PACIFIC MACKEREL HARVEST GUIDELINE FOR 2006-2007 SEASON

The Council is scheduled to review the current Pacific mackerel stock assessment and adopt a harvest guideline for the 2006-2007 Pacific mackerel fishing season, which opens July 1, 2006.

The 2005/2006 Pacific mackerel harvest guideline was 17,419 metric tons (mt) with a directed fishery of 13,419 mt and a reserve of 4,000 mt. This reserve was to be used for incidental landings following a potential closure of the directed fishery. As of mid-May 2006, approximately 4,370 mt of Pacific mackerel had been landed.

On May 16-18, the Scientific and Statistical Committee (SSC) Coastal Pelagic Species (CPS) Subcommittee, the Coastal Pelagic Species Management Team (CPSMT), and the Coastal Pelagic Species Advisory Subpanel (CPSAS), held meetings to review the Pacific mackerel stock assessment as prepared by staff at the National Marine Fisheries Service, Southwest Fisheries Science Center (Agenda Item C.1.a, Attachment 1). Reference materials include CPSMT and CPSAS statements with recommendations on the harvest guideline and management measures for 2006-2007. The full SSC will prepare a supplemental statement at the June meeting.

The CPSMT has completed the seventh annual Status of the Pacific Coast CPS Fishery and Recommended Harvest Guidelines – Stock Assessment and Fishery Evaluation (SAFE) – 2006 document (Agenda Item C.1.a, Attachment 2). This document is included in an electronic format on the briefing book CD and is posted on the Council web page. Stock assessment and management recommendations can be found in Chapter 3 and Chapter 9. Once adopted, the 2006 Pacific Mackerel Stock Assessment and Stock Assessment Review Panel report will be included in the 2006 CPS SAFE as Appendix 2.

Council Action: Adopt Pacific Mackerel Harvest Guideline for the 2006/2007 Fishery.

Reference Materials:

- 1. Agenda Item C.1.a, Attachment 1: Assessment of the Pacific Mackerel (Scomber japonicus) Stock for U.S. Management in the 2005-2006 Season.
- 2. Agenda Item C.1.a, Attachment 2 (electronic copy on Council Briefing Book CD): Status of the Pacific Coast Coastal Pelagic Species Fishery and Recommended Acceptable Biological Catches Stock Assessment and Fishery Evaluation 2006.
- 3. Agenda Item C.1.b, CPSAS Report.
- 4. Agenda Item C.1.b, CPSMT Report.

Agenda Order:

- a. Agenda Item Overview
- b. Reports and Comments of Advisory Bodies
- c. Public Comment
- d. Council Action: Adopt Harvest Guideline for 2006-2007 Season

Mike Burner

PFMC 05/25/06

PACIFIC MACKEREL (Scomber japonicus) STOCK ASSESSMENT FOR U.S. MANAGEMENT IN THE 2006-07 FISHING YEAR

by

P. R. Crone, K. T. Hill, and J. D. McDaniel NOAA Fisheries Southwest Fisheries Science Center 8604 La Jolla Shores Drive La Jolla, California, 92037

Submitted to

Pacific Fishery Management Council 7700 NE Ambassador Place, Suite 200 Portland, Oregon 97220-1384

May 24, 2006

TABLE		ii
FIGURES		iii
PREFACE		1
Stock distribution		1
Data.		1
Landings		1
ē		
ē ē		
• •		
Natural mortality-at-ag	ge	2
Survey indices of abune	idance	3
Assessment model		3
Results		3
Overview		3
Fishery selectivity		4
Fits to survey indices		4
Stock-recruitment relat	tionship	4
Fishing mortality-at-ag	<u>ge</u>	4
	<u>ss</u>	
Recruitment		4
Management		4
Research and data needs		5
REFERENCES		5
TABLE		7
FIGURES		8

TABLE OF CONTENTS

TABLE

FIGURES

Figure 1.	Commercial and recreational landings (mt) of Pacific mackerel in California (CA) and Baja California (MX), for 1929-05. Data from 1929-76 are based on a May-April 'fishing year,' and data from 1977-05 are based on a July-June 'fishing year.'
Figure 2.	Pacific mackerel catch-at-age (in proportion) estimates used in the ASAP (2006) baseline model (1929-05)
Figure 3.	Indices of abundance time series for Pacific mackerel used in the ASAP (2006) baseline model. Indices are rescaled (normalized) to a maximum of 1
Figure 4.	Estimated selectivity schedule for fishery (catch-at-age) data (top display) and assumed selectivity ogives for survey-related indices of abundance (Spotter, CPFV, and CalCOFI) from the ASAP (2006) baseline model. Note that CPFV ogive represents (1990-05), with ogive for 1929-89 parameterized with slightly different probabilities for ages 1 and 2
Figure 5.	Observed and predicted estimates from survey index fits generated from the ASAP (2006) baseline model: CPFV (top display); CalCOFI (middle); and Spotter (bottom)
Figure 6.	Beverton-Holt stock (SSB in 1000s mt)-recruitment (R in millions of fish) relationship for Pacific mackerel estimated in the ASAP (2006) baseline model (1929-05). Recruitment estimates are presented as (year+1) values. Strong year classes are highlighted. Steepness=0.36
Figure 7.	Estimated instantaneous fishing mortality (total) F-at-age for Pacific mackerel generated from the ASAP (2006) baseline model
Figure 8.	Estimated biomass (>age-1 fish, B in mt) of Pacific mackerel generated from the ASAP (2006) baseline model (1929-06). Estimated B for ASAP (2005) baseline model is also presented
Figure 9.	Estimated spawning stock biomass (SSB in mt) of Pacific mackerel generated from the ASAP (2006) baseline model (1929-06). The 95% CI associated with this time series is also presented. Estimated 'virgin' SSB from stock-recruitment relationship is presented as solid horizontal line (see Figure 6)
Figure 10	Estimated recruitment (age-0 fish in millions, R) of Pacific mackerel generated from the ASAP (2006) baseline model (1929-06). The 95% CI associated with this time series is also presented

PREFACE

A Pacific mackerel stock assessment is conducted annually in support of the Pacific Fishery Management Council (PFMC) process, which ultimately establishes a harvest guideline (HG or quota) for the fishery that operates off the U.S. Pacific coast. The HG for mackerel applies to a fishing/management season that spans from July 1st and ends on June 30th of the subsequent year (i.e., a 'fishing year' basis). The primary purpose of the assessment is to provide an estimate of current abundance (in biomass), which is used in a harvest control rule for calculation of annual-based quotas. For details regarding this species' harvest control rule, see Amendment 8 of the Coastal Pelagic Species (CPS) Fishery Management Plan (FMP), section 4.0 (PFMC 1998).

The last assessment and quota-setting process was completed in June 2005—setting a 2005-06 'fishing year' (July 1, 2005 – June 30, 2006) quota of 17,419 mt. The 2006-07 stock assessment presented here is an 'update' based on the ASAP model presented to the PFMC in 2005 (see Hill and Crone 2005). In this context, this updated assessment includes an additional year of data associated with sample information used in the overall assessment (e.g., from ongoing fisherydependent and fishery-independent sampling programs), with similar model parameterizations as the analysis conducted in 2005. Also, sensitivity analysis related to the ASAP (2006) baseline model was conducted based on recommendations from previous reviews within the Science and Statistical Committee (SSC) and Coastal Pelagic Species Management Team (CPSMT) forums. In this context, an 'updated' stock assessment is presented here that follows PFMC protocols for 'off year' (i.e., years in which no Stock Assessment Review, STAR, takes place) population assessments of coastal pelagic species. Readers interested in further details regarding the sample data and model parameterizations used in this assessment should consult Hill and Crone (2005). The next formal STAR for Pacific mackerel is scheduled for 2007. Finally, electronic versions of model programs, input data, and displays (table and figures) can be obtained from the authors directly.

Stock distribution

There are possibly three spawning stocks of Pacific mackerel (*Scomber japonicus*) along the Pacific coasts of the U.S. and Mexico: one in the Gulf of California; one in the vicinity of Cabo San Lucas; and one extending along the Pacific coast north of Punta Abreojos, Baja California. The latter "northeastern Pacific Ocean" stock is harvested by fishers in the U.S. and Baja California, Mexico, and is considered in this assessment.

In terms of the U.S.-related management of this species through the PFMC, the northeastern Pacific Ocean population assessed here is considered an independent stock, with no area- or sector-specific allocations. The PFMC's harvest control rule does, however, prorate the seasonal HG by a 70% portion assumed to reside in U.S. waters, see PFMC (1998) and Management below.

Data

Landings

Pacific mackerel landings from both commercial and recreational fisheries in California and commercial landings in Baja California represent the catch time series (1929-06) used in the

assessment, with estimates from all three fishing sectors pooled and treated as a single fishery within the model. Landings were aggregated on a fishing year (see Preface above) basis (Figure 1). For purposes of providing a HG for the 2006 fishing year (July 1, 2006-June 30, 2007), we assumed landings for April-June 2006 and July 2006-June 2007 would be similar to analogous periods in the previous 2005 fishing year; namely, April-June 2005 and then subsequently, July 2005-June 2006.

Additionally, biological data are collected through a California Department of Fish and Game (CDFG) port (commercial) sampling program. The CDFG has collected biological data on Pacific mackerel landed in the San Pedro (southern California) fishery since 1929. Biological data include the following specimen-based information: weight (whole in g), length (fork in mm), sex, maturity, and otoliths for age determination. Further, to some degree, port sampling data have been collected by researchers from Ensenda, Mexico (Instituto Nacional de la Pesca, INP) since 1989, but this information has not been made available to U.S.-based research teams. Thus, particular stock parameter assumptions (e.g., catch-at-age and weight-at-age distributions) used in the assessment model necessarily are based on using (assuming) sample data applicable to the California commercial fishery. We feel that a lack of Baja California port sampling data is not a serious problem for years when catches from the Mexico fleet are relatively low; however, recently, landings from both fisheries are assumed to be roughly equivalent, which potentially could introduce substantial bias inherent in unrepresentative sampling efforts (see Research and data needs below). The CDFG sample sizes relative to total landings are presented Hill and Crone (2005).

Biological parameters

Catch-at-age

Various sources were used to reconstruct a catch-at-age time series for Pacific mackerel (Hill and Crone 2005). For the most part, age determinations involved ageing research based on otoliths. Seven age classes represent the overall population, beginning with age-0 fish and ending with a 'plus group' for age 6 and older (Figure 2)

Weight-at-age

Year-specific weight-at-age distributions (i.e., a matrix) from fishery samples were developed for inclusion in the assessment model. This matrix was used to calculate population biomass (\geq age-1 fish, *B*) and spawning stock biomass (*SSB*) from estimated population abundance (by age in numbers of fish, *N*) generated from the model efforts. While it is possible that the weight estimates associated with the population-at-large differ from those derived through commercial fishery samples, no such fishery-independent data exist to further explore this uncertainty and thus, we assumed growth was similar for both the population and the fisheries that exploit it.

Maturity-at-age

Maturity schedules were not year-specific, but rather assumed consistent from year-to-year (1929-06): age 0=0%; age 1=7%; age 2=25%; age 3=47%; age 4=73%; ages $\geq 5=100\%$.

Natural mortality-at-age

Natural mortality estimates were assumed constant across all ages $(0-\ge 6)$ and years (1929-05), $M=0.5 \text{ yr}^{-1}$.

Survey indices of abundance

Fishery-independent survey data used in the ASAP model include (Figure 3): (1) an index ('proportion positive') of spawning abundance based on ichthyoplankton data collected through the ongoing CalCOFI survey; (2) a standardized, catch-per-unit-effort (CPUE) index from California-based commercial passenger fishing vessel (CPFV) logbooks; and (3) a standardized, index of total abundance from aerial 'spotter' plane survey data. The selectivity distributions associated with these three indices are presented in Figure 4 (bottom display). Ultimately, the three survey abundance indices for Pacific mackerel vary in quality both spatially and temporally; however, following recommendations from the previous STAR (conducted in 2004), no single index is proposed to be superior with respect to comprehensiveness or sampling design. Strengths and weaknesses of each survey program are presented in Hill and Crone (2005).

Assessment model

The stock assessment model for Pacific mackerel was developed using a forward-simulation, maximum likelihood-based Age-structured Assessment Program (ASAP). The ASAP model is based on the 'Automatic Differentiation Model Builder' (ADMB) software environment, which is essentially a C++ library of automatic differentiation code for nonlinear statistical optimization. Hill and Crone (2005) and Legault and Restrepo (1998) provide additional details concerning the ASAP modeling platform.

The final (baseline) ASAP model was based on fishery-dependent data from a single fishery, i.e., combined landings from California's commercial and recreational fisheries, and the fishery off Baja California, Mexico (see above). Fishery-independent data used in the model consisted of three relative abundance time series (survey indices) described above. In general, parameterization of the ASAP (2006) baseline model was similar to the final configuration accepted in the previous assessment conducted in 2005. That is, this year's modeling efforts included sensitivity analysis that resulted in a relatively robust baseline model that generally mimicked the model scenario developed in 2005. Sensitivity analysis addressed both timevarying effective sample sizes (1929-60 and 1961-05) and selectivity (1929-65 and 1966-05) associated with the fishery (catch-at-age) data included in the model (Table 1B). Additionally, preliminary sensitivity analysis involved further examining error assumptions associated with recruitment estimation (recruitment 'deviations' from the stock-recruitment relationship), as well as steepness associated with the stock-recruitment relationship. Finally, given the limited scope of this updated assessment, further details (diagnostics, related parameterizations, and results say) regarding the ASAP (2006) baseline model will be made available at the upcoming meeting in May 2006.

Results

Overview

As stated previously, sensitivity analysis resulted in a robust ASAP (2006) baseline model. Results are presented under several broad categories, including likelihood component estimates (Table 1A), as well as other pertinent model-related estimates (e.g., fishery selectivity, fits to survey indices, and stock-recruitment relationship for Figures 4-6, respectively) and finally, management-related estimated time series (e.g., fishing mortality, biomass, spawning stock biomass, and recruitment for Figures 7-10, respectively). Model scenarios associated with sensitivity analysis (conducted resulted in generally similar findings as the baseline model; critical statistics from these model runs are presented in Table 1B.

Fishery selectivity

In general, an asymptotic fishery (catch-at-age distribution) selectivity ogive was estimated within the ASAP (2006) baseline model, with full selection at age 5 and slightly lower selectivity for the plus group (\geq age-6 fish), see Figure 4 (top display).

Fits to survey indices

Fits to survey indices are presented in Figure 5. For all of the indices, recent data points were fit relatively well, with some poorly fit years earlier in the time series depending on the index of interest. For example, the abbreviated (i.e., ends in 2000) spotter index of abundance was poorly fit in the middle of the time series in the baseline configuration, as well as other scenarios in the overall sensitivity analysis.

Stock-recruitment relationship

The estimated Beverton-Holt (B-H) stock-recruitment relationship for the ASAP (2006) baseline model is presented in Figure 6. As indicated in last year's assessment findings, the baseline model configuration in 2006 resulted in a relatively low estimated steepness (0.36), i.e., minor compensatory processes acting on the spawning stock at low absolute levels of abundance.

Fishing mortality-at-age

Estimated fishing mortality (F)-at-age time series for the ASAP (2006) baseline model are presented in Figure 7.

Biomass

The estimated time series of population biomass (\geq age-1 fish, *B*) for the ASAP (2006) baseline model is presented in Figure 8. Estimated *B* for the 2006 fishing year (July 2006-June 2007) was 112,700 mt. As stated previously, the overall *B* time series from this year's baseline model generally mimicked that estimated in 2005.

Spawning stock biomass

The estimated time series of spawning stock biomass (*SSB*) for the ASAP (2006) baseline model is presented in Figure 9.

Recruitment

In general, estimated recruitment (age-0 fish, *R*) was loosely constrained to a B-H stockrecruitment relationship (see above) in the ASAP (2006) baseline model (Figure 10). That is, given that these models are typically highly parameterized, convergence problems and/or unrealistic estimated recruitment precluded strictly unconstrained estimation of this stock parameter; however, the compensatory productivity of the population at low adult stock sizes (i.e., the 'steepness' parameter) was freely estimated.

Management

A federal FMP for CPS, including Pacific mackerel, was implemented by the PFMC in January 2000 (PFMC 1998), see Preface above. The FMP's harvest policy for Pacific mackerel,

originally implemented by the State of California, is based on MacCall et al. (1985) simulation analysis, with the addition of a proration to nominally account for the portion of the stock assumed to inhabit U.S.-based waters. In Amendment 8 to the CPS FMP (PFMC 1998), the recommended maximum sustainable yield (MSY) harvest control rule for Pacific mackerel was:

HARVEST₀₆ = (BIOMASS₀₆ - CUTOFF) • FRACTION • DISTRIBUTION,

where HARVEST₀₆ is the U.S. HG₀₆ for the 2006 fishing year (July 2006-June 2007), CUTOFF (18,200 mt) is the lowest level of estimated biomass (*B*) at which harvest is allowed, FRACTION (0.3) is the fraction of *B* above the CUTOFF that can be harvested by fisheries, and DISTRIBUTION (0.7) is the average fraction of total *B* in U.S. waters. BIOMASS₀₆ (112,700 mt) is the estimated B_{06} as of July 1, 2006. Based on this harvest control rule, the HG₀₆ is 19,845 mt, which reflects a quota that pertains to the 2006 fishing year (July 2006-June 2007):

B_{06} (mt) Cutoff	(mt) Fracti	on Distribu	tion HG ₀₆ (mt)
112,700	18,2	00 0.3	0.7	19,845

Finally, it is important to note that over the last several fishing years, the U.S.-based commercial fishery has not realized the recommended HGs (Figure 11, top display). However, uncertainty (to some degree) still exists concerning the magnitude of fisheries in Mexico that harvest Pacific mackerel and thus, caution is recommended when interpreting catch vs. HG statistics (see Landings above and Research and data needs below). In this context, total landings (including U.S. commercial, U.S. recreational, and Mexico commercial fisheries) vs. 'hypothetical,' population-wide HGs (i.e., ignoring the 'U.S. Distribution' parameter in the harvest control) are presented in Figure 11 (bottom display).

Research and data needs

Since the late 1920s, California's Pacific mackerel fishery has been sampled by CDFG for purposes of collecting biological (size/age) data that largely serve as the foundation for catch-at-age modeling efforts. However, as previous assessments have noted, biological data from the Mexico-based fishery are generally lacking and further, coalescing catch statistics from this fishery is also somewhat problematic. Thus, NOAA Fisheries (Southwest Fisheries Science Center) continues to emphasize collaborative data exchange with Mexico (INP, Ensenada) researchers to ensure assessment-related results accurately reflect this trans-boundary fish population. Finally, although the ASAP model is a sound modeling platform for analyzing fishery-related data, it is not possible to evaluate some parameterization (including diagnostics) issues inherent in fishery assessments and thus, efforts have begun to develop a length-based, age-structured population analysis for this stock using the Stock Synthesis 2 (SS2) modeling platform (Methot 2005a, 2005b). It is expected that alternative, SS2 model configurations for Pacific mackerel will be presented at the next formal STAR scheduled in 2007.

REFERENCES

Hill, K. T. and P. R. Crone. 2005. Assessment of the Pacific Mackerel (*Scomber japonicus*) stock for U.S. management in the 2005-2006 season. Pacific Fishery Management Council June 2005 Briefing Book, Agenda Item F.1.b, Attachment 1. 167 p.

- Legault, C. M., and V. R. Restrepo. 1998. A flexible forward age-structured assessment program. ICCAT Working Document SCRS/98/58. 15 p.
- MacCall, A. D., R. A. Klingbeil, and R. D. Methot. 1985. Recent increased abundance and potential productivity of Pacific mackerel (*Scomber japonicus*). Calif. Coop. Oceanic Fish. Invest. Rep. 26: 119-129.
- Methot, R. D. 2005a. Technical description of the Stock Synthesis II assessment program: Version 1.17 (March 2005). NOAA Fisheries, Northwest Fisheries Science Center, 2725 Montlake Blvd. East, Seattle, WA 98112. 54 p.
- Methot, R. D. 2005b. User manual for the assessment program Stock Synthesis 2 (SS2): Version 1.19 (April 27, 2005). NOAA Fisheries, Northwest Fisheries Science Center, 2725 Montlake Blvd. East, Seattle, WA 98112. 47 p.
- Pacific Fishery Management Council (PFMC). 1998. Amendment 8: (To the northern anchovy fishery management plan) incorporating a name change to: The coastal pelagic species fishery management plan. Pacific Fishery Management Council, 7700 NE Ambassador Place, Suite 200, Portland, OR, 97220.

Table 1. Estimated likelihood components for the ASAP (2006) baseline model, display (A): *n*=number of observations in that component; λ =weight given that component, *RSS*=residual sum of squared deviations; and *L*=likelihood value. Sensitivity analysis associated with ASAP (2006) baseline model, display (B): scenario=parameterization revision; SSB₀=estimated virgin SSB (mt); SSB₀₆=estimated 2006 SSB (mt); steepness=estimated steepness from stock-recruitment relationship; and *L*_{total}=total likelihood value.

(A)

Component	n	۵	RSS	L	% of Total
Catch (weight) - fishery	78	101	0.0196	1.98	0.2%
Catch-at-age (proportions) - fishery	546	na	na	395.92	33.8%
Fits - Survey indices					
Spotter	37	1	81.92	452.63	
CPFV	63	1	16.78	58.74	
CalCOFI	45	1	27.04	129.28	
All	145	3	125.78	640.89	54.8%
Recruitment (deviations)	78	1	20.08	20.08	1.7%
Stock-recruit fit	78	1	20.08	110.95	9.5%
F penalty	546	0.001	0.5017	0.0005	<1%
Number of estimated parameters (Total)	181	na	na	na	
Objective function (Total)	na	na	na	1,169.81	100%

(B)

Scenario ¹	SSB ₀	SSB ₀₆	Steepness	$L_{ m total}$
(1) Baseline model	212,783	32,171	0.36	1,169.81
(2) Time-varying selectivtiy - Fishery	236,515	34,873	0.35	1,076.78
(3) Time-varying effective sample sizes - Fishery	272,185	39,119	0.34	1,219.23

¹Scenario denotes: (1) final, ASAP (2006) baseline model configuration; (2) model configuration with fishery-related selectivity parameterization based on two time periods (1929-65 and 1966-05); and (3) model configuration with fishery-related effective sample sizes (catch-at-age) based on two time periods (1929-60 and 1961-05).

Figure 1. Commercial and recreational landings (mt) of Pacific mackerel in California (CA) and Baja California (MX), for 1929-05. Data from 1929-76 are based on a May-April 'fishing year,' and data from 1977-05 are based on a July-June 'fishing year.'

Figure 2. Pacific mackerel catch-at-age (in proportion) estimates used in the ASAP (2006) baseline model (1929-05).

Relative abundance

Fishing year

Figure 3. Indices of abundance time series for Pacific mackerel used in the ASAP (2006) baseline model. Indices are rescaled (normalized) to a maximum of 1.

Figure 4. Estimated selectivity schedule for fishery (catch-at-age) data (top display) and assumed selectivity ogives for survey-related indices of abundance (Spotter, CPFV, and CalCOFI) from the ASAP (2006) baseline model. Note that CPFV ogive represents (1990-05), with ogive for 1929-89 parameterized with slightly different probabilities for ages 1 and 2.

Figure 5. Observed and predicted estimates from survey index fits generated from the ASAP (2006) baseline model: CPFV (top display); CalCOFI (middle); and Spotter (bottom).

Figure 6. Beverton-Holt stock (SSB in 1000s mt)-recruitment (R in millions of fish) relationship for Pacific mackerel estimated in the ASAP (2006) baseline model (1929-05). Recruitment are presented as (year+1) values. Strong year classes are highlighted. Steepness=0.36

Figure 7. Estimated instantaneous fishing mortality (total) F-at-age for Pacific mackerel generated from the ASAP (2006) baseline model.

B (mt)

Figure 8. Estimated biomass (>age-1 fish, B in mt) of Pacific mackerel generated from the ASAP (2006) baseline model (1929-06). Estimated B for ASAP (2005) baseline model is also presented.

Figure 9. Estimated spawning stock biomass (SSB in mt) of Pacific mackerel generated from the ASAP (2006) baseline model (1929-06). The 95% CI associated with this time series is also presented. Estimated 'virgin' SSB from stock-recruitment relationship is presented as solid horizontal line (see Figure 6).

Figure 10. Estimated recruitment (age-0 fish in millions, R) of Pacific mackerel generated from the ASAP (2006) baseline model (1929-06). The 95% CI associated with this time series is also presented.

Figure 11. Commercial landings (California directed fishery in mt) and quotas (HGs in mt) for Pacific mackerel (1992-06), display (A). Total landings (mt) and hypothetical quotas for Pacific mackerel (2000-06) based on no U.S. Distribution parameter in harvest control rule, display (B). Incidental landings from Pacific Northwest fisheries are not included, but typically range 100 to 300 mt per year.

Agenda item C.1.a Attachment 2 June 2006

STATUS OF THE PACIFIC COAST COASTAL PELAGIC SPECIES FISHERY AND RECOMMENDED ACCEPTABLE BIOLOGICAL CATCHES

STOCK ASSESSMENT AND FISHERY EVALUATION 2006 JUNE BRIEFING BOOK DRAFT

PACIFIC FISHERY MANAGEMENT COUNCIL 7700 NE AMBASSADOR PLACE, SUITE 200 PORTLAND, OR 97220 503-820-2280 www.pcouncil.org

JUNE 2006

ACKNOWLEDGMENTS

COASTAL PELAGIC SPECIES MANAGEMENT TEAM

Dr. Paul Crone, National Marine Fisheries Service, Southwest Fisheries Science Center

Mr. Brian Culver, Washington Department of Fish and Wildlife

Dr. Samuel Herrick, Chair, National Marine Fisheries Service, Southwest Fisheries Science Center

Dr. Kevin Hill, National Marine Fisheries Service, Southwest Fisheries Science Center

Ms. Leeanne Laughlin, California Department of Fish and Game

Ms. Jean McCrae, Oregon Department of Fish and Wildlife

Mr. Dale Sweetnam, California Department of Fish and Game

ADDITIONAL INFORMATION FOR THIS REPORT PROVIDED BY:

Mr. Mike Burner, Staff, Pacific Fishery Management Council

Ms. Donna Dealy, National Marine Fisheries Service, Southwest Fisheries Science Center

Ms. Diane Pleschner-Steele, California Wetfish Producers Association, Buellton, California

Mr. Josh Lindsay, National Marine Fisheries Service, Southwest Region

DOCUMENT PRODUCTION AND EDITORIAL SUPPORT PROVIDED BY:

Ms. Renee Dorval, Staff, Pacific Fishery Management Council

Ms. Carrie Compton, Staff, Pacific Fishery Management Council

Ms. Sara Stauffer, Staff, Pacific Fishery Management Council

This document may be cited in the following manner:

Pacific Fishery Management Council. 2006. Status of the Pacific Coast coastal pelagic species fishery and recommended acceptable biological catches. Stock assessment and fishery evaluation - 2006.

This document is published by the Pacific Fishery Management Council pursuant to National Oceanic and Atmospheric Administration Award Number NA05NMF4410008.

TABLE OF CONTENTS

	Page
Table of Contents	i
List of Tables	iii
List of Figures	v
List of Acronyms and Abbreviations	vi
1.0 INTRODUCTION	
2.0 THE CPS FISHERY	
2.1 Management History 2.2 Recent Management	3
2.2.1 Amendment 8 2.2.2 Amendment 9	4
2.2.3 Amendment 102.2.4 Sardine Allocation Regulatory Amendment2.2.4 Amendment 11	4
 2.2.5 Amendment 12 2.3 THE CPS FLEET 2.3.1 Limited Entry Fishery 	7
2.3.2 Northern Fisheries	8 8
2.3.2.2 Washington 2.3.3 Treaty Tribe Fisheries	
3.0 STOCK ASSESSMENT MODELS	11
 3.1 PACIFIC SARDINE	11
4.0 OPTIMUM YIELD, MAXIMUM SUSTAINABLE YIELD, AND MAXIMUM SUS' YIELD CONTROL RULES	
 4.1 OPTIMUM YIELD 4.2 MAXIMUM SUSTAINABLE YIELD, MSY CONTROL RULES, AND ACCEPTABLE BIOLOGICAL CATCH. 4.3 MSY CONTROL RULES FOR CPS	
4.3.1 General MSY Control Rule for Actively Managed Species	
4.3.3 MSY Control Rule for Pacific Mackerel	17
4.3.4 MSY Control Rule for Market Squid	
5.0 OVERFISHING CONSIDERATIONS	
 5.1 Definition of Overfishing 5.2 Definition of an Overfished Stock	19
6.0 BYCATCH AND DISCARD MORTALITY	
6.1 Federal Protection Measures	
6.1.1 California Coastal Pelagic Species Pilot Observer Program	23
6.2 FISHERY SOUTH OF PIGEON POINT	
6.3 FISHERY NORTH OF POINT ARENA6.4 SECTION REFERENCES	25

7.0	CALIFORNIA LIVE BAIT FISHERY	27
71	INTRODUCTION	27
	Legislative History	
	LOGBOOK INFORMATION	
	SPECIES COMPOSITION	
	References:	
8.0	VESSEL SAFETY CONSIDERATIONS	
9.0	SUMMARY OF STOCK STATUS AND MANAGEMENT RECOMMENDATIONS	
9.1	ACTIVELY MANAGED SPECIES	
	.1.1 Pacific Sardine	
	9.1.1.1 Harvest Guideline for 2006	
9	.1.2 Pacific Mackerel	
	9.1.2.1 Harvest Guideline for 2006-2007	
	MONITORED SPECIES	
	2.1 Northern Anchovy	
	2.2 Jack Mackerel	
9	2.3 Market Squid.	
0.2	9.2.3.1 California's Market Squid Fishery REFERENCES	
10.0	EMERGING ISSUES	
	PACIFIC SARDINE	
	PACIFIC MACKEREL	
	Market Squid	
	MANAGEMENT ISSUES	
	0.4.1 Bycatch Reporting and Observer Programs	
	0.4.2 Market Squid Overfishing Definition	
1	0.4.3 International CPS Fisheries	41
11.0	RESEARCH AND DATA NEEDS	
11.1		
11.2	PACIFIC MACKEREL	44
11.3		
11.4		
11.5		
11.6		
11.7	References	46
12.0 IN 200	ECONOMIC STATUS OF WASHINGTON, OREGON, AND CALIFORNIA CPS FISH	

LIST OF TABLES

		Page
Table 1.	History of Council Actions	T - 1
Table 2.	Regulatory Actions	T - 7
Table 3.	Coastal pelagic species limited entry permit vessel listing	. T - 13
Table 4.	Vessel age and calculated GT for the initial and current limited entry fleet	. T - 14
Table 5.	Preliminary catch summary for vessels targeting Pacific sardine from NMFS-SWR coastal pelagic species pilot observer program.	. T - 15
Table 6.	Preliminary catch summary for vessels targeting market squid from NMFS-SWR coastal pelagic species pilot observer program.	. T - 17
Table 7.	Preliminary catch summary for vessels targeting Pacific mackerel from NMFS-SWR coastal pelagic species pilot observer program.	. T-18
Table 8.	Preliminary catch summary for vessels targeting northern anchovy from NMFS-SWR coastal pelagic species pilot observer program.	. T-18
Table 9.	Number of commercial landings sampled by CDFG port sampling program, 1985-2005	. T-19
Table 10.	Incidental catch from landings sampled by the CDFG port sampling program, 1992-1999	. T-19
Table 11.	Percent frequency of bycatch in observed incidents of CPS finfish, by port, 2001-2005.	
Table 12a.	Market squid incidental catch for 2001 - 2005.	. T - 23
Table 12b.	Percent frequency of bycatch in observed loads of California market squid by port, 2001-2005	. T - 24
Table 13.	Expanded salmonid bycatch in Pacific sardine fisheries in Oregon and Washington, 2000-2005	. T - 28
Table 14.	Observed and reported catches of non-target species caught in Oregon sardine fishery, 2005.	. T - 28
Table 15.	List of reported logbook catches of non-targeted species caught in the 2005 Washington sardine fishery	. T - 29
Table 16.	Species noted as encountered on CDFG Live Bait Logs, 1996-2005.	. T - 29
Table 17.	Estimates of Pacific sardine and Northern anchovy live bait harvest in California (mt).	. T - 30

LIST OF TABLES (continued)

Table 18.	Ratio of anchovy to sardine in reported live bait catch in California, 1994-2005.	T - 31
Table 19.	Commercial harvest (metric tons) of CPS finfish in Ensenada, Baja California, Mexico, for calendar years 1978-2004	T-32
Table 20.	Pacific sardine population numbers at age	T - 33
Table 21.	Annual U.S. Pacific sardine landings and harvest guidelines (metric tons) by state and management subarea, 1981-2005.	T-34
Table 22.	West Coast Pacific sardine landings by country, 1981-2005.	T - 35
Table 23.	RecFIN estimated recreational harvest of Pacific (chub) mackerel by state, 1980-2005.	T-36
Table 24.	RecFIN estimated recreational harvest of Pacific (chub) mackerel by fishing mode.	T-37
Table 25.	West coast landings (mt) and real ¹ exvessel revenues, 1981-2005	T - 38
Table 26.	Pacific coast landings (mt) and real1 exvessel revenues by area, 1981-2005	T-39
Table 27.	Average annual real exvessel prices	T - 44
Table 28.	Pacific coast landings (mt) and real1 exvessel revenues by state, 1981-2005	T - 45
Table 29.	Pacific coast landings (mt) and real1 exvessel revenues by gear group, 1981-2005	T-48
Table 30.	Number of vessels with Pacific coast landings of CPS finfish by landing area, 1981-2005	T-49
Table 31.	Number of vessels with Pacific coast landings of market squid by landing area, 1981-2005	T-50
Table 32.	Number of vessels with CPS finfish as principle species by principle landing area, 1981-2005.	T-51
Table 33.	Number of vessels with market squid as principle species by principle landing area, 1981-2005	T-52
Table 34.	Number of processors and buyers, by landing area, whose annual purchases of CPS finfish represents the largest share of their total annual exvessel	T-53
Table 35.	Number of processors and buyers, by landing area, whose annual purchases of market squid represents the largest share of their total annual exvessel	T-554

LIST OF FIGURES

Figure 1.	Figure 1. Distribution of jack mackerel and northern anchovy eggs collected during CalCOFI cruise 0604 (April 2006)	-1
Figure 2.	Annual Pacific coast landings and real exvessel revenues for all CPS species, 1981-2005F	7-2
Figure 3.	Percentage contribution of Pacific coast CPS finfish and market squid landings to the total exvessel value of all Pacific coast landings, 1981-2005F	7-3
Figure 4.	Pacific coast CPS finfish landings and real exvessel price, 1981-2005	7-4
Figure 5.	Pacific coast market squid landings and real exvessel price, 1981-2005	-5
Figure 6.	Number of vessels with Pacific coast landings of CPS finfish, and number for which CPS finfish was the principle species, 1981-2005F	⁷ -6
Figure 7.	Number of vessels with Pacific coast landings of market squid, and number for which market squid was the principle species, 1981-2005.	?-7
Figure 8.	Average share principle species revenues of total revenues for vessels whose principle species was CPS finfish, market squid or non-CPS, 1981-2005	7-8

LIST OF ACRONYMS AND ABBREVIATIONS

ABC	acceptable biological catch
CalCOFI	California Cooperative Oceanic Fisheries Investigations
CANSAR-TAM	Catch-at-age Analysis for Sardine - Two Area Model
CDFG	California Department of Fish and Game
CESA	California Endangered Species Act
Commission	California Fish and Game Commission
Council	Pacific Fishery Management Council
CPFV	commercial passenger fishing vessel
CPS	coastal pelagic species
CPSMT	Coastal Pelagic Species Management Team
CPSPDT	Coastal Pelagic Species Plan Development Team
CPUE	catch per unit effort
CUFES	Continuous Underway Fish Egg Sampler
CV	coefficient of variation
DEPM	daily egg production method
EEZ	exclusive economic zone
EFH	essential fish habitat
ENSO	El Niño southern oscillation
FMP	fishery management plan
GIS	Geographic Information System
GT	gross tonnage
HG	harvest guideline
LE	limited entry
LIDAR	light detection and ranging
Magnuson-Stevens Act	Magnuson-Stevens Fishery Conservation and Management Act
MAXCAT	maximum harvest level parameter
MSY	maximum sustainable yield
mt	metric ton
NMFS	National Marine Fisheries Service
ODFW	Oregon Department of Fish and Wildlife
OY	optimum yield
PacFIN	Pacific Coast Fisheries Information Network
PFAU	Pelagic Fisheries Assessment Unit
RecFIN	Recreational Fishery Information Network
RFA	Regulatory Flexibility Act
RIR	regulatory impact review
ROV	remotely operated vehicle
SAFE	stock assessment and fishery evaluation
Secretary	U.S. Secretary of Commerce
SSC	Scientific and Statistical Committee
SST	sea surface temperature
STAR	Stock Assessment Review (Panel)
STAT	Stock Assessment Team
SWFSC	Southwest Fisheries Science Center (NMFS)
VPA	virtual population analysis
WDFW	Washington Department of Fish and Wildlife

1.0 INTRODUCTION

The Guidelines for Fishery Management Plans (FMPs) published by the National Marine Fisheries Service (NMFS) require that a stock assessment and fishery evaluation (SAFE) report be prepared and reviewed annually for each FMP. SAFE reports are intended to summarize the best available scientific information concerning the past, present, and possible future condition of the stocks, marine ecosystems, and fisheries being managed under federal regulation. Regional Fishery Management Councils use this information to determine annual harvest levels for each stock; document significant trends or changes in the resources, marine ecosystems, and fishery over time; and assess the relative success of existing state and federal fishery management programs.

This is the seventh *Status of the Pacific Coast Coastal Pelagic Species Fishery* SAFE document prepared for the Pacific Fishery Management Council (Council). Following NMFS guidelines, the purpose of this report is to briefly summarize aspects of the coastal pelagic species (CPS) FMP and to describe the history of the fishery and its management. Species managed under this FMP include: Pacific sardine (*Sardinops sagax*), Pacific mackerel (*Scomber japonicus*), northern anchovy (*Engraulis mordax*), jack mackerel (*Trachurus symmetricus*), and market squid (*Loligo opalescens*).

The SAFE report for Pacific Coast CPS fisheries was developed by the Council's Coastal Pelagic Species Management Team (CPSMT) from information contributed by scientists at NMFS, Southwest Fisheries Science Center (SWFSC), California Department of Fish and Game (CDFG), Oregon Department of Fish and Wildlife (ODFW), and Washington Department of Fish and Wildlife (WDFW). Included in this report are descriptions of landings, fishing patterns, estimates of the status of stocks (including stock assessments for Pacific mackerel and Pacific sardine, Appendix 1 and Appendix 2), and acceptable biological catches (ABCs).

The ABC recommendations, together with social and economic factors, are considered by the Council in determining annual harvest guidelines and other measures for actively managed fisheries (i.e., Pacific mackerel and Pacific sardine).

Members of the CPSMT are: Dr. Sam Herrick, Chair (NMFS); Dr. Paul Crone, Vice Chair (NMFS); Mr. Brian Culver (WDFW); Dr. Kevin Hill (NMFS); Ms. Leeanne Laughlin (CDFG); Ms. Jean McCrae (ODFW); and Mr. Dale Sweetnam (CDFG). Mr. Josh Lindsay (NMFS), Ms. Donna Dealy (NMFS) Mr. Mike Burner (Council staff), and Ms. Diane Pleschner-Steele (CPSAS) also provided information for this report.

2.0 THE CPS FISHERY

2.1 Management History

The CPS FMP is an outgrowth of the *Northern Anchovy Fishery Management Plan*, which was implemented in September 1978. The Council began to consider expanding the scope of the northern anchovy FMP in 1990, with development of the seventh amendment to the FMP. The intent was to develop a greatly modified FMP, which included a wider range of coastal pelagic finfish and market squid. A complete draft was finished in November of 1993, but the Council suspended further work because NMFS withdrew support due to budget constraints. In July 1994, the Council decided to proceed with public review of the draft FMP. NMFS agreed with the decision on the condition the Council also consider the options of dropping or amending the northern anchovy FMP. Four principal options were considered for managing CPS fisheries:

- 1. Drop the anchovy FMP (results in no federal or Council involvement in CPS).
- 2. Continue with the existing FMP for anchovy (status quo).
- 3. Amend the FMP for northern anchovy.
- 4. Implement an FMP for the entire CPS fishery.

In March 1995, after considering the four options, the Council decided to proceed with option four, developing an FMP for the entire CPS fishery. Final action was postponed until June 1995 when the Council adopted a draft plan that had been revised to address comments provided by NMFS and the Council's Scientific and Statistical Committee (SSC). Amendment 7 was submitted to the U.S. Secretary of Commerce (Secretary), but rejected by NMFS Southwest Region as being inconsistent with National Standard 7. NMFS announced its intention to drop the FMP for northern anchovy in a proposed rule published in the *Federal Register* on March 26, 1996 (61*FR*13148). The proposed rule was withdrawn on November 26, 1996 (61*FR*60254). Upon implementation of Amendment 8 (see below), the northern anchovy FMP was renamed the Coastal Pelagic Species Fishery Management Plan.

2.2 Recent Management

For a complete listing of formal Council actions and NMFS regulatory actions since implementation of the CPS FMP see Tables 1 and 2, respectively.

2.2.1 Amendment 8

Development of Amendment 8 to the northern anchovy FMP began during June 1997 when the Council directed the Coastal Pelagic Species Plan Development Team to amend the FMP for northern anchovy to conform to the recently revised Magnuson-Stevens Fishery Conservation and Management Act (Magnuson-Stevens Act) and to expand the scope of the FMP to include other species harvested by the CPS fishery.

In June 1999, NMFS partially approved the CPS FMP. Approved FMP elements included the management unit species; CPS fishery management areas, consisting of a limited entry zone and two subareas; a procedure for setting annual specifications including harvest guidelines, quotas, and allocations; provisions for closing directed fisheries when the directed portion of a harvest guideline or quota is taken; fishing seasons for Pacific sardine and Pacific mackerel; catch restrictions in the limited entry zone and, when the directed fishery for a CPS is closed, limited harvest of that species to an incidental limit; a limited entry program; authorization for NMFS to issue exempted fishing permits for the harvest of CPS that otherwise would be prohibited; and a framework process to make management decisions without amending the FMP.

At that time, NMFS disapproved the optimum yield (OY) designation for market squid, because there was no estimate of maximum sustainable yield (MSY). Bycatch provisions were disapproved for lack of standardized reporting methodology to assess the amount and type of bycatch and because there was no explanation of whether additional management measures to minimize bycatch and the mortality of unavoidable bycatch were practicable.

On December 15, 1999, final regulations implementing the CPS FMP were published in the *Federal Register* (64*FR*69888). Provisions pertaining to issuance of limited entry permits were effective immediately. Other provisions, such as harvest guidelines, were effective January 1, 2000.

2.2.2 Amendment 9

During 1999 and 2000, the CPSMT developed Amendment 9 to the CPS FMP. Originally, Amendment 9 addressed both disapproved provisions of the FMP – bycatch and market squid MSY. The amendment also included provisions to ensure treaty Indian fishing rights are implemented according to treaties between the U.S. and specific Pacific Northwest tribes.

The Council distributed Amendment 9 for public review on July 27, 2000. At its September 2000 meeting, the Council reviewed written public comments, received comments from its advisory bodies, and heard public comments. Based on advice about market squid MSY determination, the Council decided to include in Amendment 9 only the provisions for bycatch and treaty Indian fishing rights. The Council decided to conduct further analysis of the squid resource and prepare a separate amendment to address OY and MSY for squid. The Secretary approved Amendment 9 on March 22, 2001, and the final rule implementing Amendment 9 was published August 27, 2001 (66FR44986).

2.2.3 Amendment 10

In April 2001, the Council adopted a capacity goal for the CPS limited entry finfish fishery and asked the CPSMT to begin work on a 10th amendment to the FMP. Amendment 10 included the capacity goal, provisions for permit transferability, a process for monitoring fleet capacity relative to the goal, and a framework for modifying transferability provisions as warranted by increases or decreases in fleet capacity. The amendment also addressed determination of OY and MSY for market squid.

In June 2002, the Council adopted Amendment 10 to the CPS FMP. Relative to the limited entry fishery, the amendment established a capacity goal, provided for limited entry permit transferability to achieve and maintain the capacity goal, and established a process for considering new limited entry permits. The purpose of this action was to ensure fishing capacity in the CPS limited entry fishery is in balance with resource availability. Relative to market squid, Amendment 10 established an MSY (or proxy) for market squid to bring the FMP into compliance with the Magnuson-Stevens Act. The purpose of this action was to minimize the likelihood of overfishing the market squid resource. On December 30, 2002, the Secretary of Commerce approved Amendment 10. On January 27, 2003, NMFS issued the final rule and regulations implementing Amendment 10 (68*FR*3819).

2.2.4 Sardine Allocation Regulatory Amendment

In September 2002, the CPSAS recommended the Council initiate a regulatory or FMP amendment and direct the CPSMT to prepare management alternatives for revising the sardine allocation framework. The Council directed the CPSMT to review CPSAS recommendations for revising the allocation framework. At the March 2003 Council meeting, the SSC and CPSAS reviewed analyses of the proposed management alternatives for sardine allocation. Based on the advisory body recommendations and public comment, the Council adopted five allocation management alternatives for public review. In April 2003, the Council took final action on the regulatory amendment. This change was implemented by NMFS on
September 4, 2003 (68*FR*52523), the new allocation system: (1) changed the definition of Subarea A and Subarea B by moving the geographic boundary between the two areas from 35°40' N latitude (Point Piedras Blancas, California) to 39° N latitude (Point Arena, California), (2) moved the date when Pacific sardine that remains unharvested is reallocated to Subarea A and Subarea B from October 1 to September 1, (3) changed the percentage of the unharvested sardine that is reallocated to Subarea A and Subarea B from 50% to both subareas, to 20% to Subarea A and 80% to Subarea B, and (4) provided for coastwide reallocation of all unharvested sardine that remains on December 1. This revised allocation framework was in place for the 2003 and 2004 fishing seasons. It was also used in 2005 because the 2005 harvest guideline is at least 90% of the 2003 harvest guideline.

2.2.4 Amendment 11

The Council began developing options for a new allocation framework for the coastwide Pacific sardine fishery in 2003 while the fishery operated under the regulatory amendment described in the previous section. This revision to the sardine allocation framework will occur through Amendment 11 to the CPS FMP in 2006. The FMP amendment is intended to achieve optimal utilization of the resource and equitable allocation of harvest opportunity.

The Council tasked the CPSAS with initial development of a range of allocation alternatives. At the November 2004 meeting, the CPSAS presented several program objectives and a suite of alternative allocation formulae. The Council adopted for preliminary analysis the a range of alternatives, including the CPSAS recommendations, as well as the following program objectives:

- Strive for simplicity and flexibility in developing an allocation scheme.
- Transfer quota as needed.
- Utilize optimum yield.
- Implement a plan that balances maximizing value and historic dependence on sardine.
- Implement a plan that shares the pain equally at reduced harvest guideline (HG) levels.
- Implement a plan that produces a high probability of predictability and stability in the fishery.

For the analysis of the alternatives, the Council gave specific direction to the CPSMT, including:

- Analyze each alternative in a consistent manner.
- Review differential impacts on northern and southern sectors for each alternative.
- Review effects of high and low catch years by sector for each alternative.
- Review resulting effects at various HG levels ranging from 25,000 mt to 200,000 mt (at appropriate intervals) for each alternative.
- At the discretion of the CPSMT, combine aspects of the various alternatives to create new alternatives that meet program objectives.

At the April 2004 Council meeting, the CPSMT presented preliminary economic analyses of these alternatives to the Council and its advisory bodies. The economic analysis of alternative allocation schemes included five-year projections of the incremental change in producer surplus and landings projections for each fishing sector and subarea. Monthly landing projections were based on 2004 landings and were inflated by 10% annually to account for expected growth in the regional fishery sectors over the next five years. These projections identified months in which there would be a shortfall in landings and months which would start out with no available allocation. These landings projections were conducted under three HG scenarios: (1) low HG = 72,000 mt; (2) Base case HG = 136,000 mt; and, (3) high HG = 200,000 mt.

The Council reviewed the preliminary results and public testimony before following the advice of both the CPSAS and the CPSMT when adopting the remaining range of alternatives for further analysis and public review. The Council directed the CPSMT to take into account the advice of the Scientific and

Statistical Committee as they proceed with the analysis. Specifically, the Council requested a sensitivity analysis of the effects of future fishery growth where varying growth assumptions by subarea are applied rather than the previously assumed 10% growth of the fishery coastwide. The Council also recommended that two different provisions for the review of a sardine allocation framework be included in the documentation for public review. The first based on time, where sardine allocation would be reviewed after three, five, or seven years of implementation; the second based on the size of the HG, where sardine allocation would be revisited if the HG falls below 75,000 mt or 100,000 mt.

In June 2005, the Council adopted a long-term allocation framework to apportion the annual Pacific sardine harvest guideline among the various non-tribal sectors of the sardine fishery. The Council followed the unanimous opinion of the CPSAS when adopting a seasonal allocation scheme which provides the following allocation formula for the non-tribal share of the harvest guideline:

- (1) January 1, 35% of the harvest guideline to be allocated coastwide;
- (2) July 1, 40% of the harvest guideline, plus any portion not harvested from the initial allocation, to be reallocated coastwide; and
- (3) September 15, the remaining 25% of the harvest guideline, plus any portion not harvested from earlier allocations, to be reallocated coastwide.

The Council also heeded the advice of the CPSAS, the CPSMT, and the SSC regarding the dynamic nature of the Pacific sardine resource and uncertainties inherent in long-term projections and scheduled a formal review of the allocation formula in 2008. This review will provide a comparison of the performance of the fishery in the first two years to the projections used to evaluate the adopted allocation scheme and will include any new information from Pacific sardine research. The Council recommended NMFS continue to pursue coastwide research on the Pacific sardine stock and requested a report from the Southwest Fisheries Science Center at the September Council meeting regarding CPS research plans. The Council further recommended that NMFS work closely with the governments of Mexico and Canada to facilitate fishery data exchange and strong international resource stewardship of trans-boundary fish resources. The proposed krill management measures will be implemented as Amendment 12 to the Coastal Pelagic Species Fishery Management Plan.

2.2.5 Amendment 12

At the November 2004 meeting, the Council, initiated development of a formal prohibition on directed fisheries for krill and directed staff to begin development of management measures to regulate directed fisheries for krill within Council-managed waters. The proposal for a krill ban was first proposed for West Coast National Marine Sanctuary waters by the National Marine Sanctuary Program. These measures are recommended to be incorporated into an amendment to the CPS FMP. The Council also included a specific alternative for analysis that would prohibit directed krill fisheries within waters of West Coast National Marine Sanctuaries.

This proposed action is in recognition of the importance of krill as a fundamental food source for much of the marine life along the West Coast. Moreover, state laws prohibit krill landings by state-licensed fishing vessels into California, Oregon, and Washington, respectively. Thus, the action could provide for consistent federal and state management. There are currently no directed krill fisheries in Councilmanaged waters.

The NMFS has taken the lead on this proposed krill amendment and briefed the Council and advisory bodies on progress at the March and April 2005 Council meetings. The Council anticipates an update by NMFS at the September 2005 meeting including a review of draft regulatory and environmental compliance documents. Council final action and regulatory implementation are tentatively scheduled for spring and summer 2006 respectively.

At the November 2005 Council meeting, the Council recommended that all species of krill be included in the CPS FMP as prohibited species and approved a range of krill fishing alternatives for public review and additional analysis over the winter. The Council narrowed the range of alternatives to; 1) status quo, 2) a prohibition on krill fishing in all Council-managed waters, and 3) an initial prohibition combined with the establishment of a process for considering future krill fishing as a preliminary preferred alternative. There are currently no directed krill fisheries on the U.S. West Coast and state laws prohibit krill landings by state-licensed fishing vessels into California, Oregon, and Washington.

In March 2006, the Council adopted a complete ban on commercial fishing for all species of krill in West Coast federal waters and made no provisions for future fisheries. They also specified essential fish habitat for krill, making it easier to work with other federal agencies to protect krill. This broad prohibition will apply to all vessels in Council managed waters and will take form as Amendment 12 when fully implemented in 2006.

2.3 The CPS Fleet

During the 1940s and 1950s, approximately 200 vessels participated in the Pacific sardine fishery. Some present day CPS vessels are remnants of that fleet. CPS finfish landed by the roundhaul fleet (fishing primarily with purse seine or lampara nets) are sold as relatively high volume/low value products (e.g., Pacific mackerel canned for pet food, Pacific sardine frozen and shipped to Australia to feed penned tuna, and northern anchovy reduced to meal and oil). In addition to fishing for CPS finfish, many of these vessels fish for market squid, Pacific bonito, bluefin tuna, and Pacific herring.

A fishery for Pacific sardine has operated off Oregon and Washington since 1999. This fishery targets larger sardine, which are typically sold as bait for Asian longline tuna fisheries.

Along the West Coast, other vessels target CPS finfish in small quantities, typically selling their catch to specialty markets for relatively high prices. In recent years, these included:

- Approximately 18 live bait vessels in southern California and two vessels in Oregon and Washington that landed about 2,000 mt per year of CPS finfish (mostly northern anchovy and Pacific sardine) for sale to recreational anglers. Oregon's landings for live bait in 2005 totaled 2.6 mt of sardines by one vessel.
- Roundhaul vessels that take a maximum of 1,000 mt to 3,000 mt per year of northern anchovy that are sold as dead bait to recreational anglers.
- Roundhaul and other mostly small vessels that target CPS finfish (particularly Pacific mackerel and Pacific sardine) for sale in local fresh fish markets or canneries.

2.3.1 Limited Entry Fishery

The CPS limited entry (LE) fleet currently consists of 63 permits and 61 vessels (Table 3). The LE vessels range in age from 4 to 68 years, with an average age of 33 years (Table 4). Average vessel age has decreased by approximately four years since the initial fleet was established.

The capacity goal and transferability provisions established under Amendment 10 are based on calculated gross tonnage (GT) of individual vessels. Calculated GT serves as a proxy for each vessel's physical capacity and is used to track total fleet capacity. Calculated GT incorporates a vessel's length, breadth, and depth, which are consistent measures across vessel registration and U.S. Coast Guard documentation lists. As described at 46 CFR § 69.209, GT is defined as:

GT=0.67(length*breadth*depth)/100.

Vessel dimension data were obtained from the U.S. Coast Guard database, and each vessel's calculated GT was attached to the permit under Amendment 10. Original GT endorsements (specified in Table 3) remain with the permit, regardless of whether the permit is transferred to a smaller or larger vessel.

GT values for the current fleet range from 23.8 GT to 340.2 GT, with an average of 88.7 GT (Tables 3 and 4). Total fleet GT decreased from 5,462.9 GT to 5,408.4 GT during 2004. This decrease was due to the loss of the "Connie Marie" (permit 64; sank in 2002), which has yet to be replaced by the owner. The fleet capacity goal established through Amendment 10 is 5,650.9 GT, and the trigger for restricting transferability is 5,933.5 GT (Goal + 5%). The current limited entry fleet is 5,408.4 GT, well within the bounds of the capacity goal.

2.3.2 Northern Fisheries

2.3.2.1 Oregon

In Oregon, Pacific sardine was managed as a developmental fishery. In 2005, all 20 developmental fishery permits were issued. Permit stipulations include: permit is not transferable; logbook is required; observers are allowed on board; a grate must be placed over the hold to sort out larger fish; renewal of the permit is subject to meeting minimum annual landing requirements of five landings of sardines totaling 80,000 pounds, or landings of at least \$25,000 exvessel price.

The majority of sardines harvested in Oregon are processed for bait in Asian longline fisheries. In 2005, a Washington-based processing company expressed interest in using their large-scale reduction plant to reduce sardines (e.g. conversion into fish flour, fish meal, fish scrap, fertilizer, fish oil, or other by-products). Many individuals from the sardine industry expressed concerns with the proposed venture citing problems associated with allowing a high-volume/low-value reduction fishery on a limited quota fishery. The Washington Department of Fish and Wildlife subsequently adopted regulations placing a limit (10% per landing) on the amount of sardines that can be delivered or used for reduction purposes. After the adoption of the Washington regulations, Oregon and truck them to their processing plant in Washington, circumventing the new Washington rules. Oregon also adopted regulations placing the same limitation on the amount of sardines per landing that can be delivered or used for reduction purposes (10%).

2.3.2.2 Washington

In Washington, sardines are managed under the Emerging Commercial Fishery provisions, which provide for the harvest of a newly classified species or harvest of a previously classified species in a new area or by new means. From 2000 through 2002, WDFW had trial purse seine fisheries for Pacific sardines, under which the number of participants, by law, cannot be limited. Since participation could not be limited, the Washington fishery was managed to a state HG of 15,000 mt. Following an extensive public process, which included establishing and meeting with a formal Sardine Advisory Board, the Director of WDFW decided to advance the sardine fishery from a trial to an experimental fishery in 2003. Experimental fisheries, under the Emerging Commercial Fisheries legislation, require participation to be limited. In collaboration with the Sardine Advisory Board, WDFW developed and implemented an effort limitation program in 2003. The experimental fishery and limited entry program has continued through 2005.

There were 16 fishers who met all of the criteria necessary to obtain a Washington sardine experimental fishery permit in 2005. The initial qualifying criteria included a cumulative total of 40 mt landed into Washington in the years 2003 and 2004. In addition to the minimum landing requirement, qualifying

participants must have held a limited entry permit in 2004, paid any outstanding fees owed to the Department for observer coverage in the 2003-04 sardine fisheries, and renewed their fishing license by April 1. Eleven of these 16 qualified permits participated in the fishery.

2.3.3 Treaty Tribe Fisheries

Tribal fisheries on sardine may evolve in waters north of Point Chehalis, Washington. The CPS FMP recognizes the rights of treaty Indian tribes to harvest Pacific sardine and provides a framework for the development of a tribal allocation. The Makah tribe informed the Council of their intent to enter the sardine fishery in 2006. In response, the Council created the Ad Hoc Sardine Tribal Allocation Committee made up of state, federal, and tribal representatives, to immediately begin to work on this issue. If a tribal allocation is established, the non-tribal allocation formula will be applied to the remainder of the harvest guideline after accommodation of the tribal fishery.

3.0 STOCK ASSESSMENT MODELS

3.1 Pacific Sardine

The Pacific sardine (*Sardinops sagax caerulea*) resource is assessed each Fall in support of the Council process that, in part, sets an annual harvest guideline (HG,or quota) for the U.S. commercial fishery. This process is centered on an environmentally-based control rule that establishes a U.S. coastwide HG for an annual (Jan. 1 to Dec. 31) management cycle. The primary purpose of the assessment is to provide an estimate of current biomass, which is used to calculate annual HGs. A general overview of the harvest control rule is provided in Sections 4.3.2 and 9.1.1.1 of this SAFE report. For background analyses regarding the harvest control rule, see Amendment 8 of the CPS FMP (PFMC 1998).

The Pacific sardine stock assessment used for 2006 management (Hill *et al.* 2006; see Appendix 2) was conducted using a likelihood-based, age-structured model (Age-structured Assessment Program-ASAP, see Legault and Restrepo 1999). The general estimation approach used in the ASAP model is a flexible, 'forward-simulation' that allows for the efficient and reliable estimation of a large number of parameters. The population dynamics and estimator theory that serves as the underpinnings of forward-estimation, age-structured models such as ASAP, is described in Fournier and Archibald (1982), Deriso et al. (1985), Megrey (1989), and Methot (1990, 1998).

The final ASAP model (1982-2005) was based on fishery-dependent data from three fisheries (Ensenada, Mexico; U.S. California; and U.S. Pacific northwest) and fishery-independent data from two research surveys: an index of spawning biomass based on the Daily Egg Production Method survey data, see Lo et al. (1996, 2005, 2006); and an index of pre-adult biomass from aerial spotter plane survey data (Lo *et al.* 1992). Finally, an environmental index (i.e., a time series of sea-surface temperatures recorded at Scripps Pier, La Jolla, California) is used to develop a fishing mortality-based proxy for MSY, which is an additional parameter used in the harvest control rule for determination of annual HGs (see Section 9.1.1.1). For details regarding the current assessment model, readers should consult Hill et al. (2006; see Appendix 2). See Deriso et al. (1996) and Hill et al. (1999) for descriptions of input data and modeling methods used in previous (CANSAR and CANSAR-TAM) assessments of Pacific sardine.

3.2 Pacific Mackerel

A Pacific mackerel (*Scomber japonicus*) stock assessment is conducted each spring in support of the Council process that ultimately establishes a HG for the U.S. management season opening July 1 and ending June 30 of the following year. The primary purpose of the assessment is to provide an estimate of current biomass, which is used in a harvest control rule to calculate the HG. A general overview of the harvest control rule is provided in Section 4.3.3 of this SAFE Report. For background and analyses regarding this species' harvest control rule, see Amendment 8 of the CPS FMP (PFMC 1998).

The final ASAP model (1929-2006) was based on fishery-dependent data from a single fishery (combined landings from California's commercial and recreational fisheries, and the Ensenada fishery of Mexico). Fishery-independent data used in the model consisted of relative abundance time series (indices) developed from three research surveys (Crone et al. 2006; see Appendix 3): an index (proportion positive) of spawning abundance based on ichthyoplankton data collected through the ongoing CalCOFI survey; a standardized, catch per unit effort (CPUE) index from California-based commercial passenger fishing vessel (CPFV) logbooks; and an index of total abundance from aerial spotter plane survey data (Lo *et al.* 1992). For details regarding changes to input data used in previous assessments (i.e., VPA-based analysis) and the current assessment (i.e., ASAP analysis), as well as further discussion of the overall ASAP model structure, readers should consult Hill and Crone (2005).

3.3 Section References:

- Crone, P. R., K. T. Hill, and J. D. McDaniel. 2006. Assessment of the Pacific mackerel (*Scomber japonicus*) stock for U.S. management in the 2006-2007 season. PFMC June 2006 Briefing Book, Exhibit F.1. Pacific Fishery Management Council, Portland Oregon. XXX p.
- Deriso, R., T. J. Quinn and P. R. Neal. 1985. Catch-age analysis with auxiliary information. Can. J. Fish. Aquat. Sci. 42:4.
- Deriso, R. B., J. T. Barnes, L. D. Jacobson, and P. J. Arenas. 1996. Catch-at-age analysis for Pacific sardine (*Sardinops sagax*), 1983-1995. CalCOFI Rep. 37:175-187.
- Fournier, D., and C. P. Archibald. 1982. A general theory for analyzing catch at age data. Canadian Journal of Fisheries and Aquatic Sciences 39:1195-1207.
- Hill, K.T., L.D. Jacobson, N.C.H. Lo, M. Yaremko, and M. Dege. 1999. Stock assessment of Pacific sardine for 1998 with management recommendations for 1999. Calif. Dept. Fish. Game. Marine Region Admin. Rep. 99-4. 92 pp.
- Hill, K. T., and P. R. Crone. 2005. Assessment of the Pacific mackerel (*Scomber japonicus*) stock for U.S. management in the 2005-2006 season. PFMC June 2005 Briefing Book, Exhibit F.1. Pacific Fishery Management Council, Portland Oregon. 158 p.
- Hill, K. T., N. C. H. Lo, B. J. Macewicz, and R. Felix-Uraga. 2006. Assessment of the Pacific sardine (Sardinops sagax caerulea) population for U.S. management in 2006. NOAA Tech. Mem. NOAA-TM-NMFS-SWFSC-386. 85 p.
- Legault, C. M., and V. R. Restrepo. 1999. A flexible forward age-structured assessment program. ICCAT Coll. Vol. Sci. Pap. 49(2): 246-253.
- Lo, N. C. H., L. D. Jacobson, and J. L. Squire. 1992. Indices of relative abundance from fish spotter data based on delta-lognormal models. Can. J. Fish. Aquat. Sci. 49:2515-2526.
- Lo, N.C.H., Y.A. Green Ruiz, M.J. Cervantes, H.G. Moser, and R.J. Lynn. 1996. Egg production and spawning biomass of Pacific sardine (Sardinops sagax) in 1994, determined by the daily egg production method. Calif. Coop. Oceanic Fish. Invest. Rep. 37:160-174.
- Lo, N.C.H., B.J. Macewicz, and D.A. Griffith. 2005. Spawning biomass of Pacific sardine (Sardinops sagax) from 1994-2004 off California. Calif. Coop. Oceanic Fish. Invest. Rep. 46: 93-112.
- Lo, N.C.H. and B. Macewicz. 2006. Spawning biomass of Pacific sardine (*Sardinops sagax*) off California in 2005. NOAA Technical Memorandum NMFS-SWFSC-387.
- Megrey, B. A. 1989. Review and comparison of age-structured stock assessment models from theoretical and applied points of view. American Fisheries Society Symposium 6:8-48.
- Methot, R. D. 1990. Synthesis model: an adaptable framework for analysis of diverse stock assessment data. International North Pacific Fisheries Commission Bulletin 50:259-277.
- Methot, R. 1998. Application of stock synthesis to NRC test data sets. Pages 59-80 in NOAA Tech. Memo. NMFS-F/SPO-30.

Pacific Fishery Management Council (PFMC). 1998. Amendment 8 (To the northern anchovy fishery management plan) incorporating a name change to: the coastal pelagic species fishery management plan. Document can be obtained from Pacific Fishery Management Council, 7700 NE Ambassador Place, Suite 200, Portland, OR 97220.

4.0 OPTIMUM YIELD, MAXIMUM SUSTAINABLE YIELD, AND MAXIMUM SUSTAINABLE YIELD CONTROL RULES

Information in this section is excerpted from: Amendment 8 (To the Northern Anchovy Fishery Management Plan) incorporating a name change to the Coastal Pelagic Species Fishery Management Plan. Pacific Fishery Management Council. Portland, Oregon. 1998.

4.1 Optimum Yield

The Magnuson-Stevens Act defines the term "optimum," with respect to the yield from a fishery, as the amount of fish which:

- Will provide the greatest overall benefit to the Nation, particularly with respect to food production and recreational opportunities, and taking into account the protection of marine ecosystems.
- Is prescribed on the basis of the maximum sustainable yield from the fishery, as reduced by any relevant social, economic, or ecological factor.
- In the case of an overfished fishery, provides for rebuilding to a level consistent with producing the maximum sustainable yield in such fishery [50 CFR §600.310(f)(1)(i)].

Optimum yield for a CPS stock is defined to be the level of harvest which is less than or equal to ABC estimated using a MSY control rule, consistent with the goals and objectives of this FMP, and used by the Council to manage the stock. The ABC is a prudent harvest level calculated based on an MSY control rule. In practice, OY will be determined with reference to ABC. In particular, OY will be set less than ABC to the degree required to prevent overfishing.

4.2 Maximum Sustainable Yield, MSY Control Rules, and Acceptable Biological Catch

For CPS, an MSY control rule is defined to be a harvest strategy that provides biomass levels at least as high as the FMSY approach while also providing relatively high and consistent levels of catch. According to federal regulations (50 CFR §600.310(b)(1)(ii)), an MSY control rule is "a harvest strategy which, if implemented, would be expected to result in a long-term average catch approximating MSY." Similarly, MSY stock size "means the long-term average size of the stock or stock complex, measured in terms of spawning biomass or other appropriate units that would be achieved under an MSY control rule in which the fishing mortality rate is constant." The definition of an MSY control rule for CPS is more general, because it includes the definition in National Standard 1. It is also more conservative, because the focus for CPS is oriented primarily towards stock biomass levels at least as high as the MSY stock size. The primary focus is on biomass, rather than catch, because most CPS (Pacific sardine, northern anchovy, and market squid) are very important to the ecosystem as forage.

The MSY control rules in the CPS fishery may vary depending on the nature of the fishery, management goals, assessment and monitoring capabilities, and available information. Under the framework management approach used for CPS, it is not necessary to amend the CPS FMP in order to develop or modify MSY control rules or definitions of overfishing.

The use of an MSY control rule for actively managed stocks provides managers with a tool for setting and adjusting harvest levels on a periodic basis while preventing overfishing and overfished stock conditions. All actively managed stocks must have stock-specific MSY control rules, a definition of overfishing, and a definition of an overfished stock. Definitions of overfishing and overfished are detailed below in Section 5.

The main use of an MSY control rule for a monitored stock is to help gauge the need for active management. MSY control rules and harvest policies for monitored CPS stocks may be more generic and simpler than those used for actively managed stocks. Under the FMP, any stock supporting catches approaching the ABC or MSY levels should be actively managed unless there is too little information or other practical problems.

4.3 MSY Control Rules for CPS

The Council may use the default MSY control rule for monitored species unless a better species-specific rule is available, e.g., the MSY-proxy approach adopted for market squid (see Section 4.3.4). The default MSY control rule can be modified under framework management procedures. The default MSY control rule sets ABC for the entire stock (U.S., Mexico, Canada, and international fisheries) equal to 25% of the best estimate of the MSY catch level. Overfishing occurs whenever total catch (U.S., Mexico, Canada, and international fisheries) exceeds ABC or whenever fishing occurs at a rate that is high enough to jeopardize the capacity of the stock to produce MSY. Overfishing of a monitored CPS stock is "approached" whenever projections or estimates indicate the overfishing will occur within two years.

In making decisions about active management, the Council may choose to consider ABC and catches in U.S. waters only. ABC in U.S. waters is the ABC for the entire stock prorated by an estimate of the fraction of the stock in U.S. waters. Active management may not be effective if U.S. catches are small, and overfishing is occurring in Mexico, Canada, or in international waters outside the jurisdiction of Federal authorities.

4.3.1 General MSY Control Rule for Actively Managed Species

The general form of the MSY control rule used for actively managed CPS fisheries was designed to continuously reduce the exploitation rate as biomass declines. The general formula used is:

H = (BIOMASS-CUTOFF) x FRACTION

H is the harvest target level, CUTOFF is the lowest level of estimated biomass at which directed harvest is allowed, and FRACTION is the fraction of the biomass above CUTOFF that can be taken by the fishery. BIOMASS is generally the estimated biomass of fish age 1+ at the beginning the season. The purpose of CUTOFF is to protect the stock when biomass is low. The purpose of FRACTION is to specify how much of the stock is available to the fishery when BIOMASS exceeds CUTOFF. It may be useful to define any of the parameters in this general MSY control rule, so they depend on environmental conditions or stock biomass. Thus, the MSY control rule could depend explicitly on the condition of the stock or environment.

The formula generally uses the estimated biomass for the whole stock in one year (BIOMASS) to set harvest for the whole stock in the following year (H) although projections or estimates of BIOMASS, abundance index values or other data might be used instead. BIOMASS is an estimate only; it is never assumed that BIOMASS is a perfect measure of abundance. Efforts to develop a harvest formula must consider probable levels of measurement error in BIOMASS which typically have CVs of about 50% for CPS.

The general MSY control rule for CPS (depending on parameter values) is compatible with the Magnuson-Stevens Act and useful for CPS that are important as forage. If the CUTOFF is greater than zero, then the harvest rate (H/BIOMASS) declines as biomass declines. By the time BIOMASS falls as low as CUTOFF, the harvest rate is reduced to zero. The CUTOFF provides a buffer of spawning stock that is protected from fishing and available for use in rebuilding if a stock becomes overfished. The combination of a spawning biomass buffer equal to CUTOFF and reduced harvest rates at low biomass levels means that a rebuilding program for overfished stocks may be defined implicitly. Moreover, the

harvest rate never increases above FRACTION. If FRACTION is approximately equal to FMSY, then the MSY control rule harvest rate will not exceed FMSY. In addition to the CUTOFF and FRACTION parameters, it may be advisable to define a maximum harvest level parameter (MAXCAT) so that total harvest specified by the harvest formula never exceeds MAXCAT. The MAXCAT is used to guard against extremely high catch levels due to errors in estimating biomass, to reduce year-to-year variation in catch levels, and to avoid overcapitalization during short periods of high biomass and high harvest. MAXCAT also prevents the catch from exceeding MSY at high stock levels and spreads the catch from strong year classes over a wider range of fishing seasons.

Other general types of control rules may be useful for CPS and this FMP does not preclude their use as long as they are compatible with National Standards and the Magnuson-Stevens Act.

4.3.2 MSY Control Rule for Pacific Sardine

The MSY Control Rule for Pacific sardine sets ABC for the entire sardine stock based on an estimate of biomass for the whole sardine stock, a CUTOFF equal to 150,000 mt, a FRACTION between 5% and 15% (depending on oceanographic conditions as described below), and MAXCAT of 200,000 mt. The U.S. ABC is calculated from the target harvest for the whole stock by prorating the total ABC based on 87% proportion of total biomass in U.S. waters.

FRACTION in the MSY control rule for Pacific sardine is a proxy for FMSY (i.e., the fishing mortality rate for deterministic equilibrium MSY). FRACTION depends on recent ocean temperatures, because FMSY and sardine stock productivity are higher under ocean conditions associated with warm water temperatures. An estimate of the relationship between FMSY for sardine and ocean temperatures is:

$$FMSY = 0.248649805 T^{2} - 8.190043975 T + 67.4558326$$

where T is the average three-season sea surface temperature (SST) at Scripps Pier (La Jolla, California) during the three preceding seasons. Thus, the MSY control rule for Pacific sardine sets the control rule parameter FRACTION equal to FMSY, except that FRACTION is never allowed to be higher than 15% or lower than 5%, which depends on recent average sea surface temperature.

Although FMSY may be greater or lesser, FRACTION can never be greater than 15% or less than 5% unless the MSY control rule for sardine is revised, because 5% and 15% are policy decisions based on social, economic, and biological criteria. In contrast, relationships between FRACTION, FMSY and environmental conditions are technical questions and estimates or approaches may be revised by technical teams (e.g. the CPSMT) to accommodate new ideas and data.

4.3.3 MSY Control Rule for Pacific Mackerel

The MSY control rule for Pacific mackerel sets the CUTOFF and the definition of an overfished stock at 18,200 mt and the FRACTION at 30%. Overfishing is defined as any fishing in excess of ABC calculated using the MSY control rule. No MAXCAT is defined because the U.S. fishery appears to be limited by markets and resource availability to about 40,000 mt per year. The target harvest level is defined for the entire stock in Mexico, Canada, and U.S. waters (not just the U.S. portion), and the U.S. target harvest level is prorated based on 70% relative abundance in U.S. waters.

4.3.4 MSY Control Rule for Market Squid

A potential MSY Control Rule for market squid has been reviewed formally through a stock assessment review (STAR) conducted in 2001, as well as presented within the Council forum in 2002. The proposed MSY Control Rule is generally based on the Egg Escapement method, which currently serves as an informal assessment tool for this species (see Appendix 3 in PFMC (2002) for further discussion

concerning specific details involved in this assessment approach, as well as review-related discussion). It is important to note that the main objective of a MSY Control Rule for a "monitored" stock (e.g., market squid) is to help assess the need for "active" management. That is, the MSY Control Rules and harvest policies for monitored CPS stocks may be based on broader concepts and constraints than those used for stocks with significant fisheries that fall under active management. Any fishery whereby catches approach an ABC or MSY level warrant consideration within active management processes, given catch statistics are scientifically based and management operations can be practically implemented. Overfishing of a monitored CPS stock is considered whenever current estimates or projections indicate that a minimum stock threshold will be realized within two years. In practical terms, the market squid fishery is monitored through a state-based management plan that includes an annual landings cap (CDFG 2005) and various spatial/temporal constraints. Whereas, within a research context only, population dynamics and biological reference point (say MSY-related) evaluations regarding this species are addressed through the Egg Escapement method and simulation analysis. Given the "monitored" status of this population, the above management/research approach appears reasonable; however, "active" management may need to be considered in the future if fishery operations change substantially (e.g., spatially expand, harvest high amounts of immature squid, etc.) and/or ongoing modeling efforts identify areas (spatial or temporal) of concern regarding egg escapement levels associated with commercial fishery sample data. A brief description of the Egg Escapement method follows, with further discussion presented in section 9.2.3.

The Egg Escapement method is founded on conventional spawning biomass "per-recruit" theory. In general, the proposed MSY Control Rule for market squid is based on evaluating (throughout a fishing season) levels of egg escapement associated with the exploited population(s). The estimates of egg escapement are evaluated in the context of a "threshold" that is hypothesized to represent (generally) a biological reference point that, if not exceeded (and over the long-term and given favorable oceanographic conditions), will support sustainable abundance levels and some degree of surplus for fishery-related purposes. It is important to note that the threshold proposed currently (i.e., 30%) represents a strictly preliminary statistic and intended as a precautionary reference point, which ultimately, is expected to be revised (to some degree) as more sample data (spatially and temporally) are examined through egg escapement and simulation research. In this context, in fall 2006, the CPSMT will review results from ongoing research addressing egg escapement modeling efforts over the last two years and subsequently, these findings will be presented to the PFMC later in 2006.

4.4 Section References:

- California Department of Fish and Game (CDFG). 2005. Final market squid fishery management plan. Document can be obtained from State of California Resources Agency, Department of Fish and Game, Marine Region, 4665 Lampson Avenue (Suite C), Los Alamitos, CA 90720. 124 p.
- Pacific Fishery Management Council (PFMC). 1998. Amendment 8 (To the northern anchovy fishery management plan) incorporating a name change to: the coastal pelagic species fishery management plan. Document can be obtained from Pacific Fishery Management Council, 7700 NE Ambassador Place, Suite 200, Portland, OR 97220.
- Pacific Fishery Management Council (PFMC). 2002. Status of the Pacific coast coastal pelagic species fishery and recommended acceptable biological catches: stock assessment and fishery evaluation (2002). Appendix 3: market squid maximum sustainable yield. Document can be obtained from Pacific Fishery Management Council, 7700 NE Ambassador Place, Suite 200, Portland, OR 97220.

5.0 OVERFISHING CONSIDERATIONS

Information in this section is excerpted from: Amendment 8 (To the Northern anchovy fishery management plan) incorporating a name change to: the Coastal Pelagic Species Fishery Management Plan. Pacific Fishery Management Council. Portland, Oregon. 1998.

5.1 Definition of Overfishing

By definition, overfishing occurs in a fishery whenever fishing occurs over a period of one year or more at a rate that is high enough to jeopardize the capacity of the stock to produce MSY on a continuing basis if applied in the long term. Overfishing in the CPS fishery is "approached" whenever projections indicate overfishing will occur within two years. The definition of overfishing is in terms of a fishing mortality or exploitation rate. Depending on the exploitation rate, overfishing can occur when CPS stocks are at either high or low abundance levels. The Council must take action to eliminate overfishing when it occurs and to avoid overfishing when exploitation rates approach the overfishing level.

In operational terms, overfishing occurs in the CPS fishery whenever catch exceeds ABC, and overfishing is approached whenever projections indicate that fishing mortality or exploitation rates will exceed the ABC level within two years. The definition of an overfished stock is an explicit part of the MSY control rule for CPS stocks.

5.2 Definition of an Overfished Stock

By definition, an overfished stock in the CPS fishery is a stock at a biomass level low enough to jeopardize the capacity of the stock to produce MSY on a continuing basis. An overfished condition is approached when projections indicate that stock biomass will fall below the overfished level within two years. The Council must take action to rebuild overfished stocks and to avoid overfished conditions in stocks with biomass levels approaching an overfished condition.

5.3 Rebuilding Programs

Management of overfished CPS stocks must include a rebuilding program that can, on average, be expected to result in recovery of the stock to MSY levels in ten years. It is impossible to develop a rebuilding program that would be guaranteed to restore a stock to the MSY level in ten years, because CPS stocks may remain at low biomass levels for more than ten years even with no fishing. The focus for CPS is, therefore, on the average or expected time to recovery based on realistic projections. If the expected time to stock recovery is associated with unfavorable ecosystem conditions and is greater than ten years, then the Council and the Secretary may consider extending the time period as described at 50 CFR § 600.310(e).

Rebuilding programs for CPS may be an integral part of the MSY control rule or may be developed or refined further in the event that biomass of a CPS stock reaches the overfished level.

6.0 BYCATCH AND DISCARD MORTALITY

Fishery management plans prepared by a fishery management council or by the Secretary must, among other things, establish a standardized reporting methodology to assess the amount and type of bycatch occurring in the fishery, and include conservation and management measures that, to the extent practicable and in the following priority:

- 1. Minimize Bycatch.
- 2. Minimize the mortality of bycatch that cannot be avoided.

The Magnuson-Stevens Act defines bycatch as "fish which are harvested in a fishery, but which are not sold or kept for personal use, and includes economic discards and regulatory discards. Such term does not include fish released alive under a recreational catch and release fishery management program" (16USC1802).

CPS vessels fish with roundhaul gear (purse seine or lampara nets of approximately one-half mile in total length). These are encircling type nets, which are deployed around a school of fish or part of a school. When the school is surrounded, the bottom of the net may be closed, then the net drawn next to the boat. The area including the free-swimming fish is diminished by bringing one end of the net aboard the vessel. When the fish are crowded near the fishing vessel, pumps are lowered into the water to pump fish and water into the ship's hold. Another technique is to lift the fish out of the net with netted scoops (e.g., brails). Roundhaul fishing results in little unintentionally caught fish, primarily because the fishers target a specific school, which usually consists of pure schools of one species. The tendency is for fish to school by size, so if another species is present in the school, it is typically similar in size. The most common incidental catch in the CPS fishery is another CPS species (e.g., Pacific mackerel incidental to the Pacific sardine fishery). If larger fish are in the net, they can be released alive before pumping or brailing by lowering a section of the cork-line or by using a dip-net. The load is pumped out of the hold at the dock, where the catch is weighed and incidentally-caught fish can be observed and sorted. Because pumping at sea is so common, any incidental catch of small fish would not be sorted at sea. Grates can be used to sort larger non-CPS from the catch. Grates are mandatory in Oregon to sort larger non-CPS from the catch. At-sea observers have record discard at one time or another since the year 2000 off the states of Oregon, Washington, and California. Incidental harvest of non-prohibited larger fish are often taken home for personal use or processed.

Historically, market squid have been fished at night with the use of powerful lights, which cause squid to aggregate, which enables fishermen to pump squid directly from the sea or to encircle them with a net. California actively manages the market squid fishery in waters off California and has developed an FMP for the state-managed fishery. California's market squid FMP established a management program for California's market squid resource with goals that are aimed at ensuring sustainability of the resource and reducing the potential for overfishing. The tools to accomplish these goals include:

- Establishing fishery control rules, including a seasonal catch limitation to prevent the fishery from over-expanding; continuing weekend closures, which provide for periods of uninterrupted spawning; continuing gear regulations regarding light shields and wattage used to attract squid, and maintaining monitoring programs designed to evaluate the impact of the fishery on the resource.
- Instituting a restricted access program, including provisions for initial entry into the fleet, types of permits, permit fees, and permit transferability.
- Establishing a general habitat closure area in northern California rarely used by the squid fishery to eliminate the potential of future negative interactions with seabirds, marine mammals, and important

commercial and sport fishes; and adding limitations on using lights to attract squid around several of the Channel Islands, an effort intended to protect nesting seabirds.

In addition to the reasons discussed above, several circumstances in the fishery tend to reduce bycatch:

- 1. Most of what would be called bycatch under the Magnuson-Stevens Act is caught when roundhaul nets fish in shallow water over rocky bottom. Fishers try to avoid this to protect gear. Also, they may be specifically prohibited to fish these areas because of closures.
- 2. South of Pt. Buchon, California, many areas are closed to roundhaul nets under California law and the FMP, which reduces the chance for bycatch.
- 3. In California, a portion of the sardine caught incidentally by squid or anchovy fishers can be sold for reduction, which reduces discard.
- 4. The five tons or less allowable landing by vessels without limited entry permits under the FMP should reduce any regulatory discard, because those fish can be landed.
- 5. From 1996 to 2003, bycatch from the live bait logs was reported with an incidence of 10%. The primary species taken as incidental catch was barracuda. Virtually all fish caught incidentally in this fishery are either used for bait, for personal use, or released alive. See Tables 13, 14, and 15.
- 6. CDFG has implemented a logbook program for the squid fishery. The data to be collected includes bycatch. See table 8a.

Generally, fisheries for CPS can be divided into two areas: north and south of Pigeon Point, California (approximately 37°10' N latitude). In recent history, virtually the entire commercial fishery for CPS finfish and market squid has taken place south of Pigeon Point. The potential for taking salmon exists in this area, but diminishes south of Monterey, California (37° N latitude). Starting in 1999, CPS fisheries (notably, targeting Pacific sardine) increased in waters off Oregon and Washington. Oregon and Washington actively manage these northern fisheries, in part, because of the heightened potential for salmon bycatch. Section 6.1 describes the California fishery, section 6.2 provides information on Oregon and Washington fisheries.

See Amendment 9 to the CPS FMP (Environmental Assessment/Regulatory Impact Review, March 2001) for a complete description of bycatch-related issues and monitoring and reporting requirements. Amendment 9 is available from the Council office.

NMFS has proposed a pilot at-sea observer program for CPS purse seine vessels operating in California to determine the amounts and types of bycatch, and to confirm bycatch rates derived from CDFG dock-side sampling. Additionally, the pilot observer program would collect data on possible protected species interactions, information about fishing operations, and fishing economics. As of publication of this document funding had not yet been allocated for the observer program, NMFS intends to begin at-sea observations in the summer 2004 and continue through the fall 2004. The data will be analyzed by the CPSMT and management options will be assessed in conjunction with the fishing industry.

6.1 Federal Protection Measures

National Marine Fisheries Service (NMFS) regularly conducts Endangered Species Act (ESA) section 7 consultations to insure that federally threatened or endangered species are not adversely affected by federally managed fisheries. Since 1999 NMFS, Sustainable Fisheries Division (SFD), Southwest Region

(SWR) has conducted eight consultations with other federal agencies, including NMFS Protected Resource Division (PRD) and U.S. Fish and Wildlife Service, regarding the CPS fishery.

Most recently, NMFS, SFD, SWR, initiated a formal section 7 consultation with NMFS, PRD, SWR, for the implementation of Amendment 11 to the CPS FMP. PRD completed a formal section 7 consultation on this action and in a Biological Opinion dated March 10, 2006, determined that fishing activities conducted under the CPS FMP and its implementing regulations are not likely to jeopardize the continued existence of any endangered or threatened species under the jurisdiction of NMFS or result in the destruction or adverse modification of critical habitat of any such species. Specifically, the current status of the Lower Columbia River Chinook, Snake River Fall Chinook, Upper Willamette Chinook, Puget Sound Chinook, and Lower Columbia River coho were deemed not likely to be jeopardized by the Pacific sardine fishery.

6.1.1 California Coastal Pelagic Species Pilot Observer Program

NMFS, SWR initiated a pilot observer program for California-based commercial purse seine fishing vessels targeting coastal pelagic species (CPS) in July 2004 with hopes of augmenting and confirming bycatch rates derived from CDFG dockside sampling. SWR personnel trained the first group of CPS observers in mid-July in Long Beach, California. Frank Orth and Associates (FOA), a private contractor, hired and provided observers for training and subsequent deployment. Six observers who had previous experience in other SWR-observed fisheries attended and completed the course. The training course emphasized a review of ongoing observer programs (drift gillnet, pelagic longline) and introduction to the soon-to-be observed fisheries (purse seine, albacore hook-and-line). The training curriculum included vessel safety, fishing operations, species identification, and data collection.

In late July 2004, observers began going to sea aboard CPS vessels. Observers used the Oregon Department of Fish and Wildlife 'Sardine Bycatch Observations' form to record data on fishing gear characteristics, fishing operations, and target/non-target species catch and disposition. Observers also recorded data on trip specifics and protected species sightings/interactions. Observers had access to data field definitions in their SWR observer program Field Manuals. Most data detailing length, volume, or weight are obtained verbally from the vessel operator. Position and time data are recorded by the observer directly from hand-held or on-board electronics.

Data from this ongoing program has been compiled though January 2006. A total of 107 trips by vessels targeting CPS (228 sets) were observed from July 2004 to January 2006. Tables 5-8 show incidental catch and bycatch data collected during this time and are categorized by target species of the trip (i.e., Pacific sardine, Pacific mackerel, market squid or anchovy).

Future needs of the CPS observer program include; standardization of data fields, development of a fishery-specific Observer Field Manual, construction of a relational database for the observer data, and creation of a statistically reliable sampling plan. A review of the protocol and catch data by NMFS Southwest Science Center staff, the CPS Management team and other CPS interested parties is planned in the future to help address some of these needs.

6.2 Fishery South of Pigeon Point

Information from at-sea observations of the CDFG and conversations with CPS fishers suggest that bycatch is not significant in these fisheries. However, some individuals have expressed concern that game fish and salmon might constitute significant bycatch in this fishery. This is a reasonable concern, because anchovy and sardine are forage for virtually all predators, but there are no data to confirm significant bycatch of these species. CDFG port samples indicate minimal bycatch in the California fishery (Tables 9,10, and 11). The behavior of predators, which tend to dart through a school of prey rather than linger in it, and can more easily avoid encirclement with a purse seine, may help to minimize

bycatch. Large predators such as blue sharks have been observed on occasion, but are by no means a common occurrence.

CDFG port samples collect information from CPS landings in Monterey and ports to the south. Biological samples are taken to monitor the fish stocks, and port samplers report incidentally caught fish. Reports of incidental catch by CDFG port samplers confirm small and insignificant landings of bycatch at California off-loading sites (Tables 9,10, and 11). These data are likely representative of actual bycatch, because (as noted) fish are pumped from the sea directly into fish holds aboard the vessel. Fishers do not sort catch at sea what passes through the pump, however, large fishes and other animals that cannot pass through the pump are not observed by the port sampler. Unloading of fish also occurs with pumps. The fish is either pumped into ice bins and trucked to processing facilities in another location or to a conveyor belt in a processing facility, where fish are sorted, boxed and frozen.

From 1985 through 1999, there were 5,306 CDFG port samples taken from the sardine and mackerel landings. From 1992 to 1999, incidental catch was reported on only 179 occasions, representing a 3.4% occurrence. Up to 1999 reports of incidental catch were sparse, and prior to 1992 none was reported. Earlier incidents of bycatch may not have been noted, because the harvest of anchovy and sardine was small, and only in recent years has the harvest of sardine increased. The incidental catch reported are primarily those species that are marketable and do not meet the definition of bycatch in the Magnuson-Stevens Act. During this period, unless an incidental species represented a significant portion of the load, at least a whole percentage point, the amount of the incidental catch was not recorded. Of the incidental catch reported from 1992 to 1999, the two most prevalent species were market squid at 79%, and northern anchovy at 12% incidence within samples (not by load composition). CDFG port sample information provides a useful database for determining the significance of bycatch in the CPS fishery off California (south of Pigeon Point).

In 2001, California wetfish port samplers were directed to tally incidental catch observed during landings in greater detail. These observations are summarized for all areas in Table 7 for 2001 – 2005. In 2005, kelp, market squid, California scorpionfish, California halibut, bat rays, hornyhead turbot, northern anchovy, California lizardfish, Pacific butterfish, cusk eel and thornback skates were the top ten most commonly occurring animals in wetfish landings (eleven animals listed because of a tie in percent frequency between anchovy and lizardfish).

In the Monterey area, incidental catch was enumerated for the third year. Even less bycatch was noted in 2005, than in 2004. Six species (Jacksmelt, northern anchovy, Pacific butterfish, kelp, unspecified sanddab, and market squid) were all that were observed in wetfish landings in this region. There were only eight less landings observed than in 2004; however, there were only about a quarter the number of bycatch species. The port complex of Santa Barbara/Ventura/Port Hueneme also began sampling CPS finfish this year but did not collect any bycatch data.

Kelp (specifically holdfasts), crustaceans, flatfish, California scorpionfish, and elasmobranchs can serve as an indication of shallow set depth. Larger fish and animals are typically sorted for either market, personal consumption, or nutrient recycling in the harbor. To document bycatch more fully at sea, including marine mammal and bird interactions which port samplers are not privy to, NOAA Fisheries has placed observers on a number of California purse seine vessels beginning in the summer of 2004 (see Sec. 11.6).

6.2.1 Incidental Catch Associated with the Market Squid Fishery

Because squid frequently school with CPS finfish, mixed landings of market squid and incidentally caught CPS finfish occur occasionally. In 2002, about seven percent of round haul squid landings included reported incidental catch of CPS species (Table 12a); in 2003, there were nine percent; and in

2004, five percent. Squid also occurred as incidental catch in trawl fisheries for sea cucumber and ridgeback prawn, and in various other gears.

Although non-target catch in market squid landings is considered minimal, the presence of the nonreported incidental catch (i.e., species that are landed along with squid that are not recorded through landing receipt processes [i.e., not sold] as is typically done for incidentally-caught species) has been documented through CDFG's port sampling program. The port sampling program records bycatch observed (i.e., presence or absence evaluations), but actual amounts of incidental catch have not been quantified to date. During 2004, incidental catch was observed in about forty-nine percent of squid landings (Table 12b). Similar to previous years, most of this catch was other pelagic species, including Pacific sardine, Pacific mackerel, northern anchovy, jack mackerel, and squid egg cases. However, jellyfish, kelp, jacksmelt, Pacific electric rays and eelgrass was also observed most frequently.

Finally, the extent that squid egg beds and bottom substrate are damaged by recent purse seine operations and subsequently, contribute to significant mortality of early life stages is not definitively known at this time. However, information regarding the frequency of occurrence of squid eggs in squid landings port-side generally indicates that egg bed-related impacts have increased over the last several years. For example, from October 1998 through September 2001, bycatch of squid eggs had a 1.8% frequency of occurrence. In 2004, squid egg capsule bycatch was 5.1% statewide, a 0.2% increase over 2003 (4.9%). If bycatch of squid egg capsules continues to increase, some gear regulations may need to be implemented in the future (e.g., restrictions to the depth at which nets could be set, spatio-temporal closures of some shallow water habitats). In this context, further investigations regarding potential damage to squid spawning beds from fishery-related operations would likely benefit status-based analyses concerning the overall squid population off California, given eggs-per-recruit theory underlies the recently adopted squid assessment method. In 2006, CDFG will begin retaining egg capsules in order to determine first, if capsule age can be quickly determined in the laboratory, and second whether a measure of egg bed disturbance can be produced.

6.3 Fishery North of Point Arena

Since 2000, limited fisheries for Pacific sardine occurred off the Pacific Northwest. Oregon and Washington closely monitor these fisheries and collect information about landings and the environmental effects of these fisheries. Information on salmon bycatch from Oregon and Washington (2000 through 2005) is summarized in Table 13.

In 2005, the first landing into Oregon was made in April and a second in May. However, because of the small size of the fish, major harvest activities did not start in earnest until mid-June. Twenty vessels landed a total of 45,006 mt, an increase from 36,111 mt landed in 2004. There was a total of 1,090 landings with 99% of the catch delivered into Astoria. The average landing was over 41 mt per trip. Because of large amounts of small fish in the area, in 2005, the majority of fishing activity took place off Washington, rather than Oregon, as harvesters were looking for larger fish. Based on logbook data, 40% of the pounds landed were taken off Oregon and 60% off Washington.

Oregon's permit stipulations include allowing observers when requested and requiring a grate over the hold opening to sort out larger species of fish. Oregon did not have personnel dedicated to ride along on sardine vessels and observe bycatch of non-target species. Available staff was able to observe 14 trips (1%). Vessel skippers were also required to record all species caught in the logbook. Logs turned in for 2005 accounted for 87% of the landings (92% of trips).

Based on both observer and logbook data, bycatch continues to be low. Bycatch included salmon and sharks (Table 14 and 15). Salmon were the major species of concern. The number of salmon caught increased based on observer data. However, percent of observed trips was low (1%). In addition, much of the increase in numbers of salmon caught may be due to the increase in volume of sardines landed, as

the rate of salmon taken (salmon/mt) was similar to past years. Based on log records, salmon catch averaged 0.5 per trip, with 70 % released alive. The estimated total catch of salmon for the fishery, based on log data, is 587 salmon (0.013 salmon/mt) (Table 13).

Incidental catch recorded on fishtickets consisted of 316.1 mt of Pacific mackerel, 3.6 mt of jack mackerel, 68.4 mt of anchovy, 0.1 mt of Pacific herring, and 0.4 mt of thresher shark for a total of 1% of the total catch.

The Washington fishery opened by rule on May 1, 2005, however, the first landing into Washington occurred on June 20. The Department issued a total of 16 permits and 11 of the permit holders participated in the fishery. There were three primary vessels who accounted for 76% of the total landings–one vessel fishing out of Ilwaco and two fishing out of Westport. A total of 6,714.2 mt of sardines were landed into Washington. A total of 207 landings were made, of which, 129 occurred within the months of August and September. A total of 394 sets were made with 63% (247) of them successful. The average catch per successful set was about 29 mt.

As part of the trial fishery and the experimental limited entry fishery regulations from 2000 through 2004, WDFW required fishers to carry at-sea observers, as well as provide financial support for the observer effort. Bycatch information was collected in terms of species, amount, and condition; observers noted whether the fish were released or landed, and whether alive, dead, or in poor condition. Overall observer coverage averaged over 25% of both total landed catch and number of landings made during the five years of the program. Based on observer data, the bycatch of non-targeted species in the Washington sardine fishery has been relatively low. Due to low bycatch levels, as well as a WDFW commitment to industry that an observer fee would only be assessed until bycatch in the sardine fishery could be characterized, the mandatory observer program was suspended at the conclusion of the 2004 season. Since a comparison of logbooks to observer data from 2000 to 2004 indicates that logbook data, in general, tends to be under-reported by 20% to 80% (Culver and Henry, 2006) salmon bycatch in the Washington sardine fishery for 2005 was calculated using the 5-year average bycatch rates from the observer program. Bycatch and mortality estimates of incidentally captured salmon, by species, based upon observer information for the past six years is shown in Table 13.

6.4 Section References

- Culver, M., and C. Henry, 2006. Summary Report of the 2005 Experimental Purse Seine Fishery for Pacific Sardine (Sardinops sagax). Washington Department of Fish and Wildlife, Montesano, Washington. 11 pp.
- Hill, K. T., and P. R. Crone. 2004. Stock assessment of Pacific mackerel (Scomber japonicus) in 2004. Paper can be obtained from Pacific Fishery Management Council, 7700 NE Ambassador Place, Suite 200, Portland, OR 97220. 44 p. and Appendices.
- McCrae, J., 2004. Oregon's Sardine Fishery, 2003 Summary. Oregon Department of Fish and Wildlife. Newport, Oregon. 12pp.
- NMFS. 2005. Endangered Species Act Section 7 Consultation Biological Opinion. Implementation of the 2005 Harvest Guideline for Pacific sardine fishery under the Coastal Pelagic Species Fishery Management Plan. 501 Ocean Blvd. Long Beach, CA 90802. 40 pp.

7.0 CALIFORNIA LIVE BAIT FISHERY

7.1 Introduction

Through much of the 20th century, CDFG monitored the harvest of CPS finfish in the California live bait fisheries by requiring Live Bait Logs. Northern anchovy and Pacific sardine are the main species in this fishery, with a variety of other nearshore or CPS taken incidentally. An estimated 20% of this harvest is sold to private fishing vessels, with the remainder to the Commercial Passenger Fishing Vessel (CPFV) fleet, where payment to the bait haulers is on a percentage basis of the CPFV revenues (Thomson *et al.* 1994). An example of the first Live Bait Log from 1939, termed a "Daily Bait Record" as printed for the State of California, Department of Natural Resources, Division of Fish and Game, can be found in Aplin (1942). The nature of the data collected were self-reported daily estimates of the number of "scoops" taken and sold by the fishermen, by species. Although this variety of data does not lend itself readily to rigorous scientific analysis, there are at least 63 years of data available, collected in a reasonably uniform manner that can serve as an index to this low volume, high value fishery.

Studies conducted by CDFG, NMFS, and others have examined this fishery, generally with a focus on the dominant species taken over a given period. As in the directed commercial CPS fisheries, the local availability of each CPS to the bait fleet changes periodically. Problems with the live bait data such as conversion factors for scoops of live fish to weight, the economics of the fishery, the character of the fleet, and compliance rates in submitting logs have been addressed in various agency reports (Maxwell 1974; and Thomson *et al.* 1991, 1992, 1994).

7.2 Legislative History

Alpin (1942) describes the earliest implementation of the live bait log program in 1939, which followed a pilot program of verbal interaction with the fishermen that established four categories describing the variation in abundance or availability of CPS to the recreational industry.

Live bait logs have been at different times mandated by state law, or submitted to the CDFG on a voluntary basis. In the early 1990s sardine became more prevalent in the bait fishery, and quotas were imposed on their annual take pursuant to management efforts to recover the sardine population off California. In 1995, CDFG lifted quotas restricting the quantity of sardines that the live bait industry could harvest. The sardine population along the California Coast was increasing toward a "recovered" level, as anchovy showed a decline, and sardines became the preferred live bait over anchovy. With the sardine quota lifted, the level of scrutiny on the harvest of the live bait industry lessened.

7.3 Logbook Information

The CDFG Live Bait Log (Title 14, Section 158, California Code of Regulations: DFG 158, October 1989) requires only the estimated scoops taken daily of either anchovy or sardine be reported, and a check mark be made if other particular species were taken, with space for comments related to fishing. Other species noted, but not consistently enumerated in the live bait harvest, include white croaker (*Genyonemus lineatus*), queenfish (*Seriphus politus*), Pacific and jack mackerels (*Scomber japonicus and Trachurus symmetricus*), and various small fishes collectively known as "brown bait" that can include juvenile barracuda (*Sphyraena argentea*), Osmerids, Atherinids, and market squid (Table 16). Estimates of ancillary catch data has been documented in earlier reports, and in CPS FMP Amendment 9.

The CDFG Pelagic Fisheries Assessment Unit at the Southwest Fisheries Science Center (SWFSC) in La Jolla presently archives the CDFG Live Bait Logs. Preliminary estimates of the reported total live bait harvest in California through 2005 have been appended to previously reported estimates from Thomson *et al.* (1991, 1992, 1994) (Table 17). In 2006, CDFG is in the process of an evaluation of the current

logbook structure, reporting requirements, and the information obtained in order to correct the data problems identified above, increase reporting compliance rates, and to better estimate the economics of the fishery.

7.4 Species Composition

The ratio of anchovy to sardine in the southern California live bait harvests shifts significantly as the populations of these two fish expand and contract over periods of years or decades. Much of the early reported harvest consisted of anchovy, following the collapse of the sardine fishery in the 1940s (Table 17).

Through the years 1994 to 2005 the proportion of anchovy in the total reported harvest ranged from a high of 58% in 1994 to a new low in 2004 of 5%. The proportion of sardine ranged from a low of 42% in 1994, to a new high of 95% in 2004 (Table 18).

7.5 References:

- Alpin, J. A. 1942. Bait records in The commercial fish catch of California for the year 1940. Calif. Dept. Fish and Game Fish Bull. 58: 20-23.
- Maxwell, W. D. 1974. A History of the California Live-Bait Fishing Industry. Calif. Dept. Fish and Game Marine Resources Technical Report 27. 24 p.
- Thomson, C. J., T. Dickerson, G. Walls, and J. Morgan. 1991. Status of the California coastal pelagic fisheries in 1990. NMFS, SWFSC Admin. Rep. LJ-91-22: 27 p.
- Thomson, C. J., T. Dickerson, G. Walls, and J. Morgan. 1992. Status of the California coastal pelagic fisheries in 1991. NMFS, SWFSC Admin. Rep. LJ-92-95:46 p.
- Thomson, C. J., T. Bishop, and J. Morgan. 1994. Status of the California coastal pelagic fisheries in 1993. NMFS, SWFSC Admin. Rep. LJ-94-14.

Title 14, California Code of Regulations.

California Fish and Game Code. 2000. Lexis Law Publishing, Charlottesville, VA. 553 p.

California Fish and Game Code. 2001. Gould publications, Altamonte Springs, FL. 568 p.

8.0 VESSEL SAFETY CONSIDERATIONS

In implementing any form of management, it is imperative to evaluate whether the strategy will impact the safety of fishing activities. Roundhaul fisheries operating off the Pacific Coast are often limited by environmental conditions, most notably inclement weather. Given that the average age of permitted CPS vessels in the limited entry fishery is 32 years and many older vessels are constructed of wood, concern has been raised regarding their safety and seaworthiness. Implementing time/area closures or restricting transferability could impact safety by restricting the ability of an older vessel to be replaced with a newer, safer vessel or by promoting fishing activity during potentially hazardous weather conditions.

In January 2003, NMFS published final regulations to implement Amendment 10 to the CPS FMP, which allows limited entry permits to be transferred to another vessel and/or individual.

As discussed in Section 2.2, the Council recently implemented a long term allocation strategy for sardines under Amendment 11 to the CPS FMP. This is action is not expected to have a substantial adverse impact on public health or safety. However, for Pacific Northwest fisheries, the action is anticipated to enhance safety at sea by advancing the reallocation date from October 1 to September 15. Waiting until October 1 to reallocate has the potential of inducing fishermen to fish in unsafe weather conditions. Ocean conditions off Oregon and Washington become increasingly rough in October. Also, crossing the Columbia River bar, always a hazardous exercise, becomes very dangerous in this time of year.

9.0 SUMMARY OF STOCK STATUS AND MANAGEMENT RECOMMENDATIONS

The CPS FMP distinguishes between "actively managed" and "monitored" species. Actively managed species (Pacific sardine and Pacific mackerel) are assessed annually. HGs, fishing seasons, and other management controls are used. Other CPS species (northern anchovy, jack mackerel, and market squid) are monitored to ensure their stocks are stable, but annual stock assessments and federal fishery controls are not used.

While this document focuses on U.S. fisheries, many CPS stocks are distributed coastwide, hence, catch information from Mexican fisheries is of interest. See Table 19 for information on commercial harvest of CPS finfish landed into Ensenada, Mexico (1978-2001) (Table 15, García and Sanchéz 2003).

9.1 Actively Managed Species

9.1.1 Pacific Sardine

Hill *et al.* (2006; see Appendix 2) summarized the status of the Pacific sardine resource off the U.S. Pacific Coast and northern Baja California, Mexico. Total landings of Pacific sardine for the directed fisheries off California, Oregon/Washington (Pacific Northwest), and Ensenada, Mexico were roughly 141,000 mt in 2004-05 (July-June 'biological year'). In calendar year 2005, landings in California (38,193 mt) declined considerably from the previous year (47,702 mt in 2004; Table 21). Landings in 2005 from the Pacific Northwest (51,831 mt) were slightly higher than in 2004 (45,069 mt; Table 17). Currently, the U.S. fisheries (California and Oregon/Washington) are regulated using a quota-based (e.g., HG) management scheme. Since the mid-1990s, actual landings from the U.S.-based fisheries have been less than the recommended HGs (Table 21). For example, the 2005 combined landings of sardine from 2005 (approximately 136,200 mt). Total annual harvest of Pacific sardine by the Mexico fishery is not regulated, but there is a minimum legal size limit of 165 mm (García and Sánchez 2003). Total landings for the 2005 Ensenada fishery are unknown. See Tables 21 and 22 for a retrospective of West Coast Pacific sardine landings, 1981-2005.

Estimated stock biomass (ages >1) from the assessment conducted in 2005 (Hill et al. 2006; see Appendix 2) indicated the sardine population has remained at a relatively high abundance level, with an estimate of roughly 1.06 million mt as of July 2005. Estimated recruitment (age-0 fish) in 2005 (4.1 billion fish) declined markedly from the historically high estimate in 2003 (over 10 billion). Further, given the inherent uncertainty surrounding estimated recruitment in recent years, definitive determinations regarding the apparent 'plateau' reached by the sardine population should be interpreted accordingly. See Table 16 for biomass and recruitment time series (1982-2005).

Finally, estimates of Pacific sardine biomass from the 1930s (Murphy 1966 and MacCall 1979) indicate that the sardine population may have been more than three times its current size before the stock decline and eventual collapse observed in the 1960s. Considering the historical perspective, it would appear that the sardine population, under favorable oceanographic conditions, may still have growth potential beyond its current size. However, per capita recruitment estimates show a downward trend in recruits per spawner in recent years, which may be indicative of a stock that has reached a threshold under current environmental conditions.

9.1.1.1 Harvest Guideline for 2006

The harvest guideline established for the USA (California, Oregon, and Washington) Pacific sardine fishery for calendar year 2006 is 118,937 mt. Statistics used to determine this harvest guideline are discussed below. To calculate the proposed harvest guideline for 2006, we used the maximum sustainable yield (MSY) control rule defined in Amendment 8 of the Coastal Pelagic Species-Fishery Management Plan, Option J, Table 4.2.5-1, PFMC (1998). This formula is intended to prevent Pacific sardine from being overfished and maintain relatively high and consistent catch levels over a long-term horizon. The Amendment 8 harvest formula for sardine is:

$HG_{2006} = (BIOMASS_{2005} - CUTOFF) \bullet FRACTION \bullet DISTRIBUTION$

where HG_{2006} is the total USA (California, Oregon, and Washington) harvest guideline recommended for 2006, BIOMASS₂₀₀₅ is the estimated July 1, 2005 stock biomass (ages 1+) from the current assessment (1,061,391 mt; see above), CUTOFF is the lowest level of estimated biomass at which harvest is allowed (150,000 mt), FRACTION is an environment-based percentage of biomass above the CUTOFF that can be harvested by the fisheries (see below), and DISTRIBUTION (87%) is the percentage of BIOMASS₂₀₀₅ assumed in U.S. waters. The value for FRACTION in the MSY control rule for Pacific sardine is a proxy for F_{msy} (i.e., the fishing mortality rate that achieves equilibrium MSY). Given F_{msy} and the productivity of the sardine stock have been shown to increase when relatively warm-ocean conditions persist, the following formula has been used to determine an appropriate (sustainable) FRACTION value:

FRACTION or $F_{msy} = 0.248649805(T^2) - 8.190043975(T) + 67.4558326$,

where T is the running average sea-surface temperature at Scripps Pier, La Jolla, California during the three preceding seasons (July-June). Ultimately, under Option J (PFMC 1998), F_{msy} is constrained and ranges between 5% and 15%. Based on the T values observed throughout the period covered by this stock assessment (1982-2005; Table 8, Figure 23, Appendix 1), the appropriate F_{msy} exploitation fraction has consistently been 15%; and this remains the case under current oceanic conditions ($T_{2005} = 18.03 \text{ °C}$). The 2006 USA harvest guideline (118,937 mt) is 13% lower than the 2005 harvest guideline (136,179 mt), but 22,049 mt higher than the highest recent harvest by the U.S. fisheries (96,896 mt in 2002; Table 19). Recent fishery practices and market conditions indicate the lower HG may not be constraining with regard to USA fishery landings in 2006 (PFMC 2005).

However, recent recruitment levels are not well-estimated, resulting in a high degree of uncertainty with respect to recent recruitment. If the actual recruitment in recent years is less than that estimated in the model and/or should the general sea-surface temperature decline continue, it is likely that harvest guidelines in the out years will constrain USA fishery practices and removals. Further when viewed on a stock-wide basis and considering the landings of Mexico and Canada as well as the USA (see Table 15 and Figure 24 in Appendix 1), adherence to an implied 'stock-wide harvest guideline' may constrain fisheries even without recruitment and sea-surface temperature declines.

9.1.2 Pacific Mackerel

The Pacific mackerel population that inhabits waters off California and northern Baja California (Ensenada, Mexico) has continually declined in abundance since the late 1970s. The coastwide harvest of this species was characterized by a generally similar decreasing pattern over this time frame, although the decline was not as consistent year-to-year or as precipitous as that observed for population biomass. In particular, during the 1990s, the directed fisheries off California had average annual landings of roughly 37,000 mt, whereas since 2002, average yearly landings have decreased nearly 90 percent (5,000 mt per year). This pattern of declining yields generally characterized all of the fisheries, including U.S. commercial and recreational fleets, as well as the commercial fishery of Mexico. Total annual harvest of

Pacific mackerel by the Mexico fishery is not regulated, but there is a minimum legal size limit of 255 mm.

Determination of the status of the Pacific mackerel population (1929-2006) for the 2006 fishing/management year (i.e., a fishing season that spans from July 2006 through June 2007) was based on the 'forward estimation' assessment model ASAP (see sections 3.1 and 3.2 above, Hill and Crone 2005, and Crone *et al.* 2006).

Pacific mackerel biomass peaked in the late 1970s at approximately 680,000 mt, declining steadily to 67,000 mt in 2002. Presently, the biomass (ages \geq 1 year old fish) is forecasted to be 112,700 mt as of July 1, 2006 (Crone et al. 2006; Appendix 2 of this document). The peak biomass observed during this time largely resulted from historically high levels of recruitment from the mid to late 1970s. These recruitment pulses occurred after a decade of extremely low biomass observed from the early-1960s to early-1970s. The decline in biomass since the early 1980s has resulted from a steady decline in year class strength and relatively low reproductive success (recruits-per-spawning stock biomass) since that time.

9.1.2.1 Harvest Guideline for 2006-2007

In Amendment 8 to the CPS FMP (PFMC 1998), the recommended MSY-based harvest control rule for Pacific mackerel is:

HG₂₀₀₆ = (TOTAL STOCK BIOMASS₂₀₀₆ - CUTOFF) • FRACTION • STOCK DISTRIBUTION,

where HG_{2006} is the total U.S. (California) HG recommended for the 2006 fishing year (July 2006 - June 2007), TOTAL STOCK BIOMASS₂₀₀₆ is the estimated stock biomass in 2006 (i.e., 112,700 mt; ages ≥ 1), CUTOFF is the lowest level of estimated biomass at which harvest is allowed, FRACTION is an environment-based percentage of biomass above the CUTOFF that can be harvested by the fisheries, and STOCK DISTRIBUTION is the percentage of TOTAL STOCK BIOMASS₂₀₀₆ in U.S. waters. CUTOFF (18,200 mt), FRACTION (30%), and STOCK DISTRIBUTION (70%) are currently 'fixed' terms in the harvest control rule. See section 4.0 (PFMC 1998) and MacCall *et al.* 1985 for analyses applicable to parameters included in the harvest control rule.

Based on the harvest control rule, the 2006 fishing year HG for Pacific mackerel is 19,845. The HG_{2006} is roughly 14 percent higher than the 2005 HG (17,419 mt) and it is generally similar to average annual yields realized over the last few years.

9.2 Monitored Species

The monitored species category of the CPS FMP includes northern anchovy, jack mackerel, and market squid. Figure 1 illustrates distribution of northern anchovy and jack mackerel eggs for areas surveyed off Southern California, April 2005.

9.2.1 Northern Anchovy

The most recent complete assessment for northern anchovy was described in Jacobson *et al.* (1995). California landings of northern anchovy began to increase in 1964, peaking in 1975 at 143,799 mt. After 1975, landings declined. From 1983 to 1999, landings did not exceed 6,000 mt per year until 2000. California landings of northern anchovy reported by Pacific Coast Fisheries Information Network (PacFIN) totaled 11,752 mt in 2000; 9,187 mt in 2001; 4,650 mt in 2002; 1,676 mt in 2003; 6,877 mt in 2004; and 68 mt in 2005. There are no reported landings of northern anchovy into Oregon from 1981 through 2001, with 3.1 mt reported in 2002; 39 mt in 2003; and 13 mt in 2004, and 2005 landings totaled 170 mt. Washington reported about 42 mt in 1988, but didn't land more until 2003 when 214 mt was landed; no landings occurred in 2004 or 2005. Through the 1970s and early 1980s, Mexican landings

increased, peaking at 258,700 mt in 1981 (Table 15). Mexican landings decreased to less than 2,324 mt per year during the early 1990s. There was an increase in Mexican landings to 21,168 mt in 1995, primarily during the months of September through November. Catches in Ensenada were 4,168; 1,823; 972; 3,482; 1,562; and 76 mt in 1996-2001, respectively. There have been no catches reported for 2002. Landings in 2003 were at similar levels as those in the late-1990's at 1,287 mt.

Jacobson *et al.* (1995, 1997) summarized the disposition of northern anchovy landed in California. Beginning in 1965, when a reduction quota was first established separately from non-reduction uses, statistics for each use became available. All non-reduction uses are combined and include fresh, frozen, processed for human consumption, and dead bait. Mexican landings data first appear for 1962.

Total age 1+ biomass of northern anchovy rose in the early 1970s to a maximum estimate of 1,598,000 mt in 1973, and decreased to 392,000 mt in 1994. Further estimates of spawning biomass (age 1+) peaked in 1975 at 1,069,000 mt, and declined to 388,000 mt in 1994. Fishing mortality estimates in 1990 to 1994 did not exceed 0.03%, and declined to zero in 1993 and 1994.

9.2.2 Jack Mackerel

Until 1999, jack mackerel were managed under the Council's Pacific Coast groundfish FMP. Jack mackerel are now a monitored species under the CPS FMP. There is no evidence of significant exploitation of this species on the Pacific Coast of North America, and accordingly, there have not been regular stock assessments or efforts to collect biological information. Management efforts to collect fishery-dependent age composition data, such as the CDFG Port Sampling Program, are in place for the two actively managed CPS (Pacific sardine and Pacific mackerel), but not for jack mackerel, aside from samples taken prior to 1995. Previous discussions of jack mackerel, such as in the groundfish FMP, were brief:

Available data indicate that the current, nearly un-used spawning biomass is about 1 million mt, the natural mortality rate is in the range of 0.1 to 0.2, a fishery located north of 39° N latitude would harvest fish that are mostly older than age 16, and the long-term potential yield for this age range is 19,000 mt. The [Council's Groundfish Management Team] recommends continuation of the 52,600 mt ABC on the basis of a constant exploitation rate (equal to natural mortality) applied to estimates of current biomass of ages 16 and over. Biomass and short-term yield are expected to slowly decline under this level of exploitation. If this level of exploitation reduces long-term biomass to approximately 30% to 50% of the current biomass, the long-term average yields for this age range would be near 19,000 mt. The GMT recommended close tracking of this fishery and the age composition of the harvested fish, particularly if catches are begun outside the exclusive economic zone (EEZ). (PFMC, 1998.)

Currently, most landings of jack mackerel are incidental to Pacific sardine and Pacific mackerel in California; however, pure landings do occur sporadically. In California, CDFG landing receipts for jack mackerel totaled 1,269 mt in 2000; 3,624 mt in 2001(these may be somewhat over-reported – the jump in jack mackerel landings in 2001 coincided with an early closure of the Pacific mackerel HG); 1,006 mt in 2002; dropped to only 189 mt in 2003; 1,199 mt in 2004; and dropped back to 253 mt in 2005. Landings of jack mackerel in the California Pelagic Wetfish fishery through the decade of the 1990s reached a maximum of 5,878 mt in 1992, and averaged under 1,900 mt over 1990-2000. During the previous decade, California landings ranged from a high of 25,984 mt in 1982 to a low of 9,210 mt in 1985.

Oregon reported 161 mt in 2000, 183 mt in 2001, 8.9 mt in 2002, 73.6 mt in 2003, and 125.8 mt in 2004. Washington reported 11.5 mt in 2002, 1.8 mt in 2003, none in 2004, and 10 mt in 2005.

Mason (2001) concluded that spawning biomass estimates of the past were inadequate. Anecdotal evidence suggests that the spawning biomass may be large in California waters, but test fishing found the adult fish too scattered for economical harvest. Most of the contemporary catch is in small aggregations of young fish along rocky shores, or schooling with Pacific sardines or Pacific mackerel.

9.2.3 Market Squid

The California Department of Fish and Game (CDFG) is currently monitoring the market squid fishery through a state-based management plan including an annual landings cap and various spatial/temporal constraints, such as a weekend closures and the establishment of marine protected areas (CDFG 2005). In addition, the Egg Escapement method and simulation modeling currently serve as informal assessment tools (see Appendix 3 in PFMC (2002) and section 4.3.4), within a research context only, to evaluate population dynamics and biological reference points (say MSY-related) regarding this species. However, "active" management may need to be considered in the future if fishery operations change substantially (e.g., spatially expand, harvest high amounts of immature squid, etc.) and/or ongoing modeling efforts identify areas of concern regarding egg escapement levels associated with commercial fishery sample data.

Currently, limited information is available on market squid population dynamics, and data on its historical and current levels of absolute biomass are unavailable. A STAR Panel was convened in May 2001 to evaluate assessment methods for use in the management of the squid fishery and to assess the appropriateness of defining MSY for this species. Preliminary attempts to estimate biological reference points (e.g., MSY, F_{MSY} , and B_{MSY}) from surplus production models were unsuccessful. In view of the difficulties in determining traditional estimates of MSY for market squid, and given new, albeit limited, information on reproductive biology was available, the STAR Panel focused attention on reference points based on "egg escapement" and its related proxies, such as F. Egg escapement is defined here as the proportion of a female squid's potential lifetime fecundity is spawned, on average, before being harvested in the fishery. An Egg Escapement method (see Appendix 3 in PFMC (2002)) based on conventional yield and spawning biomass "per recruit" theories was fully developed by the STAT and the STAR Panel and subsequently, supported by the SSC, the CPSMT, and the CPSAS.

In practical terms, the Egg Escapement approach can be used to evaluate the effects of fishing mortality (F) on the spawning potential of the stock, and in particular to examine the relation between the stock's reproductive output and potential levels of fishing mortality that results in MSY (F_{MSY}). However, it is important to note that this approach does not provide estimates of historical or current total biomass and thus, a definitive yield (i.e., quota or ABC) cannot be determined at this time. Ultimately, the Egg Escapement Method can be used to assess whether the fleet is fishing above or below an a prioridetermined sustainable level of exploitation, and in this context can be used as an effective management tool.

The STAR Panel provided general recommendations regarding analytical methods (i.e., the Egg Escapement method) and left determination of specific model configurations and other management-related parameters to the CPSMT. In this context, the CPSMT provided guidance concerning four critical areas of the Egg Escapement method, which were necessary to develop a pragmatic framework for monitoring/managing this species in the future, (1) selection of a "preferred" model scenario; (2) selection of a "threshold" level of egg escapement that can be considered a warning flag when tracking the status of the population; (3) fishery operations in (and after) El Niño/Southern Oscillation (ENSO) events; and finally, (4) important management-related constraints. Readers interested in details regarding assessment methods, STAR-related discussion and conclusions, and CPSMT decisions should refer to papers presented in Appendix 3 of the PFMC (2002).

Data collection programs and subsequent laboratory analysis has continued to the present in attempts to complement baseline information that served as the foundation for developing the Egg Escapement

method described above. That is, as generally discussed in previous CPS-related documents[e.g.,, Appendix 3 of the PFMC (2002)] further work surrounding the Egg Escapement assessment approach has addressed the following: (1) collecting much needed samples from the fisheries to bolster the original source of reproductive data that was relied upon initially when developing the overall Egg Escapement method: additional sample data now span from 1999 to 2005; (2) critically evaluating spatial/temporal patterns of the overall fishery through stratified sampling (spatially and temporally) and subsequent analysis including data from 1999 to 2005; (3) in concert with the CPSMT, preparing preliminary analysis-related schedules that could be accommodated within the Council forum and meet the stipulations required for 'monitored' species (also see Section 6.1.1); and (4) conducting simulation modeling to further examine the relationship between critical biological reference points (i.e., 'threshold' levels) and absolute levels of squid population abundance off southern California–results from this research will be presented in a working paper that will be distributed (via CPSMT discussions) in fall 2006.

To date, preliminary analyses, including estimates of fishing mortality, egg escapement, and abundance estimates have been conducted on a regional/quarterly basis for data from 1999-2005. Furthermore, sensitivity analyses based on varying levels of influential (assumed) parameters, namely natural mortality and egg-laying rates, have been also completed for the same time period. Finally, simulation modeling has been performed to examine levels of fishing mortality and proportional egg escapement (eggs-perrecruit, relative to a maximum value, profiled across levels of fishing mortality) that are most likely to be sustainable, i.e., produce levels of recruitment that sustain long-term population abundance. Results from these analyses, will be presented to the CPSMT in fall 2006 (see Section 4.3.4).

9.2.3.1 California's Market Squid Fishery

In 2001, legislation transferred the authority for management of the market squid fishery to the California Fish and Game Commission (Commission). Legislation required that the Commission adopt a market squid fishery management plan and regulations to protect and manage the squid resource. In August and December of 2004, the Fish and Game Commission adopted the Market Squid Fishery Management Plan (MSFMP), the environmental documentation, and the implementing regulations, which went into effect on March 28, 2005, just prior to the start of the 2005/2006 fishing season which started April 1st.

The goals of the MSFMP are to provide a framework that will be responsive to environmental and socioeconomic changes and to ensure long term resource conservation and sustainability. The tools implemented to accomplish these goals include: (1) setting a seasonal catch limit of 107,047 mt (118,000 short tons) to prevent the fishery from over-expanding; (2) maintaining monitoring programs designed to evaluate the impact of the fishery on the resource; (3) continuing weekend closures that provide for periods of uninterrupted spawning; (4) continuing gear regulations regarding light shields and wattage used to attract squid; (5) establishing a restricted access program that includes provisions for initial entry into the fleet, permit types, permit fees, and permit transferability that produces a moderately productive and specialized fleet; and (6) creating a seabird closure restricting the use of attracting lights for commercial purposes in any waters of the Gulf of the Farallones National Marine Sanctuary. Under this framework, the MSFMP provides the Commission specific guidelines for making management decisions. The Commission has the ability to react quickly to changes in the market squid population off California and implement management strategies without the need for a full plan amendment. The MSFMP framework structure was also designed achieve the goals and objectives of the Marine Life Management Act and to be consistent with the management outlined in CPS FMP Amendment 10.

In 2005, the market squid fishery was the largest fishery in the state, with landings estimated at 55,606 mt. This is 20% greater than in 2004 (46,323 mt), although 53% less than the record high set in 2000 (118,827 mt). The ex-vessel price ranged from \$330-\$992/mt, with an average of \$569/mt. The 2005 ex-vessel value was approximately \$31.6 million, a 59% increase from 2004 (\$19.9 million).

The fishing permit season for market squid runs from 1 April through 31 March the following year. During the 2005/2006 season (as opposed to the 2005 calendar year), 70,972 mt were landed, 54% greater than the 2004/2005 season (46,211 mt). The northern fishery continued to experience a decline in catch levels during the 2005/2006 season. Only 2,046 mt was landed, a 69% decrease from the 2004/2005 season and an 88% decrease from the 2003/2004 season (17,399 mt). The southern fishery once again surpassed the northern fishery with 68,925 mt landed (97% of the catch) during the 2005/2006 season. This was a 74% increase from the 2004/2005 season (39,640 mt).

Market squid remains an important international commodity. Squid is used domestically for food and bait and are packed and processed for export. In 2005, approximately 43,131 mt of market squid were exported for a value of \$54.6 million. Asian countries were the main export market with China and Japan taking about 73% of the trade.

9.3 References

- Crone, P. R., K. T. Hill, and J. D. McDaniel. 2006. Assessment of the Pacific mackerel (*Scomber japonicus*) stock for U.S. management in the 2006-2007 fishing year. PFMC June 2006 Briefing Book, Exhibit C.1a, Attachment 1, Pacific Fishery Management Council, Portland Oregon.
- García F.W. and Sánchez R.F.J. 2003. Análisis de la pesquería de pelágicos menores de la costa occidental de Baja California durante la temporada del 2002. Boletín Anual 2003. Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Instituto Nacional de la Pesca. Centro Regional de Investigación Pesquera de Ensenada, Cámara Nacional de la Industria Pesquera y Acuícola, Delegación Baja California. 15 p.
- Gavaris, S. 1988. An adaptive framework for the estimation of population size. Can. Atl. Fish. Sci. Adv. Comm. (CAFSAC) Res. Doc. 88/29: 12 p.
- Jacobson, L. D., N. C. H. Lo, S. F. Herrick Jr., T. Bishop. 1995. Spawning biomass of the northern anchovy in 1995 and status of the coastal pelagic species fishery during 1994. NMFS, SWFSC, Admin. Rep.LJ-95-11.
- Jacobson, L. D., N. C. H. Lo, and M. Yaremko. 1997. Status of the northern anchovy (Engraulis mordax) stock (central subpopulation) during the 1996-1997 season. NMFS, SWFSC, Admin. Rep. LJ-97-08.
- Hill, K. T., and P. R. Crone. 2004. Stock assessment of Pacific mackerel (*Scomber japonicus*) in 2004. Paper can be obtained from Pacific Fishery Management Council, 7700 NE Ambassador Place, Suite 200, Portland, OR 97220. 44 p. and Appendices.
- Hill, K. T., and P. R. Crone. 2005. Assessment of the Pacific mackerel (*Scomber japonicus*) stock for U.S. management in the 2005-2006 season. PFMC June 2005 Briefing Book, Exhibit F.1. Pacific Fishery Management Council, Portland Oregon. 158 p.
- Hill, K. T., N. C. H. Lo, B. J. Macewicz, and R. Felix-Uraga. 2006. Assessment of the Pacific sardine (*Sardinops sagax caerulea*) population for U.S. management in 2006. NOAA Tech. Mem. NOAA-TM-NMFS-SWFSC-386. 85 p.
- MacCall, A.D. 1979. Population estimates for the waning years of the Pacific sardine fishery. California Cooperative Oceanic Fisheries Investigations Reports 20:72-82.

- MacCall, A. D., R. A. Klingbeil, and R. D. Methot. 1985. Recent increased abundance and potential productivity of Pacific mackerel (Scomber japonicus). Calif. Coop. Oceanic Fish. Invest. Rep. 26: 119-129.
- Mason, J. 2001. Jack Mackerel. In: W. S. Leet, C.M. Dewees, R. Klingbeil and E.J. Larson [Editors]. California's living marine resources: a status report. California Department of Fish and Game. Sacramento, California.
- McFarlane, G.A., Baumgartner, T. R., Smith, P. E., Hunter, J. R. In press. Climate Variability and North Pacific Sardine Populations and Fisheries. Fisheries in a Changing Climate - American Fisheries Society Symposia 2001.
- Murphy, G.I. 1966. Population biology of the Pacific sardine (Sardinops caerula). Proceedings of the California Academy of Sciences 34:1-84.
- Pacific Fishery Management Council (PFMC). 2002. Status of the Pacific coast coastal pelagic species fishery and recommended acceptable biological catches: stock assessment and fishery evaluation (2002). Appendix 3: market squid maximum sustainable yield. Document can be obtained from Pacific Fishery Management Council, 7700 NE Ambassador Place, Suite 200, Portland, OR 97220.
- Pacific Fishery Management Council (PFMC). 1998. Amendment 8 (To the northern anchovy fishery management plan) incorporating a name change to: the coastal pelagic species fishery management plan. Document can be obtained from Pacific Fishery Management Council, 7700 NE Ambassador Place, Suite 200, Portland, OR 97220.

10.0 EMERGING ISSUES

This section describes current and future issues that may need to be addressed relative to FMP species and management in general.

10.1 Pacific Sardine

In April 2003, the Council adopted an interim (through 2005 fishing season) allocation framework that seeks optimal use of the annual Pacific sardine HG with minimal impacts on all sectors of the West Coast sardine fishing industry and communities. The CPSMT generally agreed that the impacts of the interim allocation scheme used to partition the Pacific sardine HG were primarily socioeconomic. However, the development of a long-term allocation framework would require that the biological-based implications of different allocation schemes be further evaluated to provide management guidance regarding how the operations of the sectoral fisheries might affect the dynamics of the sardine population at large. Thus, a comprehensive analysis was conducted regarding alternative allocation frameworks, particularly in terms of long-term socioeconomic impacts; results from this analysis were presented to the Council over a series of meetings from 2004-2005.

Further, although this allocation issue primarily influenced socioeconomic factors associated with the fishery, broad biological questions arise, given the relation between this species' biology and how quotas are implemented spatially and temporally across the state-based fishery sectors of Southern California, Northern California, and Pacific Northwest (PNW):

- What are impacts to the coastwide sardine resource from a fishery that targets older, mature fish vs. a fishery that targets younger, immature fish?;
- Are there indications of changes in sardine maturity rates (i.e., delayed maturity) in the southern fisheries resulting from density-dependent factors?; and
- Are there potential refinements to the sardine assessment and/or harvest control rule in response to new biological information?

To address these questions, biological information has been collected from NMFS research surveys off the PNW. That is, the PNW research surveys have occurred in July 2003, March and July 2004, and a survey is tentatively planned for winter 2005. These Southwest Fisheries Science Center-based surveys included sardine acoustic trawl and Continuous Underway Fish Egg Sampler (CUFES) surveys off the coast of Oregon and Washington. The surveys are designed to fill major gaps in knowledge of sardine populations, by measuring the age structure and reproductive rates, and assessing the extent the fishery is dependent on migration and on local production of sardine. The primary objective of the surveys is to accumulate additional biological data regarding the northern expansion of the population into waters off the PNW and ultimately, to include data directly (or indirectly) in ongoing stock assessments of both Pacific sardine and Pacific mackerel.

Finally, many review bodies (CPSMT, CPSAS, SSC, and STAR-related) encourage the continuance of synoptic research surveys on an annual basis to ensure survey results are representative of the entire range of this species (as well as other coastal pelagic species of concern). That is, developing and conducting such a survey will necessarily require considerable additions to current budgets, staff, and equipment (see Section 11).

10.2 Pacific Mackerel

At this time, emerging issues for Pacific mackerel are similar to those described for Pacific sardine.

As the Pacific mackerel abundance estimate has decreased over the past several years, the CPSMT discussed overfishing concerns related to this fishery. Based on the current modeling approach and the harvest control rules in the FMP, there is, currently, not a concern related to overfishing of Pacific mackerel. Historically, intermittent periods of high recruitment have supported relatively high amounts of fishing pressure. However, more recently, protracted periods of generally lower recruitment have contributed to lower levels of spawning stock and total biomass. Fishing pressure is largely influenced by availability of the resource to the fishery, as well as market factors. The U.S. West Coast Pacific mackerel fishery targets the mackerel in the northern parts of its overall range and in inshore waters. It is possible that mackerel abundance could be strong south of the U.S. border and/or in offshore waters beyond the range of the U.S. West Coast CPS fleet. Also, as in other CPS fisheries, market dynamics greatly influence total harvest. While mackerel is desirable it is not as important to the CPS fishery as Pacific sardine and market squid. In addition, most commercial harvest of Pacific mackerel occurs within the area under limited entry as defined by the CPS FMP. Under the limited entry system, overall effort on Pacific mackerel is constrained by a cap on harvest capacity. Thus, given the reasons above, the level of fishing effort relative to mackerel abundance should not give rise to immediate concern. However, model estimates of the spawning stock and recruitment relationship indicate little to no reproductive-related compensation at low levels of spawning stock biomass. Thus, issues surrounding recruitment-based overfishing should be monitored closely.

Overfishing for Pacific mackerel is defined in the CPS FMP as harvest exceeding ABC for two concurrent years. Recent landings have been well below ABC. Also, the cutoff value in the harvest control rule serves as a proxy for determining if mackerel is overfished. The cutoff value equates to a biomass estimate of 18,200 mt. The current biomass estimate of 112,700 mt is well above the cut off value.

10.3 Market Squid

It has been observed that the northern fishery (Monterey Bay) that exploits the squid resource off California may not operate in a similar manner as observed in the southern fishery, e.g., patterns of fishing in the day vs. the night (see Sections 6.1.1 and 9.2.3) and gear-related impacts to squid egg beds on or near the ocean floor. The differences between the two fisheries may have considerable influence to the state-wide monitoring programs currently in place, as well as results generated from the assessment method recently adopted for this marine resource. This issue should not be considered a trivial one, given that due to limited amounts of sample information, the population analysis recently developed for this species (i.e., the Egg Escapement method, see Section 9.2.3) was strictly based on rather broad stock distribution assumptions. That is, the recent observations regarding differences in fishery operations north and south of Point Conception necessarily dictate more detailed data collection programs and subsequent analysis to ensure that spatio-temporal patterns related to the squid population(s) are considered when assessing the overall status of the exploited resource. In this context, over the next year, the CPSMT will discuss, develop, and bring forth to the Council a workable monitoring/analysis schedule that is based on more detailed (stratified spatially and temporally) analysis of the accumulated data to date. Since fall 2003, the SWFSC and CDFG have coordinated research efforts that involve simulation modeling that will generally focus on important biological reference points included in the Egg Escapement method, such as the relationship between reproductive-based thresholds and absolute population abundance levels for this species (see also Section 4.3.4). Results from this research will be presented to the CPSMT in 2006 or early 2007.

10.4 Management Issues

Emerging management issues include market squid overfishing definition; international CPS fisheries; and standardized bycatch reporting, including at-sea observers in California-based CPS fisheries.
10.4.1 Bycatch Reporting and Observer Programs

The States of Oregon and Washington have had observers on vessels indicating there has not been a bycatch problem to the north (see Section 6.3). While CDFG port sampling suggests there is not a bycatch problem, port sampling alone is insufficient to demonstrate with assurance that there is not a bycatch problem. Therefore, NMFS has placed observers on some California-based CPS vessels in a pilot project intended to provide better information on the extent to which there is bycatch in this fishery (see Section 6.1.1 and Section 11.6). NMFS will work with the CPSMT to consider the need for additional field observer programs there have been discontinued, and possibly consider alternative ways to address any bycatch issues identified, as required by the Magnuson-Stevens Act.

10.4.2 Market Squid Overfishing Definition

With respect to market squid, it appears that there is a need to address further the prospective use of the egg escapement value as a proxy for maximum sustainable yield and as a value for determining if the stock is overfished or is subject to overfishing (i.e., minimum stock size and maximum fishing mortality threshholds). Based on the most recent review for the annual NMFS Report to Congress on the status of fish stocks, NMFS notified the Council that the current FMP language is ambiguous (see Section 4.3.4). However, because NMFS is considering amendments to National Standard 1 Guidelines and thus, changes could affect the way in which this issue might be addressed. Nonetheless, NMFS believes it would be prudent for the Council to direct the CPSMT to consider this issue and to be prepared to advise the Council as to possible revisions once any changes to the Guidelines have been proposed.

10.4.3 International CPS Fisheries

Second, there has been interest in coastwide management for the Pacific sardine fishery which would entail a more consistent forum for discussion between the U.S. and Mexico. Recent U.S.-Mexico bilateral meetings indicated a willingness from Mexico to continue scientific data exchange and cooperation on research, and engage in discussions of coordinated management. Mexico suggested that the Trinational Sardine Forum would be a good venue for starting that discussion. Canada will host the next Trinational Sardine Forum in October of 2006. Mexico also agreed to host a Mexico-U.S. scientific meeting to discuss CPS. The meeting is slated to take place in La Paz, Mexico in June of 2006.

11.0 RESEARCH AND DATA NEEDS

Several recent developments highlight the need to enhance current assessment procedures in order to meet the requirements of the FMP. These include (1) the development of a high-volume fishery for Pacific sardine in Oregon and Washington; (2) increasing recognition of the importance of CPS as principal forage for many salmon and groundfish stocks that are currently at low abundance levels; (3) the importance of CPS biomass estimates to the Council's annual determination of allowable coastal pelagic harvests; and (4) the need to monitor status of the market squid stock using data-intensive techniques. A pressing need exists for stock assessments that accurately reflect the reproductive characteristics of CPS stocks throughout their geographic range and for additional stock assessment personnel in NMFS and the three Pacific Coast states to carry out these assessments.

The highest priority research and data needs for CPS are:

- Gain more information about the status of CPS resources in the north using egg pumps, trawl and sonar surveys, and spotter planes.
- Develop a coastwide (Mexico to British Columbia) synoptic survey of sardine and Pacific mackerel biomass; i.e., coordinate a coastwide sampling effort (during a specified time period) to reduce "double-counting" caused by migration.
- There is a need to develop a formal review process for the harvest control rules for Pacific sardine and Pacific mackerel. Currently this review is not part of the stock assessment process.
- Increase fishery sampling for age structure (Pacific sardine and Pacific mackerel) in the northern and southern end of the range. Establish a program of port sample data exchange with Mexican scientists.
- Evaluate the role of CPS resources in the ecosystem, the influence of climatic/oceanographic conditions on CPS and define predatory-prey relationships.
- Routinely, collect detailed cost-earnings data to facilitate analyses for long-term changes to the sardine allocation structure.

11.1 Pacific Sardine

The Trinational Sardine Forum (Mexico, U.S., and Canada) met again in 2005 in Ensenada, Mexico to discuss issues related to the rapidly recovered sardine population and fishery along the West Coast of North America. The Forum has identified several issues for priority work. Issue 1 is developing cooperative relationships with the fishing industry to provide fishing vessel platforms for critical studies of the life history of sardine. Issue 2 is to standardize fishery-dependent data collection among agencies, particularly age and size data, and improve exchange of this data in summarized form to stock assessment scientists. Issue 3 is the need to assemble mutually compatible fishery assessments off of the West Coast of Mexico, U.S., and Canada to form a baseline of stock status and variability of possibly more than one interbreeding stock of sardines, or a temperature-derived phenotype with radically heterogeneous population parameters influencing HGs. Coastwide sea surveys which include egg and adult samples are viewed as a top priority. Otolith microchemistry and DNA analyses are promising tools to improve our knowledge of sardine stock structure.

11.2 Pacific Mackerel

California's Pacific mackerel fishery has been sampled by CDFG for age composition and size-at-age since the late-1920s. The current stock assessment model incorporates a complete time series of landings and age composition data from 1929 onward. Ensenada (Baja California) landings have rivaled California's over the past decade, however, no biological information is readily available from Mexico's fishery. Landings are accounted for in the assessment, but size and age composition are assumed to be similar to the San Pedro, California fishery. Like sardine, there is a need to establish a program of port sample data exchange with Mexican scientists (INP, Ensenada) to fill this major gap in the stock assessment.

Fishery-independent survey data for measuring changes in mackerel recruitment and spawning biomass are generally lacking. The current CalCOFI sampling pattern provides information on mackerel egg distributions in the Southern California Bight, the extreme northern end of the spawning area. Mexican scientists have conducted a number of egg and larval surveys off of Baja California in recent years (e.g., IMECOCAL program). Access to these data would enable us to continue the historical CalCOFI time series, which begins in 1951. This information could be directly incorporated into the assessment model. Night-light surveys for newly recruited Pacific mackerel should be re-instituted in the Southern California Bight. Surveys following protocols employed during CDFG Sea Survey cruises (1950-1988) could allow splining the new recruitment data set to the historical time series. The new time series would represent the only recruitment index in the mackerel stock assessment and would strengthen the ability to accurately forecast age zero and total stock abundance for each coming fishing season.

Pacific mackerel biomass has been declining since the early 1980s, but recent El Niño events have concurrently extended their northern range to British Columbia. Pacific mackerel are caught incidentally in the Pacific whiting and salmon troll fisheries. Pacific mackerel are regularly caught in triennial survey trawls off the Pacific Northwest. A simple reporting system is needed to document incidental take of mackerel in fisheries to the north. Presence-absence information may allow us to detect southward movement or further decreases in biomass.

11.3 Market Squid

Currently, there exists only limited understanding of market squid population dynamics, which necessarily has hampered assessing the status (health) of this valuable marine resource found off California. General information concerning important stock- and fishery-related parameters suggests maximum age is less than one year and the average age of squid harvested is roughly six to seven months. However, at this time, there is considerable variability (uncertainty) surrounding many of these estimated parameters. In this context, the CPSMT strongly advises that extensive monitoring programs continue for this species, including tracking fishery landings, collecting reproductive-related data from the fishery, and obtaining fishermen-related logbook information.

Although some information exists on coastwide squid distribution and abundance from fisheryindependent midwater and bottom trawl surveys largely aimed at assessing other finfish species, there is no reliable measure of annual recruitment success beyond information obtained from the fishery. Given fishing activity generally occurs only on shallow-water spawning aggregations, it is unclear how fluctuations in landings are related to actual population abundance and/or availability to the fishery itself. That is, the general consensus from the scientific and fishery management communities is that squid do inhabit, to some degree, greater depths than fished by the fleet; however, species' range suppositions remain largely qualitative at this point in time. Better information on the extent and distribution of spawning grounds along the U.S. Pacific Coast is needed, particularly, in deep water and areas north of central California. Additionally, fecundity, egg survival, and paralarvae density estimates are needed from different spawning habitats and oceanographic conditions associated with the population. Furthermore, information describing mechanisms and patterns of dispersal of adults (as well as paralarvae) along the coast is required to clarify how local impacts might be mitigated by recruitment from other areas inhabited by this short-lived species.

Although some fishery effort information is now being collected with a newly-implement logbook program in the State of California, the continuation of this program is essential to provide estimates of relative abundance (e.g., CPUE time series) in the future. Continuation and/or establishment of annual surveys using midwater trawls, bottom trawls, remotely operated vehicles (ROVs), and satellite and aerial surveys would also provide useful information for developing alternative indices of abundance other than those derived from logbook data.

Potential impacts to essential fish habitat (EFH)-related issues would most likely arise in concert with fishing activity by the purse-seine fleet on spawning aggregations in shallow water when gear potentially makes contact with the sea floor (see Section 6.1.1). In this regard, there are two areas of potential concern that have not been quantified to date: (1) damage to substrate where eggs may be deposited; and (2) damage or mortality to egg masses from contact with the gear itself.

Currently, market squid fecundity estimates, based on the Egg Escapement Method (see Section 9.2.3), are used to assess the status of the stock and evaluate biological reference points, such as MSY. The Egg Escapement Method is based on several assumptions, (1) immature squid are not harvested; (2) potential fecundity and standing stock of eggs are accurately measured; (3) life history parameters are accurately estimated (e.g., natural mortality, egg laying rate); and (4) instantaneous fishing mortality (F) translates into meaningful management units. Given the inherent uncertainty associated with these assumptions, it is imperative that each receive further scrutiny in the future, through continuation of rigorous sampling programs in the field that generate representative data for analysis purposes, as well as further histological evaluations in the laboratory and more detailed assessment-related work. For example, data collected through the CDFG port sampling program currently in place will provide information on the age and maturity stages of harvested squid. Also, the CDFG logbook program should be maintained (and bolstered) for purposes of developing alternative tools for assessing the status of the resource. Further, laboratory work concerning general mantle condition, especially the rate of mantle 'thinning,' will likely benefit the current understanding of squid life history and subsequently, help improve the overall assessment of this species. Finally, other biological-related parameters that are currently poorly understood generally surround spawning and senescence, (e.g., life history strategies concerning spawning frequency, the duration of time spent on spawning grounds, and the period of time from maturation to death).

11.4 Live Bait Fishery

Although tonnage of CPS and squid taken in the live bait fishery is minimal compared with volume taken in the commercial fishery, better estimates of live-bait landings and sales of sardine, anchovy and squid is essential as it pertains to estimates of the overall economic value of these fisheries. Outdated estimates have previously shown that the value of the live-bait fishery for sardine has equaled that of the commercial catch. In the case of squid, there is no documentation of the dramatic expansion of live-bait sales in southern California made by commercial light vessels in recent years.

The live bait fishery supplies product for several recreational fisheries along the Pacific Coast, primarily in southern California, but as far north as Eureka. Live bait catch is generally comprised of both Pacific sardine and northern anchovy; the predominant species depends on biomass levels and local availability. Recent landings estimates range between 5,000 mt and 8,000 mt annually statewide, with effort increasing in summer months. However, these estimates are based only on logbooks provided by a limited number of bait haulers, and estimates provided by the CPFV industry. Since the sale of live bait in California is not permitted in a manner similar to that used for the commercial sale of CPS, estimates of tonnage and value are imprecise. Therefore, no estimates of volume or value for the sale of market squid

for live bait are available at this time. However, in 2005 the CDFG will reexamine reporting requirements and data needs to better estimate landings and value.

11.5 Socioeconomic Data

Economic analyses of management actions effecting coastal pelagic fisheries requires detailed, representative cost and earnings data for the sardine harvesters and processors making up each fishery sector. Experience with the long-term allocation of the Pacific HG emphasizes this need, and moreover underscores the necessity to collect these data on a routine basis. Collecting such data as needed to address an issue at hand makes them suspect in a number of regards particularly in terms of strategic bias.

A step in this direction has been taken with the advent of a bycatch observer program for coastal purse seine vessels participating in CPS fisheries. Observers will be collecting economic data on the vessel's fishing operations during observed trips. The key will be designing the program to provide observer coverage that satisfy the requirements in terms of obtaining representative bycatch data as well as vessel economic data. This data collection effort would have to be supplemented with an onshore complement to obtain comprehensive economic data for harvesting vessels.

A parallel effort will need to be taken with regard to processors. To be able to fully evaluate the economic impacts of proposed management actions detailed, representative cost and earnings data for west coast sardine processors will also be needed on a routine basis. This will entail periodic surveys of CPS processors to collect representative economic data on their processing operations.

11.6 Observer Program

Bycatch in the California contingent of the CPS fishery has been qualitatively monitored by the CDFG's dockside monitoring program since the mid-1980s (Sweetnam and Laughlin, Pers. Comm., 2005). CDFG only gives qualitative descriptions of bycatch meaning they do not document the amount or quantity of bycatch but rather only document the species or type of bycatch encountered at the fish processing plant. In order to confirm bycatch rates derived from CDFG's dock-side sampling, NMFS started a pilot observer program in July 2004 on the California purse seine fishing vessels landing CPS in the limited entry fishery. The pilot observer program's main focus is to gather data on total catch and bycatch, and on interactions between their fishing gear and protected species such as marine mammals, sea turtles, and sea birds. See Section 6.1.1 for additional information and preliminary results from this program.

11.7 References

Sweetnam, D., and L. Laughlin. 2005. Personal Communication, January 11, 2005. California Department of Fish and Game, La Jolla, California. Email address: Dale.Sweetnam@noaa.gov.

12.0 ECONOMIC STATUS OF WASHINGTON, OREGON, AND CALIFORNIA CPS FISHERIES IN 2005

This section summarizes economic data presented in the Economic Appendix – Economic Status of Washington, Oregon, and California CPS Fisheries in 2005, Tables 25-35 and Figures 2-8. Pacific Coast landings of CPS totaled 156,623 mt in 2005, an 11% increase from 2004. Market squid landings, all in California, were 55,605 mt in 2005, up 39% from 2004. Pacific sardine landings decreased slightly in 2005, falling to 85,791 mt, down 4% from 2004. The exvessel value of all CPS landings was \$43.5 million in 2005, up 34% from 2004 (2004 converted to 2005 dollars). Market squid accounted for 36%, and Pacific sardine 55% of total landings in 2005. Landings of Pacific mackerel decreased 3%, and landings of northern anchovy rose 62% from 2004 to 2005. Real exvessel market squid revenues (2005 \$) increased 55% from 2004. Increased market squid landings were accompanied by a 12% increase in exvessel price from \$507 to \$568 per mt (2005 \$). There was virtually no change in aggregate CPS finfish landings from 2004; exvessel revenue fell slightly, 1%, with a corresponding overall finfish exvessel price decline of 1% in 2005. In 2005, market squid made up almost 10% of the exvessel value of total Pacific Coast landings, and CPS finfish accounted for almost 4%. California accounted for 67% of coastwide CPS landings in 2005, down from 68% in 2004; Oregon 29% up from 26% and Washington 4% down from 7% in 2004.

California sardine landings were 33,960 mt in 2005 down 23% from 2004, 44,293 mt. Market squid ranked first in exvessel value among California commercial fisheries in 2005, with exvessel revenue of, \$31.6 million, \$15.6 million more than that for Dungeness crab, the second most valuable California fishery in 2005 Landings of Pacific sardine ranked seventh highest in California exvessel value in 2005 at \$3.1 million. California Pacific mackerel landings were 3,244 mt in 2005, down 9% from 2004. California landings of Northern anchovy were 11,116 mt in 2005, up 64% from 2004, 6,793 mt.

Oregon's landings of Pacific sardine increased 25% in 2005, from 36,111 mt in 2004 to 45,110 mt in 2005. Sardine generated \$6.2 million in exvessel revenue for Oregon in 2005, 7% of the state's total exvessel revenue, ranking it seventh behind Dungeness crab in total exvessel value. Washington landings of Pacific sardine decreased 25% from 8,934 mt in 2004 to 6,721 mt in 2005. With an exvessel revenue of \$.6 million, only .4% of the Washington total in 2005, sardine ranked 16th behind Dungeness crab in exvessel value.

Oregon landings of Pacific mackerel increased from 107 mt in 2004 to 318 mt in 2005. Washington landings of Pacific mackerel increased from 22 mt in 2004 to 24 mt in 2005 while anchovy landings fell from 229 mt to 164 mt.

In 2005, the number of vessels with Pacific Coast landings of CPS finfish was 156, down from 168 in 2004. With the decrease in vessels and no change in total CPS finfish landings, finfish landings per vessel, 648 mt in 2005, increased 7% from 2004. Of the CPS finfish vessels active in 2005, 31% depended on CPS finfish for the largest share of their 2005 exvessel revenues. From 2004 to 2005, the number of vessels with Pacific Coast landings of market squid decreased from 152 to 141, with 58% of these vessels dependent on market squid for the largest share of their total 2005 exvessel revenue. Market squid landings were 394 mt per vessel in 2005, up 5% from 2004. Market squid total revenue shares for vessels that depend mainly on market squid have been higher on average than average finfish total revenue shares for vessels that depend primarily on CPS finfish, suggesting that market squid vessels tend to be more specialized than CPS finfish vessels. Roundhaul gear accounted by far for the largest share of total CPS landings and exvessel revenue by gear in 2005, dip net gear was a far distant second.

The major West Coast processors and buyers of CPS finfish are concentrated in the Los Angeles, Santa Barbara-Ventura, Monterey and Oregon-Washington Columbia River port areas. The exvessel markets for market squid are mainly in the Los Angeles, Santa Barbara-Ventura and Monterey port areas.

In 2005, 43,636 mt of market squid were exported through West Coast customs districts with an export value of \$55.6 million; a 48% increase in quantity, and a 50% increase in the real value of West Coast market squid exports from 2004. The primary country of export was China, 58% of the total, which received 25,273 mt, 129% more than the quantity exported to China in 2004. Eighty-seven percent of market squid exports went to China and four additional countries: Japan (6,424 mt), Greece (2,177 mt), Spain (2,025 mt) and the Philippines (1,824 mt). Domestic sales were generally made to restaurants, Asian fresh fish markets or for use as bait.

In 2005, 67,197 mt, of sardines were exported through West Coast customs districts down 3% from 2004. Sardine exports were valued at \$56.6 million in 2005, down 7% from 2004. Almost 70% of sardine exports were in the frozen form, the balance were in the preserved form. Japan was the primary export market in 2005, receiving 30,808 mt, down 1% from 2004, representing 46% of total west coast sardine exports. Australia was second with 16,626 mt, 24% of the total a 68% increase from 2004. Japanese demand for Pacific sardine is for both human consumption and use as bait in its longline fisheries. West Coast Pacific sardine exports to Australia are primarily for feed in Australia's bluefin tuna farming operations. Domestic use of Pacific sardine is primarily as canned product for human consumption.

Table 1. History of Council Actions

- The Council initiated development of the FMP for Northern anchovy in January of 1977. The FMP was submitted to the U.S. Secretary of Commerce (Secretary) in June of 1978. Regulations implementing the FMP were published in the Federal Register on September 13, 1978 (43*FR*40868). Subsequently, the Council has considered seven amendments.
- The first amendment changed the method of specifying the domestic annual harvest for Northern anchovy and added a requirement for an estimate of domestic processing capacity and expected annual level of domestic processing. Approval for this amendment was published in the Federal Register on July 18, 1979 (44*FR*41806).
- The second amendment, which became effective on February 5, 1982, was published in the Federal Register on January 6, 1982 (47*FR*629). The purpose of this amendment was to increase the domestic fishing fleet's opportunity to harvest the entire optimum yield (OY) of Northern anchovy from the U.S. EEZ by releasing, inseason, unutilized portions of the Northern quota.
- During the spring of 1982, the Council considered a third amendment that divided the quota for Northern anchovy into two halves and made release of the second half conditional on the results of a mid season review of the status of the stock. The methods proposed for the mid season assessment were considered too complex to implement, and the amendment was not approved.
- The fourth amendment, which had two parts, was published in the Federal Register on August 2, 1983 (48*FR*34963) and became effective on August 13, 1983. The first part abolished the five inch size limit in the commercial fishery and established a minimum mesh size of 5/8 inch for Northern anchovy. The mesh size requirement did not become effective until April 1986 in order to give the fleet additional time to comply without undue economic hardship. The second part established a mid season quota evaluation that was simpler in design than the method proposed in Amendment 3.
- The fifth amendment in 1983 incorporated advances in scientific information concerning the size and potential yield of the central subpopulation of Northern anchovy. In addition, the fifth amendment included changes to a variety of other management measures. Two or more alternative actions were considered in each of seven general categories; (1) OY and harvest quotas; (2) season closures; (3) area closures; (4) quota allocation between areas; (5) the reduction quota reserve; (6) minimum fish size or mesh size; and (7) foreign fishing and joint venture regulations. The alternatives for the fifth amendment were reviewed by the Council during 1983. The final rule was published in the Federal Register on March 14, 1984 (49*FR*9572).
- In 1990, the sixth amendment implemented a definition of overfishing for Northern anchovy consistent with National Standard 7, and addresses vessel safety (56*FR*15299, April 16, 1991).
- The Council began developing the seventh amendment as a new FMP for CPS on a motion from NMFS and California in 1990. A complete draft was available in November of 1993, but the Council suspended further work, because NMFS withdrew support due to budget constraints. In July of 1994, the Council decided to proceed with the plan through the public comment period. NMFS agreed with the decision on the condition that the Council also consider the options of dropping or amending the anchovy FMP.

Thus, four principal options were considered for managing CPS (1) drop the anchovy FMP (no federal or Council involvement in CPS); (2) continue with the existing FMP for anchovy (status quo); (3) amend the FMP for Northern anchovy; and (4) implement an FMP for the entire CPS fishery. In March of 1995, the Council decided to proceed with the FMP for CPS. Final action was postponed until June 1995 when the Council adopted a draft plan that had been revised to address comments provided by NMFS and the SSC. Amendment 7 was submitted to the Secretary, but rejected by NMFS, Southwest Region, as being inconsistent with National Standard 7. NMFS announced its intention to drop the FMP for Northern anchovy (in addition to FMP=s other species) in the Federal Register on March 26, 1996 (61FR13148), but the action was never completed.

- Development of Amendment 8 began in June, 1997 when the Council directed the CPSPDT to amend the FMP for Northern anchovy to conform to the recently revised Magnuson-Stevens Fishery Conservation and Management Act and to expand the scope of the FMP to include the entire CPS fishery. Amendment 8 was partially approved by the U.S. Secretary of Commerce on June 10, 1999, and final regulations were published on December 15, 1999 (64*FR*69888). The FMP was implemented on January 1, 2000.
- At its meeting in June 1999, the Council directed its Coastal Pelagic Species Management Team (CPSMT) to recommend appropriate revisions to the FMP and report to the Council the following September. A public meeting of the CPSMT was held in La Jolla, California, on August 3 and 4, 1999, and August 24, 1999, and a meeting was held between the CPSMT and the Coastal Pelagic Species Advisory Subpanel on August 24, 1999. At its September 1999 meeting, the Council gave further direction to the CPSMT regarding MSY for squid. At its March 2000 meeting, the Council asked the CPSMT for a more thorough analysis of the alternatives proposed for establishing MSY for squid and for bycatch. At a public meeting in La Jolla, California, on April 20 and 21, 2000, the CPSMT reviewed comments from the Council, the Council's Scientific and Statistical Committee (SSC) and prepared additional material for establishing MSY for squid based on spawning area.
- The Council distributed Amendment 9 for public review on July 27, 2000. At its September 2000 meeting, the Council reviewed written comments, received comments from its advisory bodies, and heard public comments, and decided to submit only two provisions for Secretarial review. Based on testimony concerning MSY for squid, the Council decided to include in Amendment 9 only the bycatch provision and a provision providing a framework to ensure that Indian fishing rights are implemented according to treaties between the U.S. and the specific tribes. Since implementation of the FMP, the CPS fishery has expanded to Oregon and Washington. As a result, the FMP must discuss Indian fishing rights in these areas. These rights were not included in the FMP; and the Council decided to address this issue in Amendment 9. The Council decided to conduct further analysis of the squid resource and will prepare a separate amendment that addresses OY and MSY for squid.
- The Secretary of Commerce approved Amendment 9 on March 22, 2001.
- In April 2001, the Council adopted the capacity goal and transferability provisions recommended by the CPSMT for inclusion in Amendment 10. The Council directed the CPSMT to develop an amendment to the CPS FMP that will include the capacity goal, provisions for permit transferability, a process for monitoring fleet capacity relative to the goal, and a framework for modifying transferability provisions as warranted by increases or decreases in fleet capacity. The amendment will also address determination of OY and MSY for market squid.

- In November 2001, the Council reviewed the findings of the market squid stock assessment review (STAR) workshop and endorsed the egg escapement approach as a proxy for squid MSY, as recommended by the market squid STAR Panel and CPSMT.
- In March 2002, the Council adopted draft Amendment 10 to the CPS FMP for public review.
- In June 2002, the Council adopted Amendment 10 to the CPS FMP.
- December 30, 2002, the Secretary of Commerce approved Amendment 10. On January 27, 2003 NMFS issued the final rule and regulations for implementing Amendment 10.
- September 2002, the Council requested NMFS take emergency action to reallocate the unharvested portion of the harvest guideline prior to October 1. The Council believed this action would minimize negative economic impacts in the northern fishery without causing market disruptions in the southern fishery. On September 26, 2002, through an emergency rule, NMFS reallocated the remaining Pacific sardine harvest guideline and reopened the northern subarea fishery, which had been closed on September 14, 2002.
- September 2002, the CPSAS recommended the Council initiate a regulatory or FMP amendment and direct the CPSMT to prepare management alternatives for revising the sardine allocation framework. The Council directed the CPSMT to review CPSAS recommendations for revising the allocation framework. A public meeting of the CPSMT was held on October 8, 2002. The CPSMT discussed information needs and prospective analyses for developing allocation management alternatives.
- On October 30, 2002, the Council initiated a regulatory amendment to address allocation problems.
- The CPSMT met January 30-31, 2003 to analyze various alternatives for revising the allocation framework and developed recommendations for Council consideration.
- At the March 2003 Council meeting, the SSC and CPSAS reviewed analyses of the proposed management alternatives for sardine allocation. Based on the advisory body recommendations and public comment, the Council adopted five allocation management alternatives for public review.
- At the April 2003 Council meeting, the CPSAS reviewed the five management alternatives and developed recommendations for the Council. The Council took final action on the regulatory amendment. The proposed action adopted by the Council would (1) change the definition of subarea A and subarea B by moving the geographic boundary between the two areas from 35° 40' N latitude to 39° N latitude, (2) move the date when Pacific sardine that remains unharvested is reallocated to Subarea A and Subarea B from October 1 to September 1, (3) change the percentage of the unharvested sardine that is reallocated to Subarea A and Subarea B from 50 percent to both subareas to 20 percent to Subarea A and 80 percent to Subarea B, and (4) reallocate all unharvested sardine that remains on December 1 coast wide. The Council=s intent is for this interim revision to the allocation framework be in effect for the 2003 and 2004 seasons. The allocation regime could be extended to 2005 if the 2005 harvest guideline were at least 90% of the 2003 harvest guideline.

- The regulatory amendment for allocation of the Pacific sardine harvest guideline was approved on August 29, 2003. The final rule implementing the regulatory amendment was published September 4, 2003 (68*FR*52523).
- At the November 2003 Council meeting, the Council adopted a harvest guideline of 122,747 mt for the 2004 Pacific sardine fishery, within an incidental catch allowance of up to 45%. This harvest guideline is based on a biomass estimate of 1,090,587 mt. Per the revised allocation framework, on January 1, the harvest guideline will be allocated 33% to the northern subarea and 66% to the southern subarea, with a subarea dividing line at Point Arena, CA. The final rule implementing the harvest guideline was published December 3, 2003 (68*FR*67638).
- At the June 2004 Council meeting, the Council adopted the following management measures for the July 2004-June 2005 Pacific mackerel fishery: 1) Total fishery harvest guideline of 13.268 mt; 2) Directed fishery guideline of 9.100 mt; and 3) Set-aside for incidental catches of 4,168 mt and an incidental catch rate limit of 40% when mackerel are landed with other CPS species, except that up to one mt of Pacific mackerel can be landed without landing any other CPS. The Council also requested NMFS track utilization of the directed fishery guideline and advise the Council at the March 2005 meeting if additional action (e.g. a mop-up fishery) is warranted. Additionally, the Council initiated an amendment to the CPS FMP with the primary purpose of allocating the coastwide Pacific sardine harvest guideline. The Council discussed a schedule that included final Council action on the FMP amendment by June 2005, which would enable implementation by January 2006. To facilitate development of the amendment, the Council directed the CPSAS to draft a range of alternative sardine allocation scenarios. The Council also directed the CPS Management Team to formally review the CPS FMP issues raised by NMFS to identify issues that could be addressed through amendment to the CPS FMP and if they could be addressed in the short-term or would require more extensive time to complete.
- At the September 2004 Council meeting, the Council adopted STAR Panel reports for Pacific mackerel and Pacific sardine. New assessment methodologies will be used for management of the 2005 sardine fishery and the 2005-2006 Pacific mackerel fishery. Relative to the CPS FMP amendment process, the Council requested the CPSAS to narrow the current broad range of Pacific Sardine allocation alternatives for Council consideration at the November 2004 meeting and Secondly, received information from the CPSMT about their consideration of several FMP-related issues raised by NMFS, and directed Council staff to communicate to NMFS the Council plans for further review of CPS EFH.
- At the November 2004 Council meeting, the Council adopted a harvest guideline of 136,179 mt for the 2005 Pacific sardine fishery. This harvest guideline is based on a biomass estimate of 1.2 million mt. Per the FMP allocation framework, on January 1 the harvest guideline will be allocated 33% to the northern subarea and 66% to the southern subarea with a subarea dividing line at Point Arena, California. Additionally, the Council directed the Coastal Pelagic Species (CPS) Management Team and staff to begin development of Amendment 11 to the CPS FMP to include alternatives for sardine allocation, as recommended by the CPSAS as well as two additional alternatives The Council anticipates reviewing the draft analyses and considering formal adoption of allocation alternatives at the April 2005 Council meeting.

- At the March 2005 Council meeting, the Council reviewed a progress update from NMFS Southwest Region on a proposed course of action for management of krill in the West Coast Exclusive Economic Zone and National Marine Sanctuaries under the auspices of the Coastal Pelagic Species FMP. The Council approved a draft outline for an alternatives analysis.
- At the April 2005 Council meeting, the Council approved a range of alternatives for the allocation of Pacific sardine for further analysis and public review. After reviewing preliminary results on the range of alternatives approved for analysis in November 2004 and reports of the Coastal Pelagic Species (CPS) advisory bodies, the Council eliminated two alternatives (Alternatives 2 and 5) from further consideration. The Council recommended that the CPS Management Team follow the advice of the SSC as they complete the analysis of allocation alternatives for public review.
- At the June 2005 Council meeting, the Council addressed three CPS matters, pacific mackerel harvest guideline and management measures, long term Pacific sardine allocation and CPS essential fish habitat (EFH).

Regarding Pacific mackerel, the Council adopted the new assessment and the following management measures for the July 2005-June 2006 Pacific mackerel fishery: 1) total fishery harvest guideline of 17,419 mt; 2) directed fishery guideline of 13,419 mt; and 3) set-aside for incidental catches of 4,000 mt and an incidental catch rate limit of 40%, when mackerel are landed with other coastal pelagic species, except that up to one mt of Pacific mackerel can be landed without landing any other CPS. The Council requested NMFS track utilization of the directed fishery guideline and advise the Council at the March 2006 meeting if release of the incidental set-aside is warranted.

Regarding Pacific sardine allocation, the Council took final action on a long-term allocation of the annual Pacific sardine harvest guideline. The Council approved a modified version of Alternative 3, which provides the following allocation formula for the non-tribal share of the harvest guideline:

1. a seasonal allocation structure with 35% of the harvest

guideline to be allocated coastwide on January 1;

2. 40% of the harvest guideline, plus any portion not harvested from the initial allocation, to be reallocated coastwide on July 1; and

3. on September 15 the remaining 25% of the harvest guideline, plus any portion not harvested from earlier allocations, to be reallocated coastwide.

The Council also recommended a review of the allocation formula in 2008.

The Council adopted the 2005 SAFE document as drafted by the CPS Management Team (CPSMT) including the required review of CPS EFH. The Council recommended no changes to the existing definition of EFH because the CPSMT review identified no new information on which to base EFH modifications. The Council agreed with the research needs identified by the CPSMT in the 2005 SAFE and stressed the importance of coastwide sardine research and harvest policy review.

• At the November 2005 Council meeting, the Council adopted a Pacific sardine harvest guideline of 118,937 mt for the 2006 season to be managed under the terms of the allocation arrangements under Amendment 11.

The Council also approved a range of krill fishing alternatives for public review and additional analysis, including a preliminary preferred alternative to identify krill as a prohibited species in the Exclusive Economic Zone. The proposed krill management measures will be implemented as Amendment 12 to the CPS FMP. At the June 2005 Council meeting, the Council addressed three CPS matters, pacific mackerel harvest guideline and management measures, long term Pacific sardine allocation and CPS essential fish habitat (EFH).

Table 2. Regulatory Actions

January 25, 2000. NMFS published harvest guidelines for Pacific sardine and Pacific mackerel for the fishing year beginning January 1, 2000. A harvest guideline of 186,791 mt was established for Pacific sardine, based on a biomass estimate of 1,581,346 mt. The harvest guideline was allocated for Subarea A, which is north of 35° 40' N latitude (Point Piedras Blancas) to the Canadian border, and for Subarea B, which is south of 35° 40' N latitude to the Mexican border. The northern allocation was 62,264 mt; the southern allocation was 124,527 mt. The sardine harvest guideline was in effect until December 31, 2000, or until it was reached and the fishery closed. A harvest guideline of 42,819 mt was established for Pacific mackerel based on a biomass estimate of 239,286 mt. The harvest guideline for Pacific mackerel was in effect until June 30, 2000, or until it was reached and the fishery closed. (65*FR*3890)

September 11, 2000. NMFS announced the annual harvest guideline for Pacific mackerel in the exclusive economic zone (EEZ) off the Pacific Coast. Based on the estimated biomass of 116,967 mt and the formula in the FMP, a harvest guideline of 20,740 mt was calculated for the fishery beginning on July 1, 2000. This harvest guideline is available for harvest for the fishing season July 1, 2000, through June 30, 2001. (65*FR*54817)

November 1, 2000. NMFS announced the closure of the directed fishery for Pacific mackerel in the EEZ off the Pacific Coast on October 27, 2000. The FMP and its implementing regulations require NMFS to set an annual harvest guideline for Pacific mackerel based on a formula in the FMP and to close the fishery when the harvest guideline is reached. The harvest guideline of 20,740 mt is projected to be reached before the end of the fishing season on June 30, 2001, which requires closing the directed fishery and setting an incidental harvest limit for Pacific mackerel so that the harvest of other coastal pelagic species will not be further restricted. The intended effect of this action is to ensure conservation of the Pacific mackerel resource. For the reasons stated here and in accordance with the FMP and its implementing regulations at 50 CFR 660.509, the directed fishery for Pacific mackerel will be closed October 27, 2000, after which time no more than 20% by weight of any landing of Pacific sardine may be Pacific mackerel. (65*FR*65272)

November 17, 2000. NMFS published a correction to the Pacific mackerel closure which was published on November 1, 2000. In 65FR65272, make the following correction: On page 65272, in the third column, under the heading SUPPLEMENTARY INFORMATION, the last sentence is corrected to read as follows: "For the reasons stated here and in accordance with the FMP and its implementing regulations at 50 CFR 660.509, the directed fishery for Pacific mackerel will be closed October 27, 2000, after which time no more than 20% by weight of a landing of Pacific sardine, northern anchovy, jack mackerel, or market squid may consist of Pacific mackerel." (65FR69483)

December 27, 2000. NMFS announced the annual harvest guideline for Pacific sardine in the EEZ off the Pacific Coast for the January 1, 2001, through December 31, 2001, fishing season. This harvest guideline has been calculated according to the regulations implementing the FMP. The intended effect of this action is to establish allowable harvest levels for Pacific sardine off the Pacific Coast. Based on the estimated biomass of 1,182,465 mt and the formula in the FMP, a harvest guideline of 134,737 mt was calculated for the fishery beginning January 1, 2001. The harvest guideline is allocated one third for Subarea A, which is north of 35° 40' N latitude (Point Piedras Blancas) to the Canadian border, and two thirds for Subarea B, which is south of 35° 40' N latitude to the Mexican border. Any unused resource in either area will be reallocated between areas to help ensure that the optimum yield will be achieved. The northern allocation is 44,912 mt; the southern allocation is 89,825 mt. (65*FR*81766)

February 22, 2001. NMFS announced changes to the restriction on landings of Pacific mackerel for individuals participating in the CPS fishery and for individuals involved in other fisheries who harvest small amounts of Pacific mackerel. The incidental limit on landings of 20% by weight of

Pacific mackerel in landings of Pacific sardine, northern anchovy, jack mackerel, and market squid remains in effect; however, CPS fishermen may land up to 1 mt of Pacific mackerel even if they land no other species from the trip. Non CPS fisherman may land no more than 1 mt of Pacific mackerel per trip. After the harvest guideline of 20,740 mt is reached, all landings of Pacific mackerel will be restricted to 1 mt per trip. This action is authorized by the FMP and is intended to ensure that the fishery achieves, but does not exceed, the harvest guideline while minimizing the economic impact on small businesses. For the reasons stated here, no fishing vessel may land more than 1 mt of Pacific mackerel in a fishing trip if the total amount of Pacific mackerel on board the vessel does not exceed 20% by weight of the combined weight of all CPS on board the vessel. (66FR11119)

March 30, 2001. NMFS announced the closure of the fishery for Pacific mackerel in the EEZ off the Pacific Coast at 12:00 a.m. on March 27, 2001. The FMP and its implementing regulations require NMFS to set an annual harvest guideline for Pacific mackerel based on a formula in the FMP and to close the fishery when the harvest guideline is reached. The harvest guideline of 20,740 mt has been reached. Following this date no more than 1 mt of Pacific mackerel may be landed from any fishing trip. The effect of this action is to ensure conservation of the Pacific mackerel resource. (66FR17373)

July 25, 2001. NMFS announced a harvest guideline of 13,837 mt for Pacific mackerel for the fishing season July 1, 2001 through June 30, 2002. A directed fishery of 6,000 mt was established, which, when attained, would be followed by an incidental allowance of 45% of Pacific mackerel in a landing of any coastal pelagic species. If a significant amount of the harvest guideline remained unused before the end of the fishing season on June 30, 2002, the directed fishery would be reopened. This approach was taken because of concern about the low harvest guideline's potential negative effect on the harvest of Pacific sardine if the fishery for Pacific mackerel had to be closed. The two species occur together often and could present incidental catch problems. (66FR38571)

November 27, 2001. NMFS announced the closure of the directed fishery for Pacific mackerel in the EEZ off the Pacific Coast at 12:00 noon on November 21, 2001. For the fishing season beginning July 1, 2001, 6,000 mt of the 13,837 mt harvest guideline was established for a directed fishery. More than 6,000 mt has been landed. Therefore, the directed fishery for Pacific mackerel was closed on November 21, 2001, after which time no more than 45% by weight of a landing of Pacific sardine, northern anchovy, jack mackerel, or market squid could consist of Pacific mackerel. The intended effect of this action was to ensure that the harvest guideline was achieved, but not exceeded, and to minimize bycatch of Pacific mackerel while other CPS were being harvested. (66FR59173)

December 27, 2001. NMFS published the harvest guideline for Pacific sardine for the fishing season beginning January 1, 2002. A harvest guideline of 118,442 mt was established for Pacific sardine based on a biomass estimate of 1,057,599 mt. The harvest guideline is allocated for Subarea A, which is north of 35° 40' N latitude (Point Piedras Blancas) to the Canadian border, and for Subarea B, which is south of 35° 40' N latitude to the Mexican border. The northern allocation is 39,481 mt; the southern allocation is 78,961mt. The sardine harvest guideline is in effect until December 31, 2002, or until it is reached and the fishery closed. (66FR66811)

April 5, 2002. NMFS announced the reopening of the directed fishery for Pacific mackerel in the U.S. EEZ off the Pacific Coast on April 1, 2002. A significant portion of the Pacific mackerel harvest guideline remains unharvested (6,585 mt). Therefore, the incidental catch allowance that has been in effect since November 21, 2001 is removed, and any landing of Pacific mackerel may consist of 100% Pacific mackerel. This action was taken to help ensure that the harvest guideline is attained. If the harvest guideline is projected to be reached before June 30, 2002, the directed fishery will be closed and an appropriate incidental landing restriction imposed. (67FR16322)

July 11, 2002. NMFS proposed a regulation to implement the annual harvest guideline for Pacific mackerel in the EEZ off the Pacific Coast. The CPS FMP and its implementing regulations require NMFS to set an annual harvest guideline for Pacific mackerel based on the formula in the FMP. This action proposes allowable harvest levels for Pacific mackerel off the Pacific Coast. Based on the estimated biomass of 77,516 mt and the formula in the FMP, a harvest guideline of 12,456 is proposed for the fishery beginning on July 1, 2002, and continue through June 30, 2003, unless the harvest guideline is attained and the fishery closed before June 30. (67FR45952)

September 18, 2002. NMFS announced the closure of the fishery for Pacific sardine in the U.S. EEZ off the Pacific Coast north of Point Piedras Blancas, California, $(35^{\circ} 40' \text{ N} \text{ latitude})$ at 0001 hrs local time on September 14, 2002. The closure will remain in effect until the reallocation of the remaining portion of the coast wide harvest guideline is required by the CPS FMP. That reallocation is expected to occur on or about October 1, 2002. The purpose of this action is to comply with the allocation procedures mandated by the FMP. (67*FR*58733)

September 26, 2002. Emergency rule. NMFS announced the reallocation of the remaining Pacific sardine harvest guideline in the U.S. EEZ off the Pacific Coast. The CPS FMP requires that NMFS conduct a review of the fishery 9 months after the beginning of the fishing season on January 1, and reallocate any unharvested portion of the harvest guideline, with 50% allocated north and south of Point Piedras Blancas, California. The allocation north of Point Piedras Blancas was reached on September 14, 2002, and the fishery was closed until the scheduled time for reallocation on October 1, 2002. This action reallocates the remainder of the harvest guideline earlier than the date specified in the FMP in order to minimize the negative economic effects on fishing and processing, primarily in the Pacific Northwest, that would result from delaying the reallocation. (67FR60601)

October 3, 2002. NMFS issued a regulation to implement the annual harvest guideline for Pacific mackerel in the EEZ off the Pacific Coast. The CPS FMP and its implementing regulations require NMFS to set an annual harvest guideline for Pacific mackerel based on the formula in the FMP. This action is to conserve Pacific mackerel off the Pacific Coast. Based on the estimated biomass of 77,516 mt and the formula in the FMP, a harvest guideline of 12,456 is proposed for the fishery beginning on July 1, 2002, and continue through June 30, 2003, unless the harvest guideline is attained and the fishery closed before June 30. There will be a directed fishery of at least 9,500 mt, and 3,035 mt of the harvest guideline will be utilized for incidental landings following the closure of the directed fishery. After closure of the directed fishery, no more than 40% by weight of a landing of Pacific sardine, northern anchovy, jack mackerel, or market squid may consist of Pacific mackerel, except that up to 1 mt of Pacific mackerel may be landed without landing any other CPS. The fishery will be monitored, and if a sufficient amount of the harvest guideline remains before June 30, 2003, the directed fishery will be reopened. The goal is to achieve the harvest guideline and minimize the impact on other coastal pelagic fisheries. 67FR61994)

October 30, 2002. NMFS proposed a regulation to implement Amendment 10 to the CPS FMP, which was submitted by the Council for review and approval by the Secretary of Commerce. Amendment 10 addresses the two unrelated subjects of the transferability of limited entry permits and maximum sustainable yield for market squid. Only the provisions regarding limited entry permits require regulatory action. The purpose of this proposed rule is to establish the procedures by which limited entry permits can be transferred to other vessels and/or individuals so that the holders of the permits have maximum flexibility in their fishing operations while the goals of the FMP are achieved. (67FR66103)

November 25, 2002. NMFS proposed a regulation to implement the annual harvest guideline for Pacific sardine in the U.S. EEZ off the Pacific Coast for the fishing season January 1, 2003, through December 31, 2003. This harvest guideline has been calculated according to the CPS

FMP and establishes allowable harvest levels for Pacific sardine off the Pacific Coast. Based on the estimated biomass of 999,871 mt and the formula in the FMP, a harvest guideline of 110,908 mt was determined for the fishery beginning January 1, 2003. The harvest guideline is allocated one third for Subarea A, which is north of 35° 40' N latitude (Point Piedras Blancas) to the Canadian border, and two thirds for Subarea B, which is south of 35° 40' N latitude to the Mexican border. The northern allocation is 36,969 mt; the southern allocation is 73,939 mt. (67*FR*70573)

December 31, 2002. NMFS issued a regulation to implement the annual harvest guideline for Pacific sardine in the U.S. EEZ off the Pacific Coast for the fishing season January 1, 2003, through December 31, 2003. This harvest guideline has been calculated according to the CPS FMP and establishes allowable harvest levels for Pacific sardine off the Pacific Coast. Based on the estimated biomass of 999,871 mt and the formula in the FMP, a harvest guideline of 110,908 mt was determined for the fishery beginning January 1, 2003. The harvest guideline is allocated one third for Subarea A, which is north of 35° 40' N latitude (Point Piedras Blancas, California) to the Canadian border, and two thirds for Subarea B, which is south of 35° 40' North latitude to Mexican border. The northern allocation is 36,969 mt; the southern allocation is 73,939 mt. If an allocation or the harvest guideline is reached, up to 45% by weight of Pacific sardine may be landed in any landing of Pacific mackerel, jack mackerel, northern anchovy, or market squid. (67*FR*79889).

January 27, 2003. NMFS issued a regulation to implement Amendment 10 to the CPS FMP, which was submitted by the Council for review and approval by the Secretary of Commerce. Amendment 10 addresses the two unrelated subjects of the transferability of limited entry permits and maximum sustainable yield for market squid. Only the provisions regarding limited entry permits require regulatory action. The primary purpose of this final rule is to establish the procedures by which limited entry permits can be transferred to other vessels and/or individuals so that the holders of the permits have maximum flexibility in their fishing operations while the goals of the FMP are achieved. (68*FR*3819)

June 26, 2003. NMFS proposed a regulatory amendment to the CPS FMP. This amendment was submitted by the Council for review and approval by the Secretary. The proposed amendment would change the management subareas and the allocation process for Pacific sardine. The purpose of this proposed amendment is to establish a more effective and efficient allocation process for Pacific sardine and increase the possibility of achieving OY. (68*FR*37995)

July 29, 2003. NMFS proposed a regulation to implement the annual harvest guideline for Pacific mackerel in the EEZ off the Pacific coast. The CPS FMP and its implementing regulations require NMFS to set an annual harvest guideline for Pacific mackerel based on the formula in the FMP. (68*FR*44518)

September 4, 2003. NMFS issued a final rule to implement a regulatory amendment to the CPS FMP that changed the management subareas and the allocation process for Pacific sardine. The purpose of this final rule was to establish a more effective and efficient allocation process for Pacific sardine and increase the possibility of achieving OY. (68*FR*52523)

September 9, 2003. NMFS announced the reallocation of the remaining Pacific sardine harvest guideline in the EEZ off the Pacific Coast. On September 1, 2003, 59,508 mt of the 110,908 mt harvest guideline is expected to remain unharvested. The CPS FMP requires that a review of the fishery be conducted and any uncaught portion of the harvest guideline remaining unharvested in Subarea A (north of Pt. Arena, California) and Subarea B (south of Pt. Arena, California) be added together and reallocated, with 20 percent allocated to Subarea A and 80 percent to Subarea B; therefore, 11,902 mt is allocated to Subarea A and 47,600 mt is allocated to Subarea B. The intended effect of this action is to ensure that a sufficient amount of the resource is available to all harvesters on the Pacific Coast and to achieve OY. (68*FR*53053)

October 3, 2003. NMFS issued a final rule to implement the annual harvest guideline for the July 1, 2003 - June 30, 2004 Pacific mackerel fishery in the EEZ off the Pacific coast. The CPS FMP and its implementing regulations require NMFS to set an annual harvest guideline for Pacific mackerel based on the formula in the FMP. Based on this approach, the biomass for July 1, 2003, is 68,924 mt. Applying the formula in the FMP results in a harvest guideline of 10,652 mt, which is lower than last year but similar to low harvest guidelines of recent years. (68FR57379)

October 28, 2003. NMFS announced the closure of the fishery for Pacific sardine in the EEZ off the Pacific Coast north of Pt. Arena, California (39 N latitude) at 12:01 a.m. local time on October 17, 2003. The purpose of this action is to comply with the allocation procedures mandated by the CPS FMP. (68*FR*61373)

December 3, 2003. NMFS proposed a regulation to implement the annual harvest guideline for Pacific sardine in the U.S. EEZ off the Pacific coast for the fishing season January 1, 2004, through December 31, 2004. This harvest guideline was calculated according to the regulations implementing the CPS FMP and established allowable harvest levels for Pacific sardine off the Pacific coast. (68FR67638)

February 25, 2004. NMFS issued a regulation to implement the annual harvest guideline for Pacific sardine in the U.S. EEZ off the Pacific coast for the fishing season January 1, 2004, through December 31, 2004. This action adopts a harvest guideline and initial subarea allocations for Pacific sardine off the Pacific coast that have been calculated according to the regulations implementing the CPS FMP. Based on a biomass estimate of 1,090,587 mt (in U.S. and Mexican waters), using the FMP formula, the harvest guideline for Pacific sardine in U.S. waters for January 1, 2004, through December 31, 2004 is 122,747 mt. The biomass estimate is slightly higher than last year's estimate; however, the difference between this year's biomass is not statistically significant from the biomass estimates of recent years. Under the FMP, the harvest guideline is allocated one third for Subarea A, which is north of 39° N latitude (Pt. Arena, California) to the Canadian border, and two thirds for Subarea B, which is south of 39° N latitude to the Mexican border. Under this final rule, the northern allocation for 2004 would be 40,916 mt and the southern allocation would be 81,831 mt. (69FR8572). July 20, 2004. NMFS proposed a regulation to implement the annual harvest guideline for Pacific mackerel in the EEZ off the Pacific coast for the fishing season July 1, 2004, through June 30, 2005. The CPS FMP and its implementing regulations require NMFS to set an annual harvest guideline for Pacific mackerel based on the formula in the FMP. This action proposes allowable harvest levels for Pacific mackerel off the Pacific coast. (69 FR 43383)

September 14, 2004. Information memorandum. NMFS announced the reallocation of the remaining Pacific sardine harvest guideline in the U.S. EEZ off the Pacific Coast. A regulatory amendment (69 *FR* 8572, February 25, 2003) requires that NMFS conduct a review of the fishery 10 months after the beginning of the fishing season on January 1, and reallocate any unharvested portion of the harvest guideline, with 20% allocated north of Point Area, California, and 80% allocated south of Point Arena, California. (69 *FR* 55360)

October 21, 2004. NMFS issued a final rule to implement the annual harvest guideline for the July 1, 2004 - June 30, 2005 Pacific mackerel fishery in the EEZ off the Pacific coast. The CPS FMP and its implementing regulations require NMFS to set an annual harvest guideline for Pacific mackerel based on the formula in the FMP. Based on this approach, the biomass for July 1, 2003, is 81,383 mt. Applying the formula in the FMP results in a harvest guideline of 13,268 mt. (69 *FR* 61768)

December 8, 2004. NMFS proposed a regulation to implement the annual harvest guideline for Pacific sardine in the U.S. EEZ off the Pacific coast for the fishing season January 1, 2005,

through December 31, 2005. This harvest guideline was calculated according to the regulations implementing the CPS FMP and established allowable harvest levels for Pacific sardine off the Pacific coast. ($69 \ FR \ 70973$)

June 22, 2005. NMFS issues a regulation to implement the annual harvest guideline for Pacific sardine in the U.S. exclusive economic zone off the Pacific coast for the fishing season January 1, 2005, through December 31, 2005. This harvest guideline was calculated according to the regulations implementing the CPS FMP and established allowable harvest levels for Pacific sardine off the Pacific coast. Based on a biomass estimate of 1,193,515 metric tons (mt)(in U.S. and Mexican waters) and using the FMP formula, NMFS calculated a harvest guideline of 136,179 mt for Pacific sardine in U.S. waters. Under the FMP, the harvest guideline is allocated one-third for Subarea A, which is north of $39^{\circ}00'$ N. lat. (Pt. Arena, California) to the Canadian border, and two-thirds for Subarea B, which is south of 39° 00' N. lat. to the Mexican border. Under this final rule, the northern allocation for 2005 would be 45,393 mt, and the southern allocation would be 90,786 mt. (70 *FR* 36053)

August 29, 2005. NMFS proposes a regulation to implement the annual harvest guideline for Pacific mackerel in the U.S. exclusive economic zone (EEZ) off the Pacific coast. For specific regulations, see final rule language from October 21, 2005 below. (70 *FR* 51005)

October 21, 2005. NMFS issues a final rule to implement the annual harvest guideline for Pacific mackerel in the U.S. exclusive economic zone (EEZ) off the Pacific coast. The biomass estimate for July 1, 2005, would be 101,147 metric tons (mt). Applying the formula in the FMP results in a harvest guideline of 17,419 mt, which is 32 percent greater than last year but similar to low harvest guidelines of recent years. For the last three years, the fishing industry has recommended dividing the harvest guideline for incidental harvest in the Pacific sardine fishery is not hindered by a prohibition on the harvest of Pacific mackerel. At its meeting on June 15, 2005, the Subpanel recommended for the 2005–2006 fishing season that a directed fishery of 13,419 mt and an incidental fishery of 4,000 mt be implemented. An incidental allowance of 40 percent of Pacific mackerel in landings of any CPS would become effective if the 13,419 mt of the directed fishery is harvested. The Subpanel also recommended to allow up to 1 mt of Pacific mackerel to be landed during the incidental fishery without the requirement to land any other CPS. (70 *FR 61235*)

October 28, 2005. NMFS announces that the Pacific Fishery Management Council (Council) has submitted Amendment 11 to the Coastal Pelagic Species Fishery Management Plan (FMP) for Secretarial review. Amendment 11 would change the framework for the annual apportionment of the Pacific sardine harvest guideline along the U.S. Pacific coast. The purpose of Amendment 11 is to achieve optimal utilization of the Pacific sardine resource and equitable allocation of the harvest opportunity for Pacific sardine. The public comment period on Amendment 11 was open through December 27, 2005.. (70 *FR* 62087)

Table 3. Coastal pelagic species limited entry permit vessel listing, with U.S. Coast Guard registered measurements and calculated gross tonnage (GT) values for each vessel. (Page 1 of 2)

Vessel Name	Coast Guard Number	Year Built	Vessel Age	Registe	ered Measur (ft) ^{/1}	rements	Calculated Vessel GT ^{/2}	Permit No.	Permit GT	Permit Transfer	
				Length	Breadth	Depth			Endorsement	Allowance	
Misty Moon	D578511	1976	29	49.60	19.00	10.10	63.8	1	63.8	70.2	
Paloma	D280452	1960	45	47.40	16.50	8.30	43.5	2	43.5	47.9	
St. George II	D238969	1939	66	71.40	21.20	9.70	98.4	3	98.4	108.2	
Barbara H	D643518	1981	24	64.90	24.00	11.60	121.1	4	121.1	133.2	
San Antonio	D236947	1937	68	72.10	19.50	8.70	82.0	5	82.0	90.2	
Permit No Longer Exists								6			
San Pedro Pride	D549506	1973	32	79.60	24.50	12.30	160.7	7	160.7	176.8	
Ferrigno Boy	D602455	1978	27	69.60	23.70	12.60	139.3	8	139.3	153.2	
King Phillip	D1061827	1997	8	79.00	26.00	11.40	156.9	9	156.9	172.6	
Sea Wave	D951443	1989	16	78.00	22.00	18.00	206.9	10	206.9	227.6	
Mary Louise	D247128	1944	61	58.30	18.00	8.00	56.2	11	56.2	61.8	
Bainbridge	D236505	1937	68	78.60	22.70	9.60	114.8	12	114.8	126.3	
Pioneer	D246212	1944	61	77.80	24.30	11.20	141.9	12	141.9	156.1	
Maria	D246212 D236760	1944	68	70.70	24.30 20.50	9.20	89.3	13	89.3	98.2	
			08 24								
St. Joseph	D633570	1981		62.90	22.00	9.10	84.4	15	84.4	92.8	
Permit No Longer Exists								16			
Retriever	D582022	1977	28	54.20	19.60	8.70	61.9	17	61.9	68.1	
Atlantis	D649333	1982	23	49.60	19.00	10.10	63.8	18	63.8	70.2	
G. Nazzareno	D246518	1944	61	78.00	22.70	10.50	124.6	19	124.6	137.1	
Sea Queen	D582167	1974	31	68.40	22.00	11.10	111.9	20	111.9	123.1	
Pacific Leader	D643138	1981	24	59.50	21.00	9.20	77.0	21	77.0	84.7	
Chovie Clipper	D524626	1970	35	51.10	18.00	10.30	63.5	22	63.5	69.9	
Pacific Journey ^{/4}	OR661ZK	2001	4	64.30	22.01	10.30	97.7	23	97.7	107.5	
Ocean Angle I	D584336	1977	28	49.60	19.00	10.10	63.8	24	63.8	70.2	
Maria T	D509632	1967	38	57.30	18.10	9.80	68.1	25	68.1	74.9	
Manana	D253321	1947	58	40.10	13.20	6.70	23.8	26	23.8	26.2	
Miss Juli ^{/5}								27	55.5	61.1	
Mineo Bros.	D939449	1989	16	58.00	21.00	9.00	73.4	28	73.4	80.7	
Sea Queen	D583781	1977	28	49.00	16.00	8.00	42.0	29	42.0	46.2	
Little Joe II	D531019	1971	34	50.10	16.00	7.60	40.8	30	40.8	44.9	
Caitlin Ann	D960836	1990	15	98.00	33.00	15.70	340.2	31	340.2	374.2	
Eldorado	D690849	1985	20	56.00	17.00	8.60	54.9	32	54.9	60.4	
Kristen Gail	D618791	1980	25	87.00	26.00	12.80	194.0	33	194.0	213.4	
Fiore D'Mare	D550564	1973	32	71.50	23.00	11.40	125.6	34	125.6	138.2	
Endurance	D613302	1979	26	49.00	16.00	8.00	42.0	35	42.0	46.2	
New Sunbeam	D013302 D284470	1961	20 44	50.30	20.00	4.00	27.0	36	27.0	29.7	
Calogera A	D984694	1901	13	57.75	20.00	10.50	85.3	30	85.3	93.8	
Eileen	D334094 D252749	1992	58	79.40	21.00	10.30	119.9	38	119.9	131.9	
	D232749 D693271	1947	20	79.40 54.00	19.00	9.00	61.9	38 39	61.9	68.1	
Pamela Rose New Stella	D598813	1985	20 27	54.00 58.00	22.00	9.00 8.40	71.8	39 40	71.8	79.0	
Fraveler	D661936	1983	22	56.00	17.00	6.90 7.20	44.0	41	44.0	48.4	
Lucky Star	D295673	1964	41	49.90	17.00	7.30	41.5	42	41.5	45.7	
Ocean Angel II	D622522	1980	25	74.50	28.00	10.70	149.5	43	149.5	164.5	
Crystal Sea ⁷⁷	D1061917	1997	8	66.00	26.00	12.00	138.0	44	138.0	151.8	
Trionfo	D625449	1980	25	63.80	19.30	9.60	79.2	45	79.2	87.1	
Corva May ^{/6}	D615795	1979	26	49.60	19.00	10.10	63.8	46	85.0	93.5	
Heavy Duty	D655523	1983	22	58.00	21.30	10.20	84.4	47	84.4	92.8	
Aliotti Bros	D685870	1985	20	67.60	26.00	9.10	107.2	48	107.2	117.9	
Lady J	D647528	1982	23	50.30	17.00	7.10	40.7	49	40.7	44.8	
Anna S	D253402	1947	58	50.80	16.20	9.10	50.2	50	50.2	55.2	
Endeavor	D971540	1990	15	57.40	19.00	9.90	72.3	51	72.3	79.5	

Table 3. Coastal pelagic species limited entry permit vessel listing, with U.S. Coast Guard registered measurements and calculated gross tonnage (GT) values for each vessel. (Page 2 of 2)

Vessel Name	Coast Guard Number			Calculated Vessel GT ^{/2}	Permit No.	Permit GT Endorsement	Permit Transfer Allowance			
				Length	Breadth	Depth			Lindonseinein	1 monumee
Antoinette W	D606156	1978	27	45.40	16.00	7.60	7.0	52	37.0	40.7
Donna B	D648720	1982	23	73.20	25.00	12.90	158.2	53	158.2	174.0
Papa George	D549243	1973	32	72.00	22.80	11.50	126.5	54	126.5	139.2
Mercurio Bros	D650376	1982	23	42.00	16.70	8.60	40.4	55	40.4	44.4
Kathy Jeanne	D507798	1967	38	65.90	22.20	8.80	86.3	56	86.3	94.4
Merva W	D532023	1971	34	56.70	17.90	8.00	54.4	57	54.4	59.8
Santa Maria	D236806	1937	68	79.20	19.50	8.80	91.1	58	91.1	100.2
Buccaneer	D592177	1978	27	62.10	19.90	9.00	74.5	59	74.5	82.0
Midnight Hour	D276920	1958	47	61.10	18.00	8.60	63.4	60	63.4	69.7
Nancy B II	D542513	1972	33	56.40	18.00	8.80	59.9	61	59.9	65.9
Miss Kristina	D580843	1977	28	50.00	16.00	7.40	39.7	62	39.7	43.7
Emerald Sea	D626289	1980	25	62.70	26.00	7.90	86.3	63	86.3	94.9
Connie Marie/8								64	54.5	60.0
Theresa Marie	D629721	1980	25	40.90	14.70	6.60	26.4	65	26.4	29.0

/1 Vessel dimension information was obtained from the Coast Guard Website at: http://psix.uscg.mil/

/2 Vessel Gross Tonnage GT=0.67(Length*Breadth*Depth)/100. See 46 CFR 69.209.

/3 Maximum transfer allowance is based on permit GT + 10%.

/4 Pacific Journey was built in Canada and is not currently registered with the U.S. Coast Guard. Measurements by marine surveyor Det Norske Veritas.

/5 Miss Juli sank in 2001 and is pending replacement.

/6 Permit #46 was transferred to Corva May after the Jenny Lynn sank in 2003.

/7 Permit #44 formerly registered as Mellow Boy was sold and the name changed to Crystal Sea. The permit was transferred to new owner on 01/17/2005.

/8 Connie Marie sank in 2002 and is pending replacement.

Table 4. Vessel age and calculated gross tonnage (GT) for the initial and current limited entry fleet.

	Initial Fleet	Current Fleet
Number of Vessels	65	61
Average Vessel Age	35 years	33 years
Range of Ages	12 to 66 years	4 to 68 years
Average GT	71.3	88.7
Range of GT	12.8 to 206.9	23.8 to 340.2
Sum of Fleet GT	4,635.9	5,408.4
Capacity Goal (GT) ^{/1}		5,650.9
Transferability Trigger		5,933.5

/1 Established in Amendment 10 to the CPS FMP.

Target species - Pacific s	ardine				
T	Target	Incidental			
Species	Catch	Catch		catch Retur	
			Alive	Dead	Unknown
Sardine	1495 mt		80 mt	100 lbs	100 lbs
Anchovy	1 195 Int	9 mt	82	1300 lbs	100 105
Bat Ray		1	143	1300 103	1
Bat Star		1	5	14	1
CA Barracuda		2	1	3	
CA Halibut		9	1	4	
Giant Sea Bass		2	2	4	
Jacksmelt		1	2		
Jack Mackerel		2 mt			
		2 III	1	13	1
Midshipman Maan Jally		1	1	15	1
Moon Jelly		1 10 lba			
Pacific Bonito		10 lbs			
Pacific Butterfish		3	2		
Pacific Electric Ray			2		
Pacific Mackerel		1 mt	100 lbs		
Pacific Tomcod		1			
Pompano		167			
Queenfish		49			
Sanddab			25 lbs	10 lbs	
Scorpionfish		1			1
Sculpin				1	3
Shovelnose Guitarfish			1		
Spanish Mackerel		100 lbs			
Squid		1 mt	2 mt		
Starry Flounder			2		
Stingray		2			
Thornback Ray			2		
Unid. Crab			1		1
Unid. Croaker		40			
Unid. Flatfish		78	8	130	12
Unid. Jellyfish		3	3		
Unid. Mackerel		8 mt	12 mt		
Unid. Octopus		-			2
Unid. Ray					2
Unid. Rockfish		2	1		-
Unid. Seastar		-	41	135	1
Unid. Scorpionfish/Sculpin			11	100	1
Unid. Shark				2	I
Unid. Skate				3	

Table 5. Preliminary catch summary for vessels targeting Pacific sardine from NMFS-SWR coastal pelagic species pilot observer program. Page 1 of 2.

Table 5.	Preliminary	catch	summary	for	vessels	targeting	Pacific	sardine	from	NMFS-SWR	
coastal pel	agic species	pilot o	bserver pro	ograi	m. Page	2 of 2.					

Target species - Pacific sardine									
Species	Target Catch	Incidental Catch	By	ned					
			Alive	Dead	Unknown				
Unid. Smelt		2							
Unid. Surf Perch		1							
Unid. Turbot				60					
White Croaker		31 lbs	50 lbs						
Yellowfin Croaker		10 lbs							
CA Sea Lion			49						
Harbor Seal			1						
Unid. Gull			3	2	4				

Table 6. Preliminary catch summary for vessels targeting market squid from NMFS-SWR coastal pelagic species pilot observer program.

Target species	- Squid				
- - - -	Target	Incidental			
Species	Catch	Catch		catch Retur	ned
			Alive	Dead	Unknown
Squid	1274 mt		28 mt	350 lbs	2 mt
Anchovy		100 lbs	120 lbs		
Jack Mackerel		2 mt	18 lbs	2 lbs	
Pacific Mackerel		20 mt	20 mt	180 lbs	1 lb
Sardine		12 mt	13 mt	1077 lbs	3 lbs
Spanish Mackerel		20 lbs			
Bat Ray			53		1
Bat Star			1		
Blue Shark			2		
Common Mola			1		
Pelagic Stingray			60		
Pacific Butterfish		19			1
Sunstar		30	4		
Squid Eggs					505 lbs
Lobster			3		
Brittle Star				3000	
Unid. Batfish				2 lbs	
Unid. Crab		1	1		93
Unid. Croaker		3	2	16 lbs	
Unid. Flatfish		1	1	6	2
Unid. Jellyfish		4			
Unid. Mackerel		2 lbs	102 lbs		
Unid. Octopus		1			
Unid. Rockfish		1	1	4	
Unid. Ray			4		1
Unid. Sanddab		4	3		4
Unid. Seastar		1	-		-
Unid. Seaslug		-			21
Unid. Scorpionfish		1			
Unid. Surfperch		1		3	
Unid. Skate		3		1	
Unid. Smelt		49		1	
Unid. Stingray		9	17		
Unid. Shark		,	1 /		1
Thresher Shark		1			Ŧ
CA Sea Lion		1	98		
Harbor Seal			3		
Common Dolphin			5	1	
Unid. Gull			16	1	
Uniu. Uun			10	1	

Table 7. Preliminary catch summary for vessels targeting Pacific mackerel from NMFS-SWR coastal pelagic species pilot observer program.

Target species - Page	Target species - Pacific mackerel											
Species	Target Catch	Incidental Catch	Bycatch Returned		rned							
			Alive	Dead	Unknown							
Pacific Mackerel	40 mt											
Bat Ray			2									
CA Yellowtail			1									
Midshipman			1									
Sardine		16 mt										
Sea Cucumber		5										
Unid. Crab		1										
Unid. Flatfish			3									
Unid. Jellyfish			3									
Unid. Shark			1									

Table 8. Preliminary catch summary for vessels targeting northern anchovy and northern anchovy/Pacific sardine from NMFS-SWR coastal pelagic species pilot observer program.

Target species - An	chovy and Anchov	y/Sardine						
Species	Target Catch	Incidental Catch	Bycatch Returned					
Species	Turger outen		Alive	Dead	Unknown			
Anchora	373 mt		2 mt	1 mt				
Anchovy Sardine	575 III	21 mt	$\frac{2}{2}$ mt	1 1111				
Bat Ray		21 mit	2 mi 4					
CA Lizardfish			4					
Kelp Bass		1	-					
Midshipman		1			5			
Pacific Bonito			20 lbs		5			
Pacific Mackerel		2	20 105					
Queenfish		50 lbs	11 lbs					
Round Stingray		20105	1					
Sculpin		2	1					
Spiny Dogfish		-	1					
Unid. Croaker		20	45					
Unid. Flatfish		10						
Unid. Hake		4						
Unid. Seastar			1					
Unid. Smelt		2						
Unid. Turbot			1	1	20			
White Croaker		50 lbs	35 lbs					
Yellowfin Croaker		50 lbs	10 lbs					
CA Sea Lion			5					
Sea Otter			1					

	Pacific	Pacific	
	Sardine	Mackerel	Landings
Year	Landings	Landings	Observed
2005	171	102	231
2004	168	68	212
2003	151	74	194
2002	185	92	251
2001	143	82	198
2000	110	85	182
1999	157	70	189
1998	97	97	200
1997	113	116	184
1996	96	85	645
1995	254	215	1276
1994	119	116	779
1993	85	183	625
1992	231	111	370
1991	169	185	618
1990	100	195	705
1989	149	279	1089
1988	190	385	937
1987	128	290	1023
1986	105	283	999

Table 9. Number of commercial landings sampled per year by the CDFG port sampling program, 1985-2005.

Table 10. Incidental catch from landings sampled by the CDFG port sampling program, 1992-1999. (Information represents occurrence of incidental catch, not numbers or weights of fish.)

Yr	Anchovy	Jack- smelt	Herring	White Croaker	M. Squid	Ling- cod	Pac Mack	Y- tail	Jack Mack	Y-fin Tuna	Skip- jack Tuna	Total
99	5	1	1									7
98	3		2	1	4							10
97	1		1		44							46
96	8			1	22	1						32
95	5		1		71		1	1	1			80
94			1									1
93												
92					1					1	1	3

Table 11.	Percent frequency	of bycatch in	observed	incidents	of CPS	finfish,	by port,
2001-2005	5. (Page 1 of 3).						

			All Ports					San Ped	ro		Monte	rey/Moss	Landing*
Common Name	2001	2002	2003	2004	2005	2001	2002	2003	2004	2005	2003	2004	2005
Finfish													
Anchovy, northern	4.4	3.8	3.7	7.4	6.1	4.4	3.8	4.1	4.2	5.8	2.1	32.6	18.2
Barracuda, California	2.2	0.6		0.5	0.4	2.2	0.6		0.6	0.4			
Bass, barred sand	0.9	1.5	1.1	1.1	1.1	0.9	1.5	1.4	1.2	1.2			
Bass, kelp	0.9	0.6	1.1		1.1	0.9	0.6	1.4		1.2			
Bonito, Pacific	0.4	0.3				0.4	0.3			0.0			
Butterfish, Pacific (Pompano)	2.6	3.2	2.8	4.7	5.5	2.6	3.2	2.7	5.1	5.2	3.1	2.3	18.2
Corbina, California		1.5					1.5						
Combfish, longspine			0.2										
Croaker, white (kingfish)			7.8	6.9	0.2			7.4	5.7	0.2	9.4	16.3	
Croaker, yellowfin		0.3					0.3	0.0	0.0	0.0			
Cusk-eel	1.7	2.6	1.1	1.3	4.7	1.7	2.6	1.4	1.5	4.8			
Eel, yellow snake		0.3	0.2				0.3	0.3					
Eel, wolf			0.2								1.0		
Fish, unspecified			0.9					1.1					
Flatfish, unspecified	14.4	8.5	2.2	1.8	0.2	14.4	8.5	2.7	2.1	0.2			
Flounder, starry			0.4	0.3							2.1	2.3	
Flyingfish	0.4	0.6	0.4	0.3	0.6	0.4	0.6	0.5	0.3	0.6			
Grunion, California				0.3	0.0							2.3	
Halibut, California	3.5	1.8	6.9	4.2	7.6	3.5	1.8	7.1	4.8	7.7	6.3		
Herring, Pacific			0.4								2.1		
Jacksmelt		0.9	1.1	0.8	1.5		0.9	0.3	0.6	1.0	4.2	2.3	27.3
Lizardfish, California	2.6	2.6	0.9	2.1	5.7	2.6	2.6	1.1	2.4	5.8			
Midshipman, plainfin		3.8					3.8						
Midshipman, specklefin			0.4	1.3				0.5	1.5				
Midshipman, unspecified	5.7		3.5	2.1	0.6	5.7		4.4	2.4	0.6			
Pipefish, kelp			0.2	1.1	0.6			0.3	1.2	0.6			
Sablefish	1.3					1.3							
Sanddab, Pacific			0.2								1.0		
Sanddab, unspecified		0.3	3.0	4.0	2.1		0.3	2.2	3.9	1.9	6.3	4.7	9.1
Scorpionfish, California	11.4	7.6	8.0	10.0	8.7	11.4	7.6	9.9	11.3	8.9	1.0		
Sculpin, staghorn			0.4								2.1		
Sculpin, pithead			0.2	1.3	0.2				0.3	0.2	1.0	9.3	
Seabass, giant (black)		0.3					0.3						
Senorita	0.4	0.3				0.4	0.3						
Shad, American													
Smelt, whitebait			0.7								3.1		
Sole, curlfin			0.2					0.3					
Sole, fantail		0.3	0.0				0.3						
Sole, Sand			2.2	0.3							10.4	2.3	
			0.2	0.5							1.0	2.0	
Sole, unspecified		0.6	0.2				0.6				1.0		
Surfperch, pink		0.3					0.3						
Surfperch, unspecified		0.5	0.2				0.5				1.0		
Sturgeon, unsp.			0.2	0.3							1.0	2.3	
Surfperch, walleye			0.4	0.5	0.0						2.1	2.5	
Surfperch, Unspecified	1.3	0.9	0.4	2.1	1.9	1.3	0.9	1.1	2.4	1.9	2.1		
Tonguefish	1.5	0.3	0.9	2.1	1.9	1.5	0.3	1.1	2.4	1.9			
Topsmelt		0.3					0.3						
Turbot, curlfin		0.3					0.3						
Turbot, diamond			25	4.0	6 1			A A	15	60			
Turbot, hornyhead	I	0.9	3.5	4.0	6.1	1	0.9	4.4	4.5	6.2	1		

Table 11. Percent frequency of bycatch in observed incidents of CPS finfish, by port, 2001-2005. (Page 2 of 3).

			All Ports					San Ped	ro		Monte	rey/Moss	Landing*
Common Name	2001	2002	2003	2004	2005	2001	2002	2003	2004	2005	2003	2004	2005
Turbot, unspecified			0.7		1.1			0.3		1.2	2.1		
Whitefish, ocean		0.3					0.3						
Total Percent Frequency Fish Incidents	54.1	45.3	56.4	58.0	55.9	54.1	45.3	55.1	55.7	55.5	61.5	76.7	72.7
Elasmobranchs													
Guitarfish, shovelnose		0.3	2.0		1.5		0.3	2.5		1.5			
Ray, Bat		5.8	7.8	7.4	6.3		5.8	9.3	7.1	6.4	2.1	9.3	
Ray, California butterfly		0.3			0.2		0.3			0.2			
Ray, Pacific electric	0.9	0.9	0.4	0.3		0.9	0.9		0.3		2.1		
Ray, Unspecified			0.2					0.3					
Shark, brown smoothhound		0.3	0.0				0.3						
Shark, gray smoothhound		0.3	0.2				0.3				1.0		
Shark, horn	1.7					1.7							
Shark, Pacific angel		0.3					0.3						
Shark, shortfin mako			0.4								2.1		
Shark, spiny dogfish				0.3								2.3	
Shark, swell	0.4					0.4							
Shark, Unspecified	0.9	0.3				0.9	0.3						
Skate, Big			0.4								2.1		
Skate, California			0.2								1.0		
Skate, longnose			0.4	0.8				0.5	0.9				
Skate, thornback	1.7	1.5	3.7	2.4	3.6	1.7	1.5	3.6	2.7	3.7	4.2		
Skate, Unspecified	1.7	0.6	0.4			1.7	0.6				2.1		
Stingray, round	0.4	0.3	1.1	0.3	1.5	0.4	0.3	1.4	0.3	1.5			
Total Percent Frequency Elasmobranch Incidents	7.9	10.8	17.4	11.3	13.1	7.9	10.8	17.5	11.3	13.3	16.7	11.6	0.0
Invertebrates and Plants													
Crab shells		0.3	0.2	0.8			0.3	0.3	0.9				
Crab, decorator			0.2								1.0		
Crab, Dungeness			1.1								5.2		
Crab, elbow			0.2					0.3					
Crab, pelagic red		1.8					1.8						
Crab, sheep			0.2					0.3					
Crab, slender			0.4								2.1		
Crab, unspecified Rock	3.1	0.9	0.9	1.3	0.2	3.1	0.9	0.8	1.5	0.2	1.0		
Eelgrass		0.9	0.9	1.1	1.5		0.9	1.1	1.2	1.5			
Gorgonians		0.3					0.3						
Jellies		0.3	1.1	1.3	2.3		0.3	0.5	0.3	2.3	3.1	9.3	
Kelp	24.0	19.6	10.4	15.3	15.0	24.0	19.6	12.6	17.3	14.9	2.1		18.2
Lobster, California spiny	1.3	0.9				1.3	0.9						
Octopus, unspecified		0.9					0.9						
Pleurobranch		0.3					0.3						
Prawn, spot		0.3					0.3						
Salps		5.6	0.7	0.5	0.2		5.6	0.8	0.6	0.2			
Sea cucumber	0.9	0.9	0.9	0.3	0.6	0.9	0.9	1.1	0.3	0.6			
Sea pansies			0.2		0.2			0.3	0.0	0.2			
Sea star	0.9	0.6	2.2	0.3	0.8	0.9	0.6	1.9	0.3	0.8	3.1		
Shrimp, black-spotted bay			0.4		0.2			0.5	0.0	0.2			
Snail, Unspecified	0.4												
Squid Egg Cases	0.4	0.3	0.2	0.5		0.4	0.3		0.6		1.0		

			All Ports					San Pedı	. 0		Monter	rey/Moss I	_anding*
Common Name	2001	2002	2003	2004	2005	2001	2002	2003	2004	2005	2003	2004	2005
Squid, market	7.0	10.2	6.1	9.2	10.2	7.0	10.2	6.8	10.1	10.3	3.1	2.3	9.1
Total Percent Frequency Invert/Plant Incidents	38.0	43.9	26.2	30.6	31.1	38.0	43.9	27.4	33.0	31.1	21.9	11.6	27.3
Total All Incidents	229	342	461	379	528	229	342	365	336	517	96	43	11
Total Observed Landings	195	203	200	205	199	195	203	167	180	199	27	33	25

Table 11. Percent frequency of bycatch in observed incidents of CPS finfish, by port, 2001-2005. (Page 3 of 3).

	200	1	200	2	200	3	200	4	200	5
Species name	Number of	Tons	Number of	Tons	Number of	Tons	Number of	Tons	Number of	Tons
	Landings		Landings		Landings		Landings		Landings	
Pacific sardine	62	778.2	127	1,601.6	109	1,447.9	122	1,525.7	179	1,076.9
Northern anchovy	25	693.6	19	342.6	8	91.9	17	616.1	31	1,042.9
Pacific mackerel	35	152.5	37	71.2	16	163.2	23	143.1	187	571.5
Jack Mackerel	15	51.2	15	16.5	14	33.6	19	38.8	19	21.0
Jacksmelt	1	0.2			1	1.9			2	0.2
Yellowtail	1	>0.1								
Surfperch					1	0.1				
Kelpfish							1	2.2		
Bonito							1	0.01	1	1.3
Pacific herring									2	34.0
White seabass									1	>0.1

Table 12a. Market squid incidental catch for 2001 - 2005. Incidental catch includes species landed with market squid and recorded on landing receipts (round haul gear).

		Tota	al All Po	orts			S	an Pedr	.0		Sa		rbara/V Huenem		Pt.	Γ	Montere	y/Moss	Landin	ıg
Common Name	2001	2002	2003	2004	2005	2001	2002	2003	2004	2005	2001	2002	2003	2004	2005	2001	2002	2003	2004	0
Finfish																				
Anchovy, northern	8.0	4.8	4.4	5.8	5.7	7.9	5.9	4.2	4.1	5.9	9.6		5.8	7.4	3.8	4.9	3.8	3.2	5.8	6.5
Baracuda, California	1.9		0.2		0.3	1.7		0.2			3.0									0.7
Bass, barred sand	0.3		0.2			0.6		0.2												
Blacksmith			0.5					0.5												
Bonito, Pacific Butterfish,Pacific			0.2					0.2												
(Pompano)	3.2	4.1	3.3	1.6	0.5	0.6	3.9	1.7	2	0.7	5.9		4.2			4.9	5.1	4.1	1.2	0.7
Cabezon	1.1	0.4	0.2			1.7	0.7	0.2			0.7						0.6			
Combfish, longspine				0.7					0.7											
Croaker, queenfish	0.3		0.5					0.5			0.7									
Croaker, white (kingfish)		0.7	0.5	0.6			2	0.5											0.6	
Croaker, unspecified				0.7					0.7											
Cusk-eel				0.7					0.7											
Eel, wolf				1.2															1.2	
Fish, unspecified		0.9					2.6													
Flatfish, unspecified				0.7					0.7											
Flounder, starry				1.2															1.2	
Flyingfish	0.3		0.7					0.7			0.7									
Greenling, painted			0.2	0.7				0.2	0.7											
Halibut, California	0.3		0.9					1			0.7							0.9		
Herring, Pacific		0.4	0.9	1.8	0.5												1.3	0.9	1.8	1.3
Herring, round			0.2	0				0.2	0											
Jack mackerel	8.6	5.2	8.1	7.5	6.5	13.6	5.9	10.5	8.2	10.5	1.5		4.2	7.4		9.8	6.4	9.6	7	5.9
Jacksmelt	0.3	2.6	4	7.7	3.1			0.7	0.7	0.7						1.6	7.7	7.3	14.6	7.2
Lizardfish, California			0.5	0.7				0.5	0.7											
Mackerel, Pacific	14.7	8.9	9.9	13.8	21.0	15.8	13.1	10.3	10.9	25.7	16.3	0.1	15.8	25.9	41.3	8.2	1.3	3.7	4.7	5.9
Midshipman, plainfin		0.2					0.7													
Midshipman, unspecified	0.5		0.7	1.2	0.5	1.1		0.5	0.7						1.3			0.9	1.8	0.7
Medusa fish			0.5															0.5		
Poacher, unspecified			0.2					0.2												
Pomfret, Pacific	1.3					0.6					3.0									
Rockfish, blue			0.5		0.3					0.7								0.5		

Table 12b. Percent frequency of bycatch in observed loads of California market squid by port, 2001-2005 (Page 1 of 4).

		Tota	al All Po	orts			S	an Pedi	ro		Sa		rbara/V Huenem		Pt.	Ν	Montere	ey/Moss	Landin	ıg
Common Name	2001	2002	2003	2004	2005	2001	2002	2003	2004	2005	2001	2002	2003	2004	2005	2001	2002	2003	2004	2005
Rockfish, bocaccio	0.3	0.4	0.8	0.7				0.7	0.7							1.6	1.3	0.9		
Rockfish, chilipepper				1.8	0.3														1.8	0.7
Rockfish, olive			0.2					0.2												
Rockfish, shortbelly			0.5															0.5		
Rockfish, unspecified		0.2	0.4					0.2									0.6	0.5		
Roughback Sculpin				0.7					0.7											
Salema			1.4															1.4		
Salmon, chinook		1.3	0.5	0.6													3.8	0.5	0.6	
Salmon, unspecified			0.5															0.5		
Sanddab, longfin			0.7	0.7				0.7	0.7											
Sanddab, Pacific		0.2	1.3	1.6	2.1			1.7	2	1.3					1.3		0.6	0.9	1.2	3.3
Sanddab, speckled			0.4	0.7				0.2	0.7									0.5		
Sanddab, unspecified	0.5	2.2	4.4	3	0.5		0.7	3.7	0.7			0.1	6.7			3.3	0.6	2.7	5.3	1.3
Sardine, Pacific	24.9	26	24.2	24.8	21.6	22.6	32.7	18.1	21.1	23.7	36.3	0.3	42.5	44.4	25.0	6.6	12.2	11.9	8.8	17.6
Saury, Pacific		0.4	0.8					0.2									1.3	1.4		
Scorpionfish, California	0.8	0.9	3.2	1.4	0.8	1.7	2.6	3.2	1.4	2.0										
Sculpin, staghorn					0.3					0.7										
Sculpin, unspecified			1.4															1.4		
Silversides(jack-or top smelt)					0.3					0.7										
Smelt, night			0.5															0.5		
Smelt, true			0.2					0.2												
Smelt, unspecified			0.2					0.2												
Sole, bigmouth		0.2	0.2				0.7	0.2												
Sole, curlfin			0.2					0.2												
Sole, English		0.2	0.6					0.2									0.6	0.9		
Sole, fantail			0.5					0.5												
Sole, sand	0.3		0.9	0.6							0.7							0.9		
Sole, Petrale																				
Sole, unspecified	1.6	0.4	0.8	3.7			0.7				4.4		0.8	3.7					0.6	
Sunfish, ocean			0.5															0.5		
Surfperch, kelp			0.2					0.2												
Surfperch, pink		0.2	0.2				0.7	0.2												
Surfperch, shiner				2					2											

Table 12b. Percent frequency of bycatch in observed loads of California market squid by port, 2001-2005 (Page 2 of 4).

		Tota	al All Po	orts			S	an Pedi			Sa		:bara/V Huenem		Pt.	Ν	Aontere	v/Moss	Landin	g
Common Name	2001	2002	2003	2004	2005	2001	2002	2003		2005	2001	2002	2003	2004	2005	2001	2002	2003		-
Surfperch, unspecified		0.2	0.4					0.2									0.7	0.5		
Topsmelt			0.2	3.7	0.3			0.2						3.7	1.3					
Thornyhead, unspecified			0.2					0.2												
Triggerfish		0.2					0.7													
Turbot, curlfin		0.2	0.6				0.7	0.2										0.9		
Turbot, diamond		0.2	0.2				0.7	0.2												
Turbot, hornyhead		0.2	1	0.7	0.3		0.7	1	0.7											0.7
Turbot, unspecified		0.2	3.7	0.7	0.3				0.7								0.6	3.7		0.7
Total Percent Frequency																				
Fish Incidents	69.2	62.0	89.3	94.0	64.9	67.8	75.7	65.8	62.2	72.4	83.7	0.5	80.0	92.5	73.8	41.0	48.5	62.6	58.2	52.9
Elasmobranchs																				
Guitarfish, shovelnose		0.2					0.7													
Ray, bat	4.8	1.5	1.2	1.3	2.1	4.5	2	1.5	1.4	3.3	6.7		0.8		3.8	1.6	1.9	1.4		
Ray, Pacific electric		1.7		6.4	3.9												5.1		1.2	9.8
Ray, thornback			0.5					0.5											6.4	
Ray, unspecified	0.3	0.2	0.2			0.6		0.2									0.6			
Shark, horn		0.4	0.7		0.3		0.7	0.5		0.7			0.8							
Shark, Pacific angel			0.2					0.2												
Shark, spiny dogfish																				
Skate, California																				
Skate, thornback																				
Skate, unspecified	0.3				0.3						0.7									0.7
Stingray, round		0.4	0.7	3.4			0.7	0.5	3.4				0.8							
Total Percent Frequency Elasmobranch Incidents	5.4	4.4	3.5	11.1	6.5	5.1	4.1	3.4	4.8	3.9	7.4	0.0	2.4	0.0	3.8	1.6	7.6	1.4	7.6	10.5
Enasinobranch incluents	5.4		5.5	11.1	0.5	5.1	4.1	5.4	4.0	5.7	/.4	0.0	2.7	0.0	5.0	1.0	7.0	1.4	7.0	10.5
Invertebrates and Plants																				
Barnacle		0.2					0.7													
Cnideria (Sea Anenomes)	7.8	0.2	3					0.5								47.5	0.6	5.5		
Crab shells			0.7					0.7												
Crab, box	0.3		0.2			0.6		0.2												

Table 12b. Percent frequency of bycatch in observed loads of California market squid by port, 2001-2005 (Page 3 of 4).

	-	Tota	al All Po	orts			S	an Pedr	.0	-	Sa		rbara/V Huenem		Pt.		Montere	v/Moss	Landin	g
Common Name	2001	2002	2003	2004	2005	2001	2002	2003	2004	2005	2001	2002	2003	2004	2005	2001	2002	2003	2004	2005
Common runne	2001	2002	2005	2004	2000	2001	2002	2000	2004	2000	2001	2002	2000	2004	2000	2001	2002	2005	2004	2000
Crab, decorator			0.2					0.2												
Crab, Dungeness		2.2	5	1.2					0.7								6.4	5		
Crab, elbow																			1.8	
Crab, hermit			0.2					0.2												
Crab, pelagic red	2.4	0.2				5.1	0.7													
Crab, purple globe			0.5					0.5												
Crab, sheep			0.7		0.3			0.7		0.7										
Crab, rock unspecified	0.8	0.4	0.5		0.3	1.7	1.3	0.5		0.7										
Eelgrass			1.5	5.4	0.8			1.5	5.4	2.0										
Gorgonians				0.7					0.7											
Invertebrates, colonial		15.2					0.7										44.2			
Jellies			7.1	15.8	2.6			0.5							1.3			13.7		5.9
Kelp	9.4	15.4	10.7	8.9	17.4	18.6	21	13.9	13.6	18.4	1.5	0.1	14.2	3.7	13.8		14.1	4.1	15.8	18.3
Lobster, California spiny	0.3				0.3					0.7	0.7									
Mussels		0.2					0.7													
Octopus, unspecified			0.7					0.7											9.4	
Salps	0.3		0.2	2.7				0.2	2.7		0.7									
Sea cucumber			1.5					1.5												
Sea star	0.3	0.9	1.1	1.9	0.5	0.6	2	1	0.7	1.3			0.8	3.7				1.4		
Squid Egg Cases	0.8	8	4.9	5.1	1.6	0.6	3.3	5.4	8.8				2.5	0		3.3	18.6	6.8	1.2	3.9
Squid, jumbo	3.2		0.2	0.7	4.9			0.2	0.7		5.9				7.5	6.6			6.4	8.5
Tunicates			0.5					0.5												
Urchin, purple			0.7					0.7												
Total Percent Frequency		40.6	40.4		a 0 (2 0 <i>t</i>	a 0 (0.0	0.1					00.0			
Invert/Plant Incidents	25.5	42.9	40.1	42.4	28.6	27.1	30.4	29.6	33.3	23.7	8.9	0.1	17.5	7.4	22.5	57.4	83.9	36.5	34.6	36.6
Total Observed Landings	554	461	395	160	178	210	153	192	86	100	224	156	117	32	42	120	152	86	42	36

Table 12b. Percent frequency of bycatch in observed loads of California market squid by port, 2001-2005 (Page 4 of 4).

	Chinook	Chinook	Coho	Coho	Pink	Unid	Unid	Total	Total	Grand
	(live)	(dead)	(live)	(dead)	(live)	(live)	(dead)	(live)	(dead)	Total
2005										
Oregon								411	176	587
Washington ^{1/}	47	156	29	178				76	334	410
2004										
Oregon								518	305	823
Washington	35	225	19	105	0	39	0	93	330	423
2003										
Oregon								315	185	500
Washington	92	262	81	231	0	173	0	346	493	839
2002										
Oregon								199	81	280
Washington	150	356	61	765	0	200	0	411	1211	1532
2001										
Oregon	45	45	201	134	22	45	0	313	179	492
Washington	449	170	571	504	0	80	0	1100	674	1774
2000										
Oregon	43	72	159	43	0	303	43	505	158	663
Washington	38	3	276	116	0	7	0	321	119	440

Table 13. Expanded salmonid bycatch in Pacific sardine fisheries in Oregon and Washington, 2000-2005.

1/2005 Washington totals calculated from observed 2000-2004 observed bycatch rates

Table 14.	Observed and reported cate	ches of non-target species	caught in Oregon sardine fishery,
2005.			

2003.	Logbook data	Observer data
g :	e	
Species	(87% coverage)	(1% coverage)
	# Caught	# Caught
Blue shark	4	2
Thresher shark	9	1
dogfish shark	1	
unknown shark	4	1
Salmanida	541	29
Salmonids	(70% alive; 30% dead)	(62% alive; 38% dead)
Mackerel	397,390 lb	mixed in - not quantified
Anchovy	62,400 lb	2 tows released
Hake		20 lb
Sanddab		10 lb
Sunfish	1	1
Black Rockfish		1
Jelly fish		present
Pigeon Guillemot (bird)		1
	Logbook	Data
-----------------	----------------	------
Species	Released Alive	Dead
Chinook salmon	34	24
Coho salmon	41	33
Lingcod	1	0
Mola mola	2	0
Pacific Halibut	1	0
Pink salmon	0	1
Pollack	1	0
Rockfish (sp)	0	1
Shark (unid)	1	0
Sockeye salmon	0	1
Whiting	400	20

Table 15. List of reported logbook catches of non-targeted species caught in the 2005 Washington sardine fishery (non-expanded numbers of individuals).

Table 16. Species noted as encountered on CDFG Live Bait Logs, 1996-2005.

Year	Days Fished	Grunion	Smelts	Barracuda	Herring	Stickle- back	Shiner Surfperch	Sea Star	Jellyfish	Queenfish	Market Squid	Pacific Bonito
2005	1,045			27					1		1	6
2004	1,059			13						1	1	8
2003	1,123			23							2	
2002	1,105			1						1		
2001	1,052	1		56								
2000	488	1		34								
1999	449		1	7	1							
1998	809			69	1		1					
1997	773			104			3	1				
1996	522		5	27	3	1						

Table 17. Estimates of Pacific sardine and Northern anchovy live bait harvest in California (mt). Data for 1939-1992 from Thomson et al. (1994), and 1993-2005 from CDFG logs.

Sardine	Anchovy	Year	Sardine	Anchovy	Year
0	5,307	1972	0	1,364	1939
0	5,639	1973	0	1,820	1940
0	5,126	1974	0	1,435	1941
0	5,577	1975	0	234	1942
0	6,202	1976	World War II	World War II	1943
0	6,410	1977	World War II	World War II	1944
107	6,013	1978	World War II	World War II	1945
0	5,364	1979	0	2,493	1946
12	4,921	1980	0	2,589	1947
6	4,698	1981	0	3,379	1948
38	6,978	1982	0	2,542	1949
193	4,187	1983	0	3,469	1950
53	4,397	1984	0	4,665	1951
11	3,775	1985	0	6,178	1952
17	3,956	1986	0	5,798	1953
216	3,572	1987	0	6,066	1954
50	4,189	1988	0	5,557	1955
100	4,594	1989	0	5,744	1956
543	4,842	1990	0	3,729	1957
272	5,039	1991	0	3,843	1958
1,807	2,572	1992	0	4,297	1959
176	669	1993	0	4,225	1960
1,506	2,076	1994	0	5,364	1961
2,055	1,278	1995	0	5,595	1962
1,801	703	1996	0	4,030	1963
2,344	1,077	1997	0	4,709	1964
2,037	304	1998	0	5,645	1965
2,411	453	1999	0	6,144	1966
1,270	834	2000	0	4,898	1967
1,245	1,238	2001	0	6,644	1968
1,701	965	2002	0	4,891	1969
3,028	1,085	2003	0	5,543	1970
3,900	192	2004	0	5,794	1971
2,949	1,464	2005			

Year	Anchovy	Sardine	Total	Proportion Anchovy	Proportion Sardine
2005	1,464	2,949	4,413	0.33	0.67
2004	192	3,900	4,092	0.05	0.95
2003	1.085	3,028	4,113	0.26	0.74
2002	965	1,701	2,666	0.36	0.64
2001	1,238	1,245	2,483	0.50	0.50
2000	834	1,270	2,104	0.40	0.60
1999	453	2,411	2,864	0.16	0.84
1998	304	2,037	2,341	0.13	0.87
1997	1,077	2,344	3,420	0.31	0.69
1996	703	1,801	2,504	0.28	0.72
1995	1,278	2,055	3,333	0.38	0.62
1994	2,076	1,506	3,582	0.58	0.42

Table 18. Ratio of anchovy to sardine in reported live bait catch in California, 1994-2005. Values are in metric tons with the assumption that 1 scoop = 12.5 lbs.

Year	Pacific	Northern	Pacific	Jack
	sardine	anchovy	mackerel	mackerel
1978	0	135,036	0	n/a
1979	0	192,476	0	n/a
1980	0	242,907	0	n/a
1981	0	258,745	0	n/a
1982	0	174,634	0	n/a
1983	274	87,429	135	n/a
1984	0	102,931	128	n/a
1985	3,722	117,192	2,582	n/a
1986	243	93,547	4,883	n/a
1987	2,432	124,482	2,082	n/a
1988	2,035	79,495	4,484	902
1989	6,224	81,811	13,687	0
1990	11,375	99	35,767	25
1991	31,392	831	17,500	30
1992	34,568	2,324	24,345	n/a
1993	32,045	284	7,741	n/a
1994	20,877	875	13,319	85
1995	35,396	17,772	4,821	0
1996	39,065	4,168	5,604	47
1997	68,439	1,823	12,477	78
1998	47,812	972	50,726	480
1999	58,569	3,482	10,168	781
2000	67,845	1,562	7,182	0
2001	46,071	76	4,078	0
2002	46,845	0	7,962	0
2003	41,342	1,287	2,678	0
2004	41,897	n/a	n/a	n/a
2005	n/a	n/a	n/a	n/a

Table 19. Commercial harvest (metric tons) of CPS finfish in Ensenada, Baja California, Mexico, for calendar years 1978-2004^{1,2,3/}. Data from December 2003 onward were not available from INP. Market squid are not commercially fished off Baja California.

1/ CPS finfish landings through 2002 were taken from the report: García F. W. and Sánchez R. F. J. 2003. Análisis de la pesquería de pelágicos menores de la costa occidental de Baja California durante la temporada del 2002. Boletín Anual 2003. Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Instituto Nacional de la Pesca. Centro Regional de Investigación Pesquera de Ensenada, Cámara Nacional de la Industria Pesquera y Acuícola, Delegación Baja California. 15 p.

2/ Anchovy and mackerel landings for 2003 were provided by Dr. Celia Eva-Cotero, CRIP Instituto Nacional de la Pesca, Ensenada (pers. comm.), and include landings made from Jan-Nov of that year.

3/ Sardine landings for 2000-2004 were compiled by Jesús Garcia Esquivel (SEMARNAP-Ensenada), transmitted by Dr. Timothy Baumgartner (CICESE-Ensenada), and include estimates of sardine delivered directly to tuna rearing pens in northern Baja California. Table 20. Pacific sardine population numbers at age (millions), spawning stock biomass (SSB, mt), and age 1+ biomass (mt) at the beginning of each biological year, 1982-83 to 2005-06 (July-June) (Hill et al. 2005). 'Model SSB' is based on maturity-at-age and fishery weights-at-age and is used in ASAP to estimate stock-recruitment. 'Population SSB' and 'Age 1+ biomass' were calculated using population weights-at-age. Total landings (Canada+USA+Ensenada) by biological year are also provided. Recruitment is shown as population numbers at age-0. Age 1+ biomass as of July 2005 (bold) served as the basis for setting a harvest guideline for the U.S. fishery in calendar year 2006.

Biological	Po	pulation	Number	s-at-age	(million	s)	Model	Population	Age 1+	Total
year	0	1	2	3	4	5+	SSB	SSB	Biomass	Landings
1982-83	169	15	9	5	3	2	7,246	5,473	4,680	487
1983-84	321	112	9	5	3	3	14,871	12,496	14,904	372
1984-85	457	214	73	6	3	4	34,686	28,279	35,138	3,571
1985-86	504	296	133	44	4	5	56,213	47,517	58,868	1,838
1986-87	1,216	336	195	84	28	6	85,527	75,915	83,202	2,667
1987-88	1,329	810	220	124	54	22	143,450	120,318	150,063	5,887
1988-89	2,383	885	528	136	79	50	214,310	187,013	214,092	4,795
1989-90	2,329	1,591	584	340	89	86	349,300	273,909	337,541	15,322
1990-91	2,821	1,540	1,029	369	219	115	409,240	367,603	430,119	20,602
1991-92	4,741	1,861	990	644	236	219	463,370	465,191	525,168	35,022
1992-93	3,774	3,073	1,149	605	405	298	441,710	579,719	710,205	74,214
1993-94	6,857	2,340	1,694	618	350	444	464,730	661,919	733,519	31,540
1994-95	9,457	4,457	1,449	1,039	390	522	598,180	859,955	1,007,344	66,295
1995-96	6,512	6,058	2,646	848	637	595	741,050	1,102,002	1,371,383	62,677
1996-97	5,370	4,222	3,716	1,606	532	807	975,310	1,276,872	1,486,348	65,968
1997-98	6,372	3,494	2,618	2,283	1,016	882	928,060	1,306,901	1,460,963	131,380
1998-99	6,571	3,976	1,942	1,423	1,332	1,209	757,010	1,217,091	1,379,803	113,901
1999-00	4,654	4,053	2,139	1,018	810	1,606	584,550	1,144,594	1,329,681	119,258
2000-01	3,415	2,804	2,039	1,039	551	1,525	686,100	995,543	1,130,737	121,295
2001-02	6,500	2,103	1,490	1,034	563	1,269	668,820	870,016	933,416	125,612
2002-03	2,907	3,982	1,097	734	542	1,088	631,000	799,575	982,860	141,775
2003-04	10,042	1,790	2,093	535	372	920	661,010	791,832	810,115	106,550
2004-05	3,943	6,394	1,036	1,124	284	727	648,240	888,489	1,179,103	140,977
2005-06	4,131	2,479	3,563	526	564	545	677,500	931,483	1,061,391	135,762

	California					Manag	gement Suba Landings	area ^{1,2}	Harvest Gu	uidelines by	Subarea ^{1,2}	
	So.	Cen.	No. of	California				Ũ			2	
Year	Calif.	Calif.	39°N	Total	Oregon	Washington	Southern	Northern	Total	Southern	Northern	Total
1981	34.4	0.0	0.0	34.4	0.0	0.0	34.4	0.0	34.4	n/a	n/a	n/a
1982	1.8	0.0	0.0	1.8	0.0	0.0	1.8	0.0	1.8	n/a	n/a	n/a
1983	0.6	0.0	0.0	0.6	0.0	0.0	0.6	0.0	0.6	n/a	n/a	n/a
1984	0.9	0.3	0.0	1.2	0.0	0.0	0.9	0.3	1.2	n/a	n/a	n/a
1985	3.7	2.2	0.0	5.9	0.0	0.0	3.7	2.2	5.9	n/a	n/a	n/a
1986	304.0	84.4	0.0	388.4	0.0	0.0	304.0	84.4	388.4	n/a	n/a	n/a
1987	391.6	47.8	0.0	439.4	0.0	0.0	391.6	47.8	439.4	n/a	n/a	n/a
1988	1,185.4	3.0	0.0	1,188.4	0.0	0.0	1,185.4	3.0	1,188.4	n/a	n/a	n/a
1989	598.7	238.0	0.0	836.7	0.0	0.0	598.7	238.0	836.7	n/a	n/a	n/a
1990	1,537.1	127.1	0.0	1,664.2	0.0	0.0	1,537.1	127.1	1,664.2	n/a	n/a	n/a
1991	6,601.4	985.9	0.0	7,587.3	0.0	0.0	6,601.4	985.9	7,587.3	n/a	n/a	n/a
1992	14,821.9	3,127.6	0.0	17,949.5	4.0	0.0	14,821.9	3,131.6	17,953.5	n/a	n/a	n/a
1993	14,669.6	675.6	0.0	15,345.2	0.2	0.0	14,669.6	675.8	15,345.4	n/a	n/a	n/a
1994	9,348.5	2,295.0	5.0	11,643.5	0.0	0.0	9,348.5	2,295.0	11,643.5	n/a	n/a	n/a
1995	34,645.7	5,681.2	2.0	40,326.9	0.0	0.0	34,645.7	5,681.2	40,326.9	n/a	n/a	n/a
1996	24,565.0	7,988.1	0.5	32,553.1	0.0	0.0	24,565.0	7,988.1	32,553.1	n/a	n/a	n/a
1997	29,885.4	13,359.7	0.0	43,245.1	0.0	0.0	29,885.4	13,359.7	43,245.1	n/a	n/a	n/a
1998	32,462.1	10,493.3	21.0	42,955.4	1.0	0.0	32,462.1	10,494.3	42,956.4	n/a	n/a	n/a
1999	42,017.2	17,246.3	0.0	59,263.5	775.5	1.0	42,017.2	18,022.8	60,040.0	n/a	n/a	n/a
2000	42,248.0	11,367.5	0.0	53,615.5	9,527.9	4,842.0	42,248.0	25,737.4	67,985.4	124,527.3	62,263.7	186,791.0
2001	44,721.5	7,103.5	0.5	51,825.0	12,780.3	11,127.1	44,721.5	31,010.9	75,732.4	89,824.7	44,912.3	134,737.0
2002	44,464.0	13,881.0	0.0	58,345.0	22,710.8	15,832.4	44,464.0	52,424.2	96,888.2	78,961.3	39,480.7	118,442.0
2003	24,832.0	7,907.5	14.0	32,739.5	25,257.6	11,920.1	32,739.5	37,177.7	69,917.2	73,938.7	36,969.3	110,908.0
2004	32,393.4	15,284.8	23.6	47,701.8	36,110.7	8,934.3	47,678.2	45,068.6	92,746.8	81,831.3	40,915.7	122,747.0
2005	30,252.6	7,940.1	0.0	38,192.7	45,109.7	6,721.1	38,192.7	51,830.8	90,023.5	90,786.0	45,393.0	136,179.0
2006										n/a	n/a	118,937.0

Table 21. Annual U.S. Pacific sardine landings and harvest guidelines (metric tons) by state and management subarea, 1981-2005.

1\ As of 2003, the 'Southern Subarea' comprises fisheries and landings from Pt. Arena, California (39°N latitude) to the Mexican border.
2\ As of 2006, the sardine harvest guideline is no longer managed by subarea. HG's are now allocated coastwide and released on a seasonal basis.

Table 22. West Coast Pacific sardine landings by country, 1981-2005. Landings made by
commercial fisheries based in southern Baja California and the Gulf of California are not
included.

		Ensenada	United		
-	Year	Mexico	States	Canada	Total
	1981	0.0	34.4	0.0	34.4
	1982	0.0	1.8	0.0	1.8
	1983	273.6	0.6	0.0	274.2
	1984	0.2	1.2	0.0	1.4
	1985	3,722.3	5.9	0.0	3,728.2
	1986	242.6	388.4	0.0	631.0
	1987	2,431.6	439.4	0.0	2,871.0
	1988	2,034.9	1,188.4	0.0	3,223.3
	1989	6,224.2	836.7	0.0	7,060.9
	1990	11,375.3	1,664.2	0.0	13,039.5
	1991	31,391.8	7,587.3	0.0	38,979.1
	1992	34,568.2	17,949.5	0.0	52,517.7
	1993	32,045.0	15,345.4	0.0	47,390.4
	1994	20,876.9	11,643.5	0.0	32,520.4
	1995	35,396.2	40,326.9	25.0	75,748.1
	1996	39,064.7	32,553.1	88.0	71,705.8
	1997	68,439.1	43,245.1	34.0	111,718.2
	1998	47,812.2	42,956.4	745.0	91,513.6
	1999	58,569.4	60,039.0	1,250.0	119,858.4
	2000	67,845.3	67,985.4	1,718.0	137,548.7
	2001	46,071.3	75,732.4	1,600.0	123,403.7
	2002	46,845.3	96,888.2	1,044.0	144,777.5
	2003	41,341.8	69,917.2	954.0	112,213.0
	2004	41,896.9	92,746.8	4,258.8	138,902.5
-	2005	n/a	90,023.5	3,200.0	n/a

Year	California	Oregon	Washington	Total
1980	2,754.4	0.0	0.0	2,754.4
1981	1,394.5	0.0	0.0	1,394.5
1982	1,667.5	0.0	0.0	1,667.5
1983	1,467.3	1.5	0.0	1,468.9
1984	1,445.1	0.2	0.0	1,445.4
1985	1,076.6	0.0	0.0	1,076.6
1986	1,002.6	0.0	0.0	1,002.6
1987	1,271.2	0.0	0.0	1,271.2
1988	800.1	0.0	0.0	800.1
1989	610.6	0.0	0.0	610.6
1990	n/a	n/a	n/a	n/a
1991	n/a	n/a	n/a	n/a
1992	n/a	n/a	n/a	n/a
1993	621.9	2.1	0.0	624.0
1994	947.1	0.2	0.0	947.3
1995	1,026.3	0.1	0.0	1,026.4
1996	693.8	0.1	0.0	694.0
1997	967.0	0.3	0.0	967.3
1998	448.2	0.0	1.0	449.3
1999	196.0	0.2	0.3	196.6
2000	250.0	0.1	0.0	250.1
2001	561.4	0.0	0.0	561.4
2002	279.1	0.1	0.0	279.2
2003	341.3	0.3	0.0	341.6
2004	457.2	0.1	0.0	457.3
2005	285.7	0.1	0.0	285.8

Table 23. RecFIN estimated recreational harvest of Pacific (chub) mackerel by state (type A+B1estimate in metric tons), 1980-2005.

			Shore	
Total	Private/Rental	Party/Charter	Modes	Year
2,754.4	1,009.2	1,320.5	424.8	1980
1,394.5	515.7	590.7	288.1	1981
1,667.5	527.6	865.1	274.7	1982
1,468.9	404.3	702.6	361.9	1983
1,445.4	585.5	577.9	281.9	1984
1,076.6	389.9	544.7	142.0	1985
1,002.6	390.9	520.1	91.6	1986
1,271.2	575.8	244.6	450.8	1987
800.1	455.4	239.1	105.5	1988
610.6	219.1	134.8	256.7	1989
n/a	n/a	n/a	n/a	1990
n/a	n/a	n/a	n/a	1991
n/a	n/a	n/a	n/a	1992
624.0	362.7	172.5	88.8	1993
947.3	496.3	245.1	205.9	1994
1,026.4	531.8	373.5	121.2	1995
694.0	281.1	319.4	93.4	1996
967.3	650.4	168.6	148.3	1997
449.3	221.4	131.2	96.7	1998
196.6	73.4	60.8	62.4	1999
250.1	121.9	76.8	51.3	2000
561.4	162.2	52.2	347.0	2001
279.2	160.6	25.7	92.9	2002
341.6	107.8	25.4	208.4	2003
457.3	64.0	20.3	373.1	2004
285.8	27.5	19.4	238.9	2005

Table 24. RecFIN estimated recreational harvest of Pacific (chub) mackerel by fishing mode (type A+B1 estimate in metric tons), 1980-2005. Estimates for 'Man Made Structures' and 'Beach/Bank' were included in 'Shore Modes'.

	Pacific	Pacific	Pacific	Pacific	Jack	Jack				
	Sardine	Sardine	Mackerel	Mackerel	Mackerel	Mackerel	Anchovy	Anchovy	Squid	Squid
Year	mt	Rev	mt	Rev	mt	Rev	mt	Rev	mt	Rev
1981	15	\$5,725	35,388	\$13,813,659	17,778	\$6,928,743	52,309	\$6,209,107	23,510	\$9,631,724
1982	2	\$962	36,065	\$12,984,856	19,617	\$7,122,902	42,155	\$3,869,997	16,308	\$6,456,637
1983	1	\$301	41,479	\$13,813,262	9,829	\$3,083,454	4,430	\$717,684	1,824	\$1,301,526
1984	1	\$1,440	44,084	\$13,730,870	9,149	\$2,267,220	2,899	\$687,602	564	\$502,589
1985	6	\$2,274	37,772	\$10,590,869	6,876	\$2,078,224	1,638	\$379,274	10,276	\$6,388,538
1986	388	\$128,687	48,089	\$12,539,000	4,777	\$1,331,266	1,557	\$518,913	21,278	\$7,120,385
1987	439	\$95,782	46,725	\$10,251,350	8,020	\$1,813,641	1,467	\$474,706	19,984	\$6,065,295
1988	1,188	\$235,939	50,864	\$12,552,858	5,068	\$1,178,820	1,518	\$593,691	37,232	\$11,655,663
1989	837	\$278,564	47,713	\$10,090,999	10,745	\$2,391,539	2,511	\$954,032	40,893	\$10,741,489
1990	1,664	\$273,143	40,092	\$7,352,128	3,223	\$598,098	3,259	\$872,959	28,447	\$6,525,815
1991	7,587	\$1,185,706	32,019	\$7,083,957	1,712	\$330,174	4,068	\$862,527	37,389	\$8,064,326
1992	17,954	\$2,408,319	19,045	\$5,200,887	1,526	\$310,139	1,166	\$290,303	13,110	\$3,177,922
1993	15,347	\$1,960,648	12,129	\$1,912,181	1,950	\$349,382	2,003	\$606,331	42,830	\$13,028,997
1994	11,644	\$1,882,575	10,293	\$1,785,169	2,906	\$473,523	1,859	\$684,824	55,892	\$17,806,710
1995	40,256	\$4,330,456	8,823	\$1,400,377	1,877	\$355,262	2,016	\$448,817	70,252	\$27,148,530
1996	32,553	\$3,765,484	9,729	\$1,573,752	2,438	\$364,693	4,505	\$836,836	80,561	\$26,119,578
1997	43,290	\$5,218,840	20,168	\$3,268,744	1,534	\$290,473	5,778	\$953,297	70,329	\$24,269,821
1998	43,312	\$4,211,054	21,560	\$2,951,449	1,777	\$444,822	1,584	\$284,938	2,895	\$1,887,410
1999	60,368	\$5,933,420	9,094	\$1,252,723	1,579	\$230,504	5,311	\$1,099,217	92,014	\$38,239,046
2000	68,034	\$8,170,011	22,042	\$3,281,839	1,451	\$307,445	11,831	\$1,620,367	118,903	\$30,547,727
2001	75,801	\$9,987,702	7,618	\$1,362,899	3,839	\$669,796	19,345	\$1,569,816	86,203	\$18,543,774
2002	96,897	\$11,415,857	3,744	\$565,183	1,026	\$224,302	4,882	\$670,935	72,878	\$19,652,069
2003	71,917	\$7,685,145	4,213	\$694,996	231	\$77,059	1,929	\$360,668	44,990	\$26,744,429
2004	89,339	\$10,355,344	3,708	\$590,955	1,160	\$274,963	7,019	\$842,021	40,068	\$20,331,011
2005	85,791	\$10,184,791	3,585	\$579,600	294	\$74,738	11,348	\$1,121,355	55,605	\$31,556,862

Table 25. West coast landings (mt) and real¹ exvessel revenues (\$ 2005) for Pacific sardine, Pacific mackerel², jack mackerel, anchovy and market squid, 1981-2005.

Source: PacFIN - 1981-2001 data extracted April 2004, 2002-2004 data extracted May 2005

¹Real values are current values adjusted to eliminate the effects of inflation. This adjustment has been made by dividing current

values by the current year GDP implicit price deflator, with a base year of 2004.

Table 26. Pacific coast landings (mt) and real¹ exvessel revenues (\$ 2005) for Pacific sardine, Pacific mackerel², jack mackerel, anchovy and market squid by landing area, 1981-2005. (Page 1 of 5)

			Landings (mt)					ssel Revenues (2005 \$		
Year	Sardine	P. Mackerel	J. Mackerel	Anchovy	Squid	Sardine	P. Mackerel	J. Mackerel	Anchovy	Squid
						San Diego				
1981		13.2	11.8	1.7	4.3		\$17,517	\$7,707	\$1,241	\$3,42
1982		29.9	0.1		0.1		\$23,803	\$233		\$3
1983		18.4	0.4	1.7	1.2		\$16,478	\$916	\$1,180	\$1,23
1984	0.3	27.2	0.2		< 0.1	\$436	\$21,593	\$682		\$4
1985		18.8	0.1		0.3		\$26,962	\$140		\$23
1986		9.4	0.1		< 0.1		\$9,446	\$329		\$1
1987	< 0.1	9.7	0.8	< 0.1	2.7	\$51	\$11,786	\$1,481	\$17	\$2,19
1988	0.1	17.4	< 0.1	5.5	18.6	\$81	\$17,741	\$1	\$4,785	\$10,47
1989	0.1	7.6	< 0.1	93.5	2.1	\$223	\$9,092	\$21	\$293,017	\$3,16
1990	0.2	7.7	0.1	18.4	1.2	\$266	\$7,840	\$85	\$55,185	\$1,48
1991		11.3	0.1	399.9			\$10,353	\$105	\$136,076	
1992	0.1	17.4	1.1	120.9	16.4	\$229	\$18,167	\$1,241	\$27,470	\$4,68
1993	0.4	16.3	3.2	3.7	0.2	\$672	\$16,797	\$3,322	\$1,317	\$4
1994	2.0	20.8	4.9	27.9	0.8	\$1,085	\$16,914	\$3,182	\$12,027	\$26
1995	5.3	31.2	0.5	38.2	0.8 0.8	\$4,991	\$21,166	\$533	\$24,780	\$70
1996	1.2	26.0		144.6	1.8	\$1,331	\$18,540		\$80,609	\$54
1997	2.7	15.7	< 0.1	11.7	2.6	\$3,480	\$11,767	\$2	\$6,481	\$84
1998	215.3	52.3		2.3	2.2	\$23,389	\$10,088		\$1,185	\$1,77
1999	592.3	15.3	0.1	1.9	4.1	\$68,581	\$5,229	\$143	\$762	\$5,15
2000	19.2	1.7	0.2	4.3	34.8	\$8,222	\$2,400	\$255	\$1,944	\$11,84
2001	0.2	2.8	0.1	1.5	11.0	\$108	\$2,781	\$121	\$813	\$5,06
2002	90.5	0.5	0.1	5.2	11.0	\$64,034	\$965	\$122	\$3,335	\$0,00
2002	28.1	0.9	2.5	13.6		\$22,822	\$1,027	\$3,370	\$8,548	
2003	44.4	0.2	2.5	15.0	14.2	\$27,164	\$272	\$5,570	40,510	\$6,58
2005	21.5	1.0		18.2	11.2	\$12,843	\$862		\$10,431	\$0,50
2005	21.5	1.0		10.2		Orange/LA	0002		<i>\\</i> 10,151	
1981	14.7	29,084.7	14,699.9	38,216.3	8,290.6	\$5,710	\$11,440,904	\$5,723,462	\$4,424,620	\$1,825,17
1982	1.8	29,827.6	18,131.1	32,514.7	4,292.8	\$885	\$10,709,480	\$6,599,446	\$2,724,254	\$1,032,21
1983	0.6	33,902.3	6,785.8	900.2	853.6	\$278	\$11,642,881	\$2,371,773	\$175,599	\$560,30
1984	0.5	35,572.8	3,566.3	204.8	66.3	\$562	\$11,980,322	\$1,166,965	\$135,376	\$60,93
1985	3.4	32,012.5	5,860.1	43.1	3,095.9	\$1,310	\$9,245,782	\$1,759,985	\$28,222	\$1,639,23
1985	286.6	41,071.7	4,289.0	140.8	8,121.8	\$95,124	\$10,882,281	\$1,157,616	\$33,793	\$2,897,97
1987	317.3	39,863.3	7,801.2	108.8	5,421.5	\$70,710	\$8,786,307	\$1,758,672	\$30,768	\$1,703,47
1987	1,172.1	47,656.6	4,939.1	92.9	15,090.3	\$230,337	\$11,439,052	\$1,132,836	\$25,856	\$4,594,84
1988	505.0	41,717.5	10,703.7	479.0	16,353.4	\$83,217	\$9,254,680	\$2,344,968	\$72,891	\$4,057,86
1989	1,179.4	37,123.6	2,936.3	193.2	9,797.9	\$200,205	\$6,813,844	\$534,075	\$43,349	\$4,037,80
1990	6,415.1	31,555.0	1,640.2	414.3	12,305.3	\$1,013,354	\$6,973,924	\$303,816	\$64,664	
	· · · · · ·	· · · · ·	1,040.2		· · · · ·					\$2,142,75
1992	13,848.5	18,071.7		136.6	1,700.5	\$1,779,245	\$5,050,994	\$282,536 \$224,104	\$34,711	\$337,64
1993	13,977.6	11,715.1	1,268.9	118.7	12,889.7	\$1,783,179	\$1,857,612	\$224,194	\$21,669	\$3,425,11
1994	9,031.7	9,842.3	2,459.8	136.6	11,231.4	\$1,169,844	\$1,694,330	\$337,677	\$20,493	\$2,967,37
1995	34,137.0	7,864.0	1,596.2	297.8	18,413.1	\$3,649,292	\$1,253,635	\$236,314	\$34,567	\$6,277,39
1996	23,922.6	8,764.9	2,054.0	239.1	14,993.9	\$2,602,597	\$1,355,617	\$328,646	\$29,531	\$5,241,85
1997	26,533.7	14,002.6	822.6	1,120.8	17,779.1	\$2,984,532	\$2,596,550	\$211,868	\$112,194	\$6,858,54
1998	31,702.3	18,149.6	1,012.4	338.1	227.5	\$3,327,618	\$2,673,544	\$371,395	\$43,088	\$152,06
1999	39,084.2	8,551.1	927.4	1,418.2	27,596.9	\$4,022,316	\$1,187,828	\$212,235	\$249,869	\$10,446,59
2000	39,180.6	21,630.6	1,209.5	1,278.6	44,839.9	\$4,701,989	\$3,238,320	\$253,307	\$164,068	\$12,737,29
2001	40,763.6	6,676.6	3,623.8	3,657.7	39,170.6	\$4,903,140	\$1,167,447	\$614,959	\$352,794	\$9,298,70
2002	39,308.0	3,367.8	1,003.5	1,205.7	28,136.9	\$4,122,005	\$524,892	\$217,659	\$109,376	\$6,916,87
2003	22,877.2	3,941.3	133.4	205.5	7,693.2	\$1,934,382	\$655,599	\$54,115	\$32,326	\$4,662,78
2004	23,677.4	3,018.3	1,027.1	147.2	10,504.3	\$2,319,873	\$513,198	\$255,541	\$37,516	\$4,980,48
2005	24,146.1	3,145.7	166.6	1,992.4	31,561.9	\$2,365,653	\$522,207	\$49,068	\$191,900	\$18,781,57

Table 26. Pacific coast landings (mt) and real¹ exvessel revenues (\$ 2005) for Pacific sardine, Pacific mackerel², jack mackerel, anchovy and market squid by landing area, 1981-2005. (Page 2 of 5)

			Landings (mt)					el Revenues (2005 \$		
Year	Sardine	P. Mackerel	J. Mackerel	Anchovy	Squid	Sardine	P. Mackerel	J. Mackerel	Anchovy	Squid
						ura/Santa Barbara				
1981	< 0.1	4,872.1	2,846.6	9,034.5	2,389.7	\$14	\$1,904,602	\$1,106,021	\$1,059,680	\$407,34
1982		4,095.4	1,195.0	6,440.7	1,403.2		\$1,560,872	\$417,725	\$622,996	\$265,7
1983	< 0.1	3,905.0	559.1	2,727.1	3.2	\$2	\$1,217,369	\$157,651	\$269,264	\$3,5
1984		1,263.2	52.1	141.0	7.1		\$379,242	\$16,722	\$74,693	\$13,9
1985		2,950.7	787.1	109.8	2,959.4		\$742,096	\$223,118	\$49,419	\$1,221,9
1986	17.5	5,004.5	296.9	160.9	6,411.8	\$4,729	\$1,260,560	\$82,112	\$66,694	\$1,681,1
1987	74.3	5,877.7	8.0	140.2	8,406.6	\$16,834	\$1,262,733	\$2,517	\$57,062	\$2,328,1
1988	13.2	3,119.6	6.5	154.3	16,334.4	\$4,351	\$1,059,260	\$1,661	\$69,378	\$5,053,8
1989	93.3	5,907.6		160.9	16,861.9	\$15,261	\$793,556		\$73,640	\$4,304,6
1990	236.1	420.9	75.7	140.9	10,600.5	\$29,240	\$70,226	\$9,478	\$61,827	\$2,657,6
1991	186.4	138.1	8.6	189.9	16,904.8	\$28,425	\$20,148	\$1,264	\$78,381	\$3,287,6
1992	973.4	92.2	< 0.1	89.8	2,806.9	\$90,279	\$9,918	\$3	\$37,142	\$579,1
1993	691.7	34.5	< 0.1	298.1	17,367.2	\$65,439	\$4,592	\$10	\$106,490	\$4,641,0
1994	315.0	39.5	47.5	340.8	21,793.8	\$28,655	\$9,934	\$4,000	\$174,478	\$6,363,3
1995	354.5	249.1	0.4	346.3	41,184.3	\$48,776	\$28,935	\$229	\$173,653	\$16,987,2
1996	461.1	66.8	11.1	374.5	46,435.3	\$46,196	\$35,845	\$1,883	\$178,482	\$14,549,5
1997	3,357.3	1,160.3	7.4	510.4	34,610.6	\$276,015	\$121,433	\$3,005	\$106,277	\$10,934,2
1998	899.3	1,305.7		239.1	2,175.6	\$105,800	\$79,748		\$91,891	\$1,443,7
1999	2,545.1	215.0	< 0.1	2,233.2	52,718.7	\$278,762	\$41,258	\$10	\$369,835	\$23,031,7
2000	3,047.9	230.0	9.1	3,548.3	48,747.0	\$331,951	\$24,115	\$978	\$439,207	\$11,207,9
2001	3,956.7	72.4	< 0.1	3,909.3	31,876.3	\$404,371	\$7,271	\$33	\$493,504	\$5,797,7
2002	5,064.5	< 0.1	< 0.1	732.2	11,814.1	\$671,118	\$15	\$2	\$195,551	\$3,363,5
2003	2,365.9	39.3	< 0.1	625.4	13,199.8	\$229,375	\$4,551	\$26	\$148,138	\$7,875,3
2004	4,711.0	67.4	< 0.1	2,722.2	15,397.0	\$443,255	\$8,203	\$8	\$420,546	\$7,985,9
2005	1,830.4	96.0	44.3	2,946.1	13,682.1	\$170,410	\$16,180	\$2,665	\$490,208	\$7,373,7
	,			,	,	an Luis Obispo			. ,	
1981		1.0	< 0.1	17.2	0.1		\$939	\$16	\$12,187	\$1
1982		2.5	< 0.1		0.3		\$2,125	\$10		\$4
1983		0.7			0.2		\$552			\$2
1984		5.0			0.1		\$3,220			\$1
1985	0.3	19.5	0.1	47.5	0.3	\$101	\$4,855	\$57	\$25,100	\$4
1986		0.6	<0.1	11.3	0.1		\$332	\$18	\$4,887	\$1
1987		0.8		2.4	0.4		\$702	***	\$960	\$3
1988	< 0.1	0.2		2.1	0.1	\$1	\$308		\$700	\$
1989	011	1.2	< 0.1	0.2	19.2	φ.	\$854	\$1	\$43	\$6,1
1990	121.1	1.9	16.5	0.2	0.1	\$14,972	\$1,178	\$2,026	ψ15	\$0,1
1991	121.1	1.0	< 0.1		<0.1	<i>Q</i> 11, <i>9</i> 72	\$627	\$11		\$
1992		0.4	<0.1		0.2		\$318	\$70		\$1
1993		0.4	<0.1	1.1	2,035.9		\$55	\$16	\$634	\$1,021,4
1994	0.1	0.2	<0.1	0.8	1,343.6	\$31	\$118	\$5	\$447	\$722,8
1995	0.1	<0.1	<0.1	0.0	182.5	\$ 31	\$19	\$3	φ ++ /	\$48,6
1996		<0.1	<0.1		216.8		\$6	\$5		\$73,7
1990	< 0.1	<0.1		22.6	<0.1	\$22	\$3		\$10,993	\$75,7 §
1997	<0.1	0.1	< 0.1	22.0	<0.1	\$22 \$37	\$173	\$46	\$10,995	đ
1998	\0.1	<0.1	\U.1	2.0	<0.1 16.7	\$37	\$32	\$ 4 0	\$1.022	\$5,3
			<0.1	2.0				\$1	\$1,022	\$3,3
2000		<0.1	<0.1	2.5	<0.1		\$2 \$10	21	¢1 (72	
2001	101.0	<0.1		3.5	79.4	07 255	\$19		\$1,673	\$17,0
2002	101.9				356.2	\$7,255	¢17	\$10	¢1.450	\$81,8
2003		<0.1	<0.1	3.2	650.2		\$17	\$18	\$1,479	\$376,8
2004		<0.1			905.7		\$12			\$457,1
2005					40.0					\$22,04

Table 26. Pacific coast landings (mt) and real¹ exvessel revenues (\$ 2005) for Pacific sardine, Pacific mackerel², jack mackerel, anchovy and market squid by landing area, 1981-2005. (Page 3 of 5)

	1 2	,,	Landings (mt)	,			Exve	ssel Revenues (2005 \$)	
Year	Sardine	P. Mackerel	J. Mackerel	Anchovy	Squid	Sardine	P. Mackerel	J. Mackerel	Anchovy	Squid
						nterey/Santa Cruz				
1981		1,359.2	211.5	4,617.0	12,822.7		\$423,846	\$85,711	\$513,349	\$7,393,647
1982	< 0.1	2,053.4	280.3	2,609.1	10,607.4	\$77	\$662,823	\$100,034	\$251,365	\$5,154,68
1983	<0.1	3,449.2	2,457.2	320.8	500.0	\$21	\$863,381	\$528,297	\$73,577	\$380,723
1984	0.3	7,149.3	5,480.5	1,894.7	390.9	\$442	\$1,313,250	\$1,068,246	\$187,787	\$335,24
1985	2.2	2,704.4	228.1	1,138.2	3,813.1	\$863	\$531,712	\$94,693	\$141,465	\$3,167,99
1986	84.5	1,987.9	191.1	808.2	5,487.9	\$28,834	\$375,595	\$91,094	\$230,037	\$2,095,35
1987	47.6	956.7	209.7	676.3	5,610.8	\$8,068	\$180,424	\$50,330	\$119,386	\$1,861,82
1988	3.0	59.0	121.5	696.3	4,896.7	\$1,133	\$26,812	\$43,831	\$249,770	\$1,706,24
1989	238.0	60.0	37.2	928.7	7,145.5	\$179,580	\$17,361	\$42,133	\$191,266	\$2,246,91
1990	127.1	2,495.7	192.4	2,131.5	7,917.5	\$28,284	\$430,902	\$51,425	\$439,856	\$1,927,91
1991	985.9	298.0	43.6	2,526.8	6,703.2	\$143,927	\$69,112	\$21,547	\$382,000	\$2,171,93
1992	3,093.2	374.9	109.8	608.2	6,111.3	\$530,656	\$99,004	\$23,972	\$101,582	\$1,639,90
1993	676.1	38.1	345.1	1,285.0	6,039.6	\$110,543	\$16,505	\$108,383	\$300,439	\$2,530,05
1994	2,289.4	38.4	191.2	985.8	13,648.3	\$680,442	\$21,938	\$118,600	\$307,380	\$5,589,39
1995	5,678.1	460.7	109.1	1,110.5	2,449.1	\$614,774	\$76,666	\$94,350	\$111,244	\$997,41
1996	7,987.9	703.0	91.0	3,553.9	4,672.0	\$1,060,637	\$109,693	\$15,746	\$441,898	\$1,643,89
1997	13,356.7	3,208.2	327.2	3,895.1	8,282.9	\$1,871,228	\$506,321	\$72,770	\$654,989	\$3,434,96
1998	10,009.0	1,456.7	32.5	901.2	,	\$711,999	\$164,982	\$12,838	\$78,407	
1999	16,417.2	2.7	24.2	1,511.3	301.3	\$1,369,899	\$11,455	\$2,002	\$384,970	\$91,28
2000	11,367.0	39.4	50.0	6,804.3	7,125.4	\$1,086,658	\$7,142	\$30,219	\$890,058	\$2,150,38
2001	7,102.5	172.2		11,660.3	7,746.6	\$1,570,443	\$20,718		\$623,237	\$1,942,26
2002	13,607.4	0.1	1.8	2,689.5	25,067.3	\$1,396,759	\$77	\$418	\$274,584	\$7,311,15
2003	7,907.3	1.0	19.8	705.7	13,921.4	\$703,728	\$4,449	\$2,602	\$86,460	\$8,355,28
2003	15,443.8	489.9	< 0.1	3,890.8	5,542.5	\$1,229,937	\$54,158	\$5	\$298,806	\$2,931,89
2001	7,532.2	0.4	0.5	6,128.8	2,046.5	\$525,629	\$722	\$300	\$378,395	\$994,29
2000	7,352.2	0.1	0.5	0,120.0	,	San Francisco	<i></i>	\$500	\$576,575	<i>ψγγγγ</i>
1981	< 0.1	< 0.1	1.9	203.9	< 0.1	\$1	\$51	\$1,615	\$89,260	\$1
1982	-0.1	4.2	0.2	394.6	2.3	ψī	\$2,368	\$286	\$189,978	\$94
1983		13.3	1.2	332.3	461.5		\$5,051	\$359	\$129,690	\$351,09
1984		13.8	0.3	537.7	97.0		\$9,378	\$155	\$227,801	\$89,64
1985		14.6	<0.1	258.8	77.0		\$12,824	\$41	\$105,226	\$54,66
1985		12.0	\0.1	392.7	831.9		\$8,640	541	\$144,596	\$343,07
1980	0.3	6.3	0.5	424.4	342.8	\$99	\$5,398	\$638	\$161,511	\$121,89
1987	<0.1	6.2	0.3	492.3	299.2	\$5	\$5,452	\$427	\$181,457	\$121,89
1988	<0.1	9.0	4.3	755.3	3.4	\$17	\$7,691	\$4,358	\$231,976	\$100,72
1989	<0.1	13.8	4.3	733.3	128.8	\$39	\$9,717	\$1,003	\$210,589	\$42,32
1990	<0.1	2.7	0.2	459.2	1,471.4	\$37	\$1,988	\$1,003	\$143,520	\$459,98
1991	24.5		0.2	439.2 164.4	2,447.9	\$7.902	\$1,988	\$92 \$448	\$44,658	\$439,98 \$608,88
	34.5	11.5	0.3		,	\$7,892			. ,	. ,
1993	0.0	1.2		243.9	1,017.8	0712	\$1,259	\$262 \$240	\$138,244	\$477,15
1994	0.8 1.6	1.7	0.4	279.6	2,235.6	\$713 \$587	\$1,930 \$650	\$349	\$103,241	\$795,43 \$2(4,51
1995	1.0	0.6	0.2	93.2	746.8	\$28/		\$288	\$10,653	\$264,51
1996	2.1	4.5	0.8	105.1	332.9	¢1.500	\$2,905	\$677	\$29,684	\$129,06
1997	3.1	3.7	0.2	155.7	204.5	\$1,520	\$2,775	\$419	\$12,504	\$81,35
1998	463.5	3.8	1.2	0.5	14.1	\$36,168	\$4,073	\$947	\$23	\$18,01
1999	949.0	0.9	<0.1	46.8	5.4	\$93,233	\$659	\$33	\$16,792	\$2,02
2000	0.5	< 0.1	0.4	116.5	<0.1	\$234	\$23	\$761	\$71,132	\$
2001	< 0.1	0.6		42.3	279.9	\$103	\$1,816		\$14,708	\$81,08
2002	171.8	<0.1		17.2	864.6	\$34,391	\$2		\$10,188	\$231,12
2003	0.1	<0.1	< 0.1		2,807.7	\$532	\$152	\$3		\$1,632,26
2004	370.1	0.1	< 0.1	< 0.1	164.5	\$35,344	\$122	\$6	\$28	\$93,23
2005	309.0	< 0.1	< 0.1	< 0.1	0.6	\$27,258	\$29	\$4	\$29	\$14

Table 26. Pacific coast landings (mt) and real¹ exvessel revenues (\$ 2005) for Pacific sardine, Pacific mackerel², jack mackerel, anchovy and market squid by landing area, 1981-2005. (Page 4 of 5)

			Landings (mt)					ssel Revenues (2005 \$)		
Year	Sardine	P. Mackerel	J. Mackerel	Anchovy	Squid	Sardine	P. Mackerel	J. Mackerel	Anchovy	Squid
						orthern California				
1981		1.9	< 0.1		2.1		\$955	\$16		\$1,892
1982		3.0	1.1		1.7		\$989	\$517		\$1,625
1983		2.9	0.1		< 0.1		\$1,369	\$29		\$56
1984		0.1	< 0.1	0.5	0.1		\$73	\$2	\$995	\$139
1985					< 0.1					\$19
1986		< 0.1			< 0.1		\$31			\$20
1987		< 0.1	< 0.1		0.1		\$16	\$3		\$61
1988			< 0.1		1.0			\$4		\$944
1989		0.1	< 0.1		0.6		\$63	\$1		\$522
1990		0.4			0.8		\$240			\$198
1991		0.1			1.3		\$59			\$568
1992		0.4	1.0	0.7	0.5		\$437	\$588	\$123	\$1,437
1993		0.2	55.4	0.1	< 0.1		\$143	\$9,777	\$31	\$7
1994	4.9	0.3	0.1	8.4	37.6	\$1,806	\$197	\$82	\$3,561	\$13,012
1995	1.5	0.1	0.1	0.1	1.8	\$1,034	\$37	\$39	\$5,501	\$564
1996	0.3	3.1	0.1		1.0	\$139	\$2,046	ψ5)		\$ 5 04
1997	0.5	5.7	2.2		3.4	\$157	\$3,691	\$1,433		\$2,319
1997	20.9	9.2	6.2		<0.1	\$5,060	\$3,835	\$4,660		\$48
1998	20.9	2.9	<0.2		<0.1	\$5,000	\$885	\$4,000		\$6
		2.9	<0.1		<0.1 0.5		\$885 \$376	\$15		
2000	0.1	1./	0.1	2.3	0.3	\$43	\$370	\$101	\$6,947	\$651
2001	0.1	0.2	0.1	2.3	0.1 3.9	\$43	\$514	¢20	\$6,947	\$91
2002	12.5	0.2	0.1		3.9	¢() (0)	\$514	\$38		\$1,393
2003	13.5		< 0.1			\$6,269	A5 2	\$15		.
2004	23.6	<0.1	< 0.1		< 0.1	\$10,679	\$73	\$4		\$49
2005		< 0.1	< 0.1				\$112	\$2		
					(Other California				
1981		< 0.1					\$14			
1982										
1983										
1984		0.1					\$29			
1985										
1986		0.2					\$102			
1987										
1988										
1989		< 0.1					\$9			
1990										
1991										
1992										
1993										
1994		3.9		3.7	32.7		\$11,506		\$303	\$8,945
1995										
1996										
1997										
1998										
1999										
2000										
2000										
2001										
2002										
2003										
2005										

Table 26. Pacific coast landings (mt) and real¹ exvessel revenues (\$ 2005) for Pacific sardine, Pacific mackerel², jack mackerel, anchovy and market squid by landing area, 1981-2005. (Page 5 of 5)

			Landings (mt)	- /			Exve	ssel Revenues (2005 \$	i)	
Year	Sardine	P. Mackerel	J. Mackerel	Anchovy	Squid	Sardine	P. Mackerel	J. Mackerel	Anchovy	Squid
						Oregon				
1981		< 0.1					\$2			
1982		< 0.1		0.1			\$74		\$178	
1983		8.3					\$13,421			
1984		3.0					\$1,339			
1985		< 0.1	< 0.1	< 0.1			\$3	\$2	\$62	
1986		< 0.1					\$1			
1987		1.5					\$797			
1988		0.6		< 0.1			\$509		\$19	
1989		4.7		< 0.1			\$1,600		\$21	
1990		10.3					\$4,949			
1991		0.5	19.3				\$205	\$3,220		
1992	3.9	462.3	316.5				\$201	\$1,035		
1993	0.2	279.9	276.6				\$1,088	\$3,375		
1994		252.2	202.3	0.9			\$11,938	\$9,621	\$248	
1995		189.2	148.6	0.2			\$4,337	\$8,753	\$590	
1996		60.6	258.5				\$4,569	\$9,160		
1997		1,610.8	373.3				\$2,689	\$882		
1998	1.0	536.3	686.0			\$901	\$10,038	\$50,854		
1999	775.5	259.2	518.0			\$98,406	\$1,155	\$6,824		
2000	9,527.9	119.1	160.8	0.1		\$1,288,792	\$7,060	\$19,325	\$336	
2001	12,780.4	322.0	183.1			\$1,744,706	\$77,834	\$48,610		
2002	22,711.0	126.6	8.9	3.1		\$3,034,427	\$6,959	\$4,120	\$1,913	
2003	25,257.9	160.0	73.6	39.1		\$3,102,373	\$19,658	\$16,784	\$3,282	
2004	36,111.0	106.9	125.8	13.1		\$5,005,567	\$11,549	\$17,743	\$4,762	
2005	45,110.1	317.6	69.8	68.4		\$6,193,625	\$35,687	\$19,489	\$1,576	
					Washi	ngton				
1981				1.3					\$560	
1982				5.1					\$16,945	
1983				2.9					\$9,243	
1984		0.1		10.1			\$142		\$16,587	
1985				11.7					\$19,029	
1986				22.1					\$31,199	
1987				77.6					\$89,973	
1988				40.4					\$48,322	
1989		0.2		61.8			\$71		\$77,211	
1990		0.1		50.3			\$214		\$57,445	
1991		0.2		54.5			\$53		\$49,505	
1992		5.9		41.7			\$3,594		\$42,793	
1993		30.2		19.9			\$5,278		\$13,774	
1994		33.3		38.5			\$3,652		\$33,773	
1995		7.5		118.3			\$995		\$79,594	
1996		65.3	2.8	85.6			\$23,769	\$818	\$75,735	
1997		152.5	0.7	59.1			\$19,758	\$94	\$48,906	
1998		45.9	38.5	102.5			\$4,776	\$4,082	\$70,344	
1999	1.4	46.8	108.4	97.8		\$1,890	\$4,196	\$8,707	\$75,960	
2000	4,841.9	19.1	20.3	78.7		\$744,017	\$2,189	\$2,496	\$53,541	
2001	11,127.2	370.6	32.1	68.0		\$1,357,162	\$84,601	\$5,969	\$76,140	
2002	15,832.5	248.2	11.5	228.7		\$2,084,705	\$31,675	\$1,936	\$75,990	
2003	11,920.2	53.8	1.8	213.8		\$1,550,511	\$7,594	\$125	\$69,558	
2003	8,934.3	22.2	7.1	213.4		\$1,279,655	\$2,393	\$1,640	\$65,690	
2005	6,721.1	23.6	10.8	163.7		\$850,135	\$3,587	\$2,479	\$35,740	

¹Real values are current values adjusted to eliminate the effects of inflation. This adjustment has been made by dividing current values

by the current year GDP implicit price deflator, with a base year of 2005.

	Pacific	Pacific	Jack		
Year	Sardine \$/lb	Mackerel \$/lb	Mackerel \$/lb	Anchovy \$/lb	Squid \$/lb
1981	\$0.17	\$0.18	\$0.18	\$0.05	\$0.19
1982	\$0.22	\$0.16	\$0.16	\$0.04	\$0.18
1983	\$0.14	\$0.15	\$0.14	\$0.07	\$0.32
1984	\$0.65	\$0.14	\$0.11	\$0.11	\$0.40
1985	\$0.17	\$0.13	\$0.14	\$0.10	\$0.28
1986	\$0.15	\$0.12	\$0.13	\$0.15	\$0.15
1987	\$0.10	\$0.10	\$0.10	\$0.15	\$0.14
1988	\$0.09	\$0.11	\$0.11	\$0.18	\$0.14
1989	\$0.15	\$0.10	\$0.10	\$0.17	\$0.12
1990	\$0.07	\$0.08	\$0.08	\$0.12	\$0.10
1991	\$0.07	\$0.10	\$0.09	\$0.10	\$0.10
1992	\$0.06	\$0.12	\$0.09	\$0.11	\$0.11
1993	\$0.06	\$0.07	\$0.08	\$0.14	\$0.14
1994	\$0.07	\$0.08	\$0.07	\$0.17	\$0.14
1995	\$0.05	\$0.07	\$0.09	\$0.10	\$0.18
1996	\$0.05	\$0.07	\$0.07	\$0.08	\$0.15
1997	\$0.05	\$0.07	\$0.09	\$0.07	\$0.16
1998	\$0.04	\$0.06	\$0.11	\$0.08	\$0.30
1999	\$0.04	\$0.06	\$0.07	\$0.09	\$0.19
2000	\$0.05	\$0.07	\$0.10	\$0.06	\$0.12
2001	\$0.06	\$0.08	\$0.08	\$0.04	\$0.10
2002	\$0.05	\$0.07	\$0.10	\$0.06	\$0.12
2003	\$0.05	\$0.07	\$0.15	\$0.08	\$0.27
2004	\$0.05	\$0.07	\$0.11	\$0.05	\$0.23
2005	\$0.05	\$0.07	\$0.12	\$0.04	\$0.26

Table 27. Average annual real¹ exvessel prices (\$ 2005) for Pacific sardine, Pacific mackerel², jack mackerel, anchovy and market squid, 1981-2005.

Source: PacFIN - 1981-2001 data extracted April 2004, 2002 data extracted May 2005,

2003-2005 data extracted March 2006.

¹Real values are current values adjusted to eliminate the effects of inflation. This adjustment has been made by dividing current values by the current year GDP implicit price deflator, with a base year of 2005.

	Pacific	Pacific	Pacific	Pacific	Jack	Jack				
Year	Sardine mt	Sardine Rev	Mackerel mt	Mackerel Rev	Mackerel mt	Mackerel Rev	Anchovy mt	Anchovy Rev	Squid mt	Squid Rev
					California					
1981	15	\$5,725	35,388	\$13,813,657	17,778	\$6,928,743	52,308	\$6,208,546	23,510	\$9,631,724
1982	2	\$962	36,065	\$12,984,782	19,617	\$7,122,902	42,150	\$3,852,874	16,308	\$6,456,637
1983	1	\$301	41,471	\$13,799,841	9,829	\$3,083,454	4,427	\$708,442	1,824	\$1,301,526
1984	- 1	\$1,440	44,081	\$13,729,389	9,149	\$2,267,220	2,889	\$671,016	564	\$502,589
1985	6	\$2,274	37,772	\$10,590,866	6,876	\$2,078,222	1,626	\$360,183	10,276	\$6,388,538
1986	388	\$128,687	48,089	\$12,538,999	4,777	\$1,331,266	1,535	\$487,714	21,278	\$7,120,385
1987	439	\$95,782	46,724	\$10,250,553	8,020	\$1,813,641	1,390	\$384,732	19,984	\$6,065,295
1988	1,188	\$235,939	50,863	\$12,552,349	5,068	\$1,178,820	1,478	\$545,350	37,232	\$11,655,663
1989	837	\$278,564	47,708	\$10,089,328	10,745	\$2,391,539	2,449	\$876,800	40,893	\$10,741,489
1990	1,664	\$273,143	40,081	\$7,346,952	3,223	\$598,098	3,208	\$815,514	28,447	\$6,525,815
1991	7,587	\$1,185,706	32,018	\$7,083,699	1,693	\$326,954	4,014	\$813,022	37,389	\$8,064,326
1992	17,950	\$2,408,319	18,577	\$5,197,092	1,209	\$309,102	1,124	\$247,510	13,110	\$3,177,922
1993	15,346	\$1,960,648	11,819	\$1,905,815	1,673	\$346,007	1,959	\$571,986	42,830	\$13,028,997
1994	11,644	\$1,882,575	10,008	\$1,769,579	2,704	\$463,902	1,789	\$624,793	55,892	\$17,806,710
1995	40,256	\$4,330,456	8,626	\$1,395,045	1,728	\$346,510	1,886	\$354,973	70,252	\$27,148,530
1996	32,553	\$3,765,484	9,604	\$1,545,414	2,177	\$354,715	4,419	\$761,100	80,561	\$26,119,578
1997	43,290	\$5,218,840	18,401	\$3,245,674	1,160	\$289,498	5,719	\$904,391	70,329	\$24,269,821
1998	43,311	\$4,210,153	20,978	\$2,936,628	1,052	\$389,886	1,481	\$214,594	2,895	\$1,887,410
1999	59,591	\$5,833,123	8,788	\$1,247,371	952	\$214,974	5,214	\$1,023,257	92,014	\$38,239,046
2000	53,664	\$6,137,202	21,904	\$3,272,591	1,269	\$285,623	11,752	\$1,566,490	118,903	\$30,547,727
2001	51,893	\$6,885,834	6,925	\$1,200,449	3,624	\$615,217	19,277	\$1,493,676	86,203	\$18,543,774
2002	58,353	\$6,296,725	3,369	\$526,549	1,005	\$218,245	4,650	\$593,033	72,878	\$19,652,069
2003	34,739	\$3,032,260	3,999	\$667,744	156	\$60,149	1,676	\$287,828	44,990	\$26,744,429
2004	44,293	\$4,070,122	3,579	\$577,013	1,027	\$255,579	6,793	\$771,570	40,068	\$20,331,011
2005	33,960	\$3,141,031	3,244	\$540,326	213	\$52,769	11,116	\$1,084,039	55,605	\$31,556,862

Table 28. West coast landings (mt) and real¹ exvessel revenues (\$ 2005) for Pacific sardine, Pacific mackerel², jack mackerel, anchovy and market squid by state, 1981-2005. (Page 1 of 3)

	Pacific	Pacific	Pacific	Pacific	Jack	Jack			
Year	Sardine mt	Sardine Rev	Mackerel mt	Mackerel Rev	Mackerel mt	Mackerel Rev	Anchovy mt	Anchovy Rev	Squid mt Squid Rev
					Oregon				
1981			<1	\$2					
1982			<1	\$74			<1	\$178	
1983			8	\$13,421					
1984			3	\$1,339					
1985			<1	\$3	<1	\$2	<1	\$62	
1986			<1	\$1					
1987			1	\$797					
1988			1	\$509			<1	\$19	
1989)		5	\$1,600			<1	\$21	
1990)		10	\$4,963					
1991			<1	\$205	19	\$3,220			
1992	2 4		462	\$201	317	\$1,037			
1993	3		280	\$1,088	277	\$3,375			
1994	Ļ		252	\$11,938	202	\$9,621	1	\$248	
1995	5		189	\$4,337	149	\$8,753	<1	\$590	
1996	5		61	\$4,569	259	\$9,160			
1997	7		1,611	\$2,689	373	\$882			
1998	3 1	\$901	536	\$10,038	686	\$50,854			
1999) 776	\$98,406	259	\$1,155	518	\$6,824			
2000	9,528	\$1,288,792	. 119	\$7,060	161	\$19,325	<1	\$336	
2001	12,780	\$1,744,706	322	\$77,834	183	\$48,610			
2002	2 22,711	\$3,034,427	127	\$6,959	9	\$4,120	3	\$1,913	
2003			160	\$19,658	74	\$16,784	39	\$3,282	
2004	36,111	\$5,005,567	107	\$11,549	126	\$17,743	13	\$4,762	
2005	<i>,</i>	, ,		\$35,687	70	,		\$1,576	

Table 28. West coast landings (mt) and real¹ exvessel revenues (\$ 2005) for Pacific sardine, Pacific mackerel², jack mackerel, anchovy and market squid by state, 1981-2005. (Page 2 of 3)

	Pacific	Pacific	Pacific	Pacific	Jack	Jack				
Year	Sardine mt	Sardine Rev	Mackerel mt	Mackerel Rev	Mackerel	mt Mack	erel Rev	Anchovy mt	Anchovy Rev	Squid mt Squid Rev
					Washing	ton				
1981								1	\$560	
1982								5	,	
1983								3	\$9,243	
1984			<1	\$142				10	\$16,587	
1985								12	\$19,029	
1986								22	\$31,199	
1987								78	\$89,973	
1988								40	\$48,322	
1989			<1	\$71				62	\$77,211	
1990			<1	\$214				50	\$57,445	
1991			<1	\$53				54	\$49,505	
1992			6	\$3,594				42	\$42,793	
1993			30	\$5,278				44	\$34,346	
1994			33	\$3,652				70	\$59,782	
1995			7	\$995				130	\$93,254	
1996			65	\$23,769		3	\$818	86	\$75,735	
1997			156	\$20,381		1	\$94	59	\$48,906	
1998			46	\$4,783		39	\$4,082	103	\$70,344	
1999	1	\$1,890	47	\$4,196	1	08	\$8,707	98	\$75,960	
2000	4,842	\$744,017	19	\$2,189		20	\$2,496	79	\$53,541	
2001	11,127	\$1,357,162	371	\$84,615		32	\$5,969	68	\$76,140	
2002	15,833	\$2,084,705	248	\$31,675		12	\$1,936	229	\$75,990	
2003						2	\$125			
2004			22	\$2,393		7	\$1,640	213	\$65,690	
2005	6,721	\$850,135	24	\$3,587		11	\$2,479	164	\$35,740	

Table 28. West coast landings (mt) and real¹ exvessel revenues (\$ 2005) for Pacific sardine, Pacific mackerel², jack mackerel, anchovy and market squid by state, 1981-2005. (Page 3 of 3)

¹Real values are current values adjusted to eliminate the effects of inflation. This adjustment has been made by dividing current values by the current year GDP implicit price deflator, with a base year of 2005.

	Roundhaul		Pot or		Hook and		Other or
Year	or Lampara	Dip Net	Trap	Trawl	Line	Gillnet	Unknown
I cui	or Lampara		ndings (met		Line	Onniet	Clikilowi
1981	120,510	8,231	<1 <1	11	9	75	7.
1982	108,952	3,668	1	13	27	71	1,33
1983	41,397	490	<1	8	27	27	15,61
1984	48,057	64	<1	3	1	144	8,28
1985	50,312	494	<1	20	9	374	5,24
1986	65,595	88	4	20	<1	107	10,22
1980	64,607	213	4	6	-1 7	1,296	10,22
1987	86,612	138	1	39	1	1,290	7,51
1988	94,757	248	<1	132	3	96	
1989		248 489	2	152	34	90 64	7,19
	70,263						5,72
1991	58,327	724	37	127	4	56	23,45
1992	45,788	4,322	3	802	15	28	1,77
1993	68,233	5,171	2	592	3	43	11
1994	77,694	2,988	59	510	49	9	1,08
1995	119,406	1,341	4	386	153	8	1,60
1996	128,277	850	1	401	64	23	8
1997	138,523	247	<1	2,157	90	14	
1998	69,654	37	<1	1,333	44	5	
1999	166,644	528	72	983	12	10	9
2000	219,871	1,552	45	275	420	4	1
2001	190,193	1,791	1	621	156	3	
2002	178,638	761	<1	10	10	2	
2003	123,057	133	<1	76	10	<1	<
2004	140,277	790	<1	110	7	<1	e
2005	154,003	2,502	12	92	9	<1	
			Revenues (20	<u>)05 \$)</u>			
1981	\$34,850,208	\$1,588,326	\$365	\$7,332	\$9,078	\$51,896	\$26,63
1982	\$29,107,491	\$804,424	\$3,829	\$7,430	\$15,718	\$38,870	\$417,62
1983	\$14,022,881	\$330,079	\$1,561	\$4,660	\$2,265	\$14,840	\$4,517,98
1984	\$14,786,992	\$57,549	\$2,740	\$3,100	\$1,608	\$53,144	\$2,214,07
1985	\$15,977,115	\$499,952	\$428	\$14,687	\$6,260	\$187,926	\$2,705,37
1986	\$18,175,603	\$41,668	\$1,639	\$2,044	\$206	\$51,768	\$3,310,14
1987	\$15,526,026	\$62,223	\$2,023	\$3,606	\$2,709	\$366,822	\$2,688,04
1988	\$23,337,976	\$47,642	\$1,304	\$43,071	\$733	\$366,336	\$2,346,58
1989	\$22,273,405	\$61,170	\$199	\$42,774	\$1,243	\$33,325	\$1,766,29
1990	\$14,229,612	\$62,842	\$1,198	\$9,021	\$39,670	\$36,514	\$1,189,47
1991	\$13,074,573	\$71,393	\$9,139	\$31,173	\$6,162	\$20,797	\$4,261,93
1992	\$10,274,165	\$619,712	\$2,556	\$9,197	\$25,407	\$13,127	\$396,53
1993	\$16,698,146	\$995,313	\$2,254	\$11,580	\$4,536	\$23,747	\$29,83
1994	\$21,646,367	\$570,674	\$21,696	\$34,655	\$51,203	\$5,713	\$218,30
1995	\$32,688,759	\$421,429	\$2,419	\$21,204	\$67,672	\$5,174	\$372,74
1996	\$32,219,784	\$225,462	\$591	\$48,174	\$74,648	\$12,883	\$23,15
1997	\$33,705,391	\$100,516	\$118	\$35,617	\$107,159	\$7,904	\$3,64
1998	\$9,568,932	\$28,665	\$157	\$89,819	\$67,298	\$3,422	\$5,26
1998	\$46,427,179	\$215,474	\$18,266	\$40,075	\$29,120	\$6,788	\$7,99
2000	\$43,312,543	\$434,955	\$11,312	\$30,360	\$29,120 \$99,198	\$2,233	\$1,06
2000	\$43,512,543	\$434,933 \$419,808	\$11,312 \$436	\$30,360 \$193,265	\$99,198 \$43,738	\$2,233	\$1,00
2002	\$32,290,480 \$35,432,707	\$200,472 \$78,555	\$135 \$60	\$5,919 \$17.805	\$25,952 \$28,203	\$1,411 \$127	¢
2003 2004	\$35,432,707	\$78,555 \$282,465	\$69 \$1	\$17,895 \$16.055	\$28,293 \$10,073	\$127 \$105	\$2 \$25.44
2004	\$31,933,798	\$382,465	\$1	\$16,055	\$19,973	\$105	\$35,46

Table 29. Pacific coast CPS landings (mt) and real¹ exvessel revenues (\$ 2005) by gear group, 1981-2005.

¹Real values are current values adjusted to eliminate the effects of inflation. This adjustment has been made by dividing current values by the current year GDP implicit price deflator, with a base year of 2005.

			Ventura &		Monterey &						
Year	San Diego	Orange & LA	Santa Barbara	San Luis Obispo	Santa Cruz		Northern CA	Other CA	Oregon	Washington	Other
	CPS Finfish										
1981	64	136	71	46	82	9	6	1	5	4	24
1982	60	135	38	53	109	18	7		4	1	30
1983	53	113	28	49	117	47	15		64	1	15
1984	54	103	35	44	121	65	3	1	3	2	26
1985	51	124	49	34	115	74			4	2	24
1986	39	116	37	33	85	48	1	1	1	2	13
1987	38	110	41	30	77	63	5		92	2	21
1988	39	104	40	22	97	77	2		79	3	21
1989	46	99	31	28	62	111	5	1	152	3	20
1990	48	95	34	50	122	106	6		162	4	30
1991	53	96	34	33	48	21	4		39	4	18
1992	53	86	12	27	152	138	7		38	11	26
1993	46	103	14	16	73	41	5		28	10	23
1994	49	94	17	7	52	53	8	4	38	12	14
1995	40	96	32	3	35	38	2		43	6	18
1996	35	99	29	1	41	38	4		41	14	30
1997	27	102	20	3	49	53	7		50	18	14
1998	21	77	15	10	35	56	11		46	9	10
1999	18	80	17	2	23	21	5		44	10	7
2000	17	83	18	2	41	35	7		43	19	10
2001	18	76	17	3	27	14	4		43	28	6
2002	8	80	9	2	21	7	4		42	24	7
2003	8	58	14	2	22	6	2		43	20	9
2004	6	60	11	1	19	9	4		46	21	17
2005	4	66	12		14	8	2		42	25	16

Table 30. Number of vessels with Pacific coast landings	s of CPS finfish by landing area, 1981-2005.

			Ventura &		Monterey &						
Year	San Diego	Orange & LA	Santa Barbara	San Luis Obispo	Santa Cruz	San Francisco	Northern CA	Other CA	Oregon	Washington	Other
1981	6	61	26	9	53	1	10				3
1982	1	51	25	7	53	2	7				3
1983	4	44	12	4	32	22	3				7
1984	1	9	17	6	31	8	2				4
1985	1	44	32	5	59	10	1				23
1986	2	43	27	7	41	4	1				8
1987	7	41	30	3	33	17	1				7
1988	10	51	32	4	30	7	1				11
1989	3	48	31	7	28	3	2				5
1990	7	42	26	3	36	9	2				3
1991		36	24	2	30	7	1				3
1992	1	18	14	4	36	16	4				1
1993	1	43	25	13	33	13	1				9
1994	3	42	31	11	34	6	3	1			9
1995	2	59	44	8	28	4	2				27
1996	4	62	66	8	28	2					39
1997	3	55	50	3	28	4	11				22
1998	3	19	45	1		3	2				18
1999	1	76	81	3	13	1	2				44
2000	2	86	65	1	23	1	2				42
2001	4	62	50	2	18	3	3				27
2002		72	61	5	33	3	1				32
2003		43	54	9	36	17					29
2004	3	72	50	8	23	3	1				42
2005		92	40	1	13	2					28

Table 31. Number of vessels with Pacific coast landings of market squid by landing area, 1981-2005.

			Ventura &		Monterey &						
Year	San Diego	Orange & LA	Santa Barbara	San Luis Obispo	Santa Cruz	San Francisco	Northern CA	Other CA	Oregon	Washington	Other
1981	4	53	6	1	3	2				1	5
1982	9	49	8	2	2	1				1	7
1983	8	50	7		7					1	3
1984	3	35	4		18	2				1	4
1985	2	40	6	2	3	1				2	2
1986	1	33	8	1	3	1				2	
1987	2	40	6		1	2				2	
1988	3	27	3		1	2			1	2	
1989	6	32	6		4	1				2	1
1990	5	28	3		2					2	2
1991	6	37	4		5					2	1
1992	5	37	4		3	2	1			1	1
1993	2	23	3	1	1	1					1
1994	2	27	6	1	2			1			
1995	2	18	5		2				1		
1996	2	19	7		9						
1997	1	26	3	1	5						
1998	3	37	4		8		1				
1999	1	19	2		6	1			2	1	
2000		26	3		4				6	1	
2001		24	3		3				11	6	
2002	2	23	4		1				10	8	
2003	2	10	2		2		1		10	5	
2004	2	13	3		5				13	6	
2005	1	7	2		2				14	4	1

Table 32. Number of vessels with CPS finfish as principle species¹ by principle landing area², 1981-2005.

¹Principle species is the species that accounts for the greatest share of a vessel's total exvessel revenues across all species landed.

²Principle landing area is the area that accounts for the greatest share of a vessel's total exvessel revenues accross all areas in which it had landings.

			Ventura &		Monterey &						
Year	San Diego	Orange & LA	Santa Barbara	San Luis Obispo	Santa Cruz	San Francisco	Northern CA	Other CA Oreg	gon	Washington	Other
1981	2	14	3		33					1	
1982		16	2		35					2	
1983		6			4	1			1	7	1
1984					3				4	7	
1985		6	6		28				3		2
1986		9	4		16	1					1
1987	2	6	8		14						
1988	3	18	18		15						1
1989	2	16	12		15						1
1990	1	7	13		12						
1991		5	15		12	1					
1992			4		16	2					
1993		15	13	3	16						2
1994		8	18		19	2					4
1995		24	31		3	2				2	6
1996		30	41		7					1	15
1997		28	33		8						9
1998		3	22								6
1999		31	48		1						20
2000	1	44	32		8						9
2001	1	32	22		8	1					5
2002		33	11		17	1					6
2003		20	21		15	1					15
2004	1	41	15		8						9
2005		60	13		1						8

Table 33. Number of vessels with market squid as principle species¹ by principle landing area², 1981-2005.

¹Principle species is the species that accounts for the greatest share of a vessel's total exvessel revenues across all species landed.

²Principle landing area is the area that accounts for the greatest share of a vessel's total exvessel revenues accross all areas in which it had landings.

			Ventura &		Monterey &						
Year	San Diego	Orange & LA	Santa Barbara	San Luis Obispo	Santa Cruz	San Francisco	Northern CA	Other CA	Oregon	Washington	Other
1981	1	5	4	2	1	1					2
1982		3	7							1	5
1983	1	4	5		2	1				1	3
1984	1	2	3		3	2				1	3
1985		5	2	1	2	1				1	1
1986		5	4		2	1				1	2
1987	1	6	5		1	2				2	1
1988		7	4		1	1				2	1
1989	3	8	3		1	1				2	1
1990	6	5	2		1	2				2	1
1991	2		3		2	1				2	1
1992	1	7	4		1	1				1	
1993		4	5		2	1				1	
1994	2	6	4		2	1		1		1	
1995	1	7	4			1			1		2
1996	2	4	6		1	1				1	1
1997	1	9	6		1	1				1	
1998	1		6		3	1	1			1	2
1999	2	5	4		2	2	1			1	
2000		9	4		3				2	1	1
2001		6	6	1		1	1		4	1	
2002	2	7	6		1	1			3	1	
2003	2	8	5		1		1		3	2	
2004	2	7	8	1	2		1		5		1
2005	1	3	3						6		

Table 34. Number of processors and buyers, by landing area, whose annual purchases of CPS finfish represents the largest share of their total annual exvessel expenditures, 1981-2005.

			Ventura &		Monterey &						
Year	San Diego	Orange & LA	Santa Barbara	San Luis Obispo	Santa Cruz	San Francisco	Northern CA	Other CA	Oregon	Washington	Other
1981		1	2		5	4					
1982		1			7	1	1			2	
1983						3				3	
1984					1					2	
1985			3		6						
1986		1	3		6	1					
1987		1	3		4	1					
1988		2	3	2	2	2					
1989		1	11	1	3	2					
1990		2	6		4						
1991			6			1					
1992			4			3					
1993	1		8	1	1	1					
1994		2	16	1	2			1			
1995		1	16								
1996		4	10		2					1	
1997		6	10		1						
1998	1		3								
1999		5	19								
2000	1	9	20	1	1						
2001	1	3	14	1	1		1				
2002		4	11	1							
2003		4	11	1	2						
2004		3	16	2	1						
2005		2	11								

Table 35. Number of processors and buyers, by landing area, whose annual purchases of market squid represents the largest share of their total annual exvessel expenditures, 1981-2005.

Figure 1. Distribution of jack mackerel and northern anchovy eggs collected during CalCOFI cruise 0604 (April 2006) using the Continuous Underway Fish Egg Sampler (CUFES). http://swfsc.ucsd.edu/frd/CalCOFI/CurrentCruise/currentcruise.htm.

Jack Mackerel

Figure 3. Percentage contribution of Pacific coast CPS finfish and market squid landings to the total exvessel value of all Pacific coast landings, 1981-2005.

Figure 4. Pacific coast CPS finfish landings and real exvessel price (\$/lb, 2005 \$), 1981-2005.

Figure 5. Pacific coast market squid landings and real exvessel price (\$/lb, 2005 \$), 1981-2005.

Figure 6. Number of vessels with Pacific coast landings of CPS finfish, and number for which CPS finfish was the principle species, 1981-2005.

Figure 7. Number of vessels with Pacific coast landings of market squid, and number for which market squid was the principle species, 1981-2005.

Figure 8. Average share principle species revenues of total revenues for vessels whose principle species was CPS finfish, market squid or non-CPS, 1981-2005.

APPENDIX 1

2006 PACIFIC SARDINE STOCK ASSESSMENT AND STOCK ASSESSMENT REVIEW PANEL REPORT

The 2005 Pacific sardine stock assessment and 2005 harvest guideline were approved at the November 2005 Council meeting and can be found at the Council web page at the link below.

www.pcouncil.org

APPENDIX 2

2006 PACIFIC MACKEREL STOCK ASSESSMENT AND STOCK ASSESSMENT REVIEW PANEL REPORT

The 2006 Pacific mackerel stock assessment and harvest guideline for 2006-2007 fishery management will be reviewed at the June 2006 Council meeting and can be found under Agenda Item C.1 and at the Council web page at the address below.

www.pcouncil.org

COASTAL PELAGIC SPECIES ADVISORY SUBPANEL STATEMENT ON PACIFIC MACKEREL HARVEST GUIDELINE FOR THE 2006/2007 SEASON

The Coastal Pelagic Species Advisory Subpanel (CPSAS) heard a report from Dr. Paul Crone of the Coastal Pelagic Species Management Team (CPSMT) regarding the Pacific mackerel stock assessment and proposed harvest guideline for the 2006-2007 season. Dr. Crone reported that the 2006-07 assessment, developed using the ASAP model, resulted in a biomass estimate of 112,700 mt, higher than the previous year.

Based on the most recent information, the CPSMT is recommending a harvest guideline of 19,845 mt for the 2006-2007 season, an increase of 2,426 mt from 2005-06 (17,419 mt).

Based on this harvest guideline, the CPSAS is recommending a directed fishery for 13,845 mt to begin on July 1, 2006. There will be 6,000 mt as a set aside for the incidental fishery. After the directed fishery quota is reached, the fishery would revert to an incidental-catch-only fishery. Under this incidental-catch-only fishery, the CPSAS recommends a 40% incidental catch rate when Pacific mackerel are landed with other coastal pelagic species (CPS), except that up to 1 mt of Pacific mackerel could be landed without landing any other CPS.

The CPSAS recommends an in-season review of the mackerel season for the March 2007 Council meeting, if needed, with the possibility of re-opening the directed fishery as an automatic action if a sufficient amount of the harvest guideline remains.

The CPSAS is concerned about the accuracy of Pacific mackerel landings data from Mexico and notes that the magnitude of Pacific mackerel landings in Mexico may be underestimated. The CPSAS recommends the Council send letter to the organizers of the Trinational Sardine Forum, including National Marine Fisheries Service - Southwest Fishery Science Center, requesting that Pacific mackerel issues be included in the forum's proceedings.

PFMC 05/24/06

COASTAL PELAGIC SPECIES MANAGEMENT TEAM STATEMENT ON PACIFIC MACKEREL HARVEST GUIDELINE FOR THE 2005/2006 FISHERY

The Coastal Pelagic Species Management Team (CPSMT) met in a joint session with a subcommittee of the Scientific and Statistical Committee to review the current stock assessment update for Pacific mackerel. The CPSMT supported conclusions from the most recent Pacific mackerel stock assessment presented at the Southwest Fisheries Science Center in La Jolla, California in May 2006 and further recommends the Pacific Fishery Management Council (Council) implement the resulting harvest guideline (HG) associated with the harvest control rule stipulated in this species' fishery management plan (FMP) for the 2006/2007 management season (i.e., July 1, 2006 through June 30, 2007). Based on a total stock biomass estimate (July 1, 2005) of 112,700 mt, the HG for U.S. fisheries is 19,845 mt. This HG recommendation is roughly 14% greater than the HG adopted by the Council for the 2005/2006 fishing year (17,419 mt).

Stock assessment modeling of Pacific mackerel was conducted using a forward-simulation, maximum likelihood-based Age-structured Assessment Program (referred to as ASAP). The final ASAP model was based on fishery-dependent data from a single fishery (i.e., combined landings from California's commercial and recreational fisheries, and the fishery off Baja California, Mexico). Fishery-independent data used in the model consisted of relative abundance time series (indices) developed from three research surveys: an index ('proportion positive') of spawning abundance based on ichthyoplankton data collected through the ongoing California Cooperative Oceanic Fisheries Investigations (CalCOFI) survey; a standardized, catch per unit effort (CPUE) index from California-based commercial passenger fishing vessel (CPFV) logbooks; and an index of total abundance from aerial spotter plane survey data. Parameterization of the ASAP (2006) baseline model was identical to the 2005 stock assessment.

Finally, 'overfishing' for Pacific mackerel is defined in the CPS FMP as harvest exceeding acceptable biological catch (ABC) for two concurrent years. Recent U.S. annual landings have been well below ABCs or the harvest guideline. The 'cutoff' value (18,200 mt) in the harvest control rule essentially serves as a proxy for a minimum stock size threshold. The current total stock biomass estimate (112,700 mt) is well above this threshold level. It is important to note that over the last several fishing years, the U.S.-based commercial fishery has not realized the recommended HGs. However, uncertainty still exists concerning the magnitude of fisheries in Mexico that harvest Pacific mackerel and thus, caution is recommended when evaluating fishery impacts on transboundary Pacific mackerel stocks.

PFMC 05/24/06

SCIENTIFIC AND STATISTICAL COMMITTEE REPORT ON PACIFIC MACKEREL HARVEST GUIDELINE FOR 2006-2007 SEASON

A Pacific Fishery Management Council-sponsored review of the Pacific Mackerel Assessment took place on May 16, 2006, at the Southwest Fisheries Science Center in La Jolla. Reviewers at the La Jolla meeting included Tom Barnes and David Sampson of the Scientific and Statistical Committee (SSC), and several members of the Coastal Pelagic Species (CPS) Management Team. Paul Crone, a member of the Stock Assessment Team (STAT), presented the data and modeling results. The reviewers and the STAT selected a Base Model that was an update of the previous assessment.

The current stock assessment model configuration for Pacific mackerel was developed in 2004, and was first used for management during the 2005-2006 fishing season. The assessment for 2006 was conducted as an update, in that the STAT adhered to the previously reviewed model configuration in deriving the Base Model results. A full Stock Assessment Review (STAR) Panel reviewed and accepted the modeling approach in 2004, and subsequently the SSC reviewed and accepted the 2005 assessment. In the 2006 assessment the principle change was the inclusion of new fishery and survey data from 2005, as well as correcting a previous error in the treatment of four "missing" years in the California Cooperative Oceanic Fisheries Investigations (CalCOFI) survey index. The STAT and the reviewers agreed on the Base Model results that estimated the 2006 biomass to be 112,700 mt. The SSC concurs that the Base Model results are the best available science and provide a suitable basis for Council management decisions.

Recommendations for the Next Assessment

Several technical issues were identified that would benefit from further exploration as part of the next full assessment, including investigation of time-varying selection to account for an absence of young fish during the early part of the time series, and examination of historical CalCOFI data, which cover a wider geographic range, to explore possible north-south shifts in distribution. These issues will be brought to the attention of the next assessment team.

Under the current Council process a single STAR panel reviews the stock assessments for Pacific mackerel and Pacific sardine, even though the fishing seasons for the two species are offset by six months. For 2007 the SSC recommends that the Council convene separate STAR panels, one during the fall for sardine and another during spring for mackerel. Each panel should consist of three reviewers with at least one being external to the Council and region. The SSC will work with the Southwest Center to facilitate the STAR Panels.

Prior to the next round of CPS stock assessments, the Terms of Reference for CPS assessments should be reviewed and revised, especially with regard to update assessments. The extant Terms of Reference do not specify what constitutes an update or the information that should be documented in an update report.

Management Issues

Several issues have been identified concerning the Pacific Mackerel Harvest Control Rule. The reviewers at the May meeting noted that the Harvest Control Rule is for age-1+ fish, but in some years a significant portion of the landings are age-0 fish. The basis of the harvest guidelines should be consistent with the age composition of the catch. Also, results from the current mackerel assessment indicate that spawning stock biomass is only about 15% of the unexploited level and that the level of steepness in the spawner-recruit curve is very low. The SSC recommends that the Harvest Control Rule be re-evaluated.

PFMC 06/13/06

NATIONAL MARINE FISHERIES SERVICE REPORT ON COASTAL PELAGIC SPECIES MANAGEMENT

National Marine Fisheries Service (NMFS) Southwest Region will briefly report on recent developments relevant to coastal pelagic species (CPS) fisheries and issues of interest to the Council including an update on the status of Amendment 11 regarding allocation of Pacific sardine and Amendment 12 regarding krill management.

Council Task:

Discussion.

Reference Materials:

1. Agenda Item C.2.a, Attachment 1: NMFS Southwest Regional Office Report.

Agenda Order:

- a. Regulatory Activities
- b. Reports and Comments of Advisory Bodies
- c. Public Comment
- d. Council Discussion

PFMC 05/24/06

Mark Helvey

National Marine Fisheries Service Report Coastal Pelagic Species Regulatory Activities

Pacific Sardine:

Long-term Allocation—Amendment 11 to CPS FMP: NMFS published a Notice of Availability for Amendment 11 in the Federal Register on October 28 and the proposed rule to implement Amendment 11 on November 16, 2005. On January 26, NMFS sent a letter to the Council approving Amendment 11 to the CPS FMP. NMFS expects to publish the final rule for the amendment in early June.

Based on the new long-term allocation scheme, 35% of the harvest guideline would be released coastwide on January 1; 40% of the harvest guideline, plus any portion not harvested from the initial 35% would be released coastwide on July 1; and on September 15 the remaining 25%, plus any portion not harvested from the earlier releases would then be available for harvest.

2006 Harvest Guideline: Based on the estimated biomass of 1,061,391 mt, and the formula in the FMP, a harvest guideline of 118,937 mt was calculated for the 2006 sardine fishery. NMFS published the proposed rule to implement the 2006 sardine harvest guideline in the Federal Register on January 17, 2006. The final rule for the 2006 harvest guideline will be published concurrently with the final rule for Amendment 11 to the CPS FMP.

Under the new allocation scheme 41,628 mt of Pacific sardine were released on the January 1 start date. 14,727 mt had been landed as of May 15.

Pacific Mackerel:

2005-2006 Landings: NMFS published the final rule to implement the annual harvest guideline for Pacific mackerel in October 2005. The 2005-2006 Pacific mackerel harvest guideline was 17,419 mt with a directed fishery of 13,419 mt and a reserve of 4,000 mt. The Pacific mackerel season began on July 1, 2005, and ends on June 30, 2006. As of May 15, 2006, 4,372 mt of Pacific mackerel had been landed.