Status and Future Prospects for the Pacific Ocean Perch Resource in Waters off Washington and Oregon as Assessed in 2007

by
Owen S. Hamel
June 13, 2007

Northwest Fisheries Science Center
U. S. Department of Commerce
National Oceanic and Atmospheric Administration
National Marine Fisheries Service
2725 Montlake Blvd East

Seattle, Washington 98112-2097

Status and Future Prospects for the Pacific Ocean Perch Resource in Waters off Washington and Oregon as Assessed in 2007

This assessment update applies to the Pacific ocean perch (Sebastes alutus) (POP) species of rockfish for the combined US Vancouver and Columbia INPFC areas. Catches are characterized by large removals of between 5,000 and $20,000 \mathrm{mt}$ during the mid-1960's, primarily by foreign vessels. The fishery proceeded with more moderate removals of between 1,100 and 2,200 metric tons per year from 1969 through 1994, with the foreign fishery ending in 1977. Management measures further reduced landings to below 900 metric tons by 1995, with subsequent landings falling steadily until reaching between 60 and 150 metric tons per year from 2002 through 2006.

Catch history from 1956-2006

Catch estimates for past 10 years including discard

Year	Catch
1997	751
1998	739
1999	593
2000	171
2001	307
2002	179
2003	151
2004	146
2005	75
2006	83

This assessment is an update and uses the same model as in the 2003 and 2005 assessments, a forward projection age-structured model (Hamel 2005, Hamel et al. 2003).

New data and changes to the data used in the previous assessment are as follows. Catch data for 2003 and 2004 were updated, and new catch data were added for 2005 and 2006. Fishery age compositions from 1999-2004 were updated, with new 2005 and 2006 age compositions added. The 1999-2004 NWFSC slope survey biomass indices and age compositions were recalculated based upon changes in stratum area estimates and any updates in the database, with the 2005 and 2006 NWFSC slope survey biomass indices and age compositions added.

A number of sources of uncertainty are explicitly included in this assessment. For example, allowance is made for uncertainty in natural mortality, the parameters of the stock-recruitment relationship, and the survey catchability coefficients. However, sensitivity analyses based upon alternative model structures / data set choices in the 2003 and 2005 assessments suggest that the overall uncertainty may be greater than that predicted by a single model specification. There are also other sources of uncertainty that are not included in the current model. These include the degree of connection between the stocks of Pacific ocean perch off British Columbia and those in PFMC waters; the effect of the PDO, ENSO and other climatic variables on recruitment, growth and survival of Pacific ocean perch; gender differences in growth and survival; a possible nonlinear relationship between individual spawner biomass and effective spawning output and a more complicated relationship between age and maturity.

A reference case was selected which adequately captures the range for those sources of uncertainty considered in the model. Bayesian posterior distributions based on the reference case were estimated for key management and rebuilding variables. These distributions best reflect the uncertainty in this analysis, and are suitable for probabilistic decision making.

Retrospective of past 10 years

Year	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
Total Catch	751	739	593	171	307	179	151	146	75	83	
Discards	120	118	95	27	49	29	24	24	12	13	
Landings	631	621	498	144	258	150	127	122	63	70	
ABC			695	713	1541	640	689	980	966	934	900
OY (HG)	(750)	(750)	595	270	303	350	377	444	447	447	150
F	0.0445	0.0434	0.0336	0.0093	0.0158	0.0089	0.0072	0.0067	0.0033	0.0035	
Expl. Rate	0.0420	0.0407	0.0327	0.0094	0.0163	0.0087	0.0068	0.0062	0.0030	0.0032	
3+ Biomass	17809	18214	18178	18231	18760	20582	22142	23508	24618	25658	26544
Biom. sd	2326	2452	2519	2583	2663	3008	3314	3599	3847	4080	4310
Biom. cv	0.13	0.13	0.14	0.14	0.14	0.15	0.15	0.15	0.16	0.16	0.16
Sp Biomass	6882	7055	7249	7331	7489	7826	8428	8791	8910	9210	10168
Sp Bio. sd	907	954	1006	1038	1055	1107	1194	1251	1273	1325	1506
Sp Bio. cv	0.13	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.15
Recruitment	5.07	3.69	0.53	0.82	1.69	10.47	5.35	3.13	1.61	1.48	
Rec. sd	1.15	0.96	0.32	0.39	0.67	2.75	2.05	1.53	1.27	1.33	
Rec. cv	0.23	0.26	0.61	0.47	0.39	0.26	0.38	0.49	0.79	0.90	
Depletion	0.186	0.191	0.196	0.198	0.202	0.212	0.228	0.238	0.241	0.249	0.275
Depl. sd	0.031	0.032	0.034	0.035	0.035	0.037	0.040	0.042	0.043	0.045	0.051
Depl. cv	0.17	0.17	0.17	0.17	0.17	0.18	0.18	0.18	0.18	0.18	0.19

The point estimate (maximum of the posterior density function, MPD) for the depletion of the spawning biomass at the start of 2007 is 27.5%. The ABC for 2007 based on the MPD point estimate is 1009 mt . The OY for 2007 based upon the $40-10$ rule is 588 mt (The ABC and OY for 2007 in the above table are based on current management and the 2005 assessment). For West Coast rockfish, a stock is considered overfished when it is below 25% of virgin spawning biomass, and recovered when it reaches 40% of virgin spawning biomass. Overfishing for POP is considered to be occurring when F is above $\mathrm{Fmsy}=0.0382$ according to the current assessment base model. Based on this assessment, POP on the West Coast are recovering, and overfishing is not occurring.

POP are essentially managed on a regional basis, as they occur almost exclusively off of Oregon and Washington for the West Coast. Management and assessment of stock status might be improved through greater cooperation with British Columbia, as the stock extends northward into Canadian waters.

Major quantities from assessment

	Value	sd	$c v$
SB_{0}	36,983	4,863	0.13
B_{0}	82,052	11,001	0.13
R_{0}	4.97	0.97	0.20
SBmsy	14,793	2,462	0.17
Fmsy	0.0382	0.0123	0.32

Basis for above F at equilibrium 40% biomass with S-R curve

Exploitation rate at MSY	0.0388	0.0107	0.28
MSY	1411	348	0.25

F/Fmsy versus B/Bmsy for all years of catch data and the last 30 years

The point estimates of summary (age $3+$) biomass show an upward trend over the past ten years, increasing by nearly 50% in that time.

3+ Biomass Levels from 1956 to 2007

Biomass estimates for the past 10 years

Year	Total 3+ biomass $(m t)$
1998	18,214
1999	18,178
2000	18,231
2001	18,760
2002	20,582
2003	22,142
2004	23,508
2005	24,618
2006	25,658
2007	26,544

The recruitment pattern for POP is similar to that of many rockfish species. Recent decades have provided rather poor year-classes compared with the 1950s and 1960s, although the 1999 year class (the 2002 recruitment year) appears to be larger than has occurred since the 1960's, and the 2000 year class appears to be relatively large as well.

The first year for which there are age-composition data to support an estimate of recruitment is 1956, which also happens to be the first year for which catch data are available. The estimates of recruitment for the years prior to 1956 are close to the equilibrium estimate from the stockrecruitment relationship. The first few years with recruitment estimates that are informed by data are, however, still highly uncertain. The extremely large recruitment for 1957 may therefore partly reflect slightly higher average recruitment over the years 1935-56. Only by the early to mid-1960's are the estimates of recruitment reliable. Recent (1997-2006 in the table below) estimates of recruitment are highly variable by year, and lower on average than those for 196074, though higher on average than those for 1975-1994. The estimate of recruitment for 2006 is based on very limited information.

Recruitment estimates (1935-2006)

Recruitment estimates for the past 10 years (millions of age-3 recruits)

Year	Recruitment
1997	5.07
1998	3.69
1999	0.53
2000	0.82
2001	1.69
2002	10.47
2003	5.35
2004	3.13
2005	1.61
2006	1.48

The exploitation rate (percent of biomass taken) on fully-selected animals peaked near 25% in the mid-1960's when foreign fishing was intensive. The exploitation rate dropped by the late 1960's, but increased slowly and steadily from 1975 to the early 1990's, due to decreasing exploitable biomass. Over the past 10 years the exploitation rate has fallen from over 4% to under 0.5%.

Exploitation rate estimates (1956-2007) Exploitation estimates for the past 10 years

Year	Exploitation rate
1997	0.0420
1998	0.0407
1999	0.0327
2000	0.0094
2001	0.0163
2002	0.0087
2003	0.0068
2004	0.0062
2005	0.0030
2006	0.0032

Near term projections show a slow monotonic increase in exploitable biomass. These were calculated with a new module within the assessment model using fishing morality rates of 0.01 and 0.02 . This module projects recruitment from the estimated spawner recruit curve.

Catch, Spawning Biomass and Depletion MPD projections with F = 0.01 and 0.02

		$\mathrm{F}=0.01$		$\mathrm{~F}=0.02$		
Year	Catch	Sp. Bio.	Depletion	Catch	Sp. Bio.	Depletion
2007	257	10168	0.275	510	10168	0.275
2008	272	11399	0.308	535	11273	0.305
2009	295	12218	0.330	573	11961	0.323
2010	320	12612	0.341	615	12217	0.330
2011	334	12781	0.346	635	12244	0.331
2012	340	13007	0.352	640	12329	0.333
2013	342	13367	0.361	638	12554	0.339
2014	349	13765	0.372	644	12824	0.347
2015	359	14175	0.383	658	13110	0.354
2016	371	14595	0.395	675	13408	0.363
2017	382	15023	0.406	691	13715	0.371
2018	393	15455	0.418	707	14025	0.379

To create three different possible states of nature for the two fishing morality rates, we took the medians of the lowest 25%, the middle 50% and the highest 25% for each quantity and year from the 2400 saved model runs from the MCMC analysis. These projections are based upon the estimated spawner recruit curve and current spawning biomass and age composition estimates. A more thorough analysis will be done for the rebuilding analysis, upon which management actions will be based, which will likely result in different projections than those seen here.

Catch, Spawning Biomass and Depletion MCMC projections with F $=0.01$

	Catch (mt)			Spawning biomass			Depletion		
	$0-25 \%$	$25-75 \%$	$75-100 \%$	$0-25 \%$	$25-75 \%$	$75-100 \%$	$0-25 \%$	$25-75 \%$	$75-100 \%$
2007	225	271	328	8936	10778	13133	0.245	0.312	0.395
2008	239	288	352	9999	12166	15022	0.275	0.353	0.450
2009	256	312	384	10686	13107	16334	0.294	0.380	0.488
2010	274	337	420	10986	13556	16966	0.303	0.393	0.507
2011	286	354	445	11102	13771	17281	0.306	0.400	0.516
2012	293	364	458	11269	14024	17613	0.311	0.407	0.525
2013	296	369	463	11555	14382	18031	0.319	0.418	0.537
2014	301	375	470	11872	14763	18462	0.328	0.429	0.549
2015	309	384	480	12191	15147	18891	0.336	0.441	0.560
2016	317	395	492	12513	15538	19318	0.345	0.453	0.571
2017	326	405	503	12841	15932	19741	0.354	0.465	0.582
2018	334	415	513	13168	16326	20160	0.364	0.476	0.593

Catch, Spawning Biomass and Depletion MCMC projections with F = 0.02

	Catch (mt)			Spawning biomass			Depletion		
	$0-25 \%$	$25-75 \%$	$75-100 \%$	$0-25 \%$	$25-75 \%$	$75-100 \%$	$0-25 \%$	$25-75 \%$	$75-100 \%$
2007	447	538	653	8936	10778	13133	0.245	0.312	0.395
2008	469	566	691	9889	12033	14863	0.272	0.349	0.445
2009	497	606	748	10460	12836	16006	0.288	0.373	0.478
2010	527	647	808	10640	13139	16462	0.293	0.381	0.492
2011	544	673	847	10634	13206	16592	0.293	0.383	0.495
2012	551	686	863	10680	13311	16740	0.295	0.386	0.499
2013	551	688	865	10852	13524	16977	0.300	0.393	0.505
2014	556	694	870	11059	13769	17237	0.305	0.400	0.512
2015	566	705	881	11273	14023	17504	0.311	0.408	0.519
2016	577	718	895	11493	14286	17774	0.317	0.416	0.525
2017	589	732	909	11717	14556	18045	0.324	0.425	0.532
2018	600	745	922	11938	14827	18318	0.330	0.433	0.538

Research and data needs for future assessments include information on the relationship of individual female age and biomass to maturity, fecundity and survival of offspring; information on the accuracy of POP ageing; information on the relative density of POP in trawlable and untrawlable areas and difference in age and/or length compositions between those areas; and information on the status of the British Columbia stock of POP and its relationship to that off of Oregon and Washington.

Contents

Executive Summary 2
Contents 8
List of tables 9
List of Figures 10
1.1. Introduction 11
1.2. Data 12
1.2.1 Removals and regulations 12
1.2.2.Surveys 13
1.2.3. Biology and life history 13
1.2.4. Changes in data from 2000 assessment 14
1.3. Assessment model 14
1.3.1. Changes between the 2000 assessment model and the current model 14
1.3.2. Model features unchanged from the 2000 assessment model 15
1.3.3. Likelihood components 16
1.3.4. Bayesian analysis 16
1.4. Results 17
1.4.1. Model selection and evaluation 17
1.4.2. Reference model results 17
1.4.3. Uncertainty and sensitivity analysis 17
1.4.4. Markov-Chain Monte Carlo results 18
1.4.5. Future research 18
Acknowledgements 19
1.5. References 20
1.6. Tables 24
1.7. Figures 38

List of Tables

Table 1. Pacific Fishery Management council groundfish management/regulatory actions regarding Pacific ocean perch (POP) since Fishery Management Plan implementation in 1982 24
Table 2. Pacific ocean perch landings and estimated catch in the US Vancouver and Columbia INPFC areas by foreign and domestic vessels 25
Table 3. Age-compositions data for the domestic fishery catch in the US Vancouver and Columbia INPFC areas combined based on the break-and-burn method (1994, 1999-2006) 26
Table 4. Survey age-composition data for the combined Vancouver and Columbia areas. Note that the data for ages 1 and 2 are not used when fitting the model, nor are the data from 1977-1980, the latter because of low sample size and the use of surface rather than break-and-burn ageing methods 26
Table 5. Biomass indices (and associated coefficients of variance, expressed as percentages) from slope groundfish surveys for combined US Vancouver and Columbia INPFC areas (1979-2004) 27
Table 6. List of the data sources and associated time periods used in present assessment 27
Table 7. Model parameters, equations, and likelihood components 28
Table 8. Point estimates of the numbers at age (millions of fish) for the US west coast population of Pacific ocean perch (1956-2007) based on Model 1 34
Table 9. Point estimates of the catch-at-age (millions of fish) for the US west coast population of Pacific ocean perch (1956-2006) based on Model 1 35
Table 10. Estimates of model parameters, output statistics and fit diagnostics for Base Model and Retrospective analyses. 36
Table 11. MPD and Posterior median estimates for spawning biomass and recruitment 37

List of Figures

Figure 1. Catch history of Pacific ocean perch (domestic and foreign fleets combined) 38

Figure 3. Modeled proportion of Pacific ocean perch that are mature females by age..................................... 39
Figure 4. Weight at age (grams) for Pacific ocean perch used in the assessment.. 39
Figure 5. Length distributions by age used in the age-length transition matrix... 40
Figure 6. Assumed relationship between observed age and true age used as an ageing error matrix............ 41
Figure 7. Time series of spawning biomass, exploitation rate and recruitment... 42
Figure 8. Time series of spawning biomass and depletion from 2003, 2005 and 2007 assessments............. 43
Figure 9. Fit of the Model 1 to survey biomass indices and to the fishery CPUE data 44
Figure 10. Fit of Model 1 to "biased" (1966-80) fishery age-composition data.. 45
Figure 11. Fit of Model 1 to "unbiased" (1999-2002) fishery age-composition data................................... 46
Figure 12. Fit of Model 1 to triennial survey age-composition data.. 47
Figure 13. Fit of Model 1 to POP and slope survey age-composition data ... 48
Figure 14. Fit of Model 1 to fishery size-composition data.. 49
Figure 15. Fit of Model 1 to triennial and slop survey size-composition data .. 50
Figure 16. Fishery selectivity patterns (1956-2006).. 51
Figure 17. Selectivity patterns for the triennial and slope surveys ... 52
Figure 18. Posterior density for steepness .. 53
Figure 19. Prior and posterior densities for natural mortality... 54
Figure 20. Posterior density for 2007 spawning biomass .. 55
Figure 21. Posterior density for depletion in 2007 .. 56
Figure 22. Posterior density for virgin spawning biomass in 2007 .. 57

1.1 Introduction

In this assessment update, we have combined the data from the International North Pacific Fisheries Commission (INPFC) Columbia and US-Vancouver areas, and modeled the Pacific ocean perch population in these areas as a single stock. Size-composition data for these areas indicate that years of good recruitment coincide.

Prior to 1965, the Pacific ocean perch resource in the US Vancouver and Columbia areas of the INPFC was harvested almost entirely by Canadian and United States vessels. Landings from 1956-65 averaged slightly over 2,000 metric tons (mt) in each of the two INPFC areas included in this assessment, with an overall increasing trend of catch over this period. Catches increased dramatically after 1965 with the introduction of large distant-water fishing fleets from the Soviet Union and Japan. Both nations employed large factory stern trawlers as their primary method for harvesting Pacific ocean perch. Peak removals by all nations combined are estimated at over $15,000 \mathrm{mt}$ in 1966 and over $12,000 \mathrm{mt}$ in 1967. These numbers are based upon a re-analysis of the foreign catch data (Rogers, 2003). Catches declined rapidly following these peak years, and Pacific ocean perch stocks were considered to be severely depleted throughout the OregonVancouver Island region by 1969 (Gunderson 1977, Gunderson et al. 1977). Landed catches over the period 1978-94 averaged 474 mt and 833 mt in the US-Vancouver and Columbia areas respectively. Landings for the combined region have continued to decline since 1994.

Prior to 1977, Pacific ocean perch stocks in the northeast Pacific were managed by the Canadian Government in its waters, and by the individual states in waters (out to three miles) off of the United States. With implementation of the Magnuson Fishery Conservation and Management Act (MFCMA) in 1977, primary responsibility for management of the groundfish stocks off Washington, Oregon and California shifted from the states to the Pacific Fishery Management Council (PFMC). At that time, however, a Fishery Management Plan (FMP) for the west coast groundfish stocks had not yet been approved. In the interim, the state agencies worked with the PFMC to address conservation issues. In 1981, the PFMC adopted a management strategy to rebuild the depleted Pacific ocean perch stocks to levels that would produce Maximum Sustainable Yield (MSY) within 20 years. On the basis of cohort analysis (Gunderson 1978), the PFMC set Acceptable Biological Catch (ABC) levels to 600 mt for the US portion of the INPFC Vancouver area and 950 mt for the Columbia area. To implement this strategy, the states of Oregon and Washington established landing limits for Pacific ocean perch caught in their waters. Trip limits of various forms have remained in effect to this day (Table 1).

Research surveys have been used to provide fishery-independent information about the abundance, distribution, and biological characteristics of Pacific ocean perch. A coast-wide survey of the rockfish resource was conducted in 1977 (Gunderson and Sample 1980) and was repeated every three years through 2004. The National Marine Fisheries Service (NMFS) coordinated a cooperative research survey of the Pacific ocean perch stocks off Washington and Oregon with the Washington Department of Fisheries (WDF) and the Oregon Department of Fish and Wildlife (ODFW) in March-May 1979 (Wilkins and Golden 1983). This survey was repeated in 1985. Two slope surveys have been conducted on the west coast in recent years, one using the research vessel Miller Freeman, which ended in 2001, and another a cooperative survey using commercial fishing vessels which began in 1998 and is ongoing.

1.2. Data

1.2.1. Removals and regulations

Catch history

Landings data from the Pacific ocean perch fishery off the west coast of the continental United States are available from 1956 to the present (Figure 1; Table 2). This fishery took large catches during the mid-1960's. Canadian and United States vessels in the Vancouver and Columbia areas harvested this resource prior to 1965. At that time, foreign vessels (mainly trawlers from the exSoviet Union and Japan) began intensive harvesting operations for Pacific ocean perch in the Vancouver area and, one year later, in the Columbia area. During the periods 1966-68 and 197274 , the foreign fleets accounted for the bulk of the Pacific ocean perch removals. The foreign fishery for Pacific ocean perch ended in 1977 following the passage of the MSCFA. Foreign catch estimates for the years 1966-76 are taken from Rogers (2003). Removals since 1979 have been restricted by the PFMC to promote the rebuilding of the resource. Estimated harvests by area show that a large proportion of the catches during the 1980s were from the Columbia area, but that catches are now split more evenly between the US-Vancouver and Columbia areas. Historical estimated total catches by domestic and foreign vessels are given in Table 2. These are adjusted for a 5% discard rate from 1956-80 (domestic catches), reflecting the relatively unregulated nature of the fishery over this time period, and a 16% discard rate thereafter, based on the work of Pikitch et al. (1988). A more recent report by Sampson (2002) reports a discard rate of about 10%, while the West Coast fishery observer data from 2001-2005 indicate average discard rates of $14-17 \%$.

Fishery Size and age composition

Gunderson (1981) compiled fishery age-composition data for the Vancouver and Columbia INPFC areas. While the patterns of recruitment appear similar, the magnitudes of year-class strength varied between areas. The age-composition data for the two areas are combined to simplify the analysis, and because the fisheries operating in the two areas share many similarities.

The fishery age-composition data for 1966-80 were determined using the otolith surface ageing technique which is biased for Pacific ocean perch; the ages of animals older than 15 tend to be under-estimated. Therefore, animals estimated to be aged 14 years and older are pooled into a "plus-group" to reduce the impact of this bias. Fishery age-composition data based on the break-and-burn technique are available for 1994 and 1999-2006 from the PacFIN database (Table 3). The break-and-burn technique is considered to provide unbiased estimates of age (Chilton and Beamish 1982). Therefore, for these more recent fishery age compositions data, ages 3-24 are fitted as individual age classes, with age 25 being the plus-group.

It is necessary to account for ageing error when fitting the model to the age-composition data. This involves converting from the model estimate of the age composition to the expected observed age composition given aging error. This is accomplished by using an ageing-error matrix (which specifies the probability that a fish of given actual age will be given a particular estimated age). The ageing-error matrix is based the assumption that ageing error is normally distributed with a mean of 0 (i.e. no bias) and a CV of 0.064 . This CV is based on the results of a double-read analysis of 1,161 Pacific ocean perch otoliths at the Newport Laboratory of the Northwest Fisheries Science Center, NMFS (unpublished data). The distribution for the observed age of an animal in the plus-group is determined by first assuming that the age distribution of animals in the plus-group follows an exponential decline model with age (10% total annual mortality) and then applying the ageing-error matrix to this age distribution. Finally the observed
age of an animal in the plus-group is calculated by summing this age distribution for each possible observed age and reforming the plus-group at age 25 .

Fishery size-composition data were obtained from PacFIN for available years excluding those years for which age data were used. This includes 1981-1991 and 1995-1998. The model is fit to the size-composition data $(17-40 \mathrm{~cm}$, where 40 cm is a plus-group) from the commercial fishery for these years. Neither size nor age data were available for 1992-1993. An age-to-length conversion matrix is used to convert model-predicted age-compositions to model-predicted sizecompositions when fitting to the size-composition data.

CPUE data

Data on catch-per-unit-of-effort (CPUE) in $\mathrm{mt} / \mathrm{hr}$ from the domestic fishery were combined for the INPFC Vancouver and Columbia areas (Figure 9; from Gunderson (1977)). Although these data reflect catch rates for the US fleet, the highest catch rates coincided with the beginning of removals by the foreign fleet. This suggests that, barring unaccounted changes in fishing efficiency during this period, the level of abundance was high at that time.

1.2.2. Surveys

NMFS Cruises

The results from four fishery-independent surveys are used in this assessment (Figure 9; Tables 45).

1. The triennial shelf survey that was conducted every third year from 1977-2004 (Although for many species assessed in 2005 and to be assessed in 2007, the 1977 triennial survey biomass value is not used, it was used in the 2005 Pacific ocean perch assessment, and therefore is used in this update; the primary reasons for the omission of the 1977 data point are less relevant for Pacific ocean perch.).
2. The POP surveys for 1979 and 1985.
3. The AFSC slope survey for "super-year" 1992 (including 1992-93 data), and for the years 1996, 1997 and 1999-2001.
4. The NWFSC slope survey for the years 1999-2006.

Size- rather than age-composition data are used when fitting the model for the years prior to 1989 (ages were determined using the biased surface ageing technique prior to 1989) and for those years for which there are no age-composition data. Survey age-composition data are not available for the AFSC slope survey or for the NWFSC slope survey prior to 2001.

The model-predicted age and size compositions are computed as described above for the commercial fishery. Size- and age-composition data from all the surveys are considered when evaluating the model fits.

A list of data used in this assessment is given in Table 6. Tables of data that has not changed from last assessment can be found in that assessment (Hamel, 2005).

1.2.3. Biology and life history

Natural mortality, longevity, and age at recruitment

Pacific ocean perch ages, determined using scales and surface readings from otoliths, gave estimates of natural mortality of about $0.15 \mathrm{yr}^{-1}$ and longevity of about 30 years (Gunderson 1977). Based on the now-accepted break-and-burn method of age determination using otoliths, Chilton and Beamish (1982) determined the maximum age of S. alutus to be 90 years. Using
similar information, Archibald et al. (1981) concluded that natural mortality for Pacific ocean perch should be on the order of $0.05 \mathrm{yr}^{-1}$. Hoenig's (1983) relationship estimates that if Pacific ocean perch longevity is between 70 and 90 years (Beamish 1979, Chilton and Beamish 1982), M would be between 0.046 and $0.059 \mathrm{yr}^{-1}$. In this assessment update we place a fairly tight base-case prior distribution on natural mortality (lognormal with median $0.05 \mathrm{yr}^{-1}$ and $\sigma 0.1$). Essentially, this acknowledges that there is some uncertainty regarding the value for M, while nevertheless constraining the estimate of M to the general range of past estimates. The age at recruitment is set at 3 years.

Sex ratio, maturation and fecundity

Survey data indicate that sex ratios are within 5% of $1: 1$, so a sex ratio of $1: 1$ is assumed. Age 8 is used as an estimate of the age-at- 50% female sexual maturity based upon the recommendation of the 2000 POP STAR panel. The maturity ogive is given in Figure 3.

Length-weight relationship

The length-weight relationship for Pacific ocean perch was estimated using survey data collected from the west coast surveys (1977-89) Estimates from the 593 samples lead to the following relationship:

$$
\mathrm{W}(\mathrm{~L})=9.82 \cdot 10^{-3} \mathrm{~L}^{3.1265}
$$

where L is length in cm and W is weight in grams. The mean weights-at-age were computed from the means lengths-at-age and this relationship (Figure 4).

Length at age

The length-age matrix used for this assessment is the same as that used for the 2005 assessment, which was based on 2,855 samples collected during the 1989-98 triennial surveys and aged using the break-and-burn method (Figure 5).

1.2.4 Changes in data from the 2005 assessment

The 2005 and 2006 catch data and fishery age compositions are included in this assessment, along with updated 2003 and 2004 catch data (Table 2). Fishery age composition data from 1999-2004 were updated with an increased number of ages available from PacFIN (Table 3). These data were extracted on April 26, 2007.

The 1999-2004 NWFSC slope survey biomass indices and age compositions were recalculated based upon changes in stratum area estimates and any updates in the database, with the 2005 and 2006 NWFSC slope survey biomass indices and age compositions added (Tables 4 and 5). These data were obtained on April 9, 2007.

1.3. Assessment model

1.3.1. Changes between the 2005 assessment model and the current model

No changes to the estimating model have been made since the last assessment.

1.3.2. Model features unchanged from the 2005 assessment model

The population dynamics model used in the present assessment is the same as that used in the 2003 and 2005 assessments, i.e. a forward projection age-structured model similar to those developed by Methot (1990) and Tagart et al. (1997). As in past years, the concept of the estimation is to simulate the population dynamics using a process model, and to evaluate alternative simulated population trajectories in terms of how well they are able to mimic the available data. The observation model allows for both sampling error and ageing error. The model equations, the descriptions of the parameters of the model and the formulation of the likelihood function are given in Table 7.

Following the 2003 and 2005 assessments, natural mortality was estimated using a prior probability distribution instead of assuming a constant fixed value. Fishery selectivity is allowed to be a smooth function of age, and to vary over time. The prior distributions for natural mortality and the recruitment residuals remain unchanged from the 2005 assessment.

The same parameterization of the Beverton-Holt stock-recruitment relationship was used in this assessment as was the case for the 2005 assessment:

$$
\hat{R}_{i}=\frac{S_{i-3} e^{\xi_{i}}}{\alpha+\beta S_{i-3}}, \quad \xi_{i}=\rho \xi_{i+1}+\sqrt{1-\rho^{2}} \omega_{i} \quad \omega_{i} \sim N\left(0, \sigma_{R}^{2}\right)
$$

where $\quad \hat{R}_{i} \quad$ is the expected recruitment at age 3 in year i,
$S_{i} \quad$ is the female spawning biomass in year i,
$\xi_{i} \quad$ is the correlated recruitment anomaly for year i, and
$\alpha, \beta \quad$ are parameters of the stock-recruitment relationship.

The values for the stock-recruitment relationship parameters α and β are calculated from the values of R_{0} (the number of 0 -year-olds in the absence of exploitation and recruitment variability) and the "steepness" of the stock-recruit relationship (h). Steepness is the fraction of R_{0} to be expected (in the absence of recruitment variability) when the mature biomass is reduced to 20% of its unfished level (Francis 1992) ${ }^{1}$, so that:

$$
\alpha=\widetilde{B}_{0} \frac{1-h}{4 h} ; \quad \beta=\frac{5 h-1}{4 h R_{0}}
$$

where $\widetilde{B}_{0} \quad$ is the total egg production (or an appropriate proxy such as female spawning biomass) in the absence of exploitation (and recruitment variability), expressed as a fraction of R_{0}.

Estimation of the stock-recruitment relationship is integrated into the assessment. Therefore, assumptions about the priors for the parameters of this relationship (i.e. R_{0} and h) are critical, particularly if the data are non-informative. $F_{\text {MSY }}$ and related quantities

[^0]such as MSY and $B_{\text {MSY }}$ can be computed using the fitted stock-recruitment relationship as in Ianelli and Zimmerman (1998). The stock-recruitment relationship can also be seen as a surrogate for other factors affecting recruitment numbers, including climatic effects such as the Pacific Decadal Oscillation (PDO). In this assessment, a uniform prior distribution is assumed for steepness.

1.3.3. Likelihood contributions

The objective function which is minimized to obtain the point estimates of the model parameters includes contributions by the data (survey biomass estimates, CPUE data, fishery and survey ageand size- composition data; Table 6) and well as penalties (on the differences between estimates of recruitment and the values predicted from the deterministic component of the stockrecruitment relationship; on the differences between model-predicted and estimated total catches; on the variation in fishing mortality; on the extent of smoothness and dome-shapedness of fishery and survey selectivity; and on the extent to which fishery selectivity changes over time). The functional forms for each of these likelihood contributions are reported in Table 7.

The model was assumed to have converged when the largest gradient component of the objective function in the final phase was less than 10^{-7}. Issues of model convergence were assessed in several ways.

1. The Hessian matrix was inverted to ensure that it was positive definite; a non-positive definite Hessian matrix is an indication of a poorly converged or over-parameterized model.
2. The estimation was always initiated with starting values that were far from the final solution.
3. The estimation was conducted in several phases to avoid problems when highly non-linear models (such as that used here) enter biologically unreasonable regions (e.g., stock sizes smaller than the total catch or stock sizes several orders of magnitude too high).

1.3.4. Bayesian analysis

The joint posterior density function is proportional to the product of the likelihood function (see Table 7) and the prior probability distribution. A list of the estimable parameters and the priors assumed for them in the baseline analysis are given in Table 7. The Metropolis-Hastings variant of the Markov-Chain Monte Carlo (MCMC) algorithm (Hastings 1970; Gilks et al. 1996; Gelman et al. 1995) with a multivariate normal jump function was used to sample 2,400 parameter vectors from the joint posterior density function. This sample implicitly accounts for correlation among the model parameters and considers uncertainty in all parameter dimensions simultaneously. The samples on which inference is based were generated by running $14,000,000$ cycles of the MCMC algorithm, discarding the first $2,000,000$ as a burn-in period and selecting every $5,000^{\text {th }}$ parameter vector thereafter. The initial parameter vector was taken to be the vector of maximum posterior density (MPD) estimates. A potential problem with the MCMC algorithm is the determination of whether convergence to the actual posterior distribution has occurred, and the selection of $14,000,000,2,000,000$ and 2,400 was based on generating a sample which showed no noteworthy signs of lack of convergence to the posterior distribution. We evaluated whether convergence occurred by applying the diagnostic statistics developed by Geweke (1992), Heidelberger and Welch (1983), and Raftery and Lewis (1992) and by examining the extent of auto-correlation among the samples in the chain.

1.4. Results

1.4.1. Model selection and evaluation

The initial a priori model (Model 1) is identical to the model used in the 2005 assessment, which included the following features:

1. The standard deviation of the fluctuations about the stock-recruitment relationship, σ_{R}, was set at 1.0.
2. A uniform prior was assumed for steepness.
3. Uniform priors were assumed for survey catchability.
4. The oldest age for which fishery selectivity was estimated was 14 years while the oldest age for which survey selectivity was estimated was 12 years.
5. Fishery selectivity was allowed to change every $6^{\text {th }}$ year.
6. Survey selectivity for age 10 was set to 1.0 rather than imposing a constraint that average selectivity across ages equals 1.0 or setting the maximum selectivity to 1.0.

1.4.2. Reference model results

Figure 7 shows the time-trajectories of the point estimates (i.e. those that correspond to the maximum of the objective function, which are also those corresponding to the maximum of posterior density function) for spawning biomass, fishery exploitation rate and recruitment. The time trajectories of spawning biomass and depletion from this assessment and the previous two assessments are compared in Figure 8. The fits of model 1 (base model) to the various indices are summarized in Figure 9 (survey biomass indices and fishery CPUE data), Figures 10 and 11 (fishery age-composition data), Figures 12 and 13 (survey age-composition data), Figure 14 (fishery size-composition data) and Figure 15 (survey size-composition). There is no evidence for model mis-specification in any of these fits.

The fishery selectivity pattern changes moderately over time (Figure 16). This may be partly due to the switch to fitting age- rather than size-composition data in 1980 and the differences in quality between or intrinsic information in these two sources of data. The selectivity pattern for both the triennial survey and the slope survey exhibit domed shapes, but selectivity is forced to be flat beyond age 12 (Figure 17). Selectivity for younger ages is notably lower for the slope surveys than for the triennial survey.
Table 8 lists the numbers-at-age matrix for Model 1, while Table 9 lists the point estimates of catch-at-age for this Model. Model 1 estimates that the spawning stock biomass was depleted to 27.5% of its unfished equilibrium level of $36,983 \mathrm{mt}$ in 2007 (Table 10). The estimate of M is $0.053 \mathrm{yr}^{-1}$ while steepness is estimated at 0.652 . The estimate of MSY is $1,411 \mathrm{mt}$, which is smaller than all but seven of the annual catches (including discard) from 1956-93. The fishing mortality throughout the period 1999-2006 was less than $F_{\text {MSY }}$.

1.4.3. Retrospective analysis

Retrospective analysis (Table 10) going back two years were used for comparison to the 2005 assessment:

1) Retro 2006: Retrospective analysis - ignores the assessment data for 2006 (as if assessment were conducted in 2006)
2) Retro 2005: Retrospective analysis - ignores the assessment data for 2005 and 2006 (as if assessment were conducted in 2005)

Ignoring the data for 2005 and 2006 (Retrospective for comparison to the 2005 assessment) has a moderate impact on current spawning biomass and depletion. Note that the depletion level of 0.227 for the Retrospective 2005 model should be compared to the estimated depletion of 0.241 in 2005 in the current base model, of 0.232 in 2005 in the retrospective 2006 model, and of 0.234 in the 2005 assessment. Perhaps more interesting is the progressive increase in the estimated steepness value, from 0.551 for the 2005 assessment, to 0.569 in the 2005 retrospective, to 0.579 in the 2006 retrospective and finally to 0.652 for the current assessment. The estimate of natural mortality is consistent between the current assessment and the two retrospective cases at 0.053 , while it was 0.051 for the 2005 assessment.

1.4.4. Markov-Chain Monte Carlo results

Evaluation of convergence

Convergence was demonstrated in the 2005 assessment and similar results of the tests of convergence were satisfied for the 2007 MCMC run.

The posteriors

The posterior probability that the 2007 spawning biomass is less than $0.25 B_{0}$ is 0.120 (One can interpret this as indicating a 12% probability that Pacific ocean perch is currently below the overfished threshold). The posterior probability that the 2007 spawning biomass is less than half of B_{40} is $\sim 0.012(1.2 \%)$, while the posterior probability that it is below B_{40} is $0.912(91.2 \%)$, or, equivalently, the posterior probability that Pacific ocean perch is recovered is $0.088(8.8 \%)$.

The posterior distribution for steepness is relatively wide (Figure 18) although low values (below 0.3) are effectively ruled out. This indicates that the data are relatively uninformative about the shape of stock-recruitment relationship. This relationship may have changed since the 1940s and 1950s, possibly due to climate change, fishery selectivity, or both.

The posterior distribution for natural mortality is relatively tight, reflecting the prior distribution, but shifted to slightly higher values (Figure 19). The posterior distributions for 2007 spawning biomass, depletion, and virgin spawning biomass are shown in Figures 20-22. The difference in depletion between the Bayesian and MPD estimates (median MCMC value $=31.2 \%$ vs. MPD value of 27.5%) is largely due to the uncertainty about virgin spawning biomass and steepness. Uncertainty in both these quantities increased in the current assessment update.

1.4.5. Future research

There are a number of areas of future research, e.g.:

1) Inclusion of age 1 and 2 Pacific ocean perch catches and discards.
2) Estimation of effective sample sizes for size- and age-composition data.
3) Use of simulation models to evaluate how well one can estimate recruitment using sizecomposition data or biased or unbiased age-composition data, or a mix of the three.
4) Estimation of climatic effects on recruitment, growth and survival.
5) Selection of an appropriate prior distribution for the survey catchability coefficients.
6) Research on the relationship of individual female age and biomass to maturity, fecundity and survival of offspring.
7) Further research on the accuracy of Pacific ocean perch ageing, as well as the magnitude of bias in surface ageing compared to break-and-burn ageing.
8) Research on the relative density of Pacific ocean perch in trawlable and untrawlable areas and difference in age and/or length compositions between those areas.
9) Research on the relative status of the British Columbia stock of Pacific ocean perch.

Acknowledgements

The author would like to thank Ian Stewart for help in obtaining PacFIN age and length data and Beth Horness for providing NWFSC Survey data.

1.5. References

Archibald, C.P., W. Shaw, and B.M. Leaman. 1981. Growth and mortality estimates of rockfishes (Scorpaenidae) from B.C. coastal waters, 1977-79. Can. Tech. Rep. Fish. Aquat. Sci. 1048, 57 p.

Beamish, R.J. 1979. New information on the longevity of Pacific ocean perch (Sebastes alutus). J. Fish. Res. Board Can. 36:1395-1400.

Brooks, S. and A. Gelman. 1998. General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics 7: 434-55.

Chilton, D.E., and R.J. Beamish. 1982. Age determination methods for fishes studied by the Groundfish Program at the Pacific Biological Station. Can. Spec. Publ. Fish. Aquat. Sci. 60, 102 p.

Forrester, C. R., A. J. Beardsley, and Y. Takahashi. 1978. Groundfish, shrimp, and herring fisheries in the Bering Sea and northeast Pacific-historical catch statistics through 1970. Int. North Pac. Fish. Comm., Bull. 37, 147 p.

Fournier, D. and C.P. Archibald. 1982. A general theory for analyzing catch at age data. Can. J. Fish. Aquat. Sci. 39: 1195-1207.

Fournier, D.A., J. R. Sigert, J. Markowski and J. Hampton. 1990. MULTIFAN: a likelihood-based method for estimating growth parameters and age composition from multiple length frequency data sets illustrated using data for southern bluefin tuna (thunnus maccoyii). Can. J. Fish. Aquat. Sci. 47: 301-317.

Fournier, D.A., J. Hampton, and J. R. Sigert. 1998. MULTIFAN-CL: a length-based, age-structured model for fisheries stock assessment, with application to South Pacific albacore, Thunnus alalunga. Can. J. Fish. Aquat. Sci. 55: 2105-2116.

Fraidenburg, M. E., J. E. Smith, W. H. Barss, and T. Jow. 1978. Minimum estimates of all nations removals, North American trawl species composition, and CPUE for "other rockfish" in the northeastern Pacific ocean. Wash. Dep. Fish., Tech. Rep. 34, 31 p.

Fraidenburg, M.E., S.J. Westrheim, and R.L. Demory. 1978. The status of Pacific ocean perch (Sebastes alutus) stocks off British Columbia, Washington and Oregon in 1977.

Francis, R.I.C.C. 1992. Use of risk analysis to assess fishery management strategies: a case study using orange roughy (Hoplostethus atlanticus) on the Chatham Rise, New Zealand. Can. J. Fish. Aquat. Sci. 49: 922-930.

Gilks, W.R., S. Richardson, and D.J. Spiegelhalter. 1996. Markov Chain Monte Carlo in Practice. Chapman and Hall, London. 486 p.

Gelman, A, J.B. Carlin, H.S. Stern, and D.B. Rubin. 1995. Bayesian data analysis. Chapman and Hall. London. 526 p.

Geweke, J. 1992. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. pp. 169-93. In: Bayesian Statistics 4 (eds J.M. Bernardo, J. Berger, A.P. Dawid and A.F.M. Smith.) Oxford University Press, Oxford

Gunderson, D.R. 1977. Population biology of Pacific ocean perch, Sebastes alutus, stocks in the Washington-Queen Charlotte Sound region and their response to fishing. U.S. Natl. Mar. Fish. Serv., Fish. Bull. 75:369-403.

Gunderson, D.R. 1978. Results of cohort analysis for Pacific ocean perch stocks off British Columbia, Washington, and Oregon and an evaluation of alternative rebuilding strategies for these stocks. Unpubl. rep., 20 p. Available Pacific Fishery Management Council, Suite 420, 2000 S.W. First Avenue, Portland, OR 97201.

Gunderson, D.R. 1981. An updated cohort analysis for Pacific ocean perch stocks off Washington and Oregon. Unpubl. rep., 29 p. Available Pacific Fishery Management Council, Suite 420, 2000 S.W. First Avenue, Portland, OR 97201.

Gunderson, D.R., and T.M. Sample. 1980. Distribution and abundance of rockfish off Washington, Oregon, and California during 1977. U.S. Natl. Mar. Fish. Serv., Mar. Fish. Rev. 42(3-4):2-16.

Gunderson, D.R., S. J. Westrheim, R.L. Demory, and M.E. Fraidenburg. 1977. The status of Pacific ocean perch (Sebastes alutus) stocks off British Columbia, Washington, and Oregon in 1974. Can. Fish. Mar. Serv. Resour. Dev. Tech. Rep. 690, 63 p.

Hamel, O.S. 2005. Status and future prospects for the Pacific ocean perch resource in waters off Washington and Oregon as assessed in 2005. In Status of the Pacific coast groundfish fishery through 2005: Stock assessment and fishery evaluation. Volume III. Pacific Fishery Management Council, Portland, OR.

Hamel, O.S., Stewart I.J. and Punt A.E. 2003. Status and future prospects for the Pacific ocean perch resource in waters off Washington and Oregon as assessed in 2003. In Status of the Pacific coast groundfish fishery through 2003: Stock assessment and fishery evaluation. Pacific Fishery Management Council, Portland, OR.

Hannah, R.W., and Parker S.J. 2005 Length and age at maturity for Pacific ocean perch (Sebastes alutus) off Oregon. ODFW, Newport Oregon.

Harley, S.J., Myers, R.A., Barrowman, N.J., Bowen, K.G., and Amiro, E. 2000. Ecosystem models of the Scotian Shelf: Estimation of catchabilities. Unpublished manuscript.

Hastings, W.K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57: 97-109.

Heidelberger, P. and P.D. Welch. 1983. Simulation run length control in the presence of an initial transient. Operations Research 31: 1109-44.

Hoenig, J.H. 1983. Empirical use of longevity data to estimate mortality rates. U.S. Natl. Mar. Fish. Serv., Fish. Bull. 82:898-903.

Ianelli, J.N. and M. Zimmerman. 1998. Status and future prospects for the Pacific ocean perch resource in waters off Washington and Oregon as assessed in 1998. In Status of the Pacific coast groundfish fishery through 1998 and recommended acceptable biological catches for 1999. Pacific Fishery Management Council, Portland, OR.

Ianelli, J.N., M. Wilkins and S. Harley. 2000. Status and future prospects for the Pacific ocean perch resource in waters off Washington and Oregon as assessed in 2000. In Status of the Pacific coast groundfish fishery through 2000 and recommended acceptable biological catches for 2001. Pacific Fishery Management Council, Portland, OR.

Ito, D.H., D.K. Kimura, and M.E. Wilkins. 1987. Status and future prospects for the Pacific ocean perch resource in waters off Washington and Oregon as assessed in 1986. U.S. Dep. Commer., NOAA Tech. Memo. NMFS F/NWC-113, 50 p.

Methot, R.D. 1990. Synthesis model: an adaptable framework for analysis of diverse stock assessment data. INPFC Bull. 50: 259-77. Pacific Fishery Management Council. 1980.

Methot, R.D. 2000.Technical description of the Stock Synthesis Assessment Program. NOAA Technical Memorandum NMFS-NWFSC-43.

Minte-Vera, C. V., T. A. Branch, I. J. Stewart, and M. W. Dorn. Unpublished document (2003). Practical application of meta-analysis results: avoiding the double use of data.

Pennington, M., 1985. Estimating the relative abundance of fish from a series of trawl surveys. Biometrics, 41:197-202.

Pikitch, E.K., D.L. Erickson, and J.R. Wallace. 1988. An evaluation of the effectiveness of trip limits as a management tool. Northwest and Alaska Fisheries Center, National Marine Fisheries Service NWAFC Processed Report No. 88-27.

Raftery, A.E. and S. Lewis. 1992. How many iterations in the Gibbs sampler? pp. 763-73. In: Bayesian Statistics 4 (eds J.M. Bernardo, J. Berger, A.P. Dawid and A.F.M. Smith.) Oxford University Press, Oxford.

Rogers, J.B. Unpublished document (2003). Species allocation of Sebastes and Sebastolobus species caught by foreign countries off Washington, Oregon and California, U.S.A. in 1965-1976.

Sampson, D.B. 2002. Unpublished Document. Analysis of data form the at-sea data collection project. Final report to the Oregon Trawl Commission.

Seeb, L. W., and D. R. Gunderson. 1988. Genetic variation and population structure of Pacific ocean perch (Sebastes alutus). Can. J. Fish. Aquat. Sci. 45:78-88.

Tagart, J.V., J.N. Ianelli, A. Hoffmann, and F.R. Wallace. 1997. Status of the yellowtail rockfish resource in 1997. Pacific Fishery Management Council, Portland, OR.

Tagart, J.V., J.T. Golden, D.K. Kimura, and R.L. Demory. 1980. Evaluation of alternative trip limits for Pacific ocean perch. Unpubl. rep., 22 p. Available Pacific Fishery management Council, Metro Center, Suite 420, 2000 S.W. First Avenue, Portland, OR 97201.

Technical Subcommittee. 1972. Unpublished report of the Technical Subcommittee, International Trawl Fishery Committee, $13^{\text {th }}$ annual meeting, June 28-30, 1972, 45 p. Available Pacific Marine Fisheries Commission, 528 S.W. Mill Street, Portland, OR 97201.

Westrheim, S. J., D. R. Gunderson, and J. M. Meehan. 1972. On the status of Pacific ocean perch (Sebastes alutus) stocks off British Columbia, Washington, and Oregon in 1970. Fish. Res. Board Can. Tech. Rep. 326, 48 p.

Wilkins, M. E. and J. T. Golden. 1983. Condition of the Pacific ocean perch resource off Washington and Oregon during 1979: Results of a cooperative trawl survey. N. Am. J. Fish. Manage. 3:103-122.

Wishard, L. N., F. M. Utter, and D. R. Gunderson. 1980. Stock separation of five rockfish species using naturally occurring biochemical genetic markers. U.S. Natl. Mar. Fish. Serv., Mar. Fish. Rev. 42(3-4): 64-73.

1.6. Tables

Table 1. Pacific Fishery Management Council groundfish management/regulatory actions regarding Pacific ocean perch (POP) since Fishery Management Plan implementation in 1982.

Date
November 10, 1983

January 1, 198
August 1, 1984 Recommended immediate reduction in trip limit for POP in the Vancouver and Columbia areas to 20 percent by weight of all fish on board, not to exceed 5,000 pounds per vessel per trip. When OY is reached in either area, landings of POP will be prohibited in that area (Oregon and Washington implemented POP recommendation in mid-July).
Commercial fishing for POP in the Columbia area closed for remainder of the year. (See items regarding this species effective January 1 and August 1, 1984 above.)
Recommended Vancouver and Columbia areas POP trip limit of 20 percent by weight of all fish on board (no 5,000 pound limit as specified in last half of 1984).
Recommended the Vancouver and Columbia areas POP trip limit be reduced to 5,000 pounds or 20 percent by weight of all fish on board, whichever is less. Landings of POP less than 1,000 pounds will be unrestricted. The fishery for this species will close when the OY in each area is reached.
Recommended landings of POP up to 1,000 pounds per trip will be unrestricted regardless of the percentage of these fish on board.
June 10, 1985
January 1, 1986
December 1, 1986
January 1, 1987
 Columbia area $\mathrm{OY}=800 \mathrm{t}$.
January 1, $1989 \begin{aligned} & \text { Established the coastwide POP trip limit at } 20 \text { percent (by weight) of all fish on board or } 5,000 \text { pounds whichever is less; } \\ & \text { landings of POP unrestricted if less than } 1,000 \text { pounds regardless of percentage on board (Vancouver area } O Y=500 t \text { t; }\end{aligned}$ landings of POP unrestricted if less than 1,000 pounds regardless of percentage on board (Vancouver area $\mathrm{OY}=500 \mathrm{t}$; Columbia area $\mathrm{OY}=800 \mathrm{t}$).
Reduced the coastwide trip limit for POP to 2,000 pounds or 20 percent of all fish on board, whichever is less, with no trip frequency restriction.
Increased the Columbia area POP OY from 800 to $1,040 \mathrm{t}$.
Closed the POP fishery in the Columbia area because 1,040 t OY reached.
Established the coastwide POP trip limit at 20 percent (by weight) of all fish on board or 3,000 pounds whichever is less; landings of POP be unrestricted if less than 1,000 pounds regardless of percentage on board. (Vancouver area $\mathrm{OY}=500 \mathrm{t}$; Columbia area $\mathrm{OY}=1,040 \mathrm{t}$).
Established the coastwide POP trip limit at 20 percent (by weight) of all fish on board or 3,000 pounds whichever is less; landings of POP be unrestricted if less than 1,000 pounds regardless of percentage on board (harvest guideline for combined Vancouver and Columbia areas $=1,000 \mathrm{t}$).
Established the coastwide POP trip limit at 20 percent (by weight) of all groundfish on board or 3,000 pounds whichever is less; landings of POP be unrestricted if less than 1,000 pounds regardless of percentage on board (harvest guideline for combined Vancouver and Columbia areas $=1,550 \mathrm{mt}$).
Continued the coastwide POP trip limit at 20 percent (by weight) of all groundfish on board or 3,000 pounds whichever is less; landings of POP be unrestricted if less than 1,000 pounds regardless of percentage on board (harvest guideline for combined Vancouver and Columbia areas $=1,550 \mathrm{mt}$).
Adopted the following management measure for the limited entry fishery in 1994: POP: Trip limit of 3,000 pounds or 20 percent of all fish on board, whichever is less, in landings of POP above 1,000 pounds.
Adopted the following management measure for open access gear except trawls in 1994: Rockfish: Limit of 10,000 pounds per vessel per trip, not to exceed 40,000 pounds cumulative per month, and the limits for any rockfish species or complex in the limited entry longline or pot fishery must not be exceeded.
Changed trip limit for rockfish taken with setnet gear off California. The 10,000 pound trip limit for rockfish caught with setnets, which applied to each trip, was removed. The 40,000 pound cumulative limit that applies per calendar month remains in effect.
Established cumulative trip limits of 6,000 pounds per month.
Established cumulative trip limits of 10,000 pounds every two months.
Reduced cumulative 2-month trip limit to 8,000 pounds.
Established cumulative trip limits of 10,000 pounds every two months.
Harvest guidelines reduced from 750 mt to 650 mt with $\mathrm{ABC}=0$. Limited entry fishery under 8,000 pounds per two-months until September with monthly limits of 4,000 pounds
Monthly cumulative trip limit of 4,000 pounds for limited entry fishery. A 100 pound per month limit established for open access fishery.
Monthly cumulative trip limit of 2,500 pounds (May-October) and 500 pounds (November-April) for limited entry fishery.
Monthly cumulative trip limit of 2,500 pounds (May-October) and 1,500 pounds (November-April) for limited entry fishery
Monthly cumulative trip limit increased to 3,500 pounds for limited entry fishery beginning July 1, 2001.
POP limited entry and open access fisheries closed starting October 1, 2001 through the end of 2001.
Limited entry trip limit of 4,000 pounds/month (May-June), 4,000 pounds $/ 2$ months (July-October) or 2,000 pounds/month (November-March)
Two-month cumulative trip limit of 3,000 pounds for limited entry trawl fishery and 1,800 pounds for limited entry fixed gear fishery throughout the year. 100 pounds per month open access limit. In effect in 2007.

Table 2. Pacific ocean perch landings and estimated total catch in metric tons (including estimated discards) from the US Vancouver and Columbia INPFC areas by foreign and domestic vessels.

Year	Foreian catch	Domestic landinas	Domestic catch	Total
1956		2,119	2,231	2,231
1957		2,320	2,442	2,442
1958		1,580	1,587	1,587
1959		1,860	1,958	1,958
1960		2,246	2,364	2,364
1961		3,924	4,149	4,149
1962		5,530	5,793	5,793
1963		6,449	6,788	6,788
1964		5,517	5,807	5,807
1965		7,660	8,063	8,063
1966	15,561	3,039	3,200	18,761
1967	12,357	885	932	13,289
1968	6,639	592	623	7,262
1969	469	692	728	1,197
1970	441	1,649	1,736	2,177
1971	902	997	1,049	1,951
1972	950	578	608	1,558
1973	1,773	353	372	2,145
1974	1,457	326	343	1,800
1975	496	623	656	1,152
1976	239	1,366	1,438	1,677
1977		1,180	1,242	1,242
1978		2,014	2,120	2,120
1979		1,854	1,952	1,952
1980		1,867	1,965	1,965
1981		1,445	1,720	1,720
1982		1,043	1,242	1,242
1983		1,860	2,215	2,215
1984		1,645	1,959	1,959
1985		1,506	1,792	1,792
1986		1,389	1,653	1,653
1987		1,096	1,305	1,305
1988		1,382	1,645	1,645
1989		1,433	1,706	1,706
1990		1,032	1,230	1,230
1991		1,433	1,659	1,659
1992		1,097	1,306	1,306
1993		1,260	1,500	1,500
1994		988	1,176	1,176
1995		810	965	965
1996		788	938	938
1997		631	751	751
1998		621	739	739
1999		498	593	593
2000		144	171	171
2001		258	307	307
2002		150	179	179
2003		127	151	151
2004		122	146	146
2005		63	75	75
2006		70	83	83

Table 3. Age-compositions data for the domestic fishery catch in the US Vancouver and Columbia INFPC areas combined based on the break-and-burn method (1994, 1999-2006).

Year	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5 +}$
$\mathbf{1 9 9 4}$	0	0	0	5	2	5	17	23	13	26	28	24	8	9	8	3	7	2	2	3	4	3	46
$\mathbf{1 9 9 9}$	0	0	3	4	14	50	77	133	106	70	39	41	30	25	35	30	22	20	18	19	10	7	162
$\mathbf{2 0 0 0}$	0	0	5	13	1	7	30	47	66	60	36	49	39	44	21	25	7	11	8	8	11	6	102
$\mathbf{2 0 0 1}$	0	2	9	45	64	43	45	99	124	146	118	57	54	53	38	48	20	27	24	10	22	15	287
$\mathbf{2 0 0 2}$	0	1	1	20	108	109	68	79	134	134	137	108	59	50	31	30	30	23	29	17	21	15	213
$\mathbf{2 0 0 3}$	32	7	3	1	21	64	68	52	85	121	130	111	101	62	61	66	39	46	40	34	21	19	250
$\mathbf{2 0 0 4}$	0	0	3	4	6	13	33	57	39	31	54	57	50	35	36	31	32	26	19	17	16	9	136
$\mathbf{2 0 0 5}$	0	0	5	17	15	10	33	53	65	49	48	43	56	55	28	33	31	28	26	14	24	22	213
$\mathbf{2 0 0 6}$	0	0	3	16	41	26	26	37	50	38	35	35	27	23	21	24	29	19	18	21	10	8	126

Table 4. Survey age-composition data for the NWFSC Slope Survey: 2001-2006.

Age	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$
$\mathbf{3}$	0.0000	0.0342	0.0257	0.0331	0.0013	0.0053
$\mathbf{4}$	0.0000	0.0117	0.0813	0.1382	0.0010	0.0214
$\mathbf{5}$	0.0000	0.0086	0.0090	0.1104	0.0692	0.0589
$\mathbf{6}$	0.0000	0.0156	0.0022	0.0148	0.1650	0.0782
$\mathbf{7}$	0.0016	0.0524	0.0136	0.0350	0.0328	0.1017
$\mathbf{8}$	0.0048	0.0630	0.1494	0.0050	0.0177	0.0517
$\mathbf{9}$	0.0000	0.0305	0.0866	0.0297	0.1859	0.0463
$\mathbf{1 0}$	0.0496	0.0560	0.0830	0.0436	0.1036	0.0738
$\mathbf{1 1}$	0.0019	0.0686	0.0616	0.0065	0.1308	0.0426
$\mathbf{1 2}$	0.0932	0.1164	0.0950	0.0357	0.0358	0.0986
$\mathbf{1 3}$	0.1162	0.0833	0.0970	0.0426	0.0348	0.0479
$\mathbf{1 4}$	0.0184	0.0584	0.0721	0.0957	0.0030	0.0004
$\mathbf{1 5}$	0.0649	0.0859	0.0622	0.0324	0.1490	0.0637
$\mathbf{1 6}$	0.1217	0.0760	0.0819	0.1744	0.0048	0.0908
$\mathbf{1 7}$	0.1025	0.0478	0.0169	0.0464	0.0354	0.1408
$\mathbf{1 8}$	0.0961	0.0592	0.0301	0.0318	0.0028	0.0052
$\mathbf{1 9}$	0.0683	0.0298	0.0013	0.0171	0.0101	0.0110
$\mathbf{2 0}$	0.0664	0.0021	0.0066	0.0442	0.0148	0.0069
$\mathbf{2 1}$	0.0891	0.0216	0.0098	0.0234	0.0000	0.0102
$\mathbf{2 2}$	0.0061	0.0152	0.0034	0.0287	0.0003	0.0000
$\mathbf{2 3}$	0.0502	0.0280	0.0038	0.0061	0.0008	0.0076
$\mathbf{2 4}$	0.0052	0.0136	0.0007	0.0021	0.0000	0.0144
$\mathbf{2 5}$	0.0439	0.0222	0.0067	0.0030	0.0013	0.0225

Table 5. Biomass indices (and associated coefficients of variance, expressed as percentages) from the 19992006 NWFSC Slope Survey.

Year	Biomass Indices	Sampling CV
1999	3,059	46.9%
2000	3,602	51.1%
2000	3,960	41.2%
2002	2,949	47.2%
2003	26,691	43.1%
2004	6,626	70.5%
2005	10,040	74.8%
2006	15,738	57.3%

Table 6. List of the data sources and associated time periods used in present assessment.

Data Source	Years
Fishery Catch	$1956-2006$
Fishery age-composition data	$1966-80$ (biased); 1994, 1999-2006 (unbiased)
Fishery size-composition data	$1981-1991,1995-98$
Fishery CPUE	$1956-73$
Biomass estimates	
Triennial survey	$1977,1980,1983,1986,1989,1992,1995,1998,2001,2004$
POP/Rockfish survey	1979,1985
AFSC slope survey	$1992^{*}, 1996,1997,1999-2001$
NWFSC slope survey	$1999-2006$
Survey age-composition data	
Triennial survey	$1989,1992,1995,1998,2001,2004$
POP / NWFSC slope surveys	$1985,2001-2006$
Survey size-composition data	
Triennial survey	$1977,1980,1983,1986$
POP / NWFSC / AFSC slope surveys	$1979,1996,1997,1999,2000$

*Super year, for which data from different areas from the years 1992 and 1993 are combined in order to have adequate coverage of the US-Vancouver and Columbia INPFC areas.

Table 7. Model parameters, equations, and likelihood components. The symbols i, j and k_{i} denote year (1956-2002), age (3-25) and the selectivity group (0-8) to which year i relates.
(a) The "free" parameters of the population dynamics model, the prior distributions assumed for them, and their ADMB phase. For parameters that are vectors, the length of the parameter vector is given. Priors indicated by asterisks are modified in the tests of sensitivity.

Parameter	Symbol	Length	Priors or Penalty functions	Phase
Average recruitment	\bar{R}		Log-Uniform(- $\infty, \infty)$	1
Unfished equilibrium recruitment	R_{0}		Log-Uniform(- $\infty, \infty)$	1
CPUE catchability	q^{f}		Log-Uniform(- $\infty, \infty)$	1
Triennial survey catchability	q^{T}		Log-Uniform(- $\infty, \infty)$	6
POP survey catchability	q^{P}		Log-Uniform(- $\infty, \infty)$	6
AFSC survey catchability	q^{A}		Log-Uniform(- $\infty, \infty)$	6
NWFSC survey catchability	q^{N}		Log-Uniform(- $\infty, \infty)$	6
Natural mortality	M^{\prime}		Lognormal(0.05,0.1)	6
Stock-recruitment steepness	\bar{F}		Uniform(0.21,0.99)	7
Average fishing mortality	ε_{i}^{R}	72	Log-Uniform(-10,10)	3
Recruitment deviation	ε_{i}^{F}	51	Log-Normal(-10,10)	2
Fishing mortality deviation	s_{j}^{T}	10	Log-Uniform(- $\infty, \infty)$	4
Triennial survey selectivity-at-age	$s_{j}^{S l}$	10	Log-Uniform(- $\infty, \infty)$	4
Slope survey selectivity-at-age	$s_{1956, j}^{F}$	12	Log-Uniform(- $\infty, \infty)$	2
Fishery selectivity-at-age in first year of fishery	$s_{k_{i}, j}^{F}$	104	Log-Uniform(-5,5)	3
Fishery selectivity deviations (every 6 years)			1	

(Table 7 Continued).
(b) The pre-specified parameters of the model (baseline model). Values indicated by asterisks are modified in the tests of sensitivity.

Parameter	Symbol	Value
Plus-group age	$a_{\text {max }}$	25
Age beyond which fishery selectivity is constant	a_{S}^{F}	14*
Age beyond which survey selectivity is constant	a_{S}^{S}	12
Probability an animal of age j is in length-class	$A_{j, l}$	Fig. 8
Probability an animal of age j is aged to be j '.	$B_{j, j^{\prime}}$	Fig. 9*
Weight-at-age	W_{j}	Fig. 7
Age-at-50\%-maturity	μ	8*
Extent of auto-correlation in recruitment	ρ	0*
Extent of variability in recruitment	σ_{R}	1.0*
Number of years in a grouping for time-varying fishery selectivity	g	6*
Weighting factors		
CPUE cv	τ	0.2
Catch biomass weight	λ_{1}	100
Age/size data weight	λ_{3}	1
Fishing mortality regularity weight	λ_{5}	0.0
Selectivity prior overall weight	λ_{6}	1
Fishery selectivity dome-shapedness penalty	λ_{8}	20
Fishery selectivity temporal penalty	λ_{9}	20
Selectivity curvature penalty	λ_{10}	20
Effective sample size		
Fishery age-composition	n_{i}^{F}	50
Fishery size-composition	m_{i}^{F}	50
Survey age-composition	n_{i}^{S}	50
Survey size-composition	m_{i}^{S}	25

(Table 7 Continued)
(c) The derived quantities

Quantity	Equation
Virgin Biomass	$B_{0}=R_{0}\left(1, e^{-M}, e^{-2 M}, \ldots, e^{-21 M}, \frac{e^{-22 M}}{1-e^{-M}}\right) \cdot \vec{W}$
Fishery selectivity-at-age	$s_{i, j}^{F}=s_{1956, j}^{F} \varsigma_{k_{i}, j}^{F}$
Fishing mortality rate	$F_{i, j}=\bar{F} \varepsilon_{i}^{F} s_{i, j}^{F}$
Total mortality rate	$Z_{i, j}=F_{i, j}+M$
Annual survival rate	$S_{i, j}=e^{-Z_{i, j}}$
Number at age	$N_{i, j}=\left\{\begin{array}{cll} \bar{R} \varepsilon_{i}^{R} & & j=3 \\ N_{i-1, j-1} S_{i-1, j-1} & & 4 \leq j \leq 23 \\ N_{i-1,24} S_{i-1,24}+N_{i-1,25} S_{i-1,25} & & j=25 \end{array}\right.$
Maturity-at-age	$\theta_{j}=0.5[1+\exp (-2(j+2-\mu))]^{-1}$
Spawning biomass	$B_{i}=\sum_{j=3}^{x} N_{i, j} \theta_{j} W_{j}$
Predicted recruitment	$\hat{R}_{i}=\frac{B_{i-3}}{\alpha+\beta B_{i-3}} ; \quad \alpha=\frac{B_{0}}{R_{0}} \frac{1-h}{4 h} ; \beta=\frac{5 h-1}{4 h R_{0}}$
Recruitment anomaly	$\xi_{i}=\ln \left(\frac{N_{i, 3}+0.00000001^{*}}{\hat{R}_{i}+0.00000001}\right)$

[^1](Table 7 Continued)
(d) Model predictions

Data Type	Symbol	Model prediction
Triennial survey abundance index $\mathrm{i}=1977,80,83,86,89,92,95,98,2001,2004$	Y_{i}^{T}	$\hat{Y}_{i}^{T}=q^{T} \sum_{j=3}^{x} s_{i, j}^{T} W_{j} N_{i, j}$
POP survey index $\mathrm{i}=1979,1985$	Y_{i}^{P}	$\hat{Y}_{i}^{P}=q^{P} \sum_{j=3}^{X} s_{i, j}^{S l} W_{j} N_{i, j}$
AFSC slope survey index $\mathrm{i}=1992,96,97,99,2000,2001$	Y_{i}^{A}	$\hat{Y}_{i}^{A}=q^{A} \sum_{j=3}^{X} s_{i, j}^{S l} W_{j} N_{i, j}$
NWFSC slope survey index $\mathrm{i}=1999-2004$	Y_{i}^{N}	$\hat{Y}_{i}^{N}=q^{N} \sum_{j=3}^{X} s_{i, j}^{N} W_{j} N_{i, j}$
Historical CPUE index $i=1956,1957, \ldots 1973$	$Y_{i}{ }^{\text {f }}$	$\hat{Y}_{i}^{f}=q^{f} \sum_{j=3}^{x} s_{i, j}^{F} W_{j} N_{i, j}$
Catch biomass $\mathrm{i}=1956, \ldots, 2004$	C_{i}	$\hat{C}_{i}=\sum_{j=3}^{\chi} W_{j} N_{i, j} \frac{F_{i, j}}{Z_{i, j}}\left(1-e^{-z_{i, j}}\right)$
Proportions at age (fishery or survey)	$P_{i, j}^{\text {F/S }}$	$\hat{P}_{i, j}^{l}=\frac{\sum_{j^{\prime}=3}^{\chi} N_{i, j} F_{i, j^{\prime}}^{F / S} B_{j, j^{\prime}}}{\sum_{j^{\prime \prime}=3}^{\chi} N_{i, j^{\prime \prime}} i_{i, j^{\prime \prime}}^{F / S}}$
Proportions at length (fishery or survey)	$L_{i, j}^{\text {F/S }}$	$\hat{L}_{i, j}^{l}=\frac{\sum_{j^{\prime}=3}^{X} N_{i, j} s_{i, j^{\prime}}^{F / S} A_{j^{\prime}, l}}{\sum_{j^{\prime \prime}=3}^{X} N_{i, j^{\prime \prime}} s_{i, j^{\prime \prime}}^{F / S}}$

(Table 7 Continued)
(e) Components of the objective function (data-related); v denotes the number of years for which each datatype is available.

| Component | Data
 type |
| :--- | :--- | :--- |
| $L_{1}=\frac{v}{2} \ln \left(\pi / \lambda_{1}\right)+\lambda_{1} \sum_{i} \ln \left(\left(C_{i}+0.01^{*}\right) /\left(\hat{C}_{i}+0.01\right)\right)^{2}$ | Catch
 biomass |
| $L_{2}=\frac{1}{2}\left(v \ln \left(2 \pi \tau^{2}\right)+\sum_{i} \ln \left(Y_{i}^{f} / \hat{Y}_{i}^{f}\right)^{2} \tau^{-2}\right)$ | Cpue
 index |
| $L_{3}=\frac{1}{2} \sum_{t=T, P, A, N} \sum_{i}\left(\ln \left(2 \pi \ln \left(1+\left(\frac{\sigma_{i}^{t}}{Y_{i}^{t}}\right)^{2}\right)^{2}\right)+\frac{\ln \left(Y_{i}^{t} / \hat{Y}_{i}^{t}\right)^{2}}{\ln \left(1+\left(\frac{\sigma_{i}^{t}}{Y_{i}^{t}}\right)^{2}\right)^{2}}\right)$ | Survey
 index
 (by
 survey
 type |
| $L_{5}=\frac{1}{2} \sum_{i, j} n_{i}^{F / S}\left\{\ln \left(\pi / \lambda_{3}\right)+\ln \left(\frac{0.1}{23}+\hat{P}_{i, j}^{F / S}\left(1-\hat{P}_{i, j}^{F / S}\right)\right)\right\}+\lambda_{3} \sum_{i, j} \ln \left[\exp \left(\frac{n_{i}\left(P_{i, j}^{F / S}-\hat{P}_{i, j}^{F / S}\right)^{2}}{2\left(\frac{0.1}{23}+\hat{P}_{i, j}^{F / S}\left(1-\hat{P}_{i, j}^{F / S}\right)\right)}\right)+0.01\right]^{* *}$ | Fishery
 and
 survey
 age
 data |
| $L_{5}=\frac{1}{2} \sum_{i, j} m_{i}^{F / S}\left\{\ln \left(\pi / \lambda_{3}\right)+\ln \left(\frac{0.1}{24}+\hat{L}_{i, j}^{F / S}\left(1-\hat{L}_{i, j}^{F / S}\right)\right)\right\}+\lambda_{3} \sum_{i, j} \ln \left[\exp \left(\frac{n_{i}\left(L_{i, j}^{F / S}-\hat{L}_{i, j}^{F / S}\right)^{2}}{2\left(\frac{0.1}{24}+\hat{L}_{i, j}^{F / S}\left(1-\hat{L}_{i, j}^{F / S}\right)\right)}\right)+0.01\right]^{* *}$ | Fishery
 and
 survey
 size
 data |

* constants added to avoid $\ln (0)$ or dividing by 0 .
** This formulation is that of Fournier et al. (1990) which is different than that of Fournier et al (1998), as we use the expected proportions instead of the observed proportions for calculating the variance. This reflects the unused robust likelihood code in the 2000 assessment. Only a small difference exists between the results using this formulation and using that of Fournier et al. (1998). While the current formulation has been used in other stock assessments, we recommend investigating the two variance calculations in preparation for future West Coast Pacific ocean perch assessments.
(Table 7 Continued)
(f) Components of the objective function (priors)

Component	Parameter
$P_{1}=\frac{n}{2} \ln \left(2 \pi \sigma_{R}^{2}\right)+\sum_{i \geq 1935} \frac{\left(\xi_{i}-\rho \xi_{i-1}\right)^{2}}{2\left(1-\rho^{2}\right) \sigma_{R}^{2}}$	Recruitment anomalies
$P_{2}=0.001 \lambda_{5} \sum_{i} \ln \left(\varepsilon_{i}^{F}\right)^{2}$	Fishing Mortality regularity
$P_{3 a}=\lambda_{6} \lambda_{10} \sum_{w=T, S l} \sum_{j} \ln \left(\frac{s_{j}^{w} s_{j+2}^{w}}{\left(s_{j+1}^{w}\right)^{2}}\right)^{2}$	Selectivity curvature penalty for survey selectivities
$P_{3 b}=\frac{\lambda_{6} \lambda_{10}}{9} \sum_{k} \sum_{j} \ln \left(\frac{s_{k, j}^{F} s_{k, j+2}^{F}}{\left(s_{k, j+1}^{F}\right)^{2}}\right)^{2}$	Selectivity curvature penalty for fishery selectivities
$P_{3 c}=\lambda_{6} \lambda_{8} \sum_{k} \sum_{j=3}^{a_{m}^{s}-1} \min \left(0, \ln \left(s_{k, j}^{F} / s_{k, j+1}^{F}\right)^{2}\right.$	Penalty for fishery selectivity dome- shapedness
$P_{3 c}=\frac{\lambda_{6} \lambda_{9}}{g} \sum_{k=1}^{8} \sum_{j} \ln \left(s_{k-1, j}^{F} / s_{k, j}^{F}\right)^{2}$	Penalty for changes between groups of (m) years for fishery selectivity
$P_{4}=\frac{\ln (2 \pi)}{2}+\ln (0.1)+\frac{(\ln (M / 0.05))^{2}}{0.02}$	Natural mortality
\quad	

Table 8. Point estimates of the numbers at age (millions of fish) for the US west coast population of Pacific ocean perch (1956-2007) based on Model 1.

	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25+
1956	3.82	8.26	6.05	4.63	3.76	3.20	2.84	2.61	2.45	2.34	2.24	2.13	2.03	1.93	1.84	1.75	1.67	1.59	1.52	1.45	1.39	1.33	30.45
1957	46.80	3.62	7.83	5.73	4.39	3.56	3.02	2.66	2.42	2.26	2.14	2.04	1.94	1.85	1.76	1.68	1.60	1.52	1.45	1.39	1.33	1.27	29.04
1958	4.09	44.40	3.44	7.43	5.43	4.15	3.35	2.82	2.46	2.21	2.05	1.95	1.86	1.77	1.68	1.60	1.53	1.46	1.39	1.32	1.26	1.21	27.57
1959	18.63	3.88	42.12	3.26	7.04	5.14	3.92	3.14	2.63	2.28	2.04	1.89	1.79	1.71	1.63	1.55	1.48	1.41	1.34	1.28	1.22	1.16	26.54
1960	8.80	17.68	3.68	39.94	3.09	6.66	4.85	3.67	2.92	2.42	2.08	1.86	1.73	1.64	1.57	1.49	1.42	1.35	1.29	1.23	1.17	1.12	25.36
1961	4.15	8.35	16.77	3.49	37.85	2.92	6.27	4.53	3.39	2.66	2.19	1.89	1.69	1.57	1.49	1.42	1.36	1.29	1.23	1.17	1.12	1.06	24.04
1962	3.54	3.94	7.92	15.90	3.30	35.69	2.73	5.78	4.09	3.00	2.33	1.92	1.66	1.48	1.37	1.31	1.25	1.19	1.13	1.08	1.03	0.98	22.01
1963	4.87	3.36	3.74	7.51	15.03	3.11	33.17	2.49	5.12	3.52	2.53	1.97	1.62	1.40	1.26	1.17	1.11	1.06	1.01	0.96	0.91	0.87	19.48
1964	14.06	4.62	3.18	3.54	7.10	14.11	2.87	30.00	2.19	4.31	2.88	2.08	1.63	1.35	1.17	1.05	0.97	0.92	0.88	0.84	0.80	0.76	16.91
1965	10.01	13.34	4.38	3.02	3.35	6.67	13.10	2.62	26.66	1.87	3.61	2.42	1.76	1.38	1.14	0.99	0.89	0.82	0.78	0.75	0.71	0.68	14.98
1966	6.66	9.50	12.65	4.15	2.85	3.14	6.15	11.76	2.27	22.02	1.50	2.91	1.98	1.44	1.13	0.93	0.81	0.72	0.67	0.64	0.61	0.58	12.76
1967	4.29	6.31	9.00	11.95	3.89	2.61	2.75	5.01	8.75	1.47	13.16	0.91	1.81	1.23	0.90	0.70	0.58	0.50	0.45	0.42	0.40	0.38	8.33
1968	3.32	4.07	5.98	8.50	11.20	3.57	2.29	2.25	3.75	5.71	0.89	8.03	0.57	1.14	0.78	0.57	0.44	0.37	0.32	0.28	0.26	0.25	5.48
1969	3.64	3.15	3.86	5.66	8.00	10.38	3.20	1.96	1.80	2.73	3.94	0.62	5.72	0.41	0.81	0.55	0.40	0.32	0.26	0.23	0.20	0.19	4.08
1970	2.70	3.45	2.99	3.66	5.36	7.55	9.73	2.96	1.78	1.60	2.42	3.53	0.56	5.20	0.37	0.74	0.50	0.37	0.29	0.24	0.21	0.18	3.88
1971	3.84	2.56	3.27	2.83	3.46	5.03	7.01	8.82	2.59	1.50	1.35	2.08	3.11	0.49	4.57	0.33	0.65	0.44	0.32	0.25	0.21	0.18	3.58
1972	4.78	3.65	2.43	3.10	2.68	3.26	4.69	6.41	7.84	2.23	1.29	1.18	1.86	2.77	0.44	4.08	0.29	0.58	0.39	0.29	0.23	0.19	3.35
1973	6.99	4.53	3.46	2.31	2.94	2.53	3.05	4.34	5.80	6.94	1.97	1.15	1.07	1.69	2.52	0.40	3.70	0.26	0.53	0.36	0.26	0.20	3.21
1974	3.72	6.63	4.30	3.28	2.18	2.77	2.36	2.80	3.87	5.02	6.01	1.73	1.03	0.96	1.51	2.25	0.36	3.31	0.24	0.47	0.32	0.23	3.06
1975	1.47	3.53	6.29	4.08	3.10	2.06	2.59	2.17	2.52	3.39	4.40	5.33	1.56	0.93	0.86	1.36	2.03	0.32	2.99	0.21	0.43	0.29	2.97
1976	1.48	1.39	3.34	5.96	3.86	2.92	1.91	2.37	1.96	2.25	3.05	4.00	4.91	1.44	0.86	0.80	1.25	1.87	0.30	2.75	0.20	0.39	3.00
1977	1.62	1.40	1.32	3.17	5.63	3.61	2.69	1.72	2.08	1.70	1.97	2.71	3.63	4.45	1.30	0.78	0.72	1.14	1.70	0.27	2.49	0.18	3.07
1978	1.55	1.53	1.33	1.25	3.00	5.29	3.35	2.44	1.54	1.85	1.52	1.78	2.48	3.32	4.07	1.20	0.71	0.66	1.04	1.55	0.25	2.28	2.98
1979	1.08	1.47	1.45	1.26	1.18	2.80	4.83	2.96	2.10	1.30	1.57	1.32	1.59	2.22	2.97	3.64	1.07	0.64	0.59	0.93	1.39	0.22	4.70
1980	0.97	1.02	1.40	1.38	1.19	1.10	2.56	4.29	2.56	1.79	1.12	1.38	1.19	1.42	1.99	2.67	3.27	0.96	0.57	0.53	0.84	1.25	4.42
1981	1.82	0.92	0.97	1.32	1.30	1.11	1.01	2.27	3.70	2.18	1.53	0.98	1.24	1.06	1.28	1.78	2.39	2.93	0.86	0.51	0.47	0.75	5.08
1982	2.91	1.73	0.88	0.92	1.25	1.23	1.04	0.92	2.04	3.30	1.95	1.37	0.87	1.10	0.95	1.14	1.59	2.13	2.61	0.77	0.46	0.42	5.19
1983	2.24	2.76	1.64	0.83	0.87	1.18	1.15	0.95	0.84	1.84	2.99	1.76	1.24	0.79	0.99	0.86	1.03	1.44	1.92	2.36	0.69	0.41	5.07
1984	5.39	2.12	2.62	1.56	0.79	0.82	1.09	1.03	0.84	0.73	1.60	2.60	1.53	1.07	0.68	0.86	0.74	0.89	1.24	1.66	2.04	0.60	4.75
1985	1.10	5.11	2.02	2.48	1.47	0.74	0.76	0.98	0.90	0.73	0.63	1.40	2.26	1.33	0.93	0.59	0.75	0.64	0.77	1.08	1.45	1.77	4.65
1986	1.16	1.04	4.85	1.91	2.35	1.38	0.68	0.68	0.86	0.79	0.63	0.55	1.22	1.96	1.15	0.81	0.51	0.65	0.56	0.67	0.94	1.26	5.58
1987	2.36	1.10	0.99	4.59	1.81	2.21	1.28	0.62	0.60	0.75	0.69	0.56	0.48	1.06	1.71	1.00	0.71	0.45	0.57	0.49	0.59	0.82	5.96
1988	3.66	2.24	1.04	0.94	4.35	1.70	2.06	1.17	0.55	0.53	0.67	0.61	0.49	0.42	0.93	1.51	0.88	0.62	0.39	0.50	0.43	0.52	5.97
1989	0.66	3.48	2.12	0.99	0.89	4.09	1.58	1.87	1.03	0.48	0.46	0.57	0.52	0.42	0.37	0.80	1.30	0.76	0.53	0.34	0.43	0.37	5.58
1990	2.14	0.63	3.30	2.01	0.94	0.83	3.78	1.42	1.63	0.88	0.41	0.39	0.49	0.45	0.36	0.31	0.68	1.10	0.65	0.46	0.29	0.37	5.07
1991	3.13	2.03	0.59	3.13	1.91	0.88	0.77	3.46	1.27	1.43	0.78	0.36	0.34	0.43	0.39	0.31	0.27	0.60	0.97	0.57	0.40	0.25	4.76
1992	2.29	2.97	1.93	0.56	2.96	1.79	0.81	0.70	3.01	1.08	1.22	0.66	0.30	0.29	0.36	0.33	0.27	0.23	0.51	0.82	0.48	0.34	4.25
1993	3.45	2.17	2.82	1.83	0.53	2.78	1.66	0.74	0.62	2.61	0.94	1.06	0.57	0.26	0.25	0.31	0.29	0.23	0.20	0.44	0.71	0.42	3.96
1994	3.05	3.28	2.06	2.67	1.73	0.50	2.56	1.49	0.64	0.52	2.20	0.79	0.90	0.48	0.22	0.21	0.27	0.24	0.19	0.17	0.37	0.60	3.71
1995	0.65	2.89	3.11	1.95	2.52	1.62	0.46	2.32	1.31	0.56	0.45	1.90	0.69	0.78	0.42	0.19	0.18	0.23	0.21	0.17	0.15	0.32	3.73
1996	0.73	0.62	2.74	2.95	1.85	2.38	1.51	0.42	2.07	1.15	0.49	0.39	1.67	0.60	0.68	0.37	0.17	0.16	0.20	0.18	0.15	0.13	3.55
1997	5.07	0.69	0.59	2.60	2.79	1.74	2.21	1.38	0.38	1.82	1.01	0.43	0.35	1.46	0.53	0.60	0.32	0.15	0.14	0.18	0.16	0.13	3.23
1998	3.69	4.81	0.66	0.55	2.46	2.63	1.62	2.03	1.24	0.34	1.62	0.90	0.38	0.31	1.31	0.47	0.53	0.29	0.13	0.13	0.16	0.14	3.00
1999	0.53	3.50	4.56	0.62	0.53	2.32	2.45	1.49	1.84	1.11	0.30	1.44	0.80	0.34	0.28	1.17	0.42	0.48	0.26	0.12	0.11	0.14	2.81
2000	0.82	0.51	3.32	4.33	0.59	0.50	2.17	2.27	1.37	1.66	1.01	0.27	1.31	0.73	0.31	0.25	1.06	0.38	0.43	0.23	0.11	0.10	2.68
2001	1.69	0.78	0.48	3.15	4.10	0.56	0.47	2.04	2.13	1.28	1.56	0.94	0.25	1.22	0.68	0.29	0.23	0.99	0.36	0.41	0.22	0.10	2.61
2002	10.47	1.60	0.74	0.46	2.98	3.88	0.53	0.44	1.91	1.98	1.19	1.44	0.87	0.24	1.14	0.63	0.27	0.22	0.92	0.33	0.38	0.20	2.51
2003	5.35	9.93	1.52	0.70	0.43	2.83	3.67	0.50	0.41	1.79	1.86	1.11	1.35	0.82	0.22	1.07	0.59	0.25	0.20	0.86	0.31	0.35	2.55
2004	3.13	5.08	9.42	1.44	0.67	0.41	2.67	3.46	0.47	0.39	1.68	1.74	1.05	1.27	0.77	0.21	1.00	0.56	0.24	0.19	0.81	0.29	2.73
2005	1.61	2.97	4.82	8.94	1.37	0.63	0.39	2.52	3.26	0.44	0.36	1.58	1.64	0.98	1.20	0.72	0.20	0.94	0.52	0.22	0.18	0.76	2.84
2006	1.48	1.53	2.81	4.57	8.48	1.30	0.60	0.37	2.39	3.08	0.42	0.34	1.49	1.55	0.93	1.13	0.68	0.18	0.89	0.50	0.21	0.17	3.40
2007	1.48	1.41	1.45	2.67	4.34	8.04	1.23	0.56	0.35	2.26	2.91	0.39	0.32	1.40	1.46	0.88	1.07	0.65	0.17	0.84	0.47	0.20	3.37

Table 9. Point estimates of the catch-at-age (millions of fish) for the US west coast population of Pacific ocean perch (1956-2006) based on Model 1.

	3		5					10	1	12	13	14	15	16		18	19			22			
1956	0.00	0.00	0.002	0.0	. 01	0.0	0.035	0.0	0.071	0.080	0.080	0.0	0.072	0.0	0.065	0.0	0.059	0.057	0.0	0.052	0.049	0.047	1.084
1957	00	0.00	0.003	0.0	0.014	0.026	0.04	0.065	0.086	0.0	0.089	0.082	0.0	0.075	0.071	0.068	. 06	0.061	0.0	0.056	0.053	0.051	69
	0.000	0.004	0.001	0.006	0.012	0.021	0.03	0.047	0.059	0.063	0.058	0.053	0.051				0.042	0.040	0.038	0.036	0.034	0.033	0.750
1959	0.001	0.000	0.014	0.003	0.019	0.032	0.04	0.066	0.079	0.08	. 072	0.065	0.06	0.059	0.05	0.053	0.0	0.048	0.0	0.044	0.042	0.040	0.909
1960	0.000	0.	0.00	0.049	0.010	0.052	0.07	0.09	0.108	0.105	0.09	0.07	0.072	0.06	0.066	0.06	0.060	0.057	0.054	0.052	0.049	0.047	1.064
1961	0.000	0.002	0.012	0.008	0.226	0.04	0.17	0.20	0.221	0.204	0.16	0.140	0.125	0.116	0.110	0.105	0.100	0.095	0.09	0.087	0.082	0.079	. 777
1962	0.0	0.	0.008	0.050	0.028	0.705	0.106	0.372	0.376	0.323	0.250	0.199	0.172	0.154	0.143	0.136	0.130	0.123	0.118	0.112	0.107	0.102	2.286
1963	0.00	0.00	0.00	0.02	0.160	0.07	1.51	0.1	0.57	0.4	0.32	0.2	0.19	0.1	0.1	0.	. 1	0.	0.1	0.1	0.1	0.105	2.360
1964	0.001	0.	0.003	0.	0.064	0.295	0.11	1.853	0.209	0.491	0.321	0.216	0.170	0.140	0.121	0.109	0.101	0.096	0.091	0.087	0.083	0.079	1.756
65	0.00	0.00	0.00	0.0	0.04	0.1	0.680	0.2	3.366		. 5	0.3	0.242	0.1	. 1	0.	0.122	0.	0.10	0.102	0.097	0.093	2.055
1966	0.0	0.	0.049	0.0	0.095	0.237	0.840	2.478	0.705	7.9	0.532	0.9	0.659	0.	0.377	0.	0.269	0.241	0.223	0.212	0.203	0.193	9
1967	0.00	0.00	0.03	0.1	0.126	0.1	0.36		2.668	0.5	4.5	0.2	. 59	0.40	. 29	0.23	0.191	0.16	0.1	0.137	0.130	0.12	731
1968	0.0	0.00	0.0	0.070	0.25	0.1	0.2	0.3	0.844	1.5	0.23	1.9	0.139	0.2	0.189	0.	0.108	0.	0.077	0.	0.064	0.06	1.335
	00	0.00	0.00	0.	04	0.12	. 07	0.0	0.115		. 2	0.0	. 23	0.0	0.033	0.023	0.0	0.0	. 0	0.009	0.008	0.008	0.167
1970	0.000	0.00	0.00	0.01	0.05	0.1	0.4	0.2	0.194	0.	0.22	0.2	0.04	0.3	0.0	0.05	0.0	0.	0.0	0.01	0.0	0.013	75
	0.000	0.	0.00	0.00	0.02	0.08	. 24	0.550	. 23		0.103		0.182		0.268	0.019	0.038	0.026	0.019	0.015	0.012	0.011	09
1972	0.000	0.00	0.00	0.00	0.015	0.0	0.11	0.2	0.5	0.	0.07	0.05	0.07	0.1	0.01	0.1	0.0	0.02	0.0	0.01	0.009	0.008	0.141
	0.000	0.	0.00	0.006	0.021	0.040	0.100	0.253					0.059		0.138	0.022	0.203		0.029	0.020	0.014	0.011	0.176
1974	0.00	0.00	0.0	0.00	0.01	0.0	0.0	0.1	0.	0.3	0.3	0.0	0.049	0.0	0.0	0.1	0.0	0.	0.0	0.02	0.0	0.01	46
	0.000	0.		0.010	0.02	0.0											0.059		0.087	0.006	0.012	0.008	0.086
1976	0.000	0.00	0.0	0.02	0.0	0.	0.0		0.1		0.		0.2	0.0	0.038	0.0	0.0	0.0	0.0	0.12	0.00	0.01	0.131
1977	0.000	0.		0.	0.052		0.106						0.121				0.024	0.038	0.057	0.009	0.083	0.006	0.102
1978	0.00	0.00	0.0	0.0	0.0	0.2	0.22	0.2	0.		0.12		0.14		0.2	0.	0.0	0.03	0.05	0.08	0.0	0.129	0.168
1979	0.000	0.	0.0	0.	0.0	0.	0.2	0.254	0.2	0.1	0.1	0.0	0.083	0.1	0.	0.	0.056	0.	0.031	0.	0.073	0.012	0.246
1980	0.00	0.0	0.002	0.0	0.018	0.	0.	0.3	0.2		0.085	0.	0.064	0.0	0.10	0.	0.1	0.05	0.0	0.028	0.0	0.067	0.237
	0.0	0.00	0.001	0.	0.009	0.0	0.03	0	0.2	0.	0.08	0.0	0.074	0.0	0.0	0.1	0.	0.	0.052	0.03	0.0	0.04	306
	0.00	0.00	0.000	0.0	0.007	0.0	0.02	0.0	0.091	0.	0.085	0.0	0.0	0.0	0.0	0.05	0.0	0.09	0.12	0.03	0.02	0.019	0.238
1983	0.00	0.00	0.0	0.0	0.0	0.0	0.05	0.0	0.07	0.	0.2	0.1	0.10	0.06	0.08	0.07	0.08	0.12	0.16	0.20	0.059	0.035	0.433
	0.0	0.0		0.		0.0	0.05	0.0	0.06		0.12		. 12		0.05	0.0	0.061	0.	0.10	0.13	0.167	0.049	0.389
1985	0.000	0.00	0.00	0.00	0.01	0.0	0.03	0.0	0.07	0.0	0.0		0.	0.1	0.0	0.0	0.06	0.05	0.0	0.08	0.1	0.1	. 377
	0.0	0.00	0.0	0.0	0.02	0.0	0.03		0.06		0.0		0.098		0.093	0.0	0.041	0.	0.0	0.	0.075	. 10	448
87	0.000	0.000	0.00	0.010	0.01	0.03	0.04	0.0	0.03	0.0	0.0	0.0	0.03	0.0	0.1	0.07	0.0	0.03	0.0	0.03	0.0	0.05	0.412
	0.0	0.00	0.0	0.0	0.	0.0	0.0	0.0			0.059	0.0	0.045	0.0	0.085	0.	0.081	0.	0.036	0.	0.039	0.	. 44
1989	0.00	0.00	0.0	0.00	0.00	0.0	0.07	0.1	0.09	0.0	0.0	0.0	0.05	0.0	0.03	0.08	0.12	0.07	0.05	0.03	0.0	0.03	0.554
1990	0.0	0.0	0.	0.	0.00	0.0	0.1	0	0.1	0.0	. 03	0.0	0.03	0.0	0.02	0.0	0.0	0.	0.0	0.0	0.022	0.028	0.382
1991	0.0	0.0	0.00	0.01	0.01	0.0	0.03	0.2	0.1	0.	0.0	0.0	0.03	0.0	0.0	0.03	0.02	0.06	0.10	0.059	0.0	0.026	0.492
1992	0.0	0.0	0.0	0.0	0.02	0.0	03	0.0	0.2	0.0	0.10	0.0	0.02	0.02	0.03	0.0	0.02	0.02	0.0	0.07	0.0	0.030	0.373
1993	0.0	0.0	0.003	0.0	0.006	0.	. 09	0.0	. 06	0.2	0.10	0.1	0.05	0.0	0.02	0.03	0.02	0.02	0.02	0.0	0.07	0.043	0.409
1994	0.00	0.00	0.00	0.0	0.01	0.0	0.11	0.10	0.054	0.0	0.19	0.0	0.077	0.0	0.01	0.01	0.02	0.02	0.0	0.015	0.032	0.052	0.319
1995	0.0	0.0	0.002	0.	0.021	0.0	0.018	0.	0.093	0.043	0.035	0.	0.0	0.0	0.031	0.0	. 0	0.01	0.0	0.01	0.0	0.023	0.273
6	0.000	0.00	0.00	0.00	0.	0.0	0.05	0.0	. 14	0.0	0.03	0.0	0.12	0.04	0.04	0.02	0.0	0.01	0.01	0.01	0.01	0.009	0.257
1997	0.00	0.0	0.0	0.	0.018	0.	0.	0.	0.021	0.	0.061	0.0	0.020	0.	0.030	0.03	0.0	0.0	0.00	0.01	0.00	0.00	0.186
1998	0.000	0.00	0.00	0.0	0.01	0.0	0.0	0.0	0.06	0.020	0.09	0.0	0.02	0.01	0.073	0.02	0.030	0.016	0.007	0.00	0.009	0.008	0.169
1999	0.00	0.00	0.0	0.	0.003	0.	0.05	0.0	0.082	0.05	0.014	0.0	0.0	0.01	0.01	0.05	0.0	0.02	0.0	0.00	0.00	0.00	0.122
00	0.000	0.000	0.000	0.002	0.00	0.002	0.01	0.022	0.01	0.022	0.01	0.00	0.01	0.00	0.00	0.003	0.01	0.005	0.005	0.003	0.001	0.001	0.032
2001	0.00	0.00	0.00	0.0	0.01	0.0	0.00	0.0	0.04	0.02	0.03	0.01	. 00	0.02	0.01	0.00	0.00	0.02	0.00	0.00	0.005	0.002	0.054
2002	0.000	0.000	0.000	0.000	0.005	0.015	0.003	0.00	0.023	0.025	0.015	0.017	0.010	0.003	0.013	0.007	0.003	0.003	0.011	0.004	0.004	0.002	0.029
003	0.000	0.00	0.000	0.000	0.00	0.009	0.019	0.00	0.00	0.018	0.019	0.011	0.013	0.00	0.002	0.010	0.00	0.002	0.002	0.008	0.003	0.003	0.024
2004	0.000	0.000	0.001	0.001	0.001	0.001	0.012	0.024	0.004	0.004	0.015	0.015	0.009	0.011	0.007	0.002	0.009	0.005	0.002	0.002	0.007	0.003	0.024
2005	0.000	0.000	0.000	0.002	0.001	0.001	0.00	0.008	0.012	0.002	0.002	0.007	0.007	0.00	0.005	0.003	0.001	0.004	0.002	0.001	0.001	0.003	0.013
2006	0.000	0.000	0.000	0.001	0.005	0.002	0.001	0.001	0.009	0.013	0.002	0.002	0.007	0.007	0.004	0.005	0.003	0.001	0.004	0.002	0.001	0.001	0.016

Table 10: Estimates of model parameters, output statistics and fit diagnostics for Model 1 and for the sensitivity tests.

Derived Quantities of Interest	Model 1	Bayesian Medians	Model 1	Retro 2006	Retro 2005	Model 2005	Bayesian Medians
Depletion in 2007 (or 2005)	0.275	0.311	(0.241)	(0.232)	(0.227)	(0.234)	(0.266)
2007 spawning biomass (or 2005)	10,168	10,758	$(8,910)$	$(8,657)$	$(8,412)$	$(8,846)$	$(9,322)$
Unfished spawning biomass	36,983	34,573	36,983	37,304	37,111	37,838	35,371
$\mathrm{B}_{\text {MSY }}$	14,793	13,557	14,793	14,922	14,844	15,135	13,767
MSY	1,411	1,437	1,411	1,291	1,237	1,181	1,266
MSYL	0.400		0.400	0.400	0.400	0.400	
$\mathrm{F}_{\text {MSY }}$	0.038	0.042	0.038	0.034	0.033	0.031	0.037
Exploitation rate at MSY	0.039	0.042	0.039	0.036	0.034	0.032	0.038
$\mathrm{F}_{2004} / \mathrm{F}_{\text {MSY }}\left(\right.$ or $\mathrm{F}_{2002} / \mathrm{F}_{\text {MSY }}$)	0.091		0.091	0.097	0.210	0.211	
Likelihoods							
Objective function	418.66		418.66	396.35	369.07	347.39	
Triennial survey biomass likelihood	45.43		45.43	44.37	43.53	43.16	
POP survey biomass likelihood	0.15		0.15	0.16	0.21	0.48	
AFSC survey biomass likelihood	25.99		25.99	26.02	26.05	25.99	
NWFSC survey biomass likelihood	54.43		54.43	51.77	51.78	54.15	
CPUE likelihood	11.15		11.15	11.21	11.19	11.56	
Triennial survey age likelihood	-53.36		-53.36	-53.68	-52.66	-54.92	
POP/slope survey age likelihood	124.30		124.30	108.45	82.46	55.08	
Fishery biased age likelihood	52.74		52.74	52.65	52.52	52.59	
Triennial survey size likelihood	31.81		31.81	32.45	33.18	33.24	
POP/slope survey size likelihood	39.10		39.10	38.96	39.16	40.82	
Fishery size likelihood	22.00		22.00	22.20	22.58	21.65	
Fishery unbiased age likelihood	25.14		25.14	22.10	20.16	24.13	
Priors							
Catch fit prior	0.24		0.24	0.24	0.23	0.24	
Fdevs prior	0.00		0.00	0.00	0.00	0.00	
Fishery selectivity dome prior	6.21		6.21	38.96	6.09	6.31	
Fishery selectivity change prior	6.84		6.84	6.86	6.85	6.70	
Fishery selectivity curvature prior	2.07		2.07	1.75	1.58	1.21	
Survey selectivity curvature prior	6.68		6.68	6.44	6.48	6.76	
Rho/SigmaR sp-rec prior	18.99		18.99	19.37	18.89	19.58	
Natural mortality prior	-1.25		-1.25	-1.22	-1.24	-1.35	
Steepness prior	0.00		0.00	0.00	0.00	0.00	
Catchability prior	0.00		0.00	0.00	0.00	0.00	
Parameters							
Natural mortality	0.053	0.056	0.053	0.053	0.053	0.051	0.054
Steepness	0.652	0.679	0.652	0.579	0.569	0.551	0.596
Triennial survey catchability	0.248	0.257	0.248	0.252	0.260	0.252	0.256
POP survey catchability	0.476	0.374	0.476	0.466	0.440	0.393	0.347
NWFSC survey catchability	0.371	0.287	0.371	0.348	0.330	0.465	0.401
AFSC survey catchability	0.294	0.230	0.294	0.287	0.274	0.242	0.212

Table 11. MPD and Posterior median estimates for spawning biomass and recruitment.

	MPD estimates		Posterior Medians	
Year	SpBiomass	Recruits	SpBiomass	Recruits
1956	32748	3.82	30465	5.00
1957	31570	46.80	29432	42.85
1958	30490	4.09	28695	5.58
1959	30125	18.63	28645	17.47
1960	29944	8.80	28842	8.92
1961	30193	4.15	29481	4.11
1962	31992	3.54	31421	3.47
1963	33654	4.87	33074	4.67
1964	33291	14.06	32786	15.27
1965	32946	10.01	32395	10.69
1966	30407	6.66	29899	6.85
1967	21651	4.29	21196	4.60
1968	15806	3.32	15377	3.48
1969	13893	3.64	13541	3.68
1970	15520	2.70	15306	2.98
1971	16286	3.84	16205	4.04
1972	16609	4.78	16605	4.48
1973	16729	6.99	16799	7.97
1974	16357	3.72	16459	3.50
1975	16053	1.47	16198	1.50
1976	16073	1.48	16265	1.44
1977	15985	1.62	16169	1.67
1978	16311	1.55	16548	1.55
1979	16099	1.08	16373	1.07
1980	15540	0.97	15819	1.01
1981	14687	1.82	14971	1.95
1982	13882	2.91	14170	2.74
1983	13295	2.24	13588	2.39
1984	12173	5.39	12453	5.70
1985	11156	1.10	11435	1.08
1986	10306	1.16	10573	1.16
1987	9702	2.36	9951	2.60
1988	9403	3.66	9640	3.48
1989	9115	0.66	9350	0.72
1990	8752	2.14	8997	2.30
1991	8379	3.13	8631	3.40
1992	7829	2.29	8045	2.36
1993	7598	3.45	7801	3.78
1994	7215	3.05	7382	3.34
1995	6917	0.65	7094	0.68
1996	6856	0.73	7041	0.73
1997	6882	5.07	7084	5.74
1998	7055	3.69	7272	4.04
1999	7249	0.53	7526	0.55
2000	7331	0.82	7624	0.87
2001	7489	1.69	7798	1.89
2002	7826	10.47	8181	11.38
2003	8428	5.35	8826	6.37
2004	8791	3.13	9214	3.06
2005	8910	1.61	9343	1.58
2006	9210	1.48	9686	1.45
2007	10168		10758	

1.7. Figures

Figure 1. Catch history of Pacific ocean perch (domestic and foreign fleets combined).

Figure 2: Fit of the deterministic stock-recruitment relationship to the spawning stock biomass and recruitment estimates.

Figure 3. Modeled proportion of Pacific ocean perch that are mature females by age.

Figure 4. Weight at age (grams) for Pacific ocean perch used in the assessment model.

Figure 5. Length distributions by age used in the age-length transition matrix.

Figure 6. Assumed relationship between observed age and true age used as an ageing error matrix.

Figure 7. Time series of spawning biomass, exploitation rate and recruitment.

Figure 8. Time series of MPD estimates of spawning biomass and depletion from 2003, 2005 and 2007 base assessment models.

Figure 9. Fit of Model 1 to the survey biomass indices and to the fishery CPUE ($\mathrm{mt} / \mathrm{hr}$) data. Note that each survey has a unique catchability coefficient so that there is a separate trajectory of survey-selected biomass for each survey; the curves shown are only through expected biomass indices for the years of data.

Figure 10. Fit of model 1 to the "biased" (1966-80) fishery age-composition data.

Figure 11. Fit of Model 1 to the "unbiased" $(1994,1999-2004)$ fishery age-composition data.

Figure 12. Fit of model 1 to triennial survey age-composition data.

Figure 13. Fit of Model 1 to POP and slope survey age-composition data.

Figure 14. Fit of Model 1 to fishery size-composition data (1981-1991,1995-1998).

Figure 15. Fit of Model 1 to triennial and slope survey size-composition data.

Figure 16. Fishery selectivity patterns (1956-2007).

Figure 17. Selectivity patterns for the triennial and slope surveys.

Figure 18. Posterior density for steepness.

Figure 19. Prior (dotted curve) and posterior (solid curve) densities for natural mortality.

Figure 20. Posterior density for spawning biomass in 2007

Figure 21. Posterior density for depletion in 2007.

Figure 22. Posterior density for virgin spawning biomass in 2007.

[^0]: ${ }^{1}$ For steepness $=0.2$, recruitment is a linear function of spawning biomass (implying no surplus production if the Beverton-Holt stock-recruitment model is correct and there is no depensatory mortality) while for steepness $=1.0$, recruitment is constant for all levels of spawning stock size.

[^1]: * constants added to avoid $\ln (0)$ or dividing by 0 .

