SEQUENCE OF EVENTS AND STATUS OF FISHERIES

Situation: A summary of the management events for the 2000 salmon season (updated through August 31) is contained in Supplemental Attachment 1. Through the end of August, there have been 12 inseason management conferences to adjust fisheries. All but one of the eight conferences since the June Council meeting have dealt with fisheries north of Cape Falcon, especially the non-Indian commercial fishery. In addition, to prevent exceeding their quotas, the recreational selective coho fishery off Central Oregon was closed July 25 (20,000 marked coho quota) and the commercial chinook fishery between Sisters Rocks and the Oregon-California border was closed August 9 (1,300 chinook quota). The recreational fisheries north of Cape Falcon all closed between August 12 and August 17 as insufficient coho quota remains to provide further angling opportunity. The non-Indian, all-salmon commercial fishery north of Cape Falcon is in its fifth and likely last opening of the 2000 season (four, four-day openings and one final five-day opening). The treaty Indian commercial ocean troll season has also closed.

Mr. Doug Milward, chair of the Salmon Technical Team (STT), will provide detailed effort and harvest data in his report to the Council.

Council Action: None. Information only.

Reference Materials:

1. Sequence of Events in Ocean Salmon Fishery Management, January through August 31, 2000 (Exhibit E.1, Supplemental Attachment 1).

PFMC
08/30/00
GENERAL MANAGEMENT ACTIONS AND INSEASON CONFERENCES

Feb. 8 National Marine Fisheries Service (NMFS) inseason conference number one results in delayed openings of the recreational fisheries south of Pt. Arena, California, to help reduce impacts on endangered Sacramento River winter and threatened Central Valley spring chinook. Between Pt. Arena and Pigeon Pt., the season opening is delayed from Apr. 1 to Apr. 15. South of Pigeon Pt., the season opens Apr. 1 rather than Mar. 18.

Mar. 7 NMFS provides the Council with a letter outlining the 2000 management guidance for stocks listed under the Endangered Species Act (ESA).

Council adopts three troll and three recreational ocean salmon fishery management options for public review.

NMFS inseason conference number two (at the Council meeting) results in two Council recommendations which are implemented by NMFS (1) open the commercial and recreational fisheries off Oregon from Cape Falcon to Humbug Mt. on April 1 for all salmon except coho and (2) do not open commercial test fisheries off California in Apr. south of Pillar Pt. due to concern for impacts on ESA listed salmon stocks.

Mar. 15-16 North of Cape Falcon Salmon Forum meets in Portland, Oregon to initiate consideration of recommendations for treaty Indian and non-Indian salmon management options.

Mar. 27-28 Council holds public hearings on proposed 2000 management options in five locations within the three Pacific Coast states. In addition, the state of California holds an additional hearing in Moss Landing.

Mar. 28-30 North of Cape Falcon Salmon Forum meets in Tukwila, Washington to further consider recommendations for treaty Indian and non-Indian salmon management options.

Apr. 6 Council adopts final ocean salmon fishery management recommendations for approval and implementation by the U.S. Secretary of Commerce. The proposed measures include selective fisheries and comply with the salmon fishery management plan (FMP) and the current biological opinions for listed species. An emergency rule is not required for implementation.

May 1 Ocean salmon seasons implemented as recommended by the Council and published in the Federal Register on May 5 (65 FR 26138).

Jun. 6 NMFS inseason conference number three results in a proposed closure of the May/June, non-Indian troll fishery north of Cape Falcon on June 9 as the fishery is projected to achieve its 11,000 chinook guideline at that time.

Jun. 9 NMFS inseason conference number four rescinds the June 9 closure of the May/June, non-Indian troll fishery north of Cape Falcon and, with ample guideline remaining, allows the fishery to continue to the scheduled June 15 closure.

Jun. 12 Council submits Amendment 14 to the Pacific Coast Salmon Plan to NMFS for implementation. The amendment includes implementation of the 1996 Sustainable Fisheries Act, significant editorial changes, provides a specific allocation for the La Push port area, and establishes management criteria for selective fisheries targeting on marked hatchery coho.

July 24 NMFS inseason conference number five closes the central Oregon (Cape Falcon to Humbug Mt.), recreational fishery that is selective for marked hatchery coho. The closure, effective July 25, is necessary to avoid exceeding the 20,000 marked coho quota and precedes the season cutoff date of July 31. The recreational fishery in this area remains open for all-salmon-except-coho.

July 31 NMFS inseason conference number six
Aug. 4 NMFS inseason conference number seven
Aug. 7 NMFS inseason conference number eight
Aug. 9 NMFS inseason conference number nine
Aug. 16 NMFS inseason conference number ten
Aug. 23 NMFS inseason conference number 11
Aug. 30 NMFS inseason conference number 12
Sept. 5 NMFS inseason conference number 13

NON-INDIAN COMMERCIAL TROLL SEASONS

Apr. 1 Cape Falcon to Humbug Mt., Oregon, all-salmon-except-coho fishery opens through July 22. The fishery will reopen Aug. 1 through Aug. 29 and Sept. 1 through Oct. 31.

May 1 U.S.-Canada border to Cape Falcon, all-salmon-except-coho fishery opens through the earlier of June 15 or an 11,000 chinook guideline.
Humbug Mt. to Oregon-California border, all-salmon-except-coho fishery opens through May 31.
Pt. San Pedro to U.S.-Mexico border, all-salmon-except-coho fishery opens through Aug. 27.

May 29 Pt. Reyes to Pt. San Pedro, all-salmon-except-coho fishery opens through Aug. 27.

May 31 Humbug Mt. to Oregon-California border all-salmon-except-coho fishery closes.

Jun. 15 U.S.-Canada border to Cape Falcon, all-salmon-except-coho fishery closes as scheduled.

July 1 Fort Ross to Pt. Reyes, all-salmon-except-coho test fishery within 6 nm opens through the earlier of July 15 or a 4,500 chinook quota.

July 15 Scheduled closure of the Fort Ross to Pt. Reyes, all-salmon-except-coho test fishery within 6 nm.

July 18 Pt. Arena to Pt. Reyes, general area all-salmon-except-coho fishery opens through Sept. 30.

July 22 Cape Falcon to Humbug Mt., all-salmon-except-coho fishery closes. The fishery will reopen Aug. 1.

Aug. 1 Cape Falcon to Humbug Mt., all-salmon-except-coho fishery reopens. The fishery will close Aug. 29 and reopen Sept. 1 through Oct. 31.
Sisters Rocks to Mack Arch, all-salmon-except-coho fishery opens within 4 nm of shore under a 1,500 chinook quota and a landing limit of 30 chinook per day. The fishery is scheduled to run continuously until the earlier of Aug. 31 or the quota.

Aug. 4 Queets River to Cape Falcon, all-salmon fishery opens under a quota of______ chinook (1,500 in the preseason guideline plus ______ transferred from the May/June season) and 25,000 coho with healed adipose fin clips (selective fishery). The fishery proceeds on a cycle of 4 days open and 3 days closed.

Aug. 27 South of Pt. San Pedro, all-salmon-except-coho fishery closes.

Aug. 29 Cape Falcon to Humbug Mt., all-salmon-except-coho fishery closes for 2 days.

Aug. 31 Scheduled closure of the Sisters Rocks to Mack Arch, all-salmon-except-coho fishery within 4 nm of shore.

Sept. 1 Cape Falcon to Humbug Mt., all-salmon-except-coho fishery reopens through Oct. 31.
House Rock to Humboldt south jetty, all-salmon-except-coho fishery opens under a quota of 7,000 chinook of which no more than 1,000 chinook may be landed in Brookings.
Horse Mt. to Pt. Arena, all-salmon-except-coho fishery opens through Sept. 30.

TREATY INDIAN COMMERCIAL TROLL SEASONS
RECREATIONAL SEASONS (continued)

May 1 All-salmon-except-coho fisheries open through the earlier of June 30 or an overall 20,000 chinook quota for the May-June season (any remainder of the quota is not transferable to the Aug.-Sept. season).

June 30 Scheduled closure of the all-salmon-except-coho fisheries.

Aug. 1 All-salmon fisheries open.

Sept. 15 Scheduled closure of the all-salmon fisheries.

RECREATIONAL SEASONS

Feb. 12 Horse Mt. to Pt. Arena, all-salmon-except-coho fishery opens. The fishery closes July 6 and reopens July 22 through Nov. 12.

Apr. 1 Pigeon Point to the U.S.-Mexico border, all-salmon-except-coho fishery opens through Oct. 1. The opening was delayed from March 18 (see inseason conference number 1 on Feb. 8).

Apr. 1 Cape Falcon to Humbug Mountain, all-salmon-except-coho fishery opens. The fishery becomes selective for marked hatchery coho beginning July 1.

Apr. 15 Point Arena to Pigeon Point, all-salmon-except-coho fishery opens through Nov. 5. The opening was delayed from Apr. 1 (see inseason conference number 1 on Feb. 8).

May 27 Humbug Mt. to Horse Mt., all-salmon-except-coho fishery opens through July 6 with a daily-bag-limit of one fish. The fishery reopens July 29 through Sept. 10 with a two fish daily bag limit.

July 6 Humbug Mt. to Horse Mt., all-salmon-except-coho fishery closes. The fishery will reopen July 29 and continue through Sept. 10 with a two fish bag limit.

July 1 Cape Falcon to Humbug Mountain, all-salmon selective coho fishery opens under a quota of 20,000 adipose fin clipped coho. Only coho with a healed adipose fin clip may be retained. During the selective fishery, the season is only open Saturday through Sunday and Tuesday through Thursday of each week through the earlier of the 20,000 marked coho quota or July 30. There are no special gear restrictions other than the requirement to use barbless hooks.

July 3 Fisheries north of Cape Falcon open for all salmon with a daily bag limit of two fish, but only one chinook. All fisheries are selective for marked hatchery coho (adipose fin clip). North of Queets River (La Push and Neah Bay), the fishery opens 7 days per week. From Queets River to Cape Falcon (Westport and Columbia River Area), the fisheries are only open Sun. through Thurs. The fisheries will close the earliest of Sept. 30, achievement of the coho subarea quotas, or achievement of the overall chinook quota.

July 22 Horse Mt. to Pt. Arena, all-salmon-except-coho fishery reopens through Nov. 12.

July 25 Cape Falcon to Humbug Mt., all-salmon selective fishery for marked hatchery coho closes as the 20,000 marked coho quota is projected to have been met.

July 29 Humbug Mt. to Horse Mt., all-salmon-except-coho fishery reopens through Sept. 10 under a two fish bag limit.
RECREATIONAL SEASONS (continued)

i/ Unless stated otherwise, season openings or modifications of restrictions are effective at 0001 hours of the listed date. Closures are effective at midnight. Some events occurring after June 15 are subject to change, depending on achievement of quotas or other inseason management actions.
STATUS REPORT OF THE 2000 OCEAN SALMON FISHERIES OFF WASHINGTON, OREGON, AND CALIFORNIA.

Exhibit E.1

Supplemental STT Report

Preliminary Data Through August, 2000, unless otherwise noted.

Seasonal Effort

<table>
<thead>
<tr>
<th>Fishery and Area</th>
<th>Dates</th>
<th>Effort (Days Fished)</th>
<th>CHINOOK</th>
<th>COHO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Catch</td>
<td>Quota</td>
</tr>
<tr>
<td>TROLL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treaty Indian</td>
<td>5/1-6/30</td>
<td>172</td>
<td>5,911</td>
<td>20,000</td>
</tr>
<tr>
<td></td>
<td>8/1-9/15</td>
<td>58</td>
<td>1,647</td>
<td>5,500</td>
</tr>
<tr>
<td>c/ Non-Treaty N Falcon</td>
<td>5/2-6/15</td>
<td>96</td>
<td>9,017</td>
<td>11,000</td>
</tr>
<tr>
<td></td>
<td>8/4-9/30</td>
<td>475</td>
<td>3,323</td>
<td>3,750</td>
</tr>
<tr>
<td>Cape Falcon-Humbug Mtn</td>
<td>4/1-7/22</td>
<td>2,940</td>
<td>37,920</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>8/1-8/29</td>
<td>2,100</td>
<td>52,700</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>9/1-10/31</td>
<td>0</td>
<td>None</td>
<td>NA</td>
</tr>
<tr>
<td>Humbug Mtn-OR/CA Border</td>
<td>5/1-5/31</td>
<td>4</td>
<td>21</td>
<td>None</td>
</tr>
<tr>
<td>Sisters Rocks-OR/CA Border</td>
<td>8/1-8/31</td>
<td>85</td>
<td>1,392</td>
<td>1,300</td>
</tr>
<tr>
<td>House Rock-Humbolt S Jetty</td>
<td>9/1-9/30</td>
<td>45</td>
<td>1,249</td>
<td>7,000</td>
</tr>
<tr>
<td>Horse Mtn-Pt. Arena</td>
<td>9/1-9/30</td>
<td>0</td>
<td>None</td>
<td>NA</td>
</tr>
<tr>
<td>Pl. Arena-Pt. Reyes</td>
<td>7/10-9/30</td>
<td>24,251</td>
<td>2,315</td>
<td>4,300</td>
</tr>
<tr>
<td></td>
<td>7/1-7/15</td>
<td>46</td>
<td>1,830</td>
<td>4,500</td>
</tr>
<tr>
<td></td>
<td>7/29-9/10</td>
<td>22,892</td>
<td>16,712</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>8/1-7/15</td>
<td>22,892</td>
<td>16,712</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>7/1-7/15</td>
<td>26,211</td>
<td>5,862</td>
<td>None</td>
</tr>
<tr>
<td>Horse Mtn-Pt. Arena</td>
<td>2/12-7/6</td>
<td>11,159</td>
<td>9,704</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>7/22-11/12</td>
<td>10,376</td>
<td>13,275</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>4/15-11/2</td>
<td>62,784</td>
<td>45,610</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>4/1-10/31</td>
<td>79,862</td>
<td>77,205</td>
<td>None</td>
</tr>
<tr>
<td>RECREATIONAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US/Canada Border-Cape Alava</td>
<td>7/3-8/30</td>
<td>8,115</td>
<td>467</td>
<td>500</td>
</tr>
<tr>
<td>Cape Alava-Queets River</td>
<td>7/3-8/30</td>
<td>1,989</td>
<td>182</td>
<td>300</td>
</tr>
<tr>
<td>Queets River-Leadbetter Pt.</td>
<td>7/3-8/30</td>
<td>19,825</td>
<td>6,349</td>
<td>7,400</td>
</tr>
<tr>
<td>Leadbetter Pt.-Cape Falcon</td>
<td>7/10-9/30</td>
<td>24,251</td>
<td>2,315</td>
<td>4,300</td>
</tr>
<tr>
<td>Cape Falcon-Humbug Mtn</td>
<td>4/1-10/31</td>
<td>14,000</td>
<td>5,500</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>7/1-7/15</td>
<td>26,211</td>
<td>5,862</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>7/22-11/12</td>
<td>10,376</td>
<td>13,275</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>4/15-11/2</td>
<td>62,784</td>
<td>45,610</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>4/1-10/31</td>
<td>79,862</td>
<td>77,205</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a/ Treaty troll effort reported as landings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b/ Treaty troll landings through 8/12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c/ Numbers shown as chinook quotas for Non-treaty troll and sport fisheries North of Falcon are guidelines rather than quotas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d/ Only the overall chinook harvest guideline for all recreational fisheries north of Cape Falcon is a quota.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals to Date

<table>
<thead>
<tr>
<th>Effort</th>
<th>Chinook Catch</th>
<th>Coho Catch</th>
</tr>
</thead>
<tbody>
<tr>
<td>TROLL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treaty Indian</td>
<td>230</td>
<td>283</td>
</tr>
<tr>
<td>Washington Non-Treaty</td>
<td>571</td>
<td>611</td>
</tr>
<tr>
<td>Oregon</td>
<td>5,456</td>
<td>2,900</td>
</tr>
<tr>
<td>California</td>
<td>16,960</td>
<td>13,200</td>
</tr>
<tr>
<td>Total Troll</td>
<td>23,217</td>
<td>16,994</td>
</tr>
<tr>
<td>RECREATIONAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington</td>
<td>45,740</td>
<td>44,800</td>
</tr>
<tr>
<td>Oregon</td>
<td>65,626</td>
<td>35,100</td>
</tr>
<tr>
<td>California</td>
<td>183,079</td>
<td>132,100</td>
</tr>
<tr>
<td>Total Recreational</td>
<td>294,445</td>
<td>212,000</td>
</tr>
<tr>
<td>PFMC Total</td>
<td>317,662</td>
<td>228,994</td>
</tr>
</tbody>
</table>
OCN SPAWNER ABUNDANCE
FREQUENCY OF "CRITICAL" STATUS AMONG MAJOR BASINS
(1990-99)
<table>
<thead>
<tr>
<th>PARENT SPAWNER STATUS b</th>
<th>SMOLT TO ADULT MARINE SURVIVAL (^{a})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALLOWABLE TOTAL FISHERY IMPACT</td>
</tr>
<tr>
<td></td>
<td>Low</td>
</tr>
</tbody>
</table>

| High | \(\leq 15\%\) | \(\leq 30\%\) | \(\leq 35\%\) |
| Parent Spawners achieved Level #2 rebuilding criteria and grandparent spawners achieved Level #1 rebuilding criteria |

| Medium | \(\leq 15\%\) | \(\leq 20\%\) | \(\leq 25\%\) |
| Parent spawners achieved Level #1 or greater rebuilding criteria |

| Low | \(\leq 15\%\) | \(\leq 15\%\) | \(\leq 15\%\) |
| Parent spawners less than Level #1 rebuilding criteria |

Parental Spawners less than 19% of full seeding \(\leq 10\%-13\%\)
STATUS UPDATE ON THE 2000 REVIEW OF AMENDMENT 13 TO THE PACIFIC COAST SALMON PLAN

OCN WORK GROUP
Sam Sharr, ODFW
Curt Melcher, ODFW
Tom Nickelson, ODFW
Dr. Pete Lawson, NMFS
Dr. Robert Kope, NMFS
Dr. John Coon, PFMC

September 4, 2000
TABLE OF CONTENTS

LIST OF TABLES... ii
LIST OF FIGURES ... ii
LIST OF APPENDICES... iii
INTRODUCTION ... 1
GOALS AND OBJECTIVES ... 6
METHODS ... 7
 Analysis of Current Status of OCN Coho ... 7
 Population Production Models ... 7
 Analysis of Parental Spawner Categories .. 8
 "Critical" Category .. 8
 "Very Low", "Low", "Medium", and "High" Parental Spawner Categories ... 9
 Analysis of Marine Survival Categories .. 9
 Establishing Fishery Exploitation Rates .. 11
RESULTS ... 11
 Current Status of OCN Coho Populations and Progress Towards Rebuilding 11
 Definitions of Marine Survival Categories ... 12
 "Extremely Low" Marine Survival ... 12
 "Very Low" Marine Survival ... 12
 "Low" Marine Survival ... 12
 "Medium" Marine Survival ... 17
 "High" Marine Survival .. 17
 Definitions of Spawner Density Categories .. 17
 "Critical" Spawner Density .. 17
 "Very Low", "Low", "Medium", and "High" Parental Spawner Categories .. 19
 Fishery Impact Rates ... 19
 "Critical" Parental Spawner Density Status ... 19
 "Extremely Low" Marine Survival ... 19
 "Very Low" Parent Spawner Category .. 21
 "Low" Marine Survival Low Marine Survival .. 21
 "Medium" Marine Survival ... 21
 "High" Marine Survival .. 22
DISCUSSION ... 22
REFERENCES ... 24
APPENDIX .. 26
LIST OF TABLES

Table Page
1. Current Amendment 13 harvest management matrix with parental spawner and marine survival categories and associated fishery harvest impact rates for OCN coho. ...5
2. Prediction of marine survival categories from OPI hatchery smolt-to-jack survival rates (1970-1999). Adult numbers have been updated using re-scaled SRS-based estimates. Numbers for smolts are in millions, jacks and adults in thousands. ...16
3. Proposed revisions to the harvest management matrix in Plan Amendment 13 showing allowable fishery impacts and ranges of resulting recruitment for each combination of parental spawner abundance and marine survival.20

LIST OF FIGURES

Figure Page
1. Map of the Oregon Coast showing major river basins that produce OCN coho and the sub-aggregate grouping of those basins. ..3
2. Relationship of jack:smolt versus adult:smolt ratios for OPI hatchery coho (the four different shaded symbols represent the four new marine survival categories in the revised harvest management matrix).10
3. Total annual pre-fishery ocean population of adult OCN coho. The population for each return year is shown as a stacked bar with hatched portions depicting fishery related impacts and solid portions depicting spawning escapement. The cohorts originating from the 1971, 72, and 73 brood cycles are depicted by light gray, gray, and black, respectively.13
4. Annual parental spawners and resulting pre-fishery recruits for the cohorts originating from the 1971, 72, and 73 brood cycles. ...14
5. Returns per spawner for OCN coho sub-aggregates for the 1990, 91, and 92 brood cycles. Hatched bars indicate returns per spawner of less than one (failure to replace). ..15
6. Probability of basin-level extinction in 4 generations as a function of spawner density. All Oregon coastal basins are combined. ..18
LIST OF APPENDICES

Appendix Page

1. ...A timeline for meetings, work assignments, progress reports, and a final report for the OCN Work Group that is completing a year 2000 review of Amendment 13 to the Pacific Fishery Management Council Salmon Management Plan.26

2. List of meeting dates and attendees for the ad hoc OCN work group that was approved by the PFMC in November 1999. ...27
INTRODUCTION

Oregon Coastal Natural (OCN) coho are an aggregate of naturally produced coho stocks from Oregon coastal streams (Figure 1). Historically this aggregate was the largest contributor of naturally produced coho caught in ocean fisheries off Oregon and California. OCN coho are also part of an even larger aggregate of natural and hatchery production south of Leadbetter Point, Washington known as the Oregon Production Index (OPI). Because of their relative importance OCN coho abundance has a significant role in setting allowable harvest levels in fisheries in the OPI area, particularly in fisheries south of Cape Falcon, Oregon.

OCN coho spawning escapements were severely depressed in the late 1970's and a schedule to rebuild OCN coho stocks by 1987 was part of the original Pacific Fishery Management Council (PFMC) Fishery Management Plan (FMP) and the subsequent 1984 Framework Amendment. The rebuilding program for OCN coho was predicated upon managing fisheries for a long-term average Maximum Sustainable Yield (MSY) escapement goal of 200,000 spawners. Under this regime the total harvest of OCN coho in all fisheries was determined as the pre-season abundance forecast minus the desired MSY escapement of 200,000. Management success was contingent upon the correct assessment of MSY escapement and the accuracy of the pre-season forecast.

In 1986, the pre-season outlook for OPI coho returns was very poor but contrary to expectations, the return of the Columbia River hatchery component of the OPI was one of the largest ever recorded. Unfortunately, on the basis of the pre-season forecast, the Council had established minimal ocean fisheries in 1986 to insure that the MSY escapement goal for OCN coho was met. Because the Council was poorly equipped to respond rapidly to forecast error, ocean fisheries never had an opportunity to access the large surplus of fish. More than 1.5 million coho escaped the ocean fisheries in 1986 and entered the Columbia River. This economic loss prompted the ocean salmon fishing industry to petition the Council for a modification of the fixed MSY escapement goal policy. The concern was that management in the wake of some future forecasts similar to such as occurred in 1986 might preclude or severely restrict fisheries again in the future even though hatchery stocks might be present in sufficient numbers to support a harvest. In response to this concern, the Council adopted Amendment 7 to the FMP in 1987.

Amendment 7 allowed for a deviation from the fixed goal of 200,000 spawners at forecasted OCN abundance levels below 400,000. The Council's analysis of management under Amendment 7 indicated that the strategy of reducing escapement goals in response to low abundance would result in increased economic benefits. It also projected that despite reductions in harvest constraints, spawning escapement shortfalls would be infrequent and would have a low likelihood of jeopardizing continued productivity of the OCN stock aggregate. The Council's analysis was predicated upon the assumption that large deviations from average productivity of the OCN stock such as occurred in 1983 are infrequent. However, under Amendment 7, OCN productivity continued to decline, the
escapement goal was set below the 200,000 MSY goal in five of the nine years from 1985 through 1993 and the MSY goal was never met.

Based upon the persistent declining trend in OCN abundance and productivity, the PFMC took emergency action to reduce the harvest rates on OCN coho in 1991, 1992, and 1993. The Council also completed a stock status review of OCN coho in 1992. The review concluded that the decline of OCN coho could be attributed to widespread degradation and under-seeding of freshwater habitat, a long-term trend of poor ocean rearing conditions, and excessive harvest associated with over-estimation of OCN stock abundance.

By 1993 it was clear that management provisions in Amendment 7 frequently resulted in spawning escapement goals below those required for MSY, and consequently resulted in repeated failure to achieve MSY escapement. To address these failures the Council considered other management alternatives and in late 1993 adopted Amendment 11 to the FMP. Amendment 11 re-instituted a fixed MSY escapement goal for OCN coho, it restated the goal as 42 fish per mile, and it stipulated that when the pre-fishery population size dropped below 250,000, impacts from fisheries should not exceed 20% of the pre-fishery population. It further stipulated that, if the spawner densities dropped below 28 adults per mile, incidental fishery impacts would be allowed up to 20% only if they caused no irreparable harm to the OCN stock.

Despite the fixed MSY escapement goal and harvest constraints imposed by Amendment 11, OCN stocks failed to exhibit signs of recovery. By 1993 the National Marine Fisheries Service (NMFS) had already begun to receive petitions to list Oregon coastal coho populations as threatened under the Federal Endangered Species Act (ESA). In 1995 NMFS proposed coho populations in both the Oregon Coastal and Southern Oregon/ Northern California evolutionarily significant units (ESU's) for listing. In an attempt to restore OCN coho and avert the proposed ESA listings the state of Oregon initiated the Governor's Coastal Salmon Restoration Initiative (Oregon Plan). Concurrently the PFMC began to consider another amendment to their FMP that would insure that fishery related impacts would not act as a significant impediment to the recovery of depressed OCN coho stocks. The harvest management portion of the Oregon Plan formed the basis for changes in Council management of ocean fisheries and became the template for Amendment 13.

Unlike Amendment 11, Amendment 13 proposed managing fisheries based upon exploitation rates, not spawner escapement objectives. These exploitation rates are based upon estimates of habitat production potential that incorporate effects of both freshwater and marine environments and are derived from habitat-based assessment and modeling of OCN coho production. Amendment 13 also divides the coastwide aggregate of OCN coho stocks into smaller sub-aggregates based upon geographic proximity and genetic similarities among contributing populations (Figure 1). This approach addresses differences in production potential between populations in different basins. Furthermore, whereas management actions in Amendment 11 relied upon pre-season projections of abundance from inaccurate forecasting models, management actions in Amendment 13 are triggered by actual brood year specific parental spawner abundance and juvenile
Figure 1. Map of the Oregon Coast showing major river basins that produce OCN coho and the sub-aggregate grouping of those basins.
survival observations (Table 1). The Pacific Fishery Management Council approved amendment 13 to the FMP in November 1997 (PFMC 1997).

Large-scale habitat and fisheries monitoring programs are principal components of the Oregon Plan. Results of these programs improve the accuracy and precision of data and assumptions used in habitat based production models. The PFMC recognized this dynamic nature of population projections based upon habitat based production models. They stipulated that Plan Amendment 13 should be reviewed and updated on a periodic basis to incorporate new information and that the first review will be completed in the year 2000.

The first reference to a review occurs in the overview section of the Council adopted management alternative (Section 2.2.1). It stipulates that the review must be comprehensive and adaptive. The reference in this section also contains a provision for Council approved changes to methods used to estimate technical parameters in the alternative without plan amendment provided that the proposed changes are reviewed and recommended by the Scientific and Statistical Committee. The purpose of this provision was to facilitate the timely incorporation of the best available science into the management process.

The second reference to a review in Council adopted management alternative occurs in Section 2.2.3 (Monitoring and Evaluation). It stipulates that a comprehensive evaluation mechanism will be implemented on a pre-determined schedule in the year 2000. It further stipulates that the review will be completed as a cooperative effort among co-managers in the PFMC process and that all features of the management alternative are subject to change upon completion of the scheduled review. Finally, it stipulates that the review will include but not be limited to evaluations of: 1) the relationship of parents to adult recruits at various life stages; 2) results of juvenile monitoring such as estimates of egg to fingerling to smolt survival, summer and winter carrying capacities, and stock specific parents to smolt relationships; 3) the relationship of fishery impacts on stock sustainability at various freshwater and marine survival rates; 4) stratified estimates of fishery related mortality; 5) parental spawner and marine survival levels that define decision points in the management matrix; 6) updated run reconstructions based on new Stratified Random Survey (SRS) methods for assessing spawners abundance and assessments of fisheries impacts based on post-season runs of the Fisheries Regulatory Assessment Model (FRAM); and 7) SRS related assumptions about viable spawning habitat.

The third reference to a performance review of Plan Amendment 13 occurs in Section 4.3 (Council Response to Technical Concerns). Council language in this section acknowledges that the new management approach in the Amendment must be adaptive and that a full review of the approach must occur in 2000. Technical concerns raised by the SSC and STT regarding parameters in the management matrix that trigger allowable fishery impacts were specifically emphasized. In that regard, the Council specifically recommended that the review include special emphasis on the assessment of (1) how well the amendment provides for significant rebuilding towards full seeding and (2) a detailed
Table 1. Current Amendment 13 harvest management matrix with parental spawner and marine survival categories and associated fishery harvest impact rates for OCN coho.

<table>
<thead>
<tr>
<th>PARENT SPAWNER STATUS b/</th>
<th>ALLOWABLE TOTAL FISHERY IMPACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>≤ 15%</td>
</tr>
<tr>
<td>Parent Spawners achieved Level #2 rebuilding criteria and grand parent spawners achieved Level #1 rebuilding criteria</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>≤ 15%</td>
</tr>
<tr>
<td>Parent spawners achieved Level #1 or greater rebuilding criteria</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>≤ 15%</td>
</tr>
<tr>
<td>Parent spawners less than Level #1 rebuilding criteria</td>
<td></td>
</tr>
<tr>
<td>Parent spawners less than 38% of level 1 rebuilding criteria</td>
<td>≤ 10-13% c/</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stock Component Rebuilding Criteria:</th>
<th>Level #1 (50%)</th>
<th>Level #2 (75%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern</td>
<td>10,900</td>
<td>16,400</td>
</tr>
<tr>
<td>North - Central</td>
<td>27,500</td>
<td>41,300</td>
</tr>
<tr>
<td>South - Central</td>
<td>25,000</td>
<td>37,500</td>
</tr>
<tr>
<td>Southern</td>
<td>2,700</td>
<td>4,100</td>
</tr>
<tr>
<td>Total</td>
<td>66,100</td>
<td>99,300</td>
</tr>
</tbody>
</table>

a/ Smolt to adult survival as estimated from measured smolt to jack survival for OPI coho.
b/ In the event that a spawner criteria is achieved, but a major basin within the stock component is less than ten percent of the full seeding level, the next tier of additional harvest would not be allowed in mixed stock fisheries for that component, nor additional impacts within that particular basin.
c/ This impact rate criteria applies when parent spawners are less than 38% of the Level #1 rebuilding criteria, or when marine survival conditions are extremely low as in 1994-95 (i.e. < 0.06% hatchery smolt to jack survival)
In the November 1999 meeting of the PFMC, the Oregon Department of Fish and Wildlife (ODFW) proposed the formation of an ad hoc OCN work group to complete the stipulated 2000 review. The proposed group would include representatives from ODFW, the PFMC staff, the Scientific and Statistical Committee (SSC), the Salmon Technical Team (STT) and an ODFW or WDFW representative on the Oregon Production Index Technical Team (OPITT) with ODFW as the lead agency. In recognition of their scientific expertise and oversight role with respect to the Oregon Plan, ODFW recommended that representatives from Oregon's Governor appointed Independent Multidisciplinary Science Team (IMST) be asked to attend all meetings of the OCN work group in an advisory capacity. ODFW also proposed a meeting and work schedule for the group that culminates with a final report for SSC and full Council review in November of 2000 (Appendix 1).

The Council approved the ODFW proposal in the November 1999 meeting and directed Dr. J. Coon of PFMC, Dr. R. Kope of NMFS, and Dr. P. Lawson of NMFS to be the representatives from the PFMC staff, the STT and the SSC respectively. ODFW subsequently appointed their Ocean Salmon Manager, S. Sharr, as their staff representative, C. Melcher, as their representative from OPITT (and the STT), and T. Nickelson (co-author of Amendment 13 and the subsequent risk assessment). ODFW also proposed a meeting and work schedule for the team that culminated in a final report for SSC and full Council review in November of 2000. The ad hoc review team has had five meetings since their inception in November 1999. Dates and attendance lists for the meetings are shown in Appendix 2.

GOALS AND OBJECTIVES

Two technical concerns that the Council SSC and STT explicitly identified as review items in Section 4.3 were: (1) how well the amendment provides for significant rebuilding towards full seeding and (2) a detailed review of the selection of parental spawner and marine survival criteria that trigger allowable impact rates in fisheries. Similarly, the IMST (1999) has identified the need for (1) explicit recovery criteria and (2) explicit links between biologically based production models for OCN coho and the parental spawner and marine survival criteria used as trigger points in the harvest management matrix of Plan Amendment 13. In addition during the early stages of their deliberations, the OCN Work Group recognized the need for more specific exploitation rate guidelines that minimize fishery impacts on OCN coho when stock size is extremely low and marine survival is very poor. The National Marine Fisheries Service (NMFS) has subsequently expressed similar interest in more specific guidelines for the "most adverse stock condition" (June 9, 2000 letter from William Stelle, Jr., Regional Administrator, NMFS to Jim Lone, Chair, PFMC). These Council, SSC, STT, IMST, OCN Work Group, and NMFS concerns have provided the focus for our initial discussions and analyses.
METHODS

Based upon recommendations from the Council, SSC, STT and the IMST, the OCN work group identified a need to focus immediate attention on the following: 1) review the current status of OCN coho based upon current adult return and recruitment data; 2) define a new "Critical" parental spawner trigger point for OCN coho that is the minimum spawner density required to avoid the significantly increased risk of extinction associated with depensatory demographic effects; 3) identify a new "Extremely Low" marine survival category point that recognizes the very poor marine survival experienced by OCN coho in recent years; 4) construct an expanded version of the Plan Amendment 13 harvest management matrix that incorporates these two new trigger points; and 5) define the new parental spawner and marine survival trigger points based upon results of the habitat based production model.

Analysis of Current Status of OCN Coho

Recalibrated fishery impacts, spawner abundance, and total pre-fishery population data for OCN coho were used to examine population trends. Trends in pre-fishery ocean population size were examined for the entire OCN aggregate. Trends in spawner abundance and recruitment were examined by sub-aggregate.

Population Production Models

A habitat based production model constructed by Nickelson and Lawson (1999) that incorporates environmental, demographic, and genetic stochasticity was used to examine changes in extinction rates with decreasing parental spawner abundance. This analytical approach takes advantage of an established and peer reviewed production model that was used during the risk assessment analysis for Plan Amendment 13 (ODFW and NMFS 1998). It also addresses the need identified by the SSC, STT, and IMST for an explicit link between management trigger points and a biologically based population production model for OCN coho. Hereafter, this analytical tool will be referred to as the Nickelson and Lawson Model.

A simpler deterministic version of the Nickelson and Lawson Model was used to assess population responses to parental spawner and marine survival trigger points. This deterministic model was also used to establish exploitation rates that would not hinder recovery of OCN coho under varying conditions of marine survival and parental spawner abundance. The model employed the density dependent freshwater survival equation from Nickelson and Lawson (1998) to predict changes in population abundance in the best habitat that might occur at different combinations of spawner abundance and harvest impact. The equation is as follows:

\[S_{t+3} = S \ Efm(1 - h) \]

[1]
where:
\[S = \text{the OCN coho spawning population}, \]
\[t = \text{the year}, \]
\[E = 1,250 \text{ eggs per spawner, assuming an average fecundity of 2,500 eggs per female and a 1:1 sex ratio}, \]
\[f = \text{a density dependent freshwater survival function } 0.338(0.079 P^{0.669}) \text{ where } P \text{ is the percent of full seeding of the best habitat}, \]
\[m = \text{marine survival rate for wild fish in a given category, and} \]
\[h = \text{harvest impact}. \]

Equation [1] was used to determine the spawner escapement that would result from a specific harvest impact. It was also used to estimate the range of spawner populations anticipated to occur in each cell of the matrix. By rearranging Equation [1], the harvest impact that would result in a predetermined spawner escapement was determined:

\[
h = 1 - \left[\frac{S_{t+3}}{S_t E f m} \right]. \quad [2]
\]

With the exception of the case of estimating the upper range of expected spawner population, the value of \(m \) used in all calculations was the minimum observed survival rate for a given marine survival category (except for an outlier in the medium category that was excluded from the analysis because it resulted from an El Nino event). Use of the minimum observed survival rate resulted in the development of allowable harvest impacts based on conservative estimates of population productivity.

Analysis of Parental Spawner Categories

"Critical" Category

When a stock is at low abundance a primary management objective is to avoid reducing spawner escapements to a level that increases the risk of extinction. Identifying this point is a difficult task due, in part, to our lack of information about the behavior of populations at low abundance. Genetic analyses conclude that several hundred active spawners are needed in a population for preserving genetic diversity (Lynch 1990, Waples 1990). Ecological studies suggest that one or two hundred spawners per mile are needed for a fully functioning ecosystem (Bilby et al. 1998), and that lower spawner densities lead to smaller juvenile salmon with potentially lower survival rates (Cedarholm, et al. 2000).

In addition to genetic and ecological effects there is thought to be decreased reproductive success at low population sizes due to random effects. This phenomenon is termed "depensation." McElhaney, et al. (2000) provide a more thorough discussion of risks to salmon populations at low abundances.

The technique we used to identify risk of extinction as a function of population size focused on the depensatory influence of random events on spawning success at low
densities. These effects include skewed sex ratios, asynchronous escapement timing, redd scouring and other factors that can prevent spawners from finding mates, or from reproducing successfully if they do mate. Our analysis used the model developed by Nickelson and Lawson (1998) that was previously applied to the risk assessment analysis of Amendment 13.

In this analysis we ran the model starting from actual 1994 population sizes. We simulated four broods with 10% marine survival to fill each basin with fish, then simulated 16 generations with 1% marine survival to observe population decline including a large number of extinction events. There was no fishery mortality modeled. All coastal basins were modeled, and 1,000 iterations of the model were run.

In order to assess risk of extinction as a function of population size we first converted spawner abundance to fish per mile (fpm) by dividing total spawners by the number of miles in each basin. We then looked at the population density in each of the first twelve low-survival generations and looked ahead four generations for extinction events. For this analysis extinction was defined as zero fish per mile. Starting populations were sorted into bins of 0.1-1, 1.1-2, ... 9.1-10, 10.1-20, and >20 fpm, with a probability of extinction tabulated for each bin.

"Very Low", "Low", "Medium", and "High" Parental Spawner Categories

The Habitat Based Production Model suggests that productivity of the population at spawner densities above the critically low level are much more sensitive to variations in marine survival than to spawner abundance. Consequently, for parental spawner density levels above the critically low level we have opted to retain the categories in the existing matrix. Typically, so long as spawner abundance is out of the critically low category it is not the most significant determinant of recovery but is an important measure of recovery success. Spawner abundance categories in the current matrix for other than critically low spawner densities are adequate for rapid recovery and maximum yield from the population when marine survivals are at levels adequate for recruits per spawner of greater than one.

Analysis of Marine Survival Categories

The ratio of jacks per smolt at Columbia River and Oregon Coastal hatcheries has been retained as the best pre-season indicator of marine survivals for adult OCN returns expected in the current year. The fit of jacks per smolt on adults per smolt for each brood year of hatchery production from 1967 through 1996 is relatively good (Figure 2). Groupings in these empirical data were useful for identifying preliminary boundaries of four marine survival categories. The Deterministic Model was subsequently used to define the population production potential for each of these categories. The categories are defined as follows:

"Extremely Low" - The upper bound of the category is the marine survival at which populations fail to replace themselves regardless of spawner abundance.
Figure 2. Relationship of jack:smolt versus adult:smolt ratios for OPI hatchery coho (the four different shaded symbols represent the four new marine survival categories in the revised harvest management matrix).
"Low" - The range of marine survivals that result in populations that stabilize at about 50% of full seeding. At low spawner abundance the reduced density dependent effects in freshwater rearing areas compensate for low abundance and recruits per spawner are greater than one. However, as spawner abundance increases, density dependent effects begin to exert negative affects on freshwater productivity and recruitment declines.

"Medium" - When marine survivals are in this category the population, on average, experiences recruitment >1 across the entire spectrum of parental spawner abundance. By this definition the "Medium" category would functionally encompass all marine survivals greater than those observed in the "Low" category. However, groupings of the empirical data in the relationship between jacks per smolt and adults per smolt (Fig. 1) clearly point to a fourth category of higher marine survival and were useful for identifying an upper boundary for the "Medium" category.

"High" - The High survival category remained the same as originally designed in Amendment 13. Empirical data in the relationship between jacks per smolt and adults per smolt (Fig. 1) were useful for identifying a group of marine survival values in the upper end of the range that correspond to this category.

Establishing Fishery Exploitation Rates

Minimum and maximum populations expected to result from application of the matrix were calculated for each cell using the Deterministic Model described above. The low range of expectations for each cell is based on the combination of its maximum allowable harvest impact, its minimum parent spawner population, and its minimum expected marine survival rate. The high range of expectations for each cell is based on the combination of its maximum allowable harvest impact, its maximum parent spawner population and its maximum expected marine survival rate.

RESULTS

Current Status of OCN Populations and Progress Towards Rebuilding

Ocean coho populations began to decline in the mid-1970's (Figure 3). Although Council action has resulted in major reductions in fisheries related impacts on these populations in the last decade the decline has continued. Based upon criteria in the current harvest management matrix of Plan Amendment 13, one or more of OCN coho stock components (sub-aggregates) have been in the "low" parental spawner category every year in the last decade. Moreover, an average of more than 20% of all major basins had escapements less than 10% of full seeding, an average of 40% were at less than 38% of Level 1 (19% of full seeding), and an average of two thirds were below Level 1 (50% of full seeding). In the most recent three brood cycles (parent years 1997, 1998, and 1999), more than
40% of all major basins in 1997 and 1998 had spawner densities at critical levels of less than 10% of full seeding and more than half were in the extremely low 38% of Level 1 category. The situation was more hopeful in 1999 when no major basin had less than 10% of full seeding and only 14% were less than 38% of Level 1. However, in 1999 more than half of all basins had seeding levels at less than Level 1.

Marine survivals experienced by the 1991-93 brood cycles (1994-96 adult returns) were classified as "extremely low". Marine survival remained in the "extremely low" category for fish produced from the 1994 and 1995 brood cycles but improved to the lower end of the "Medium" category for the 1996 and 1997 brood cycles. As might be expected, recruitment in the face of such low marine survival has been very poor and the 1994-96 broods failed to replace themselves (Figure 4). Poor spawner to recruitment ratios are evident among all subaggregates (Figure 5). Modest improvements in marine survival and OCN productivity have occurred in the last two years but evidence for a long term increasing trend is lacking.

Definitions of Marine Survival Categories

Given the proposed breakdown of marine survival categories the jack:smolt ratio has predicted the category accurately in 27 out of 30 years. Twice, survival was under-predicted (1986 and 1992 adult returns) and only once survival was over predicted. This latter case was the 1983 El Niño year during which, as predicted by some, additional adult mortality occurred after the jacks returned. This phenomenon is now widely recognized and can be anticipated in the future. The mean values of all four survival categories are highly significantly different from each other (p < 0.01).

"Extremely Low" Marine Survival

This category corresponds to the very poor survival experienced by adults returning in 1992-98 and is predicted by jack:smolt ratios of <0.08% (Table 2). Under the criteria of this category, it is expected that marine survival of hatchery fish will be less than 1%, as has been the case for six of the seven years in the empirical data. Adult marine survival observed in the Extremely Low category ranges from 0.5% to 1.3% and averages 0.7%. For modeling purposes, it was assumed that marine survival of wild fish in this category would be twice that of hatchery fish.

"Low" Marine Survival

The new "Low" marine survival category encompasses values from the low end of the original "Medium" category, which was extremely wide, ranging from less than 2% marine survival to over 8%. The new "Low" Adult marine survival category is predicted by jack:smolt ratios of 0.08-0.14%. Under the conditions of this category, it is expected that marine survival of hatchery fish will range from 1% to possibly 3%. Marine survival
Figure 3. Total annual pre-fishery ocean population size of adult OCN coho. The population for each return year is shown as a stacked bar with hatched portions depicting fishery related impacts and solid portions depicting spawning escapement. The cohorts originating from the 1971, 72, and 73 brood cycles are depicted by light gray, gray, and black, respectively.
Figure 4. Annual parental spawners and resulting pre-fishery recruits for the cohorts originating from the 1971, 72, and 73 brood cycles.
Figure 5. Returns per spawner for OCN coho sub-aggregates for the 1990, 91, and 92 brood cycles. Hatched bars indicate returns per spawner of less than one (failure to replace).
Table 2. Prediction of marine survival categories from OPI hatchery smolt-to-jack survival rates (1970-1999). Adult numbers have been updated using re-scaled SRS-based estimates. Numbers for smolts are in millions, jacks and adults in thousands.

<table>
<thead>
<tr>
<th>Year (t)</th>
<th>Smolts (t-1)</th>
<th>Jacks (t-1)</th>
<th>Jacks/Smolt</th>
<th>Adults (t)</th>
<th>Adults/Smolt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>28.8</td>
<td>179.4</td>
<td>0.62%</td>
<td>3365.0</td>
<td>11.7%</td>
</tr>
<tr>
<td>1976</td>
<td>34.0</td>
<td>171.5</td>
<td>0.50%</td>
<td>3885.3</td>
<td>11.4% Average 10.2%</td>
</tr>
<tr>
<td>1970</td>
<td>32.4</td>
<td>162.2</td>
<td>0.50%</td>
<td>2765.1</td>
<td>8.5% Maximum 11.7%</td>
</tr>
<tr>
<td>1974</td>
<td>33.6</td>
<td>144.2</td>
<td>0.43%</td>
<td>3071.1</td>
<td>9.1% Minimum 8.5%</td>
</tr>
</tbody>
</table>

HIGH ADULT MARINE SURVIVAL
(Predicted by Smolt-to-Jack Survival ≥0.40%)

<table>
<thead>
<tr>
<th>Year (t)</th>
<th>Smolts (t-1)</th>
<th>Jacks (t-1)</th>
<th>Jacks/Smolt</th>
<th>Adults (t)</th>
<th>Adults/Smolt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>28.8</td>
<td>179.4</td>
<td>0.62%</td>
<td>3365.0</td>
<td>11.7%</td>
</tr>
<tr>
<td>1976</td>
<td>34.0</td>
<td>171.5</td>
<td>0.50%</td>
<td>3885.3</td>
<td>11.4% Average 10.2%</td>
</tr>
<tr>
<td>1970</td>
<td>32.4</td>
<td>162.2</td>
<td>0.50%</td>
<td>2765.1</td>
<td>8.5% Maximum 11.7%</td>
</tr>
<tr>
<td>1974</td>
<td>33.6</td>
<td>144.2</td>
<td>0.43%</td>
<td>3071.1</td>
<td>9.1% Minimum 8.5%</td>
</tr>
</tbody>
</table>

MEDIUM ADULT MARINE SURVIVAL
(Predicted by Smolt-to-Jack Survival of 0.15-0.39%)

<table>
<thead>
<tr>
<th>Year (t)</th>
<th>Smolts (t-1)</th>
<th>Jacks (t-1)</th>
<th>Jacks/Smolt</th>
<th>Adults (t)</th>
<th>Adults/Smolt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972</td>
<td>33.3</td>
<td>103.7</td>
<td>0.31%</td>
<td>1924.8</td>
<td>5.8%</td>
</tr>
<tr>
<td>1978</td>
<td>35.5</td>
<td>103.2</td>
<td>0.29%</td>
<td>1824.1</td>
<td>5.1%</td>
</tr>
<tr>
<td>1986</td>
<td>29.0</td>
<td>77.6</td>
<td>0.27%</td>
<td>2435.8</td>
<td>8.4%</td>
</tr>
<tr>
<td>1973</td>
<td>35.3</td>
<td>91.4</td>
<td>0.26%</td>
<td>1817.0</td>
<td>5.1%</td>
</tr>
<tr>
<td>1988</td>
<td>35.0</td>
<td>85.1</td>
<td>0.24%</td>
<td>1666.1</td>
<td>4.8%</td>
</tr>
<tr>
<td>1975</td>
<td>32.6</td>
<td>76.2</td>
<td>0.23%</td>
<td>1652.8</td>
<td>5.1%</td>
</tr>
<tr>
<td>1983</td>
<td>32.7</td>
<td>68.2</td>
<td>0.21%</td>
<td>595.7</td>
<td>1.8% El Nino</td>
</tr>
<tr>
<td>1979</td>
<td>37.1</td>
<td>72.5</td>
<td>0.20%</td>
<td>1476.7</td>
<td>4.0%</td>
</tr>
<tr>
<td>1991</td>
<td>37.2</td>
<td>68.7</td>
<td>0.18%</td>
<td>1874.8</td>
<td>5.0%</td>
</tr>
<tr>
<td>1989</td>
<td>36.0</td>
<td>60.8</td>
<td>0.17%</td>
<td>1721.4</td>
<td>4.8%</td>
</tr>
<tr>
<td>1980</td>
<td>34.2</td>
<td>57.6</td>
<td>0.17%</td>
<td>1224.0</td>
<td>3.6%</td>
</tr>
<tr>
<td>1982</td>
<td>37.3</td>
<td>61.3</td>
<td>0.16%</td>
<td>1266.8</td>
<td>3.4% Average 4.5%</td>
</tr>
<tr>
<td>1977</td>
<td>33.5</td>
<td>53.7</td>
<td>0.16%</td>
<td>987.5</td>
<td>2.9% Maximum 8.4%</td>
</tr>
<tr>
<td>1981</td>
<td>32.3</td>
<td>48.7</td>
<td>0.15%</td>
<td>1064.5</td>
<td>3.3% Minimum 2.9%</td>
</tr>
</tbody>
</table>

LOW ADULT MARINE SURVIVAL
(Predicted by Smolt-to-Jack Survival of 0.08-0.14%)

<table>
<thead>
<tr>
<th>Year (t)</th>
<th>Smolts (t-1)</th>
<th>Jacks (t-1)</th>
<th>Jacks/Smolt</th>
<th>Adults (t)</th>
<th>Adults/Smolt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>35.9</td>
<td>46.7</td>
<td>0.13%</td>
<td>718.4</td>
<td>2.0%</td>
</tr>
<tr>
<td>1984</td>
<td>30.9</td>
<td>31.7</td>
<td>0.10%</td>
<td>689.4</td>
<td>2.2%</td>
</tr>
<tr>
<td>1999</td>
<td>29.1</td>
<td>29.1</td>
<td>0.10%</td>
<td>322.4</td>
<td>1.1% Average 2.0%</td>
</tr>
<tr>
<td>1985</td>
<td>30.0</td>
<td>26.0</td>
<td>0.09%</td>
<td>717.5</td>
<td>2.4% Maximum 2.4%</td>
</tr>
<tr>
<td>1987</td>
<td>39.5</td>
<td>32.8</td>
<td>0.08%</td>
<td>880.1</td>
<td>2.2% Minimum 1.1%</td>
</tr>
</tbody>
</table>

EXTREMELY LOW ADULT MARINE SURVIVAL
(Predicted by Smolt-to-Jack Survival ≤0.08%)

<table>
<thead>
<tr>
<th>Year (t)</th>
<th>Smolts (t-1)</th>
<th>Jacks (t-1)</th>
<th>Jacks/Smolt</th>
<th>Adults (t)</th>
<th>Adults/Smolt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>39.7</td>
<td>27.2</td>
<td>0.07%</td>
<td>261.7</td>
<td>0.7%</td>
</tr>
<tr>
<td>1997</td>
<td>31.6</td>
<td>20.4</td>
<td>0.06%</td>
<td>197.2</td>
<td>0.6%</td>
</tr>
<tr>
<td>1992</td>
<td>42.1</td>
<td>25.6</td>
<td>0.06%</td>
<td>540.8</td>
<td>1.3%</td>
</tr>
<tr>
<td>1996</td>
<td>29.5</td>
<td>17.3</td>
<td>0.06%</td>
<td>184.9</td>
<td>0.6%</td>
</tr>
<tr>
<td>1998</td>
<td>24.6</td>
<td>9.8</td>
<td>0.04%</td>
<td>202.6</td>
<td>0.8% Average 0.7%</td>
</tr>
<tr>
<td>1995</td>
<td>32.3</td>
<td>11.8</td>
<td>0.04%</td>
<td>147.1</td>
<td>0.5% Maximum 1.3%</td>
</tr>
<tr>
<td>1994</td>
<td>39.5</td>
<td>5.1</td>
<td>0.01%</td>
<td>202.4</td>
<td>0.5% Minimum 0.5%</td>
</tr>
</tbody>
</table>
observed in the Low category ranges from 1.1% to 2.4% and averages 2.0%. The 1987 data point is also in this category. It was originally grouped with what is now the Extremely Low group, but was almost double any other adult survival value in the group. For modeling purposes, it was assumed that marine survival of wild fish in this category would be 1.5 times that of hatchery fish.

"Medium" Marine Survival

Marine survival observed in the new "Medium" survival category ranges from 2.9% to 8.4%, except in an El Niño year (1983), and averages 4.5%. Under the conditions of this category, it is expected that marine survival of hatchery fish will range from slightly less than 3% to a high of 6-8%. This category is predicted by jack:smolt ratios of 0.15-0.39%. For modeling purposes, it was assumed that marine survival of wild fish would be 1.5 times that of hatchery fish at the low end of this category and equal to that of hatchery fish at the high end of this category.

"High" Marine Survival

The difference between High and Medium survival is by far the most obvious and discernable. The cluster of empirical data points in this category is easily recognized in the plotted relationship between jacks per smolt and adults per smolt (Figure 2). Adult marine survival observed in the High category ranges from 8.6% to 11.7% and averages 10.2%. Under the conditions of this category, it is expected that marine survival of hatchery fish will be greater than 8%. This category is predicted by jack:smolt ratios ≥0.40%. For modeling purposes, it was assumed that marine survival of wild fish in this category would be the same as that of hatchery fish.

Parental Spawner Categories

"Critical" Parental Spawner Density

Results were consistent across basins. Larger basins, and basins with higher quality habitat, showed overall lower extinction probabilities, as expected. But all basins showed an exponential increase in extinction probability with declining spawner densities. The probabilities all trended higher below densities of 3 to 5 fpm. Because the response of all basins was so similar, we combined the results across all basins to arrive at a single curve which expresses the probability of extinction in four generations as a function of spawner density (Figure 6).

As with all model results, this curve must be interpreted carefully. The absolute extinction probabilities are not very meaningful, as they are sensitive to the marine survival rate chosen and many of the modeling parameters. What is informative and
Figure 6. Probability of basin-level extinction in 4 generations as a function of spawner density. All Oregon coastal basins are combined.
important is the shape of the curve: as populations drop below about 5 fpm the risk of extinction starts to rise rapidly.

"Very Low", "Low", "Medium", and "High" Parental Spawner Categories

The "Very Low" Parental Spawner category in the new matrix ranges from 12% to 19% of full seeding which corresponds with the lowest parental spawner category in the existing matrix that is defined as < 19% of full seeding. The "Low", "Medium", and "High" Parental Spawner Categories are identical to those in the existing matrix and are as follows: 19%-50% of full seeding; 50%-75% of full seeding; and 75% - 100% of full seeding for parental spawners and 50%-75% of full seeding for grand parental spawners.

Fishery Impact Rates

A harvest management matrix that incorporates new marine survival and spawner abundance categories is shown in Table 3. Fishery impact rates appropriate for observed conditions of marine survival and parental spawner abundance appear in cells of the matrix that are delineated by the intersections of vertical boundary lines for marine survival categories and horizontal boundary lines for parental spawner categories.

"Critical" Parental Spawner Density Status (Cells A, F, K, and P)

From a biological perspective, a population with parental spawner abundance in this category should not been subjected to fishery related impacts at all. Risk of extinction for a population in this category increases rapidly because of demographic effects such as two spawners not being able to find each other. Under these conditions, impacts other than natural mortality may significantly increase the risk to long term viability of the population and should be avoided. Incidental fishery related impacts that occur when spawner abundance for the aggregate or any sub-aggregate falls within this category will significantly increase the risk of extinction for the population and are not prudent or biologically justifiable. For this reason, we have opted to show no harvest related impacts for the cells in this category.

"Extremely Low" Marine Survival (Cells B-E)

The population should not be expected to replace itself when in this survival category except when parent spawner status is "Very Low" or "Critical". In those latter circumstances, poor recruitment as a result of low spawner abundance is offset by survival gains from compensatory effects associated with reduced juvenile densities in freshwater rearing areas. Therefore, since populations in this category cannot recover, even at optimal spawner densities, we should be in a conservation mode and attempt to minimize harvest impacts. The Council has previously recognized the need for
Table 3. Proposed revisions to the harvest management matrix in Plan Amendment 13 showing allowable fishery impacts and ranges of resulting recruitment for each combination of parental spawner abundance and marine survival.

<table>
<thead>
<tr>
<th>Parent Spawner Status</th>
<th>Marine Survival Index (based on return of jacks per hatchery smolt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Extremely Low (<0.0008 jacks/smolt)</td>
</tr>
<tr>
<td>Category</td>
<td>% Full Seeding</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td>High</td>
<td>≥75</td>
</tr>
<tr>
<td>99,075</td>
<td>132,100</td>
</tr>
<tr>
<td>Medium</td>
<td>>50-75</td>
</tr>
<tr>
<td>66,050</td>
<td>99,075</td>
</tr>
<tr>
<td>Low</td>
<td>>19-50</td>
</tr>
<tr>
<td>25,099</td>
<td>66,050</td>
</tr>
<tr>
<td>Very Low</td>
<td>>12-19</td>
</tr>
<tr>
<td>15,852</td>
<td>25,099</td>
</tr>
<tr>
<td>Critical</td>
<td>≤4 fish/m</td>
</tr>
<tr>
<td>15,852</td>
<td></td>
</tr>
<tr>
<td>Survival Rates</td>
<td>min. max.</td>
</tr>
<tr>
<td>Observed Hatchery</td>
<td>0.9% 2.6%</td>
</tr>
<tr>
<td>Estimated Wild</td>
<td>2.0 2.0</td>
</tr>
</tbody>
</table>

Sub-aggregate and Basin Specific spawner Criteria

<table>
<thead>
<tr>
<th>Sub-Aggregate/ Basin Specific Spawner Criteria</th>
<th>Rebuilding Levels (Number of Spawners)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critically Low Spawner Densities</td>
<td>50% of Full Seeding</td>
</tr>
<tr>
<td>Northern</td>
<td></td>
</tr>
<tr>
<td>Nehalem</td>
<td>2,100</td>
</tr>
<tr>
<td>Tillamook</td>
<td>240</td>
</tr>
<tr>
<td>Nestucca</td>
<td>216</td>
</tr>
<tr>
<td>Ocean Tributaries</td>
<td>48</td>
</tr>
<tr>
<td>Total</td>
<td>2,604</td>
</tr>
<tr>
<td>North Central</td>
<td></td>
</tr>
<tr>
<td>Siletz</td>
<td>516</td>
</tr>
<tr>
<td>Yaquina</td>
<td>852</td>
</tr>
<tr>
<td>Alsea</td>
<td>1,812</td>
</tr>
<tr>
<td>Siuslaw</td>
<td>2,736</td>
</tr>
<tr>
<td>Ocean Tributaries</td>
<td>684</td>
</tr>
<tr>
<td>Total</td>
<td>6,600</td>
</tr>
<tr>
<td>South Central</td>
<td></td>
</tr>
<tr>
<td>Umpqua</td>
<td>3,528</td>
</tr>
<tr>
<td>Coos</td>
<td>864</td>
</tr>
<tr>
<td>Coquille</td>
<td>648</td>
</tr>
<tr>
<td>Coastal Lakes</td>
<td>960</td>
</tr>
<tr>
<td>Total</td>
<td>6,000</td>
</tr>
<tr>
<td>South</td>
<td></td>
</tr>
<tr>
<td>Rogue</td>
<td>648</td>
</tr>
<tr>
<td>Total</td>
<td>648</td>
</tr>
<tr>
<td>Coastwide Total</td>
<td>15,852</td>
</tr>
</tbody>
</table>

1/ The low end of the expected recruits in each cell is based on the combination of low end spawner abundance and low end marine survival of wild fish expected for the cell, except for "Critical" parental spawner status. In those cells, low end estimates were based on the combination of expected high parental spawner numbers and the minimum marine survival expected for the cell. The high range of expected recruitment in each cell is based on the combination of the high expected parental spawners and the high expected marine survival for the cell.

2/ The "Critical" parental spawner value is only estimated for the entire OCN aggregate and is 12% of full seeding. The values shown for basins and subaggregates are approximated as 12% of their full seeding values.
conservation when these marine survival conditions existed in 1997 and 1998 and adopted pre-season impact rates below guidelines shown in the existing harvest management matrix.

When marine survivals persist in the " Extremely Low" category the population can sustain itself but only at levels that can dangerously approach the " Critical" level. Density dependent compensatory effects in the freshwater environment reduce the risk to the population from minor impacts other than natural mortality but caution is very important when populations are experiencing these conditions. The harvest impact of 7% for cells within this marine survival category is the lowest estimated OCN impact rate achieved to-date in coastwide salmon fisheries in the last decade. It is lower than the lowest <10-13% impact limit currently imposed by the matrix but is an attempt to reduce impacts from fisheries to the lowest level possible without precluding fisheries than have no directed take of wild or natural coho. Model results verify that fishery impacts of 7% or less will likely not reduce the ability of the population to sustain at replacement levels or increase slightly as abundance approaches the " Critical" level.

Very Low Parent Spawner Status (Cells G, L, and Q)

The original impact rate of ≤10-13% has now been set at ≤11%. The 11% value is based on the average impact rate that has been achieved by the Council since the severely restrictive non-retention fisheries were implemented for coho in 1994. On average under conditions defined by these cells, parental spawners will not decline to the " Critical" level if harvest impacts are held to less than 11%. Originally, the reduced harvest impact of ≤10-13% was only required when parental spawner status is " Very Low" and marine survival is " Low" marine survival category. The modification proposes to expand its application " Very Low " parental spawner abundance across the higher marine survival categories as a conservation and rebuilding measure.

Low Marine Survival (Cells H-J)

These cells were in the original matrix with the allowable harvest impact set at ≤15%. We do not propose any changes in these cells. When survival is at the low end of the " Low" marine survival category, the median population in the " Low" parent spawner status category should nearly replace itself at this harvest impact. The median spawner population in the " Medium" and " High" categories should fall into the " Low" category at this harvest impact because these population levels are not able to replace themselves at the low end marine survival.

Medium Marine Survival (Cells M-O)

We propose to leave the allowable harvest impact values of these cells the same as in the original matrix. The harvest impact of 15% in cell M should result in the median population in the " Low" parent spawner status category to increase to about the median
population of the "High" category. The 20% and 30% harvest impacts of cells N and O, respectively should allow the median populations of these two parent spawner categories to increase to approximately full seeding of the best habitat.

High Marine Survival (Cells R-T)

We propose to increase the harvest impacts that are allowable when marine survival is in the high category. Marine survival in this range results in an extremely productive population. We propose maximum harvest impacts of 25%, 38%, and 45% when parent spawners are in the Low, Medium, High categories, respectively. These harvest impacts are based on the goal of achieving 150% of full seeding of the best habitat following harvest.

DISCUSSION

Parental spawner and marine survival data provide no evidence that recovery or rebuilding of OCN coho populations is imminent. The data strongly suggest that those populations may presently be particularly vulnerable to all fishing and non-fishing related impacts. Near term Council management of ocean fisheries will likely continue to be constrained to areas of the management matrix defined by very low parental spawner abundance and marine survival. The SSC and the IMST have expressed particularly strong concerns about the scientific justification for decision criteria and allowable impact rates when parental spawner abundance and marine survival are low. Under those conditions measurement imprecision for modeling parameters exacerbates uncertainties about predicted population responses.

Plan Amendment 13 represents a very conservative and precautionary approach to managing OCN coho that differs significantly from management under previous amendments to the FMP. The management matrix in Amendment 13 is designed to achieve impact rates; not escapement goals and trigger points in the matrix are based upon observed parental spawner performance and indicators of marine survival rather than on inaccurate and imprecise preseason forecasts. Management is also based upon the parental spawner status of subaggregates and major basins hence provide protection for the weakest stocks in the overall OCN aggregate.

While the STT, SSC, and IMST have acknowledged the obvious precautionary measures that have been incorporated into the management matrix in Amendment 13, they have still expressed concerns about the effectiveness of the matrix in managing OCN populations when either spawner abundance or marine survival are very low. The Council has used discretionary authority to keep fishery related impacts on OCN coho to levels well below the maximum allowable under the existing matrix. However, there is no explicit link between either the allowable impacts in the matrix or the more conservative Council approved impact rates and population production models for OCN.
populations that have been experiencing both poor marine survival and "Very Low" or "Critical" spawner abundance.

The newly proposed matrix in general describes OCN coho in three states of recovery:
1) A population, which fails to replace itself, even in the absence of fishery impacts.
 The population is in this state when it is in the "Critical" parental spawner category.
2) A population that stabilizes at approximately 50% of full seeding. This occurs when marine survival is "Extremely Low".
3) A population in recovery that is increasing or is at maximum productive capacity.
 This state encompasses all of the cells defined the intersection of the "Low", Medium", and "High" marine survival categories and for all parental spawner categories greater than "Critical".

The upper bounds for the "Critical" spawner abundance and "Extremely Low" marine survival categories are explicitly defined by results from stochastic and deterministic forms of the Nickelson and Lawson model and the intersection of these two categories is the anchor for the rest of the matrix.

By definition, there should be no allowable fishery related impacts when a population is in the "Critical" state of spawner abundance. Model results indicate that any loss of spawning potential for OCN coho at his low level results in a significant increase in the risk of extinction as a result of density dependent demographic effects. We have defined the parental spawner status of a subaggregate as being "Critical" if the status of at least one major basin within the subaggregate is "Critical". Therefore, since the categories in the matrix are defined by the status of the weakest subaggregate, if the status of the population in a major basin is "Critical" the parental spawner status in the matrix is defined as "Critical".

The second state describes a population that is stable but not in recovery and fishery impacts when the population is in this state should be minimized at a very low level. In the previous matrix the Council was given the discretion of maintaining fishery impacts at some level less than 10-13% when the population was in this state. The new matrix limits fishery impacts in this category to 7% regardless of spawner abundance. Modeling results indicate that at a 7% impact rate the population can at least replace itself when marine survival is "Extremely Low" and parental spawners are "Very Low". Limiting fishery impacts to 7% when marine survival is "Extremely Low" but parental spawner abundance is greater than "Very Low" does not result in increased recruitment because of density dependent effects during freshwater rearing but is warranted as a precautionary measure.

Although boundaries for "Low" and "Medium" marine survival categories have changed slightly in the new matrix, harvest rates for those categories when parental spawners are in the "Low" and "Medium" categories are the same as the corresponding cells in the existing matrix. Modeling the "Low", Medium" and "High" marine survival categories in the new matrix allows for slightly higher fishery impact rates at "High" parental spawner abundance and show the benefits of maintaining adequate spawning populations and the potential productivity of OCN coho when marine survival is high. However, it should
be noted that years in the "High" marine survival category are a rare event. Most years will probably fall in the "Low" and "Medium" categories.

In conclusion, the proposed new matrix implements more conservative allowable fishery impacts rates at very low levels of spawner abundance and marine survival and slightly higher rates when conditions of spawner abundance and marine survival are favorable. All of the results are based upon output from Nickelson and Lawson habitat based production model. One of the key assumptions of the model is that the status of freshwater spawning and rearing habitat is stable. Hence modeling results and the predicted probabilities for recovery of OCN coho are explicitly linked to the maintenance or increased availability of high quality freshwater habitat. If the quantity or quality of available freshwater habitat decreases further it is unlikely that any harvest management at low level of spawner abundance will result in stable or increasing OCN abundance.

REFERENCES

Appendix 1. A timeline for meetings, work assignments, progress reports, and a final report for the OCN work group that is completing a year 2000 review of Amendment 13 to the Pacific Fishery Management Council Salmon Management Plan.

Dec. 1999: Initial meeting of work group.
- Identify key issues.
- Biological (e.g. spawning escapement requirements).
- Methodological (e.g. review of habitat production model).
- Procedural (e.g. practical implementation of Plan Amendment 13).
- Incorporate results of Aug. 1999 IMST workshop on definition of recovery and criteria for assessing recovery of OCN coho.
- Initial work assignments.

Mar. 2000: Progress report to SSC, PFMC, and IMST.
Jun. 2000: Progress report to SSC and IMST.
Sep. 2000: Preliminary report to SSC, PMFC, and IMST.
Sep. – Nov. 2000: Revisions and final edits to report.
Nov. 2000: Final report to SSC, PFMC, and IMST.
Appendix 2. List of meeting dates and attendees for the ad hoc OCN work group that was approved by the PFMC in November 1999.

Designated Work Group Attendees

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PFMC Staff</td>
<td>Dr. J Coon</td>
<td>Dr. J Coon</td>
<td>Dr. J Coon</td>
<td>Dr. J Coon</td>
</tr>
<tr>
<td>NMFS / SSC</td>
<td>Dr. P. Lawson</td>
<td>Dr. P. Lawson</td>
<td>Dr. P. Lawson</td>
<td>Dr. P. Lawson</td>
</tr>
<tr>
<td>NMFS / STT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPITT</td>
<td>C. Melcher</td>
<td>C. Melcher</td>
<td>C. Melcher</td>
<td>C. Melcher</td>
</tr>
<tr>
<td>ODFW / OPITT</td>
<td>S. Sharr</td>
<td>S. Sharr</td>
<td>S. Sharr</td>
<td>S. Sharr</td>
</tr>
<tr>
<td>ODFW Staff</td>
<td>T. Nickelson</td>
<td>T. Nickelson</td>
<td>T. Nickelson</td>
<td>T. Nickelson</td>
</tr>
</tbody>
</table>

Advisory Attendees

<table>
<thead>
<tr>
<th>IMST</th>
<th>Dr. B. Pearcy</th>
<th>Dr. B. Pearcy</th>
<th>Dr. S. Gregory</th>
<th>Dr. S. Gregory</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMST</td>
<td>Dr. S. Gregory</td>
<td>Dr. T. Wainwright</td>
<td>Dr. B. Mcintosh</td>
<td>M. Chilcote</td>
</tr>
<tr>
<td>NMFS Staff</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODFW Staff</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mr. Sam Sharr presented a summary of the draft report of the Amendment 13 review. We did not have time to fully assimilate the information presented, but can offer several observations. The new approach is strong because it is based on a peer-reviewed model and reflects conditions the Council has been facing in recent years. The report presents a major change in the Amendment 13 matrix, extending specification into the low end of both parental spawning escapement and marine survival. The Scientific and Statistical Committee (SSC) has not examined the analysis and rationale for the exploitation rate values contained in the matrix.

The matrix specifies a critical cutoff of four spawners per mile in a basin. It is appropriate to specify a critical low spawner escapement level, because extinction risks increase rapidly as spawner densities drop. Any basin with escapements in this range will likely have experienced extinctions of local populations. There is no biological justification for inducing fishing mortality on such stocks. However, it is not clear whether the value of four spawners per mile, as suggested in the review document, provides adequate protection. The SSC has requested an analysis of the risk of low levels of incidental fishing mortality when a stock is near the critical level.

Additional review is needed prior to Council action. The SSC would like to continue our review of this report at the October meeting.

PFMC
09/12/00
Don McIsaac
PFMC
2130 SW Fifth Ave., Suite 224
Portland, OR 97201

Date: July 23, 2000

Subject: Comments concerning Amendment 13

Attn: SSC, STT, and Oregon Coastal Natural coho Work Group

I would like to take this opportunity to submit comments concerning the PFMC directed Amendment 13 comprehensive adaptive analysis to be completed in 2000.

When one reviews the amendment it becomes clear that there are two separate components that should be included in any comprehensive adaptive analysis. First, the estimated production parameters for freshwater habitat derived from the Habitat-Based Life Cycle Model developed by Nickleson and Lawson (1996), and a second component, the fishery impact limit and spawning rebuilding criteria used in the amendment.

While I agree with the Goals and Objectives identified by the OCN Work Group I am concerned that there are a number of other issues and analysis that are necessary if a full comprehensive adaptive review is to be completed for the Council and NMFS. The two technical concerns that the Council’s Scientific and Statistical Committee and the Salmon Technical Team explicitly identified as review items in Section 4.3 are; (1) how well the amendment provides for significant rebuilding towards full seeding and (2) a detailed review of the selection of parental spawner and marine survival criteria that trigger allowable impact rates in fisheries. While these are critical issues for review I would like to the Work Group to consider the following:
- At present Amendment 13 identifies basins with a ‘Severe conservation problem’ to be at less <10% full seeding of best habitat. If you look at this direction closely it becomes clear that it is not conservative enough to protect the genetic integrity of many of our coho populations. For example, in the Tillamook basin the spawners needed to fully seed the best habitat is 2,000 adults using the Habitat based model. So, this ‘severe conservation direction’ would not be implemented until there is less than 200 spawners returning to the whole Tillamook basin. Does the Council and NMFS really believe there is not a severe conservation problem until the adult abundance estimates for all five rivers emptying into the Tillamook basin has reached the low of 200 returning adults. The Nestucca River would be another example, - full seeding of the ‘good quality habitat’ using the model would be 1,800 adults returning to spawn naturally and the ‘severe conservation direction’ would not be in effect unless the abundance estimate was less than 180 adults. This river has approximately 170 mile of spawning habitat!

- Fragmented populations is a significant issue that must be addressed as Council attempts to understand recovery of the numerous ESA listed populations. If one reviews adult spawner count estimates by basin, and spawner distribution patterns it becomes clear that there are a few demes that are holding up the total spawning abundance estimate for a basin.

- Predictive capabilities of models. In the recent past the agencies have over-predicted OCN coho abundance 13 out of 14 years. Shouldn’t this issue be reviewed if we expect to improve abundance estimates especially when populations are so low in many basins? We are not achieving stock replacement at the population scale, the sub-unit scale, nor at the deme scale, the true unit of conservation.

- Marginal habitats are not taken into account. When Amendment 13 discusses ‘full seeding’ it actually is referring to only about 25% of the anadromous habitat in our OCN rivers and lakes – the good quality habitat. What is the scientific rational to increase fishing pressure when populations are at 50% seeding of the good quality habitat thereby postponing the recovery in to the future as well as failing to acknowledge marginal habitats and small populations?
- How exactly is the amendment going to utilize the ODFW life history monitoring data – smolt production from each site to verify model abundance estimates and ocean conditions? Are the various monitoring sites a real representation of existing aquatic habitat conditions throughout the Coast Range? How is the ODFW monitoring program going to be linked to fishing rate triggers established in Amendment 13?

- The habitat model uses an egg deposition to summer parr as a constant 7.2% for all stream reaches when at full seeding. How was this data point derived and does this truly reflect the condition of Oregon coastal streams? What are the implications of over predicting survival at this stage of the model?

- The model looks at habitat carrying capacity by basin and sets abundance criteria for full seeding but fails to discuss stream productivity in relation to nutrient recycling. Bilby, Cedarholm, and Brickell have all documented the fact that spawned out carcasses are a vital source of nutrient enrichment which stimulates primary production in streams. This research must not be ignored when developing basin specific escapement goals.

- Data from Rapid Bioassessment on fish distribution indicates fry distribution patterns may be different than model projections at the reach level. I would urge the Work Group to discuss this issue of seasonal distribution with ODFW Research and review data gathered from Mid-Coast Watersheds Council Rapid Bioassessment Project.

- Model does not take into account significant storm events that effect overwintering survival. Accelerated sedimentation, bedload scour, and channel stability are all significant factors affecting early life history survival. Does this model take a conservative approach if data is unavailable?

- Should there be an analysis concerning differential impacts to severely depressed OCN North coast populations and Lower Columbia/Clackamas/ Sandy as a result of multiple selective fisheries off the Oregon Coast as well as North of Falcon and Buoy 10.
While state and federal agencies fully analyze and research the issues identified, I would urge the Council and NMFS to take a precautionary approach when setting OCN exploitation rates. We would support a strategy that would include a three brood cycles <5% total exploitation rate (freshwater as well as ocean) in order to maximize spawner recruitment.

I believe that many of the issues that have been identified by the IMST and the public may in fact be a research projects that should be initiated immediately in order to use the data as soon as possible. If I can be of any further assistance in developing recovery strategies do not hesitate to call.

Sincerely,

[Signature]

Paul Engelmeyer
NW Policy Analyst
Living Oceans Program
September 6, 2000

Kay Brown
Oregon Department of Fish & Wildlife
2501 SW First Avenue
Portland, OR 97207

Dear Kay,

The IMST has examined the management of salmon harvest under the Oregon Plan for Salmon and Watersheds. Numerous assessments, including the Oregon Plan (1997), have concluded that historical harvest rates have been too high and have contributed to the decline of OCN coho salmon. Harvest management, therefore, is a critical element of the Oregon Plan for Salmon and Watersheds.

The IMST report on harvest management of OCN coho salmon includes important information about the regional process that establishes harvest levels. This report is in its final stages of preparation but will not be completed prior to the time when material is needed for the PFMC meeting in Sacramento.

We are using this letter to convey to the Oregon Department of Fish and Wildlife specific information on harvest level establishment that we feel needs to be included in the PFMC process. In this letter, we will provide only those conclusions and recommendations that are related to the PFMC process. It is our recommendation that this information and the specific recommendations made below be part of the position of ODFW as they represent the State of Oregon to PFMC.

General Findings

Recent severe declines in coho salmon make all management decisions critical for the survival of remaining stocks. Major advances have been made in regulation of harvest and monitoring of salmon harvest in Oregon since the mid-1980s. Reductions of harvest impacts under Amendment 13 have been substantial and have been essential to prevent extinction of coho salmon stocks along the Oregon Coast and lower Columbia River.

Several analytical tools and monitoring programs have strengthened salmon management in Oregon. In particular, the life-cycle model and spawner monitoring surveys are scientifically rigorous and represent some of the most advanced salmon management tools in North America.
Habitat degradation and over-harvest are two of the major factors in the long-term decline of OCN coho salmon. Poor ocean conditions in recent years have limited population responses to decreasing levels of salmon harvest. Habitat restoration and sound harvest management will strongly influence the rate at which salmon populations recover when climate-related conditions for ocean survival improve.

The State of Oregon and PFMC have not explicitly defined recovery of depressed salmon stocks and criteria for evaluating recovery. The various efforts to restore salmon may be disconnected and less effective until such explicit perspectives have been articulated. The IMST strongly encourages the development of a program that integrates life cycle modeling with the monitoring of salmon populations, habitat, and harvest. The goal is to synthesize information to strengthen the current policy framework and fishery management programs to meet the criteria for recovery.

Because OCN coho salmon stocks have declined to such low numbers and spawners have not replaced themselves in recent years, we are continuing to recommend adjusting fisheries impacts to the lowest levels possible. The IMST strongly endorses the development of critical conservation measures to be added to the harvest impact matrix of Amendment 13. We view the development of conservative measures for both axes of the harvest matrix as essential. In addition, indicators of extreme conditions may be needed as practical limits when severe conditions are observed. An example would be estimates of the percent of survey sites for which zero spawners were observed in any given year. These indicators would be consistent with Minimum Sustainable Escapement approaches recommended by the National Research Council in its review of management of Pacific salmon.

The Year 2000 Review of Amendment 13 of the Pacific Fisheries Management Council offers an opportunity for the State of Oregon to evaluate management directions and future directions for salmon harvest management.

Specific Conclusions and Recommendations

The upcoming IMST report on harvest management will focus on the influence of harvest management on stocks of wild coho salmon in Oregon. The report identifies five specific science questions. Two of these are particularly relevant to the PFMC process.

Question 1: How has harvest management affected status of stocks? Are current harvest policies likely to contribute to rebuilding salmon stocks under the Oregon Plan for Salmon and Watersheds?

Conclusions

Past harvest practices clearly have over-harvested OCN coho salmon stocks and have contributed to the population declines that led to listing under ESA. Since 1994, harvest
impacts have been reduced dramatically from impacts that ranged from 30%-90% prior to 1990 to 8-13% since 1994.

Modeling results predict that rapid rebuilding of OCN stocks under Amendment 13 will not occur if the ocean survival rates of the late 1990’s continue, regardless of harvest impacts. However, the life cycle model predicts that populations would decline at a lower rate without any source of harvest, either directed or indirect (ODFW-NMFS 1998). At low marine survival rates, elimination or reduction of human-caused sources of mortality could reduce probability of extinction or possibly allow modest recovery and would increase the rate of recovery under higher ocean survival rates. However, under poor ocean conditions, significant recovery may not be possible even with minimal harvest impacts (ODFW-NMFS 1998) because escapement of OCN coho salmon is too low. In recent years, spawners have not replaced themselves. Management actions have not improved conditions after adoption of Amendment 13. Improved escapement is essential for a rapid recovery of OCN coho, and control of fishing mortality is the best available tool for achieving improved escapements and more rapid “recovery” of these stocks. Setting minimum sustainable escapement levels could improve probabilities of recovery.

Widespread spawning distributions of coho salmon populations are needed to minimize risks of extinctions when the region shifts from climate regimes that are favorable for survival to conditions that result in low rates of ocean survival (see IMST Recovery Report). Management criteria should be linked to monitoring results for the proportion of all habitats or monitored stream reaches that are occupied by spawners. This measure is a critical index for the recovery of OCN stocks.

At recent low population numbers and lack of replacement of stocks and stock aggregates, fishery impacts on OCN coho salmon are very uncertain. Knowledge of population dynamics for coho salmon at extremely low populations is technically weak because of the lack of research on these conditions. Strongly conservative management criteria and explicit definition of "extremely low populations" (e.g., 10% of fully seeding high quality habitats) are needed in such conditions.

Current management includes irregular and relatively haphazard distribution of carcasses with no link to priorities or expected outcomes. Successful management of carcasses under the Oregon Plan will require explicit experimental measurement of the responses of salmon at all life stages to additional food resources from carcasses.

These conclusions are particularly relevant to the PFMC process, and on that basis we make the following recommendations:

Recommendations

1. The IMST recommends that ODFW advocate that new criteria be incorporated into the matrix of Amendment 13 to include “very low” OCN coho salmon parent spawner abundance and “very low” marine survival.
September 6, 2000
Brown
Page 4 of 4

This will strengthen the criteria designed for protection or recovery of populations under extreme conditions. Under these conditions, no directed coho fisheries should be allowed and fishery related impacts should be reduced to the lowest levels possible.

2. The IMST recommends that ODFW advocate the applicability of (a) the minimum sustainable escapement (MSE) concept to augment the use of (b) the number of OCN ocean recruits in setting harvest impacts.

 This could provide a safeguard against loss of stocks during periods of low freshwater or ocean survival. The National Research Council (1996) recommends this methodology to minimize extinction risks of a population or metapopulation and to enhance recovery. Because spawner abundances have been extremely low and recruitment for all three recent brood years (1995, 1996, 1997) has been below replacement, fishery impacts should be as close to zero as possible until established signs of recovery are observed.

3. The IMST recommends that ODFW advocate that decisions to change harvest levels incorporate elements of stock abundance over longer periods of time and include consideration of the spatial distribution of stocks.

 The timeframe and spatial distribution of OCN coho salmon stocks is a critical aspect of measuring recovery. Harvest policies should be revised to require responses over sufficient time to indicate real population trends. We offer the following criteria as possible examples to be incorporated into the decision process whereby harvest levels are changed.

 Criterion 1. Stock Abundance. Stock abundance has achieved a defined minimum sustainable escapement before harvest impacts can exceed 10-13%.

 Criterion 2. Duration of Recovery. Stocks have achieved greater than 1:1 spawner-to-spawner replacement for each brood year over at least three brood cycles.

 Criterion 3. Spatial Distribution. Stocks have achieved two consecutive generations of recovery (spawning recruits/parental adult of >1.5) with seeding above level 2 (75% seeding of available habitat).

4. The IMST recommends that ODFW advocate initiation of a scientific review of the Fisheries Regulation Analysis Model (FRAM) used to estimate harvest impact on OCN stocks components.

 Such a review might be incorporated into the Year 2000 review of Amendment 13.
5. The IMST recommends that ODFW advocate adherence to the policy that links decisions on ocean harvest to the status of the weakest stock component.

Oregon currently adheres to this requirement, but pressures to allow fishing by sport or commercial fishermen create challenges for following this policy.

6. The IMST recommends that ODFW advocate determining the relationship between the response of salmon juveniles and their food webs to carcass abundance.

Criteria should be developed that consider the impacts of harvest management on carcass abundance and distribution. Strategies for stock recovery need to recognize the role of food resources and carcasses in production of smolts in freshwater habitats. As an example, management criteria could identify minimum numbers of spawners per mile of stream to provide the food base necessary to support young salmon.

Question 2: Are estimates of mortality from non-retention fisheries accurate and does this source of mortality affect recovery of salmon?

Conclusions

Current estimates of mortality from non-retention fisheries are highly variable, subject to substantial uncertainty, and cannot be characterized as accurate. Experimental methods are limited and subject to many sources of error. Even low incidental mortality rates of OCN coho salmon could significantly slow recovery for depressed stocks. Scientific review of hook and release mortalities should be an on-going process, as environmental conditions change.

Recommendations

7. The IMST recommends that ODFW support PFMC review of hook & release.

This is a key factor for impact analysis of fisheries. Analysis of hook & release mortality should continue after 2000 because uncertainty is high and ocean conditions are highly variable.

8. The IMST recommends that ODFW advocate determination of the degree to which plausible extremes in mortality and in spatial and temporal variation can influence the risk of extinction.

Hooking mortality and encounter rates are variable, and sensitivity analysis can help evaluate their impact on probability of extinction. Highly sensitive parameters should be strengthened by monitoring, especially by double-index tagging.
September 6, 2000
Brown
Page 6 of 6

Question 3: Are models used for exploring management questions about Oregon coho salmon scientifically rigorous? Are these models effectively integrated into management and policy analysis and decision-making?

Conclusions

The life cycle models developed by ODFW and NMFS (Nickelson and Lawson) are rigorous, but are not being used to their full potential. This model can be strengthened, and additional models can be developed to provide the ability to confirm model performance and identify areas of uncertainty.

Several features of the model and information base that could be improved in future model development and applications are 1) scarce data, 2) aggregated functions that should be articulated separately, and 3) incorporation of variability (locally and regionally; short term and long term) into model projections. Currently modeling by PFMC and ODFW uses a static view of future landscape conditions. Restoration of freshwater habitats and future disturbance processes are not considered. Current analyses are dynamic in terms of ocean conditions and fish populations, but they treat watersheds and freshwater habitat as fixed and unchanging.

Coordinated analysis of harvest management, monitoring, model applications, and risk assessment would create a more scientifically sound decision-making context for salmon harvest management and allow management to adapt and improve more quickly. Unfortunately we do not find a concrete link between the operation of the model, the monitoring program and the development of harvest management policy. The efforts in SRS monitoring system, basin habitat surveys, life cycle monitoring sites, and life-cycle models would be strengthened if they were integrated into an on-going program of assessment and integration of information and future stock projections.

Recommendations

9. The IMST recommends that ODFW advocate that PFMC use an explicit analytical process that incorporates monitoring results, harvest records, and the life-history model as part of the decision process for harvest levels.

 This analysis should link spawner surveys, habitat surveys, marine survival or impacts and model projections. It should also be spatially explicit to the greatest degree allowed by the data and model structure.

10. The IMST recommends that ODFW advocate that PFMC incorporate dynamic and changing landscape conditions in the analytical process to reflect potential habitat restoration, human-related degradation, and natural disturbances.

 Use of dynamic conditions for both ocean and freshwater environments will provide more realistic projections of future population trends and risks of
extinction. Such integration also recognizes regional goals to protect and restore watershed conditions along the Pacific Coast.

We hope this information will be helpful as ODFW represents the State of Oregon to the PFMC. By copy of this letter we are notifying Director Greer, ODFW Commissioners and PFMC of the IMST scientific recommendations in this matter.

Sincerely yours,

[Signature]

Logan A. Norris
Chair, IMST

cc: Director Jim Greer, ODFW
ODFW Commissioners
Don McIsaac, PFMC
Roy Hemmingway, Manager, Oregon Plan
IMST
PRELIMINARY REPORT OF THE OREGON COASTAL NATURAL COHO WORK GROUP

Situation: Under Amendment 13 to the Pacific Coast Salmon Plan and by the terms of the Oregon Salmon Plan, the management of Oregon coastal natural (OCN) coho salmon is subject to a comprehensive, adaptive review this year. The purpose of the review is to assure the rebuilding program adopted in Amendment 13 in 1997 still reflects the best science and approach to rebuilding the OCN coho stock.

In November 1999, the Council approved an Amendment 13 review process and work group to be headed by Oregon Department of Fish and Wildlife (ODFW). Mr. Sam Sharr heads the work group and will provide its preliminary recommendations to the Council at the September 2000 meeting (Supplemental Exhibit E.2.b). After reviewing comments and guidance from the Council, its advisors, and the public, the work group is scheduled to submit its final recommendations at the October/November 2000 meeting. In addition to providing guidance to the work group, the Council should begin to consider how and when any proposed changes might be implemented in future salmon seasons.

Council Guidance:

1. Provide guidance to the work group for completing recommendations for technical changes to OCN coho management as currently established by Amendment 13.

Reference Materials:

2. Letter to Don McIsaac from Paul Engelmeyer (Exhibit E.2.d, Public Comment).

PFMC
08/29/00
SCIENTIFIC AND STATISTICAL COMMITTEE METHODOLOGY REVIEW PRIORITIES

Situation: Each year, the Scientific and Statistical Committee (SSC) completes a methodology review to help assure that new or significantly modified methodologies employed to estimate impacts of the Council’s salmon management use the best available science. This review is preparatory to the Council’s adoption, at the November meeting, of all proposed changes to be implemented in the coming season, or, in certain limited cases, of providing directions for handling any unresolved methodology problems prior to the formulation of salmon management options the following March. Because there is insufficient time to review new or modified methods at the March meeting, the Council may reject their use if they have not been approved the preceding November.

At its June 2000 meeting, the Council established the priority of methodologies to be reviewed by the SSC. Based on the statements of the pertinent agencies and tribes, the Council anticipates the SSC will be provided the necessary documentation by September 29, 2000 to begin review of the new Klamath Ocean Harvest Model (KOHM) and likely some portion of the Coho Cohort Analysis Project. The next review cycle (beginning in 2001) will likely include abundance forecasts for Hood Canal, Strait of Juan de Fuca, and possibly Queets natural coho. Discussions between the SSC and Salmon Technical Team should help guide future methodology review priorities.

Council Guidance:

1. Confirm the SSC methodology review priorities.
2. Assure the agencies and tribes identify all proposed methodology changes that may affect the 2001 salmon season in time to allow Council consideration by no later than the October/November Council meeting.

Reference Materials: None.

PFMC
8/29/00