APPENDIX 2

2008 PACIFIC MACKEREL STOCK ASSESSMENT, 2007 STOCK ASSESSMENT REVIEW PANEL REPORT, AND JUNE 2008 SCIENTIFIC AND STATISTICAL COMMITTEE REPORT

www.pcouncil.org

PACIFIC MACKEREL (Scomber japonicus) STOCK ASSESSMENT FOR U.S. MANAGEMENT IN THE 2008-09 FISHING SEASON

by
Emmanis Dorval, Kevin T. Hill, Nancy C. H. Lo, and Jennifer D. McDaniel NOAA Fisheries Service Southwest Fisheries Science Center 8604 La Jolla Shores Drive La Jolla, California, 92037

Submitted to
Pacific Fishery Management Council 7700 NE Ambassador Place, Suite 101

Portland, Oregon 97220-1384

June 9, 2008

Dorval, E., K. T. Hill, N. C. Lo, and J. D. McDaniel. 2007. Pacific mackerel (Scomber Japonicus) stock assessment for U.S. management in the 2008-09 fishing season. Pacific Fishery Management Council, June 2007 Briefing Book, Agenda Item G.1.b, Attachement 1.78 p.

TABLE OF CONTENTS

Page
EXECUTIVE SUMMARY 1
INTRODUCTION 7
Background 7
Distribution and Stock Structure 8
Fisheries 8
ASSESSMENT 9
Biological Data 9
Weight-at-age 9
Maturity Schedule 9
Natural Mortality 9
Fishery Data 9
Landings 9
Catch-at-age 9
Indices of Relative Abundance 10
ASAP-E1 2008 Model 10
Results 11
Catch 11
Catch-at-age 11
Fits to Indices 11
Selectivity Estimates 11
Fishing Mortality Rate 12
Spawning Stock Biomass 12
Recruitment 12
Stock-Recruit Relationship 12
Biomass of Age-1+ Stock for PFMC Management 12
Sensitivity Analyses to Last Year's Data 12
Sensitivity Analyses to Years with CalCOFI Survey but no Larvae 13
Comparison of ASAP-E1 2008 Model Results to Previous Assessments 13
HARVEST CONTROL RULE FOR U.S. MANAGEMENT IN 2008-09 13
RESEARCH AND DATA NEEDS 14
ACKNOWLEDGMENTS 15
LITERATURE CITED 16
TABLE 18
FIGURES 22
APPENDICES 44
Appendix A. ASAP-E1 2008 Input Data (.DAT) File 44
Appendix B. ASAP-E1 2008 Report (.REP) File. 55

EXECUTIVE SUMMARY

Stock

Pacific mackerel (Scomber japonicus), in the northeastern Pacific, range from southeastern Alaska to Banderas Bay (Puerto Vallarta), Mexico, including the Gulf of California. They are common from Monterey Bay, California, to Cabo San Lucas, Baja California, but are most abundant south of Point Conception, California. There are possibly three spawning stocks along the Pacific coasts of the U.S. and Mexico: one in the Gulf of California, one in the vicinity of Cabo San Lucas, and one extending along the Pacific coast north of Punta Abreojos, Baja California. The latter "northeastern Pacific" stock is harvested by fishers in the U.S. and Baja California, Mexico, and is considered in this assessment.

Catches

Catches in the assessment were a combination of U.S. and Mexico commercial catches and U.S. recreational catches. The Mexican commercial fishery for Pacific mackerel is primarily based in Ensenada and Magdalena Bay, Baja California. Most of the U.S. commercial catch is landed in southern California (Monterey and San Pedro). The Mexican purse seine fleet has slightly larger vessels, but is similar to southern California's with respect to gear (mesh size) and fishing practice. Demand for Pacific mackerel in Baja California increased in the late 1940s. Mexican landings remained stable for several years, rose to $10,725 \mathrm{mt}$ in 1956-57, then declined to a low of 100 tons in 1973-74. Catches were then negligible until the early 1980s. Pacific mackerel in Ensenada peaked twice, first in 1991-92 at 34,557 mt, and again in 1998-99 at 42,815 mt. The U.S. commercial landings peaked in 1935-36 (66,400 mt) and in 1990-91(39,974 mt), and were the lowest from 1970 to 1976, during the moratorium imposed by the State of California. The Ensenada fishery has been comparable in volume to the southern California fishery since 1990.

Table of catches (1992-2007).

Fishing Season	$\begin{gathered} \hline \text { USA -Commercial } \\ \text { Catch (mt) } \\ \hline \end{gathered}$	Mexico-Commercial Catch (mt)	$\begin{gathered} \hline \text { Recreational - CPFV } \\ \text { Catch (mt) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Recreational - non-CPFV } \\ \text { Catch (mt) } \\ \hline \end{gathered}$	Total Catch (mt)
92	25,584	6,170	135	329	32,217
93	10,787	9,524	196	413	20,920
94	9,372	13,302	226	837	23,737
95	7,615	3,368	439	574	11,996
96	9,788	14,089	320	366	24,563
97	23,413	26,860	104	700	51,076
98	19,578	42,815	108	322	62,823
99	7,170	8,587	55	97	15,910
00	20,936	6,530	78	248	27,792
01	8,436	4,003	51	520	13,010
02	3,541	10,328	22	232	14,123
03	5,972	5,728	28	295	12,023
04	5,012	5,624	23	537	11,195
05	4,572	8,024	20	475	13,091
06	7,870	8,024	16	355	16,265
07	5,483	8,024	18	218	13,743

Plot of commercial and recreational landings (mt) of Pacific mackerel in California (USA) and Baja California (Mexico) used in the ASAP-E1 2008 model (1926-08).

Data and assessment:

The last assessment of Pacific mackerel was completed in 2007 for U.S. management in the 2007-08 fishing year. The current assessment is an update based on the Age-Structured-Assessment Program (ASAP)-E1 2007 model recommended by the 2007 Stock Assessment Review (STAR) Panel (La Jolla, May 2007). The assessment includes: catch data (1926-2007); Aerial spotter survey index data (1963-2001); California Passenger Fisheries Vessels (CPFV) recreational CPUE (1935-2007) index data; and California Cooperatives Fisheries Investigations (CalCOFI) larval production at hatching (1951-2006) index data. The final model integrates these data into the ASAP (V.1.3.2), and in this assessment we label this model, "ASAP-E1 2008 model."

Unresolved Problems and Uncertainties:

The assessment suffers from a lack of biological and relative abundance data from Mexico. In particular, there is currently no true fishery-independent index of relative abundance for the whole stock. The 2007 STAR Panels (May and September, La Jolla,) recommended that future stock assessments continue to examine the possibility of using Stock Synthesis2 (SS2) as an alternative to the ASAP platform. Although SS2 and ASAP lead to similar outcomes when configured in a similar manner, SS2 deals better with indices that are not tied to a fishery, can include age-reading error, and allows weight-atage in the catch to differ from weight-at-age in the population.

Spawning Stock Biomass

After a period of low abundance (1940-1977) spawning stock biomass (SSB) increased in the late 1970s reaching a peak of $611,964 \mathrm{mt}$ in 1982. Since $1982 S S B$ has declined, reaching an estimate of $83,183 \mathrm{mt}$ in 2008. A table of $S S B$ estimated in the last 10 years is presented on page 6 .

Plot of Pacific mackerel SSB (mt) estimated from the ASAP-E1 2008 model (1929-08). The confidence interval ($\pm 2 \mathrm{STD}$) associated with this time series is also presented. Estimated 'virgin' SSB from stock-recruitment relationship is presented as bold horizontal line.

Recruitment

Recruitment was modeled following a standard Beverton \& Holt stock-recruit relationship. Steepness was estimated to be 0.32 and $\operatorname{Sigma-R}\left(\sigma_{R}\right)$ was fixed to 0.7 . Predicted recruits in the model showed large year classes in 1976, 1978, 1980 and 1981, but low level of recruitment throughout the 1990s and the early 2000s. The number of recruits estimated by the model is presented on page 6.

Plot of Pacific mackerel recruitment (age-0 fish in millions, R) estimated from the ASAPE1 2008 model (1929-08). The confidence interval (± 2 STD) associated with this time series is also presented.

Management performance

Since 2000, Pacific mackerel has been managed based on a Federal Fishery Management Plan (FMP) harvest policy, stipulating that maximum sustainable yield (MSY) control rule for this species should be set to a Harvest Guideline (HG):

HARVEST $=($ BIOMASS-CUTOFF $) \times$ FRACTION x STOCK DISTRIBUTION,
where HARVEST is the HG, CUTOFF (18,200 mt) is the lowest level of estimated biomass (B) at which harvest is allowed, FRACTION (30\%) is the fraction of biomass above CUTOFF that can be taken by fisheries, and STOCK DISTRIBUTION (70\%) is the average fraction of total BIOMASS (Ages 1+) assumed in U.S. waters (PFMC 1998). Harvest guidelines under the federal FMP are applied to a July-June fishing year.

Age $1+$ biomass was low from the late 1940s to the early 1970s, reaching a peak in 1982, and since then generally declined yielding 264,732 mt in 2008. However, landings of Pacific mackerel have been consistently below the HGs since 2001.

Biomass (mt)

Fishing Year
Plot of Age-1+ fish $B(\mathrm{mt})$ of Pacific mackerel based on population biomass estimated from the ASAP-E1 2008 model (1929-08).

Landings (mt)

Total landings (mt) and Harvest Guidelines (HG) for Pacific mackerel based on no 'U.S. Distribution' parameter in the harvest control rule ($B, 2000-08$ Fishing years).

Table of estimated recruitment, Age 1+ biomass and spawning stock biomass (19982008).

Fishing Year	Recruits (Age-0)	Biomass (Age-1+)	SSB
9	124,650	203,657	102,820
99	175,250	119,155	69,737
00	235,520	98,641	54,266
01	265,960	76,872	32,721
02	113,010	75,701	27,250
03	183,750	79,973	31,670
04	331,430	81,406	32,063
05	615,780	97,727	29,420
06	603,760	147,833	40,167
07	781,550	195,806	56,688
08	307,250	264,732	83,183

Harvest Guideline for the 2008-09 Fishing Season

Biomass (Age-1+)	Cutoff (mt)	Fraction	Distribution	2008-09 Harvest Guideline (mt)
264,732	18,200	30%	70%	51,772

INTRODUCTION

Background

A Pacific mackerel (Scomber japonicus) stock assessment is conducted annually in support of the Pacific Fishery Management Council (PFMC) process, which ultimately establishes a harvest guideline (HG) or Optimal Yield (OY) for the Pacific mackerel fishery that operates off the U.S. Pacific coast. The HG for mackerel applies to a fishing year (management season) that begins in July $1^{\text {st }}$ and ends on June $30^{\text {th }}$ of the subsequent year. The main goal of the assessment is to provide an estimate of current abundance (in biomass), which is used in a harvest control rule for calculation of annual-based HGs. For details regarding Pacific mackerel' harvest control rule, see Amendment 8 of the Coastal Pelagic Species (CPS) Fishery Management Plan (FMP), section 4.0 (PFMC 1998).

The last assessment was completed in June 2007, setting an HG of 71,629 mt for the 2007-08 fishing year. However, as a precautionary measure the PFMC concurred with recommendations from the Coastal Pacific Species Management Team (CPSMT), and the Coastal Pacific Species Advisory SubPanel (CPSAS) to set an OY of $40,000 \mathrm{mt}$ for the 2007-08 fishing year. The 2007-08 HG was based on biomass estimated from the ASAPE1 model that was reviewed and recommended by the May 2007 STAR Panel (La Jolla, CA). This panel also reviewed several Stock Synthesis2 (SS2) model runs, but could not identify an acceptable SS2 model configuration (see STAR Panel report, May 2007). Thus, the STAR Panel recommended that future stock assessments continue to examine the possibility of using SS2 as an alternative to the ASAP platform, and proposed an SS2 methodology review in September 2007. Additional SS2 model runs were examined during the September 2007 STAR Panel in La Jolla, CA; but again the Panel was unable to identify an acceptable base model using SS2. The STAR Panel agreed that SS2 is an appropriate model for the assessment of Pacific mackerel, but further investigations were needed to determine a reliable and stable model configuration (see STAR Panel Report, September 2007).

The 2008-09 stock assessment presented here is an update based on the ASAP-E1 model that was reviewed in May 2007 (STAR Panel, La Jolla) and presented to the PFMC in June 2007 (Dorval et al. 2007). This updated assessment includes updated landings data (1929-06) and an additional year of data (2007) collected from ongoing fisherydependent sampling programs conducted by the the California Department of Fish and Game (CDFG). Also, prior to adding updated catch and biological data, CDFG made minor updates to the California Commercial Passenger Fishing Vessel (CPFV) time series data, but those changes had no significant effect on the overall trajectory of this index. No new data were added to the aerial spotter index and to the CalCOFI larval production index, thus these input data are similar to the time series used in the 2007 assessment. Model parameterization replicates the ASAP-E1 2007 model, but we also conducted sensitivity analysis showing the performance of the model with and without the updated data stream. In this context we present an updated assessment that follows the " 2007 CPS Term of Reference" for off year (i.e., years in which no STAR Panel is
conducted). Readers interested in further details regarding the sample data and model parameterization used in this assessment should consult Dorval et al. (2007). Finally, electronic versions of model programs, input data, and displays (Table and Figures) can be obtained from the authors directly.

Distribution and Stock structure

Pacific mackerel, Scomber japonicus (a.k.a. 'chub mackerel' or 'blue mackerel') in the northeastern Pacific range from southeastern Alaska to Banderas Bay (Puerto Vallarta), Mexico, including the Gulf of California (Hart 1973). They are common from Monterey Bay, California, to Cabo San Lucas, Baja California, but are most abundant south of Point Conception, California. Pacific mackerel usually occur within 30 km of shore, but have been captured as far as 400 km offshore (Fitch 1969; Frey 1971; Allen et al. 1990; MBC 1987).

There are possibly three spawning stocks along the Pacific coasts of the U.S. and Mexico: one in the Gulf of California, one in the vicinity of Cabo San Lucas, and one extending along the Pacific coast north of Punta Abreojos, Baja California (Collette and Nauen 1983; Allen et al. 1990; MBC 1987). The latter "northeastern Pacific" stock is harvested by fishers in the U.S. and Baja California, Mexico, and is considered in this assessment.

The PFMC manages the northeastern Pacific stock as a single unit, with no area- or sector-specific allocations. The PFMC's harvest control rule does, however, prorate the seasonal HG by a 70% portion assumed to reside in U.S. waters (PFMC 1998).

Fisheries

Pacific mackerel are currently harvested by three fisheries: the California commercial fishery, a sport fishery based primarily in southern California, and the Mexican commercial fishery based in Ensenada and Magdalena Bay, Baja California. In the commercial fisheries, Pacific mackerel are landed by the same boats that catch Pacific sardine, anchovy, jack mackerel, and market squid. There is no directed fishery for mackerel in Oregon or Washington, however, small amounts ($100-300 \mathrm{mt} \cdot \mathrm{yr}^{-1}$) are taken by whiting trawlers and salmon trollers. Pacific northwest catch peaked at $1,800 \mathrm{mt}$ following the major El Niño event of 1997-98.

Abstract

ASSESSMENT

\section*{Biological Data}

Weight-at-age A year-specific weight-at-age matrix based on fishery samples was developed for use in the ASAP-E1 model. As in the 2007 assessment this matrix was used to calculate spawning stock biomass (SSB) and Age 1+ biomass (B) from modeled population estimates. Weight-at-age data were updated for the years 2006 and 2007. While it is possible that the population weight-at-age of Pacific mackerel differs from that derived from fishery samples, fishery-independent data do not exist to explore this question. We assumed that fish that occur in the fisheries and in the overall population had similar growth.

\section*{Maturity Schedule}

As in the 2007 assessment, normalized net fecundity-at-age (fraction mature x spawning frequency x batch fecundity) was used to interpret CalCOFI ichthyoplankton data and calculate $S S B$. Fraction mature was estimated by fitting a logistic regression model to age and fraction mature data in Dickerson et al. (1992). Spawning frequency was estimated by fitting a straight line to age and spawning frequency data from the same study. Following Dickerson et al. (1992), batch fecundity per gram of female body weight was assumed constant.

Natural Mortality

As in the 2007 assessment, natural mortality rate (M) was assumed to be constant, $0.5 \mathrm{yr}^{-1}$ for both sexes across all ages ($0-8+$) and years (1929-08). We refer readers to Dorval et al. (2007) for a review of method applied to derive mortality rate level used in this assessment.

Fishery Data

Landings

The assessment uses commercial and recreational landings in California and commercial landings in Baja California from 1926-27 through 2007-08. Landings were aggregated on a fishing year basis, and the updated time series data are presented in Figure 1. Landings for March-June 2008 were substituted with corresponding months from 2007.

Catch-at-age

As in the 2007 assessment, various sources were used to reconstruct a catch-at-age time series for Pacific mackerel (Dorval et al. 2007). Age compositions were estimated by using the proportions-at-age and average weights-at-age to calculate tonnage per age group. Tons per age was converted to numbers-at-age using average fish weights for each biological year.

Catch-at-age data (in proportion) compiled for the ASAP-E1 2008 model input are displayed in Figure 2. For years where age sampling was carried out (i.e. 1929-30 to

2007-08), an effective sample size (λ) of 45 was used, as in the 2007 assessment. Effective sample size was set to zero for cases with landings but no samples (i.e., 200809).

Indices of Relative Abundance

As in the 2007 assessment, survey data of relative abundance used in the ASAP-E1 2008 model include: 1) an aerial sightings by spotter pilots; 2) a larval production at hatching $\left(\mathrm{P}_{\mathrm{h}}\right)$ from the CalCOFI program; and 3) a standardized, catch-per-unit-effort (CPUE) index developed from the CPFV logbooks (Figure 3).

In this assessment, the spotter index covers the fishing period 1962-63 through 2001-02 and is standardized using a Delta-GLM model as in the 2007 assessment (Dorval et al. 2007). Although data from 2004 through 2006 were available, the 2007 STAR Panel recommended that these data be dropped from the assessment. Therefore, data inputs for the spotter index are similar to inputs used in the 2007 assessment. Further, in 2007 no Pacific mackerel larvae were collected during the CalCOFI survey, consequently the Ph index could not be updated, and this assessment uses the same data inputs as derived in the 2007 assessment (Dorval et al. 2007).

Only the CPFV logbooks data were updated, including minor changes in the 1935-06 time series and new data collected in 2007. The new index was standardized using a Delta-GLM, following the same statistical procedures as in the 2007 assessment (Dorval et al. 2007). Figure 4 compares the 2007 and 2008 CPFV index developed using the Delta-GLM method, and shows that the changes made by CDFG had little effect on the overall trajectory of the index.

As in previous assessments, selectivity for the Spotter, CPFV and CalCOFI indices were fixed outside of the ASAP-E1 2008 model. Figure 5 presents selectivity curves assumed for each index, with time varying selectivity for the CPFV CPUE index.

Survey data for Pacific mackerel vary in quality over space and time, but no single index is proposed to be superior with respect to comprehensiveness or sampling design. Strengths and weaknesses of each survey was thoroughly addressed during the 2007 STAR (May 2007 STAR Panel Report).

ASAP-E1 2008 Model

The ASAP model (Legault and Restrepo 1999) is based on the AD Model Builder (ADMB) software environment, a high-level programming language that utilizes C^{++} libraries for nonlinear optimization (Otter Research 2001). The general estimation approach used in the ASAP is that of a flexible forward-simulation that allows for the efficient and reliable estimation of a large number of parameters. The population dynamics and statistical principles of ASAP are well established and date back to Fournier and Archibald (1982) and Deriso et al. (1985).

The ASAP-E1 2008 model is parameterized similarly to the ASAP-E1 2007 model recommended by the May 2007 STAR Panel. Only the catch, biological, and the CPFV data differ:

- Updated landing time series with additional year (i.e, 2007) of catch, catch-at-age, and weight-at-age data;
- Plus group for age data , $8+$ years;
- Effective sample size for age comps iteratively adjusted to 45 ;
- Fishery selectivity estimated for three time blocks: 1929-69; 1970-77; 1978-08;
- Aerial spotter index, larval production index and updated CPFV index methods were included, with inverse-weighting of observations based on model CVs;
- Survey timings based on fishing year (July 1- June 30);
- Sigma-R for the spawner-recruit model was fixed to 0.7;
- As in the 2007 assessment, ASAP version 1.3.2 (compiled 14 September 2004) was used for all runs presented in this paper.

Results

Catch

The ASAP-E1 2008 model fit to catch data is displayed in Figure 6. The observed and predicted time series essentially overlay each other, indicating precise fit to this data source.

Catch-at-age

Effective sample size for the California catch-at-age data was iteratively adjusted and ultimately set to $\lambda=45$ for all years in the input data. Figure 7 presents estimates of Effective sample size from the ASAP-E1 2008 model. Further, Pearson residuals for the catch-at-age fits are displayed in Figure 8. Residual patterns were random, with no obvious trends over age or time. Catch-at-age proportions contributed to 44.8% of the total model likelihood (Table 2).

Fits to Indices

Model fits to the three indices of relative abundance are displayed in Figures 9-11. All three time series have peaks and lows during the same approximate periods of time, however, the magnitude of change for the Aerial Spotter and CalCOFI indices is far greater than that shown for the CPFV index. Index fits contributed to 45.6% of the total model likelihood (Table 2).

Selectivity Estimates

Fishery selectivities ($S_{\text {age }}$) estimated for the three time blocks are displayed in Figure 12. Selectivities followed a dome-shaped pattern for the two periods of directed fishing (1929-1969 and 1978-2008), with the latter period selecting more fish of the youngest and oldest ages. This difference reflects changes in utilization among the two time periods; fishing primarily for canneries in the early period and a broader range of markets (including pet food) in the latter. During the moratorium (1970-1977), CPS seiners captured Pacific mackerel incidental to other CPS target species (esp. jack mackerel) and tended to be smaller and younger.

Fishing Mortality Rate

The fishing mortality multiplier (Fmult) is displayed in Figure 13, and fishing mortality-at-age is presented in Figure 14. Fmult increased steadily throughout the historic fishery, peaking at close to 0.7 by the mid-1960s. For the recent period, Fmult peaked at 0.62 in 1998 (an El Nino season) when the stock was relatively low but availability was high for the Ensenada fishery.

Spawning Stock Biomass
The time series of $S S B$ is presented in Figure 15. SSB peaked at $611,964 \mathrm{mt}$ in 1982, declining to $29,420 \mathrm{mt}$ in 2005 before increasing to the current level of $83,183 \mathrm{mt} . \mathrm{B}_{0}$ is estimated to be $182,791 \mathrm{mt}$.

Recruitment

Recruitment time series (age-0 abundance) are displayed in Figure 16. The recruitment trend is closely similar in pattern to that of the 2007 assessment, with large year-classes occurring in 1976, 1978, 1980, and 1981.

Stock-Recruit Relationship

Fit to the stock-recruitment relationship is displayed in Figure 17. In general, estimated recruitment was constrained to a stock-recruitment relationship in the baseline model (Beverton-Holt model; Sigma-R=0.7). Compensatory productivity ('steepness' parameter) of the population at low adult stock sizes was estimated to be $h=0.32$ - a very low value for small pelagic species, but similar in range to past assessments for this stock.

Biomass of Age 1+ stock for PFMC Management

Stock biomass (Age 1+) peaked at 1.42 million mt in 1979, declined to a low of about $75,701 \mathrm{mt}$ in 2002, increasing again in the recent most years. While the trend in stock biomass was generally similar to past assessments, the magnitude increased due to changes in Sigma-R and higher estimates of recruitment throughout the time series (see 'Recruitment' and 2007 STAR Panel Report). Age 1+ biomass is projected to be 264,732 mt as of July 1, 2008.

Sensitivity Analyses to Last Year's Data

We performed sensitivity tests to investigate potential effects of updated data stream on parameter estimation and population abundance. In this section we present the results of these tests comparing results of four different model runs:

1) ASAP-E1 2007 model : similar input data and model parameterization (i.e., no updated data stream in the 2007 fishing year) as in the final ASAP model recommended by the 2007 STAR Panel.
2) ASAP-E1a: updated landings for the 2007 fishing year; no 2007 catch-at-age CPFV index estimates; same parameterization as in the ASAP-E1 2007 model.
3) $A S A P-E 1 b$: updated landing for 2007; updated catch-at-age for 2007; no 2007 CPFV index estimate; same parameterization as in the ASAP-E1 2007 model.
4) ASAP-E1 2008 model: all updated data streams were included; and same parameterization as in the 2007 model (see above).

Parameter estimation, spawning stock biomass and recruitment estimates for this model runs are summarized and compared in Table 1 and Figures 18-19.

Sensitivity Analyses to Years with CalCOFI Survey but no Larvae

We also performed a sentivity test to examine the effect of years where the CalCOFI survey was conducted, but no Pacific mackerel larvae were caught. In the ASAP-E1 model these years (i.e., 1964, 1967, 1968, 1975, 1990, 1999, 2000, 2002, 2004, 2007) were dropped from the CalCOFI larval production index. We performed this model run (ASAP-E1c) assuming that Ph for those years was equal to 0.015 (i.e., the lowest estimated value in the time series).

Parameter estimation, spawning stock biomass and recruitment estimates for this model run is also summarized in Table 1 and Figures 18-19.

Comparison of ASAP-E1 2008 Model Results to Previous Assessments

Age $1+$ biomass and SSB estimated from the 2007 ASAP-E1 model and 2004 Virtual population model (VPA-ADEPT) are compared to 2008 ASAP-E1 2008 estimates in Figures 20 and 21.

HARVEST CONTROL RULE FOR U.S. MANAGEMENT IN 2008-09

In Amendment 8 to the CPS FMP (PFMC 1998), the recommended maximum sustainable yield (MSY) control rule for Pacific mackerel was:
HARVEST = (BIOMASS-CUTOFF) x FRACTION x DISTRIBUTION,
where HARVEST is the U.S. HG, CUTOFF $(18,200 \mathrm{mt})$ is the lowest level of estimated biomass at which harvest is allowed, FRACTION (30%) is the fraction of biomass above CUTOFF that should be taken by all fisheries, and DISTRIBUTION (70\%) is the average fraction of total BIOMASS assumed in U.S. waters. CUTOFF and FRACTION values applied in the PFMC's harvest policy for mackerel are based on analyses published by MacCall et al. (1985). BIOMASS (264,732 mt) is the estimated biomass of fish age 1 and older for the whole stock projected for July 1, 2008. Based on this formula, the 200809 HG is estimated to be $51,772 \mathrm{mt}$. Figure 22 presents commercial landings, HGs, and OYs for Pacific mackerel from 1992 to 2007. The recommended HG for the 2008-09 fishing season is 27% lower than the $2007-08^{\prime}$ HG, but higher than the OY set by the PFMC for the 2007-08 fishing year and than the maximum yield since 1992-93.

RESEARCH AND DATA NEEDS

CDFG has sampled California's Pacific mackerel fishery for age composition and size-atage for many decades, and the current stock assessment model incorporates a complete time series of landings and age composition data beginning in 1929. Ensenada landings have rivaled California's for the past decade, but the stock assessment does not include real biological data from the Mexican fishery. Mexican landings are included in the assessment, but must be pooled with the southern California catch. INP (Instituto Nacional de la Pesca)-Ensenada has collected biological samples (size, sex, otoliths) since 1989, but the data have not been available for U.S. stock assessments. There is an urgent need to establish a program of data exchange with Mexican scientists (INP) to fill this information gap. The MexUS-Pacifico (NMFS-INP) meetings are the most appropriate forum for such an exchange.

Weaknesses and strengths of the fishery-independent surveys used in this assessment are highlighted in the 2007 STAR Panel Reports. We summarize below (following bullets excerpted from the report) the most important recommendation of the 2007 Panels.

- Age-reading studies should be conducted to construct an age-reading error matrix for inclusion in future (SS2) assessments.
- The next assessment should continue to examine the possibility of using SS2 as the assessment platform. The analyses presented to the Panels in May and Sepetember suggested that ASAP and SS2 lead to similar outcomes when configured in a similar manner. However, SS2 deals better with indices that are not tied directly to a fishery, can include age-reading error, and allows weight-at-age in the catch to differ from weight-at-age in the population. In principle, it should be easier to represent uncertainty using the MCMC algorithm for assessments based on SS2. Further investigations should be undertaken in an attempt to identify an acceptable SS2 configuration that can form the basis of the 2009-10 harvest guideline
- The construction of the spotter plane index is based on the assumption that blocks are random within region (the data for each region is a "visit" by a spotter plane to a block in that region). The distribution of density-per-block should be plotted or a random effects model fitted in which block is nested within region to evaluate this assumption (e.g. examine whether certain blocks are consistently better or worse than the average).
- The CalCOFI data should be reviewed further to examine the extent to which CalCOFI indices for the Southern California Bight can be used to provide information on the abundance of the coastwide stock.

ACKNOWLEDGEMENTS

This updated stock assessment depends in large part on the diligent efforts of many colleagues and the timely receipt of their data products. Port samples and age data were provided by CDFG Marine Region personnel in Los Alamitos and Monterey, and special thanks go to Leeanne Laughlin, Valerie Taylor, Kelly O'Reilly, Travis Tanaka, Dianna Porzio, Sonia Torres, and Kimberley Pentilla for long dockside and laboratory hours. Wendy Dunlap (CDFG, Los Alamitos) supplied logbook data from California's CPFV logbook program. Ron Dotson, Amy Hays, and Sue Manion (NMFS, La Jolla) provided aerial spotter logbook data. Susan Jacobson (NMFS, La Jolla) extracted CalCOFI larval data. Numerous staff from SIO, NMFS, and CDFG assisted in the ongoing collection and identification of CalCOFI ichthyoplankton samples. We are grateful to Christopher Legault (NMFS, Woods Hole) for providing the ASAP model. Finally we thank André Punt (SSC), Thomas Helser (SSC), and the CPSMT for reviewing an earlier draft of this report.

LITERATURE CITED

Allen, M. J., R. J. Wolotira, Jr., T. M. Sample, S. F. Noel, and C. R. Iten. 1990. West coast of North America coastal and oceanic zones strategic assessment: Data Atlas. NOAA. Seattle, WA. Invertebrate and fish 145:

Collette, B. B., and C. E. Nauen. 1983. Scombrids of the world. FAO Fish. Synop. 125. 137 p.

CPS Terms of Reference. 2007. Terms of reference for a coastal pelagic species stock assessment review process. Pacific Fishery Management Council, 7700 NE Ambassador Place, Suite 200, Portland, OR, 97220.

Deriso, R. B., T. J. Quinn II, and P. R. Neal. 1985. Catch-age analysis with auxiliary information. Canadian Journal of Fisheries and Aquatic Sciences 42:815-824.

Dickerson, T. L., B. J. Macewicz and J. R. Hunter. 1992. Spawning frequency and batch fecundity of chub mackerel, Scomber japonicus, during 1995. Calif. Coop. Oceanic Fish. Invest. Rep. 33:130-140.

Dorval, E., K. T. Hill, N. C. H. Lo, and J. D. McDaniel. 2007. Pacific Mackerel (Scomber japonicus) Assessment for U.S. management in the 2007-2008 fishing season. Pacific Fishery Management Council June 2007 Briefing Book, Agenda Item F.2.b, Attachment 1. 175 p.

Fitch, J. E. 1969. Offshore fishes of California. 4th revision. Calif. Dep. Fish and Game, Sacramento, CA. 79 p.

Frey, H. W. [ed.] 1971. California's living marine resources and their utilization. Calif. Dept. Fish and Game 148 p.

Fournier, D., and C. P. Archibald. 1982. A general theory for analyzing catch at age data. Canadian Journal of Fisheries and Aquatic Sciences 39:1195-1207.

Hart, J. L. 1973. Pacific fishes of Canada. Fish. Res. Board Can., Bull. 180. 740 p.
Legault, C. M., and V. R. Restrepo. 1998. A flexible forward age-structured assessment program. ICCAT Working Document SCRS/98/58. 15 p.

MBC Applied Environmental Sciences. 1987. Ecology of important fisheries species offshore California. OCS-Study, MMS 86-0093. 252 p.

Otter Research Ltd. 2001. An introduction to AD Model Builder (Version 6.0.2) for use in nonlinear modeling and statistics. Otter Research Ltd., Sidney, B.C., Canada. 202 p.

Pacific Fishery Management Council (PFMC). 1998. Amendment 8: (To the northern anchovy fishery management plan) incorporating a name change to: The coastal pelagic species fishery management plan. Pacific Fishery Management Council, 7700 NE Ambassador Place, Suite 200, Portland, OR, 97220.

Table 1. List of estimated parameters.

Parameters	Number
log-sel_year1	9
log_sel_devs_vector:	18
log_Fmult_year1:	1
log_Fmult_devs:	79
log_recruit_devs:	80
log_N_year1_devs:	8
log_q_year1:	3
log_SRR_virgin:	1
SRR_steepness:	1
Total	$\mathbf{2 0 0}$

Table 2. Comparison of likelihood function components for the ASAP-E1 2008, ASAPE1a, ASAP-E1b, ASAP-E1c, and ASAP-E1 2007 model runs.

Component	n	λ	RSS	L	\% of Total
Catch (weight) - fishery	80	100	0.02	2.36	0.2\%
Catch-at-age (proportions) - fishery	720	na	na	530.93	44.8\%
Fits - Survey indices Spotter CPFV CalCOFI All	$\begin{array}{r} 39 \\ 68 \\ 37 \\ 144 \end{array}$	1 1 1 3	$\begin{array}{r} 166.92 \\ 16.06 \\ 76.87 \\ 259.85 \end{array}$	$\begin{aligned} & 119.16 \\ & 104.85 \\ & 315.54 \\ & 539.55 \end{aligned}$	$\begin{gathered} 10.1 \% \\ 8.9 \% \\ 26.6 \% \\ 45.6 \% \end{gathered}$
Recruitment (deviations)	80	1	57.65	57.65	4.9\%
Stock-recruit fit	80	1	57.65	53.90	4.6\%
F penalty	720	0.001	1.75	0.00	<1\%
Number of estimated parameters (Total)	200	na	na	na	
Objective function (Total)	na	na	na	1184.38	100\%

ASAP-E1a Model Run					
Component	n	λ	RSS	L	\% of Total
Catch (weight) - fishery	80	100	0.02298	2.298	0.2\%
Catch-at-age (proportions) - fishery	720	see_below	na	523.466	44.7\%
Fits - Survey indices					
Spotter	39	1	166.557	117.844	10.1\%
CPFV	67	1	16.4706	101.298	8.6\%
CalCOFI	37	1	76.7361	315.024	26.9\%
All	143	3	259.7637	534.166	45.6\%
Recruitment (deviations)	80	1	57.483	57.483	4.9\%
Stock-recruit fit	80	1	57.483	53.6872	4.6\%
F penalty	720	0.001	1.74535	0.001745	$<1 \%$
Number of estimated parameters (Total)	200	na	na	na	
Objective function (Total)	na	na	na	1171.1	100.0\%

Table 2. cont.

ASAP-E1b Model Run					
Component	n	λ	RSS	L	\% of Total
Catch (weight) - fishery	80	100	0.0230254	2.30254	0.2\%
Catch-at-age (proportions) - fishery	720	see_below	na	528.326	44.9\%
Fits - Survey indices					
Spotter	39	1	166.509		
CPFV	67	1	16.5177	101.799	8.7\%
CalCOFI	37	1	76.578	314.643	26.7\%
All	143	3	259.604	534.246	45.4\%
Recruitment (deviations)	80	1	57.7466	57.7466	4.9\%
Stock-recruit fit	80	1	57.7466	54.0177	4.6\%
F penalty	720	0.001	1.73547	0.001735	<1\%
Number of estimated parameters (Total)	200	na	na	na	
Objective function (Total)	na	na	na	1176.64	100.0\%
ASAP-E1c Model Run					
Component	n	λ	RSS	L	\% of Total
Catch (weight) - fishery	80	100	0.0311119	3.11119	0.2\%
Catch-at-age (proportions) - fishery	720	see_below	na	532.796	40.3\%
Fits - Survey indices					
Spotter	39	1	157.545	112.411	8.5\%
CPFV	68	1	17.4904	114.048	8.6\%
CalCOFI	47	1	164.818	445.81	33.7\%
All	154	3	339.852	672.268	50.8\%
Recruitment (deviations)	80	1	59.0798	59.0798	4.5\%
Stock-recruit fit	80	1	59.0798	55.6894	4.2\%
F penalty	720	0.001	1.3971	0.001397	<1\%
Number of estimated parameters (Total)	200	na	na	na	
Objective function (Total)	na	na	na	1322.95	100.0\%

Table 2. cont.

ASAP-E1 2007 Model Run					
Component	n	λ	RSS	L	\% of Total
Catch (weight) - fishery	79	100	0.0200987	2.00987	0.2\%
Catch-at-age (proportions) - fishery	711	see_below	N/A	524.626	39.7\%
Fits - Survey indices Spotter CPFV CalCOFI All	$\begin{array}{r} 39 \\ 67 \\ 37 \\ 143 \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & 165.434 \\ & 15.5464 \\ & 78.0771 \\ & 259.057 \end{aligned}$	$\begin{aligned} & 119.525 \\ & 107.834 \\ & 318.819 \\ & 546.179 \end{aligned}$	$\begin{gathered} 9.0 \% \\ 8.2 \% \\ 24.1 \% \\ 41.3 \% \end{gathered}$
Recruitment (deviations)	79	1	58.803	58.803	4.4\%
Stock-recruit fit	79	1	58.803	55.5721	4.2\%
F penalty	711	0.001	1.9564	0.001956	<1\%
Number of estimated parameters (Total)	198	na	na	na	
Objective function (Total)	na	na	na	1187.19	89.7\%

Landings (mt)

Fishing year
Figure 1. Commercial and recreational landings (mt) of Pacific mackerel in California (CA) and Baja California (MX) used in the ASAP-E1 2008 model (1926-08).
See Fishery Data section for descriptions of fishing year.

Figure 2. Pacific mackerel catch-at-age (in proportion) estimates used in the ASAP-E1 2008 model (1926-08).

Relative abundance

Figure 3. Indices of abundance time series for Pacific mackerel used in the ASAP-E1 2008 model (1926-08). Indices are rescaled (normalized) to a maximum of 1.

Relative abundance

Fishing year
Figure 4. Indices of abundance time series for Pacific mackerel used in the ASAP-E1 and ASAP-E1 2008 models (1926-08) comparing GLM to Delta_GLM.

Selectivity

Figure 5. Assumed selectivity ogives for survey-related indices of abundance (Spotter, CPFV, and CalCOFI) from the ASAP-E1 2008 model (1926-08). Note that CPFV ogive represents (1990-07), with ogive for 1929-89 parameterized with slightly different probabilities for ages 1 and 2.

Fishing year
Figure 6. Observed and predicted estimates of total landings (mt) for Pacific mackerel generated from the ASAP-E1 2008 model (1929-08).

Fishing year
Figure 7. Effective sample sizes estimated for catch-at-age data generated from the ASAP-E1 2008 model (1929-08). Catch-at-age data were given a lamba weighting of '45' for all years.

Figure 8. Pearson residual plot for Pacific mackerel catch-at-age fitted to the ASAP-E1 2008 model (1929-08). Dark gray bubbles indicate positive values and white bubbles indicated negative values. Vertical black lines represent periods of major change in fishery selectivity (1929-69, 1970-77, and 1978-07).

Figure 9. Observed and predicted estimates of the Spotter index of relative abundance for Pacific mackerel generated from the ASAP-E1 2008 model (1962-01). *Note: Observed values were internally re-scaled by ASAP.

Fishing year
Figure 10. Observed and predicted estimates of the CPFV index of relative abundance for Pacific mackerel generated from the ASAP-E1 2008 model (1935-07). *Note: Observed values were internally re-scaled by ASAP.

$\begin{array}{llllllllllllllllllllllllllllllllllll}51 & 53 & 55 & 57 & 59 & 61 & 63 & 65 & 67 & 69 & 71 & 73 & 75 & 77 & 79 & 81 & 83 & 85 & 87 & 89 & 91 & 93 & 95 & 97 & 99 & 01 & 03 & 05 & 07\end{array}$
Fishing year
Figure 11. Observed and predicted estimates of the CalCOFI index of relative abundance for Pacific mackerel generated from the ASAP-E1 2008 model (1951-06).
*Note: Observed values were internally re-scaled by ASAP.

Figure 12. Estimated selectivity schedule for commercial fishery (catch-at-age) data from the ASAP-E1 2008 model (1926-08) based on three time blocks (1929-69, 1970-77, and 1978-07).

Fishing year
Figure 13. F multiplier for Pacific mackerel generated from the ASAP-E1 08 model (1929-08).

Fishing year
Figure 14. Estimated instantaneous fishing mortality (total) F-at-age for Pacific mackerel generated from the ASAP-E1 2008 model (1929-08).

SSB (mt)

Fishing year
Figure 15. Estimated spawning stock biomass (SSB, in mt) of Pacific mackerel generated from the ASAP-E1 2008 model (1929-08). The confidence interval (± 2 STD) associated with this time series is also presented. Estimated 'virgin' SSB from stock-recruitment relationship is presented as solid horizontal line.

Figure 16. Estimated recruitment (age-0 fish in millions, R) of Pacific mackerel generated from the ASAP-E1 2008 model (1929-08). The confidence interval (± 2 STD) associated with this time series is also presented.

Figure 17. Beverton-Holt stock (SSB, in 1000s mt)-recruitment (Age-0 fish (R), in millions) relationship for Pacific mackerel estimated in the ASAP-E1 2008 model (1929-08). Recruitment estimates are presented as (year+1) values. Strong year classes are highlighted. Steepness=0.32

Figure 18. Comparison of spawning stock biomass estimated from sensitivity analyses. See Sensitivity Analysis section for description of each model run.

Figure 19. Comparison of recruitment (Age-0 fish) estimated from sensitivity analyses. See Sensitivity Analysis section for description of each model run.

Biomass

Fishing year
Figure 20. Estimated biomass (Age-1+ fish, in mt) of Pacific mackerel generated from the ASAP-E1 2008, ASAP-E1 2007, and VPA models (1929-08).

SSB (mt)

Fishing year
Figure 21. Estimated spawning stock biomass ($S S B$, in mt) of Pacific mackerel generated from the ASAP-E1 2008, ASAP-E1 2007, and VPA models (1929-08).

Landings (mt)

Figure 22. Commercial landings (California directed fishery in mt), Harvest Guidelines (HG in mt), and optimal yield (OY) for Pacific mackerel based on the harvest control rule, display (A, 1992-08 Fishing years). Total landings (mt) and Harvest Guidelines for Pacific mackerel based on no 'U.S. Distribution' parameter in the harvest control rule (B, 2000-08 Fishing years). Note that incidental landings from Pacific Northwest fisheries are not included, but typically range 100 to 300 mt per year.

APPENDIX A

\# E1: SigR=0.7; M=0.5; update from 07
\# Number of Years
80
\# First Year
1929
\# Number of Ages
9
\# Natural Mortality Rate by Ag
$\begin{array}{lllllllll}0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5\end{array}$
\# Fecundity Option
\# Maturity Vector

| 0.00 | 0.07 | 0.25 | 0.47 | 0.73 | 1.00 | 1.00 | 1.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
.00							

| 0.00 | 0.07 | 0.25 | 0.47 | 0.73 | 1.00 | 1.00 | 1.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	1.00						
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
1.00							

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	1.00						
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00							
0.00	0.07	0.25	0.07	0.73	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00							
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
1.00							

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00							
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00							
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00							

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
1.00							
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	1.00						

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00							

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00							
0.00	0.07	0.25	0.07	0.73	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00							

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00							

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.07	0.00						
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00							

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
.00							

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	1.00						

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00							

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
1.00							
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
1.00							

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	1.00						

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00							

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00							

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00							

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
1.00							
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	0.07	0.05	0.07	0.73	1.00	1.00	1.00

0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
0.00	1.00						
0.00	0.07	0.25	0.47	0.73	1.00	1.00	1.00
1.00							

Number of Selectivity Changes by Fleet 2									
Selectivity Change Years$1970 \quad 1978$									
\# Fleet 1	Catch at Ag	- Last	lumn is	-tal Weigh					
9.28	12433.52	22466.85	20819.02	5208.01	3874.57	3198.38	1273.12	506.68	25733.54
0	1392.8	7164.29	4838.4	1916.24	670.23	43.87	17.46	6.95	5825.88
0	957.2	9990.74	6190.18	1307.12	752.89	371.31	147.8	58.82	6890.14
0	144.48	3222	5844.95	1393.72	940.26	489.13	194.7	77.49	4938.95
0	4620.12	19017.01	31887	23363.33	8277	2730.62	1086.93	432.58	33072.19
0	4894.32	53353.79	35598.25	40807.82	15508.13	5669.25	2256.66	898.11	51483.81
0	10871.51	12737.4	61704.13	63819.66	33633.06	6205.69	2470.19	983.09	66417.45
0	2247.75	20403.77	17399.3	33062.36	35158.51	5252.24	2090.67	832.05	45714.21
128.53	1475.8	2592.22	8035.18	15910.37	26039.26	7865.44	3130.86	1246.02	31987.62
771.57	11577.22	31967.43	16527.64	4309.46	10883.8	6608.45	2630.51	1046.89	34561.76
1802.77	23227.99	23713.35	33697.92	11093.97	6309.69	3744.21	1525.42	485.36	45453.99
3199.27	18452.94	59415.03	27593.71	17024.69	2513.71	685.56	114.26	0	48868.18
638.04	18396.72	31228.34	28817.98	6522.15	921.61	70.89	70.89	0	32560.77
0	28454.8	10342.87	15109.17	6148.52	1096.25	142.99	47.66	0	21885.7
426.03	14144.24	62072.75	10522.97	7412.94	1022.47	170.41	85.21	0	35304.7
0	20800.04	20684.8	35319.73	8873.15	1613.3	230.47	0	57.62	36657.1
2034.46	15336.68	12076.33	8920.31	8320.41	4825.32	1930.13	599.9	391.24	23601.43
3289.73	16672.93	20261.72	11040.52	6704.06	4286.61	1819.32	1096.58	548.29	27582.46
7426.5	4645.52	10460.31	9227.83	6067.61	3507.84	1896.13	695.25	221.22	19436.99
2722.71	37272.92	9106.99	3661.57	4037.12	1408.3	657.21	281.66	93.89	18124.69
565.75	21983.49	36329.33	9173.26	3071.22	1980.13	808.22	121.23	80.82	24188.91
44.21	6587.64	17065.97	17154.4	3183.29	530.55	397.91	44.21	44.21	17493.02
1030.94	4004.81	6859.73	11816.18	11300.71	674.08	237.91	79.3	79.3	15857.11
509.56	324.26	1991.91	1991.91	8708.8	4678.66	92.65	46.32	0	10325.76
11077.04	2069.34	1338.98	1379.56	568.05	811.5	770.93	,	0	5265.94
693.87	47799.78	10176.73	2158.7	1233.54	0	308.39	154.19	0	18464.67
15607.86	17730.53	25097.44	10738.21	1123.77	124.86	249.73	124.86	374.59	22200.87
419.64	54867.37	22555.42	19093.43	8812.35	314.73	0	0	0	36834.99
1996.08	7915.49	30078.85	10875.19	8534.96	3028.53	1307.78	344.15	0	27753.42
11505.37	2665.88	4595.13	7401.32	3156.96	1438.17	912.01	0	0	11874.77
1689.97	46896.6	7773.85	3633.43	2450.45	1013.98	253.5	0	0	19332.47
1628.96	12726.27	17002.3	10181.02	5090.51	1730.77	1323.53	0	0	20822.52
7344.83	28679.83	15564.05	14689.67	5770.94	1224.14	524.63	0	0	26199.2
738.58	23298.65	12553.8	10472.06	7072.09	1421.2	186.57	0	0	23900.98
284.46	6843.29	18432.22	10338.63	8843.01	2841.7	424.59	0	0	23702.99
1389.15	7716.49	6521.08	9629.28	10969.27	4240.06	715.11	0	0	19987.93
13074.05	1264.81	766.75	1700.61	5524.52	8676.71	1562.99	0	0	11279.44
3689.34	8093.13	1457.55	1168.16	991.64	2240.26	1219.85	91.12	0	7405.18
4530.49	1003.32	88.34	631.74	228.46	163.44	191.8	45.48	3.9	1713.31
7417.78	499.49	221.14	353.17	89.26	85.63	68.09	51.89	37.44	1695.04
46.32	2354.04	605.77	221.27	70.7	61.36	9.47		0	1168.22
1405.04	3004.08	0	0	0	0	0	0	0	835.49
0	2852.62	223.99	9.9	11.85	7.9	0	,	0	911.26
1319.46	197.08	293.14	318	9.27	7.18	0	0	0	532
50.08	546.98	153.25	32.92	74.92	88.38	49.33	2.06	2.06	400.94
2154.23	768.64	244.31	39.29	13.1	0	0	,	0	633.81
129.69	6334.53	89.64	65.67	1.89	3.59	1.8	0	0	2149.3
13973.68	164.16	1763.31	0.75	22.98		26.91	-	0	4091.65
11070.92	36733.93	77.95	286.78	0	0	,	0	0	13751.25
73773.14	18836.9	28597.94	1165.54	1006.01	257.27	0	0	0	27172.62
27.3	102761.6	14944.14	15203.87	222.15	674.58	0	0	0	35858.08
63977.75	3375.6	77514.48	8220.94	7378.74	407.32	125.57	0	0	35203.07
19073.13	45821.52	10973.96	69210.11	4792.33	3066.54	75.52	123.26	0	46984.54
16128.82	36225.3	33231.45	9921.13	31045.14	2318.39	768.07	0	0	36371.39
2841.49	2812.44	44335.77	40174.47	6319.26	17770.08	251.37	0	0	42117.51
2874.61	532.91	9588.75	48965.24	25203.82	6271.07	7986.46	197.57	0	46468.33
3250.53	17477.96	5188.93	16256.13	50114.46	10704.47	1388.6	1046.78	0	46827.8
18857.41	44528.39	23015.91	5275.98	9001.56	25599.29	7434.51	1023.53	1085.34	54122.6
18059.02	71919.59	32697.92	5325.97	2861.93	3517.06	4718.34	2063.79	848.6	48222.76
104976.8	15168.1	36143.18	13133.26	2848.62	1942.85	2573.76	4155.11	3178.37	49264.61
21820.5	161290.9	8376.37	6715.48	4513.48	2717.9	2542.54	866.91	1677.31	49405.81
29559.33	19434.09	43284.43	11973.57	16877.91	19587.74	8229.01	6546.39	8186.6	71550.65
27181.03	91781.73	21911.68	21684.28	10412.43	9327.48	6708.83	3023.18	4448.24	65504.89
11121.1	30146.79	12343.23	9853.43	10636.66	8100.2	5593.94	2629.49	1025.04	32217.46
51844.57	9383.17	10677.45	3439.66	3365.54	5042.96	2884.56	2893.11	1650.65	20919.9
25603.69	38016.3	9946.38	4529.72	5751.48	3022.07	1869.19	1484.89	606.29	23737.04
46200.33	21302.37	5280.72	982.52	552.27	1417.41	759.08	529.29	336.18	11995.83
28943.78	43914.05	12553.55	6006.08	3740.6	2567.45	1367.78	1073.12	755.59	24562.68
24318.16	49846.2	32821.51	12958.96	8403.64	7621.77	4900.96	4165.63	6853.01	51076.32
13603.22	19878.34	38777.42	23702.43	15523.39	13343.25	10667.9	6471.86	7980.32	62822.66
11997.3	2949.13	2680.44	6120.22	5834.41	4446.9	1946.44	1330.19	966.05	15909.85
29466.53	15354.87	5178.47	8768.71	10300.19	6637.51	2844.88	1140.63	630.41	27791.9
14207.16	20422.43	3517.09	1951.32	2407.56	2133.99	984.14	555.21	298.61	13010.41
7247.46	51288.5	5175.57	1192.36	228.27	364.9	252.66	0		14122.78
26589.82	14955.19	5147.96	1891.02	662.89	651.84	330.95	95.6	65.05	12022.88
46349.62	7066.43	2287.65	1657.83	706.03	141.48	94.32	36.78	94.32	11195.41
71582.68	9838.92	5043.35	729.78	285.3	174.03	89.59	22.52	0	13151.46
48522.75	23717.95	4882.47	2454.61	1395.46	390.63	309.2	443.38	0	16265.15
34690.05	16917.34	6182.45	2734.26	1529.06	505.49	191.43	43.64	0	13743.29
0	0	0	0	0	-	0	0	0	13743.29
\# Fleet 1 D	Discards at	Age - Las	Column	Total We	ight				
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

00

[^0]\# Number of Indices
\$SPOTTER
\#\$CPFV
\#\$CALCOFI
\# Index Weight Flag
\# Index Units
122
\# Index Month
\# Index Start Ag
122
\# Index End Age
${ }^{9}{ }^{9}{ }^{9}$
\# Index Fix Age
\# Index Selectivity Choice
1
\# Index Data - Year, Index, CV, Selectivity
\# INDEX - 1

1							
1929	-999	1	1	1	1	1	1
1930	-999	1	1	1	1	1	1
1931	-999	1	1	1	1	1	1
1932	-999	1	1	1	1	1	1
1933	-999	1	1	1	1	1	1
1934	-999	1	1	1	1	1	1
1935	-999	1	1	1	1	1	1
1936	-999	1	1	1	1	1	1
1937	-999	-999	1	1	1	1	1
1938	-999	-999	1	1	1	1	1
1939	-999	1	1	1	1	1	1
1940	-999	1	1	1	1	1	1
1941	1	1	1	1	1		
1942	-999	1	1	1	1		
1943	1944	-999	1	1	1		
		1	1	1	1		

[^1]00

00
00
 0

1959	12.46	0.21049	0	0.5	1	1	1	1	1	1	1
1960	16.7	0.35114	0	0.5	1	1	1	1	1	1	1
1961	15.8	0.24541	0	0.5	1	1	1	1	1	1	1
1962	7.73	0.27839	0	0.5	1	1	1	1	1	1	1
1963	13.89	0.26578	0	0.5	1	1	1	1	1	1	1
1964	5.47	0.28615	0	0.5	1	1	1	1	1	1	1
1965	10.17	0.24638	0	0.5	1	1	1	1	1	1	1
1966	11.29	0.22213	0	0.5	1	1	1	1	1	1	1
1967	4.62	0.30361	0	0.5	1	1	1	1	1	1	1
1968	6.96	0.44038	0	0.5	1	1	1	1	1	1	1
1969	5.74	0.31913	0	0.5	1	1	1	1	1	1	1
1970	8.98	0.43941	0	0.5	1	1	1	1	1	1	1
1971	14.7	0.28033	0	0.5	1	1	1	1	1	1	1
1972	8.05	0.31719	0	0.5	1	1	1	1	1	1	1
1973	4.43	0.49179	0	0.5	1	1	1	1	1	1	1
1974	3.21	0.45881	0	0.5	1	1	1	1	1	1	1
1975	8.13	0.33853	0	0.5	1	1	1	1	1	1	1
1976	13.46	0.31234	0	0.5	1	1	1	1	1	1	1
1977	52.33	0.19885	0	0.5	1	1	1	1	1	1	1
1978	101.33	0.15811	0	0.5	1	1	1	1	1	1	1
1979	118.36	0.18818	0	0.5	1	1	1	1	1	1	1
1980	155.73	0.15714	0	0.5	1	1	1	1	1	1	1
1981	105.97	0.18139	0	0.5	1	1	1	1	1	1	1
1982	108.23	0.15326	0	0.5	1	1	1	1	1	1	1
1983	108.89	0.17945	0	0.5	1	1	1	1	1	1	1
1984	117.36	0.16684	0	0.5	1	1	1	1	1	1	1
1985	86.09	0.19982	0	0.5	1	1	1	1	1	1	1
1986	65.8	0.20273	0	0.5	1	1	1	1	1	1	1
1987	44.16	0.19691	0	0.5	1	1	1	1	1	1	1
1988	32.12	0.44717	0	0.5	1	1	1	1	1	1	1
1989	43.55	0.22116	0	0.5	1	1	1	1	1	1	1
1990	50.29	0.28615	0	0.333	0.666	1	1	1	1	1	1
1991	56.4	0.27936	0	0.333	0.666	1	1	1	1	1	1
1992	41.23	0.22795	0	0.333	0.666	1	1	1	1	1	1
1993	48.69	0.22698	0	0.333	0.666	1	1	1	1	1	1
1994	46.09	0.19788	0	0.333	0.666	1	1	1	1	1	1
1995	41.76	0.22698	0	0.333	0.666	1	1	1	1	1	1
1996	44.8	0.26287	0	0.333	0.666	1	1	1	1	1	1
1997	30.45	0.27548	0	0.333	0.666	1	1	1	1	1	1
1998	13.71	0.27257	0	0.333	0.666	1	1	1	1	1	1
1999	8.12	0.30555	0	0.333	0.666	1	1	1	1	1	1
2000	14.85	0.28421	0	0.333	0.666	1	1	1	1	1	1
2001	11.78	0.29973	0	0.333	0.666	1	1	1	1	1	1
2002	9.31	0.37733	0	0.333	0.666	1	1	1	1	1	1
2003	5.95	0.32204	0	0.333	0.666	1	1	1	1	1	1
2004	11.23	0.32495	0	0.333	0.666	1	1	1	1	1	1
2005	22.27	0.74399	0	0.333	0.666	1	1	1	1	1	1
2006	20.69	0.25026	0	0.333	0.666	1	1	1	1	1	1
2007	26.09	0.58006	0	0.333	0.666	1	1	1	1	1	1
2008	-999	1	0	0.333	0.666	1	1	1	1	1	1

1969	0.167	0.493	0	0.074	0.246	0.474	0.733	1	1	1	1
1970	-999	1	0	0.074	0.246	0.474	0.733	1	1	1	1
1971	-999	1	0	0.074	0.246	0.474	0.733	1	1	1	1
1972	0.246	0.55	0	0.074	0.246	0.474	0.733	1	1	1	1
1973	-999	1	0	0.074	0.246	0.474	0.733	1	1	1	1
1974	-999	1	0	0.074	0.246	0.474	0.733	1	1	1	1
1975	-999	1	0	0.074	0.246	0.474	0.733	1	1	1	1
1976	-999	1	0	0.074	0.246	0.474	0.733	1	1	1	1
1977	-999	1	0	0.074	0.246	0.474	0.733	1	1	1	1
1978	5.436	0.196	0	0.074	0.246	0.474	0.733	1	1	1	1
1979	-999	1	0	0.074	0.246	0.474	0.733	1	1	1	1
1980	-999	1	0	0.074	0.246	0.474	0.733	1	1	1	1
1981	21.845	0.222	0	0.074	0.246	0.474	0.733	1	1	1	1
1982	-999	1	0	0.074	0.246	0.474	0.733	1	1	1	1
1983	-999	1	0	0.074	0.246	0.474	0.733	1	1	1	1
1984	2.222	0.417	0	0.074	0.246	0.474	0.733	1	1	1	1
1985	0.579	0.213	0	0.074	0.246	0.474	0.733	1	1	1	1
1986	10.974	0.156	0	0.074	0.246	0.474	0.733	1	1	1	1
1987	46.389	0.318	0	0.074	0.246	0.474	0.733	1	1	1	1
1988	2.876	0.215	0	0.074	0.246	0.474	0.733	1	1	1	1
1989	1.187	0.291	0	0.074	0.246	0.474	0.733	1	1	1	1
1990	-999	1	0	0.074	0.246	0.474	0.733	1	1	1	1
1991	0.848	0.645	0	0.074	0.246	0.474	0.733	1	1	1	1
1992	0.315	0.636	0	0.074	0.246	0.474	0.733	1	1	1	1
1993	0.643	0.424	0	0.074	0.246	0.474	0.733	1	1	1	1
1994	0.094	1.029	0	0.074	0.246	0.474	0.733	1	1	1	1
1995	0.758	0.207	0	0.074	0.246	0.474	0.733	1	1	1	1
1996	7.922	0.232	0	0.074	0.246	0.474	0.733	1	1	1	1
1997	8.767	0.305	0	0.074	0.246	0.474	0.733	1	1	1	1
1998	0.37	0.451	0	0.074	0.246	0.474	0.733	1	1	1	1
1999	-999	1	0	0.074	0.246	0.474	0.733	1	1	1	1
2000	-999	1	0	0.074	0.246	0.474	0.733	1	1	1	1
2001	0.394	0.308	0	0.074	0.246	0.474	0.733	1	1	1	1
2002	-999	1	0	0.074	0.246	0.474	0.733	1	1	1	1
2003	0.333	0.549	0	0.074	0.246	0.474	0.733	1	1	1	1
2004	-999	1	0	0.074	0.246	0.474	0.733	1	1	1	1
2005	0.068	0.444	0	0.074	0.246	0.474	0.733	1	1	1	1
2006	0.103	0.554	0	0.074	0.246	0.474	0.733	1	1	1	1
2007	-999	1	0	0.074	0.246	0.474	0.733	1	1	1	1
2008	-999	1	0	0.074	0.246	0.474	0.733	1	1	1	1

\# Phase Control Data
\# Phase for Selectivity in 1st Year
\# Phase for Selectivity Deviations
\# Phase
\# Phase for F mult in 1st Year
\# Phase for F mult in 1st Year
\# Phase for F mult Deviations
\# Phase for Recruitment Deviations
\# Phase for N in 1st Year
\# Phase for Catchability in 1st Year
\# 1
\# Phase for Catchability Deviations
-5
\# Phase for Stock Recruitment Relationship
\# Phase for Steepness
\# Recruitment CV by Year
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
\#Lambda for Each Index (cv=0.4)
\# Lambda for Total Catch in Weight
100
\# Lambda for Total Discards at Age
\# Lambda for Catch at Age by Year \& Fleet
45


```
                0
# Lambda for F mult Deviations by Fleet
    0
# Lambda for N in 1st Year Deviations
0
# Lambda for Recruitment Deviations
1
# Lambda for Catchability Deviations by Index
    1 1 1
# Lambda for Selectivity Deviations by Fleet
    0
# Lambda for Selectivity Curvature at Age
# Lambda for Selectivity Curvature Over Time
0
# Lambda for Deviations from Initial Steepness
# Lambda for Deviation from Initial log of Virgin Stock Size
# Lambda for Deviation from Initial log of Virgin Stock Size
# NAA for Year 1
    #100000 70000 50000 30000 20000 10000 5000 2500 1250
# Log of F mult in 1st year by Fleet
-3
# log of Catchability in 1st year by index
-7 -7 -7
# Initial log of Virgin Stock Size
10
# Initial Steepness
# Initial
# Selectivity at Age in 1st Year by Fleet
        0.009
        0.092
        0.293
        0.703
        1
        1
    # Where to do Extras
    2
# Ignore Guesses
    0
# Projection Control Data
# Year for SSB ratio Calculation
    1929
# Fleet Directed Flag
# Final Year of Projections
    2010
# Year Projected Recruits, What Projected, Target, non- directed F mult
```



```
# Test Value
    -23456
#####
# ---- FINIS ---
```


APPENDIX B

Input and Estimated effective sample sizes for fleet
$\begin{array}{lll}1929 & 45 & 36.2237 \\ 1930 & 45 & 14.0491\end{array}$
$193045 \quad 14.0491$
$193145 \quad 9.04635$
$\begin{array}{lll}1932 & 45 & 10.0544 \\ 1933 & 45 & 21.7624\end{array}$
$\begin{array}{lll}1933 & 45 & 21.7624 \\ 1934 & 45 & 43.2674\end{array}$
$\begin{array}{lll}1934 & 45 & 43.2674\end{array}$
$1935 \quad 45 \quad 35.234$
$1936 \quad 45 \quad 28.2955$
$1937 \quad 45 \quad 7.80704$
$193845 \quad 22.3318$
$1939 \quad 45 \quad 31.5594$
$\begin{array}{lll}1940 & 45 & 37.0004\end{array}$
$1941 \quad 45 \quad 22.3592$
$194345 \quad 9.88299$
$1943 \quad 45 \quad 9.88299$
$1944 \quad 45 \quad 41.0466$
$1945 \quad 45 \quad 58.3799$
$\begin{array}{lll}1947 & 45 & 150.869\end{array}$
$1948 \quad 45 \quad 14.1723$
$1949 \quad 45 \quad 122.077$
$1950 \quad 45 \quad 99.5503$
$\begin{array}{lll}1951 & 45 & 263.27 \\ 1952 & 45 & 7.12822\end{array}$
$195345 \quad 8.56774$
19544517.2541
$\begin{array}{lll}1954 & 45 & 17.2541 \\ 1955 & 45 & 12.5785\end{array}$
$\begin{array}{lll}1955 & 45 & 12.5785 \\ 1956 & 45 & 10.6006\end{array}$
$\begin{array}{lll}1956 & 45 & 10.6006 \\ 1957 & 45 & 69.0312\end{array}$
$\begin{array}{lll}1958 & 45 & 18.6191\end{array}$
$1959 \quad 45 \quad 6.51177$
$1960 \quad 45 \quad 24.8915$
$1961 \quad 45 \quad 73.9718$
$\begin{array}{lll}1962 & 45 & 30.1446\end{array}$
$1964 \quad 45 \quad 23.4466$
1965454.99631
$\begin{array}{lll}1965 & 45 & 4.99631 \\ 1966 & 45 & 19.5674\end{array}$
$1966 \quad 45 \quad 19.5674$
$196845 \quad 2.14204$
$1969 \quad 45 \quad 12.958$
$1970 \quad 45 \quad 13.1248$
$197145 \quad 10.4233$
$197245 \quad 10.0881$
$\begin{array}{lll}1973 & 45 & 8.0892 \\ 1974 & 45 & 269.388\end{array}$
$1975 \quad 45 \quad 25.2922$
$197645 \quad 33.6836$
$197745 \quad 70.7012$
$197845 \quad 111.908$
19794538.7142

198045 37.7142
$1981 \quad 45 \quad 7.06002$
$198245 \quad 22.346$
$1983 \quad 45 \quad 13.7512$
$198445 \quad 10.756$
$198545 \quad 7.2822$
$198645 \quad 35.1295$

1987	45	18.4691
1988	45	35.7076
1989	45	8.48506
1990	45	26.341
1991	45	16.5076
1992	45	31.6193
1993	45	28.026
1994	45	325.181
1995	45	11.3491
1996	45	71.7909
1997	45	76.831
1998	45	41.3082
1999	45	65.4619
2000	45	108.359
2001	45	23.5083
2002	45	5.61202
2003	45	15.9449
2004	45	5.96139
2005	45	6.02485
2006	45	13.7905
2007	45	31.6195
2008	0	2.36347
Total	3555	3263.56

1999	0	$1 \mathrm{e}+15$
2000	0	$1 \mathrm{e}+15$
2001	0	$1 \mathrm{e}+15$
2002	0	$1 \mathrm{e}+15$
2003	0	$1 \mathrm{e}+15$
2004	0	$1 \mathrm{e}+15$
2005	0	$1 \mathrm{e}+15$
2006	0	$1 \mathrm{e}+15$
2007	0	$1 \mathrm{e}+15$
2008	0	$1 \mathrm{e}+15$
Total	0	$8 \mathrm{e}+16$

Observed and predicted total fleet catch by year
fleet 1 total catches
1930 25733.5 25741.8
$1930 \quad 5825.88 \quad 5826.56$
$1931 \quad 6890.14 \quad 6890.57$
1932 4938.95 4938 68
1933 33072.2 33026.1
193451483.8 51194.
$1935 \quad 66417.4 \quad 65125.2$
$\begin{array}{lll}1936 & 45714.2 & 44728.5\end{array}$
$1937 \quad 31987.6 \quad 31502.6$
$1938 \quad 34561.8 \quad 34102$
19394545445249.7
$1940 \quad 48868.2 \quad 49589.2$
$1941 \quad 32560.8 \quad 33263.3$
$1942 \quad 21885.7 \quad 22159.3$
$\begin{array}{lll}1943 & 35304.7 & 35855.2\end{array}$
$1944 \quad 36657.1 \quad 37184.6$
$1945 \quad 23601.4 \quad 23810.9$
$1946 \quad 27582.5 \quad 27969$.
$\begin{array}{lll}1947 & 19437 & 19872 \\ 1948 & 18124.7 & 18656\end{array}$
$1948 \quad 18124.7 \quad 18656.5$
$1949 \quad 24188.9 \quad 25021.8$
19501749317626
$1951 \quad 15857.1 \quad 15540.8$
$1952 \quad 10325.8 \quad 10168.5$
$19535265.94 \quad 5236.22$
$1954 \quad 18464.7 \quad 18934.9$
1955 22200.9 23068.4
$195636835 \quad 37140.6$
$1957 \quad 27753.4 \quad 27262$
$\begin{array}{lll}1958 & 11874.8 & 12102.6\end{array}$
$1959 \quad 19332.5 \quad 19554.3$
$\begin{array}{lll}1960 & 20822.5 & 21155.3 \\ 1961 & 26199.2 & 25858.5\end{array}$
$196223901 \quad 22900$
19632370322335
$1964 \quad 19987.9 \quad 18866.1$
$\begin{array}{lll}1965 & 11279.4 & 10898.5 \\ 1966 & 7405.18 & 7581.59\end{array}$
$\begin{array}{lll}1966 & 7405.18 & 7581.5\end{array}$
$\begin{array}{lll}1967 & 1713.31 & 1732.8 \\ 1968 & 1695.04 & 1707.76\end{array}$
$\begin{array}{lll}1968 & 1695.04 & 1707.76 \\ 1969 & 1168.22 & 1171.32\end{array}$
$\begin{array}{lll}1969 & 1168.22 & 1171.32 \\ 1970 & 835.49 & 835.397\end{array}$
1971 911.26 911.794
1972532531.976
$1973400.94 \quad 401.036$
$\begin{array}{lll}1974 & 633.81 & 633.71 \\ 1975 & 2149.3 & 2148.38\end{array}$
$1976 \quad 4091.65 \quad 4089.82$
$1977 \quad 13751.2 \quad 13730$.
$\begin{array}{lll}1977 & 13751.2 & 13730.3 \\ 1978 & 27172.6 & 27154.1\end{array}$
$1978 \quad 27172.6 \quad 27154.1$
$1979 \quad 35858.1 \quad 35846.7$
$1980 \quad 35203.1 \quad 35116.5$
$1982 \quad 36371.4 \quad 36198.9$
1983 42117.5 41802.2
$1984 \quad 46468.3 \quad 46153.3$
$1985 \quad 46827.8 \quad 46075.7$
$\begin{array}{lll}1986 & 54122.6 & 54022.2\end{array}$
$\begin{array}{lll}1987 & 48222.8 & 48682.2 \\ 1988 & 49264.6 & 49608.1\end{array}$
$\begin{array}{lll}1988 & 49264.6 & 49608.1 \\ 1989 & 49405.8 & 49245.7\end{array}$
$\begin{array}{lll}1989 & 49405.8 & 49245.7 \\ 1990 & 71550.6 & 70424.8\end{array}$
$1990 \quad 71550.6 \quad 70424.8$
$\begin{array}{lll}1991 & 65504.9 & 63934.7 \\ 1992 & 32217.5 & 31698.9\end{array}$
$\begin{array}{lll}1992 & 32217.5 & 31698.9 \\ 1993 & 20919.9 & 20683.5\end{array}$
$199423737 \quad 23530.1$
$1995 \quad 11995.8 \quad 11919$
$1996 \quad 24562.7 \quad 24627.7$
$1997 \quad 51076.3 \quad 52266.2$
$1999 \quad 15909.9 \quad 15928$.
$2000 \quad 27791.9 \quad 28050.8$
$2000 \quad 27791.9 \quad 28050.8$
2001 13010.4 13141.7
2002 14122.8 14329.1
2003 12022.9 12128.3
$\begin{array}{lll}2004 & 11195.4 & 11285.7 \\ 2005 & 13151.5 & 13206.2\end{array}$
2006 16265.1 16296.6
200713743.313746
200813743.313743 .3

Observed and predicted total fleet Discards by year

fleet	1 total	Discards	
1929	00		
1930	00		
1931	00		
1932	00		
1933	00		
1934	00		
1935	00		
1936	00		
1937	00		
1938	00		
1939	00		
1940	00		
1941	00		
1942	00		
1943	00		
1944	00		
1945	00		
1946	00		
1947	00		
1948	00		
1949	00		
1950	00		
1951	00		
1952	00		
1953	00		
1954	00		
1955	00		
1956	00		
1957	00		
1958	00		
1959	00		
1960	00		
1961	00		
1962	00		
1963	00		
1964	00		
1965	00		
1966	00		
1967	00		
1968	00		
1969	00		
1970	00		
1971	00		
1972	00		
1973	00		
1974	00		
1975	00		
1976	00		
1977	00		
1978	00		
1979	00		
1980	00		
1981	00		
1982	00		
1983	00		
1984	00		
1985	00		
1986	00		
1987	00		
1988	00		
1989	00		
1990	00		
1991	00		
1992	00		
1993	00		
1994	00		
1995	00		
1996	00		
1997	00		
1998	00		
1999	00		
2000	00		
2001	00		
2002	00		
2003	00		
2004	00		
2005	00		
2006	00		
2007	00		
2008	00		
Index data			
index number 1			
$\text { units }=1$			
starting and ending ages for selectivity $=1$			
selectivity choice $=-1$			
1962	0.237696	0.0429284	0.268188
1963	0.0974896	0.143439	0.182984
1964	0.190425	0.0511159	0.1149
1965	0.229574	0.0658689	0.0730904
1966	0.370805	0.0253169	0.0697859
1967	0.672149	0.0018498	0.0860493

Selectivity by age and year for each fleet rescaled so max=1.0
fleet 1 selectivity at age
$\begin{array}{llllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{lllllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{lllllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{llllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ 0.06652790 .2752750 .5526920 .8148480 .93497910 .5976720 .2656490 .041441 $\begin{array}{llllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{llllllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $0.06652790 .2752750 .5526920 .814848 \quad 0.93497910 .5976720 .2656490 .041441$ $\begin{array}{lllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{llllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{llllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{llllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{llllllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{llllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{llllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{llllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{lllllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{llllllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{lllllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{lllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{llllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649\end{array} 0.041441$ $\begin{array}{llllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{llllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{llllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{lllllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ 0.06652790 .2752750 .5526920 .8148480 .93497910 .5976720 .2656490 .041441 $\begin{array}{llllllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ 06652790.2752750 .5526920 .8148480 .93497910 .5976720 .2656490 .041441 $\begin{array}{lllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{lllllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ 0.066527910 .2752750 .5526920 .8148480 .93497910 .5976720 .2656490 .041441 $\begin{array}{llllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{llllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{llllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{lllllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{lllllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$
0.06652790 .2752750 .5526920 .8148480 .93497910 .5976720 .2656490 .041441
$\begin{array}{lllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{llllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{llllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{llllllllll}0.0665279 & 0.275275 & 0.552692 & 0.814848 & 0.934979 & 1 & 0.597672 & 0.265649 & 0.041441\end{array}$ $\begin{array}{llllllllllll}0.270373 & 1 & 0.238174 & 0.146137 & 0.102386 & 0.218185 & 0.277213 & 0.0251064 & 0.0335359\end{array}$ $\begin{array}{llllllllllll}0.270373 & 1 & 0.238174 & 0.146137 & 0.102386 & 0.218185 & 0.277213 & 0.0251064 & 0.0335359\end{array}$ $\begin{array}{lllllllllll}0.270373 & 1 & 0.238174 & 0.146137 & 0.102386 & 0.218185 & 0.277213 & 0.0251064 & 0.0335359\end{array}$ $\begin{array}{lllllllllll}0.270373 & 1 & 0.238174 & 0.146137 & 0.102386 & 0.218185 & 0.277213 & 0.0251064 & 0.0335359\end{array}$ $\begin{array}{llllllllll}0.270373 & 1 & 0.238174 & 0.146137 & 0.102386 & 0.218185 & 0.277213 & 0.0251064 & 0.0335359\end{array}$ $\begin{array}{llllllllll}0.270373 & 1 & 0.238174 & 0.146137 & 0.102386 & 0.218185 & 0.277213 & 0.0251064 & 0.0335359\end{array}$ $\begin{array}{llllllllll}0.270373 & 1 & 0.238174 & 0.146137 & 0.102386 & 0.218185 & 0.277213 & 0.0251064 & 0.0335359\end{array}$ $\begin{array}{lllllllllll}0.270373 & 1 & 0.238174 & 0.146137 & 0.102386 & 0.218185 & 0.277213 & 0.0251064 & 0.0335359\end{array}$ $\begin{array}{lllllllllll}0.407434 & 0.711699 & 0.620368 & 0.75767 & 0.908753 & 1 & 0.787272 & 0.729486 & 0.40864\end{array}$ $0.4074340 .7116990 .620368 \quad 0.757670 .90875310 .7872720 .7294860 .40864$ $0.40743410 .7116990 .620368 \quad 0.757670 .90875310 .7872720 .7294860 .40864$ 0.4074340 .7116990 .6203680 .757670 .90875310 .7872720 .7294860 .40864 0.4074340 .7116990 .6203680 .757670 .90875310 .7872720 .7294860 .40864 $0.4074340 .7116990 .620368 \quad 0.757670 .90875310 .7872720 .7294860 .40864$ $\begin{array}{lllllllllll}0.407434 & 0.711699 & 0.620368 & 0.75767 & 0.908753 & 1 & 0.787272 & 0.729486 & 0.40864\end{array}$ $\begin{array}{llllllllll}0.407434 & 0.711699 & 0.620368 & 0.75767 & 0.908753 & 1 & 0.787272 & 0.729486 & 0.40864\end{array}$ $\begin{array}{llllllllll}0.407434 & 0.711699 & 0.620368 & 0.75767 & 0.908753 & 1 & 0.787272 & 0.729486 & 0.40864\end{array}$ $\begin{array}{lllllllllll}0.407434 & 0.711699 & 0.620368 & 0.75767 & 0.908753 & 1 & 0.787272 & 0.729486 & 0.40864\end{array}$ $\begin{array}{llllllllll}0.407434 & 0.711699 & 0.620368 & 0.75767 & 0.908753 & 1 & 0.787272 & 0.729486 & 0.40864\end{array}$ $\begin{array}{llllllllll}0.407434 & 0.711699 & 0.620368 & 0.75767 & 0.908753 & 1 & 0.787272 & 0.729486 & 0.40864\end{array}$ $0.4074340 .711699 \quad 0.620368 \quad 0.757670 .90875310 .7872720 .7294860 .40864$ $\begin{array}{llllllllllll}0.407434 & 0.711699 & 0.620368 & 0.75767 & 0.908753 & 1 & 0.787272 & 0.729486 & 0.40864\end{array}$ 0.4074340 .7116990 .6203680 .757670 .90875310 .7872720 .7294860 .40864 $\begin{array}{llllllllll}0.407434 & 0.711699 & 0.620368 & 0.75767 & 0.908753 & 1 & 0.787272 & 0.729486 & 0.40864\end{array}$ $\begin{array}{lllllllllll}0.407434 & 0.711699 & 0.620368 & 0.75767 & 0.908753 & 1 & 0.787272 & 0.729486 & 0.40864\end{array}$ $\begin{array}{lllllllllll}0.407434 & 0.711699 & 0.620368 & 0.75767 & 0.908753 & 1 & 0.787272 & 0.729486 & 0.40864\end{array}$ $\begin{array}{llllllllll}0.407434 & 0.711699 & 0.620368 & 0.75767 & 0.908753 & 1 & 0.787272 & 0.729486 & 0.40864\end{array}$ $\begin{array}{llllllllll}0.407434 & 0.711699 & 0.620368 & 0.75767 & 0.908753 & 1 & 0.787272 & 0.729486 & 0.40864\end{array}$ $\begin{array}{llllllllll}0.407434 & 0.711699 & 0.620368 & 0.75767 & 0.908753 & 1 & 0.787272 & 0.729486 & 0.40864\end{array}$ $\begin{array}{lllllllll}0.407434 & 0.711699 & 0.620368 & 0.75767 & 0.908753 & 1 & 0.787272 & 0.729486 & 0.40864\end{array}$ $0.4074340 .7116990 .620368 \quad 0.757670 .90875310 .7872720 .7294860 .40864$ $0.4074340 .7116990 .620368 \quad 0.757670 .90875310 .7872720 .7294860 .40864$ $0.4074340 .711699 \quad 0.620368 \quad 0.757670 .90875310 .7872720 .7294860 .40864$ $\begin{array}{lllllllllll}0.407434 & 0.711699 & 0.620368 & 0.75767 & 0.908753 & 1 & 0.787272 & 0.729486 & 0.40864\end{array}$ $\begin{array}{llllllllllll}0.407434 & 0.711699 & 0.620368 & 0.75767 & 0.908753 & 1 & 0.787272 & 0.729486 & 0.40864\end{array}$ 0.40740 .6203680 .757670 .90875310 .7872720 .7294860 .40864 0.4074340 .7116990 .6203680 .757670 .90875310 .7872720 .7294860 .4086 $\begin{array}{llllllllll}0.407434 & 0.711699 & 0.620368 & 0.75767 & 0.908753 & 1 & 0.787272 & 0.729486 & 0.40864\end{array}$

Fmult by year for each fleet	
1929	0.0357653
1930	0.00757934
1931	0.0086251
1932	0.00646769
1933	0.0529301
1934	0.108351
1935	0.20034
1936	0.195105
1937	0.180744
1938	0.236438
1939	0.291464
1940	0.352304
1941	0.250186
1942	0.164527
1943	0.279614
1944	0.33988
1945	0.266283
1946	0.385029
1947	0.327166
1948	0.326627
1949	0.470767
1950	0.367333
1951	0.422506
1952	0.349676
1953	0.16266
1954	0.447751
1955	0.447379
1956	0.718881
1957	0.620093
1958	0.299561
1959	0.485562
1960	0.486616
1961	0.592254
1962	0.471838
1963	0.535444
1964	0.700192
1965	0.714154
1966	0.608781
1967	0.132015
1968	0.0983321
1969	0.0386934
1970	0.025958
1971	0.0248188
1972	0.0257217
1973	0.0115938
1974	0.0169377
1975	0.0191575
1976	0.0250138
1977	0.0252685
1978	0.043068
19	

1979	0.0442698
1980	0.0524044
1981	0.0566203
1982	0.0478136
1983	0.0629856
1984	0.0802796
1985	0.0892204
1986	0.123188
1987	0.13567
1988	0.151864
1989	0.176843
1990	0.288319
1991	0.325335
1992	0.214636
1993	0.145579
1994	0.173498
1995	0.0759861
1996	0.138543
1997	0.318584
1998	0.622754
1999	0.210548
2000	0.475146
2001	0.26917
2002	0.338106
2003	0.254637
2004	0.18629
2005	0.181456
2006	0.158491
2007	0.102832
2008	0.0873431

Directed F by age and year for each fleet

fleet 1 directed F at age
$\begin{array}{llllllllll}0.00237939 & 0.00984531 & 0.0197672 & 0.0291433 & 0.0334398 & 0.0357653 & 0.021376 & 0.00950101 & 0.00148215\end{array}$ $\begin{array}{llllllllllll}0.000504237 & 0.0020864 & 0.00418904 & 0.00617601 & 0.00708652 & 0.00757934 & 0.00452996 & 0.00201344 & 0.000314096\end{array}$ $\begin{array}{lllllllllll}0.00057381 & 0.00237427 & 0.00476702 & 0.00702815 & 0.00806428 & 0.0086251 & 0.00515498 & 0.00229124 & 0.000357433\end{array}$ 0.0004302820 .00178040 .003574640 .005270190 .006047160 .006467690 .003865560 .001718130 .000268028 $\begin{array}{lllllllllllllllll}0.00352133 & 0.0145703 & 0.029254 & 0.04313 & 0.0494885 & 0.0529301 & 0.0316349 & 0.0140608 & 0.00219348\end{array}$ 0.007208360 .02982630 .05988470 .08828960 .1013060 .1083510 .06475840 .02878330 .00449017 $\begin{array}{llllllllll}0.0133282 & 0.0551486 & 0.110726 & 0.163247 & 0.187313 & 0.20034 & 0.119738 & 0.05322 & 0.00830229\end{array}$ $\begin{array}{lllllllll}0.0129799 & 0.0537075 & 0.107833 & 0.158981 & 0.182419 & 0.195105 & 0.116609 & 0.0518293 & 0.00808534\end{array}$ $\begin{array}{llllllllllll}0.0120245 & 0.0497543 & 0.0998956 & 0.147279 & 0.168992 & 0.180744 & 0.108026 & 0.0480143 & 0.00749021\end{array}$ $\begin{array}{llllllllll}0.0157297 & 0.0650854 & 0.130677 & 0.192661 & 0.221064 & 0.236438 & 0.141312 & 0.0628093 & 0.00979822\end{array}$ $\begin{array}{lllllllllll}0.0193905 & 0.0802328 & 0.16109 & 0.237499 & 0.272513 & 0.291464 & 0.1742 & 0.0774271 & 0.0120786\end{array}$ $\begin{array}{llllllllll}0.023438 & 0.0969804 & 0.194715 & 0.287074 & 0.329396 & 0.352304 & 0.210562 & 0.0935889 & 0.0145998\end{array}$ 0.01664440 .06887010 .1382760 .2038640 .2339190 .2501860 .1495290 .06646170 .010368 $\begin{array}{lllllllllllll}0.0109457 & 0.0452902 & 0.0909328 & 0.134065 & 0.153829 & 0.164527 & 0.0983334 & 0.0437064 & 0.00681818\end{array}$ $\begin{array}{lllllllllllllllll}0.0186022 & 0.0769709 & 0.154541 & 0.227843 & 0.261433 & 0.279614 & 0.167118 & 0.0742792 & 0.0115875\end{array}$ $\begin{array}{lllllllllll}0.0226115 & 0.0935605 & 0.187849 & 0.276951 & 0.31778 & 0.33988 & 0.203137 & 0.0902886 & 0.014085\end{array}$ $\begin{array}{lllllllllll}0.0177153 & 0.0733012 & 0.147173 & 0.216981 & 0.248969 & 0.266283 & 0.15915 & 0.0707378 & 0.011035\end{array}$ 0.02561520 .1059890 .2128020 .313740 .3599940 .3850290 .2301210 .1022820 .015956 $\begin{array}{llllllllllllll}0.0217657 & 0.0900608 & 0.180822 & 0.266591 & 0.305894 & 0.327166 & 0.195538 & 0.0869113 & 0.0135581\end{array}$ $\begin{array}{llllllllllll}0.0217298 & 0.0899122 & 0.180524 & 0.266151 & 0.305389 & 0.326627 & 0.195216 & 0.0867679 & 0.0135357\end{array}$ $\begin{array}{llllllllllll}0.0313191 & 0.12959 & 0.260189 & 0.383604 & 0.440157 & 0.470767 & 0.281364 & 0.125059 & 0.0195091\end{array}$ $\begin{array}{lllllllllllll}0.0244379 & 0.101118 & 0.203022 & 0.299321 & 0.343449 & 0.367333 & 0.219545 & 0.0975816 & 0.0152227\end{array}$ $\begin{array}{lllllllll}0.0281084 & 0.116305 & 0.233515 & 0.344278 & 0.395034 & 0.422506 & 0.25252 & 0.112238 & 0.0175091\end{array}$ $\begin{array}{llllllllll}0.0232632 & 0.0962572 & 0.193263 & 0.284933 & 0.32694 & 0.349676 & 0.208992 & 0.092891 & 0.0144909\end{array}$ $\begin{array}{llllllllllll}0.0108214 & 0.0447762 & 0.0899006 & 0.132543 & 0.152083 & 0.16266 & 0.0972172 & 0.0432103 & 0.00674078\end{array}$ $\begin{array}{llllllllllll}0.0297879 & 0.123255 & 0.247468 & 0.364849 & 0.418637 & 0.447751 & 0.267608 & 0.118944 & 0.0185552\end{array}$ $0.02976320 .1231520 .2472630 .364546 \quad 0.418290 .4473790 .2673860 .1188460 .0185398$ $\begin{array}{lllllllllll}0.0478257 & 0.19789 & 0.39732 & 0.585779 & 0.672139 & 0.718881 & 0.429655 & 0.19097 & 0.0297912\end{array}$ $\begin{array}{llllllllllll}0.0412535 & 0.170696 & 0.34272 & 0.505282 & 0.579773 & 0.620093 & 0.370612 & 0.164727 & 0.0256973\end{array}$ 0.01992920 .08246180 .1655650 .2440970 .2800830 .2995610 .179040 .0795780 .0124141 $\begin{array}{llllllllll}0.0323034 & 0.133663 & 0.268366 & 0.39566 & 0.45399 & 0.485562 & 0.290207 & 0.128989 & 0.0201222\end{array}$ $\begin{array}{lllllllllll}0.0323736 & 0.133953 & 0.268949 & 0.396519 & 0.454976 & 0.486616 & 0.290837 & 0.129269 & 0.0201659\end{array}$ $\begin{array}{lllllllllll}0.0394014 & 0.163033 & 0.327334 & 0.482597 & 0.553745 & 0.592254 & 0.353974 & 0.157331 & 0.0245436\end{array}$ $\begin{array}{llllllllll}0.0313904 & 0.129885 & 0.260781 & 0.384476 & 0.441158 & 0.471838 & 0.282004 & 0.125343 & 0.0195534\end{array}$ $\begin{array}{lllllllllll}0.035622 & 0.147394 & 0.295935 & 0.436306 & 0.500629 & 0.535444 & 0.32002 & 0.14224 & 0.0221893\end{array}$ $\begin{array}{lllllllllll}0.0465823 & 0.192745 & 0.38699 & 0.57055 & 0.654664 & 0.700192 & 0.418485 & 0.186005 & 0.0290167\end{array}$ $\begin{array}{llllllllllll}0.0475112 & 0.196589 & 0.394707 & 0.581927 & 0.667719 & 0.714154 & 0.42683 & 0.189714 & 0.0295953\end{array}$ $\begin{array}{llllllllllll}0.0405009 & 0.167582 & 0.336468 & 0.496064 & 0.569197 & 0.608781 & 0.363852 & 0.161722 & 0.0252285\end{array}$ 0.008782670 .03634040 .07296350 .1075720 .1234310 .1320150 .07890160 .03506960 .00547083 0.006541830 .02706840 .05434730 .08012570 .09193840 .09833210 .05877040 .02612180 .00407498 0.002574190 .01065130 .02138550 .03152920 .03617750 .03869340 .0231260 .01027880 .00160349 0.007018340 .0259580 .006182530 .003793440 .002657730 .005663660 .007195910 .0006517120 .000870525 $0.006710340 .0248188 \quad 0.00591120 .003626960 .00254110 .00541510 .006880110 .0006231110 .000832321$ 0.006954460 .02572170 .006126250 .003758910 .002633540 .00561210 .00713040 .000645780 .000862601 $\begin{array}{llllllllll}0.00313465 & 0.0115938 & 0.00276135 & 0.00169429 & 0.00118704 & 0.0025296 & 0.00321396 & 0.000291079 & 0.000388809\end{array}$ 0.00457950 .01693770 .004034130 .002475240 .001734180 .003695560 .004695360 .0004252450 .000568021 $\begin{array}{lllllllllll}0.00517967 & 0.0191575 & 0.00456282 & 0.00279963 & 0.00196146 & 0.00417988 & 0.00531071 & 0.000480976 & 0.000642463\end{array}$ $0.006763040 .0250138 \quad 0.005957630 .003655450 .002561060 .005457640 .006934150 .0006280060 .000838859$ 0.006831910 .02526850 .006018290 .003692670 .002587130 .005513210 .007004750 .00063440 .0008474 $\begin{array}{llllllllllllll}0.0175474 & 0.0306515 & 0.026718 & 0.0326313 & 0.0391382 & 0.043068 & 0.0339062 & 0.0314175 & 0.0175993\end{array}$ $\begin{array}{lllllllllllllllll}0.018037 & 0.0315068 & 0.0274636 & 0.0335419 & 0.0402304 & 0.0442698 & 0.0348524 & 0.0322942 & 0.0180904\end{array}$ $\begin{array}{llllllllllll}0.0213513 & 0.0372962 & 0.03251 & 0.0397052 & 0.0476227 & 0.0524044 & 0.0412565 & 0.0382283 & 0.0214146\end{array}$ $\begin{array}{llllllllllllllll}0.023069 & 0.0402966 & 0.0351254 & 0.0428995 & 0.0514539 & 0.0566203 & 0.0445755 & 0.0413037 & 0.0231373\end{array}$ $\begin{array}{lllllllllllll}0.0194809 & 0.0340289 & 0.029662 & 0.0362269 & 0.0434508 & 0.0478136 & 0.0376423 & 0.0348794 & 0.0195386\end{array}$ $\begin{array}{lllllllllllll}0.0256624 & 0.0448268 & 0.0390743 & 0.0477223 & 0.0572384 & 0.0629856 & 0.0495868 & 0.0459471 & 0.0257385\end{array}$ $\begin{array}{lllllllllll}0.0327086 & 0.057135 & 0.0498029 & 0.0608254 & 0.0729544 & 0.0802796 & 0.0632019 & 0.0585629 & 0.0328055\end{array}$ $\begin{array}{llllllllllll}0.0363514 & 0.0634981 & 0.0553495 & 0.0675996 & 0.0810793 & 0.0892204 & 0.0702407 & 0.065085 & 0.0364591\end{array}$ $\begin{array}{llllllllll}0.0501911 & 0.0876732 & 0.0764222 & 0.0933362 & 0.111948 & 0.123188 & 0.0969828 & 0.0898643 & 0.0503398\end{array}$ $\begin{array}{lllllllllllll}0.0552763 & 0.096556 & 0.0841651 & 0.102793 & 0.12329 & 0.13567 & 0.106809 & 0.0989691 & 0.0554401\end{array}$ $0.0618746 \quad 0.108082 \quad 0.09421170 .1150630 .1380070 .1518640 .1195580 .1107830 .0620578$ $\begin{array}{lllllllllll}0.072052 & 0.125859 & 0.109708 & 0.133989 & 0.160707 & 0.176843 & 0.139224 & 0.129005 & 0.0722654\end{array}$ $\begin{array}{lllllllllllll}0.117471 & 0.205197 & 0.178864 & 0.218451 & 0.262011 & 0.288319 & 0.226986 & 0.210325 & 0.117819\end{array}$
$\begin{array}{llllllllll}0.132553 & 0.231541 & 0.201828 & 0.246497 & 0.29565 & 0.325335 & 0.256127 & 0.237328 & 0.132945\end{array}$
$\begin{array}{llllllllll}0.0874497 & 0.152756 & 0.133153 & 0.162623 & 0.195051 & 0.214636 & 0.168976 & 0.156574 & 0.0877088\end{array}$
0.05931390 .1036090 .09031270 .1103010 .1322960 .1455790 .114610 .1061980 .0594895
$\begin{array}{llllllllllll}0.070689 & 0.123479 & 0.107633 & 0.131454 & 0.157667 & 0.173498 & 0.13659 & 0.126564 & 0.0708984\end{array}$
0.03095930 .05407920 .04713930 .05757230 .06905260 .07598610 .05982170 .05543080 .031051
$\begin{array}{lllllllllllll}0.056447 & 0.0986008 & 0.0859475 & 0.10497 & 0.125901 & 0.138543 & 0.109071 & 0.101065 & 0.0566142\end{array}$
$\begin{array}{llllllllllll}0.129802 & 0.226736 & 0.197639 & 0.241381 & 0.289514 & 0.318584 & 0.250812 & 0.232402 & 0.130186\end{array}$
$\begin{array}{llllllllll}0.253731 & 0.443214 & 0.386337 & 0.471842 & 0.56593 & 0.622754 & 0.490277 & 0.454291 & 0.254483\end{array}$
$\begin{array}{llllllllllll}0.0857843 & 0.149847 & 0.130617 & 0.159526 & 0.191336 & 0.210548 & 0.165758 & 0.153592 & 0.0860384\end{array}$
$\begin{array}{lllllllllll}0.193591 & 0.338161 & 0.294766 & 0.360004 & 0.431791 & 0.475146 & 0.374069 & 0.346613 & 0.194164\end{array}$
$\begin{array}{lllllllll}0.109669 & 0.191568 & 0.166984 & 0.203942 & 0.244609 & 0.26917 & 0.21191 & 0.196356 & 0.109994\end{array}$
$\begin{array}{lllllllllll}0.137756 & 0.240629 & 0.20975 & 0.256172 & 0.307255 & 0.338106 & 0.266181 & 0.246643 & 0.138164\end{array}$
$\begin{array}{llllllllllll}0.103748 & 0.181225 & 0.157969 & 0.192931 & 0.231402 & 0.254637 & 0.200468 & 0.185754 & 0.104055\end{array}$
$\begin{array}{llllllllll}0.0759006 & 0.132582 & 0.115568 & 0.141146 & 0.169291 & 0.18629 & 0.14666 & 0.135896 & 0.0761255\end{array}$
$0.07393120 .1291420 .112569 \quad 0.137484 \quad 0.164899 \quad 0.1814560 .1428550 .132370 .0741502$
0.06457450 .1127980 .09832260 .1200840 .1440290 .1584910 .1247750 .1156170 .064765
0.04189720 .07318550 .06379370 .07791270 .0934490 .1028320 .08095670 .07501450 .0420213
$\begin{array}{llllllllllllllll}0.0355865 & 0.062162 & 0.0541848 & 0.0661772 & 0.0793733 & 0.0873431 & 0.0687627 & 0.0637155 & 0.0356919\end{array}$
Discard F by age and year for each fleet
fleet 1 Discard F at age
000000000
000000000000
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
000000000000
00000003000
00000000000
00000000000
00000000000
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
00000000000
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$0 \begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$
$0 \begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$
000000000000
0000000000
$0 \begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$

$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$0 \begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$0 \begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$
000000000000
000000000000
0000000000
00000000000
00000000
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$0 \begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$
000000000000
000000000000
$0 \begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
00000000000
000000000000
$0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 00000$
000000000
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
000000000000
000000030000
00000000000
$0 \begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
0000000
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
000000000000
$0 \begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
000000000000
000000000000
$0 \begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
00000000000
0000000000
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
00000000000
00000000000
00000000000
000000000

000000000000
$0 \begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$0 \begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$
$0 \begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$0 \quad 0 \quad 0$
Total F
0.002379390 .009845310 .01976720 .02914330 .03343980 .03576530 .0213760 .009501010 .00148215
$\begin{array}{llllllllll}0.000504237 & 0.0020864 & 0.00418904 & 0.00617601 & 0.00708652 & 0.00757934 & 0.00452996 & 0.00201344 & 0.000314096\end{array}$ $\begin{array}{lllllllllllll}0.00057381 & 0.00237427 & 0.00476702 & 0.00702815 & 0.00806428 & 0.0086251 & 0.00515498 & 0.00229124 & 0.000357433\end{array}$ $\begin{array}{lllllllll}0.000430282 & 0.0017804 & 0.00357464 & 0.00527019 & 0.00604716 & 0.00646769 & 0.00386556 & 0.00171813 & 0.000268028\end{array}$ $\begin{array}{llllllllll}0.00352133 & 0.0145703 & 0.029254 & 0.04313 & 0.0494885 & 0.0529301 & 0.0316349 & 0.0140608 & 0.00219348\end{array}$ $\begin{array}{lllllllllllll}0.00720836 & 0.0298263 & 0.0598847 & 0.0882896 & 0.101306 & 0.108351 & 0.0647584 & 0.0287833 & 0.00449017\end{array}$ $\begin{array}{llllllllll}0.0133282 & 0.0551486 & 0.110726 & 0.163247 & 0.187313 & 0.20034 & 0.119738 & 0.05322 & 0.00830229\end{array}$ $\begin{array}{llllllllllll}0.0129799 & 0.0537075 & 0.107833 & 0.158981 & 0.182419 & 0.195105 & 0.116609 & 0.0518293 & 0.00808534\end{array}$ $\begin{array}{llllllllllll}0.0120245 & 0.0497543 & 0.0998956 & 0.147279 & 0.168992 & 0.180744 & 0.108026 & 0.0480143 & 0.00749021\end{array}$ 0.01572970 .06508540 .1306770 .1926610 .2210640 .2364380 .1413120 .06280930 .00979822 0.01939050 .08023280 .161090 .2374990 .2725130 .2914640 .17420 .07742710 .0120786 $\begin{array}{lllllllllll}0.023438 & 0.0969804 & 0.194715 & 0.287074 & 0.329396 & 0.352304 & 0.210562 & 0.0935889 & 0.0145998\end{array}$ $\begin{array}{llllllllll}0.0166444 & 0.0688701 & 0.138276 & 0.203864 & 0.233919 & 0.250186 & 0.149529 & 0.0664617 & 0.010368\end{array}$ $\begin{array}{llllllllll}0.0109457 & 0.0452902 & 0.0909328 & 0.134065 & 0.153829 & 0.164527 & 0.0983334 & 0.0437064 & 0.00681818\end{array}$ $\begin{array}{llllllllll}0.0186022 & 0.0769709 & 0.154541 & 0.227843 & 0.261433 & 0.279614 & 0.167118 & 0.0742792 & 0.0115875\end{array}$ $\begin{array}{llllllll}0.0226115 & 0.0935605 & 0.187849 & 0.276951 & 0.31778 & 0.33988 & 0.203137 & 0.0902886\end{array} 0.014085$ $\begin{array}{lllllllllll}0.0177153 & 0.0733012 & 0.147173 & 0.216981 & 0.248969 & 0.266283 & 0.15915 & 0.0707378 & 0.011035\end{array}$ $\begin{array}{lllllllllll}0.0256152 & 0.105989 & 0.212802 & 0.31374 & 0.359994 & 0.385029 & 0.230121 & 0.102282 & 0.015956\end{array}$ $\begin{array}{llllllllll}0.0217657 & 0.0900608 & 0.180822 & 0.266591 & 0.305894 & 0.327166 & 0.195538 & 0.0869113 & 0.0135581\end{array}$ $\begin{array}{lllllllllllllll}0.0217298 & 0.0899122 & 0.180524 & 0.266151 & 0.305389 & 0.326627 & 0.195216 & 0.0867679 & 0.0135357\end{array}$ 0.03131910 .129590 .2601890 .3836040 .4401570 .4707670 .2813640 .1250590 .0195091 $\begin{array}{lllllllllllllll}0.0244379 & 0.101118 & 0.203022 & 0.299321 & 0.343449 & 0.367333 & 0.219545 & 0.0975816 & 0.0152227\end{array}$ $\begin{array}{lllllllllllll}0.0281084 & 0.116305 & 0.233515 & 0.344278 & 0.395034 & 0.422506 & 0.25252 & 0.112238 & 0.0175091\end{array}$ $\begin{array}{llllllllll}0.0232632 & 0.0962572 & 0.193263 & 0.284933 & 0.32694 & 0.349676 & 0.208992 & 0.092891 & 0.0144909\end{array}$ $\begin{array}{llllllllll}0.0108214 & 0.0447762 & 0.0899006 & 0.132543 & 0.152083 & 0.16266 & 0.0972172 & 0.0432103 & 0.00674078\end{array}$ $\begin{array}{llllllllllll}0.0297879 & 0.123255 & 0.247468 & 0.364849 & 0.418637 & 0.447751 & 0.267608 & 0.118944 & 0.0185552\end{array}$ $\begin{array}{llllllllll}0.0297632 & 0.123152 & 0.247263 & 0.364546 & 0.41829 & 0.447379 & 0.267386 & 0.118846 & 0.0185398\end{array}$ $\begin{array}{llllllllllll}0.0478257 & 0.19789 & 0.39732 & 0.585779 & 0.672139 & 0.718881 & 0.429655 & 0.19097 & 0.0297912\end{array}$ $\begin{array}{lllllllllllll}0.0412535 & 0.170696 & 0.34272 & 0.505282 & 0.579773 & 0.620093 & 0.370612 & 0.164727 & 0.0256973\end{array}$ $\begin{array}{lllllllllllll}0.0199292 & 0.0824618 & 0.165565 & 0.244097 & 0.280083 & 0.299561 & 0.17904 & 0.079578 & 0.0124141\end{array}$ 0.03230340 .1336630 .2683660 .395660 .453990 .4855620 .2902070 .1289890 .0201222 $\begin{array}{lllllllllll}0.0323736 & 0.133953 & 0.268949 & 0.396519 & 0.454976 & 0.486616 & 0.290837 & 0.129269 & 0.0201659\end{array}$
 0.0356220 .1473940 .2959350 .4363060 .5006290 .5354440 .320020 .142240 .0221893 $\begin{array}{lllllllll}0.0465823 & 0.192745 & 0.38699 & 0.57055 & 0.654664 & 0.700192 & 0.418485 & 0.186005 & 0.0290167\end{array}$ $\begin{array}{lllllllllll}0.0475112 & 0.196589 & 0.394707 & 0.581927 & 0.667719 & 0.714154 & 0.42683 & 0.189714 & 0.0295953\end{array}$ $\begin{array}{llllllllll}0.0405009 & 0.167582 & 0.336468 & 0.496064 & 0.569197 & 0.608781 & 0.363852 & 0.161722 & 0.0252285\end{array}$ $\begin{array}{lllllllll}0.00878267 & 0.0363404 & 0.0729635 & 0.107572 & 0.123431 & 0.132015 & 0.0789016 & 0.0350696 & 0.00547083\end{array}$ $\begin{array}{lllllllllll}0.00654183 & 0.0270684 & 0.0543473 & 0.0801257 & 0.0919384 & 0.0983321 & 0.0587704 & 0.0261218 & 0.00407498\end{array}$ $\begin{array}{lllllllllll}0.00257419 & 0.0106513 & 0.0213855 & 0.0315292 & 0.0361775 & 0.0386934 & 0.023126 & 0.0102788 & 0.00160349\end{array}$ $\begin{array}{llllllllllllllll}0.00701834 & 0.025958 & 0.00618253 & 0.00379344 & 0.00265773 & 0.00566366 & 0.00719591 & 0.000651712 & 0.000870525\end{array}$ $0.006710340 .0248188 \quad 0.00591120 .003626960 .00254110 .00541510 .006880110 .0006231110 .000832321$ 0.006954460 .02572170 .006126250 .003758910 .002633540 .00561210 .00713040 .000645780 .000862601 $\begin{array}{llllllllllllll}0.00313465 & 0.0115938 & 0.00276135 & 0.00169429 & 0.00118704 & 0.0025296 & 0.00321396 & 0.000291079 & 0.000388809\end{array}$ 0.00457950 .01693770 .004034130 .002475240 .001734180 .003695560 .004695360 .0004252450 .000568021 $\begin{array}{llllllllllllll}0.00517967 & 0.0191575 & 0.00456282 & 0.00279963 & 0.00196146 & 0.00417988 & 0.00531071 & 0.000480976 & 0.000642463\end{array}$ $\begin{array}{lllllllllll}0.00676304 & 0.0250138 & 0.00595763 & 0.00365545 & 0.00256106 & 0.00545764 & 0.00693415 & 0.000628006 & 0.000838859\end{array}$ $\begin{array}{llllllllll}0.00683191 & 0.0252685 & 0.00601829 & 0.00369267 & 0.00258713 & 0.00551321 & 0.00700475 & 0.0006344 & 0.0008474\end{array}$ $\begin{array}{llllllllll}0.0175474 & 0.0306515 & 0.026718 & 0.0326313 & 0.0391382 & 0.043068 & 0.0339062 & 0.0314175 & 0.0175993\end{array}$ $\begin{array}{llllllllllll}0.018037 & 0.0315068 & 0.0274636 & 0.0335419 & 0.0402304 & 0.0442698 & 0.0348524 & 0.0322942 & 0.0180904\end{array}$ $\begin{array}{lllllllllllll}0.0213513 & 0.0372962 & 0.03251 & 0.0397052 & 0.0476227 & 0.0524044 & 0.0412565 & 0.0382283 & 0.0214146\end{array}$ $\begin{array}{llllllllllllllll}0.023069 & 0.0402966 & 0.0351254 & 0.0428995 & 0.0514539 & 0.0566203 & 0.0445755 & 0.0413037 & 0.0231373\end{array}$ $\begin{array}{lllllllllllllllll}0.0194809 & 0.0340289 & 0.029662 & 0.0362269 & 0.0434508 & 0.0478136 & 0.0376423 & 0.0348794 & 0.0195386\end{array}$ $\begin{array}{lllllllllllllllll}0.0256624 & 0.0448268 & 0.0390743 & 0.0477223 & 0.0572384 & 0.0629856 & 0.0495868 & 0.0459471 & 0.0257385\end{array}$ $\begin{array}{llllllllllll}0.0327086 & 0.057135 & 0.0498029 & 0.0608254 & 0.0729544 & 0.0802796 & 0.0632019 & 0.0585629 & 0.0328055\end{array}$ $\begin{array}{lllllllllll}0.0363514 & 0.0634981 & 0.0553495 & 0.0675996 & 0.0810793 & 0.0892204 & 0.0702407 & 0.065085 & 0.0364591\end{array}$ $\begin{array}{lllllllllll}0.0501911 & 0.0876732 & 0.0764222 & 0.0933362 & 0.111948 & 0.123188 & 0.0969828 & 0.0898643 & 0.0503398\end{array}$ $\begin{array}{lllllllllll}0.0552763 & 0.096556 & 0.0841651 & 0.102793 & 0.12329 & 0.13567 & 0.106809 & 0.0989691 & 0.0554401\end{array}$ $\begin{array}{lllllllllll}0.0618746 & 0.108082 & 0.0942117 & 0.115063 & 0.138007 & 0.151864 & 0.119558 & 0.110783 & 0.0620578\end{array}$ $\begin{array}{llllllllll}0.072052 & 0.125859 & 0.109708 & 0.133989 & 0.160707 & 0.176843 & 0.139224 & 0.129005 & 0.0722654\end{array}$ $\begin{array}{llllllllll}0.117471 & 0.205197 & 0.178864 & 0.218451 & 0.262011 & 0.288319 & 0.226986 & 0.210325 & 0.117819\end{array}$ $\begin{array}{lllllllllll}0.132553 & 0.231541 & 0.201828 & 0.246497 & 0.29565 & 0.325335 & 0.256127 & 0.237328 & 0.132945\end{array}$ $\begin{array}{llllllllllllll}0.0874497 & 0.152756 & 0.133153 & 0.162623 & 0.195051 & 0.214636 & 0.168976 & 0.156574 & 0.0877088\end{array}$ 0.05931390 .1036090 .09031270 .1103010 .1322960 .1455790 .114610 .1061980 .0594895 $\begin{array}{lllllllllllll}0.070689 & 0.123479 & 0.107633 & 0.131454 & 0.157667 & 0.173498 & 0.13659 & 0.126564 & 0.0708984\end{array}$ 0.03095930 .05407920 .04713930 .05757230 .06905260 .07598610 .05982170 .05543080 .031051 0.0564470 .09860080 .08594750 .104970 .1259010 .1385430 .1090710 .1010650 .0566142 $\begin{array}{llllllllllllll}0.129802 & 0.226736 & 0.197639 & 0.241381 & 0.289514 & 0.318584 & 0.250812 & 0.232402 & 0.130186\end{array}$ $\begin{array}{lllllllllll}0.253731 & 0.443214 & 0.386337 & 0.471842 & 0.56593 & 0.622754 & 0.490277 & 0.454291 & 0.254483\end{array}$ $\begin{array}{lllllllllll}0.0857843 & 0.149847 & 0.130617 & 0.159526 & 0.191336 & 0.210548 & 0.165758 & 0.153592 & 0.0860384\end{array}$ $\begin{array}{llllllllllll}0.193591 & 0.338161 & 0.294766 & 0.360004 & 0.431791 & 0.475146 & 0.374069 & 0.346613 & 0.194164\end{array}$ $\begin{array}{llllllllllll}0.109669 & 0.191568 & 0.166984 & 0.203942 & 0.244609 & 0.26917 & 0.21191 & 0.196356 & 0.109994\end{array}$ $\begin{array}{lllllllllll}0.137756 & 0.240629 & 0.20975 & 0.256172 & 0.307255 & 0.338106 & 0.266181 & 0.246643 & 0.138164\end{array}$ $\begin{array}{llllllllllll}0.103748 & 0.181225 & 0.157969 & 0.192931 & 0.231402 & 0.254637 & 0.200468 & 0.185754 & 0.104055\end{array}$ $\begin{array}{llllllllll}0.0759006 & 0.132582 & 0.115568 & 0.141146 & 0.169291 & 0.18629 & 0.14666 & 0.135896 & 0.0761255\end{array}$ $\begin{array}{lllllllllll}0.0739312 & 0.129142 & 0.112569 & 0.137484 & 0.164899 & 0.181456 & 0.142855 & 0.13237 & 0.0741502\end{array}$ $\begin{array}{lllllllllll}0.0645745 & 0.112798 & 0.0983226 & 0.120084 & 0.144029 & 0.158491 & 0.124775 & 0.115617 & 0.0647657\end{array}$ $\begin{array}{llllllllllll}0.0418972 & 0.0731855 & 0.0637937 & 0.0779127 & 0.093449 & 0.102832 & 0.0809567 & 0.0750145 & 0.0420213\end{array}$ $\begin{array}{llllllllllllllll}0.0355865 & 0.062162 & 0.0541848 & 0.0661772 & 0.0793733 & 0.0873431 & 0.0687627 & 0.0637155 & 0.0356919\end{array}$

Population Numbers at the Start of the Year
$3.78798 \mathrm{e}+06 \quad 2.44262 \mathrm{e}+06 \quad 1.32252 \mathrm{e}+06757637 \quad 240033130722178452187883447279$ $2.83254 \mathrm{e}+06 \quad 2.29206 \mathrm{e}+061.46701 \mathrm{e}+06 \quad 786450446331 \quad 140800$ $2.46669 \mathrm{e}+061.71715 \mathrm{e}+061.38731 \mathrm{e}+0688606547406926880284754.446190 .6296824$ $2.3567 \mathrm{e}+061.49526 \mathrm{e}+061.03904 \mathrm{e}+0683744453366228522816163651141.8207920$ $8663441.42879 \mathrm{e}+0690531062795950526632173117188497659.2157042$
564630523617854072533268364798291662185079101007153448
441430340005308257487910296111199944158736105217152180
81621426419619515916737025136014892299255.785413 .8152048
$692408488674151864106270 \quad 86593.7127035 \quad 74315.253575 .4140669$
98989341494728201083353.255628 .844355 .464310 .440459115655
67642459103023581915009441696.927048 .721238 .133865 .992510
$43860940239333084012175171791.519257 .8 \quad 12257.910822 .274446 .9$
$87657125986722150616516155417.831323 .58212 .11 \quad 6023.15 \quad 50477.4$
35212252289114712811700081700.126601 .914793 .44289 .1233718 .6
$33408421124830310681480.8 \quad 62060.442488 .213687 .18132 .35 \quad 22802.6$ $\begin{array}{llllllllllll}338972 & 198898 & 118636 & 157518 & 39351.1 & 28982 & 19484.3 & 7024.03 & 18250.6\end{array}$
24854020100010986359633.272427 .91737012513 .3 9645.34 14807.2
$\begin{array}{lllllllllll}193681 & 148100 & 113296 & 57515.7 & 29114.4 & 34247.8 & 8072.47 & 6473.04 & 14333.1\end{array}$
$55789811450280793.755545 .625490 .8 \quad 12320.214134 .2 \quad 3889.7312100 .2$ $3099603310966346840897.825806 .1 \quad 11386.55387 .457050 .29403 .19$ 10259818395918355232137.119009 .211533 .14981 .832688 .169547 .41 80024.960309 .9 98015.1 85824.9 132827424.384368 .662280 .597117. 74263.547365 .833061 .84852638589 .85714 .233118 .762127 .425506 .53 20402643794.625574 .515876 .920859 .815767 .52271 .531469 .494435 .26 65937012090224125.112785 .87242 .239123 .766741 .471117 .913463 .65 20088139562370119.913374 .56792 .33772 .914703 .13710 .112736 .07 $410646118265212132 \quad 33206.35632 .22 \quad 2710.55 \quad 1462.42 \quad 2182.81 \quad 3626.94$ $14755524176563419.710047913987 .92248 .391051 .03678 .894 \quad 3335.03$ $\begin{array}{lllllllllllllllllllll}154403 & 85317.4 & 120311 & 25853.7 & 33925.5 & 4332.1 & 664.535 & 414.832 & 2303.61\end{array}$ $39930989865.343627 .3 \quad 51798.3 \quad 9460.9511523 .6 \quad 1413.35 \quad 278.238 \quad 1575.16$ 23990123741450191.722423 .724612 .64336 .65180 .14716 .7141099 .45 32252814088212598323277.49156 .449480 .811618 .542350 .491035 .67 $29797918939174736.558392 .9 \quad 9496.93523 .593534 .79733 .9541868 .39$
$93976.617375197590 .8 \quad 32675.8 \quad 21858.7 \quad 3310.91182 .021504 .831486 .12$ $68283.655238 .392548 .745604 .313492 .8 \quad 8528.721252 .8540 .7621689 .12$ $54550.139966 .728912 .141754 .217880 .24960 .623028 .28 \quad 551.7621286 .52$ 9670831580.419991 .411908 .714314 .25635 .21493 .821208 .661035 .86 $47216.355934 .7157368171 .034036 .364452 .791673 .44 \quad 591.2651216 .36$ $\begin{array}{lllllllllll}114845 & 27501.4 & 28691.5 & 6817.41 & 3017.81 & 1385.62 & 1469.25 & 705.412 & 1024.45\end{array}$ $30941869048 \quad 16085.2 \quad 16177.8 \quad 3713.25 \quad 1617.85 \quad 736.484 \quad 823.5331031 .08$ $15592718644840761.39240 .08 \quad 9056.77 \quad 2054.37 \quad 889.378 \quad 421.2041109 .46$ $18075994331.111188824199 .95430 .445298 .031198 .75 \quad 527.103924 .703$ $40830.510886955748 .6 \quad 67445.314622 .4 \quad 3284.993195 .27 \quad 721.863879 .869$ 15373124599.364413 .93361440759 .68846 .431981 .691924 .74970 .783 $79784.9 \quad 92596.314541 .438830 .4 \quad 20311.4 \quad 24656.95335 .61193 .411754 .96$ $10587834580728767.9335365321 .53142367435 .759005 .47 \quad 3039.38$
$3.19561 \mathrm{e}+0663886.720576317369 .220283 .83221 .348598 .564486 .137301 .76$ $1.57267 e+061.92517 e+06 \quad 37792 \quad 124060 \quad 10496.512271 .31943 .215179 .25 \quad 7144.29$ $6.24907 \mathrm{e}+06947376 \quad 1.13854 \mathrm{e}+06 \quad 22784.5 \quad 74968.96350 .01 \quad 7401.97 \quad 1170.397468 .94$ $\begin{array}{lllllllllll}698876 & 3.72432 e+06 & 557267 & 672352 & 13375.8 & 43725.6 & 3689.12 & 4339.85 & 5139.03\end{array}$
$\begin{array}{llllllllll}3.0875 \mathrm{e}+06 & 416312 & 2.18886 \mathrm{e}+06 & 328843 & 394351 & 7792.94 & 25372.5 & 2160.92 & 5609.71\end{array}$
$\begin{array}{llllllllll}3.67572 e+06 & 1.8331 e+06 & 243262 & 1.28514 e+06 & 191689 & 228062 & 4485.34 & 14767.2 & 4591.88\end{array}$ $\begin{array}{llllllllllll}1.02151 e+06 & 2.17859 e+06 & 1.06792 e+06 & 142453 & 746746 & 110434 & 130712 & 2601.89 & 11315.8\end{array}$ $5023916076261.27718 \mathrm{e}+0662879583328.243366663854 .676352 .18254 .59$
80493729699535238874496136361147729.524697536856 .149109 .7
98299347250917013320335042517820502426716.214062449908
95139657493126895997634.611527623779911373915105109105
45933654880331944315112953941.262513 .512751662610 .171301 . 76
$\begin{array}{llllllllllllllllll}1.50165 e+06 & 263619 & 302229 & 178112 & 82710.2 & 28922.1 & 33105.9 & 69507.2 \\ 470734 & 856148 & 143513 & 166829 & 96288.6 & 43699.5 & 15070.5 & 17817 & 80666.8\end{array}$
$\begin{array}{llllllllllll}735979 & 265666 & 457869 & 78000.5 & 88498.3 & 49731.7 & 22208.9 & 7952.74 & 55014.6\end{array}$ $\begin{array}{llllllllll}556558 & 396918 & 131242 & 232228 & 38025.8 & 41304.5 & 22608.4 & 10735 & 33568.1\end{array}$ 40295229566219098465053.911008217160 .61809510614 .222961 $88889822393815392410139633535.154936 .2 \quad 8397.88 \quad 9268.8618261 .9$ 644569508095122457 85297.9 55077.2 17819.6 28806.3 4542.01 15492.1 84348536426927237866694.845362 .928533 .29086 .615241 .211180 .7 50218649600420931015759938189.325678 .216039 .95191 .2715319 .9 21803528787427259411649786063.220422 .813559 .78723 .4211626 .5 12464511614713918313568655505.739078 .39007 .616399 .9310384 .9 17524858659.145224 .55736651341 .619116 .612715 .43346 .097348 .04 23552197555.130627 .424071 .329663 .725717 .39393 .46534 .235829 .94 $\begin{array}{lllllllllll}265956 & 117709 & 42193.1 & 13834 & 10186 & 11683 & 9698.96 & 3919.4 & 5714.31\end{array}$
$\begin{array}{llllllllllll}113006 & 144555 & 58947.3 & 21655.8 & 6842.74 & 4837.55 & 5413.87 & 4759.34 & 5058.32\end{array}$ $\begin{array}{llllllllllllll}183753 & 59720.9 & 68925.9 & 28988.3 & 10166.5 & 3052.42 & 2092.38 & 2516.29 & 4927.83\end{array}$ 33143110046930218.635696 .914497 .34892 .471435 .191038 .563960 .98 $61578218633053370.716328 .118801 .17423 .662463 .07 \quad 751.7412776 .24$ 60375834687499322.928924 .68631 .399669 .913755 .481295 .051962 .95 $78155334329818794854601.115558 .54532 .975005 .45 \quad 2010.611815 .65$ 30725045458619352610695130634.98594 .822480 .712799 .872187 .3
q by index
index 1 q over time
1962 2.12412e-06
1963 2.12412e-06
1964 2.12412e-06
1965 2.12412e-06
1966 2.12412e-06
1967 2.12412e-06
1968 2.12412e-06
1969 2.12412e-06
1971 2.12412e-06
1972 2.12412e-0
1972 2.12412e-06
1973 2.12412e-06
1975 2.12412e-06
1976 2.12412e-06
1977 2.12412e-06
1978 2.12412e-06
1979 2.12412e-06
1980 2.12412e-06
1981 2.12412e-06
1982 2.12412e-06

1983	$2.12412 \mathrm{e}-06$
1984	$2.12412 \mathrm{e}-06$
1985	2.12412e-06
1986	2.12412e-06
1987	2.12412e-06
1988	$2.12412 \mathrm{e}-06$
1989	2.12412e-06
1990	$2.12412 \mathrm{e}-06$
1991	$2.12412 \mathrm{e}-06$
1992	$2.12412 \mathrm{e}-06$
1993	$2.12412 \mathrm{e}-06$
1994	2.12412e-06
1995	2.12412e-06
1996	2.12412e-06
1997	2.12412e-06
1998	$2.12412 \mathrm{e}-06$
1999	$2.12412 \mathrm{e}-06$
2000	2.12412e-06
2001	$2.12412 \mathrm{e}-06$
index 2 q over time	
1935	$2.25614 \mathrm{e}-06$
1936	$2.25614 \mathrm{e}-06$
1937	$2.25614 \mathrm{e}-06$
1938	$2.25614 \mathrm{e}-06$
1939	$2.25614 \mathrm{e}-06$
1940	$2.25614 \mathrm{e}-06$
1946	$2.25614 \mathrm{e}-06$
1947	$2.25614 \mathrm{e}-06$
1948	$2.25614 \mathrm{e}-06$
1949	$2.25614 \mathrm{e}-06$
1950	$2.25614 \mathrm{e}-06$
1951	$2.25614 \mathrm{e}-06$
1952	$2.25614 \mathrm{e}-06$
1953	$2.25614 \mathrm{e}-06$
1954	$2.25614 \mathrm{e}-06$
1955	$2.25614 \mathrm{e}-06$
1956	$2.25614 \mathrm{e}-06$
1957	$2.25614 \mathrm{e}-06$
1958	$2.25614 \mathrm{e}-06$
1959	$2.25614 \mathrm{e}-06$
1960	$2.25614 \mathrm{e}-06$
1961	$2.25614 \mathrm{e}-06$
1962	$2.25614 \mathrm{e}-06$
1963	$2.25614 \mathrm{e}-06$
1964	$2.25614 \mathrm{e}-06$
1965	$2.25614 \mathrm{e}-06$
1966	$2.25614 \mathrm{e}-06$
1967	$2.25614 \mathrm{e}-06$
1968	$2.25614 \mathrm{e}-06$
1969	$2.25614 \mathrm{e}-06$
1970	$2.25614 \mathrm{e}-06$
1971	$2.25614 \mathrm{e}-06$
1972	2.25614e-06
1973	2.25614e-06
1974	2.25614e-06
1975	$2.25614 \mathrm{e}-06$
1976	$2.25614 \mathrm{e}-06$
1977	$2.25614 \mathrm{e}-06$
1978	$2.25614 \mathrm{e}-06$
1979	$2.25614 \mathrm{e}-06$
1980	$2.25614 \mathrm{e}-06$
1981	$2.25614 \mathrm{e}-06$
1982	$2.25614 \mathrm{e}-06$
1983	$2.25614 \mathrm{e}-06$
1984	$2.25614 \mathrm{e}-06$
1985	$2.25614 \mathrm{e}-06$
1986	$2.25614 \mathrm{e}-06$
1987	$2.25614 \mathrm{e}-06$
1988	$2.25614 \mathrm{e}-06$
1989	$2.25614 \mathrm{e}-06$
1990	$2.25614 \mathrm{e}-06$
1991	$2.25614 \mathrm{e}-06$
1992	$2.25614 \mathrm{e}-06$
1993	$2.25614 \mathrm{e}-06$
1994	$2.25614 \mathrm{e}-06$
1995	$2.25614 \mathrm{e}-06$
1996	$2.25614 \mathrm{e}-06$
1997	$2.25614 \mathrm{e}-06$
1998	$2.25614 \mathrm{e}-06$
1999	$2.25614 \mathrm{e}-06$
2000	$2.25614 \mathrm{e}-06$
2001	$2.25614 \mathrm{e}-06$
2002	$2.25614 \mathrm{e}-06$
2003	$2.25614 \mathrm{e}-06$
2004	$2.25614 \mathrm{e}-06$
2005	$2.25614 \mathrm{e}-06$
2006	$2.25614 \mathrm{e}-06$
2007	$2.25614 \mathrm{e}-06$
inde	x 3 q over time
1951	$1.96511 \mathrm{e}-06$
1952	1.96511e-06
1953	$1.96511 \mathrm{e}-06$
1954	$1.96511 \mathrm{e}-06$
1955	$1.96511 \mathrm{e}-06$
1956	$1.96511 \mathrm{e}-06$

1957	$1.96511 \mathrm{e}-06$
1958	$1.96511 \mathrm{e}-06$
1959	$1.96511 \mathrm{e}-06$
1960	$1.96511 \mathrm{e}-06$
1961	$1.96511 \mathrm{e}-06$
1962	$1.96511 \mathrm{e}-06$
1963	$1.96511 \mathrm{e}-06$
1965	$1.96511 \mathrm{e}-06$
1966	$1.96511 \mathrm{e}-06$
1969	$1.96511 \mathrm{e}-06$
1972	$1.96511 \mathrm{e}-06$
1978	$1.96511 \mathrm{e}-06$
1981	$1.96511 \mathrm{e}-06$
1984	$1.96511 \mathrm{e}-06$
1985	$1.96511 \mathrm{e}-06$
1986	$1.96511 \mathrm{e}-06$
1987	$1.96511 \mathrm{e}-06$
1988	$1.96511 \mathrm{e}-06$
1989	$1.96511 \mathrm{e}-06$
1991	$1.96511 \mathrm{e}-06$
1992	$1.96511 \mathrm{e}-06$
1993	$1.96511 \mathrm{e}-06$
1994	$1.96511 \mathrm{e}-06$
1995	$1.96511 \mathrm{e}-06$
1996	$1.96511 \mathrm{e}-06$
1997	$1.96511 \mathrm{e}-06$
1998	$1.96511 \mathrm{e}-06$
2001	$1.96511 \mathrm{e}-06$
2003	$1.96511 \mathrm{e}-06$
2005	$1.96511 \mathrm{e}-06$
2006	$1.96511 \mathrm{e}-06$

Proportions of catch at age by fleet
fleet 1
$\begin{array}{llllllllllllllll}\text { Year } 1 \text { Obs }= & 0.000132971 & 0.178158 & 0.321923 & 0.298312 & 0.0746246 & 0.055518 & 0.045829 & 0.0182423 & 0.00726013\end{array}$ Year 1 Pred $=\begin{array}{lllllllll} & 0.0906126 & 0.240943 & 0.26074 & 0.219281 & 0.0795583 & 0.0462915 & 0.0380178 & 0.0178877\end{array} 0.00666753$
Year $2 \mathrm{Obs}=00.08677750 .4463670 .3014530 .119390 .04175830 .002733290 .001087830 .000433015$
Year 2 Pred $=0.06467680 .2163950 .2778120 .2193750 .1427970 .04816840 .01566390 .009653080 .00545888$
Year $3 \mathrm{Obs}=00.0484020 .5051940 .3130140 .06609610 .03807080 .01877570 .007473680 .0029743$
Year 3 Pred $=0.05646650 .1625140 .2633260 .2477030 .1519940 .09215160 .01739350 .004218830 .00423296$
Year $4 \mathrm{Obs}=0 \quad 0.01173990 .2618080 .4749390 .1132490 .07640210 .03974490 .01582060 .00629655$
Year 4 Pred $=\begin{array}{lllllllllll} & 0.0575737 & 0.151054 & 0.210574 & 0.250026 & 0.182754 & 0.10445 & 0.0354189 & 0.0049859 & 0.00316428\end{array}$
Year $5 \mathrm{Obs}=00.05054030 .208030 .3488170 .2555760 .09054350 .02987070 .01189010 .00473207$
Year 5 Pred $=\begin{array}{llllllllll} & 0.0244541 & 0.166034 & 0.209811 & 0.213212 & 0.196277 & 0.133463 & 0.0430305 & 0.0109543 & 0.00276292\end{array}$
Year 6 Obs $=\begin{array}{lllllllllll}0 & 0.0307845 & 0.335587 & 0.223908 & 0.256675 & 0.0975438 & 0.0356587 & 0.0141941 & 0.00564898\end{array}$
$\begin{array}{llllllllllllllll}\text { Year } 6 \text { Pred }= & 0.0207999 & 0.0789924 & 0.255179 & 0.231904 & 0.180964 & 0.154256 & 0.0596663 & 0.0147119 & 0.00352555\end{array}$
Year 7 Obs $=\begin{array}{llllllllllll}0 & 0.0564975 & 0.0661942 & 0.320666 & 0.33166 & 0.174786 & 0.03225 & 0.0128372 & 0.00510896\end{array}$
Year 7 Pred $=\begin{array}{llllllllllllll}0.0240764 & 0.075284 & 0.133642 & 0.304622 & 0.209874 & 0.150698 & 0.074119 & 0.02250220 .00518217\end{array}$
Year 8 Obs $=\begin{array}{llllllllllll}0 & 0.0193028 & 0.17522 & 0.149419 & 0.283927 & 0.301928 & 0.0451043 & 0.0179539 & 0.00714533\end{array}$
Year 8 Pred $=0.06814460 .08958910 .1296620 .1602340 .2732570 .1721830 .07103080 .02797490 .00792517$
Year 9 Obs $=0.0019350 .0222180 .03902550 .1209690 .2395290 .3920180 .1184130 .04713470 .0187587$
Year 9 Pred $=\begin{array}{llllllllll} & 0.0772983 & 0.221881 & 0.135338 & 0.136692 & 0.126573 & 0.197566 & 0.0713566 & 0.0234936 & 0.00980242\end{array}$
Year 10 Obs $=0.008938180 .134115 \quad 0.3703240 .1914630 .04992250 .1260820 .07655490 .0304729 \quad 0.0121276$
Year 10 Pred $=\begin{array}{lllllllllll}0.124849 & 0.211736 & 0.280511 & 0.11891 & 0.0899232 & 0.0761695 & 0.0688465 & 0.0199437 & 0.00911099\end{array}$
Year 11 Obs $=0.01707160 .2199610 .2245570 .3191070 .1050560 .05975050 .03545630 .01444520 .00459618$
Year 11 Pred $=\begin{array}{llllllllllllll} & 0.0865955 & 0.304538 & 0.235274 & 0.213442 & 0.0670021 & 0.0461046 & 0.0227803 & 0.0168611 & 0.00740191\end{array}$
$\begin{array}{llllllllllll}\text { Year } 12 \mathrm{Obs}= & 0.0248007 & 0.143047 & 0.460585 & 0.213906 & 0.131975 & 0.0194862 & 0.00531445 & 0.000885742 & 0\end{array}$
Year 12 Pred $=\begin{array}{lllllllllll}0.0605785 & 0.222418 & 0.351478 & 0.183123 & 0.121648 & 0.0345582 & 0.0139842 & 0.00578146 & 0.00643085\end{array}$
Year $13 \mathrm{Obs}=\begin{array}{lllllllllllll}0.007362 & 0.21227 & 0.360327 & 0.332515 & 0.0752556 & 0.010634 & 0.0008179620 .0008179620\end{array}$
Year 13 Pred $=\begin{array}{llllllllllllll}0.129227 & 0.154797 & 0.256772 & 0.274159 & 0.104164 & 0.0625228 & 0.0102427 & 0.00346617 & 0.00464877\end{array}$
Year 14 Obs $=00.4638690 .1686090 .2463090 .1002330 .0178710 .002331020 .0007769520$
Year 14 Pred $=\begin{array}{lllllllllll} & 0.0531001 & 0.321198 & 0.177743 & 0.204392 & 0.162327 & 0.0562612 & 0.0192619 & 0.00254438 & 0.00317336\end{array}$
Year $15 \mathrm{Obs}=0.004444430 .1475560 .6475560 .1097780 .07733330 .01066660 .001777750 .0008889280$
Year 15 Pred $=\begin{array}{lllllllll} & 0.0559236 & 0.142486 & 0.396427 & 0.152097 & 0.1309810 .09515090 .01924990 .005299860 .0023853\end{array}$
Year $16 \mathrm{Obs}=00.23750 .2361840 .4032890 .1013160 .01842110 .0026315600 .000657919$
Year 16 Pred $=\begin{array}{lllllll} & 0.0700839 & 0.1647660 .189176 & 0.356096 & 0.1002810 .07824270 .03337160 .005623460 .00235966\end{array}$
Year 17 Obs $=0.03737430 .2817440 .221850 .1638720 .1528510 .08864410 .03545770 .01102050 .00718732$
Year 17 Pred $=\begin{array}{lllllllllllll}0.0638592 & 0.208358 & 0.221187 & 0.17161 & 0.23582 & 0.0600318 & 0.0270983 & 0.00965993 & 0.00237713\end{array}$
Year $18 \mathrm{Obs}=0.05005690 .2536970 .3083050 .1679940 .102010 .06522560 .0276830 .01668570 .00834285$
Year 18 Pred $=\begin{array}{lllllllllllll}0.0612544 & 0.186876 & 0.273694 & 0.196008 & 0.111599 & 0.138909 & 0.0209279 & 0.00789534 & 0.00283618\end{array}$
Year 19 Obs $=0.1682170 .1052260 .2369360 .2090190 .1374370 .0794560 .04294920 .01574810 .00501085$
Year 19 Pred $=\begin{array}{llllllllllllll} & 0.194433 & 0.160077 & 0.217758 & 0.212541 & 0.11002 & 0.0563518 & 0.0409274 & 0.00525523 & 0.00263673\end{array}$
Year 20 Obs $=0.04595880 .629160 .1537240 .06180660 .06814580 .02377180 .01109360 .004754370 .00158485$
Year 20 Pred $=0.09917720 .4249940 .157070 .1437010 .102280 .04782610 .01432430 .008745550 .0018812$
Year $21 \mathrm{Obs}=0.007633570 .2966190 .4901850 .1237730 .04143940 .02671760 .01090520 .001635740 .00109049$
Year 21 Pred $=0.03458070 .2454110 .4640310 .1135590 .07524250 .04819920 .01349410 .003467770 .00201535$
Year $22 \mathrm{Obs}=0.0009813020 .1462220 .3788030 .3807660 .07065750 .01177630 .008832160 .0009813020 .000981302$
Year 22 Pred $=\begin{array}{lllllllllll} & 0.0346458 & 0.104347 & 0.325356 & 0.402676 & 0.0701528 & 0.0415131 & 0.0155679 & 0.0038139 & 0.00192761\end{array}$
Year $23 \mathrm{Obs}=0.02857140 .1109890 .190110 .3274730 .3131870 .01868140 .006593420 .002197710 .00219771$
$\begin{array}{llllllllllllllllll}\text { Year } 23 & \text { Pred }= & 0.0464092 & 0.117685 & 0.156563 & 0.322856 & 0.288262 & 0.0451229 & 0.0158381 & 0.00511028 & 0.00215395\end{array}$
Year $24 \mathrm{Obs}=\begin{array}{llllllllllllll}0.0277779 & 0.0176766 & 0.108586 & 0.108586 & 0.474747 & 0.25505 & 0.00505068 & 0.00252507 & 0\end{array}$
Year 24 Pred $=0.1648430 .1416420 .1590290 .1398150 .2069720 .1656950 .01516870 .004593430 .00224116$
Year $25 \mathrm{Obs}=0.6148650 .1148650 .07432420 .07657670 .03153140 .04504480 .0427928000$
Year 25 Pred $=0.370050 .276440 .1085110 .08317720 .05358990 .0718680 .03268190 .002468450 .00121312$
Year $26 \mathrm{Obs}=0.01109740 .7644880 .1627620 .03452530 .019728700 .004932250 .002466050$
Year 26 Pred $=0.07662980 .5986140 .2016070 .05388110 .03068550 .01800690 .01449450 .005427890 .00065349$
Year $27 \mathrm{Obs}=0.2192980 .2491230 .3526320 .1508770 .01578950 .001754350 .003508830 .001754350 .00526318$
Year 27 Pred $=0.1390810 .1588830 .5415610 .1187880 .02259420 .01148750 .004001950 .002835420 .000769116$

Year 28 Pred $=\begin{array}{lllllllllllll}0.0546912 & 0.346652 & 0.167429 & 0.361414 & 0.0557328 & 0.00940273 & 0.00295962 & 0.000942265 & 0.000776345\end{array}$
Year $29 \mathrm{Obs}=0.03114930 .1235230 .4693880 .169710 .133190 .04726090 .02040820 .005370540$
Year 29 Pred $=\begin{array}{lllllllllllllll}0.0750568 & 0.161901 & 0.425151 & 0.125723 & 0.183539 & 0.0246558 & 0.0025092 & 0.000761687 & 0.000702505\end{array}$
Year 30 Obs $=0.3632340 .0841640 .1450720 .2336660 .09966770 .04540420 .0287929000$
Year 30 Pred $=0.2038120 .1844760 .1732370 .2929040 .0604280 .07805650 .006032680 .0005519110 .000502533$
Year $31 \mathrm{Obs}=0.02652520 .7360740 .1220160 .05702920 .03846150 .01591510 .0039788600$


```
Year 79 Obs = 0.552445 0.269411 0.0984565 0.0435435 0.0243505 0.00805001 0.00304855 0.000694974 0
Year 79 Pred = 0.430467 0.325631 0.15606 0.0550187 0.0186723 0.00596115 0.00523359 0.00195319 0.00100294
Year 80 Obs = 00000000000
Year 80 Pred = 0.182935 0.467104 0.173965 0.116782 0.0398823 0.0122685 0.00281127 0.00294679 0.0013061
Proportions of Discards at age by fleet
fleet 1
Year 1 Obs = 0 0 0 0 0 0 0 0
Year 1 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 2 Obs = 0 0 0 0 0 0 0 0 0
Year 2 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 3 Obs = 00 0 0 0 0 0 0 0 0
Year 3 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 4 Obs = 0 0 0 0 0 0 0 0 0
Year 4 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 5 Obs = 0000000000
Year 5 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 6 Obs = 0 0 0 0 0 0 0 0 0 0-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 6 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 7 Obs = 0 0 0 0 0 0 0 0 0
Year 7 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 8 Obs = 0 0 0 0 0 0 0 0 0
Year 8 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 9 Obs = 0 0 0 0 0 0 0 0 0
Year 9 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 10 Obs = 0 0 0 0 0 0 0 0 0
Year 10 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 11 Obs = 0 0 0 0 0 0 0 0
Year 11 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 12 Obs = 000000000
Year 12 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 13 Obs = 0000000000
Year 13 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 14 Obs = 000000000000
Year 14 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 15 Obs = 00000000000
Year 15 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 16 Obs = 0 0 0 0 0 0 0 0 0
Year 16 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 17 Obs = 000000000
Year 17 Pred = le-15 1e-15 le-15 le-15 le-15 le-15 le-15 le-15 1e-15
Year 18 Obs = 0000000000
Year 18 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 19 Obs = 0 0 0 0 0 0 0 0 0
Year 19 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 le-15 1e-15 1e-15 1e-15
Year 20 Obs = 0000000000
Year 20 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 21 Obs = 0 0 0 0 0 0 0 0 0
Year 21 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 22 Obs = 000000000
Year 22 Pred = 1e-15 1e-15 1e-15 le-15 le-15 le-15 1e-15 1e-15 1e-15
Year 23 Obs = 000000000
Year 23 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 24 Obs = 0000000000
Year 24 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 25 Obs = 00000 0 0 0 0 0
Year 25 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 26 Obs = 00000000000
Year 26 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 27 Obs = 0 0 0 0 0 0 0 0 0
Year 27 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 28 Obs = 0 0 0 0 0 0 0 0
Year 28 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 29 Obs = 0000000000
Year 29 Pred = le-15 1e-15 le-15 le-15 le-15 le-15 le-15 le-15 1e-15
Year 30 Obs =0000 0 0 0 0 0
Year 30 Pred = le-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 31 Obs = 0 0 0 0 0 0 0 0 0
Year 31 Pred = le-15 le-15 1e-15 le-15 1e-15 le-15 1e-15 le-15 le-15
Year 32 Obs = 0000000000
Year 32 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 33 Obs = 0 0 0 0 0 0 0 0
Year 33 Pred = 1e-15 1e-15 1e-15 le-15 le-15 le-15 1e-15 1e-15 1e-15
Year 34 Obs =000000000
Year 34 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 le-15 le-15 1e-15 1e-15
Year 34 Pred = 1e-15 1e-15 1e-15
| 15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 35 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 36 Obs = 0 0 0 0 0 0 0 0 0
Year 36 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 37 Obs = 000000000000
Year 37 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 38 Obs = 0000000000
Year 38 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 39 Obs = 0 0 0 0 0 0 0 0
Year 39 Pred = le-15 le-15 le-15 1e-15 le-15 le-15 le-15 le-15 le-15
Year 40 Obs =0000000000
Year 40 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 41 Obs =0 0 0 0 0 0 0 0 0
Year 41 Pred = le-15 le-15 le-15 le-15 le-15 le-15 1e-15 le-15 le-15
Year 41 Pred = 1e-15 1e-15 1e-15
Year 42 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 le-15 1e-15 1e-15 1e-15
Year 43 Obs = 0000000000
Year 43 Pred = 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15 1e-15
Year 44 Obs = 0000000000
Year 44 Pred = 1e-15 1e-15 1e-15 le-15 le-15 le-15 1e-15 1e-15 le-15
```



```
Projected Yield at Age
    0.0101009 2887.23 6032.83 4863.95 4198.41 1538.74 338.918 98.3125 116.312
    0.0101009 0.0184091 2301.96 6310.11 4199.99 2912.06 643.277 181.897 97.8539
Year, Total Yield (in weight), Total Discards (in weight), SSB, proj_what, SS/SSmsy
2009 20074.7 0 111152 0 0.908424
2010 16647.2 0 120568 0 0.985386
M=}\begin{array}{lllllllllllll}{0.5}&{0.5}&{0.5}&{0.5}&{0.5}&{0.5}&{0.5}&{0.5}&{0.5}
mature = 0 0.07 0.25 0.47 0.73 1 1 1 1
```



```
    0
    0
    0}00.070.25 0.47 0.73 1 1 1 1 1
    0}00.07[0.25 0.47 0.73 1 1 1 1
    0 0.07 0.25 0.47 0.73 1 1 1 1
    00.07 0.25 0.47 0.73 1 1 1 1
    0 0.07 0.25 0.47 0.73 1 1 1 1
    0.07 0.25 0.47 0.73 1 1 1 1
    0.07 0.25 0.47 0.73 1 1 1 1
    0}0.0
    0.07}00.25 0.47 0.73 1 1 1 1 1
    lllllllllll
    0
    0}00.0
    0}00.070.25 0.47 0.73 111111
    0.07 0.25 0.47 0.73 1 1 1 1
    0 0.07 0.25 0.47 0.73 1 1 1 1
    0}0.070.250.47 0.73 1 1 1 1 1-1
    0.07 0.25 0.47 0.73 1 1 1 1
    0.07 0.25 0.47 0.73 1 1 1 1
    0.07}0.2
    0.07
    0.07 0.25 0.47 0.73 1 1 1 1
    0}00.0
    0
    0.07 0.25 0.47 0.73 1 1 1 1
```



```
    0 0.07 0.25 0.47 0.73 1 1 1 1
    0}0.0
    0 0.07 0.25 0.47 0.73 1 1 1 1
```



```
    0.07 0.25 0.47 0.73 1 1 11 1
    0.07 0.25 0.47 0.73 1 1 1 1
    0.07}0.250.470.47 0.73 1 1 1 1 
```



```
    lllllllllll
    0}00.0
```



```
    0.07 0.25 0.47 0.73 1 1 1 1
    0 0.07 0.25 0.47 0.73 1 1 1 1
    0 0.07 0.25 0.47 0.73 1 1 1 1
    0.07 0.25 0.47 0.73 1 1 1 1
    0.07 0.25 0.47}0.43111
    0.07}0.250.470.47 0.73 1 1 1 1 1
    0.07 0.25 0.47 0.73 1 1 1 1
    0}0.0
    0}00.0
    0}00.0
    0}00.070.25 0.47 0.73 111111
```



```
    0.07 0.25 0.47 0.73 1 1 1 1
    0 0.07 0.25 0.47 0.73 1 1 1 1
    0 0.07 0.25 0.47 0.73 1 1 1 1 1
    0.07 0.25 0.47 0.73 1 1 1 1
    0.07 0.25 0.47 0.73 1 1 1 1
```



```
    0.07 0.25 0.47 0.73 1 1 1 1
    0}00.07[0.25 0.47 0.73 1 1 1 1 1
    0}00.0
    0}00.0
    0}0.070.25 0.47 0.73 111111
    0.07 0.25 0.47 0.73 1 1 1 1
    0.07 0.25 0.47 0.73 1 1 1 1
    0 0.07 0.25 0.47 0.73 1 1 1 1
    0.07 0.25 0.47 0.73 1 1 111
    0.07 0.25 0.47 0.73 1 1 1 1
```



```
    0}0.070.25 0.470.47 0.73 1 1 1 1 1, l
    0
    0}00.0
    0}00.0
```



```
    0.07 0.25 0.47 0.73 1 1 1 1
    0 0.07 0.25 0.47 0.73 1 1 1 1
    0 0.07 0.25 0.47 0.73 1 1 1 1
    0.07 0.25 0.47 0.73 1 1 1 1
    0.07 0.25 0.47 0.73 1 1 1 1
    0.07
    0.07 0.25 0.47 0.73 1 1 1 1
00.07 0.25 0.47 0.73 1 1 1 1
wight at age
    0.074 0.167 0.297}0.0.402 0.523 0.615 0.704 0.8 0.83 
    lllllllllllll
    lolllllllllllll
```



```
    0.058 0.081 0.277 0.379 0.508 0.604 0.711 0.8 0.83
    0.059 0.083 0.2 0.299 0.493 0.585 0.7 0.8 0.83
    0.065 0.142 0.198 0.233 0.431 0.538 0.683 0.8 0.83
```

$\begin{array}{llllllllll}0.079 & 0.186 & 0.217 & 0.251 & 0.379 & 0.472 & 0.629 & 0.79 & 0.83\end{array}$ $\begin{array}{llllllllll}0.086 & 0.193 & 0.284 & 0.338 & 0.393 & 0.453 & 0.574 & 0.75 & 0.82\end{array}$ $\begin{array}{llllllllll}0.119 & 0.176 & 0.318 & 0.429 & 0.461 & 0.502 & 0.575 & 0.74 & 0.8\end{array}$ $\begin{array}{llllllllll}0.124 & 0.174 & 0.31 & 0.448 & 0.532 & 0.582 & 0.633 & 0.726 & 0.79\end{array}$ $\begin{array}{lllllllll}0.191 & 0.246 & 0.363 & 0.46 & 0.583 & 0.68 & 0.775 & 0.795 & 0.878\end{array}$ $\begin{array}{llllllllll}0.18 & 0.26 & 0.339 & 0.442 & 0.527 & 0.64 & 0.729 & 0.834 & 0.82\end{array}$ $\begin{array}{llllllllll}0.115 & 0.259 & 0.343 & 0.439 & 0.559 & 0.65 & 0.806 & 0.807 & 0.85\end{array}$ $\begin{array}{lllllllllll}0.18 & 0.236 & 0.373 & 0.471 & 0.546 & 0.626 & 0.684 & 0.909 & 0.83\end{array}$ $\begin{array}{llllllllll}0.165 & 0.292 & 0.339 & 0.474 & 0.574 & 0.65 & 0.629 & 0.881 & 1\end{array}$
$\begin{array}{lllllllll}0.144 & 0.271 & 0.379 & 0.472 & 0.587 & 0.66 & 0.754 & 0.735 & 0.948\end{array}$
$\begin{array}{lllllllll}0.121 & 0.234 & 0.383 & 0.494 & 0.611 & 0.704 & 0.745 & 0.819 & 0.842\end{array}$ $\begin{array}{llllllllll}0.125 & 0.261 & 0.384 & 0.487 & 0.617 & 0.679 & 0.736 & 0.778 & 0.812\end{array}$ $\begin{array}{llllllllll}0.119 & 0.291 & 0.4 & 0.499 & 0.622 & 0.709 & 0.753 & 0.788 & 0.818\end{array}$ $\begin{array}{llllllllll}0.107 & 0.227 & 0.354 & 0.506 & 0.616 & 0.706 & 0.764 & 0.895 & 0.871\end{array}$ $\begin{array}{lllllllllll}0.109 & 0.192 & 0.319 & 0.456 & 0.607 & 0.725 & 0.799 & 0.917 & 0.917\end{array}$ $\begin{array}{llllllllll}0.084 & 0.249 & 0.323 & 0.455 & 0.564 & 0.664 & 0.784 & 0.799 & 0.871\end{array}$ $\begin{array}{llllllllll}0.162 & 0.255 & 0.346 & 0.429 & 0.569 & 0.694 & 0.827 & 0.835 & 0.853\end{array}$ $\begin{array}{llllllllllll}0.173 & 0.297 & 0.386 & 0.471 & 0.568 & 0.719 & 0.832 & 0.988 & 0.85\end{array}$ $\begin{array}{llllllllll}0.162 & 0.296 & 0.411 & 0.512 & 0.603 & 0.763 & 0.834 & 0.85 & 1.1\end{array}$
$\begin{array}{llllllllll}0.084 & 0.257 & 0.387 & 0.505 & 0.585 & 0.744 & 0.701 & 0.879 & 0.87\end{array}$ $\begin{array}{llllllllll}0.14 & 0.253 & 0.357 & 0.484 & 0.583 & 0.744 & 0.762 & 0.778 & 0.878\end{array}$ $\begin{array}{llllllllll}0.111 & 0.248 & 0.373 & 0.485 & 0.598 & 0.752 & 0.722 & 0.91 & 0.87\end{array}$ $\begin{array}{lllllllllll}0.179 & 0.31 & 0.374 & 0.509 & 0.602 & 0.649 & 0.65 & 0.7\end{array}$
$\begin{array}{llllllllll}0.176 & 0.292 & 0.396 & 0.488 & 0.617 & 0.685 & 0.775 & 0.75 & 0.75\end{array}$ $\begin{array}{llllllllll}0.132 & 0.251 & 0.398 & 0.51 & 0.602 & 0.702 & 0.754 & 0.84 & 0.85\end{array}$ $\begin{array}{lllllllllll}0.102 & 0.276 & 0.391 & 0.507 & 0.611 & 0.699 & 0.768 & 0.82 & 0.87\end{array}$ $\begin{array}{lllllllllll}0.144 & 0.252 & 0.389 & 0.495 & 0.584 & 0.647 & 0.817 & 0.83 & 0.85\end{array}$ $\begin{array}{lllllllllll}0.276 & 0.32 & 0.42 & 0.54 & 0.622 & 0.712 & 0.782 & 0.89 & 0.86\end{array}$ $\begin{array}{llllllllll}0.197 & 0.298 & 0.434 & 0.538 & 0.627 & 0.73 & 0.743 & 0.84 & 0.93\end{array}$ $\begin{array}{llllllllll}0.181 & 0.3 & 0.4 & 0.503 & 0.612 & 0.748 & 0.812 & 0.82 & 0.87\end{array}$ $\begin{array}{llllllllll}0.109 & 0.195 & 0.384 & 0.501 & 0.596 & 0.723 & 0.735 & 0.88 & 0.85\end{array}$ $\begin{array}{lllllllll}0.149 & 0.273 & 0.419 & 0.525 & 0.658 & 0.79 & 0.833 & 0.85 & 0.93\end{array}$
$\begin{array}{llllllllll}0.166 & 0.235 & 0.488 & 0.51 & 0.599 & 0.723 & 0.869 & 0.917 & 0.849\end{array}$ $\begin{array}{llllllllll}0.138 & 0.266 & 0.391 & 0.562 & 0.593 & 0.709 & 0.902 & 0.952 & 1.07\end{array}$ $\begin{array}{llllllllll}0.103 & 0.322 & 0.428 & 0.505 & 0.662 & 0.746 & 0.907 & 1 & 1.1\end{array}$ $\begin{array}{lllllllll}0.099 & 0.232 & 0.402 & 0.584 & 0.73 & 0.837 & 0.85 & 1 & 1.2\end{array}$
$\begin{array}{lllllllllll}0.266 & 0.282 & 0.457 & 0.481 & 0.74 & 0.955 & 0.88 & 0.9 & 1.2\end{array}$
$\begin{array}{llllllllll}0.147 & 0.266 & 0.449 & 0.508 & 0.552 & 0.746 & 1 & 0.9 & 1.1\end{array}$
$\begin{array}{lllllllllll}0.119 & 0.329 & 0.433 & 0.609 & 0.606 & 0.686 & 0.758 & 0.803 & 0.838\end{array}$ $\begin{array}{lllllllll}0.107 & 0.303 & 0.604 & 0.74 & 0.837 & 0.8 & 0.8 & 0.8 & 1\end{array}$
$\begin{array}{lllllllllll}0.127 & 0.361 & 0.517 & 0.973 & 1.053 & 1.029 & 1.35 & 0.9 & 0.9\end{array}$
$0.17 \quad 0.297 \quad 0.672 \quad 0.8641 .291 \quad 1.2231 .531 \quad 1.2 \quad 1$
$0.1220 .3220 .6 \quad 0.8471 .0631 .1 \quad 1.31 .51 .3$

0.062	0.334	0.473	0.705	0.908	1.1	1.2	1.4

$\begin{array}{llllllllll}0.082 & 0.189 & 0.44 & 0.598 & 0.81 & 0.969 & 1.2 & 1.3 & 1.5\end{array}$
$\begin{array}{llllllllll}0.072 & 0.176 & 0.27 & 0.437 & 0.598 & 0.874 & 1.066 & 1.3 & 1.4\end{array}$
$\begin{array}{llllllllll}0.083 & 0.19 & 0.239 & 0.391 & 0.597 & 0.715 & 0.953 & 0.929 & 1.4\end{array}$
$\begin{array}{llllllllllll}0.032 & 0.151 & 0.237 & 0.345 & 0.516 & 0.773 & 0.916 & 1 & 1.2\end{array}$
$\begin{array}{llllllllll}0.049 & 0.191 & 0.302 & 0.39 & 0.458 & 0.511 & 0.688 & 0.9 & 1.1\end{array}$
$\begin{array}{lllllllllll}0.12 & 0.235 & 0.351 & 0.396 & 0.505 & 0.614 & 0.638 & 0.871 & 0.91\end{array}$ $\begin{array}{lllllllllll}0.157 & 0.285 & 0.418 & 0.461 & 0.484 & 0.56 & 0.612 & 0.697 & 0.85\end{array}$ $\begin{array}{llllllllll}0.148 & 0.29 & 0.408 & 0.508 & 0.561 & 0.595 & 0.63 & 0.719 & 0.784\end{array}$ $\begin{array}{llllllllll}0.133 & 0.272 & 0.414 & 0.523 & 0.6 & 0.691 & 0.717 & 0.766 & 0.826\end{array}$
$\begin{array}{lllllllllll}0.101 & 0.301 & 0.415 & 0.576 & 0.666 & 0.734 & 0.806 & 0.815 & 0.899\end{array}$ $\begin{array}{lllllllllll}0.104 & 0.193 & 0.381 & 0.542 & 0.647 & 0.749 & 0.757 & 0.739 & 0.827\end{array}$ $\begin{array}{llllllllll}0.094 & 0.267 & 0.377 & 0.554 & 0.649 & 0.68 & 0.749 & 0.775 & 0.803\end{array}$ $\begin{array}{llllllllll}0.071 & 0.217 & 0.397 & 0.514 & 0.591 & 0.664 & 0.724 & 0.766 & 0.799\end{array}$ $\begin{array}{llllllllll}0.087 & 0.175 & 0.33 & 0.459 & 0.544 & 0.661 & 0.691 & 0.725 & 0.805\end{array}$ $\begin{array}{lllllllll}0.073 & 0.228 & 0.294 & 0.408 & 0.583 & 0.607 & 0.72 & 0.756 & 0.832\end{array}$ $0.10 .156 \quad 0.248 \quad 0.361 \quad 0.493 \quad 0.597 \quad 0.644 \quad 0.733 \quad 0.785$ $\begin{array}{lllllllllll}0.081 & 0.179 & 0.275 & 0.431 & 0.586 & 0.689 & 0.74 & 0.758 & 0.92\end{array}$ $\begin{array}{lllllllllll}0.105 & 0.182 & 0.318 & 0.471 & 0.589 & 0.649 & 0.674 & 0.705 & 0.751\end{array}$ $\begin{array}{lllllllllll}0.149 & 0.239 & 0.333 & 0.446 & 0.572 & 0.637 & 0.719 & 0.718 & 0.749\end{array}$ $\begin{array}{llllllllll}0.139 & 0.267 & 0.325 & 0.419 & 0.53 & 0.615 & 0.631 & 0.667 & 0.689\end{array}$ $\begin{array}{lllllllllll}0.148 & 0.228 & 0.399 & 0.509 & 0.575 & 0.633 & 0.688 & 0.754 & 0.768\end{array}$ $\begin{array}{lllllllll}0.114 & 0.266 & 0.37 & 0.55 & 0.59 & 0.608 & 0.646 & 0.712 & 0.731\end{array}$
$\begin{array}{lllllllll}0.103 & 0.253 & 0.347 & 0.534 & 0.567 & 0.619 & 0.617 & 0.635 & 0.627\end{array}$
$\begin{array}{llllllllll}0.133 & 0.218 & 0.303 & 0.412 & 0.552 & 0.687 & 0.656 & 0.728 & 0.65\end{array}$
$\begin{array}{llllllllll}0.125 & 0.284 & 0.414 & 0.603 & 0.679 & 0.745 & 0.809 & 0.794 & 0.838\end{array}$
$\begin{array}{llllllllll}0.159 & 0.28 & 0.407 & 0.596 & 0.685 & 0.821 & 0.926 & 0.82 & 0.902\end{array}$
$\begin{array}{llllllllllll}0.106 & 0.267 & 0.38 & 0.463 & 0.556 & 0.665 & 0.737 & 0.797 & 0.84\end{array}$
$\begin{array}{llllllllll}0.126 & 0.222 & 0.353 & 0.522 & 0.752 & 0.824 & 0.848 & 0.918 & 0.935\end{array}$ $\begin{array}{lllllllllll}0.117 & 0.217 & 0.359 & 0.557 & 0.741 & 0.878 & 0.871 & 0.924 & 0.935\end{array}$ $\begin{array}{llllllllllll}0.117 & 0.217 & 0.359 & 0.557 & 0.741 & 0.878 & 0.871 & 0.924 & 0.935\end{array}$ Fecundity
$\begin{array}{lllllllll}0 & 0.01169 & 0.07425 & 0.18894 & 0.38179 & 0.615 & 0.704 & 0.8 & 0.83\end{array}$ $\begin{array}{lllllllll}0 & 0.00973 & 0.07525 & 0.19834 & 0.37303 & 0.603 & 0.698 & 0.8 & 0.83\end{array}$ $\begin{array}{llllllllll}0 & 0.00798 & 0.069 & 0.18753 & 0.38471 & 0.606 & 0.701 & 0.8 & 0.83\end{array}$
$\begin{array}{lllllllllll}0 & 0.00567 & 0.06925 & 0.17813 & 0.37084 & 0.604 & 0.711 & 0.8 & 0.83\end{array}$ $\begin{array}{llllllllll}0 & 0.00581 & 0.05 & 0.14053 & 0.35989 & 0.585 & 0.7 & 0.8 & 0.83\end{array}$
$\begin{array}{lllllllllll}0 & 0.00994 & 0.0495 & 0.10951 & 0.31463 & 0.538 & 0.683 & 0.8 & 0.83\end{array}$
$\begin{array}{llllllllllllll}0 & 0.01302 & 0.05425 & 0.11797 & 0.27667 & 0.472 & 0.629 & 0.79 & 0.83\end{array}$
$\begin{array}{lllllllll}0 & 0.01351 & 0.071 & 0.15886 & 0.28689 & 0.453 & 0.574 & 0.75 & 0.82 \\ 0 & 0.01232 & 0.0795 & 0.20163 & 0.33653 & 0.502 & 0.575 & 0.74 & 0.8\end{array}$
$\begin{array}{lllllllllll}0.01232 & 0.0795 & 0.20163 & 0.33653 & 0.502 & 0.575 & 0.74 & 0.8\end{array}$
$\begin{array}{lllllllll}0 & 0.01722 & 0.09075 & 0.2162 & 0.42559 & 0.68 & 0.775 & 0.795 & 0.878\end{array}$
$\begin{array}{lllllllll}0 & 0.0182 & 0.08475 & 0.20774 & 0.38471 & 0.64 & 0.729 & 0.834 & 0.82\end{array}$
$\begin{array}{lllllllllll}0 & 0.01813 & 0.08575 & 0.20633 & 0.40807 & 0.65 & 0.806 & 0.807 & 0.85\end{array}$
$\begin{array}{llllllllll}0 & 0.01652 & 0.09325 & 0.22137 & 0.39858 & 0.626 & 0.684 & 0.909 & 0.83\end{array}$
$\begin{array}{lllllllll}0 & 0.02044 & 0.08475 & 0.22278 & 0.41902 & 0.65 & 0.629 & 0.881 & 1\end{array}$
$\begin{array}{llllllllll}0 & 0.01897 & 0.09475 & 0.22184 & 0.42851 & 0.66 & 0.754 & 0.735 & 0.948\end{array}$
$\begin{array}{lllllllllll}0 & 0.01638 & 0.09575 & 0.23218 & 0.44603 & 0.704 & 0.745 & 0.819 & 0.842\end{array}$
$\begin{array}{llllllllll}0 & 0.01827 & 0.096 & 0.22889 & 0.45041 & 0.679 & 0.736 & 0.778 & 0.812\end{array}$
00.020370 .10 .234530 .454060 .7090 .7530 .7880 .818
$\begin{array}{llllllllllllll}0 & 0.01589 & 0.0885 & 0.23782 & 0.44968 & 0.706 & 0.764 & 0.895 & 0.871\end{array}$
$\begin{array}{llllllllll}0 & 0.01344 & 0.07975 & 0.21432 & 0.44311 & 0.725 & 0.799 & 0.917 & 0.917\end{array}$ $\begin{array}{lllllllllll}0 & 0.01743 & 0.08075 & 0.21385 & 0.41172 & 0.664 & 0.784 & 0.799 & 0.871\end{array}$ $\begin{array}{llllllllllll}0 & 0.01785 & 0.0865 & 0.20163 & 0.41537 & 0.694 & 0.827 & 0.835 & 0.853\end{array}$ $\begin{array}{llllllllll}0 & 0.02079 & 0.0965 & 0.22137 & 0.41464 & 0.719 & 0.832 & 0.988 & 0.85\end{array}$
$\begin{array}{llllllllllll}0 & 0.02072 & 0.10275 & 0.24064 & 0.44019 & 0.763 & 0.834 & 0.85 & 1 .\end{array}$
$\begin{array}{llllllllll}0 & 0.01799 & 0.09675 & 0.23735 & 0.42705 & 0.744 & 0.701 & 0.879 & 0.87\end{array}$
$\begin{array}{llllllllll}0 & 0.01771 & 0.08925 & 0.22748 & 0.42559 & 0.744 & 0.762 & 0.778 & 0.878\end{array}$
$\begin{array}{llllllllll}0 & 0.01736 & 0.09325 & 0.22795 & 0.43654 & 0.752 & 0.722 & 0.91 & 0.87\end{array}$
$\begin{array}{llllllllll}0 & 0.01736 & 0.09325 & 0.22795 & 0.43654 & 0.752 & 0.722 & 0.91 \\ 0 & 0.0217 & 0.0935 & 0.23923 & 0.43946 & 0.649 & 0.65 & 0.7 & 1\end{array}$
$\begin{array}{llllllllll}0 & 0.02044 & 0.099 & 0.22936 & 0.45041 & 0.685 & 0.775 & 0.75 & 0.75\end{array}$
$\begin{array}{llllllllll}0 & 0.01757 & 0.0995 & 0.2397 & 0.43946 & 0.702 & 0.754 & 0.84 & 0.85\end{array}$
$\begin{array}{lllllllll}0 & 0.01932 & 0.09775 & 0.23829 & 0.44603 & 0.699 & 0.768 & 0.82 & 0.87\end{array}$
$\begin{array}{lllllllllll}0 & 0.01764 & 0.09725 & 0.23265 & 0.42632 & 0.647 & 0.817 & 0.83 & 0.85\end{array}$
$\begin{array}{lllllllllll}0 & 0.0224 & 0.105 & 0.2538 & 0.45406 & 0.712 & 0.782 & 0.89 & 0.86\end{array}$
$\begin{array}{lllllllllll}0 & 0.02086 & 0.1085 & 0.25286 & 0.45771 & 0.73 & 0.743 & 0.84 & 0.93\end{array}$
$\begin{array}{llllllllllll}0 & 0.021 & 0.1 & 0.23641 & 0.44676 & 0.748 & 0.812 & 0.82 & 0.87\end{array}$
$\begin{array}{lllllllll}0 & 0.01365 & 0.096 & 0.23547 & 0.43508 & 0.723 & 0.735 & 0.88 & 0.85\end{array}$
$\begin{array}{llllllllll}0 & 0.01911 & 0.10475 & 0.24675 & 0.48034 & 0.79 & 0.833 & 0.85 & 0.93\end{array}$
$\begin{array}{lllllllll}0 & 0.01645 & 0.122 & 0.2397 & 0.43727 & 0.723 & 0.869 & 0.917 & 0.849\end{array}$
$\begin{array}{llllllllll}0 & 0.01862 & 0.09775 & 0.26414 & 0.43289 & 0.709 & 0.902 & 0.952 & 1.07\end{array}$
$\begin{array}{llllllllll}0 & 0.02254 & 0.107 & 0.23735 & 0.48326 & 0.746 & 0.907 & 1 & 1.1\end{array}$
$\begin{array}{llllllllll}0 & 0.01624 & 0.1005 & 0.27448 & 0.5329 & 0.837 & 0.85 & 1 & 1.2\end{array}$
$\begin{array}{llllllllll}0 & 0.01974 & 0.11425 & 0.22607 & 0.5402 & 0.955 & 0.88 & 0.9 & 1.2\end{array}$
$\begin{array}{lllllllll}0 & 0.01862 & 0.11225 & 0.23876 & 0.40296 & 0.746 & 1 & 0.9 & 1.1\end{array}$
$\begin{array}{llllllllll}0 & 0.02303 & 0.10825 & 0.28623 & 0.44238 & 0.686 & 0.758 & 0.803 & 0.838\end{array}$
$\begin{array}{llllllllll}0 & 0.02121 & 0.151 & 0.3478 & 0.61101 & 0.8 & 0.8 & 0.8 & 1\end{array}$
$\begin{array}{llllllllllll}0 & 0.02527 & 0.12925 & 0.45731 & 0.76869 & 1.029 & 1.35 & 0.9 & 0.9\end{array}$
$\begin{array}{lllllllll}0 & 0.02079 & 0.168 & 0.40608 & 0.94243 & 1.223 & 1.531 & 1.2 & 1\end{array}$
$\begin{array}{llllllllllll}0 & 0.02254 & 0.15 & 0.39809 & 0.77599 & 1.1 & 1.3 & 1.5 & 1.3\end{array}$
$\begin{array}{lllllllllll}0 & 0.02338 & 0.11825 & 0.33135 & 0.66284 & 1.1 & 1.2 & 1.4 & 1.6\end{array}$
$\begin{array}{llllllllll}0 & 0.01323 & 0.11 & 0.28106 & 0.5913 & 0.969 & 1.2 & 1.3 & 1.5\end{array}$
$\begin{array}{llllllll}0 & 0.01232 & 0.0675 & 0.20539 & 0.43654 & 0.874 & 1.066 & 1.3\end{array} 1.4$
$\begin{array}{lllllllll}0 & 0.0133 & 0.05975 & 0.18377 & 0.43581 & 0.715 & 0.953 & 0.929 & 1.4\end{array}$
$\begin{array}{llllllllll}0 & 0.01057 & 0.05925 & 0.16215 & 0.37668 & 0.773 & 0.916 & 1 & 1.2\end{array}$
$\begin{array}{llllllllll}0 & 0.01337 & 0.0755 & 0.1833 & 0.33434 & 0.511 & 0.688 & 0.9 & 1.1\end{array}$
$\begin{array}{llllllllll}0 & 0.01645 & 0.08775 & 0.18612 & 0.36865 & 0.614 & 0.638 & 0.871 & 0.91\end{array}$
00.019950 .10450 .216670 .353320 .560 .6120 .6970 .85
$00.02030 .1020 .238760 .409530 .5950 .630 .719 \quad 0.784$
$\begin{array}{llllllllll}0 & 0.01904 & 0.1035 & 0.24581 & 0.438 & 0.691 & 0.717 & 0.766 & 0.826\end{array}$
$\begin{array}{llllllllll}0 & 0.02107 & 0.10375 & 0.27072 & 0.48618 & 0.734 & 0.806 & 0.815 & 0.899\end{array}$
$\begin{array}{lllllllllll}0 & 0.01351 & 0.09525 & 0.25474 & 0.47231 & 0.749 & 0.757 & 0.739 & 0.827\end{array}$
$\begin{array}{lllllllllll}0 & 0.01869 & 0.09425 & 0.26038 & 0.47377 & 0.68 & 0.749 & 0.775 & 0.803\end{array}$
$\begin{array}{llllllllll}0 & 0.01519 & 0.09925 & 0.24158 & 0.43143 & 0.664 & 0.724 & 0.766 & 0.799\end{array}$
$\begin{array}{lllllllllll}0 & 0.01519 & 0.09925 & 0.24158 & 0.43143 & 0.664 & 0.724 & 0.766 & 0.799 \\ 0 & 0.01225 & 0.0825 & 0.21573 & 0.39712 & 0.661 & 0.691 & 0.725 & 0.805\end{array}$
$\begin{array}{lllllllll}0 & 0.01225 & 0.0825 & 0.21573 & 0.39712 & 0.661 & 0.691 & 0.725 & 0.80 .8 \\ 0 & 0.01596 & 0.0735 & 0.19176 & 0.42559 & 0.607 & 0.72 & 0.756 & 0.832\end{array}$
$\begin{array}{llllllllll}0 & 0.01092 & 0.062 & 0.16967 & 0.35989 & 0.597 & 0.644 & 0.733 & 0.785\end{array}$
$\begin{array}{llllllllll}0 & 0.01253 & 0.06875 & 0.20257 & 0.42778 & 0.689 & 0.74 & 0.758 & 0.92\end{array}$
$\begin{array}{lllllllllll}0 & 0.01274 & 0.0795 & 0.22137 & 0.42997 & 0.649 & 0.674 & 0.705 & 0.751\end{array}$
$\begin{array}{lllllllllllllll}0 & 0.01673 & 0.08325 & 0.20962 & 0.41756 & 0.637 & 0.719 & 0.718 & 0.749\end{array}$
$\begin{array}{llllllllll}0 & 0.01869 & 0.08125 & 0.19693 & 0.3869 & 0.615 & 0.631 & 0.667 & 0.689\end{array}$
$\begin{array}{llllllllll}0 & 0.01596 & 0.09975 & 0.23923 & 0.41975 & 0.633 & 0.688 & 0.754 & 0.768\end{array}$
$\begin{array}{llllllllll}0 & 0.01862 & 0.0925 & 0.2585 & 0.4307 & 0.608 & 0.646 & 0.712 & 0.731\end{array}$
$\begin{array}{lllllllll}0 & 0.01771 & 0.08675 & 0.25098 & 0.41391 & 0.619 & 0.617 & 0.635 & 0.627\end{array}$
$\begin{array}{lllllllllll}0 & 0.01526 & 0.07575 & 0.19364 & 0.40296 & 0.687 & 0.656 & 0.728 & 0.65\end{array}$
$\begin{array}{llllllllll}0 & 0.01988 & 0.1035 & 0.28341 & 0.49567 & 0.745 & 0.809 & 0.794 & 0.838\end{array}$
$\begin{array}{llllllllll}0 & 0.0196 & 0.10175 & 0.28012 & 0.50005 & 0.821 & 0.926 & 0.82 & 0.902\end{array}$
$\begin{array}{lllllllll}0 & 0.01869 & 0.095 & 0.21761 & 0.40588 & 0.665 & 0.737 & 0.797 & 0.84\end{array}$
$\begin{array}{lllllllllll}0 & 0.01554 & 0.08825 & 0.24534 & 0.54896 & 0.824 & 0.848 & 0.918 & 0.935\end{array}$
$\begin{array}{lllllllllll}0 & 0.01519 & 0.08975 & 0.26179 & 0.54093 & 0.878 & 0.871 & 0.924 & 0.935\end{array}$
$\begin{array}{llllllllllll}0 & 0.01519 & 0.08975 & 0.26179 & 0.54093 & 0.878 & 0.871 & 0.924 & 0.935\end{array}$
SSmsy_ratio $=0.983427$
Fmsy_ratio $=0.632311$
that's all

Pacific Mackerel

STAR Panel Meeting Report

NOAA / Southwest Fisheries Science Center
La Jolla, California
May 1-4, 2007

STAR Panel

Tom Jagielo, Washington Department of Fish of Wildlife (Chair) André Punt, University of Washington (SSC representative)
Malcolm Haddon, University of Tasmania (CIE)

PFMC

Diane Pleschner-Steele (CPSAS)
Dale Sweetnam, SWFSC (CPSMT)
STAT
Emmanis Dorval, NOAA / SWFSC
Kevin Hill, NOAA / SWFSC
Nancy Lo, NOAA / SWFSC
Jennifer McDaniel, NOAA / SWFSC

1) Overview

The Pacific Mackerel STAR Panel (Panel) met at the Southwest Fisheries Science Center, La Jolla, CA Laboratory from May 1-4, 2007 to review a draft assessment by the Stock Assessment Team (STAT) for Pacific Mackerel. The Panel was originally scheduled to conclude on May $3^{\text {rd }}$, however, additional time was needed and the Panel also met on the morning of May $4^{\text {th }}$. Introductions were made (see list of attendees, Appendix 1), and the Panel chair (Tom Jagielo) reviewed the Terms of Reference for CPS assessments with respect to how the STAR Panel would be conducted. Draft assessment documents, model input and output files, and extensive background material (previous assessments, previous STAR Panel reports, SSC statements, etc.) were provided to the Panel in advance of the meeting on an FTP site, which served as a timely and convenient means to distribute the material for review. The Panel chair thanked the STAT for providing the draft assessment approximately one week prior to the meeting, which provided sufficient time for review. A file server was provided at the meeting room to provide common access to all presentation material and the additional model runs that were conducted during the course of the Panel meeting.

Emannis Dorval, with assistance from Kevin Hill, led the presentation on assessment methodology. Nancy Lo gave presentations on candidate indices for the stock abundance based on: 1) an aerial spotter program GAM analysis (Appendix I to the draft assessment report), and 2) CalCOFI larval production data (Appendix II to the draft assessment report).

The previous mackerel assessment, used for PFMC management decisions for the period July 1, 2005 to June 30, 2006, used a forward-projection age-structured assessment program (ASAP) model to estimate Pacific mackerel biomass. During the meeting, the Panel reviewed an updated ASAP model, and an alternative model in SS2 provided by the STAT. Initial discussion focused on resolving differences between outputs coming from the two models.

To demonstrate continuity from the previous assessment, the STAT presented revised models in which the ASAP formulation mimicked a comparable SS2 model as closely as possible (see also Section 2 below). The discussion focused on how best to model time changing weight-at-age using SS2, after it was noted that similar estimates of 1+ biomass and recruitment could be obtained from SS2 and ASAP if these two assessment packages were based on the same set of specifications.

Despite the relatively close agreement of many of the outputs from the ASAP and SS2 model runs, detailed scrutiny of the diagnostics and outputs from the SS2 modelling runs revealed that the SS2 model invariably ran up against the harvest rate limit (0.9 and 0.95) in a number of years. Attempts to mitigate this problem were unsuccessful. This was considered to be a critical factor which prevented acceptance of the SS2 implementation. The Panel and the STAT agreed that an updated version of the ASAP model should form the basis for the 2007 assessment.

The Panel commended the STAT for their excellent presentations, well-written and complete documentation, and their willingness to respond to the Panel's requests for additional analyses.

2) Discussion and Requests Made to the STAT during the Meeting

1. The selectivity pattern for the CPFV index is based on fitting the length-frequency data for all recreational modes. The length-frequency data for the CPFV fleet should be compared with the length-frequency data from the other recreational modes to test the assumption that the selectivity pattern for the CPFV fleet is the same as that for the remaining recreational fleets. Response. Ultimately, the model chosen as the basecase was framed as an age-structured model obviating the need for this comparison.
2. The CalCOFI indices are based on four methods for estimating the mortality rate and the initial number of larvae (methods " 1 " - " 4 "). Methods " 3 " and " 4 " are used in cases in which it was impossible to estimate the values for these parameters using weighted non-linear regression. A sensitivity test should be conducted in which the index values based on methods " 3 and " 4 " (which should be the least reliable) are omitted. Response: Given the time spent on trying to get the SS2 model to operate successfully, insufficient time remained to attempt this sensitivity analysis.
3. The CalCOFI indices are based on data for the "core" area off southern California, but mackerel spawn from Baja through to northern California. The larval densities for Mexico and the "core" area should be plotted for the years for which data on larval abundance are available for both areas. Response. Larval density of mackerel off Mexico is substantially higher than off the "core" area (Fig. 1a). The results of a regression of average larval densities on those for the "core" area (Fig. 1b) indicate that the CALCOFI indices for the "core" area may be able to detect years when larval abundance is high, but the relationship between the larval density for the "core" area and for the region including both Mexico and the "core" area is weak ($r^{2} \sim 0.1$) when the two highest larval densities are ignored.
4. The design of the survey used to extend the spotter plane index covers different areas and with different design than the historical (opportunistic) surveys. In addition, estimating the tonnage per block and the proportion positives using models that include a smoothing spline on year leads to temporal correlation among the yearfactors. This is inconsistent with the assumptions related to how indices of abundance are included in ASAP and SS2 assessments. Repeat the construction of the spotter plane index using a GLM model in which the survey data (2004 and 2005, years with survey data) and the data for 2003 (low number of trips) are ignored, and in which the smoothing splines on year in the models for the proportion positive and tonnes per block are replaced by a year factor. Response. The revised spotter plane index exhibited substantially more inter-annual variability, and the coefficients of variation for the indices were higher. The STAT replaced the original GAM index with the GLM index.
5. Examine the implications of moving from an assessment based on ASAP to one based on SS2. As a first step in this process, apply ASAP and SS2 based on model configurations that are as similar as possible so that the impact of a change in
platform can be examined. This can be achieved using the following specifications for ASAP and SS2:

ASAP configuration:

- Set the weight-at-age in the fishery to the weight-at-age in the population.
- Rescale the catch-at-age data so that the product of catch-at-age and weight-at-age (now based on that for the population) equals the total catch for each year.

SS2 configuration:

- Omit length-based selectivity - assume that selectivity is independent of length.
- Assume age-based selectivity - estimate a selectivity parameter for each age (selectivity option 14).
- Use the catch-at-age data included in the ASAP model (no length data).
- Set weight-at-age to that used in ASAP (not time-varying).
- Have one selectivity pattern only (not time-varying).
- Set selectivity for the spotter and CPFV indices to those used in ASAP.
- Set the recreational catch to 0.0001 for all years.

Response. The STAT conducted the requested analysis, setting the CVs for the ASAP run to the "tuned" values based on the SS 2 analyses and setting $\sigma_{R}=0.8$. The results from ASAP and SS2 were very similar for the years 1967-2004 but differed slightly for the first years of the assessment period and substantially for the years 2005 onward. The differences between the results for SS2 and ASAP after 2004 were due to the use of the forecast option in SS2, which led to recruitments substantially in excess of those expected under the deterministic stock-recruitment relationship. The Panel agreed that SS2 and ASAP lead to adequately similar results when using the same data, but the SS2 forecast file needs to be corrected for the projections beyond 2004.
6. The recreational catches are included as weights and not numbers in the SS2 assessment. The catches-in-weight are calculated from the catches-in-number under the assumption that each fish weighs 1 lb on average. However, SS2 is capable of using catch data entered as catch-in-numbers. Conduct a sensitivity test in which the recreational catches are included in the assessment in the form of catch-in-numbers rather than of catch-in-weight. Response. The request became irrelevant once the updated ASAP model was chosen as the assessment platform.
7. The SS2 run presented to the Panel had five time blocks for length-at-age and weight-at-length. Provide the basis for the time-blocking of the growth curves by plotting the annual length-weight relationships for each block. Response. The STAT provided the Panel with plots of length versus weight for each year from 1962. There are between-year differences in the length-weight relationship, but it was not possible to identify a preferred time block structure.
8. Run SS2 with pre-specified year-specific growth curves and year-specific lengthweight regressions. The CV of length-at-age should be based on the averages over time and the age-specific selectivity pattern for the commercial fishery should be set to three double-normal functions (one for each selectivity epoch). Response. The

STAT provided the Panel with several runs in which the CV of length-at-age was set to 0.166 for age 0 animals and 0.05 for age 11 animals (the maximum across years), in which $\sigma_{R}=0.8$ (selected by comparing the RMSE for the recruitment residuals and the pre-specified value for σ_{R}), and in which the CVs assigned to the indices were tuned. The peak abundance is highly sensitive to the value assumed for σ_{R}. All of the analyses provided to the Panel led to exploitation rates in the 1950s, 1960s, and/or 1990s that exceeded the value permissible value (0.9 and 0.95). After many additional analyses, the Panel and STAT agreed that it would not be possible to base an assessment of Pacific mackerel on SS2 and all additional analyses were based on ASAP.
9. There are concerns with all three potential indices of abundance as they may be in conflict to some extent. Repeat the assessment in which the model is fitted to each index independently. Response. The STAT provided results for the ASAP analyses. The different time series are in conflict in some years. For example, the CalCOFI index exhibits an increase in the years 1996 and 1997 whereas the other indices either do not exhibit an increase or show a decline. The stock size exhibits an upturn in the last three or four years of the assessment period. This disappears when the CPFV time series is omitted and only the CalCOFI time series is used (Figure 3).
10. The three indices should be plotted together to provide a visual comparison of where the indices may be in conflict or where each contributes information to the model fit. Response. The STAT team produced a graph with an adequate interpretation.
11. Sensitivity runs were requested to examine the impact of varying the natural mortality rate between 0.35 and $0.7 \mathrm{yr}^{-1}$. Response. The STAT produced graphs of initial and $1+$ biomass which exhibited the expected behaviour; some instability in the model fitting was detected with M between 0.55 and $0.6 \mathrm{yr}^{-1}$. In addition, a table of the likelihood components for the range of M values was produced to aid in the identification of which factors are most influenced by M (Figure 4).

The commercial fleet has failed to take a large proportion of the recommended Harvest Guidelines since 2001. Higher fuel costs that were not matched by comparable increases in price for product were presented as part of the explanation in conjunction with the limited availability of fish close to port. As a result of the increased fuel prices, the area of the fishery has contracted closer to shore, which may have influenced the age composition in recent years by increasing the proportion of $0+$ and $1+$ fish in the catches. This contraction in area has been exacerbated by spotter plane effort being redirected to higher value fisheries such as tuna.

The results from the 2007 runs based on ASAP are most similar to those from the ADEPT model conducted for assessments prior to 2006 in terms of biomass trends since 1975 (Figure 2). However, there are major differences in biomass trajectories for the years prior to 1950 . The results for the 2006 and 2007 ASAP runs differ markedly in terms of biomass in the peak years, in the years prior to 1950 and in recent years. Part of the explanation for this difference is that σ_{R} has been increased which leads to higher biomass than in the past and because selectivity is estimated for three, rather than one epoch. The increase in biomass in the last three years is a consequence of fitting to the CPFV index; runs without this index lead to markedly less optimistic values.

3) Technical Merits and/or Deficiencies of the Assessment

It was decided to base the 2007 assessment on an ASAP model that includes three selectivity epochs and a higher value for σ_{R}. Unlike SS 2 , this model did not lead to diagnostics that were clearly problematical. However, the ASAP is not capable of including more than one fleet so the recreational catches could not be independently modelled. In addition, the ASAP model uses the same weight-at-age for the catch as for the population, which implies that any stock recruitment relationship may be biased. In order to estimate selectivity for a relative abundance index, ASAP requires that the index be associated with a particular fishery. This means there are difficulties estimating the selectivity for the larval abundance and spotter plane indices.

The Panel accepts that the ASAP E1-base model can be used as the basis for management advice and advices that the runs based on all indices included and $\mathrm{M}=0.35$ and $\mathrm{M}=0.70$ be used in order to bracket uncertainty.

4) Areas of Disagreement

There were no major areas of disagreement between the STAT and Panel.

5) Unresolved Problems and Major Uncertainties

Problems unresolved at the end of the meeting form the basis for some of the research recommendations in Section 6. The background to three of the main issues are given here.

1) While the best estimates of the landings off Mexico are included in the assessment, there is a continuing lack of size- and age-composition data from these catches. The 2004 STAR Panel recommended that efforts be made to obtain biological sampling data and especially catch-at-age data from the Mexican fraction of the fishery. The SWFSC began the process of acquiring this information by organizing a US-Mexico workshop in 2007 and obtaining commitments for data provision in time for future assessments. The size and age composition data from the San Pedro fishery are presently assumed to be representative of the whole stock. In addition, two of the indices of relative abundance used in the assessment (the CalCOFI larval survey and the CPFV recreational data) only relate to the Southern Californian Bight. The spawning area is known to extend south to the tip of Baja California. Obtaining data from the Mexican fishery, including the Mexican larval surveys (IMECOCAL) might help remove this important source of uncertainty.
2) There is currently no true fishery-independent index of relative abundance for the whole stock and there are concerns with the three indices used in the present assessment.
a. The CalCOFI larval surveys are often relatively poor at finding Pacific mackerel larvae. Whether these surveys and the estimates of larval production at hatching constitute representative estimates of the spawning stock size of mackerel is uncertain, especially because the area surveyed is only a fraction of the total spawning region. Obtaining access to the Mexican larval survey data (IMECOCAL) may help solve this problem. In addition, the occurrence of larvae can be limited to one or two size classes in years of relatively low
abundance, which compromises the estimation of the larval production at hatching for those years.
b. The aerial spotter index, up until 2002, provides an opportunistic method for estimating relative abundance. The structure of the index includes an estimate of area based on the number of 10 ' x 10 ' blocks surveyed, but this number varies from year to year, and includes coastal blocks which are not strictly 10 , x 10'. This acts as a source of uncertainty among years. A further problem with the spotter plane index of abundance is that the design of the sampling changed after 2002. Specifically, a fishery-independent aerial survey was begun in 2004 using a grid search pattern with the added freedom to search for more fish if a school of fish is found. However, the adherence of the pilots to the sampling grid has yet to become stable. The very different sampling strategy used prior to 2003 means that it is questionable whether this new time series can be combined in a meaningful way with the earlier one.
c. The CPFV index is based on the logbook data from the CPFV fleet for California (although limited data do exist for Mexico). Given that it is fisherydependent data, its use in the assessment as an index of stock abundance is predicated on the assumption that catchability has not changed over time. While this is a concern for all indices of abundance based on fisherydependent data, the fact that mackerel is not a target species for the CPFV fleet suggests that this assumption may be acceptable in this case.
3) Ageing error rates (see Table 1) indicate substantial imprecision and /or bias, particularly for the younger age-classes (0 and 1), which currently constitute a large fraction of the catch. The impact of this error rate will only become apparent once an ageing error matrix is included in the assessment.
4) Research Recommendations
A. One of the major uncertainties associated with the assessment is that no account is taken of ageing error. SS2 can include an age-reading error matrix. The data from age-reading studies should be used to construct an age-reading error matrix for inclusion in future (SS2) assessments. However, there are currently very few otoliths that have been read multiple times so additional readings need to be made. In the longer-term, an age validation study should be conducted for Pacific mackerel. Such a study should compare age readings based on whole and sectioned otoliths and consider a marginal increment analysis.
B. The next assessment should continue to examine the possibility of using SS2 as the assessment platform. The analyses presented to the Panel suggested that ASAP and SS2 lead to similar outcomes when configured in a similar manner. However, SS2 deals better with indices that are not tied directly to a fishery, can include age-reading error, and allows weight-at-age in the catch to differ from weight-at-age in the population. In principle, it should be easier to represent uncertainty using the MCMC algorithm for assessments based on SS2.
C. The construction of the spotter plane index is based on the assumption that blocks are random within region (the data for each region is a "visit" by a spotter plane to a block in that region). The distribution of density-per-block should be plotted or a random effects model fitted in which block is nested within region to evaluate
this assumption (e.g. examine whether certain blocks are consistently better or worse than the average).
D. The data on catches come from several sources. The catch history from 1926-27 to 2006-07 should be documented in a single report.
E. Conduct a study to update the information used to determine maturity-at-length (and maturity-at-age).
F. A large fraction of the catch is taken off Mexico. In particular, catches of mackerel have been as large as those off California in recent years. Efforts should continue to be made to obtain length, age and biological data from the Mexican fisheries for inclusion in stock assessments. Survey data (IMECOCAL program) should be obtained and analyses conducted to determine whether these data could be combined with the CalCOFI data to construct a coastwide index of larval abundance.
G. The SS2 assessment is based on fitting to age-composition data for the commercial fishery. Future SS2 assessments should consider fitting to the length composition and the conditional age-at-length information. This will require estimating time-varying growth curves and may require multiple time-steps within each year.
H. The CalCOFI data should be reviewed further to examine the extent to which CalCOFI indices for the "core" area can be used to provide information on the abundance of the coastwide stock.
I. There are uncertainties regarding the early biological and fishery data. The Panel reiterates the recommendation of the 2004 STAR Panel that consideration should be given to initiating the assessment model in a more recent year (e.g. 1978).
J. The concern of the 2004 STAR Panel that fishery-based weights are used to estimate population parameters has still not been addressed. Future assessments should attempt to estimate a population growth curve in order, for example, to estimate the time-trajectories of $1+$ and spawning biomass.

Figure 1a. Coastwide larval densities (diamonds), larval densities off Mexico (squares), and larval densities for the "core" area (results based on CalCOFI surveys that covered Mexico and the "core" area (1951-1984)).

Figure 1b. Average larval densities (Mexico and the "core" area) versus larval densities for the "core" area based on CalCOFI surveys that covered Mexico and the "core" area (1951-1984).

Figure 2. Estimated biomass (age 1+ fish, B in mt) of Pacific mackerel generated from the VPA (2006 assessment), and the ASAP-BaseCase model for the 2007 assessment.

Figure 3. Sensitivity of Base-Case ASAP Model to Indices of Abundance.

Figure 4. Sensitivity of Base-Case ASAP Model to Natural Mortality.

Table 1
Measures of age-reading error

	Age							
	0	1	2	3	4	5	6	$7+$
APE	0.298	0.276	0.158	0.150	0.139	0.112	0.111	0.096
CV	0.888	0.758	0.447	0.423	0.408	0.338	0.343	0.286

Appendix 1

STAR Panel Members in Attendance

Mr. Tom Jagielo (Chair), SSC - Washington Department of Fish and Wildlife
Dr. André Punt, SSC - University of Washington
Dr. Malcolm Haddon, CIE - University of Tasmania
Mr. Dale Sweetnam, CPSMT - California Department of Fish and Game
Ms. Diane Pleschner-Steele, CPSAS - California Wetfish Producers Association

STAT Members in Attendance
Dr. Emmanis Dorval, NMFS, Southwest Fisheries Science Center (SWFSC)
Dr Kevin Hill, NMFS, SWFSC
Dr. Nancy Lo, NMFS, SWFSC
Ms. Jennifer McDaniel, NMFS, SWFSC

Others in Attendance

Mr. Mike Burner, Pacific Fishery Management Council
Dr. Ray Conser, NMFS, SWFSC
Dr. Paul Crone, NMFS, SWFSC
Dr. Sam Herrick, NMFS, SWFSC
Mr. Jason Larese, NMFS, SWFSC
Dr. Mark Maunder, Inter-American Tropical Tuna Commission (IATTC)
Dr. Kevin Piner, NMFS, SWFSC
Mr. Alexandre Silva, IATTC

Pacific Mackerel

STAR Panel Meeting Report

NOAA / Southwest Fisheries Science Center
La Jolla, California
September 18-21, 2007

STAR Panel

André Punt, University of Washington (Chair)
Tom Barnes, CDF\&G (SSC representative)
John Casey, Cefas (CIE)

PFMC

Diane Pleschner-Steele (CPSAS)
Brian Culver (CPSMT)
STAT
Emmanis Dorval, NOAA / SWFSC
Kevin Hill, NOAA / SWFSC
Jennifer McDaniel, NMFS, SWFSC

1) Overview

The Pacific Mackerel STAR Panel (Panel) met at the Southwest Fisheries Science Center, La Jolla, CA Laboratory from September 18-21, 2007 to review a draft assessment by the Stock Assessment Team (STAT) for Pacific Mackerel. Introductions were made (see list of attendees, Appendix 1), and the Panel chair (André Punt) reviewed the Terms of Reference for CPS assessments with respect to how the STAR Panel would be conducted.

The focus for the review was methodological (to determine whether the 2008 assessment should be conducted using SS2 rather than ASAP) because the harvest guideline for 2007-08 has already been set by the Council based on a 2007 assessment conducted using ASAP. Draft assessment documents, model input and output files, and extensive background material (previous assessments, previous STAR Panel reports, SSC statements, etc.) were provided to the Panel. The draft assessment document was only provided to the Panel on 13 September, well after the two-week deadline for the submission of documents. This did not, however, preclude a thorough review of the material.

The May 2007 Mackerel STAR Panel reviewed an updated ASAP model, and an alternative model in SS2 provided by the STAT. However, despite the relatively close agreement of many of the outputs from the ASAP and SS2 model runs, detailed scrutiny of the diagnostics and outputs from the SS2 modelling runs revealed that the SS2 model invariably ran up against the harvest rate limit (0.9 and 0.95) in a number of years. Attempts to mitigate this problem were unsuccessful and the May 2007 Panel was unable to recommend the use of SS2 for the 2007 assessment. The May 2007 Panel recommended that work continue to examine the possibility of using SS2 as the assessment platform. The analyses presented to the May 2007 Panel suggested that ASAP and SS2 lead to similar results. However, SS2 is to be preferred (at least in principle) because it deals better with indices that are not tied directly to a fishery, can include agereading error, and allows weight-at-age in the catch to differ from weight-at-age in the population. In principle, it should be easier to represent uncertainty using the MCMC algorithm for assessments based on SS2.

Emannis Dorval (NOAA, SWFSC) gave a presentation on the draft assessment, with assistance from Dr Kevin Hill (NOAA, SWFSC). This assessment addresses several of the recommendations from the May 2007 Panel, namely: (a) the model operates on a quarterly time-step, (b) allowance is made for age-reading error, (c) allowance is made for the weight-at-age in the catch to differ from that in the fisheries, (d) the assessment estimates growth (multiple time blocks) by fitting to catch length-frequency data and conditional age-at-length data, (e) selectivity for the CPFV index is set to that for the recreational fishery, which is now estimated. The draft assessment presented to the May 2007 Panel started in 1935 (the earliest year for which catch-at-age data are available). However, the present assessment started in 1962, the first year for which index data are available.

The Panel focused on differences between the ASAP and SS2 models, in particular, why the initial SS2 base-model estimates much larger 1976 and 1978 cohorts than appears to be plausible. The Panel requested that the STAT examine models with many selectivity and growth time-blocks, in particular because the 1976 cohort was spawned during a period when growth was much faster than is the case at present, meaning that ageselectivity may have been higher for the 1976 than for subsequent cohorts.

The STAT provided several model runs based on SS2 to attempt to identify a base-model which fits the indices adequately, which are consistent with the patterns in the catch-atage data, and which lead to plausible levels of biomass. However, the SS2 results were very sensitive to changes to model specifications (e.g. time-varying growth, and timevarying selectivity) and to changes to the data (e.g. removing length-composition data for one year changes the relative pattern of recruitment strength as well as recruitment in absolute terms substantially), and none of the model configurations fitted the data adequately. Appendix 2 provides a subset of the results considered during the Panel, illustrating some of the difficulties with the models examined.

The Panel concludes that although considerable progress has been made toward implementing the Pacific mackerel assessment in SS2, it seems likely that much work remains before an acceptable model configuration will be identified. The Panel continues to support further work on an SS2-based mackerel assessment, but recommends that the assessment for mackerel (and hence the basis for management advice) continue to be based on the ASAP platform until a future STAR Panel reviews and approves an SS2based assessment that is better and more robust than the current ASAP-based assessment.

The Panel believes that the Pacific mackerel assessment will be improved not only by exploring alternative models, but also by: a) refining the indices of abundance (which are all currently subject to considerable uncertainty), b) a more thorough review of the basic age- and length-composition data on which the analyses are based (e.g. to ensure that the length-frequency information is representative of the fishery removals), and c) modifying the SS2 modelling environment (e.g. allowing for cohort-specific growth parameters). The opinion of the Panel is that it could be possible to complete these tasks by 2009. If progress is sufficient, another mackerel Panel could be scheduled for May 2009 (so that the management advice for the 2009-10 harvest guideline could be based on a new assessment platform).

The Panel commended the STAT for their excellent presentations, well-written documentation, and their willingness to respond to the Panel's requests for additional analyses. The number of requests that could be accomplished during the Panel meeting was, however, limited by the focus on Pacific sardine and because the analysts for mackerel were also members of the sardine STAT.

2) Discussion and Requests Made to the STAT during the Meeting

 Set \#1A. Reduce the plus group for ages from 14 to 12 yr , reduce the plus group for lengths from 60 to 45 cm and truncate the length data used in the assessment at 11 cm .

Reason: There are no age data for 60 cm fish, and few fish greater than 45 cm are found in the commercial and recreational catches. Also, this will speed up the model runs.

Response: The STAT completed this task as requested.
B. Conduct a sensitivity analysis to examine assumptions regarding selectivity and growth on the sizes of the 1976 and 1978 year classes based on the assumption $\sigma_{R}=$ 0.8 . Assume that all selectivity patterns are dome-shaped.

Reason: The Panel was concerned that the sizes of the extremely large 1976 and 1978 cohorts were due to the choice of how selectivity and growth were parameterized.

Response: The STAT provided results based on time-varying K, but pre-specified the initial length of each cohort. The sizes of the 1976 and 1978 year-classes remained unrealistically high.
C. Compare the implied age-structure of the catch for the commercial fleet to the observed catch age-structure for this fleet.

Reason: This would show how well the model is matching the age data (visual examination of the fits to the conditional age-at-length data is difficult).

Response: The estimates of recruit strength were very implausibly high so the Panel did not consider these results in detail as the reasons for the unrealistic estimates of recruitment needed to be resolved before detailed examination of model residuals was warranted.
D. Move the fit of the model to the spawning index from quarter 1 to quarter 4.

Reason: The model needs to be self-consistent concerning the timing of spawning. Since spawning actually occurs in quarter 4 , this would also eliminate the need to account for mortality between the two periods.

Response: The STAT completed this task; there was no major change to the results.
E. Set effective sample size for the length-frequency and conditional age-at-length data to the number of landings sampled, or as the number of fish divided by 25.

Reason: The STAT intended to define the effective sample sizes as the number of fish divided by 25 , but this was not done in the base run supplied to the Panel.

Response: The effective sample sizes used in the SS2 analyses were updated to reflect the intended effective sample sizes.

Set \#2
F. Conduct an age-based run using the re-weighted catch-at-age data pre-specifying length-at-age [e.g. from run G4] (i.e. ignoring the length-frequency data and
conditional age-at-length data). Create selectivity blocks for 1962-68, each year for 1969-85, and 1986-2006. Set $\sigma_{R}=0.8$ and $\mathrm{A}_{\min }=0.25$.

Reason: The Panel wished to assess whether the reason for the strong 1976 and 1978 year-classes was related to the length data and misspecification of growth.

Response: The STAT conducted an analysis with three time blocks (1962-68, 196985, and 1986-2006). The 1976 and 1978 cohorts remained unrealistically large.
G. Conduct a length-based run using the re-weighted length-frequency data. Estimate a single selectivity pattern and time-varying growth (time blocks as for request \#F); treat all three growth parameters as estimable. Set $\sigma_{R}=0.8$ and $\mathrm{A}_{\min }=0.25$.

Reason: The Panel wished to assess whether the reason for the large 1976 and 1978 year-classes was time-varying growth.

Response: The pattern of length-at-age followed the empirical data on length-at-age. The sizes of the 1976 and 1978 were much reduced compared to the initial base model, but still appeared to be unrealistically large. The model still failed to fit the index points for the 1970s.
H. Conduct three model runs based on model G4 (except $\sigma_{R}=0.8$ and $\mathrm{A}_{\min }=0.25$): a) remove the length-frequency data for 1976 , b) remove the length-frequency data for 1976-77, and c) remove the length-frequency data for 1976-78.

Reason: The Panel wished to assess whether the reason for the very strong 1976 and 1978 year-classes related to the length-frequency data for particular years.

Response: Leaving out the 1976 length-frequency data led to a qualitative change to the assessment outputs. In particular, the magnitude of the 1976 cohort was reduced substantially from model G4, selectivity for recent years was asymptotic, and the fit to the CPFV and CalCOFI indices was improved. Leaving the 1976 and 1977 data out of the assessment led to asymptotic selectivity for the first selectivity block, and even more reduced abundance of the 1976 cohort. The fit to the CPFV index also improved. Leaving out the 1976-78 length data led to lower estimates of the 1976 cohort, but not the 1978 cohort. Visual examination of the catch-at-age data does not support a very strong 1976 cohort.

The STAT provided an additional model run in which selectivity is age-specific (estimated separately for each age), there is one growth curve, and the model is fitted to conditional age-at-length data. However, this analysis also led to implausibly large estimates of recruitment.

3) Technical Merits and/or Deficiencies of the Assessment

Conducting the assessment using SS2 (potentially) addresses many of the concerns identified by previous STAR Panels with the ASAP model. However, the STAT could not identify a model configuration that was a viable base-model.

4) Areas of Disagreement

There were no areas of disagreement between the STAT and Panel.

5) Unresolved Problems and Major Uncertainties

Despite considerable effort by the STAT, none of model runs presented to the Panel led to adequate fits to the index data or to plausible levels of biomass. In addition, the SS2 results were very sensitive to changes to the specifications of the model (e.g. timevarying growth, and time-varying selectivity) and to changes to the data (e.g. removing length-composition data for one year substantially changed the relative pattern of recruitment strength as well as recruitment in absolute terms).

The Panel wishes to highlight that all three indices of abundance are subject to considerable uncertainty and there are major concerns regarding the suitability of each as an index of relative abundance for mackerel. The May 2007 Panel report provides a detailed discussion of these concerns (see Appendix 3). Another major uncertainty associated with the assessment is the lack of data for the Mexican fishery. In particular, there are no composition data for the Mexican fisheries, and the length and agecompositions of the Mexican landings consequently had to be assumed to be the same as those of the U.S. fishery. The extent to which the length-frequencies (particularly those for the moratorium years) are representative of the fishery landings is also uncertain (and is consequential - leaving the 1976 length-frequency out of the assessment changed the relative strengths of 1976 and 1978 cohorts markedly).
6) Concerns raised by the CPSMT AND CPSAS representatives during the meeting The CPSMT and CPSAS did not have additional concerns.

7) Research Recommendations

The Panel identified research recommendation, and endorsed the recommendations from the May 2007 Panel that are still outstanding.

Recommendations arising from the current Panel

A. Much of the Panel's time was spent dealing with data-related issues and the Panel recommends that standard data processing procedures be developed for CPS species, similar to those developed for groundfish species.
B. There is a need to review the raw data on which the length-frequency distributions are based to ensure that the data included in the assessment are representative of the catches.
C. The following additional sensitivity tests were identified during the Panel meeting, but were not completed given the other concerns with the draft assessment. The Panel recommends that these sensitivity runs form part of any future analyses:

1. Re-compute the CPFV Delta GLM using data for those years that are included in the assessment [The Delta GLM currently starts in 1935. The data on which the CPFV index is based therefore includes data for years not included in the assessment. It is possible that the stock may have been behaving differently in the past than in more recent years.]
2. Initialize the model by estimating the initial age structure rather than by specifying an equilibrium catch. [The assumption that the population was in equilibrium given a pre-specified catch in 1962 seems unrealistic, and leads to a very high exploitation rate in the first quarter of the assessment period.]
3. Reduce the additive CVs for each index to zero for each index in turn. [The current base model adds a CV of 1.5 to the CalCOFI and spotter indices, which effectively means that they are little more than noise. Consequently, the CPFV index is the only one being fit (to some extent). This exercise would show how each index would influence the results if it were given more weight.]
4. Start the model in 1970. [1962 is the middle of a period of fairly high catches]

Recommendations arising from the May 2007 Panel
A. There are currently very few otoliths that have been read multiple times so additional readings need to be made. In the longer-term, an age validation study should be conducted for Pacific mackerel. Such a study should compare age readings based on whole and sectioned otoliths and consider a marginal increment analysis.
B. The construction of the spotter plane index is based on the assumption that blocks are random within region (the data for each region is a "visit" by a spotter plane to a block in that region). The distribution of density-per-block should be plotted or a random effects model fitted in which block is nested within region to evaluate this assumption (e.g. examine whether certain blocks are consistently better or worse than the average).
C. The data on catches come from several sources. The catch history from 1926-27 to 2006-07 should be documented in a single report.
D. Conduct a study to update the information used to determine maturity-at-length (and maturity-at-age).
E. A large fraction of the catch is taken off Mexico. In particular, catches of mackerel have been as large as those off California in recent years. Efforts should continue to be made to obtain length, age and biological data from the Mexican fisheries for inclusion in stock assessments. Survey data (IMECOCAL program) should be obtained and analyses conducted to determine whether these data could be combined with the CalCOFI data to construct a coastwide index of larval abundance.
F. The CalCOFI data should be reviewed further to examine the extent to which CalCOFI indices for the "core" area can be used to provide information on the abundance of the coastwide stock.

Appendix 1

STAR Panel Members in Attendance

Dr. André Punt, (Chair), SSC - University of Washington
Mr Tom Barnes, SSC - CDF\&G
Dr John Casey, CIE - CEFAS (UK)
Mr Brian Culver, CPSMT - WDFW
Ms. Diane Pleschner-Steele, CPSAS - California Wetfish Producers Association

STAT Members in Attendance
Dr Kevin Hill, NMFS, SWFSC
Dr. Emmanis Dorval, NMFS, SWFSC
Dr. Nancy Lo, NMFS, SWFSC
Ms. Jennifer McDaniel, NMFS, SWFSC

Others in Attendance

Mr. Dale Sweetnam, CDF\&G
Mr Richard Carroll, Ocean Gold Seafoods
Mr Bev Macewicz, NMFS, SWFSC
Dr. Ray Conser, NMFS, SWFSC
Dr. Paul Crone, NMFS, SWFSC
Dr. Sam Herrick, NMFS, SWFSC

Appendix 2
 Example results from four of the model configurations presented to the Panel

Model G1: time-varying length-based selectivity (blocks 1962-69; 1970-77; 1978-06); time-varying growth (1962-69; 1970-77; 1978-06); length compositions based on 57 bins ($4-60+\mathrm{cm}$); age-at-length compositions based on ages $0-11+$; spawning biomass is in season 4 . This was the initial base-model.

Model G4: as for model G1, except that growth for 1962-68 and 1986-06 is pre-specified and growth for 1969-85 is estimated separately for each year, the length compositions are based on 35 bins (11-45+ cm), the age-at-length compositions are based on ages $0-11+, \mathrm{A}_{\min }=0.5$, and the spawning biomass is in season 1 ;

Model G7: as for model G4, except that selectivity is age-specific, there is a single growth curve with prespecified parameters, and model is fitted to length composition data for CPFV fleet and the agecomposition data for commercial fleets (ages 0-11+).

Model G8a: as for model G4, expect that growth is estimated for all three time-blocks, and the lengthfrequency data for 1976 are ignored.

Appendix 3 Except from the May 2007 Pacific Mackerel STAR Panel Report

There is currently no true fishery-independent index of relative abundance for the whole stock and there are concerns with the three indices used in the present assessment.

1. The CalCOFI larval surveys are often relatively poor at finding Pacific mackerel larvae. Whether these surveys and the estimates of larval production at hatching constitute representative estimates of the spawning stock size of mackerel is uncertain, especially because the area surveyed is only a fraction of the total spawning region. Obtaining access to the Mexican larval survey data (IMECOCAL) may help solve this problem. In addition, the occurrence of larvae can be limited to one or two size classes in years of relatively low abundance, which compromises the estimation of the larval production at hatching for those years.
2. The aerial spotter index, up until 2002, provides an opportunistic method for estimating relative abundance. The structure of the index includes an estimate of area based on the number of 10^{\prime} x 10^{\prime} blocks surveyed, but this number varies from year to year, and includes coastal blocks which are not strictly $10^{\prime} \times 10^{\prime}$. This acts as a source of uncertainty among years. A further problem with the spotter plane index of abundance is that the design of the sampling changed after 2002. Specifically, a fishery-independent aerial survey was begun in 2004 using a grid search pattern with the added freedom to search for more fish if a school of fish is found. However, the adherence of the pilots to the sampling grid has yet to become stable. The very different sampling strategy used prior to 2003 means that it is questionable whether this new time series can be combined in a meaningful way with the earlier one.
3. The CPFV index is based on the logbook data from the CPFV fleet for California (although limited data do exist for Mexico). Given that it is fishery-dependent data, its use in the assessment as an index of stock abundance is predicated on the assumption that catchability has not changed over time. While this is a concern for all indices of abundance based on fishery-dependent data, the fact that mackerel is not a target species for the CPFV fleet suggests that this assumption may be acceptable in this case.

SCIENTIFIC AND STATISTICAL COMMITTEE REPORT ON PACIFIC SARDINE AND PACIFIC MACKEREL MANAGEMENT

$\underline{\text { Pacific Sardine }}$

The Scientific and Statistical Committee (SSC) reviewed the Pacific sardine stock assessment and Stock Assessment Review (STAR) Panel report. An overview of the stock assessment was provided to the SSC by Dr. Kevin Hill. Recent assessments of sardine were based on the forward projection age-structured assessment program (ASAP) and the September 2007 STAR Panel review focused on new assessment results based on the Stock Synthesis 2 (SS2) model platform. The STAR Panel concluded that the ASAP model had a number of difficulties that SS2 was able to overcome, including: 1) allowance for some sardine to spawn at age-0, 2) differences in timing of the fisheries throughout the range, 3) estimation of initial conditions, 4) variability in weight-at-age among fisheries and between the fishery and population, and 5) lognormal bias correction for the stock-recruitment relationship. Residual patterns in the fit to the length frequency data were also removed using SS2 and model fits to the survey index data were improved. Based on these improvements in the sardine model, the SSC concurs with the STAR and Stock Assessment Team (STAT) that results from SS2 providing a better basis for modeling sardine population dynamics.

Conversion of the Pacific sardine assessment into the SS2 modeling framework produced assessment results that are less optimistic about current stock status than that based on the 2006 ASAP assessment. In particular, age $1+$ Pacific sardine biomasses are at lower levels and have declined more precipitously in recent years. This trend in biomass is largely driven by SS2 estimates of recruitment which show strong 1997 and 1998 cohorts and a weaker 2003 cohort. Recent cohorts estimated by SS2 appear to be weaker compared to the ASAP model estimates. Differences in 2007 SS2 and 2006 ASAP assessment results were identified to be largely driven by new data (a sharp decline in the daily egg production method [DEPM] index of abundance from 2006 to 2007). Treatment of the data (quarterly partition of the length and conditional age compositions) in SS2 as well as other factors including model structure, weighting, and a revised survey index also contributed to differences from the last assessment.

Major uncertainties in the assessment were identified. The assessment assumes that indices of spawning biomass for the "standard" survey area are linearly proportional to total spawning biomass, which has yet to be verified. The assessment lacks fishery independent data from the Pacific Northwest. A routine, coastwide survey would greatly improve the assessment of the sardine population. Historic information on sardine is extensive and efforts should be directed at evaluating and, if deemed reliable, incorporating it into future assessments.

Lack of catch data from Mexico makes total removals for recent years uncertain. Stock structure for sardine continues to be a major source of uncertainty, and southern sub-population catches may have contributed to the unusually high 1985 catches. Finally, the value of natural mortality is uncertain. Uncertainty in the assessment was captured by a lower and upper value for natural mortality, $\mathrm{M}=0.3$ and $\mathrm{M}=0.5$.

The SSC acknowledges the improvement of the sardine assessment with the use of SS2 and commends the STAT on their work. The SSC endorses the sardine stock assessment as the best available science and its use for management. The STAR Panel recommended that consideration should be given to holding the next STAR Panel for sardine in 2009 rather than 2010. The SSC concurs with this.

Pacific Mackerel

The SSC reviewed the STAR Panel report for Pacific mackerel. The STAR Panel review held in September 2007 focused only on assessment methodology, specifically on whether future mackerel assessments should be conducted using the SS2 platform. The STAR Panel concluded that the use of SS2 would be preferred (in principle), but that model results produced unrealistically high exploitation rates. The SSC recommends that continued effort be directed at developing an acceptable SS2 model configuration. If sufficient progress is made, a new mackerel stock assessment could be scheduled for May 2009 to establish harvest guidelines for the 2009-2010 fishery season. The SSC agrees with the recommendations of the STAR Panel and notes that 2008 harvest guidelines have already been set by the Council based on the 2007 assessment conducted using ASAP.

SCIENTIFIC AND STATISTICAL COMMITTEE REPORT ON PACIFIC MACKEREL MANAGEMENT FOR 2008-2009

The Scientific and Statistical Committee (SSC) received a presentation on the 2008 Pacific mackerel stock assessment by Dr. Emmanis Dorval. In addition, Dr. Tom Helser briefed the SSC on the results of an assessment review that was sponsored by the Council on May 13, 2008, in Long Beach, CA. The review was conducted by two members of the Coastal Pelagic Species (CPS) sub-committee of the SSC, and several members of the CPS Management Team.

The last full assessment of Pacific Mackerel occurred during May 2007 and the current assessment was prepared as an update assessment. The SSC considers that the assessment has satisfied the Terms of Reference for a CPS Stock Assessment update because (a) the base model that was selected and approved at the 2007 Stock Assessment Review (STAR) Panel formed the basis for the update assessment, (b) this assessment used the same model structure and estimation framework (ASAP) as the last full assessment, and (c) only updates to the data used during the 2007 full assessment were included in the updated assessment. The updated assessment included revised catch landings, catch-at-age and weight-at-age data for 2006-07, and new 2007-08 data. The assessment was based on three indices of abundance (California Cooperative Oceanic Fisheries Investigations [CalCOFI], commercial passenger fishing vessel [CPFV] and spotter). Only one of the indices of abundance (CPFV) was updated to include data for 2007-08. The CPFV index is now the primary index of abundance for Pacific mackerel, but is based on fishery-dependent sampling and is therefore subject to the concerns associated with such data. In addition, the CPFV index may not reflect trends in abundance for the southern portion of the range.

Dr. Dorval indicated that the stock assessment team (STAT) intends to continue to investigate an SS2-based Pacific mackerel assessment. If completed, an SS2-based assessment should be reviewed at a May 2009 STAR Panel. The SSC also notes that the ASAP model has been updated and that some of its new features may be useful for the Pacific mackerel assessment. Should the work on SS2 modelling for Pacific mackerel prove problematic, the updated ASAP model should be considered as a possible alternative modelling platform.

The SSC endorses the update assessment as the best available science and its use in Council management decisions. Based on the Council's harvest control rule, the acceptable biological catch (ABC) and maximum allowable harvest guideline for Pacific mackerel from the update assessment is $51,772 \mathrm{mt}$.

PFMC
6/9/08

COASTAL PELAGIC SPECIES MANAGEMENT TEAM STATEMENT ON PACIFIC SARDINE AND PACIFIC MACKEREL MANAGEMENT

Pacific Sardine

The Coastal Pelagic Species Management Team (CPSMT), along with the Coastal Pelagic Species Advisory Subpanel, received an overview of the assessment for Pacific sardine from Dr. Kevin Hill. The CPSMT agrees that the base model forwarded by the Stock Assessment Review Panel and endorsed by the Scientific and Statistical Committee represents the best available science to inform management of the West Coast sardine fishery. Based upon the $832,706 \mathrm{mt}$ age $1+$ biomass from the assessment, the Council's harvest control rule produces an acceptable biological catch (ABC) for the 2008 fishery of $89,093 \mathrm{mt}$. This ABC is 42% less than the 2007 $\mathrm{ABC} /$ harvest guideline (HG) adopted by the Council.

The CPSMT recognizes that there are substantial differences in the presentation of uncertainty in the Coastal Pelagic Species (CPS) models as compared to groundfish decision tables the Council receives to select appropriate harvest values. Due to the dynamic annual fluctuations in CPS like sardines, forward projections to evaluate impacts of different catches are not practicable, so the CPSMT cannot characterize the biological risk associated with adopting harvest levels different than the base model. The CPSMT notes that the uncertainty associated with forward projections is precisely the reason sardine assessments are conducted annually.

The base model uses alternative values of natural mortality (M) as one axis to bracket the uncertainty around the point estimate of biomass. The CPSMT deliberated whether the range of biomass values resulting from the profile across different values of M represent alternate states of nature to be incorporated in the Council's selection of a sardine $A B C$, or rather a withinmodel evaluation of uncertainty. The CPSMT recognizes that, as with all models, other areas of uncertainty exist (e.g., stock structure, changes in geographic spawning area), but that such uncertainties are largely qualitative and difficult to quantify.

In view of the distinct possibility that each seasonal allocation of the annual HG could be reached prematurely, the CPSMT recommends that incidental catch set asides be established for each allocation period (as set forth in Table 1), and an incidental catch allowance be established for sardines caught in other fisheries once the seasonal allocation is reached. Without the incidental catch set aside, a greater potential exists for shutting down other fisheries that catch sardines incidentally. The CPSMT recommends an incidental catch structure based on a California Department of Fish and Game (CDFG) analysis of 2001-2006 incidental sardine catches off California (Agenda Item G.1.c, Supplemental CDFG Report) is presented in Table 1 for the 2008 HG of $89,093 \mathrm{mt}$. Incidental sardine catches from the Pacific Northwest (PNW) are minimal ($<5 \mathrm{mt}$) and not included in Table 1. If the incidental set aside is not fully attained or is exceeded in a given allocation period, the CPSMT recommends that NMFS adjust the directed harvest allocation to account for the discrepancy in the following allocation period as an automatic action.

TABLE 1. Seasonal set asides based on a 10% annual incidental harvest of the Pacific sardine HG.

	Jan 1- June 30	July 1- Sept 14	Sept 15 - Dec 31	Total
Seasonal Allocation (mt)	31,183	35,637	22,273	89,093
Set Aside \%	5.2%	1.2%	3.6%	10%
Set Aside (mt)	4,632	1,070	3,208	8,910
Adjusted Allocation (mt)	26,550	34,568	19,065	80,083

If the directed commercial sardine harvest is attained and other CPS fisheries achieve their incidental set aside, the CPSMT expectation is that retention of sardines would be prohibited. However, some level of incidental discard mortality would continue to occur. If the combined directed and incidental sardine HG is set at the ABC , this continuing discard mortality, as well as mortality occurring in the directed fisheries, would represent overfishing. This risk of overfishing could also be mitigated by setting an HG at some level below the ABC. The CPSMT also notes that sardine catches in the live bait fishery will be counted toward the ABC.

The CPSMT recommends additional research to fully evaluate stock structure, differential growth and migration rates of subpopulations, and the contribution of PNW sardine to the spawning biomass as a whole. The CPSMT recommends the Council encourage NMFS to continue to fund comprehensive coastwide annual CPS research, including the survey off the PNW, and encourage similar cooperative surveys in Canada and Mexico. The CPSMT also recommends that NMFS continues to fund the observer program. The CPSMT continues to believe strongly that coordinated international management of CPS fisheries is essential to avoid the potential for coastwide overfishing. Moreover, the CPSMT also agrees that inclusion of complete Mexican catch statistics is vital to the CPS assessment process. The CPSMT encourages the Council and NMFS and the State Department to continue working to achieve timely receipt of research data from Mexico.

Pacific Mackerel

On November 7, 2007 the CPSMT reviewed the Pacific Mackerel Stock Assessment Review (STAR) Panel Meeting Report (Agenda Item G.1.b, Attachment 3, November 2007), a summary by Tom Barnes, and the Scientific and Statistical Committee's (SSC) report on Pacific Mackerel Management (Agenda Item G.1, Situation Summary, November 2007). The CPSMT agrees with the recommendations of the STAR Panel and also notes that the 2008 HG has already been set by the Council for 2007/2008 management cycle using the Age Structured Assessment Program (ASAP) model. An assessment update using the ASAP model will be conducted in May 2008. The CPSMT concurs with the STAR Panel and the SSC that the use of the Stock Synthesis 2 (SS2) model would be preferred for the next new assessment set for May 2009 (establishing HGs for the 2009/2010 fishery season) but further refinement and review of the model is needed prior to its use.

PFMC
11/08/07

COASTAL PELAGIC SPECIES MANAGEMENT TEAM REPORT ON PACIFIC MACKEREL MANAGEMENT FOR 2008-2009

In 2008, an updated assessment for Pacific mackerel was completed by Southwest Fisheries Science Center of the National Marine Fisheries Service. The Coastal Pelagic Species Management Team (CPSMT) and the Scientific and Statistical Committee's Coastal Pelagic Species (CPS) Subcommittee met May 13, 2008 in Long Beach, California to review the latest stock assessment of Pacific mackerel. The CPSMT heard a presentation by Dr. Emmanis Dorval of the Stock Assessment Team. The CPSMT supported conclusions from the most recent Pacific mackerel stock assessment update and recommends the Pacific Fishery Management Council (Council) adopt the resulting acceptable biological catch (ABC) associated with the harvest control rule stipulated in this species' fishery management plan for the 2008-2009 management season (i.e., July 1, 2008 through June 30, 2009). Based on a total stock biomass estimate of $264,732 \mathrm{mt}$, the ABC for U.S. fisheries is $51,772 \mathrm{mt}$.

Due to uncertainty associated with changes to modeling parameters recommended by the 2007 Stock Assessment Review Panel and the fact that the U.S. fishery is assumed to be market limited to roughly $40,000 \mathrm{mt}$, the CPSMT recommends setting the 2008-2009 harvest guideline (HG) no higher than $40,000 \mathrm{mt}$. This HG recommendation is the same as the HG adopted by the Council for the 2007-2008 fishery.

Recent U.S. annual landings have been well below the established HGs for the directed fishery. However, uncertainty still exists concerning the magnitude of fisheries in Mexico that harvest Pacific mackerel and thus, caution is recommended when evaluating fishery impacts on transboundary Pacific mackerel stocks.

PFMC

05/19/08

COASTAL PELAGIC SPECIES ADVISORY SUBPANEL REPORT ON PACIFIC SARDINE AND PACIFIC MACKEREL MANAGEMENT

The Coastal Pelagic Species Advisory Subpanel (CPSAS) heard a presentation by Dr. Kevin Hill regarding the 2007 Pacific sardine stock assessment and projected harvest guideline for the 2008 fishery. The CPSAS voices the strongest concern possible that the new Stock Synthesis 2 (SS2) model results grossly underestimated the volume of sardine observed in the water in 2007.

The CPSAS believes the model did not accurately predict the biomass observed in the field, based on reliable observations from fishermen and spotter pilots. The difference is in millions of tons. The CPSAS agrees unanimously that additional research and different research approach is essential to capture the full extent of the resource, particularly the volume of fish observed in the Pacific Northwest. Specifically, the CPSAS agrees a spotter pilot index of abundance is required for the 2008 assessment and should be continued into the future. A qualified spotter pilot survey can be easily started and maintained to provide reliable and cost effective results. It has been used in the past and is now available with new technology. This survey should be conducted in both the Pacific Northwest and California both to validate egg production, a highly variable index, and for use as a second independent index of stock abundance.

If the landings and market demand continue in 2008 as they progressed in 2007, all seasons will be prematurely closed. The harvest guideline resulting from the stock assessment approved by the Scientific and Statistical Committee (SSC) will cause extreme hardship to all coastal pelagic species (CPS) fishery sectors in 2008. This includes market squid as well as the other CPS. We estimate, for Pacific sardine alone, the economic impact will be a 5 to 6.5 million dollar loss in exvessel value and a 15.5 to 25 million dollar loss to the processing sector coastwide.

The CPSAS supports a joint Council/industry effort, including in-person meetings with national NOAA officials, to emphasize the need for substantial additional research funding for sardine in the fiscal year 2009 budget cycle.

The CPSAS voiced strong concern that the current process does not provide flexibility to test model results with observations in the field or other existing models including Age-structured Assessment Program (ASAP). To that end, the majority of the CPSAS recommends the Stock Assessment Team (STAT) run and review in parallel the ASAP and the SS2 models for possible discrepancies in outcomes for several years.

We recommend that the Council approve a data modeling workshop, including fishermen, spotter pilots, and other industry representatives be convened in conjunction with the next Stock Assessment Review (STAR) Panel, and that review be held as soon as possible, no later than 2009.

We recommend the STAT reevaluate the assumption that the fishery harvests a single stock. For example, test the possibility that the fishery harvests multiple stocks. We further recommend including a representative from the Pacific Northwest on the next STAT meeting.

In the event the Council adopts the harvest guideline recommendations of the SSC and the CPSMT, the CPSAS concurs with the CPSMT proposal that 10 percent of the harvest guideline for incidental take in fisheries other than Pacific sardine. This incidental harvest set aside will be allocated across the three allocation time blocks adopted under Amendment 11. Any unused incidental landing set aside from one allocation period shall be rolled into the directed harvest guideline of the next allocation period. In addition, the CPSAS recommends a maximum incidental landing allowance of 20 percent by weight.

PFMC
11/08/07

COASTAL PELAGIC SPECIES ADVISORY SUBPANEL REPORT ON PACIFIC MACKEREL MANAGEMENT FOR 2008-2009

The Coastal Pelagic Species Advisory Subpanel (CPSAS) heard a report from Dr. Emmanis Dorval and Dr. Kevin Hill of the Pacific Mackerel Stock Assessment Team regarding the Pacific mackerel stock assessment and proposed harvest guideline for the 2008-2009 season.

Based on the current assessment update and the harvest control rule for Pacific mackerel, the acceptable biological catch (ABC) for the 2008-2009 is estimated to be 51,772 metric tons (mt). The CPSAS again concurs with the Coastal Pelagic Species Management Team (CPSMT) recommendation to establish a harvest guideline for the directed fishery at $40,000 \mathrm{mt}$, providing an $11,772 \mathrm{mt}$ set-aside for incidental landings in other fisheries. The CPSAS recommends that the Council provide guidance to the National Marine Fisheries Service (NMFS) that, in the event the directed fishery reaches $40,000 \mathrm{mt}$, NMFS close the directed fishery and revert to an incidental-catch-only fishery with a 45 percent incidental landing allowance when Pacific mackerel are landed with other coastal pelagic species (CPS), except that up to 1 mt of Pacific mackerel could be landed without landing any other CPS.

The CPSAS recommends an in-season review of the 2008-2009 Pacific mackerel fishery at the nearest feasible Council meeting, if needed, with the possibility of either releasing a portion of the incidental set-aside to the directed fishery or further constraining incidental landings to ensure total harvest remains below the ABC .

PFMC
05/21/08

[^0]:

[^1]: $\mapsto \vdash \vdash$

