SALMON FMP CHAPTER 3 EXCERPT

3 CONSERVATION

"Conservation and management measures shall be based upon the best scientific information available."

Magnuson-Stevens Act, National Standard 2

3.1 SALMON STOCK CONSERVATION OBJECTIVES

"To the extent practicable, an individual stock of fish shall be managed as a unit throughout its range, and interrelated stocks of fish shall be managed as a unit or in close coordination"

Magnuson-Stevens Act, National Standard 3

To achieve optimum yield, prevent overfishing, and assure rebuilding of salmon stocks whose abundance has been depressed to an overfished level, this plan establishes, to the extent practicable, conservation objectives to perpetuate the coastwide aggregate of salmon stocks covered by the plan (Chapter 1). The Council's stock conservation objectives (to be achieved annually) and other pertinent stock management information are contained in Table 3-1 (following Section 3.2). Specific objectives are listed for natural and hatchery stocks that are part of the Council's preseason fishery option development process (Chapter 9), including all stocks listed under the federal ESA. The objectives may be applicable to a single stock or a complex of interrelated stocks (those sharing similarities in life-history traits, geographic distribution, habitat preferences, and genetic characteristics). Stocks that are not included in the preseason analyses may lack specific conservation objectives because the stock is not significantly impacted by ocean fisheries or insufficient management information is available from which to assess ocean fishery impacts directly. In the latter case, the conservation objective for a managed stock may serve to provide for the conservation of a closely related stock unless, or until, more specific management information can be developed.

3.1.1 Basis

The Council's conservation objectives for natural stocks may (1) be based on estimates for achieving MSY, an MSY proxy, or MSP, or (2) represent special data gathering or rebuilding strategies to approach MSY and to eventually develop MSY or MSP objectives. The objectives have generally been developed through extensive analysis by the fishery management entities with direct management authority for the stock, or through joint efforts coordinated through the Council, or with other state, tribal, or federal entities. Most of the objectives for stocks north of Cape Falcon have been included in U.S. District Court orders. Under those orders for Washington coastal and Puget Sound stocks (<u>U.S. v. Washington</u>, 626 F. Supp. 1405 [1985] and <u>Hoh v. Baldrige No. 81-742 [R] C</u>), the treaty tribes and WDFW may agree to annual spawner targets that differ from the MSP or MSY objectives. Details of the conservation objectives in effect at the time this FMP was approved are available in PFMC (1984), in individual amendment documents (see Table 1 in the Introduction), and as referenced in Table 3-1. Updated conservation objectives and ESA consultation standards are available in the most recent Preseason Report I, (Appendix A, Table A-1), and Preseason Report III (Appendix A, Table A-3) produced by the STT.

The Council's fixed conservation objectives are generally expressed in terms of an annual fishery escapement believed to be optimum for producing MSY over the long-term. The escapement objective may be (1) a specific number or a range for the desired number of adult spawners (spawner escapement), or (2) a specific number or range for the desired escapement of a stock from the ocean or at another particular location, such as a dam, that may be expected to result in the target number of spawners. The current data gathering and rebuilding objectives may be expressed as fixed or stepped exploitation or harvest rates and may include spawner floors or severely reduced harvest rates at low abundance levels (e.g., Klamath River fall chinook), or as special requirements provided in National Marine Fisheries Service (NMFS) consultation standards for stocks listed under the ESA.

3.1.2 Changes or Additions

Conservation objectives are fixed measures of the FMP intended to provide the necessary guidance during the course of the annual preseason planning process to establish salmon fishing seasons that achieve optimum yield. However, changes or additions to the stock complexes and objectives for most natural stocks may be made without plan amendment if a comprehensive technical review of the best scientific information available provides conclusive evidence that, in the view of the Salmon Technical Team, Scientific and Statistical Committee (SSC), and the Council, justifies a modification. An exception is the 35,000 natural spawner floor for Klamath River fall chinook which may only be changed by FMP amendment. The Council may change objectives for hatchery stocks upon the recommendation of the pertinent federal, state, and tribal management entities. Federal court-ordered changes in objectives will also be accommodated without a plan amendment. Insofar as possible, changes for natural stocks will only be reviewed and approved within the schedule established for salmon estimation methodology reviews (completed at the November meeting prior to the season in which they are effective) and apart from the preseason planning process. The applicable annual objectives of Council-adopted rebuilding programs developed in response to an overfishing concern or the requirements of consultation standards promulgated by NMFS under the ESA may be employed without plan amendment to assure timely implementation. All of these changes will be documented during the Council's preseason planning process.

The Council considers established conservation objectives to be stable and a technical review of biological data must provide substantial evidence that a modification is necessary. The Council's approach to conservation objectives purposely discourages frequent changes for short-term economic or social reasons at the expense of long-term benefits from the resource. However, periodic review and revision of established objectives is anticipated as additional data become available for a stock or stock complex.

3.2 OVERFISHING CRITERIA

"Any fishery management plan . . . shall . . . specify objective and measurable criteria for identifying when the fishery . . . is overfished . . . and, . . . contain conservation and management measures to prevent overfishing or end overfishing and rebuild the fishery;"

Magnuson-Stevens Act, § 303(a)(10)

"The terms overfishing and overfished mean a rate or level of fishing mortality that jeopardizes the capacity of a fishery to produce the maximum sustainable yield on a continuing basis."

Magnuson-Stevens Act, § 3(29)

In applying the Magnuson-Stevens Act definition of overfishing to salmon fisheries and establishing criteria by which to identify it, the Council must consider the uncertainty and theoretical aspects of MSY as well as the complexity and variability unique to naturally producing salmon populations. These unique aspects include the interaction of a short-lived species with frequent, sometimes protracted, and often major variations in both the freshwater and marine environments. These variations may act in unison or in opposition to affect salmon productivity in both positive and negative ways. In addition, variations in natural populations may sometimes be difficult to measure due to masking by artificially produced salmon.

3.2.1 General Application to Salmon Fisheries

In setting criteria from which to judge the conservation status of salmon stocks, the unique life history of salmon must be considered. Chinook, coho, and pink salmon are short-lived species (generally two to six years) that reproduce only once shortly before dying. Spawning escapements of coho and pink salmon are dominated by a single-year class and chinook spawning escapements may be dominated by no more than one or two-year classes. The abundance of year classes can fluctuate dramatically with combinations of natural and human-caused environmental variation. Therefore, it is not unusual for a healthy and relatively abundant salmon stock to produce occasional spawning escapements which, even with little or no fishing impacts, may be significantly below the long-term average associated with the production of MSY. This phenomenon has been observed in recent years for numerous salmon stocks, including Klamath River fall chinook and several Washington coho stocks.

Numerous West Coast salmon stocks have suffered, and continue to suffer, from an onslaught of nonfishing activities that severely reduce natural survival by such actions as the elimination or degradation of freshwater spawning and rearing habitat. The consequence of this man-caused, habitat-based variation is two fold. First, these habitat changes increase large scale variations in stock productivity and associated stock abundances, which in turn complicate the overall determination of MSY and the specific assessment of whether a stock is producing at or below that level. Secondly, as the productivity of the freshwater habitat is diminished, the benefit of further reductions in fishing mortality to improve stock abundance decreases. Clearly, the failure of several stocks managed under this FMP to produce at an historic or consistent MSY level has little to do with current fishing impacts and often cannot be rectified with the cessation of all fishing.

To address the requirements of the Magnuson-Stevens Act to clearly identify when a stock may be approaching an overfished condition or is overfished, the Council has established two separate criteria based on a stock's failure to meet its conservation objective. These criteria are denoted as a "conservation alert" and an "overfishing concern". The criteria for these two categories are based on the unique life history of salmon and the large variations in annual stock abundance due to numerous environmental variables. They also take into account the uncertainty and imprecision surrounding many estimates of MSY, fishery impacts, and spawner escapements. In recognition of the unique salmon life history, the criteria differ somewhat from the general guidance in the National Standard Guidelines (§ 600.310), but equal or exceed them in addressing the overfishing issue as it relates to salmon.

3.2.2 Conservation Alert

"A fishery shall be classified as approaching a condition of being overfished if, based on trends in fishing effort, fishery resource size, and other appropriate factors, the Secretary estimates that the fishery will become overfished within two years."

Magnuson-Stevens Act, § 304(e)(1)

To anticipate and react to potential stock declines which might lead to overfishing, the Council has established a conservation alert process with criteria and actions as described below.

3.2.2.1 Criteria

A conservation alert is triggered during the annual preseason process (Chapter 9) if a natural stock or stock complex, listed in Table 3-1, is projected to fall short of its conservation objective (MSY, MSY proxy, MSP, or floor in the case of some harvest rate objectives [e.g., 35,000 natural Klamath River fall chinook spawners]). While a projected one-year shortfall may be of little biological concern, it may also represent the beginning of production problems and is worthy of note to help prevent future stock decline.

3.2.2.2 Council Action

For all natural stocks which meet the conservation alert criteria, the Council will notify pertinent fishery and habitat managers, advising that the stock may be temporarily depressed or approaching an overfishing concern (depending on its recent conservation status), and request that state and tribal fishery managers identify the probable causes, if known. If the stock in question has not met its conservation objective in the previous two years, the Council will request the pertinent state and tribal managers to do a formal assessment of the primary factors leading to the shortfalls and report their conclusions and recommendations to the Council no later than the March meeting prior to the next salmon season.

The Council will take the following actions for stocks which trigger a conservation alert that do not qualify as exceptions under Section 3.2.4 (see Table 3-1):

- I. Close salmon fisheries within Council jurisdiction that impact the stock.
- II. In the case of Washington coastal and Puget Sound salmon stocks and fisheries managed under U.S. District Court orders, the Council may allow fisheries which meet annual spawner targets developed through relevant <u>U.S. v. Washington</u>, <u>Hoh v. Baldrige</u>, and subsequent U.S. District Court ordered processes and plans, which may vary from the MSY or MSP conservation objectives. Other than the exceptions noted above, the Council may not recommend ocean salmon fisheries which are expected to trigger a conservation alert.

If postseason estimates confirm that a stock conservation objective is not met, a rebuilding program for the following year is implicit in the conservation objective since it is based on annually meeting MSY or MSP. In addition, the Council reviews stock status annually and, where needed, identifies actions required to improve estimation procedures and correct biases. Such improvements provide greater assurance that objectives will be achieved in future seasons. Consequently, a remedial response is built into the preseason planning process to address excessive fishing mortality levels relative to the conservation objective of a stock.

The Council does not believe that a one year departure from the MSY/MSP spawner objective for salmon affects the capacity of a stock to produce MSY over the long-term (i.e., does not constitute overfishing as defined by the Magnuson-Stevens Act). However, the Council's use of a conservation alert and the rebuilding effect of the conservation objectives provides for sound resource management and responds to the concept in the National Standard Guidelines for action to address overfishing concerns in any one year. The Council's conservation objectives which are used to trigger a conservation alert are generally based on MSY or MSP rather than a minimum stock size threshold. In this respect, the Council's management approach is more conservative than recommended by the National Standard Guidelines.

3.2.3 Overfishing Concern

"For a fishery that is overfished, any fishery management plan, amendment, or proposed regulations . . . for such fishery shall—(A) specify a time period for ending overfishing and rebuilding the fishery that shall—(i) be as short as possible, taking into account the status and biology of any overfished stocks of fish, the needs of the fishing communities, recommendations by international organizations in which the United States participates, and the interaction of the overfished stock within the marine ecosystem; and (ii) not exceed 10 years, except in cases where the biology of the stock of fish, other environmental conditions, or management measures under an international agreement in which the United States participates dictate otherwise. . . ."

Magnuson-Stevens Act, § 304(e)(4)

The Magnuson-Stevens Act requires overfishing be ended and stocks rebuilt in as short a period as possible and, depending on other factors, no longer than ten years. For healthy salmon stocks which may experience a sudden reduction in production and/or spawner escapement, the limitation on fishing impacts provided by the Council's MSY or MSY proxy conservation objectives provide a stock rebuilding plan that should be effective within a single salmon generation (two years for pinks, three years for coho, and three to five years for chinook). However, additional actions may be necessary to prevent overfishing of stocks suffering from chronic depression due to fishery impacts outside Council authority, or from habitat degradation or long-term environmental fluctuations. Such stocks may meet the criteria invoking the Council's overfishing concern.

3.2.3.1 Criteria

The Council's criteria for an overfishing concern are met if, in three consecutive years, the postseason estimates indicate a natural stock has fallen short of its conservation objective (MSY, MSP, or spawner floor as noted for some harvest rate objectives) in Table 3-1. It is possible that this situation could represent normal variation, as has been seen in the past for several previously referenced salmon stocks which were reviewed under the Council's former overfishing definition. However, the occurrence of three consecutive years of reduced stock size or spawner escapements, depending on the magnitude of the short-fall, could signal the beginning of a critical downward trend (e.g., Oregon coastal coho) which may result in fishing that jeopardizes the capacity of the stock to produce MSY over the long term if appropriate actions are not taken to ensure the automatic rebuilding feature of the conservation objectives is achieved.

3.2.3.2 Assessment

When an overfishing concern is triggered, the Council will direct its STT to work with state and tribal fishery managers to complete an assessment of the stock within one year (generally, between April and the March Council meeting of the following year). The assessment will appraise the actual level and source of fishing impacts on the stock, consider if excessive fishing has been inadvertently allowed by estimation errors or other factors, identify any other pertinent factors leading to the overfishing concern, and assess the overall significance of the present stock depression with regard to achieving MSY on a continuing basis.

Depending on its findings, the STT will recommend any needed adjustments to annual management measures to assure the conservation objective is met, or recommend adjustments to the conservation objective which may more closely reflect the MSY or ensure rebuilding to that level. Within the constraints presented by the biology of the stock, variations in environmental conditions, and the needs of the fishing communities, the STT recommendations should identify actions that will recover the stock in

as short a time as possible, preferably within ten years or less, and provide criteria for identifying stock recovery and the end of the overfishing concern. The STT recommendations should cover harvest management, potential enhancement activities, hatchery practices, and any needed research. The STT may identify the need for special programs or analyses by experts outside the Council advisors to assure the long-term recovery of the salmon population in question. Due to a lack of data for some stocks, environmental variation, economic and social impacts, and habitat losses or problems beyond the control or management authority of the Council, it is likely that recovery of depressed stocks in some cases could take much longer than ten years.

In addition to the STT assessment, the Council will direct its Habitat Committee (HC) to work with federal, state, local, and tribal habitat experts to review the status of the essential fish habitat affecting this stock and, as appropriate, provide recommendations to the Council for restoration and enhancement measures within a suitable time frame.

3.2.3.3 Council Action

Following its review of the STT report, the Council will specify the actions that will comprise its immediate response for ensuring that the stock's conservation objective is met or a rebuilding plan is properly implemented and any inadvertent excessive fishing within Council jurisdiction is ended. The Council's rebuilding plan will establish the criteria that identify recovery of the stock and the end of the overfishing concern. In some cases, it may become necessary to modify the existing conservation objective/rebuilding plan to respond to habitat or other long-term changes. Even if fishing is not the primary factor in the depression of the stock or stock complex, the Council must act to limit the exploitation rate of fisheries within its jurisdiction so as not to limit recovery of the stock or fisheries, or as is necessary to comply with ESA consultation standards. In cases where no action within Council authority can be identified which has a reasonable expectation of providing benefits to the stock unit in question, the Council will identify the actions required by other entities to recover the depressed stock. Upon review of the report from the HC, the Council will take actions to promote any needed restitution of the identified habitat problems.

For those fishery management actions within Council authority and expertise, the Council may change analytical or procedural methodologies to improve the accuracy of estimates for abundance, harvest impacts, and MSY escapement levels, and/or reduce ocean harvest impacts when shown to be effective in stock recovery. For those causes beyond Council control or expertise, the Council may make recommendations to those entities which have the authority and expertise to change preseason prediction methodology, improve habitat, modify enhancement activities, and re-evaluate management and conservation objectives for potential modification through the appropriate Council process.

3.2.3.4 End of Overfishing Concern

The criteria for determining the end of an overfishing concern will be included as a part of any rebuilding plan adopted by the Council. Additionally, an overfishing concern will be ended if the STT stock analysis provides a clear finding that the Council's ability to affect the overall trend in the stock abundance through harvest restrictions is virtually nil under the "exceptions" criteria below for natural stocks.

3.2.4 Exceptions

"Conservation and management measures shall take into account and allow for variations among, and contingencies in, fisheries, fishery resources, and catches."

Magnuson-Stevens Act, National Standard 6

This plan contains three exceptions to the application of overfishing criteria and subsequent Council actions for stocks or stock complexes with conservation objectives in Table 3-1: (1) hatchery stocks, (2) stocks for which Council management actions have inconsequential impacts, and (3) stocks listed under the ESA.

3.2.4.1 Hatchery Stocks

Salmon stocks important to ocean fisheries and comprised exclusively of hatchery production generally have conservation objectives expressed as an egg-take or the number of spawners returning to the hatchery rack to meet program objectives. This plan recognizes these objectives and strives to meet them. However, these artificially produced stocks generally do not need the protection of overfishing criteria and special Council rebuilding programs to maintain long-term production. Because hatchery stocks can generally sustain significantly higher harvest exploitation rates than natural stocks, ocean fisheries rarely present a threat to their long-term survival. In addition, it is often possible to make temporary program modifications at hatcheries to assure adequate production to sustain the stock during periods of low abundance (e.g., sharing brood stock with other hatcheries, arranging for trapping at auxiliary sites, etc.). If specialized hatchery programs are approved in the future to sustain listed salmon stocks, the rebuilding programs would be developed and followed under the ESA.

3.2.4.2 Natural Stocks With Minimal Harvest Impacts in Council-Managed Fisheries

Several natural stock components identified within this FMP are subject to minimal harvest impacts in Council fisheries because of migration timing and/or distribution. As a result, the Council's ability to affect the overall trend in the abundance of these components through harvest restrictions is virtually nil. Components in this category are identified by a cumulative adult equivalent exploitation rate of less than five percent in ocean fisheries under Council jurisdiction during base periods utilized by the fishery regulation assessment models (1979-1982 for chinook and 1979-1981 for coho). Council action for these components, when a conservation alert or an overfishing concern are triggered, will consist of confirming negligible impacts of proposed Council fisheries, identifying factors which have led to the decline or low abundance (e.g., fishery impacts outside Council jurisdiction, or degradation or loss of essential fish habitat), and monitoring of abundance trends and total harvest impact levels. Council action will focus on advocating measures to improve stock productivity, such as reduced interceptions in non-Councilmanaged fisheries, and improvements in spawning and rearing habitat, fish passage, flows, and other factors affecting overall stock survival.

3.2.4.3 Stocks Listed Under the Endangered Species Act

The Council regards stocks listed as endangered or threatened under the ESA as a third exception to the application of overfishing criteria of the Magnuson-Stevens Act. The ESA requires federal agencies whose actions may jeopardize listed salmon to consult with NMFS. Because NMFS implements ocean harvest regulations, it is both the action and consulting agency for actions taken under the FMP. To ensure there is no jeopardy, NMFS conducts internal consultations with respect to the effects of ocean harvest on listed salmon. The Council implements NMFS' guidance as necessary to avoid jeopardy, as well as in recovery plans approved by NMFS. As a result of NMFS' consultation, an incidental take statement may be issued which authorizes take of listed stocks under the FMP that would otherwise be prohibited under the ESA.

The Council believes that the requirements of the ESA are sufficient to meet the intent of the Magnuson-Stevens Act overfishing provisions. Those provisions are structured to maintain or rebuild stocks to levels at or above MSY and require the Council to identify and develop rebuilding plans for overfished

stocks. For many fish species regulated under the Magnuson-Stevens Act, the elimination of excess fishing pressure is often the sole action necessary to rebuild depressed stocks. This is, however, not the case for many salmon stocks and, in particular, for most listed populations.

Although harvest has certainly contributed to the depletion of West Coast salmon populations, the primary reason for their decline has been the degradation and loss of freshwater spawning, rearing, and migration habitats. The quality and quantity of freshwater habitat are key factors in determining the MSY of salmon populations. The Council has no control over the destruction or recovery of freshwater habitat nor is it able to predict the length of time that may be required to implement the habitat improvements necessary to recover stocks. While the Council could theoretically establish new MSY escapement goals consistent with the limited or degraded habitat available to listed species, adoption of revised goals would potentially result in an ESA-listed stock being classified as producing at MSY and; therefore, not overfished under the Magnuson-Stevens Act. The Council believes that the intent of the ESA and the Magnuson-Stevens Act is the recovery of stocks to MSY levels associated with restored habitat conditions.

The Council considers the consultation standards and recovery plans developed by NMFS for listed populations as interim rebuilding plans. Although NMFS' consultation standards and recovery plans may not by themselves recover listed populations to historical MSY levels within ten years, they are sufficient to stabilize populations until freshwater habitats and their dependent populations can be restored and estimates of MSY developed consistent with recovered habitat conditions. As species are delisted, the Council will establish conservation objectives with subsequent overfishing criteria and manage to maintain the stocks at or above MSY levels.

3.3 SUPPLEMENTARY CONSERVATION INFORMATION

3.3.1 Endangered Species Act Listings

Since 1990, West Coast salmon fisheries have been modified to accommodate special requirements for the protection of salmon species listed under the federal ESA. The ESA listing of a salmon population may have profound consequences for the management of Council mixed-stock ocean fisheries since listed populations are often incidentally harvested with more abundant healthy populations. As additional stocks of salmon have been listed, the Council's preseason process has increasingly focused on protecting listed stocks. In applying the ESA to Pacific salmon, NMFS determined that a population segment of a salmon species must represent an evolutionarily significant unit (ESU) of that species in order to be eligible for listing. ESUs are characterized by their reproductive isolation and contribution to the genetic diversity of the species as a whole. NMFS establishes consultation standards for listed ESUs, which specify levels of incidental take that are not likely to jeopardize the continued existence of the ESU.

The Council must meet or exceed the requirements of the ESA, which is other applicable law. In addition to the stocks and conservation objectives in Table 3-1, the Council will manage all species listed under the ESA consistent with NMFS consultation standards or recovery plans to meet immediate conservation needs and the long-term recovery of the species. These standards are provided annually to the Council by NMFS at the start of the preseason planning process. In so far as is practical, while not compromising its ability to meet the requirements of the ESA, NMFS will endeavor to provide opportunity for Council and peer review of any proposed consultation standards, or the objectives of recovery plans, well prior to their implementation. Such review would ideally commence no later than the last Council meeting in the year immediately preceding the first salmon season in which the standards would be implemented.

Table 3-2 summarizes the relationships of the individual stocks and stock units managed under the FMP to the ESUs identified by NMFS in the course of ESA status reviews. With the exception of some

hatchery stocks, the stocks managed under the FMP are generally representative of the range of life history features characteristic of most ESUs. The managed stocks therefore serve as indicators for ESUs and provide the information needed to monitor fishery impacts on ESUs as a whole. In some cases, the information necessary for stock specific management is lacking, leaving some ESUs without adequate representation. For these ESUs, it will be necessary in the immediate future to use conservative management principles and the best available information in assessing impacts in order to provide necessary protection. In the meantime, the responsible management entities should implement programs to ensure that data are collected for at least one stock representative of each ESU. Programs should be developed to provide the information that will permit the necessary stock specific management within five years of completion of this amendment.

TABLE 3-1. Conservation objectives and management information for salmon stocks of significance to ocean salmon fisheries

	Conservation Objective	Subject to Council Actions to
Stock	(to be met annually, unless noted otherwise)	Prevent Overfishing
	CHINOOK	
Klamath River Fall (Klamath and Trinity Rivers)	33% to 34% of potential adult natural spawners, but no fewer than 35,000 naturally spawning adults in any one year. Brood escapement rate must average 33% to 34% over the long-term, but an individual brood may vary from this range to achieve the required tribal/nontribal annual allocation. Objective designed to allow a wide range of spawner escapements from which to develop an MSY objective or proxy while protecting the stock during prolonged periods of reduced productivity. Adopted 1988 based on Hubbell and Boydstun (1985); KRTT (1986); PFMC (1988); minor technical modifications in 1989 and 1996 (Table I-1). Natural spawners to maximize recruitment are estimated at 41,000 to 106,000 adults (Hubbell and Boydstun 1985).	Yes. A conservation alert or overfishing concern will be based on a failure to meet the 35,000 floor.