Klamath River Fall Chinook
Stock-Recruitment Analysis

Salmon Technical Team
Pacific Fishery Management Council
7700 NE Ambassador Place, Suite 200
Portland, OR 97220-1384
(503) 820-2280

1 September 2005
TABLE OF CONTENTS

TABLE OF CONTENTS .. i
EXECUTIVE SUMMARY .. ii
Introduction .. 1
Stock-Recruitment Models ... 2
 Model 1: Ricker model .. 2
 Assumptions ... 2
 Methods ... 3
 Results ... 4
 Model 2: Ricker model w/ survival ... 6
 Assumptions ... 6
 Methods ... 6
 Results ... 7
Discussion: Model 1, Model 2 ... 10
 Assumptions ... 10
 Model 1 versus Model 2 .. 11
 Early-life survival ... 12
 Model 3: Habitat-based methods for estimating stock-recruit reference points ... 13
 Methods ... 13
 Results ... 15
 Discussion .. 15
Correlation Analyses – Juvenile Survival and River Flow .. 18
Correlation Analyses – Ricker Model Residuals and River Flow 19
Literature Cited ... 21
Appendix A: Model 1 .. 23
Appendix B: Model 2 .. 26
EXECUTIVE SUMMARY

Introduction

At the June, 2005 meeting, the Pacific Fishery Management Council (Council) directed the Salmon Technical Team (STT) to conduct several analyses of Klamath River Basin natural fall Chinook using the best datasets available. The analyses to be performed included:

1) estimate the parameters of a Ricker-type stock-recruitment model, including an estimate of the spawner abundance expected to generate maximum sustainable yield;

2) a correlation analysis of production (survival) and river flow conditions during the juvenile freshwater phase; and

3) a correlation analysis of production and river flow conditions during the parent spawning period.

This report completes the assignment given to the STT. The executive summary provides a very brief review of the methods used in the analyses, and a summary of the results of those analyses. Both the executive summary and the main report present only the results of technical work assigned by the Council to the STT. The results presented here should not be interpreted as a recommendation by the STT to modify the Council’s management objectives for Klamath River fall Chinook.

Methods

Stock-Recruitment Model

Three models were used to develop spawner reference point estimates assuming a Ricker-type stock-recruitment relationship. Model 1 used only parent spawner abundance as a predictor of subsequent brood recruitment. Model 2 included both parent spawner abundance and a measure of post-freshwater-rearing survival as predictors of subsequent recruitment. This measure of post-freshwater-rearing survival covered the period from the onset of juvenile outmigration in May-June, through the end of August of that same year. Model 3, under development by the Canadian Department of Fisheries and Oceans, is based on a meta-analysis of Ricker stock-recruitment relationships for Chinook salmon populations from the Oregon coast through Southeast Alaska, and uses accessible watershed area (5th order and higher streams) as a predictor of subsequent recruitment.

Correlation Analyses

While adequate time series of stream flow data in the Klamath Basin were available at a number of locations, wild production estimates were not available. Because of this lack
of direct measure of wild production, we used estimates of hatchery release survival as a surrogate for wild stock survival.

Correlation Analysis – Juvenile phase

Correlation analyses were performed between various river flow measures in the Trinity and Klamath Rivers and cohort-reconstructed release-to-age-2 survival rates of fingerlings released from the hatcheries on these rivers. Correlation analyses were performed on minimum, maximum, and monthly average daily flows during the parental spawning migration as well as the month of release to the release-to-age-2 survival rates.

Correlation Analysis – Adult phase

Because the survival of hatchery fish may not necessarily represent that of natural fish, we also performed a cursory examination of correlations between environmental measures and the Model 1 recruitment residuals. The environmental variables used were various measures of flow in the Klamath Basin.

Results

Stock-Recruitment Model

An example of a Ricker spawner-recruit curve and important points on that curve are shown in Figure ES-1.

Figure ES-1. Schematic of a Ricker stock-recruitment curve.
The peak of the curve represents the point of maximum production \((R_{\text{max}}) \). The straight (dashed) line represents replacement, where recruitment equals the number of spawners. For any given parental stock size, the harvestable surplus is the difference between the recruitment curve and the replacement line. In the absence of fishing the relationship has an equilibrium spawning escapement at \(S_{\text{eq}} \) where recruitment equals escapement. The point labeled \(S_{\text{msy}} \) represents the number of adult spawners that, on average, will generate maximum sustained yield (msy). Note that the harvestable surplus of the stock at \(S_{\text{msy}} \) is less than the harvestable surplus at \(S_{\text{max}} \) even though the number of recruits \((R_{\text{max}}) \) is greater. The reference points resulting from the three models used to estimate the stock-recruitment parameters are provided in Table ES-1. Model 1 estimates \(S_{\text{msy}} \) at 32,700 (90% CI: 25,800 – 42,600). Model 2 estimates \(S_{\text{msy}} \) to be 40,700 (90% CI: 32,200 – 54,100). Model 3 estimates \(S_{\text{msy}} \) to be 70,900 (90% CI: 43,700 – 111,000).

Table ES-1. Spawner reference points for Ricker stock-recruitment Models 1,2,3.

<table>
<thead>
<tr>
<th>Spawner Reference Point</th>
<th>Model 1 (parent spawners)</th>
<th>Model 2 (parent spawners, survival)</th>
<th>Model 3 (watershed area)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_{\text{eq}})</td>
<td>101,300</td>
<td>112,300</td>
<td>185,000</td>
</tr>
<tr>
<td>(S_{\text{max}})</td>
<td>39,700</td>
<td>56,900</td>
<td>111,200</td>
</tr>
<tr>
<td>(S_{\text{msy}})</td>
<td>32,700</td>
<td>40,700</td>
<td>70,900</td>
</tr>
</tbody>
</table>

Correlation Analyses

Correlation analyses were performed on minimum, maximum, and monthly average daily flows during the parental spawning migrations as well as the month of release, on the survival of hatchery fish to age 2. No significant relationships were found in any of these correlations. The strongest relationships were between survival of releases from Iron Gate Hatchery and flows during the months following release. However, the R\(^2\) values were 0.25 or less, which suggests that only a small portion of the variability in age 2 survival rates can be explained by stream flow conditions.

No significant correlations were found between the Model 1 recruitment residuals and flow variables during the period of juvenile rearing and outmigration. However, significant positive correlations were found between several stream flow measures (e.g., monthly average discharge, minimum discharge, minimum 7-day average discharge, etc.) during the period when adults were migrating and spawning.

We examined the predictive potential of these relationships by incorporating some of these variables with the highest correlations into the spawner-recruit relationship as independent, explanatory variables. While incorporation of flow variables into the spawner-recruit explained more of the variability in recruitment, it decreased the significance of the fit, whether or not the hatchery survival was included.
Introduction

At the June, 2005 meeting, the Pacific Fishery Management Council (Council) directed the Salmon Technical Team (STT) to conduct several analyses of Klamath River Basin natural fall Chinook using the best datasets available. The analyses to be performed included:

1) estimate the parameters of a Ricker-type stock-recruitment model, including an estimate of the spawner abundance expected to generate maximum sustainable yield;

2) a correlation analysis of production (survival) and river flow conditions during the juvenile freshwater phase; and

3) a correlation analysis of production and river flow conditions during the parent spawning period.

This report completes the assignment given to the STT. The executive summary provides a very brief review of the methods used in the analyses, and a summary of the results of those analyses. Both the executive summary and the main report present only the results of technical work assigned by the Council to the STT. The result presented here should not be interpreted as a recommendation by the STT to modify the Council’s management objectives for Klamath River fall Chinook.

Data Sources

The spawner and recruitment data used in this report are derived from cohort reconstructions provided by the Klamath River Technical Advisory Team. These data and methods have been recently revised (KRTAT 2002). Changes in data and methodology used in the cohort reconstructions were reviewed and accepted by the STT and SSC during their review of the new KOHM in 2001—2002. We used these data sets, updated through the most recent brood years available, for these analyses.

All streamflow data used in this report were obtained from published United States Geologic Survey (USGS) gauging station records (http://waterdata.usgs.gov/ca/nwis/nwis).

Methods

Three models were used to develop spawner reference point estimates assuming a Ricker-type stock-recruitment relationship. Model 1 used only parent spawner abundance as a predictor of subsequent brood recruitment. Model 2 included both parent spawner abundance and a measure of post-freshwater-rearing survival as predictors of subsequent recruitment. Model 3, under development by the Canadian Department of Fisheries and Oceans, is based on a meta-analysis of Ricker stock-recruitment relationships for a
number of west coast Chinook stocks, and uses accessible watershed area as a predictor of subsequent recruitment.

For the juvenile freshwater phase analysis, correlation analyses were performed on various river flow measures in the Trinity and Klamath Rivers to cohort-reconstructed age 2 survival rates of fingerlings released from their respective hatcheries.

For the adult spawning period analysis, correlation analyses were performed on minimum, maximum, and monthly average daily flows, and the Model 1 recruitment residuals.

Stock-Recruitment Models

Model 1: Ricker model.

A Ricker stock-recruitment model (Ricker 1954) was fit to all available spawner-recruit data for the natural stock of Klamath River fall Chinook salmon.

Assumptions

Several assumptions are made in proceeding with this analysis:

1. Density dependent mortality. For some time period prior to recruitment, the brood instantaneous mortality rate is proportional to the number of parent spawners (Ricker 1954).

2. Stationarity. The average stock-recruitment relationship is constant over time (Hilborn and Walters 1992), i.e., environmental conditions randomly affect survival, independent of stock size or time.

3. Lognormal variation. At any particular spawning stock size the variation in recruitment is lognormally distributed about its average, and acts multiplicatively. This is expected under the Central Limit Theorem of statistics if a combination of normally distributed, random factors affects the instantaneous mortality rate from egg to recruitment (Quinn and Deriso 1999)

4. Measurement error. Error in spawning stock size estimates (measurement error) is small relative to the range of spawning stock sizes observed (CTC 1999:section 1.4). Variation in realized recruitment at any particular spawning stock size (process error) dominates recruitment measurement error.

5. Hatchery/Natural dynamics. Estimates of spawning stock and recruitment are representative of a natural stock that can be considered independent of hatchery influences.
6. **Aggregate stock.** The contribution of fall Chinook sub-stocks in the Klamath basin is sufficiently stable that parameters for stock-recruit relationships can be adequately estimated by aggregating data.

7. **Reproductive potential.** The appropriate metric for spawning stock is abundance, independent of age, except for fish younger than age 3 which are not considered to be important to recruitment dynamics.

Methods

In general, the methods we used follow those outlined by the PSC Chinook Technical Committee (CTC 1999:section 1).

Data. Parent spawning stock, S, was defined as adult spawner abundance in Klamath Basin natural areas (outside hatcheries), and this data was obtained from the California Department of Fish and Game (CDFG 2005). Recruitment, R, was defined as the abundance of S progeny that survived to ocean age 3 in adult equivalent units (see Appendix A for details), and this data was derived based on the results of cohort reconstructions performed by the Klamath River Technical Advisory Team (as described in Goldwasser et al. (2001)).

Model/Estimation. A stochastic form of the Ricker stock-recruitment model (Quinn and Deriso 1999:equation 3.11, CTC 1999:section 1.6.1) was used to represent the data:

$$ R = \alpha S e^{-\beta S + \varepsilon}, \quad \varepsilon \sim N(0, \sigma^2_\varepsilon), $$

with ε being a normally distributed error term. The model was fit to the data by first transforming it into a linear model

$$ \log(R / S) = a + bS + \varepsilon, $$

and then using ordinary least-squares regression to estimate the parameters a, b, and σ^2_ε. The Ricker model parameters α and β were then estimated as

$$ \hat{\alpha} = \hat{\theta}, \quad \hat{\beta} = -\hat{b}, $$

where a hat, “$\hat{}$”, denotes an “estimate”. The expected (mean) value, $E()$, of recruitment at a given spawner abundance, $R|S$, was estimated as

$$ \hat{E}(R|S) = (\hat{\alpha} e^{\hat{\beta} S^2 / 2})S e^{-\hat{\beta} S} \approx \hat{\alpha}' S e^{-\hat{\beta} S}, $$

where the term $e^{\hat{\beta} S^2 / 2}$ largely corrects for the bias arising from the fact that the expected value of e^ε is $e^{\sigma^2_\varepsilon / 2}$; not 1 (Hilborn 1985). Given the $\hat{E}(R|S)$ function, three spawner abundance reference points were estimated (Ricker 1975:346–347).

- $S_{m_{sy}}$: the spawner abundance expected to generate maximum sustained yield
 $$ 1 = (1 - \hat{\beta} \hat{S}_{m_{sy}}) \hat{\alpha}' e^{-\hat{\beta} \hat{S}_{m_{sy}}}. $$

- $S_{m_{ax}}$: the spawner abundance expected to generate maximum recruitment
 $$ \hat{S}_{m_{ax}} = \frac{1}{\hat{\beta}}. $$
Various statistical diagnostics of the model’s fit were assessed (see Appendix A for details).

Estimation bias and uncertainty measures for the model parameter and spawner abundance reference point estimates were derived using the bootstrap procedure described by the CTC (1999:18–19), except that regression residuals were re-sampled on the log(R/S) scale since it is on this scale that the errors are modeled as additive and of constant variance. The bootstrap number of trials was 100,000.

Results

Data. The \{R, S\} data are presented in Appendix A Table A1. The extent of the current available data is for brood years 1979–2000, which yields 22 (R, S) data points. The range of S is (11649, 161793), a span equal to about 13 times the minimum observed S, which should provide sufficient contrast for estimation of the Ricker model parameters (CTC 1999:5). The range of R is (16213, 368159), and recruit-per-spawner ratios, R/S, range from (0.22, 22.42), again indicating sufficient contrast should be present in these data to allow for estimation of the Ricker model parameters (CTC 1999:5). All of the above supports analysis assumption 1. Figure 1 is a plot of R/S versus S, with the dashed line referencing replacement (R/S = 1). The two-digit numbers, xx, in the plot denote brood years (19xx or 20xx). Note that the highest R/S values have generally occurred at the lower S values, and that the lowest R/S values have generally occurred at the higher S values, which is consistent with the Ricker model presumption of density dependent mortality.

Model/Estimation. Figure 2 is a plot of the transformed data log(R/S) versus S, with the solid line representing the fitted model on this scale. The corresponding least-squares regression statistics are provided in Appendix A Table A2. The density dependent parameter estimate \(\hat{\beta} \) is statistically significant \((p < 0.001)\), and the R-squared value is 0.5571, which means that the Ricker model accounts for about half of the density independent model residual variation in log(R) (see Appendix A for the basis of this interpretation). Figure 3 is a plot of the untransformed (R, S) data, with the solid curve representing \(\hat{E}(R \mid S) \), and the dashed line referencing 1:1 replacement. Note that there is considerable unexplained variation in R about the \(\hat{E}(R \mid S) \) curve. The Ricker model parameter and spawner reference point estimates are presented in Table 1, along with associated 90% confidence intervals. All of these results presume the Ricker model is appropriate for these data. A variety of regression diagnostics (Appendix A Figures A1–A4) performed to address this presumption did not indicate a lack of model fit, or violation of analysis assumptions 1–3.
Ricker model

Figure 1. Recruits–per–spawner.

Figure 2. Transformed data and fitted model.

Figure 3. Expected value Ricker model.
Table 1. Ricker model parameter and spawner reference point estimates.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Point Estimate</th>
<th>90% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>8.5277</td>
<td>(5.2176–13.673)</td>
</tr>
<tr>
<td>β</td>
<td>0.000025171</td>
<td>(0.000017656–0.000033364)</td>
</tr>
<tr>
<td>σ²</td>
<td>0.81089</td>
<td>(0.39482–1.1170)</td>
</tr>
<tr>
<td>α′</td>
<td>12.791</td>
<td>(7.7302–19.201)</td>
</tr>
<tr>
<td>S<sub>msy</sub></td>
<td>32,700</td>
<td>(25,800–42,600)</td>
</tr>
<tr>
<td>S<sub>max</sub></td>
<td>39,700</td>
<td>(30,000–56,600)</td>
</tr>
<tr>
<td>S<sub>ueq</sub></td>
<td>101,300</td>
<td>(83,400–124,200)</td>
</tr>
</tbody>
</table>

Model 2: Ricker model w/ survival.

An index of early-life survival was incorporated into the Ricker stock-recruitment model of the previous section, and the model was fit to all available spawner-recruit data for the natural stock of Klamath River fall Chinook salmon.

Assumptions

The previous analysis assumptions (1–7) apply, in addition to the following one:

8. **Survival rate index.** The instantaneous mortality rate for Klamath Basin hatchery fingerlings from release to age 2 (four month period following release) is proportional to that of naturally produced outmigrants over this same period.

Methods

The assessment methods used for Model 2 build on those used for Model 1, and again generally follow the methods outlined by the PSC Chinook Technical Committee (CTC 1999:section 1).

Data

Early-life survival was estimated for hatchery fingerling cwt groups over the four-month period immediately following release (May—Aug) based on the results of cohort reconstructions performed by the Klamath River Technical Advisory Team (as described in Goldwasser et al. (2001)). For each brood year a weighted average, s', of the survival rate estimates for Iron Gate Hatchery (IGH) and Trinity River Hatchery (TRH) fish was derived (see Appendix B for details).

Model/Estimation

Model 1 was extended to include early-life survival as a covariate as follows (CTC 1999:p.9–10):

\[
R = \alpha S e^{-\beta s + \theta (s - \bar{s}) + \varepsilon}, \quad \varepsilon \sim N(0, \sigma^2),
\]

where $s = \log(s')$ and $\bar{s} = \text{mean}(s)$ over the 22 brood year data set. Notice that the productivity coefficient is now brood-year-specific, $\alpha e^{\theta(s - \bar{s})}$, and depends on the value of s. With the above parameterization, α now represents the productivity under average
conditions \((s = \bar{s})\). The model was fit to the data by first transforming it into a linear model
\[
\log(R / S) = a + bS + c(s - \bar{s}) + \varepsilon,
\]
and then using ordinary least-squares regression to estimate the parameters \(a\), \(b\), \(c\), and \(\sigma^2_\varepsilon\). The Model 2 parameters \(\alpha\), \(\beta\), and \(\theta\) were then estimated as
\[
\hat{\alpha} = e^{\hat{\delta}}, \quad \hat{\beta} = -\hat{\delta}, \quad \hat{\theta} = \hat{c}.
\]
The expected value of recruitment at a given spawner abundance was estimated as
\[
\hat{E}(R | S) = (\hat{\alpha} e^{\hat{\delta}/2}) S e^{-\hat{\beta}S + \hat{\theta}(s - \bar{s})} = \hat{\alpha}' S e^{-\hat{\beta}S + \hat{\theta}(s - \bar{s})};
\]
also dependent on \(s\). Given the \(\hat{E}(R | S)\) function, the three spawner abundance reference points, \(S_{\text{m}y}, S_{\text{m}ax},\) and \(S_{\text{ueq}}\), were estimated as:
\[
1 = (1 - \hat{\beta}\hat{S}_{\text{m}y}) \hat{\alpha}' e^{-\hat{\beta}\hat{S}_{\text{m}y} + \hat{\theta}(s - \bar{s})},
\]
\[
\hat{S}_{\text{m}ax} = 1 / \hat{\beta},
\]
\[
\hat{S}_{\text{ueq}} = \left[\log(\hat{\alpha}') + \hat{\theta}(s - \bar{s})\right] / \hat{\beta}.
\]
\(\hat{S}_{\text{m}y}\) and \(\hat{S}_{\text{ueq}}\) were computed assuming average early-life survival \((s = \bar{s})\).

To examine the benefit of including \(s\) in the recruitment model, the observed relationship between the two predictor variables \(s\) and \(S\) was explored, as was the relationship between the Model 1 residual variation in \(\log(R/S)\) and that portion of \(s\) unaccounted for by \(S\). The latter provides a direct gauge of the utility of including \(s\) in the recruitment model, and is complementary to comparison of the Model 2 versus Model 1 regression statistics.

The diagnostics previously described for Model 1 were also used as a check on the aptness of Model 2 (see Appendix B for further details).

Estimation bias and uncertainty measures for the model parameter and spawner abundance reference point estimates were derived using the bootstrap procedure previously described for Model 1.

Results

Data. The \({s'}\) data are presented in Appendix B Table B1. The range of \({s'}\) over the 22 brood year dataset is (0.00043, 0.0625), and the range of \(s\) is (-7.76, -2.77). Figure 4 is a plot of the \(s_{\text{IGH}}\) and \(s_{\text{TRH}}\) time series, and the derived \(s\). Typically, \(s_{\text{IGH}} < s_{\text{TRH}}\). The \(s_{\text{IGH}}\) and \(s_{\text{TRH}}\) time series display a remarkable coherence (Figure 4) given the two series were independently derived.

Model/Estimation. The covariation between \(s\) and \(S\) is displayed in Figure 5. The solid line is the least-squares regression fit, which though marginally significant \((p = 0.0535)\), has a low R-squared value of 0.1739 (Appendix B Table B2). The brood years corresponding to the six highest recruit-per-spawner values in the dataset are boxed in
Figure 5; the six lowest are circled. Model 1 assumes that high R/S values are entirely a result of low stock size (and random process error). Figure 5 strongly suggests that these high R/S values are partially accounted for by a relatively high early-life survival for those brood years. Similarly, Figure 5 suggests that the low R/S values associated with high stock-sizes are partially accounted for by a relatively low early-life survival for those brood years.

One measure of the value of incorporating s in the Ricker model is to answer the question: What portion of the Model 1 residual variation can be explained by that portion of s unaccounted for by S? Figure 6 is a plot of the residuals of the Figure 2 model against the residuals of the Figure 5 model. High log(R/S) residuals are associated with high s residuals, and low log(R/S) residuals are associated with low s residuals. The solid line is the least-squares regression which is highly significant ($p < 0.0001$), and s accounts for 54.5% of the Model 1 residual variation (Appendix B Table B2). Thus, s is a significant predictor of recruitment success, above and beyond S, and should be incorporated into the stock-recruitment analysis in the form of Model 2.

The least-squares regression statistics for Model 2 are provided in Appendix B Table B2. On the whole, Model 2 is highly significant ($p < 0.0001$) relative to the density independent model, and the R-squared value substantially improves to 0.7986, which means that Model 2 accounts for about 80% of the density independent model residual variation in log(R) (see Appendix A for the basis of this interpretation). The coefficient of s in Model 2 is significant ($p = 0.00013$) and, in agreement with the Figure 6 analysis results, its inclusion accounts for 54.5% of the Model 1 residual variation (Appendix B Table B2). Figure 7 is a plot of the untransformed (R, S) data, with the solid curve representing the estimated Model 2 expected value assuming average early life survival, $\hat{E}(R \mid S, s = \bar{s})$, with the dashed line referencing 1:1 replacement. Recall that for Model 2, the Ricker curve is year-specific in that it depends on the value of s. Assuming $s = \bar{s}$, the Model 2 curve is less steep and descends less quickly than the Model 1 curve (compare Figures 3 and 7), which derives from the uneven distribution of s values across the range of S. The Model 2 parameter and spawner reference point estimates are presented in Table 2, along with their respective 90% confidence intervals. The \hat{S}_{msy} and \hat{S}_{ueq} values are conditional on $s = \bar{s}$. All of these results presume Model 2 is appropriate for these data. A variety of regression diagnostics (Appendix B Figures B2–B5) performed to address this presumption did not indicate a lack of model fit, or violation of analysis assumptions 1–3.
Ricker model w/ survival

Figure 4. log(survival) time series.

Figure 5. Covariation: log(survival) and S.

Figure 6. Covariation: log(R/S) and s, unaccounted for by S.

Figure 7. Expected value Ricker model w/ s=5.
Table 2. Model 2 parameter and spawner reference point estimates.
The \hat{S}_mmy and \hat{S}_ueq values are conditional on $s = \bar{s}$.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Point Estimate</th>
<th>90% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>5.9218</td>
<td>(4.1698–8.3184)</td>
</tr>
<tr>
<td>β</td>
<td>0.000017567</td>
<td>(0.000011879–0.000023564)</td>
</tr>
<tr>
<td>θ</td>
<td>0.54327</td>
<td>(0.37317–0.72115)</td>
</tr>
<tr>
<td>σ^2_ϵ</td>
<td>0.38821</td>
<td>(0.19045–0.48619)</td>
</tr>
<tr>
<td>α'</td>
<td>7.1904</td>
<td>(4.9564–9.7130)</td>
</tr>
<tr>
<td>S_{mmy}</td>
<td>40,700</td>
<td>(32,200–54,100)</td>
</tr>
<tr>
<td>S_{max}</td>
<td>56,900</td>
<td>(42,400–84,200)</td>
</tr>
<tr>
<td>S_{ueq}</td>
<td>112,300</td>
<td>(91,500–142,400)</td>
</tr>
</tbody>
</table>

Discussion: Model 1, Model 2.

Assumptions

We first briefly discuss analysis assumptions 1–8 in light of the observed data and analysis results.

1. **Density dependent mortality.** The highest S/R ratios have occurred at lower levels of spawner abundance, and vice-versa, which is consistent with, though not necessarily proof of, density dependent mortality. As a result, the $\{S, R\}$ data are clearly more consistent with the density dependent recruitment models (Models 1 and 2) than a density independent recruitment model.

2. **Stationarity.** Background processes whose effects on mortality have not occurred randomly with respect to stock size during the period when the $\{S, R\}$ data was collected may seriously bias the estimated spawner-recruit relationship in terms of future predictions. Our analysis strongly suggests that the magnitude of density independent early-life survival over the four-month period following the onset of juvenile outmigration may not have been randomly distributed across the range of observed stock sizes (relatively higher s values were associated with lower S values, and vice-versa), and this is the rationale for including s as a covariate in the Ricker model. Other, currently unrecognized, factors may have influenced the observed $\{S, R\}$ relationship as well.

3. **Lognormal variation.** The Model 1 and 2 residual variation in $\log(R)$ is largely consistent with this distributional assumption.

4. **Measurement error.** There are currently 22 (S, R) data points, and the contrast within these data appear to be sufficient for identifying/estimating the parameters of a Ricker stock-recruitment relationship in the presence of measurement error. The actual contributions of process and measurement errors to the overall variation in R at any particular value of S are not presently known. Process error
was assumed to dominate recruitment measurement error. This assumption is precautionary, i.e., estimates of spawner reference points would be lower as the relative contribution of measurement error increases.

5. **Hatchery/Natural dynamics.** The adequacy of this assumption (independence) is contingent on the stray rate of hatchery fish into natural areas, particularly in the proximity of the Klamath Basin’s two production hatcheries. If the stray rate were to increase in the future, and the offspring of these spawners are not as fit as their natural-origin counterparts, the currently estimated spawner-recruit curve would be overly-optimistic of the productivity of the “natural” stock.

6. **Aggregate stock.** Differing maturation schedules and river conditions for the Klamath and Trinity River stocks argue for conducting separate spawner-recruit analyses for the two systems. However, the available data are insufficient to reliably conduct such an analysis. Even so, if one of these two sub-basin stocks has a lower productivity than the other (or if this is true of any other stock sub-units), then managing according to the composite \hat{S}_{msy} may seriously deplete, and even extirpate, these less productive stock sub-units over time (Walters and Cahoon 1985).

7. **Reproductive potential.** Failing to account for age 2 fish on the spawning grounds is unlikely to have significantly affected the analysis conclusions. Data are insufficient to determine if the recruit-per-spawner ratio is a function of the age-sex composition of the adult (age 3 and older) spawning stock.

8. **Survival rate index.** The proportionality assumption cannot be directly confirmed, but if this rate primarily reflects early-life marine environmental conditions, then it is entirely plausible (discussed further below). The explanatory power of s as a predictor of natural-stock recruitment variability was clearly significant, and consistent with this assumption.

Model 1 versus Model 2.

The Model 1 (Ricker without survival) estimated recruitment curve is rather steep near the origin ($\hat{\alpha} = 8.5$) which, in and of itself, is indicative of a rather productive stock, especially considering that the age of recruitment in our analysis was defined as ocean age 3 (September 1). However, the Model 1 estimated spawning stock size resulting in maximum recruitment, $\hat{S}_{\text{mar,1}} = 39,700$, seems rather low for a basin of this size, and is no where near the value predicted under the habitat-based meta-analysis recruitment model for West Coast Chinook presented in this report. The Model 1 estimate $\hat{S}_{\text{msy,1}} = 32,700$ is 2,300 fish less than the current minimum spawner floor value of 35,000. This is consistent with the findings of the KRTAT (1999) which suggested, based on a Model 1 spawner-recruit curve fit to the 1979–1993 brood year data, that S_{msy} was between
30,000 and 35,000 fish, depending primarily on the level of imprecision in preseason ocean abundance forecasts.

In contrast, the Model 2 (Ricker with survival) estimated recruitment curve corresponding to the average value of s is less steep and descends less quickly than the Model 1 curve. This derives from the apparent non-random distribution of s with respect to S for the years examined in this analysis. Generally, s was relatively high for those brood years produced at low stock abundances, and thus under the average s observed for the entire dataset, the expected productivity will be reduced when compared to that of Model 1. The Model 2 productivity estimate ($\hat{\alpha}_2 = 5.9$) is 30% less, and $\hat{S}_{\text{max},2} = 56,900$ is 40% greater, than the Model 1 estimates as a result. The unexploited equilibrium spawner stock size under the two models is similar. The Model 2 estimate under average survival conditions is $\hat{S}_{\text{ueq},2} = 112,300$, which is 11,000 fish higher than $\hat{S}_{\text{ueq},1}$. For Model 2, again assuming average survival conditions, $\hat{S}_{\text{msy},2} = 40,700$, which is 5,700 fish more than the current minimum spawner floor value of 35,000. Other $\hat{S}_{\text{msy},2}$ values would result under alternative assumptions about the magnitude of s. For example, a more risk-averse value of s might be considered during periods of poor early-life survival conditions.

The statistical support for both density dependent models was strong relative to a density independent recruitment model. Recruits-per-spawner declined with increasing spawning stock size consistent with the Model 1 and 2 assumption of density dependent mortality. The estimated density dependent parameters for Model 1 and 2, $\hat{\beta}_1$ and $\hat{\beta}_2$, respectively, were statistically significant, as was the Model 2 survival coefficient, $\hat{\theta}$. Fifty-six percent of the density independent model residual variation in log(R) was accounted for by Model 1; 80% was accounted for by Model 2. The incorporation of the covariate s into the Ricker model accounted for 55% of the Model 1 residual variation in log(R), with $\hat{\theta}$ being statistically significant at the $p = 0.00013$ level. This one additional parameter in the model provided an as good or better fit than Model 1 to 20 of the 22 (R, S) data points (exceptions were brood years 1979 and 1997). The significance of s implies that the stationarity assumption may have been violated for Model 1 (time-dependent α a function of s). The statistical support for including s as a covariate in the Ricker model is compelling.

Early-life survival

As discussed by the CTC (1999:10), the fitted stock-recruitment relationship can be strengthened by including marine survival as a covariate. This also holds true for measures of survival during density independent freshwater life-stages. The relationship will be strengthened when the variation in the survival measure unaccounted for by S correlates well with the log(R/S) Ricker model residuals, as was demonstrated for the survival index s proposed here ($r = 0.74$).
The hatchery fingerling release-to-age-2 survival rate was selected as a surrogate index for the survival rate of progeny from natural spawning escapement. No comparable time series of survival estimates is available for the natural stock. The use of the \(s \) time series in our analysis does not require that the hatchery and natural stocks have equivalent survival rates, but only depends on the assumption that the survival of both stocks varies proportionately and synchronously.

The independently derived \(\{s_{IGH}\} \) and \(\{s_{TRH}\} \) time series were strongly coherent, and clearly suggestive of an annual effect. There are three plausible sources for this effect: (a) hatchery effect; (b) downstream migration effect; or (c) early-life marine effect. A hatchery effect seems unlikely for an annual signal in that the hatcheries are independently operated, but would have to have the same relative annual effect on \(s \) each and every year. A downstream migration effect also seems questionable for an annual signal in that the majority of the downstream migration route for the two hatchery stocks is in different river systems (although annual climatic events may shape the environment in both systems similarly). An early-life marine signal seems the most plausible. This is the environment shared by both hatchery stocks, and when coupled with the fact that IGH and TRH hatchery fingerlings take only about three weeks to outmigrate, this suggests that \(s \) may primarily reflect early-life marine survival (first three months), and explain why \(s \) correlated so well with recruitment success for the natural stock.

Model 3: Habitat-based methods for estimating stock-recruit reference points

The potential of the Klamath watershed to produce Chinook can be evaluated through an assessment of suitable habitat. In 1985, the California Department of Fish & Game estimated a range for the optimum spawning escapement for the Klamath basin of between 40,100 to 105,900, based on expert opinion of field biologists (Hubbel and Boydstun 1985). More recently, in June 2005, the Pacific Salmon Commission’s Chinook Technical Committee accepted a habitat-based method for estimating maximum sustained yield (MSY) escapement levels. The method, under development by the Canadian Department of Fisheries and Oceans (CDFO), is based on a meta analysis involving stock-recruit models for several stocks along the coast (Chuck Parken, CDFO, personal communication August, 2005). In its present form, the CDFO model estimates the spawning escapements associated with MSY, maximum production, and unfished equilibrium (\(S_{msy} \), \(S_{max} \), and \(S_{ueq} \), respectively) using a single variable, accessible watershed area (square kilometers for 5th order and higher streams for stocks with ocean-type life histories). The current watershed area for 5th order and higher streams in the Klamath Basin below impassable barriers is estimated as 16,561 square kilometers.

Methods:

CDFO’s approach is derived from a meta analysis of Chinook salmon populations from the Oregon coast through Southeast Alaska using Ricker stock-recruitment relationships, assuming multiplicative, lognormal error:
\[R = \alpha S \exp(-\beta S) \exp(\varepsilon) \]

where
\(R \) = recruitment
\(S \) = spawners
\(\alpha \) = slope at origin
\(\beta \) = the capacity parameter
\(\varepsilon \) = lognormal process error with mean 0 and variance \(\sigma^2 \)

For each Ricker stock-recruitment relationship the biological reference points of \(S_{\text{muy}} \), \(S_{\text{max}} \), and \(S_{\text{ueq}} \) were calculated and the relationship between the reference points and habitat was estimated assuming an allometric relationship with a single habitat parameter, accessible watershed area (WA):

\[y = a W^b \exp(\varepsilon) \]

(3.1)

The relationship was estimated by linear regression using the log-transform of the model:

\[\log(y) = \log(a) + b \log(WA) + \varepsilon \]

(3.2)

Parameters were estimated separately for ocean and stream-type Chinook. Twelve stocks\(^1\) were employed to estimate parameters for ocean-type Chinook in the CDFO Habitat Model.

Reference points \(y = S_{\text{muy}}, S_{\text{max}}, S_{\text{ueq}} \) are calculated using the following equation:

\[\hat{y} = W^b e^{\log(\hat{y}) + \frac{\sigma^2}{2}} \]

(3.3)

Table 3. Parameter values for the CDFO Habitat Model reference points for ocean-type Chinook are presented in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(y = S_{\text{muy}})</th>
<th>(y = S_{\text{max}})</th>
<th>(y = S_{\text{ueq}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log(a))</td>
<td>2.240</td>
<td>2.170</td>
<td>3.560</td>
</tr>
<tr>
<td>(B)</td>
<td>0.911</td>
<td>0.962</td>
<td>0.875</td>
</tr>
<tr>
<td>(\sigma^2)</td>
<td>0.158</td>
<td>0.206</td>
<td>0.138</td>
</tr>
</tbody>
</table>

\(^1\) The ocean-type stocks included in the meta analysis included the Chehalis (WA), Cowichan (BC), Harrison (BC), Humptulips (WA), Lewis River (CR), Nehalem (OR), Queets (WA), Quillayute (WA), Siletz (OR), Situk (AK), Siuslaw (OR), Skagit (WA).
Results:

Substituting the estimated watershed area for the Klamath (16561 square kilometers) and the parameters from Table 3 into equation (3.3), yields estimates for the reference points of:

$$S_{moy} = 70,900$$, $$S_{max} = 111,200$$, and $$S_{ueq} = 185,000$$.

Table 4. Point estimates and confidence intervals for $$S_{moy}$$ and $$S_{ueq}$$ based on the Habitat Model provided by CDFO staff:

<table>
<thead>
<tr>
<th></th>
<th>$$S_{moy}$$</th>
<th>$$S_{ueq}$$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point estimate</td>
<td>70,900</td>
<td>185,000</td>
</tr>
<tr>
<td>Coefficient of Variation</td>
<td>0.29</td>
<td>0.27</td>
</tr>
<tr>
<td>Percentiles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th = 43,700</td>
<td>5th = 118,000</td>
<td></td>
</tr>
<tr>
<td>10th = 48,100</td>
<td>10th = 130,000</td>
<td></td>
</tr>
<tr>
<td>25th = 57,600</td>
<td>25th = 153,000</td>
<td></td>
</tr>
<tr>
<td>50th = 69,900</td>
<td>50th = 184,000</td>
<td></td>
</tr>
<tr>
<td>75th = 85,100</td>
<td>75th = 219,000</td>
<td></td>
</tr>
<tr>
<td>90th = 101,000</td>
<td>90th = 259,000</td>
<td></td>
</tr>
<tr>
<td>95th = 111,000</td>
<td>95th = 283,000</td>
<td></td>
</tr>
</tbody>
</table>

Discussion:

The Klamath River system encompasses a watershed area of nearly 13,000 square miles (~ 33,500 square kilometers) and continues to be a major producer of Chinook salmon (USFWS 1979). Since 1981, the combined natural and hatchery production of fall chinook has ranged from a low of 67,700 in 1992 to 1,448,900 in 1986 (September abundance of age 3 and 4 fish) while natural spawning escapements of adults has ranged from 11,600 in 1996 to 161,800 in 1995 (KRTAT 2005, STT 2005). Production has been highly variable; data employed in the STT’s stock-recruitment analysis indicate that production of natural-origin Klamath fall Chinook has ranged from a low of 16,200 for the 1989 brood to a high of 368,200 for the 1983 brood.

Hubbel and Boydstun (1985) reported that CDFG established a spawning escapement goal of Klamath fall chinook of 115,000 adults (97,500 natural spawners plus 17,500 hatchery spawners) in 1978. The goal, which represented the average number of spawners observed during the 1960s, was subsequently adopted by the PFMC to guide the development of its fishery management plans. Until the mid 1980s, escapements averaged less than 35% of the goal and some groups began to express concerns that the goal was not appropriate for current conditions within the watershed. This controversy led to the creation of the Klamath Fishery Management Council in 1986 and the availability of resources to increase the information basis for management of this stock. In response to concerns for adverse impacts to the fishing industry that would result from

2 Estimates provided by CDFO staff, Chuck Parken, pers.com. Confidence intervals were generated using bootstrap methods involving resampling of regression residuals.
strict adherence to the 97,000 escapement goal, the PFMC reduced the goal to 86,000 and adopted a plan to rebuild escapements to attain the 115,000 goal over a period of years (Amendment 9 to the Council’s Salmon Fishery Management Plan). In 1986 and 1987, natural escapements exceeded 100,000 adults, but then remained well below the original goal of 97,000 except in 1995 (Figure 8).

![Escapement of Naturally Spawning Klamath Fall Chinook 1979-2000 Brood Years](image)

Figure 8. Natural spawning escapements for Klamath fall chinook for the 1979 to 2000 brood years

Production from these three years, when the escapement exceeded the original goal of 97,000 spawners, was poor; only the 1986 brood had production that exceeded spawning escapement. It is unclear, however, if the cause of this poor production is due to depensatory effects of spawning escapement or the coincidence of adverse environmental conditions resulting in poor survival of progeny. A survival index, based on estimated survivals of fall chinook fingerling releases from Iron Gate and Trinity hatcheries indicates that very low survival of brood year progeny coincided with high spawning escapement levels (Figure 9). Both escapement and the survival index were highly variable during the time period for which data are available to perform stock-recruitment analyses. Production from any given level of spawning escapement can vary
substantially from average expectations. Considerable uncertainty remains over whether
the results from stock-recruitment analysis can reliably predict future production from
spawning escapement levels over the long term.

Figure 9. Natural spawning escapements for Klamath fall chinook and survival index
for the 1979 to 2000 brood years

Available information about the productivity and capacity of Klamath fall Chinook is
conflicting. The stock-recruitment analyses suggest that data for the 1979-2000 broods
indicate that $S_{m_{sy}}$ is likely to lie within the range of 25,800 to 54,100. On the other hand,
historical information indicates that the Klamath basis was capable of supporting large
runs of Chinook salmon and that spawning escapements averaged 97,000 during the
1960s. The CDFO habitat model indicates that an $S_{m_{sy}}$ of 70,900 adults would be
expected, and that estimates of $S_{m_{sy}}$ and S_{ueq} derived from stock-recruitment analysis
using the data for the 1979-2000 broods lie well outside computed confidence intervals.
It is nearly certain that other factors influence the production of fall Chinook from the Klamath River Basin. Water quality studies indicate that dissolved oxygen and water temperatures in the Klamath River reach conditions that are stressful and even lethal to salmon. A massive fish kill observed in 2002 spurred numerous investigations into the cause. Concerns have been raised as to the effects of water management and diversion on ecosystem functions in the Klamath basin. There are indications that water flow conditions may affect survival of fingerling fall Chinook releases from Iron Gate Hatchery. There are also indications that environmental conditions have changed in the Klamath basin since the 1960 and that they will continue to change in the future.

Bartholow (2005) found evidence that water temperatures in the Klamath River has been increasing at about 0.6 C per decade since the 1960s, that the season of high temperatures stressful to salmon has lengthened over a month during the same period, and that the average length of the Klamath mainstem with cool summer temperatures has declined by about 8.2 km/decade. Bartholow concluded that if the trends continue, recovery of salmonids in the Klamath will become increasingly problematic.

Correlation Analyses – Juvenile Survival and Freshwater Flows

A review of potential sources of data and prior analyses of flow and temperature conditions on the Klamath and Trinity rivers was conducted. Long time series of flow data are readily available at a number of locations within the Klamath and Trinity basins on the USGS web site (http://waterdata.usgs.gov/ca/nwis/nwis). However there were no comparable time series of temperature data available. Flow data was used from the gauging station at Hoopa on the Trinity River and at Orleans on the Klamath River. These were the lowest gauging stations where the two rivers were separate. Flow data were also available on the mainstem Klamath River near Klamath, but the time series of discharge data from this station has missing data. In addition attempts were made to locate a time series of juvenile production estimates from natural areas in the Klamath and Trinity River basins. Juvenile sampling in the basin has been conducted sporadically and only in recent years has this sampling been done in such a way that production estimates could be made. However these recent production estimates were not yet available from the investigators for our analysis. Because of this lack of direct measure of wild production we decided to explore the use of hatchery survival as our only available surrogate for the wild stock survival.

Correlation analyses were performed on various river flow measures in the Trinity River and Klamath Rivers to cohort reconstructed age 2 survival rates of fingerlings released from their respective hatcheries. Correlation analyses were performed on minimum, maximum, and the monthly average daily flows during the parental spawning migrations as well as the month of release to age 2 survivals. The strongest relationship was the Klamath River minimum flows during and immediately after the month of release. However the R² value was just over 0.20 which suggests that only a small portion of the variability in age 2 survival rates could be explained by river flow conditions. It is likely that hatchery operations have more effect on survival than does flow alone. A more
through analysis of fish health and handling conditions at time of release for individual batches of fish may better isolate the effect of flow on survival. Hatchery reports contain more information about fish disease and success of release than does the RMIS data. In some cases the RMIS data contain errors such as the date of release and fail to detail conditions that would affect juvenile survival. Considerable detective work would be necessary to verify the accuracy of the release data. Even if this was done there would still be the problem of determining if survival of the hatchery stock represents survival of the wild stock.

Correlation Analysis – Ricker Model Residuals and River Flow

Because the survival of hatchery fish may not reflect survival of natural fish, another approach taken by the STT was to examine correlations between environmental variables and the residuals of recruitment from that predicted by the Ricker spawner-recruit relationship without incorporation of the hatchery survival index (Table 5).

Table 5. Correlations between residuals from predicted recruitment and monthly average daily discharge during adult spawning migration and juvenile rearing and outmigration.

<table>
<thead>
<tr>
<th>Month</th>
<th>Brood year</th>
<th>Year of outmigration</th>
</tr>
</thead>
<tbody>
<tr>
<td>March</td>
<td></td>
<td>-0.007</td>
</tr>
<tr>
<td>April</td>
<td></td>
<td>0.019</td>
</tr>
<tr>
<td>May</td>
<td></td>
<td>0.054</td>
</tr>
<tr>
<td>June</td>
<td></td>
<td>0.087</td>
</tr>
<tr>
<td>August</td>
<td>0.298</td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>0.408*</td>
<td></td>
</tr>
<tr>
<td>October</td>
<td>0.400*</td>
<td></td>
</tr>
<tr>
<td>November</td>
<td>0.375*</td>
<td></td>
</tr>
<tr>
<td>December</td>
<td>0.066</td>
<td></td>
</tr>
<tr>
<td>Sept-Oct</td>
<td>0.439*</td>
<td></td>
</tr>
</tbody>
</table>

* p<0.05 (one-tailed test)

No significant correlations with discharge were observed during the period of juvenile rearing and outmigration, but significant correlations were observed during the period of adult migration and spawning. These correlations, though significant, are weak, and are similar in magnitude to those between discharge and the hatchery survival index. Because the strongest correlations were observed with average daily discharge in September and October, we also computed the correlation between recruitment residuals and daily flow averaged over both months, and found that it had a higher correlation than daily discharge averaged over each month individually (Table 5).

In an attempt to see if there was some other aspect of flow that may have better predictive ability, we also examined correlations between the recruitment residuals and the maximum and minimum daily and weekly discharge for the basin as a whole and for each river (Klamath and Trinity) individually monthly mean flow for each River separately. These variables are highly correlated with each other, and showed similar patterns of
correlation with recruitment residuals. The highest correlation observed (0.625) was with the minimum daily flow in the month of November.

To investigate the predictive capability of these relationships, we included them as independent variables in the spawner-recruit regression.

\[
\log(R/S) = \alpha + \beta X + \varepsilon,
\]

Where \(\beta \) is a vector of coefficients and \(X \) is a vector of predictor variables (spawners, survival index, and flow variables). While inclusion of flow variables marginally improved the fit of the spawner-recruit relationship (Table 6), the improvement was less than that of including the survival index. In every case examined, when flow variables were included in the regression, the loss of degrees of freedom resulted in lower overall significance of the fit, than the same model without the flow variables included.

Table 6. Results of including hatchery survival index and flow variables in the spawner-recruit regression.

<table>
<thead>
<tr>
<th>Model (predictor variables)</th>
<th>Adjusted R2</th>
<th>d.f.</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spawners (S)</td>
<td>0.535</td>
<td>20</td>
<td>25.16</td>
</tr>
<tr>
<td>S + log(survival)</td>
<td>0.777</td>
<td>19</td>
<td>37.66</td>
</tr>
<tr>
<td>S + Sept-Oct flow</td>
<td>0.616</td>
<td>19</td>
<td>22.57</td>
</tr>
<tr>
<td>S + log(survival) + Sep-Oct flow</td>
<td>0.814</td>
<td>18</td>
<td>26.24</td>
</tr>
<tr>
<td>S + Nov minimum flow</td>
<td>0.622</td>
<td>19</td>
<td>18.28</td>
</tr>
<tr>
<td>S + log(survival) + Nov min flow</td>
<td>0.782</td>
<td>18</td>
<td>26.14</td>
</tr>
</tbody>
</table>

Because including flow variables in the spawner-recruit relationship resulted in lower significance of the overall regression, we did not pursue further investigations with flow relationships.
Literature Cited

KRTAT (Klamath River Technical Advisory Team). 2005. Ocean abundance projections and prospective harvest levels for Klamath River fall Chinook, 2005

Appendix A: Model 1

Data. The \(\{R, S\} \) data are presented in Table A1. \(BY \) denotes brood year; \(N_{3,\text{Sept}} \) denotes the abundance of progeny spawned by \(S \) in calendar year \(BY \) that survive to become ocean age 3 on September 1 in calendar year \(BY + 3 \); \(R = R_3 + R_4 + R_5 \) denotes recruitment and is equal to \(N_{3,\text{Sept}} \) in adult equivalent units. That is, \(R_a \) is the number of \(N_{3,\text{Sept}} \) that would have been expected to spawn at age \(\{a = 3,4,5\} \) if no fishing would have occurred:

\[
R_a = N_{3,\text{Sept}} \left[\prod_{j=3}^{a-1} (1 - v_j)(1 - m_j) \right] (1 - v_a) m_a (1 - r_a),
\]

where \(v_a = 1 - \prod_{t=\text{Sept}}^{\text{Aug}} (1 - v_{at}) \) is the annual natural mortality rate at age \(a \) absent fishing; \(v_{at} \) is the age \(a \) natural mortality rate in month \(t \); \(m_a \) is the age \(a \) maturation rate (taken to occur on August 31); and \(r_a \) is the age \(a \) out-of-basin stray rate. The \(\{m_a, a = 3,4,5\} \) are also year-specific. Values of \(N_{3,\text{Sept}}, \{v_{at}\}, \{m_a\}, \{r_a\} \) were provided by the Klamath River Technical Advisory Team.

Table A1. Klamath River fall Chinook stock-recruitment data set.

<table>
<thead>
<tr>
<th>(BY)</th>
<th>(N_{3,\text{Sept}})</th>
<th>(R_3)</th>
<th>(R_4)</th>
<th>(R_5)</th>
<th>(R)</th>
<th>(S)</th>
<th>(R/S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>423701</td>
<td>42235</td>
<td>137103</td>
<td>21360</td>
<td>200698</td>
<td>30637</td>
<td>6.6</td>
</tr>
<tr>
<td>1980</td>
<td>236144</td>
<td>28082</td>
<td>56102</td>
<td>25246</td>
<td>109430</td>
<td>21484</td>
<td>5.1</td>
</tr>
<tr>
<td>1981</td>
<td>106338</td>
<td>16737</td>
<td>26354</td>
<td>7877</td>
<td>50968</td>
<td>33857</td>
<td>1.5</td>
</tr>
<tr>
<td>1982</td>
<td>277850</td>
<td>17331</td>
<td>61442</td>
<td>12217</td>
<td>31951</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>776743</td>
<td>73352</td>
<td>259838</td>
<td>38159</td>
<td>30784</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>512171</td>
<td>46576</td>
<td>181026</td>
<td>24052</td>
<td>16064</td>
<td>15.2</td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>391378</td>
<td>52017</td>
<td>119909</td>
<td>188722</td>
<td>25676</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>256532</td>
<td>29759</td>
<td>84135</td>
<td>113359</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td>148910</td>
<td>20399</td>
<td>50415</td>
<td>12347</td>
<td>10717</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>37029</td>
<td>2871</td>
<td>13010</td>
<td>79385</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>33368</td>
<td>4921</td>
<td>9962</td>
<td>43869</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>85146</td>
<td>29185</td>
<td>13186</td>
<td>45910</td>
<td>2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>91590</td>
<td>29578</td>
<td>18478</td>
<td>48513</td>
<td>11649</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>526545</td>
<td>129836</td>
<td>132474</td>
<td>269678</td>
<td>12029</td>
<td>22.4</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>177305</td>
<td>40102</td>
<td>48124</td>
<td>90210</td>
<td>21858</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>99535</td>
<td>24195</td>
<td>24978</td>
<td>50840</td>
<td>32333</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>72062</td>
<td>28271</td>
<td>10703</td>
<td>39203</td>
<td>161793</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>74965</td>
<td>17305</td>
<td>21052</td>
<td>81326</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>327575</td>
<td>84784</td>
<td>76782</td>
<td>168089</td>
<td>46144</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>253386</td>
<td>62628</td>
<td>66021</td>
<td>130283</td>
<td>42488</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>406036</td>
<td>74558</td>
<td>89368</td>
<td>196197</td>
<td>18456</td>
<td>10.6</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>386121</td>
<td>60997</td>
<td>112628</td>
<td>188537</td>
<td>82729</td>
<td>2.3</td>
<td></td>
</tr>
</tbody>
</table>
Model/Estimation. Basic regression statistics for the fitted model are presented in Table A2.

Table A2. Model 1 regression statistics.

| Model | Coef. Estimate | Std. Err. | t-value | Pr(>|t|) |
|------------------------|----------------|-----------|---------|----------|
| \(\log(R / S) = a + bS + \varepsilon \) | a 2.143e+00 3.079e-01 | 6.962 | 9.31e-07 |
| | b -2.517e-05 5.018e-06 | -5.016 | 6.62e-05 |

Residual standard error: 0.9005 on 20 degrees of freedom.
F-statistic: 25.16 on 1 and 20 degrees of freedom, p-value: 6.625e-05.
R-squared: 0.5571.

We note that the Ricker model could be alternatively fit using least-squares regression as \(\log(R) = a + \log(S) + bS + \varepsilon \), with an implicit coefficient of 1 for the \(\log(S) \) term (in other words, by treating \(\log(S) \) as an “offset”). Note that the hypothesis to be tested \(H_0 : b = 0 \), \(H_1 : b \neq 0 \), has an equivalent interpretation under both transformations. The base model under \(H_0 \) is \(R = \alpha Se^\varepsilon \); density-independent recruitment. The model under \(H_1 \) is the Ricker model; density-dependent recruitment. The base model under consideration therefore is not a constant recruitment model, \(R = a e^\varepsilon \); which isn’t a submodel of either formulation. While the \(\log(R/S) \) transformation is convenient, it is often noted that with \(S \) appearing on both sides of the equation correlation will be induced between \(\log(R/S) \) and \(S \), even if covariance\((R, S) = 0 \). Though true, both transformations lead to the same point estimates and residual sums-of-squares terms, and thus both transformations lead to equivalent regression R-squared and F-statistic values as these are functions of the residual sums-of-squares terms \(M. S. Mohr \), unpublished). To emphasize, R-squared is the fraction of the density-independent model residual variation, in \(\log(R/S) \) or \(\log(R) \), that is accounted for by introduction of the density-dependent term, \(bS \). It is not the fraction of variation in \(R \) accounted for by the Ricker model.

Regression model graphical diagnostics are presented in Figures A1–A4 that examine the appropriateness of analysis assumptions 1–3. Numbers that appear within Figures A1–A4 denote brood year order within the time series (i.e. “1” represents \(BY 1979 \), “2” represents \(BY 1980 \), … , “22” represents \(BY 2000 \)). Figure A1 is a plot of the normalized residuals versus fitted values; a horizontal band of points symmetric about the value 0 is expected under the Ricker model (assumption 1). Figure A2 is a quantile-quantile (Q-Q) plot of the observed versus residuals expected for a normally distributed error term; a straight line is expected under the model (assumption 3). Figure A3 is a plot of Cook’s distance which is a measure of the relative influence of each data point on the regression parameter estimates. Figure A4 is a plot of the autocorrelation function (ACF) versus lag, which examines the dependence of the model residuals on time; correlations contained within the two dashed lines are statistically insignificant; for lag 0 the correlation is 1 by definition (assumption 2).

3 National Marine Fisheries Service, Southwest Fisheries Science Center, Fisheries Ecology Division, Santa Cruz, CA.
Diagnostics: Ricker model

Figure A1. Residuals vs fitted.

Figure A2. Normal Q–Q plot.

Figure A3. Cook’s distance.

Figure A4. Residual autocorrelation.
Appendix B: Model 2

Data. The \(\{ s'_{IGH} \} \) and \(\{ s'_{TRH} \} \) sets of survival rate estimates were independently derived based on the results of cohort analyses performed separately on fingerling cwt groups released from the two hatcheries. For a given brood year and hatchery, \(s' \) was computed as the estimated abundance of fingerling releases that survived to the onset of age 2 (approximately four months after release, on September 1) divided by the initial number released. Brood-year-specific estimates of \(s' \) for each hatchery are available for all of the \(\{ R, S \} \) dataset brood years, except for \(s'_{TRH,1990} \). The log of the estimates, \(s_{IGH} \) and \(s_{TRH} \), for each brood year are plotted against each other in Figure B1. The two time series of estimates are well correlated (\(r = 0.80 \)). The solid line in Figure B1 depicts a least squares regression fit through the origin:

\[
\hat{s}_{TRH} = 0.89s_{IGH} \tag{B1}
\]

the dashed line is a 1:1 reference line. The regression was used to impute the missing value of \(s_{TRH,1990} \) based on the value of \(s_{IGH,1990} \). The imputed data point is circled in Figure B1. The full \(\{ s'_{IGH}, s'_{TRH} \} \) dataset, including the imputed value, is presented in Table B1.

Because the stock-recruitment analysis is not sub-basin-specific, the two estimates for each brood year must be combined in a way thought to be most representative of the composite natural stock. The most appropriate weighting would be natural stock sub-basin-specific age-two recruitment of each brood, but that data is unavailable. A proxy measure for this would be natural stock sub-basin-specific spawning escapement of each brood (across ages), but sub-basin-specific natural area spawner age composition data.
Table B1. Klamath River fall Chinook early-life survival data set.

<table>
<thead>
<tr>
<th>BY</th>
<th>s'_{IGH}</th>
<th>s'_{TRH}</th>
<th>S_{KR}</th>
<th>S_{TR}</th>
<th>S_{UN}</th>
<th>w_{KR}</th>
<th>w_{TR}</th>
<th>s'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>0.0522</td>
<td>0.0589</td>
<td>21141</td>
<td>8028</td>
<td>1468</td>
<td>0.725</td>
<td>0.275</td>
<td>0.0540</td>
</tr>
<tr>
<td>1980</td>
<td>0.0183</td>
<td>0.0071</td>
<td>12383</td>
<td>7700</td>
<td>1400</td>
<td>0.617</td>
<td>0.383</td>
<td>0.0625</td>
</tr>
<tr>
<td>1981</td>
<td>0.0588</td>
<td>0.0133</td>
<td>21177</td>
<td>9274</td>
<td>1468</td>
<td>0.725</td>
<td>0.275</td>
<td>0.0540</td>
</tr>
<tr>
<td>1982</td>
<td>0.0540</td>
<td>0.0071</td>
<td>12230</td>
<td>7700</td>
<td>1400</td>
<td>0.617</td>
<td>0.383</td>
<td>0.0625</td>
</tr>
<tr>
<td>1983</td>
<td>0.0058</td>
<td>0.0058</td>
<td>21177</td>
<td>9274</td>
<td>1468</td>
<td>0.725</td>
<td>0.275</td>
<td>0.0540</td>
</tr>
<tr>
<td>1984</td>
<td>0.0058</td>
<td>0.0058</td>
<td>21177</td>
<td>9274</td>
<td>1468</td>
<td>0.725</td>
<td>0.275</td>
<td>0.0540</td>
</tr>
<tr>
<td>1985</td>
<td>0.0058</td>
<td>0.0058</td>
<td>21177</td>
<td>9274</td>
<td>1468</td>
<td>0.725</td>
<td>0.275</td>
<td>0.0540</td>
</tr>
<tr>
<td>1986</td>
<td>0.0058</td>
<td>0.0058</td>
<td>21177</td>
<td>9274</td>
<td>1468</td>
<td>0.725</td>
<td>0.275</td>
<td>0.0540</td>
</tr>
<tr>
<td>1987</td>
<td>0.0058</td>
<td>0.0058</td>
<td>21177</td>
<td>9274</td>
<td>1468</td>
<td>0.725</td>
<td>0.275</td>
<td>0.0540</td>
</tr>
<tr>
<td>1988</td>
<td>0.0058</td>
<td>0.0058</td>
<td>21177</td>
<td>9274</td>
<td>1468</td>
<td>0.725</td>
<td>0.275</td>
<td>0.0540</td>
</tr>
<tr>
<td>1989</td>
<td>0.0058</td>
<td>0.0058</td>
<td>21177</td>
<td>9274</td>
<td>1468</td>
<td>0.725</td>
<td>0.275</td>
<td>0.0540</td>
</tr>
<tr>
<td>1990</td>
<td>0.0058</td>
<td>0.0058</td>
<td>21177</td>
<td>9274</td>
<td>1468</td>
<td>0.725</td>
<td>0.275</td>
<td>0.0540</td>
</tr>
<tr>
<td>1991</td>
<td>0.0058</td>
<td>0.0058</td>
<td>21177</td>
<td>9274</td>
<td>1468</td>
<td>0.725</td>
<td>0.275</td>
<td>0.0540</td>
</tr>
<tr>
<td>1992</td>
<td>0.0058</td>
<td>0.0058</td>
<td>21177</td>
<td>9274</td>
<td>1468</td>
<td>0.725</td>
<td>0.275</td>
<td>0.0540</td>
</tr>
<tr>
<td>1993</td>
<td>0.0058</td>
<td>0.0058</td>
<td>21177</td>
<td>9274</td>
<td>1468</td>
<td>0.725</td>
<td>0.275</td>
<td>0.0540</td>
</tr>
<tr>
<td>1994</td>
<td>0.0058</td>
<td>0.0058</td>
<td>21177</td>
<td>9274</td>
<td>1468</td>
<td>0.725</td>
<td>0.275</td>
<td>0.0540</td>
</tr>
<tr>
<td>1995</td>
<td>0.0058</td>
<td>0.0058</td>
<td>21177</td>
<td>9274</td>
<td>1468</td>
<td>0.725</td>
<td>0.275</td>
<td>0.0540</td>
</tr>
<tr>
<td>1996</td>
<td>0.0058</td>
<td>0.0058</td>
<td>21177</td>
<td>9274</td>
<td>1468</td>
<td>0.725</td>
<td>0.275</td>
<td>0.0540</td>
</tr>
<tr>
<td>1997</td>
<td>0.0058</td>
<td>0.0058</td>
<td>21177</td>
<td>9274</td>
<td>1468</td>
<td>0.725</td>
<td>0.275</td>
<td>0.0540</td>
</tr>
<tr>
<td>1998</td>
<td>0.0058</td>
<td>0.0058</td>
<td>21177</td>
<td>9274</td>
<td>1468</td>
<td>0.725</td>
<td>0.275</td>
<td>0.0540</td>
</tr>
<tr>
<td>1999</td>
<td>0.0058</td>
<td>0.0058</td>
<td>21177</td>
<td>9274</td>
<td>1468</td>
<td>0.725</td>
<td>0.275</td>
<td>0.0540</td>
</tr>
<tr>
<td>2000</td>
<td>0.0058</td>
<td>0.0058</td>
<td>21177</td>
<td>9274</td>
<td>1468</td>
<td>0.725</td>
<td>0.275</td>
<td>0.0540</td>
</tr>
</tbody>
</table>

* imputed value: $s'_{TRH,1990} = \exp(0.89 s_{IGH,1990})$.

isn’t available prior to 1991, and also differing maturation schedules for Klamath River and Trinity River fall Chinook (and thus exposure to fisheries) would confound the relation between sub-basin-specific age-two recruitment and brood spawning escapement. Instead, the hatchery-specific survival rate estimates were weighted proportional to the sub-basin-specific natural area parent spawner abundance (age 3 and older) of that brood year (i.e., proportional to sub-basin initial production). These spawner abundances are listed in Table B1, with S_{KR} and S_{TR} denoting Klamath and Trinity Basin natural area spawner abundance (age 3 and older), respectively. Prior to 2000, there is a small number (typically < 10%) of natural area spawning fish that were accounted for, but for which the spawning sub-basin was unspecified, and these fish are listed in Table B1 as S_{UN}. Together: $S_{KR} + S_{TR} + S_{UN} = S$. Given these data, the weights were calculated as

$$w_{KR} = \frac{S_{KR}}{S_{KR} + S_{TR}} \quad \text{and} \quad w_{TR} = \frac{S_{TR}}{S_{KR} + S_{TR}}, \quad (B2)$$

from which the brood-year-specific survival rate weighted average was computed as

$$s' = w_{KR} s'_{KR} + w_{TR} s'_{TR}, \quad (B3)$$
(Table B1). Finally, we note that the interannual variation in s' substantially exceeds the intrannual variation in s'_{KR} and s'_{TR}, and thus the Model 2 overall results should be fairly insensitive to the choice of weights.

Model/Estimation. To evaluate the significance of the Model 2 parameter θ, and thus the significance of Model 2 versus Model 1, an F-statistic for the nested submodel was used:

$$ F = \frac{(RSS_i - RSS_2)}{RSS_2 / df_2}, $$

which is distributed as $F(df_1, df_2, df_3)$ under the basic model structure if $\theta = 0$, where RSS_i is the residual sum-of-squares under Model i ($i = 1, 2$), and df_i is the associated degrees of freedom. The analogous R-squared value

$$ R\text{-squared} = 1 - \frac{RSS_2}{RSS_1} $$

measures the fraction of Model 1 residual variation accounted for by the introduction of s into the model. Basic regression statistics for the fitted models are presented in Table B2.

Table B2. Model 2 regression statistics.

| Model | Coef. | Estimate | Std. Err. | t-value | Pr(>|t|) |
|-------|-------|----------|-----------|---------|---------|
| $s = a + bS + \varepsilon$ | a | 3.751e+00 | 4.184e-01 | -8.965 | 1.92e-08 |
| | b | -1.400e-05 | 6.820e-06 | -2.052 | 5.35e-02 |

Residual standard error: 1.224 on 20 degrees of freedom.
F-statistic: 4.211 on 1 and 20 degrees of freedom, p-value: 5.349e-02.
R-squared: 0.1739.

resids{$(R / S) \mid S$} = $a + b *$ resids{$s \mid S$} + ε | a | 0 | - | - | - |
| b | 5.433e-01 | 1.110e-01 | 4.896 | 8.72e-05 |

Residual standard error: 0.6073 on 20 degrees of freedom.
F-statistic: 23.98 on 1 and 20 degrees of freedom, p-value: 8.724e-05.
R-squared: 0.5452.

$log(R / S) = a + bS + c(s - \bar{s}) + \varepsilon$ | a | 1.779e+00 | 2.263e-01 | 7.859 | 2.18e-07 |
| b | -1.757e-05 | 3.820e-06 | -4.599 | 1.96e-03 |
| c | 5.433e-01 | 1.138e-01 | 4.772 | 1.32e-04 |

Residual standard error: 0.6231 on 19 degrees of freedom.
$H_0: b = c = 0 \mid a$.
F-statistic: 37.67 on 2 and 19 degrees of freedom, p-value: 2.449e-07.
R-squared: 0.7986.

$H_0: c = 0 \mid a, b$.
F-statistic: 22.78 on 1 and 19 degrees of freedom, p-value: 1.324e-04.
R-squared: 0.5452.
Model 2 regression diagnostics are presented in Figures B2–B5 that examine the appropriateness of analysis assumptions 1–3. These are the same diagnostics that were used for Model 1. The interpretation of Figures B2–B5 are described in Appendix A.

In Figure B6, the Model 1 fit (dashed curve) is contrasted with the brood-year-specific Model 2 fit (solid curves). There is one plot for each brood year, with the brood year label marking the respective \((R, S)\) data point. For all brood years except 1979 and 1997, Model 2 provides an as good or better fit to the observed \((R, S)\) data than does Model 1 without the \(s\) covariate. The highest \(R/S\) values (brood years 1983, 1984, 1992) at low \(S\) values are now partially accounted for by the relatively high early-life survival following outmigration for those brood years. The lowest \(R/S\) values (brood years 1988, 1989) are now partially accounted for by the relatively low early-life survival following outmigration for those brood years.
Diagnostics: Ricker model w/ survival

Figure B2. Residuals vs fitted.

Figure B3. Normal Q–Q plot.

Figure B4. Cook’s distance.

Figure B5. Residual autocorrelation.
Figure B6. Brood–year–specific Ricker w/ survival.
HABITAT COMMITTEE REPORT ON
KLAMATH RIVER FALL CHINOOK CONSERVATION OBJECTIVE

The Habitat Committee (HC) commends the Salmon Technical Team (STT) for initiating an ecosystem-based approach in the analysis of Klamath fall Chinook stock recruitment. We have had minimal time to review the report and the STT was not available to present the results during the Monday HC meeting. The analysis regarding the stock/recruitment relationship is useful; however, it is not yet fully adequate because it does not consider all relevant factors relating to natural chinook survival.

As this analysis progresses, we suggest the following should be considered:

1. Freshwater survival is significantly different between hatchery and natural fall chinook, so we believe hatchery juveniles are not an appropriate surrogate for wild fish.
2. Additionally, assumptions regarding hatchery/natural dynamics can vary substantially on an annual basis, depending upon the abundance of hatchery returns and hatchery operations. These dynamics could substantially affect primary components of the stock-recruit relationship and its residuals such as spawner stock size and survival to recruits.
3. Flows should be measured at the points most critical for natural chinook rearing.
4. Additional age-specific data are needed for natural Klamath fall chinook, from areas that are most affected by flow management and the stocks that are dependent upon those flows for rearing.
5. Because water management and freshwater productivity are different for the Trinity and Klamath Rivers, we recommend that dynamics of those populations should be considered independently. Furthermore, the maintenance of substocks needs to be considered when developing conservation objectives.
6. Until sufficient data can be compiled on juvenile outmigrant survival and other habitat-correlated stock recruitment elements, it is not possible to clearly differentiate among factors affecting natural chinook productivity.

PFMC
09/20/05
SALMON ADVISORY SUBPANEL REPORT ON KLAMATH RIVER
FALL CHINOOK CONSERVATION OBJECTIVE

The Salmon Advisory Subpanel (SAS) recommends the Council provide direction to the Scientific and Statistical Committee to review the Salmon Technical Team’s “Klamath River Fall Chinook Stock-Recruitment Analysis.

The SAS concentrated their discussions on the Klamath Fall Chinook Conservation Objective and made it clear that their intention was not to change the Conservation Objective but are asking for some flexibility within the fishery management plan (FMP).

The flexibility requested is quite vague to even the SAS at this time. It was agreed by most members of the SAS some “criteria” that would allow flexibility to fish below the 35,000 escapement floor was needed. That criteria is yet to be identified but SAS felt the criteria could be identified through the FMP amendment scoping process.

The example of one criteria that might have been used for the 2005 salmon season was the very large predicted abundance of Sacramento Fall Chinook. The lack of flexibility in the FMP to fish below the floor caused great hardship on the West Coast Salmon Industry and support businesses.

Flexibility to fish below the conservation objective would have relieved some of the economic hardship endured by the commercial troll fishery in 2005, provided additional opportunity to ocean recreational and in-river (Klamath) fisheries and provided some additional level of Klamath Fall Chinook harvest for Tribal needs.

The SAS requests at this time the Council proceed with a plan amendment process to consider additional flexibility to the current FMP covering Klamath Fall Chinook.

PFMC
09/21/05
SALMON TECHNICAL TEAM REPORT ON
KLAMATH RIVER FALL CHINOOK CONSERVATION OBJECTIVE

The current management objective for Klamath fall Chinook, adopted under Amendment 9 in May 1989, is to allow 33%-34% of the potential adult natural spawners in each brood to escape the fisheries, and to spawn, provided that natural spawning escapement does not fall below 35,000 adults in any one year. In May 1994, the 33%-34% brood year escapement rate was modified to permit it to be attained on average, allowing year-to-year variability in individual brood year escapement rates in order to achieve the tribal/nontribal annual allocation.

The form of this objective is consistent with National Marine Fisheries Service (NMFS) National Standard Guidelines, which advocate management for a maximum sustainable yield (MSY) control rule. An MSY control rule is defined in terms of an exploitation rate that will, on average, produce the maximum yield. The National Standard Guidelines also require that the fishery management plan (FMP) establish status determination criteria, or reasonable proxies thereof, that define overfishing and stock depletion. These criteria consist of a maximum fishing mortality threshold defining overfishing and a minimum stock size threshold defining when a stock is depleted.

In the case of Klamath fall Chinook, the harvest rate management objective, with the escapement floor, comprise an MSY control rule. Failure to meet the MSY objectives in three consecutive years has been accepted by NMFS as a reasonable proxy for the status determination criteria for overfishing.

In its analysis, the Salmon Technical Team (STT) presented three estimates of the natural adult spawning escapement that would, on average, produce MSY. The first of these (32,700) was derived from a naïve fit of a Ricker spawner-recruit relationship to natural escapement and subsequent recruitment, the second (40,700) was derived from the fit of a Ricker curve after adjusting for year-to-year variability in smolt-to-adult survival, and the third (70,900) was a habitat-based estimate based on the relationship between management reference points and accessible watershed area for ocean-type Chinook stocks coastwide.

The current escapement floor is well below the estimate of MSY spawning escapement based on watershed area and below the estimate based on the Ricker spawner-recruit relationship adjusted for average smolt-to adult survival. The STT does not believe the current analysis reveals any compelling evidence of problems with the current FMP objective.

A number of assumptions and caveats underlying this S-R analysis are particularly relevant:

Stationarity - the S-R data were collected under specific conditions affecting the 1979-2000 broods. The environment is anticipated to change in response to adjustments to flow regulation regimes, which in turn may affect stock productivity.

Hatchery/Natural Dynamics – the S-R analysis presumes that the interactions between hatchery and natural fish are stable over time.
Aggregate Stock – the S-R analysis was performed using aggregated data for stocks originating in the Trinity and Klamath systems. Available data indicate that stocks from these systems have different biological characteristics (e.g., maturation schedules).

Data Quality concerns. Data to directly relate juvenile production to levels of spawning escapement are not generally available. Instead production is estimated through run-reconstruction methods. These methods involve numerous assumptions to generate estimates of production. First, the age and origin (hatchery vs. natural) of spawners must be estimated; the capacity to do this based on limited sampling during stream surveys is of uncertain and varying accuracy. Estimates of escapement are then expanded for in-river harvest, and expanded a second time to account for ocean fishery impacts using estimates of ocean exploitation rates derived from a combination of fingerling and yearling coded-wire tag release groups.

Because of the above caveats, the STT does not believe that the current analysis provides sufficient new information to warrant any changes in the current FMP objective.

PFMC
09/20/05
12 September 2005

Dr. Donald O. McIsaac
Executive Director
Pacific Fishery Management Council
Portland, OR 97220-1384

Dear Dr. McIsaac:

Re: Testimony of Hoopa Valley Tribe Regarding Klamath Conservation Objective

The Hoopa Valley Tribe (Tribe) is writing you with the intent that our concerns be shared with the entire Pacific Fishery Management Council (Council) in advance of their 21 September 2005 deliberations regarding the Klamath River fall chinook conservation objective (agenda G.1). In summary, the Tribe voices its strong opposition to making any changes to the conservation objective.

As you are aware, the Tribe has depended upon the anadromous fishery of the Klamath River since time immemorial. Our reliance on a meaningful Klamath fishery remains as profound today as ever and is fundamental to our very existence. You are no doubt aware of significant challenges placed in our path over recent decades with respect to preserving the vitality of this great heritage. Regional and local water demands continue to compromise the future and well-being of the Klamath Basin ecosystem. As a co-manager of Klamath Basin natural resources, we wish to express our concern over pending Council discussions regarding the Klamath fall chinook conservation objective.

Allow me to begin by introducing you to some of the positive changes coming about in Klamath Basin with respect to restoring river flows and water quality. First, you are familiar with the historic Trinity Record of Decision (ROD), co-signed by the Secretary of the Interior and the Hoopa Valley Tribe in December 2000. The ROD was mandated by the Central Valley Project Improvement Act (PL 102-575) and based on two decades
of science aimed at reserving specific volumes of water for fishery restoration and detailing the actions necessary to execute this mandate. Now, nearly four years after the ROD was signed the program has overcome legal challenges, completed several infrastructure changes needed to accommodate restored river flows, and begun implementing these flows as of the 2005 water year.

Complete restoration of Trinity River will take some time. The compounding effects of water diversion, past mining history, and overall land management actions have resulted in severely degraded habitat for Trinity River anadromous fish. We need to be patient and confident that the methods of contemporary science, management, and policy will succeed and our fishery will be restored.

With regard to Klamath River, the Tribe has been very active with its tribal co-managers in participating in Klamath Operations planning and the impending Federal Energy Regulatory Commission (FERC) relicensing of the seven hydro-electric dams in the Klamath Basin. The Tribe has consistently advocated for preserving endemic fish in the context of competing demands. We see a need to comprehensively manage our fishery resource, addressing both habitat and harvest concerns.

The Tribe is not a new player in the fishery management arena. You will recall our earlier participation in the Klamath River Salmon Management Group in early 80s, destined later to become the Klamath Fishery Management Council (KFMC). Rational management was needed then as it is today, to optimize harvest opportunities while conserving stock diversity.

Our fisheries scientists have reviewed the recent paper “Klamath River Fall Chinook Stock-Recruitment Analysis”, prepared by the Salmon Technical Advisory Team. Technically, the work is sound and demonstrates the principles of “best available science”. While we do not see any evidence in the report that would justify reducing the conservation objective, we are struck by the Council’s oversight in not having anticipated meaningful participation by Klamath Basin co-managers in the development of this analysis. We feel it necessary to inform you of the decades of combined expertise among the multiple tribal, state, and federal fisheries agencies within the Klamath Basin. Our experiences in this watershed would benefit any explorative investigations regarding the productivity of Klamath fall chinook.

Nonetheless, today, as the Council continues its discussions over the merits of the conservation objective for Klamath fall chinook, we are reminded of the costs sustained by Klamath fishing tribes in having observed the existing standard for almost two decades. In all but eight of the last ten years, harvest has been constrained to meet the *minimum* 35,000 adult fall chinook natural spawner escapement floor. The tribe understood the minimum floor was established to maintain the biological integrity of Klamath fall chinook populations.

Our people do not have a choice but to fish in the same location within the Klamath as their ancestors. Meanwhile, in the course of a few decades, we have
witnessed the expansion and contraction of massive multi-stock ocean fisheries shifting the time and area of their effort to optimize economic gains. The benefits derived by many have been significant.

The Council's Salmon Fishery Management Plan (FMP) developed the context for prudent management of these fisheries. Further, the FMP has been modified to address new constraints imposed by listing of fish species under the Federal Endangered Species Act. The ninth amendment to the FMP set forth a suite of conservation principles which our Tribe continues to embrace. The fact that the Klamath 35,000 natural escapement floor led to contractions of an otherwise enabled mixed-stock ocean fishery is unfortunate. Compromising the principles which unite us in the conservation of this stock would be disastrous.

We sit today as co-managers and partners with those who share the wealth of the Klamath with our people. We request that our partners work tirelessly with us in ensuring a better future for all by conserving this fishery, restoring the habitat, and protecting the quality and quantity of water upon which all life depends in Klamath Basin.

In conclusion, the tribe strongly urges the Council to maintain the present FMP for Klamath River fall chinook salmon. There is no scientific or policy rationale to support modifications to existing conservation standards for Klamath fall chinook. Moreover, to place additional fishing pressure upon Klamath stocks in the midst of habitat improvements is unsupportable. My staff will be in Portland for the September Council meeting and available to clarify our comments.

Sincerely,

C. Lyle Marshall
Chairman

Cc: Doug Schleusner, Trinity River Restoration Program
 Phillip Detrich, Project Leader Yreka Field Office, USFWS
KLAMATH RIVER FALL CHINOOK CONSERVATION OBJECTIVE

Klamath River fall chinook are frequently a primary constraint for ocean salmon fisheries south of Cape Falcon, Oregon. In 2005, commercial ex-vessel value was projected to be about 30% less than in 2004 for areas south of Cape Falcon, despite a record high projection for Central Valley chinook stocks. Reductions in both commercial and recreational fisheries were necessary to meet the Klamath River fall chinook conservation objective.

The current conservation objective for Klamath River fall chinook as listed in Table 3-1 of the Salmon Fishery Management Plan (FMP) is:

“33%-34% of potential adult natural spawners, but no fewer than 35,000 naturally spawning adults in any one year. Brood escapement rate must average 33%-34% over the long-term, but an individual brood may vary from this range to achieve the required tribal/nontribal annual allocation. Objective designed to allow a wide range of spawner escapements from which to develop an MSY objective or proxy while protecting the stock during prolonged periods of reduced productivity.”

The Salmon FMP also states:

“…changes or additions to the stock complexes and objectives for most natural stocks may be made without plan amendment. An exception is the 35,000 natural spawner floor for Klamath River fall chinook which may only be changed by FMP amendment.”

At its June 2005 meeting, the Council received an analysis of the technical basis for the 35,000 escapement floor from the Salmon Technical Team (STT). The Council gave further direction to the STT to update the Klamath River fall chinook stock/recruitment database and conduct three analyses:

1) A Ricker type stock/recruitment analysis, including an estimate of MSY.
2) A correlation analysis of river flow conditions during the juvenile freshwater phase with recruitment.
3) A correlation analysis of river flow conditions during the spawning period with recruitment.

The STT report is included as Agenda Item G.1.b, STT Report.

The Council intent was to determine if there was sufficient new information to warrant consideration of a Salmon FMP amendment to change the conservation objective for Klamath River fall chinook, including the annual spawning escapement floor of 35,000 naturally spawning adults.
Council Task:

1. **Determine if there is sufficient information to consider changing the Klamath River fall chinook conservation objective.**
2. **Provide further guidance for investigating factors affecting recruitment of Klamath River fall chinook.**
3. **Provide guidance for further consideration of a Salmon FMP amendment.**

Reference Materials:

Agenda Order:

- a. **Agendum Overview** Chuck Tracy
- b. **Report of the Salmon Technical Team** Dell Simmons
- c. **Reports and Comments of Advisory Bodies**
- d. **Public Comment**
- e. **Council Guidance on further Consideration of Amending the Conservation Objective**

PFMC
09/01/05
Subject: 2005 Salmon Methodology Review
From: Chuck Tracy <Chuck.Tracy@noaa.gov>
Date: Wed, 06 Jul 2005 14:28:22 -0700
To: Chuck Tracy <Chuck.Tracy@noaa.gov>
CC: Henry Yuen <henry_yuen@fws.gov>, Doug Milward <Milwadam@dfw.wa.gov>, Dell Simmons <Dell.Simmons@noaa.gov>, Robert Kope <Robert.Kope@noaa.gov>, Gary Morishima <Morikog@aol.com>, Michael Mohr <Michael.Mohr@noaa.gov>, Curt Melcher <Curt.Melcher@state.or.us>, Melodie Palmer-Zwahlen <mpalmer@dfg.ca.gov>, Allen Grover <agrover@dfg.ca.gov>, Craig Foster <Craig.A.Foster@state.or.us>, Phil Anderson <anderpma@dfw.wa.gov>, "Robert H. Conrad" <bconrad@nwfc.wa.gov>, Larrie LaVoy <LaVoyLWL@dfw.wa.gov>, Jim Packer <PackeJFP@dfw.wa.gov>, Andy Rankis <ARankis@nwfc.org>, Rishi Sharma <shar@critfc.org>, Kevin Hill <khill@ucsd.edu>, Peter Lawson <Peter.W.Lawson@noaa.gov>, Jim Harp <Jeharp@aol.com>, Curt Melcher <Curt.Melcher@state.or.us>, Marija Vojkovich <mvojkovich@dfg.ca.gov>, Hans Radtke <hradtke@oregonvos.net>, Pat Pattillo <pattiplp@dfw.wa.gov>, Mike Burner <Mike.Burner@noaa.gov>

Greetings all:

This is just a reminder that the Council will be establishing priorities for salmon methodology review by the SSC at the September Council meeting. The review itself usually occurs in mid- to late October.

A list of potential subjects was considered at the April Council Meeting (see below), and it will be useful to have updates on the priorities and whether some of the projects are suitably complete for review.

It is unlikely that the SSC will have time to review all the subjects this year, or that all will be ready for review. Please discuss these projects with appropriate parties and have recommendations ready for the September meeting.

Chinook and Coho Fishery Regulation Assessment Model Documentation. The Model Evaluation Workgroup (MEW) is completing detailed documentation of the Fishery Regulation Assessment Model (FRAM). In April 2004 the SSC advised that this item be given highest priority for review in 2004. Again, the SSC recommends that the FRAM documentation be the highest priority item for 2005. This is a necessary prerequisite for review of the model.

FRAM Validation/Calibration Exercise. As part of its routine review of the chinook FRAM, the STT during 2005 will develop estimates of base-period data for new fish stocks (e.g., Sacramento fall chinook) and calibrate and validate the revised model. The SSC requested the STT include in the FRAM documentation a technical description of the calibration/validation process and results from its application in 2005.
Oregon Coastal Natural Management Matrix. The Oregon Department of Fish and Wildlife is developing a technical appendix to the Oregon Coastal Natural Work Group matrix. The SSC should be prepared to review this work at the November Council meeting as a Technical Amendment to the fishery management plan.

Klamath Ocean Harvest Model - Contact Rates and Catch Projections. Contact rates for Klamath River fall chinook were much higher in 2004 than previously observed, and this stock will significantly constrain several Council salmon fisheries in 2005. An exploration of potential factors that led to the unusual Klamath contact rates in 2004 could help prevent a recurrence.

Columbia River Fall Chinook Ocean Abundance Predictors. Ocean abundance predictors for Columbia River fall chinook are likely to be available for review in 2005.

Thanks.

--
Chuck Tracy
Pacific Fishery Management Council
7700 NE Ambassador Avenue, Suite 200
Portland, Oregon 97220
Phone: 503-820-2280 or toll free 866-806-7204
Fax: 503-820-2299
e-mail: Chuck.Tracy@noaa.gov
url: www.pcouncil.org
<···> <···> <···> <···> <···> <···> <···> <···>
MODEL EVALUATION WORKGROUP STATEMENT
FOR SALMON METHODOLOGY REVIEW

The Model Evaluation Workgroup (MEW) recommends the Scientific and Statistical Committee (SSC) review the documentation of the Fishery Regulation Assessment Model (FRAM) as provided by the MEW. The three pieces of core FRAM documentation are: FRAM Overview, Chinook FRAM Base Data Development, and Coho FRAM Base Data Development. The Overview Document, as accepted in 2004 as a Council document, provides a description of how FRAM works and contains model specifications and algorithms for both chinook and coho. The two pieces of data development documentation describe what data is used to develop these Base Periods and how the development process works for each species. This set of reports completes the Council assignment of developing FRAM documentation by the MEW.

An additional item recommended for SSC review is a set of methods for generating Ocean Abundance Estimates for Columbia River Fall Chinook. These methods may be proposed for use in 2006 for accessing Council area fisheries.

PFMC
09/19/05
SCIENTIFIC AND STATISTICAL COMMITTEE REPORT ON SALMON METHODOLOGY REVIEW

The Scientific and Statistical Committee (SSC) met with Mr. Andy Rankis and other members of the Model Evaluation Workgroup (MEW) to identify items for review by the SSC Salmon Subcommittee at its October meeting. The following items were identified as ready for review:

- Chinook and Coho Fishery Regulation Assessment Model (FRAM) Documentation. The MEW indicated that the FRAM Overview document that was submitted previously has been updated. This update includes the addition of some previously undocumented model equations.
- Documentation of the base data development process for Chinook FRAM.
- Documentation of the base data development process for Coho FRAM.
- Ocean abundance predictor methodologies for Columbia River Fall Chinook salmon.

The SSC Salmon Subcommittee will review these products in October prior to the full SSC meeting in November.

PFMC
09/20/05
SALMON METHODOLOGY REVIEW

In April of this year, the Council listed five subjects for review by the Scientific and Statistical Committee (SSC) this fall. The five subjects were:

1) Chinook and Coho Fishery Regulation Assessment Model (FRAM) Documentation
2) FRAM Validation/Calibration
3) Oregon Coastal Natural Management Matrix
4) Klamath Ocean Harvest Model – review of contact rates and catch projections
5) Columbia River Fall Chinook Ocean abundance predictors

The Salmon Technical Team (STT) recommends that Council instruct the SSC to review items one and five in November.

We understand from the Model Evaluation Workgroup (MEW) that item number one, the FRAM documentation, is complete for both chinook and coho and ready for SSC review.

Item two was listed because it was anticipated that additional stocks like, Sacramento fall chinook, would be added to the model during calibration. While a routine recalibration of the chinook FRAM has been completed, no new stocks or fisheries were added and the SST does not believe that there is a need for SSC review at this time.

Item three, the technical appendix to the Oregon Coastal Natural Work Group matrix, has not been completed.

Item number four, concerning the Klamath Ocean Harvest Model, has been completed to the extent possible at this time but there is nothing for the SSC to review. The model algorithms and code have been checked for errors, and none were found. Decisions concerning whether the 2004 observed contact rates should be considered an anomaly or a signal of a true change in stock availability to the fisheries cannot be made until contact information for 2005 is available in February of 2006.

Methods of directly estimating ocean abundance at age have been developed for Columbia River fall stocks and will be ready for SSC review. They may be proposed for use in 2006 after further review by the US v. Oregon Technical Advisory Committee.

PFMC
09/20/05
SALMON METHODOLOGY REVIEW

Each year, the Scientific and Statistical Committee (SSC) completes a methodology review to help assure new or significantly modified methodologies employed to estimate impacts of the Council’s salmon management use the best available science. This review is preparatory to the Council’s adoption, at the November meeting, of all proposed changes to be implemented in the coming season, or, in certain limited cases, of providing directions for handling any unresolved methodology problems prior to the formulation of salmon management options the following March. Because there is insufficient time to review new or modified methods at the March meeting, the Council may reject their use if they have not been approved the preceding November.

At its April 2005 meeting, the Council identified a list of potential subjects for the methodology review. These subjects are identified in a reminder letter sent out to the responsible agencies in July 2005, which requests agencies be prepared to speak to the status of the subjects in terms of completeness and priority (Agenda Item G.2.a, Attachment 1). All materials for review are to be received at the Council office at least three weeks prior to the scheduled review meeting of the SSC Salmon Subcommittee, which is likely to be in mid-October to late-October.

Council Action:

1. Determine if methodologies identified for review will be ready for the SSC Salmon Subcommittee meeting in October.
2. Set priorities for SSC review of methodologies.

Reference Materials:

1. Agenda Item G.2.a, Attachment 1: email to the agencies from Mr. Chuck Tracy dated July 6, 2005.

Agenda Order:

a. Agenda Item Overview
b. Agency and Tribal Reports and Comments
c. Model Evaluation Workgroup Report
d. Reports and Comments of Advisory Bodies
e. Public Comment
f. Council Action: Final Prioritization and Scheduling of the Review of Salmon Methodology Changes for the 2006 Season