Rebuilding Update for Pacific Ocean Perch

October 4, 2007

Owen S. Hamel Groundfish Team, Fishery Resource Analysis and Monitoring Division, National Marine Fisheries Service Northwest Fisheries Science Center 2727 Montlake Boulevard East Seattle, Washington 98112

1. Introduction

The Pacific Fishery Management Council (PFMC) adopted Amendment 11 to its Groundfish Management Plan in 1998. This amendment established a definition for an overfished stock of 25% of the unfished spawning biomass ($0.25B_0$). NMFS determined that a rebuilding plan was required for Pacific ocean perch (*Sebastes alutus*) in March 1999 based on the most recent stock assessment at that time (Ianelli and Zimmerman 1998). The PFMC began developing a rebuilding plan for Pacific ocean perch (based upon a rebuilding analysis; August 1999; A. MacCall, pers. comm.) and submitted this plan to NMFS in February 2000. However, NMFS deferred adoption of the plan until the stock assessment was updated and reviewed, which was later that year (Ianelli *et al.* 2000

A new stock assessment for Pacific ocean perch stock was conducted in 2003 (Hamel et al., 2003), and updated in 2005 and 2007 (Hamel 2005, 2007). This assessment, similar to that of Ianelli et al. (2000), involved fitting an age-structured population dynamics model to catch, catch-rate, lengthfrequency, age-composition, and survey data. Ianelli et al. (2000), Hamel et al. (2003), and Hamel (2005, 2007) presented results based on maximum likelihood and Bayesian estimation frameworks. A rebuilding analysis was conducted by Punt (2002), based upon the estimates corresponding to the maximum of the posterior density function (the MPD estimates) from Model 1c of Ianelli et al. (2000) because the STAR panel that evaluated the 2000 Pacific Ocean perch stock assessment selected this model variant as the "best assessment" (PFMC 2000). In contrast, the STAR panel that evaluated the 2003 assessment of Pacific ocean perch endorsed both the MPD estimates and the distributions for the model outputs that arose from the application of the MCMC algorithm to sample equally likely parameter vectors from the posterior distribution (PFMC 2003). Punt et al. (2003) conducted a rebuilding analysis with runs based upon both the MPD estimates and the MCMC outputs. The PFMC adopted a rebuilding plan based upon the results of the MCMC analysis (sampling from the full Bayesian posterior). This rebuilding analysis was updated in 2005. For this update, rebuilding plan parameters are those specified after the rebuilding analysis in 2005.

2. Specifications

2.1 Selection of B_0

The unfished spawning stock biomass, B_0 , is determined from the fitted stock-recruitment relationship in order to be more consistent with the assumptions underlying the original stock assessment. The MPD estimate of B_0 is 36,983 mt of spawning output while the posterior median and 90% intervals for B_0 are 34,573 mt and (27,620; 44,097). The values for B_0 are slightly lower than those on which the previous rebuilding analyses were based (Table 1). The MPD depletion estimate at the start of 2007 is 0.275 while the posterior median and 90% intervals are 0.311 (0.228; 0.398)

	2003	2005	2007
$B_0 MPD (mt)$	39,198	37,838	36,983
B_0 Posterior Median (mt)	37,230	35,371	34,573
$B_0 90\%$ Interval) (mt)	29,035	28,022	27,620
	47,393	44,866	44,097
Depletion MPD	25.4%	23.4%	27.5%
Depletion Posterior Median	27.7%	27.6%	31.1%
Depletion 90% Intervals	20.1%	19.8%	22.8%
	38.4%	37.1%	39.8%

Table 1. MPD and posterior median estimates of unfished spawning stock biomass (B_0) and depletion for the 2003, 2005 and 2007 stock assessments.

2.2 Generation of future recruitment

Recruitment in the assessment and projection models for Pacific ocean perch relate to the abundance of 3 year olds. The assessment of Pacific ocean perch by Hamel *et al.* (2003) and its updates (Hamel 2005, 2007) include the assumption that, *apriori*, recruitment is related to spawning output according to a Beverton-Holt stock-recruitment relationship. The rebuilding analysis conducted by Punt et al. (2003) included three different approaches: 1) basing the projections on resampling historical recruitments or from those for the years 1965-2001, 2) basing the projections on resampling historical recruits per spawner for those same years, and 3) assuming a Beverton-Holt spawner recruit relationship. The first approach was chosen by the Council for the final rebuilding plan.

The rationale for generating future recruitment by sampling historical recruitment for the rebuilding analysis conducted by Punt (2002) was that 1965-1998 was a period of relative stability in recruitment. In contrast to recruitment, recruits / spawning output showed an increasing trend over time. The situation was less clear in 2003 and 2005, however in the current analysis there is again an increasing trend in recruits / spawning output over time and the recruitments, while not completely stable, are more consistent across time. Resampling historical recruitment (3 year olds from the years 1965-2005; year classes 1962-2002) is used exclusively for the analyses in this document in order to remain consistent with the adopted rebuilding plan. Figure 1 plots the MPD estimates of recruitment and recruits / spawning output from the assessments conducted by Hamel *et al.* (2003) and Hamel (2005, 2007). Hamel (2007) estimated steepness for Pacific ocean perch to be 0.65.

Figure 1: Recruitment from assessments of Pacific ocean perch conducted in 2003, 2005 and 2007.

2.3 Mean generation time

The mean generation time is defined as the mean age weighted by net spawning output (see Figure 2 for a plot of net spawning output *versus* age based on the MPD estimates). The best estimate of the mean generation time for the full posterior is 28 years, and for the MPD it is 29 years. These are unchanged from the 2003 and 2005 rebuilding analyses (see Table 3).

Net Spawning Output

Figure 2: Relationship between net spawning output and age for Pacific Ocean perch.

2.4 The harvest strategies

Table 2 summarizes the options considered in the rebuilding analyses. These include a no catch option (case 1), using the calculated SPR from the last rebuilding analysis (case 2), using the implied SPR in the current analysis from the 2007-8 OYs (150 mt; case 3), a 50% probability of rebuilding by T_{target} of 2017 (case 4) or using the ABC harvest rule (Case 5). These 5 cases were requested by the Council in a memorandum dated September 04, 2007. The other 8 cases are intermediate values found by either diminishing T_{target} or, in case 13, picking an intermediate SPR to achieve a doubling of the current OY.

Case	Name	T _{50%}	2009 OY	SPR	P ₂₀₁₇
1	$T_{F=0}$	2010	0	1.000	0.780
2	SPR from 2005 rebuilding	2011	189	0.864	0.721
3	SPR from 2007-8 OYs	2011	164	0.880	0.733
4	$T_{target} = 2017$ (Current)	2017	971	0.548	0.500
5	ABC rule	2021	1160	0.500	0.477
6	$T_{target} = 2010$	2010	130	0.903	0.741
7	$T_{target} = 2011$	2011	432	0.734	0.640
8	$T_{target} = 2012$	2012	565	0.678	0.600
9	$T_{target} = 2013$	2013	624	0.655	0.582
10	$T_{target} = 2014$	2014	744	0.614	0.548
11	$T_{target} = 2015$	2015	842	0.584	0.526
12	$T_{target} = 2016$	2016	909	0.565	0.512
13	$SP\ddot{R} = 0.800$	2011	299	0.800	0.685

2.5 Other specifications

The calculations in this document were performed using Version 2.8 of the rebuilding software developed by Punt (2005) and the results are based on 3,000 Monte Carlo replicates (3 simulations for each of 1,000 samples for the posterior).

The definition of "recovery by year y" in this analysis is that the spawning output reaches $0.4B_0$ by year y (even if it subsequently drops below this level due to recruitment variability). Appendix 1 lists the MPD estimates for the biological and technological parameters and the age-structure of the population at the start of 2000 and 2007. Appendix 2 lists the MPD time-series of recruitment and

spawning output. The input to the rebuilding program is given as Appendix 3. The catch for 2007 and 2008 were set to 150 mt (the Council-selected *OYs* for 2007-2008).

3. Results

3.1 Time-to-recovery

The median year for rebuilding to the target level in the absence of fishing since the year of overfished declaration, T_{min} , is 2014. Figure 3 shows the distribution for the number of years beyond the year 2000 that it would have taken to recover to $0.4B_0$ had there been no harvest since 2000. T_{max} , the maximum permissible time period for rebuilding the stock to its target biomass, is 2042 when using the new information on the depletion level and the age-structure of the population in 2000. Table 3 gives summary statistics from the 2003 and 2005 rebuilding plans and the current analysis for full posterior results. Note that $T_{F=0}$ (zero catch from 2009 onward) is less than T_{min} due to higher than average recruitment in years after y_{decl} (2000) that are not taken into account in the calculation of T_{min} .

Figure 3: T_{min} , the median year for rebuilding to the target level $0.4B_0$ in the absence of fishing since 2000 for the base-case analysis.

Table 3:	Summary	statistics
----------	---------	------------

Value	2003	2005	2007
T _{min}	2014	2015	2009
Mean generation time	28 years	28 years	28 years
T _{max}	2042	2043	2037
$T_{F=0}$ (No fishing mortality beginning in 2004, 2007, & 2009, respectively.	2014	2015	2010
P _{MAX}	70.0	92.9	
T _{TARGET}	2027	2017	
SPR _{TARGET}		86.4%	

3.2 OYs and fishing mortalities

Table 4 gives the probabilities of recovery at T_{target} (2017) and T_{max} (2042 (current and 2003 analyses) or 2043 (2005 analysis)), and 10 year projected OY values based on the SPR for each of the 13 cases explored in this rebuilding analysis.

Case		1	,	2	í	3	4	4	5	(6	,	7	1	8	9)	1	.0	1	1	1	2	1	.3				
RUN	F	=0	SPI	R'05	OY	'7-8	Tta	rget	ABC	20	10	20	11	20	12	20	13	20	14	20	15	20	16	SPF	20.8				
SPR		1	0.8	364	0.	88	0.5	548	0.5	0.9	903	0.7	'34	0.6	578	0.6	555	0.6	514	0.5	584	0.5	565	0.8	300				
F	(C	0.0	080	0.0	070	0.0	412	0.0493	0.0	055	0.0	183	0.0	240	0.0	265	0.0	316	0.0	358	0.0	386	0.0	127				
T50%	20	10	20)11	20	011	20	17	2021	20	10	20	11	20	12	20	13	20	14	20	15	20	16	20)11				
P2017	78	3.0	72	2.1	73	3.3	50	0.0	47.7	7 4	74.1		64.0).0	58	3.2	54	4.8	52	2.6	51	1.2	68	3.5				
P2037	97	7.5	94	1.4	95	5.0	65	5.0	58.3	95.6		8.3 95.6		86.7 81.8		86.7		86.7 81.8 79.1		9.1	74	4.3	70.1		67.5		91.4		
P2043	98	8.8	96	5.4	96	5.8	67	7.7	60.5	60.5 97.1		97.1 89.3 84.6		89.3 84.6		89.3		84.6 82.0		82.0 77.2		7.2	73.2		70.5		94	94.3	
10 Year projected OYs and ABCs at SPR rate above:																													
2009	0	1160	189	1160	164	1160	971	1160	1160	130	1160	432	1160	565	1160	624	1160	744	1160	842	1160	909	1160	299	1160				
2010	0	1227	200	1217	173	1219	992	1181	1173	137	1220	452	1205	589	1199	649	1196	769	1191	866	1187	932	1184	314	1212				
2011	0	1293	207	1275	180	1278	997	1198	1179	143	1281	466	1250	602	1238	662	1232	782	1221	877	1211	939	1205	325	1263				
2012	0	1361	215	1333	187	1337	1007	1218	1185	149	1342	479	1296	616	1277	676	1268	795	1251	888	1237	950	1228	337	1316				
2013	0	1422	224	1381	195	1387	1015	1224	1183	155	1394	492	1330	630	1303	690	1292	807	1268	900	1249	960	1236	348	1358				
2014	0	1463	229	1415	200	1422	1013	1221	1172	159	1431	501	1353	638	1320	697	1304	811	1275	900	1252	959	1236	355	1388				
2015	0	1497	232	1435	203	1443	1005	1209	1151	162	1454	504	1361	641	1323	699	1305	811	1271	896	1244	953	1226	359	1403				
2016	0	1534	237	1465	207	1475	1000	1204	1139	166	1487	510	1381	646	1335	702	1314	812	1276	896	1243	950	1223	365	1426				
2017	0	1573	241	1491	211	1502	996	1193	1125	169	1516	516	1392	650	1339	707	1316	815	1271	896	1237	948	1214	370	1445				
2018	0	1602	246	1508	215	1520	993	1187	1114	172	1537	521	1401	656	1344	712	1321	818	1273	897	1236	947	1211	376	1458				

Table 4: Ten year OY/ABC projections.

References

- Hamel, O.S. 2007. Status and future prospects for the Pacific Ocean Perch resource in waters off Washington and Oregon as assessed in 2007. Pacific Fishery Management Council, Portland, OR.
- Hamel O.S. 2005. Rebuilding update for Pacific Ocean Perch. Pacific Fishery Management Council, Portland, OR.
- Hamel, O.S. 2005. Status and future prospects for the Pacific Ocean Perch resource in waters off Washington and Oregon as assessed in 2005. Pacific Fishery Management Council, Portland, OR.
- Hamel, O.S., Stewart, I.J. and A.E. Punt. 2003. Status and future prospects for the Pacific Ocean Perch resource in waters off Washington and Oregon as assessed in 2003. In: Appendix to "Status of the Pacific coast groundfish fishery through 2003 and recommended Acceptable Biological Catches for 2004". Stock Assessment and Fishery Evaluation. Pacific Fishery Management Council, Portland, OR.
- Ianelli, J.N., Wilkins, M. and S. Harley. 2000. Status and future prospects for the Pacific Ocean Perch resource in waters off Washington and Oregon as assessed in 2000. In: Appendix to "Status of the Pacific coast groundfish fishery through 2000 and recommended Acceptable Biological Catches for 2001". Stock Assessment and Fishery Evaluation. Pacific Fishery Management Council, Portland, OR.
- Ianelli, J.N. and M. Zimmerman. 1998. Status and future prospects for the Pacific Ocean perch resource in waters off Washington and Oregon as assessed in 1998. In: "Status of the Pacific coast groundfish fishery through 1998 and recommended Acceptable Biological Catches for 1999". Stock Assessment and Fishery Evaluation. Pacific Fishery Management Council, Portland, OR.
- Pacific Fishery Management Council. 2000. Pacific Ocean Perch STAR Panel Report. In "Status of the Pacific Coast Groundfish Fishery Through 2000 and Recommended Biological Catches for 2001: Stock Assessment and Fishery Evaluation". (Document prepared for the Council and its advisory entities) Pacific Fishery Management Council, Portland, OR.

Pacific Fishery Management Council. 2003. Pacific Ocean Perch STAR Panel Report.

- Punt, A.E., O.S. Hamel and I.J. Stewart. Rebuilding Analysis for Pacific Ocean Perch for 2003. In: Appendix to "Status of the Pacific coast groundfish fishery through 2003 and recommended Acceptable Biological Catches for 2004". Stock Assessment and Fishery Evaluation. Pacific Fishery Management Council, Portland, OR.
- Punt, A.E. 2002. Revised Rebuilding Analysis for Pacific Ocean Perch (July 2002). Pacific Fishery Management Council, 7700 Ambassador Place NE, Suite 200, Portland, OR.

Punt, A.E. 2005. SSC default rebuilding analysis. Technical specifications and user manual. Ver. 2.8.

Age	Fecundity	Weight	Selectivity	Natural	Ν	Ν
		(kg)		mortality	(2000)	(2007)
3	0.000	0.169	0.001	0.0526	821	1485
4	0.000	0.241	0.003	0.0526	507	1408
5	0.000	0.317	0.011	0.0526	3319	1451
6	0.004	0.396	0.040	0.0526	4328	2670
7	0.028	0.474	0.131	0.0526	592	4336
8	0.137	0.550	0.306	0.0526	495	8038
9	0.274	0.622	0.518	0.0526	2168	1230
10	0.339	0.690	0.688	0.0526	2272	565
11	0.375	0.752	0.805	0.0526	1367	347
12	0.404	0.809	0.880	0.0526	1663	2255
13	0.431	0.861	0.952	0.0526	1006	2912
14	0.454	0.908	1.000	0.0526	271	393
15	0.475	0.950	1.000	0.0526	1307	325
16	0.494	0.987	1.000	0.0526	728	1405
17	0.510	1.021	1.000	0.0526	308	1461
18	0.525	1.050	1.000	0.0526	250	876
19	0.538	1.076	1.000	0.0526	1058	1066
20	0.550	1.099	1.000	0.0526	382	646
21	0.560	1.119	1.000	0.0526	433	174
22	0.569	1.137	1.000	0.0526	234	840
23	0.576	1.153	1.000	0.0526	107	468
24	0.583	1.166	1.000	0.0526	103	198
25+	0.589	1.178	1.000	0.0526	2680	3371

Appendix 1 : Biological and technological parameters used for the rebuilding analyses based on the MPD estimates.

Appendix 2 : MPD historical series of spawning output and recruitment.	
--	--

Year	Recruitment	Spawning output
1056	(age 3) 3810	32748
1950	46705	31570
1957	40795	30/00
1950	18633	30125
1959	8804	20044
1900	4153	29944
1062	3540	31002
1963	4867	33654
1964	14059	33291
1965	10012	32946
1966	6655	30407
1967	4295	21651
1968	3321	15806
1969	3639	13893
1970	2703	15520
1971	3842	16286
1072	1778	16609
1972	6986	16729
1973	3716	16357
1075	1/66	16053
1976	1400	16073
1077	1616	15085
1978	1552	16311
1979	1079	16099
1980	974	15540
1981	1825	14687
1982	2914	13882
1983	2240	13295
1984	5386	12173
1985	1097	11156
1986	1160	10306
1987	2362	9702
1988	3664	9403
1989	660	9115
1990	2145	8752
1991	3131	8379
1992	2291	7829
1993	3455	7598
1994	3047	7215
1995	650	6917
1996	732	6856
1997	5072	6882
1998	3688	7055
1999	535	7249
2000	821	7331
2001	1691	7489
2002	10467	7826
2003	5353	8428
2003	3127	8791
2005	1612	8910
2000	1012	0710
2006	1485	9210

#Title POP Re2007 # Number of sexes 1 # Age range to consider (minimum age; maximum age) 3 2 5 # Number of fleets 1 # First year of projection 2007 # Year declared overfished 2000 # Is the maximum age a plus-group (1=Yes;2=No) # Generate future recruitments using historical recruitments (1) historical recruits/spawner (2) or a stock-recruitment (3) # Constant fishing mortality (1) or constant Catch (2) projections # Fishing mortality based on SPR (1) or actual rate (2) # Pre-specify the year of recovery (or -1) to ignore 34 # Fecundity-at-age # 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 3.84E-06 4.03E-05 0.000392248 0.003560962 0.028260766 0.1374925 0.273954602 0.338584679 0.375081501 0.404469053 0.430553194 0.453991276 0.4749965 0.493739 0.510395 0.52515 0.53818 0.549655 0.559745 0.568595 0.576345 0.58313 0.589055 # Age specific information (Females then males) weight selectivity $0.169105\ 0.240603\ 0.317273\ 0.395966\ 0.474162\ 0.54997\ 0.62206\ 0.689572\ 0.752022\ 0.80921\ 0.861146\ 0.907988$ 0.949993 0.987478 1.02079 1.0503 1.07636 1.09931 1.11949 1.13719 1.15269 1.16626 1.17811 0.000760479 0.002833075 0.010718648 0.040106885 0.130877235 0.305548059 0.518406886 0.688311578 0.804965697 0.87984887 0.952139824 1 1 1 1 1 1 1 1 1 1 1 1 # M and current age-structure 0.0526203 1484.56 1408.46 1450.8 2670.16 4335.9 8037.76 1229.81 564.926 347.218 2255.44 2911.84 392.941 324.523 1404.86 1460.57 876.037 1066.1 645.747 173.983 839.761 467.917 197.848 3371.03 # Age-structure at declaration 821.335 507.381 3318.95 4327.91 591.682 495.103 2167.85 2272.35 1367.41 1663.14 1005.83 270.812 1307.12 728.332 307.958 250.322 1058.29 382.287 432.756 233.616 107.428 102.677 2679.78 # Year for Tmin Age-structure 2000 # Number of simulations 3000 # recruitment and biomass # Number of historical assessment years 53 # Historical data # year recruitment spawner in B0 in R project in R/S project

Appendix 3: Input File (for SPR based on 2007-8 OYs)

1955	4966.98 36982.9 1 0	0
1956	3819.3 32747.8 0 0	0
1957	46795.4 31570 0 0	0
1958	4086.68 30489.7 0 0	0
1959	18633.2 30125.3 0 0	1
1960	8803.5 29944.1 0 0	1
1961	4153.25 30192.5 0 0	1
1962	3539.56 31992.3 0 0	1
1963	4867.19 33654 0 0	1
1964	14059.3 33290.7 0 0	1
1965	10011.5 32945.8 0 1	1
1966	6655.08 30406.7 0 1	1
1967	4294.86 21651.3 0 1	1
1968	3321.22 15805.9 0 1	1
1969	3639.49 13892.8 0 1	1
1970	2703.11 15520.2 0 1	1
1971	3842.36 16285.7 0 1	1
1972	4777 8 16609 3 0 1	1
1973	6986 28 16728 6 0 1	1
1974	3715 97 16356 8 0 1	1
1975	1466 34 16052 5 0 1	1
1976	1478 25 16072 8 0 1	1
1970	1616 / 6 15985 3 0 1	1
1078	1551 00 16310 5 0 1	1
1970	1078 8 16000 3 0 1	1
1979	1078.8 10099.5 0 1	1
1001	1224 25 14627 2 0 1	1
1901	1824.85 14087.2 0 1	1
1982	2915.01 15882.1 0 1	1
1985	2239.02 13294.7 0 1	1
1984	5385.80 12172.0 0 1	1
1985	1096.93 11155.5 0 1	1
1980	1160.05 10305.7 0 1	1
1987	2361.52 9701.91 0 1	1
1988	3664.37 9403.31 0 1	1
1989	660.065 9114.8 0 I	1
1990	2144.62 8/51.8/ 0 1	1
1991	3130.65 83/8.66 0 1	1
1992	2291.45 /828.84 0 1	1
1993	3454.79 7598.36 0 1	1
1994	3046.79 7214.91 0 1	1
1995	650.304 6916.7 0 1	1
1996	732.357 6855.66 0 1	1
1997	5071.74 6881.98 0 1	1
1998	3687.98 7055.26 0 1	1
1999	534.815 7248.73 0 1	1
2000	821.335 7330.58 0 1	1
2001	1690.86 7488.57 0 1	1
2002	10466.9 7826.34 0 1	1
2003	5353.19 8428.21 0 1	1
2004	3127 8791.06 0 1	1
2005	1611.83 8909.98 0 1	1
2006	1484.56 9209.78 0 0	0
2007	1484.56 10168.2 0 0	0
# Numb	er of years with pre-specified	catches
2		
# catche	s for years with pre-specified	catches
2007	150	
2008	150	

Number of future recruitments to override 0 # Process for overiding (-1 for average otherwise index in data list) # Which probability to product detailed results for (1=0.5; 2=0.6; etc.) 3 # Steepness sigma-R Auto-correlation 0.652 0 1 # Target SPR rate (FMSY Proxy) 0.5 # Target SPR information: Use (1=Yes) and power 0 20 # Discount rate (for cumulative catch) 0.1 # Truncate the series when 0.4B0 is reached (1=Yes) 0 # Set F to FMSY once 0.4B0 is reached (1=Yes) 0 # Percentage of FMSY which defines Ftarget 0.9 # Maximum possible F for projection (-1 to set to FMSY) -1 # Conduct MacCall transition policy (1=Yes) 0 # Definition of recovery (1=now only;2=now or before) 2 # Results for rec probs by Tmax (1) or 0.5 prob for various Ttargets (2) 1 "# Definition of the ""40-10"" rule" 10 40 # Produce the risk-reward plots (1=Yes) 0 # Calculate coefficients of variation (1=Yes) 0 # Number of replicates to use 10 # Random number seed -99004 # Conduct projections for multiple starting values (0=No;else yes) 1 # File with multiple parameter vectors mcmcreb.dat # Number of parameter vectors 1000 # User-specific projection (1=Yes); Output replaced (1->9) 1 5 0 0.1 # Catches and Fs (Year; 1/2/3 (F or C or SPR); value); Final row is -1 2009 3 0.88 -1 -1 -1 # Split of Fs 2007 1 -1 # Time varying weight-at-age (1=Yes;0=No) 0 # File with time series of weight-at-age data HakWght.Csv