl Bmsy	OY (mt)	Depl B0	Depl Bmsy
2009	2,433	12%	61%	2,433	12%	61%	2,000	12%	61%
2010	2,393	10%	52%	1,200	10%	52%	1,200	11%	57%
2011	0	9%	48%	147	12%	63%	226	13%	68%
2012	311	14%	75%	529	17%	90%	597	18%	95%
2013	680	19%	101%	870	22%	115%	926	23%	119%
2014	997	24%	124%	1,153	26%	136%	1,196	26%	139%
2015	1,211	27%	143%	1,375	29%	152%	1,453	29%	155%
2016	1,489	30%	158%	1,540	31%	165%	1,599	32%	167%
2017	1,621	32%	169%	1,661	33%	174%	1,707	33%	176%
2018	1,718	33%	177%	1,751	34%	181%	1,788	35%	183%
2019	1,794	35%	183%	1,821	35%	187%	1,851	36%	188%
2020	1,838	36%	188%	1,876	36%	191%	1,888	36%	192%

Changes from 2005 Model

Coast-wide model

- All age data used with new analysis of ageing bias and imprecision
- NWFSC survey index, age, and length data used
- Pikitch and WCGOP discard data used
- Updated catch history
- Recruitment and natural mortality parameters estimated

Management performance

Long term spawning biomass and catch in comparison to MSY based reference points

Triennial

Alaska Fisheries Science Center's Trawl Used for the 1977-2004 West Coast Triennial Survey 89/121 PolyNor' Eastern Trawl

Figure 1. Front opening of the PolyNor' Eastern. Note: Footrope difference, high Rise opening, and steep taper to

Status of the widow rockfish resource in 2009

Xi He, Donald E. Pearson, E.J. Dick, John C. Field Stephen V. Ralston, and Alec D. MacCall,

> Southwest Fisheries Science Center Fishery Ecology Division 110 Shaffer Road Santa Cruz, CA 95060

> > September 2009

Main differences from 2007 assessment:

- 1. Full assessment
- 2. Use SS3 interface not direct ADMB coded as in previous assessments
- 3. Time period in model 1916 to 2008 (vs. 1958 to 2006)
- 4. New data:
 - 2007-08 data: catch, age, and survey
 - Catch: CA re-construction data (1916-68)
 - NWFSC combo survey (2003-08)
- 5. Selectivity functions and male offsets
- 6. Age group changed from 20+ to 30+
- 7. Use hybrid F (fishing mortality)

Brief summary

- Overall trend of the population similar to 2007 assessment;
- Estimated current depletion = 38.5% (35.5% in 2007);
- Low recruitments in recent years.

- Peaked in early 1980s, decreasing since then
- Very low catches in recent years

Base model – spawning output (two areas combined)

~95% Asymptotic confidence interval

Base model – depletion (two areas combined)

Base model – Recruitment deviation (log)

Spawning outputs - Comparisons to previous assessments

Brief summary

- Estimated depletion in 2009 is 38.5%, better than estimated 35.5% in 2007;
- Estimated *h* is 0.40, higher than estimated values of previous assessments (lower than prior);
- Base model is sensitive to key parameters
- (h, M, proportion of recruitment to northern area);
 Large uncertainties in model lack of good data in recent years – becoming 'data-poor' species?

Overview of the 2009 yelloweye rockfish stock assessment

Ian Stewart John Wallace Carey McGilliard

PFMC Meeting 12 September, 2009

Disclaimer: This information has not been formally disseminated by NOAA Fisheries. It does not represent and should not be construed to represent any agency determination or policy.

Yelloweye biology and data sources

Biology:

Very slow-growing (95% of L_{max} at >55 years) Late-maturing (50% at 13 years) Fecundity relationship – big fish produce disproportionally more eggs than small ones Long-lived (Maximum observed age 147 years)

Fishery independent data:

- IPHC longline (1999-2008, OR and WA)
- NWFSC trawl survey (2003-2008, OR)
- Triennial trawl survey (1980-2004, WA)

Fishery data: Recreational and commercial

- Catch estimates: 1916-2008

(landings and discard combined)

- Historical rec. CPUE: CA, CA charter, OR, WA (~1979-1999)
- Recent recreational CPUE (Oregon observer, 2004-2008)
- Biological data: ages and lengths

(port samples and observer data)

Assessment model:

Areas: Washington, Oregon, California

Stock structure

Recruitment linked, adults non-migratory

Parameters:

All biological input parameters recalculated Growth, steepness (productivity), natural mortality estimated

Uncertainty:

Catch series before 2000 Estimated steepness

<u>Results – spawning output</u>

Management reference points

Short-term forecast implication: 2011-2012 OYs (mt)

Based on 17 mt OY in 2010, 2005-2007 allocation, and current SPR=71.9% target

<u>Note</u>: These values will be replaced by the rebuilding plan analysis.

Axis	Historical catch percentage						
	level	75%	100%	150%			
	0.3440	2011: 13.2 2012: 13.4	2011: 17.8 2012: 17.9	2011: 27.0 2012: 27.3			
Steepness	0.4168	2011: 15.6 2012: 15.9	Base case 2011: 20.9 2012: 21.2	2011: 31.6 2012: 32.0			
	0.5075	2011: 18.4 2012: 18.8	2011: 24.6 2012: 25.0	2011: 37.0 2012: 37.6			