Disclaimer: This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by NOAA Fisheries. It does not represent and should not be construed to represent any agency determination or policy.

Status of the darkblotched rockfish resource off the continental U.S. Pacific Coast in 2015

by
Vladlena Gertseva ${ }^{1}$, Sean E. Matson ${ }^{2}$, Elizabeth Councill ${ }^{1}$
${ }^{1}$ Fishery Resource Analysis and Monitoring Division
Northwest Fisheries Science Center
National Marine Fisheries Service
National Oceanic and Atmospheric Administration
2725 Montlake Boulevard East, Seattle, WA 98112
${ }^{2}$ Sustainable Fisheries Division
West Coast Regional Office
National Marine Fisheries Service
National Oceanic and Atmospheric Administration 7600 Sandpoint Way NE, Seattle, WA 98115

DRAFT
May 15, 2015

Table of Contents

Executive Summary 3
Stock 3
Catches 3
Data and assessment 5
Stock spawning output 6
Recruitment 7
Reference points 8
Exploitation status 9
Ecosystem considerations 13
Management performance 13
Unresolved problems and major uncertainties 14
Decision table 15
Research and data needs 16
1 Introduction 21
1.1 Basic Information and Life History 21
1.2 Ecosystem Considerations 22
1.3 Fishery Information and Summary of Management History 23
1.4 Management Performance 26
1.5 Fisheries off Canada, Alaska, and/or Mexico 26
2 Assessment 27
2.1 Data 27
2.1.1 Fishery-dependent data 27
2.1.1.1 Shoreside landings 28
2.1.1.1.1 Washington 28
2.1.1.1.2 Oregon 29
2.1.1.1.3 California 29
2.1.1.2 Discard 30
2.1.1.3 Catch in the foreign POP fishery 31
2.1.1.4 Bycatch in the at-sea Pacific hake fishery 31
2.1.1.5 Fishery biological data 31
2.1.1.5.1 Length composition data 32
2.1.1.5.2 Age composition data 33
2.1.2 Fishery-independent data 34
2.1.2.1 Surveys used in the assessment 34
2.1.2.2 Survey abundance indices 35
2.1.2.3 Length composition data 38
2.1.2.4 Age composition data 39
2.1.3 Biological parameters 40
2.1.3.1 Weight-length relationship 40
2.1.3.2 Ageing bias and imprecision 40
2.1.3.3 Maturity schedule 41
2.1.3.4 Fecundity 41
2.1.3.5 Natural mortality 41
2.2 History of Modeling Approaches Used for this Stock 42
2.2.1 Previous assessments 42
2.2.2 Responses to 2013 STAR panel recommendation 46
2.3 Model Description 50
2.3.1 Changes made from the last assessment 50
2.3.2 Modeling software 54
2.3.3 General model specifications 54
2.3.4 Estimated and fixed parameters 55
2.3.4.1 Life history parameters 55
2.3.4.2 Stock recruitment parameters 56
2.3.4.3 Selectivity parameters 57
2.4 Model Selection and Evaluation 58
2.4.1 Key assumptions and structural choices 58
2.4.2 Changes made during the STAR Panel meeting 60
2.4.3 Evidence of search for global best estimates 60
2.4.4 Convergence criteria 60
2.5 Base-Model Results 61
2.6 Uncertainty and Sensitivity Analyses 63
2.6.1 Sensitivity Analyses 63
2.6.1.1 Sensitivity to changes from 2013 model 63
2.6.1.2 Alternative assumptions about fishery removals 64
2.6.1.3 Alternative assumptions about life history parameters 64
2.6.2 Retrospective analysis 64
2.6.3 Likelihood profile analyses 65
3 Reference Points 66
4 Harvest Projections and Decision Table 67
5 Regional Management Considerations 67
6 Research Needs 68
7 Literature Cited 70
8 Tables 75
9 Figures 2
Appendix A. Management shifts related to West Coast groundfish species 142
Appendix B. Assessment model files 145
Appendix B.1. SS data file 146
Appendix B.2. SS control file 226
Appendix B.3. SS starter file 233
Appendix B.4. SS forecast file 234

Executive Summary

Stock

Darkblotched rockfish (Sebastes crameri) in the Northeast Pacific Ocean occur from the southeastern Bering Sea and Aleutian Islands to near Santa Catalina Island in southern California. This species is most abundant from off British Columbia to Central California. Commercially important concentrations are found from the Canadian border through Northern California. This assessment focuses on the portion of the population that occurs in coastal waters of the western United States, off Washington, Oregon and California, the area bounded by the U.S.-Canada border on the north and U.S.-Mexico border on the south. The population within this area is treated as a single coastwide stock, due to the lack of biological and genetic data supporting the presence of multiple stocks.

Catches

Darkblotched rockfish is caught primarily with commercial trawl gear, as part of a complex of slope rockfish, which includes Pacific ocean perch (Sebastes alutus), splitnose rockfish (Sebastes diploproa), yellowmouth rockfish (Sebastes reedi), and sharpchin rockfish (Sebastes zacentrus). The species is managed with stock-specific harvest specifications (not within the current slope rockfish complexes). Catches taken with non-trawl gear over the years comprised 2% of the total coastwide shoreside catch. This species has not been taken recreationally.

Catch of darkblotched rockfish first became significant in the mid-1940s when balloon trawl nets (efficient in taking rockfish) were introduced, and due to increased demand during World War II. The largest removals of the species occurred in the 1960s, when foreign trawl fleets from the former Soviet Union, Japan, Poland, Bulgaria and East Germany came to the Northeast Pacific Ocean to target large aggregations of Pacific ocean perch, a species that co-occurs with darkblotched rockfish. In 1966 the removals of darkblotched rockfish reached 4,220 metric tons. By the late-1960s, the foreign fleet had more or less abandoned the fishery. Shoreside landings of darkblotched rockfish rose again between the late-1970s and the late-1980s, peaking in 1987 with landings of 2,415 metric tons. In 2000, the species was declared overfished, and landings substantially decreased due to management regulations. During the last decade the average landings of darkblotched rockfish made by the shoreside fishery was around 120 metric tons. Since the mid-1970s, a small amount of darkblotched rockfish has been also taken as bycatch in the at-sea Pacific hake fishery, with a maximum annual removal of 49 metric tons that occurred in 1995.

In this assessment, removals are divided between three fleets, which include the shoreside commercial fishery (that included removals by all gear types), bycatch removals in foreign Pacific ocean perch and bycatch removals in at-sea Pacific hake fisheries. Reconstructed removals of darkblotched rockfish bycatch in the Pacific ocean perch and at-sea hake fisheries represent total catch that includes both retained and discarded catch. Discards in the shoreside fishery were explicitly modeled in the assessment; total catches were estimated simultaneously with other model parameters and derived quantities of management interest.

Figure ES-1: Darkblotched rockfish landings history between 1915 and 2014 by fleet.

Table ES-1: Recent darkblotched rockfish landings (mt) by component that comprised three fleets used in the assessment (removals by California, Oregon and Washington were combined into Shoreside fleet).

Year	California landings	Oregon landings	Washington landings	Bycatch in at-sea hake fishery	Total
2005	18	68	1	11	98
2006	23	71	2	11	107
2007	41	87	3	12	144
2008	34	74	3	6	117
2009	47	89	2	0	138
2010	17	152	7	8	184
2011	3	87	14	12	117
2012	7	70	15	2	94
2013	4	103	11	6	124
2014	4	77	11	11	103

Data and assessment

The last full assessment of darkblotched rockfish was conducted in 2013. This assessment uses the Stock Synthesis modeling framework developed by Dr. Richard Methot at the NWFSC. The most recent version (SSv3.24U, distributed on January 24, 2013) was used, since it included improvements in the output statistics for producing assessment results and several corrections to older versions.

The data used in the assessment include landings, length and age compositions of the retained commercial catch from Pacific Fisheries Information Network (PacFIN) and, for the first time since 2005, includes historical age data from 1980 forward. It includes discard ratios, length and age compositions of the discards from West Coast Groundfish Observer Program (WCGOP). The assessment also includes bycatch data within the atsea hake fishery and, for the first time, length and age compositions of darkblotched bycatch from the At-Sea Hake Observer Program (ASHOP). Data from four National Marine Fisheries Service (NMFS) bottom trawl surveys are used to estimate indices of stock abundance and generate length and age frequency distributions for each survey. The Northwest Fisheries Science Center (NWFSC) shelf-slope survey covers the period between 2003 and 2014 and provides information on the current trend of the stock. Three other surveys (which are discontinued) include the NWFSC slope survey (1999-2002), the AFSC slope survey (1997-2001), and the AFSC shelf triennial survey (1980-2004).

The modeling period in the assessment begins in 1916, assuming that in 1915 the stock was in an unfished equilibrium condition. Females and males are treated separately to account for sexual dimorphism in growth exhibited by the species. Growth is assumed to follow the von Bertalanffy growth model, and the assessment explicitly estimates most parameters describing growth for both sexes. Externally estimated life history parameters, included those defining the weight-length relationship, female fecundity and maturity schedule. Recruitment dynamics are assumed to follow the Beverton-Holt stock-recruit
function. Natural mortality is fixed at the value of $0.054 \mathrm{yr}^{-1}$ for females and estimated for males.

Stock spawning output

The darkblotched rockfish assessment uses a non-proportional egg-to-weight relationship, and the spawning output is reported in the number of eggs. The unexploited level of spawning stock output is estimated to be 3,203 million eggs (95% confidence interval: 2,370-4,036 million eggs). At the beginning of 2015, the spawning stock output is estimated to be 1,261 million eggs (95% confidence interval: 340-2,181 million eggs), which represents 39% of the unfished spawning output level.

The spawning output of darkblotched rockfish started to decline in the 1940s, during World War II, but exhibited a sharp decline in in the 1960s during the time of the intense foreign fishery targeting Pacific ocean perch. Between 1965 and 1976, spawning output dropped from 94% to 65% of its unfished level. Spawning output continued to decline throughout the 1980s and 1990s and in 2000 reached its lowest estimated level of 16% of its unfished state. Since 2000, the spawning output has been slowly increasing, which corresponds to decreased removals due to management regulations.

Table ES-2: Recent trends in estimated darkblotched rockfish spawning biomass, recruitment and relative depletion.

	Spawning stock output (million eggs)	$\sim 95 \%$ confidence interval	Estimated recruitment (1000s)	$\sim 95 \%$ confidence interval	Estimated depletion	$\sim 95 \%$ confidence interval
2006	716	$237-1,196$	2,168	$598-3,738$	22%	$11-34 \%$
2007	790	$256-1,324$	1,644	$409-2,879$	25%	$12-38 \%$
2008	856	$269-1,443$	6,240	$1,784-10,695$	27%	$12-41 \%$
2009	913	$277-1,550$	950	$199-1,702$	29%	$13-44 \%$
2010	961	$279-1,643$	2,243	$619-3,867$	30%	$13-47 \%$
2011	1,002	$276-1,729$	2,025	$501-3,550$	31%	$13-49 \%$
2012	1,061	$289-1,832$	956	$132-1,779$	33%	$14-52 \%$
2013	1,123	$305-1,940$	9,616	$1,323-17,909$	35%	$15-55 \%$
2014	1,189	$321-2,056$	2,466	$1,679-3,253$	37%	$16-58 \%$
2015	1,261	$340-2,181$	2,491	$1,704-3,278$	39%	$17-62 \%$

Figure ES-2: Estimated spawning biomass time-series (1915-2015) for the base-case model (circles) with ~ 95\% interval (dashed lines). Spawning output is expressed in the number of eggs.

Recruitment

Recruitment dynamics are assumed to follow a Beverton-Holt stock-recruit function. The level of virgin recruitment is estimated in order to assess the magnitude of the initial stock size. 'Main' recruitment deviations were estimated for modeled years that had information about recruitment, between 1960 and 2011 (as determined from the biascorrection ramp). We additionally estimated 'early' deviations between 1870 and 1959 so that age-structure in the initial modeled year (1915) would deviate from the stable agestructure. The Beverton-Holt steepness parameter (h) is fixed in the assessment at the value of 0.773 , which is the mean of steepness prior probability distribution, derived from this year's meta-analysis of Tier 1 rockfish assessments.

Figure ES-3: Time series of estimated darkblotched rockfish recruitments for the basecase model (solid line) with ~95\% intervals (vertical lines).

Reference points

Unfished spawning stock output for darkblotched rockfish was estimated to be 3,203 million eggs (95% confidence interval: 2,370-4,036 million eggs). The stock is declared overfished if the current spawning output is estimated to be below 25% of unfished level. The management target for darkblotched rockfish is defined as 40% of the unfished spawning output ($\mathrm{SB}_{40 \%}$), which is estimated by the model to be 1,281 million eggs (95% confidence interval: 948-1,614), which corresponds to an exploitation rate of 0.041 . This harvest rate provides an equilibrium yield of 674 mt at $\mathrm{SB}_{40 \%}$ (95% confidence interval: $504-844 \mathrm{mt}$). The model estimate of maximum sustainable yield (MSY) is 728 mt (95% confidence interval: 544-912 mt). The estimated spawning stock output at MSY is 815 million eggs (95% confidence interval: 603-1,026 million of eggs). The exploitation rate corresponding to the estimated $\mathrm{SPR}_{\mathrm{MSY}}$ of $\mathrm{F}_{31 \%}$ is 0.0655 .

Table ES-3. Summary of reference points for the base case model.

Quantity	Estimate	$\sim 95 \%$ Confidence Interval
Unfished Spawning output (million eggs)	3,203	2,370-4,036
Unfished age 1+ biomass (mt)	36,459	27,360-45,557
Unfished recruitment (R0)	2,773	2,051-3,494
Depletion (2015)	39\%	17-62\%
Reference points based on SB40\%		
Proxy spawning output ($B_{40 \%}$)(million eggs)	1,281	948-1,614
SPR resulting in $B 40 \%$ ($S P R_{B 40 \%}$)	44\%	NA
Exploitation rate resulting in $B_{40 \%}$	4.1\%	3.98-4.29\%
Yield with SPR at $B_{40 \%}(\mathrm{mt})$	674	504-844
Reference points based on SPR proxy for MSY		
Spawning output (million eggs)	1,474	1,091-1,858
$S P R_{\text {proxy }}$	50\%	NA
Exploitation rate corresponding to $S P R_{\text {proxy }}$	3.4\%	3.3-3.5\%
Yield with $S P R_{\text {proxy }}$ at $S B_{S P R}(\mathrm{mt})$	630	472-789
Reference points based on estimated MSY values		
	815	603-1,026
$S P R_{M S Y}$	31\%	30-32\%
Exploitation rate corresponding to $S P R_{M S Y}$	6.55\%	6.24-6.74\%
MSY (mt)	728	544-912

Exploitation status

The assessment shows that the stock of darkblotched rockfish off the continental U.S. Pacific Coast is currently at 39% of its unexploited level. This is above the overfished threshold of $\mathrm{SB}_{25 \%}$, but below the management target of $\mathrm{SB}_{40 \%}$ of unfished spawning biomass. Historically, the spawning output of darkblotched rockfish dropped below the $\mathrm{SB}_{40 \%}$ target for the first time in 1989, as a result of intense fishing by foreign and domestic fleets. It continued to decline and reached the level of 16% of its unfished output in 2000. The same year, the stock was declared overfished. Since then, the spawning output was slowly increasing primarily due to management regulations instituted for the species.

This assessment estimates that the 2014 SPR is 89%. The SPR used for setting the OFL is 50%, while the SPR-based management fishing mortality target, specified in the current rebuilding plan and is used to determine the ACL, is 64.9%. Historically, the darkblotched rockfish has been fished beyond the relative SPR ratio (calculated as 1-SPR/1-SPR ${ }_{\text {Target=0.5) }}$ between 1966 and 1968, during the peak years of the Pacific ocean perch fishery, in 1973 and for a prolonged period between from 1981 and 2000.

Figure ES-4. Estimated relative depletion with approximate 95\% asymptotic confidence intervals (dashed lines) for the base case assessment model.

Figure ES-5. Time series of estimated relative spawning potential ratio (1-SPR/1$\mathrm{SPR}_{\text {Target }}=0.5$) for the base-case model (round points) with $\sim 95 \%$ intervals (dashed lines). Values of relative SPR above 1.0 (100% in the table above) reflect harvests in excess of the current overfishing proxy.

Figure ES-6. Phase plot of estimated relative (1-SPR) vs. relative spawning biomass for the base case model. The relative (1-SPR) is (1-SPR) divided by 0.5 (the SPR target). Relative depletion is the annual spawning biomass divided by the spawning biomass corresponding to 40% of the unfished spawning biomass. The red point indicates the year 2014.

Table ES-4. Recent trend in spawning potential ratio (SPR) and harvest rate.

Year	SPR (\%)	Harvest rate (proportion)	$\sim 95 \%$ confidence interval
2005	77%	0.012	$0.004-0.020$
2006	71%	0.017	$0.004-0.029$
2007	66%	0.021	$0.006-0.036$
2008	67%	0.019	$0.005-0.033$
2009	64%	0.021	$0.006-0.037$
2010	59%	0.025	$0.007-0.043$
2011	85%	0.008	$0.002-0.014$
2012	88%	0.006	$0.002-0.010$
2013	86%	0.008	$0.002-0.013$
2014	89%	0.006	$0.002-0.010$

Ecosystem considerations

Darkblotched rockfish is most abundant from off British Columbia to Central California. This is a slope species that occurs at depths between 25 and 600m, with the majority of fish inhabiting at depths between 100 and 400 meters. Darkblotched rockfish co-occurs with an assemblage of slope rockfish, including Pacific ocean perch (Sebastes alutus), splitnose rockfish (Sebastes diploproa), yellowmouth rockfish (Sebastes reedi), and sharpchin rockfish (Sebastes zacentrus). Pacific ocean perch and darkblotched rockfish are the most abundant members of that assemblage off the coasts of Oregon and Washington, but splitnose rockfish and darkblotched rockfish dominate off the northern coast of California. Adults typically are observed resting on mud near cobble or boulders. They feed primarily in the midwater on large planktonic organisms such as krill, gammarid amphipods, copepods and salps, and less frequently on fishes and octopi. Young darkblotched are eaten by king salmon and albacore.

In this assessment, ecosystem considerations were not explicitly included in the analysis. This is primarily due to a lack of relevant data and results of analyses (conducted elsewhere) that could contribute ecosystem-related quantitative information for the assessment. However, we used the recently developed geostatistical delta-GLMM approach to estimate an abundance index from NWFSC shelf-slope survey data. This method uses information on the location of samples (i.e., whether located in high- or lowdensity habitats) to explain a portion of the variability in catch rates, and thus indirectly incorporates information on habitat quality that, in many respects, shapes spatial distribution of organisms and determines density of their occurrence.

Management performance

The stock has historically been managed with bimonthly cumulative landings limit (a.k.a. "trip limits") as most of the catch came from the limited entry bottom trawl fishery.
However, since 2011, that allocation has been managed as a catch share fishery, using Individual Fishing Quotas (IFQ), where each permit holder has an annual quota. Darkblotched rockfish has been managed using species-specific harvest specifications
since 2001. Over the last 10 years, the total dead catch (as estimated in this assessment) exceeded the Annual Catch Limit (ACL) in two years: 2009 and 2010. The total dead catch has not exceeded the Overfishing Limit (OFL) during the last decade.

Table ES-5. Recent trend in total catch and commercial landings (mt) relative to the management guidelines. Estimated total catch consists of commercial landings, plus the model-estimated discarded biomass.

Year	OFL (mt)	ACL (mt)	Landings (mt)	Estimated Total Catch (mt)
2005	269	122	98	129
2006	269	122	107	194
2007	456	260	144	261
2008	456	260	117	250
2009	437	282	138	289
2010	437	282	184	351
2011	508	298	117	118
2012	508	298	94	95
2013	541	317	124	125
2014	541	317	103	104

Unresolved problems and major uncertainties

Uncertainty in the model was explored though asymptotic variance and sensitivity analyses. Asymptotic confidence intervals were estimated within the model and reported throughout the assessment for key model parameters and management quantities. To explore uncertainty associated with alternative model configurations and evaluate the responsiveness of model outputs to changes in key model assumptions, a variety of sensitivity runs were performed, including an increase and decrease of fishery removals, runs with different assumptions regarding life-history parameters, shape of selectivity curves, stock-recruitment parameters, and many others. The uncertainty regarding natural mortality, stock-recruit steepness and the unfished recruitment level was also explored through likelihood profile analysis. Additionally, a retrospective analysis was conducted where the model was re-run after successively removing data from recent years, one year at a time.

Main life history parameters, such as natural mortality and stock-recruit curve steepness, continue to be a major source of uncertainty. These quantities, which the model is unable to estimate reliably, are essential for understanding the dynamics of the stock. In the model, female natural mortality is fixed at the value estimated outside the model using other life history characteristics of the species, while male natural mortality is estimated within the model. Stock-recruit steepness is fixed at the value estimated outside the model using meta-analysis of species with similar life history characteristics.

Historically, darkblotched rockfish landings have not been sampled at the discrete species level; therefore, the time series of catch remained a source of uncertainty. Although
significant progress has been made in reconstructing historical California and Oregon landings, the lack of early species composition data does not allow to account for a gradual shift of fishing effort towards deeper areas, which can cause the potential to overestimate the historical contribution of slope species (including darkblotched rockfish) to overall landings of the mixed-species market category (i.e. "unspecified rockfish"). Also, it is known that the shoreside fishery has discarded a portion of the catch at sea. Previous to 2002, when the West Coast Groundfish Observer Program was established, only one study exists (limited in time and space) that informs pre-2002 discarding practices of darkblotched rockfish.

Decision table

The base model estimate for 2015 spawning depletion is 39%. The primary axis of uncertainty about this estimate used in the decision table was based on female natural mortality. To identify female natural mortality values that correspond to low and high states of nature, we followed a multi-step algorithm. First, we selected alternative values of stock-recruit steepness. For this, we used a normal approximation to the prior distribution for steepness with an identical mean and standard deviation to the prior distribution from that analysis (mean $=0.773, \mathrm{SD}=0.147$). We then identified two values from that normal distribution which are half as likely as the mode. Those values are:

$$
h=0.773 \pm 0.147(1.18)=(0.600,0.946)
$$

where 0.600 represents the low and 0.946 the high steepness alternatives.
We then determined depletion levels associated with alternative steepness values; depletion under low steepness was 9%, and it was 49% under high steepness. Finally, we identified female natural mortality values associated with these low and high depletion levels; they were 0.0412 and 0.059 respectively. We used these values to define low and high states of nature and construct the decision table.

Twelve-year forecasts for each state of nature were calculated based on average catch for the period between 2011 and 2014. They were also produced with future catches fixed at the 2016 darkblotched rockfish ACL. Finally, forecasts for each state of nature were calculated based on removals at a current rebuilding SPR of 64.9\% for the base model.

Under the middle state of nature (which corresponds to the base model), the spawning output and depletion are projected to increase under all three considered catch streams, and reach the $\mathrm{SB}_{40 \%}$ target in 2015. Under the low state of nature, spawning depletion will stay below the $\mathrm{SB}_{40 \%}$ target within the next 12 years. Under the high state of nature, the spawning output remains above the 40% target level throughout the 12 -year projection period.

Research and data needs

The following research could improve the ability of future stock assessments to determine the current status and productivity of the darkblotched rockfish population:

1) Additional population genetics research to elucidate potential spatial stock structure would be valuable for assessment and management, to ensure prevention of local depletion and preserve genetic diversity.
2) Additional research on darkblotched movement including migration patterns by latitude and depth, diurnal migration patterns through the water column, relative time spent off-bottom versus midwater, relating movements to size, age and sex would be valuable for further understanding this rockfish's ecological niche, stock structure, and lend insight to catchability and gear selectivity patterns.
3) Given that the population range extends north to the border with Canada, it is important that future research would evaluate the impact of not accounting for any Canadian portion of population abundance. Such an analysis would require evaluation of movement of darkblotched along the coast; such information is currently lacking.
4) Continuing collection of maturity and fecundity data on darkblotched rockfish would allow further research into latitudinal variability in life history parameters that again would advance understanding this species stock structure. Multi-year data would also allow evaluation of temporal changes in darkblotched maturity and fecundity.
5) Additional research into natural mortality, as it relates to length and age would be valuable to enable more realistic and accurate modeling of this parameter, which is a common source of uncertainty in assessment of this, and other rockfish species. Councill and Harford method is an example of one approach; it models natural mortality as a decaying function of size, with assumptions that mortality rates should be constrained by lifetime mortality rate.
6) Future research could also improve existing meta-analyses for natural mortality and steepness, which both contribute to the implied yield curve. Directions for improvements could include (1) weighting methods in natural mortality prior estimates included in the Hamel meta-analysis, and (2) developing a larger database of species for estimating steepness, perhaps by including species from other regions, e.g., Canada and Alaska.
7) Research into establishing optimum methods for more precise modeling of selectivity patterns is needed. Either asymptotic or dome-shaped selectivity assumptions are frequently used in stock assessments, when neither may be the best available representation of selectivity. Assumptions of a dome shape can suggest a "cryptic" biomass, or create confounding with natural mortality assumptions, potentially inflating abundance indices (Crone et al.
2013). Assumptions of asymptotic shape may also not be realistic. Simulation studies could be performed to empirically evaluate varying degrees of intermediate selectivity shapes, and how best to effectively implement them in existing stock assessment software platforms.
8) Research assessing the effects of the unprecedented warm ocean conditions off the West Coast of the U.S. during 2014 and 2015, on rockfish populations is needed. Specifically, investigations are needed that focus on how temperature and other water conditions at depth, in rockfish habitat correspond to high sea-surface temperatures recorded throughout those years, and how the fish respond to those changing conditions. Research is needed that examines whether fish move in response to changing temperatures, where, and how they move, as well as whether the conditions influence life history parameters and aspects such as mortality, feeding, fecundity and other reproductive considerations. What oceanographic and climatic forces are responsible and how long these conditions are expected to persist are also critical pieces of knowledge.

Table ES-6. 12-year projections for alternate states of nature defined based on female natural mortality. Columns range over low, mid, and high state of nature, and rows range over different assumptions of catch levels.

			State of nature					
			Low Female $M=0.0412$		Base case Female M=0.054		High Female $M=0.059$	
Management decision	Year	$\begin{aligned} & \text { Catch } \\ & \text { (mt) } \end{aligned}$	Spawning output (million eggs)	Depletion	$\begin{aligned} & \hline \text { Spawning } \\ & \text { output } \\ & \text { (million } \\ & \text { eggs) } \\ & \hline \end{aligned}$	Depletion	Spawning output (million eggs)	Depletion
Average catch for the period between 2011 and 2014	2015	110	263	9\%	1,261	39\%	1,660	49\%
	2016	110	278	10\%	1,331	42\%	1,744	51\%
	2017	110	291	10\%	1,396	44\%	1,820	53\%
	2018	110	305	11\%	1,459	46\%	1,893	56\%
	2019	110	324	12\%	1,531	48\%	1,976	58\%
	2020	110	349	12\%	1,618	51\%	2,077	61\%
	2021	110	379	13\%	1,711	53\%	2,183	64\%
	2022	110	410	15\%	1,799	56\%	2,283	67\%
	2023	110	442	16\%	1,878	59\%	2,369	69\%
	2024	110	474	17\%	1,948	61\%	2,442	72\%
	2025	110	507	18\%	2,008	63\%	2,503	73\%
	2026	110	539	19\%	2,062	64\%	2,555	75\%
2016 ACL catch assumed for years between 2015 and 2026	2015	338	263	9\%	1,261	39\%	1,660	49\%
	2016	346	264	9\%	1,317	41\%	1,730	51\%
	2017	346	260	9\%	1,365	43\%	1,790	53\%
	2018	346	256	9\%	1,411	44\%	1,845	54\%
	2019	346	256	9\%	1,465	46\%	1,911	56\%
	2020	346	262	9\%	1,534	48\%	1,994	58\%
	2021	346	271	10\%	1,609	50\%	2,082	61\%
	2022	346	280	10\%	1,677	52\%	2,162	63\%
	2023	346	288	10\%	1,736	54\%	2,229	65\%
	2024	346	295	11\%	1,786	56\%	2,283	67\%
	2025	346	302	11\%	1,827	57\%	2,327	68\%
	2026	346	308	11\%	1,863	58\%	2,362	69\%
Catch calculated using current rebuilding SPR of 64.9\% applied to the base model (40-10 rule and buffer applied)	2015	388	263	9\%	1,261	39\%	1,660	49\%
	2016	389	260	9\%	1,314	41\%	1,727	51\%
	2017	386	253	9\%	1,359	42\%	1,783	52\%
	2018	399	246	9\%	1,400	44\%	1,835	54\%
	2019	438	241	9\%	1,451	45\%	1,897	56\%
	2020	467	241	9\%	1,513	47\%	1,973	58\%
	2021	474	241	9\%	1,579	49\%	2,053	60\%
	2022	469	239	9\%	1,637	51\%	2,123	62\%
	2023	461	236	8\%	1,686	53\%	2,180	64\%
	2024	454	231	8\%	1,725	54\%	2,224	65\%
	2025	450	226	8\%	1,758	55\%	2,259	66\%
	2026	448	221	8\%	1,784	56\%	2,285	67\%

Table ES-7. Summary of recent trends in estimated darkblotched rockfish exploitation and stock level from the assessment model.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& 2005 \& 2006 \& 2007 \& 2008 \& 2009 \& 2010 \& 2011 \& 2012 \& 2013 \& 2014 \& 2015

\hline Landings (mt) \& 98 \& 107 \& 144 \& 117 \& 138 \& 184 \& 117 \& 94 \& 124 \& 103 \& NA

\hline Estimated Total catch (mt) \& 129 \& 194 \& 261 \& 250 \& 289 \& 351 \& 118 \& 95 \& 125 \& 104 \& NA

\hline OFL (mt) \& 269 \& 269 \& 456 \& 456 \& 437 \& 437 \& 508 \& 508 \& 541 \& 541 \& 574

\hline ACL (mt) \& 122 \& 122 \& 260 \& 260 \& 282 \& 282 \& 298 \& 298 \& 317 \& 317 \& 338

\hline SPR \& 77\% \& 71\% \& 66\% \& 67\% \& 64\% \& 59\% \& 85\% \& 88\% \& 86\% \& 89\% \& NA

\hline Exploitation rate (catch/ age 1+ biomass) Age 1+ biomass (mt) \& $$
\begin{aligned}
& 0.012 \\
& \\
& 10,850
\end{aligned}
$$ \& $$
\begin{aligned}
& 0.017 \\
& \\
& 11,631
\end{aligned}
$$ \& $$
\begin{aligned}
& 0.021 \\
& \\
& 12,319
\end{aligned}
$$ \& $$
0.019
$$
$$
12,906
$$ \& $$
0.021
$$
13,519 \& $$
\begin{aligned}
& 0.025 \\
& \\
& 14,129 \\
& \hline
\end{aligned}
$$ \& 0.008

14,721 \& $$
\begin{aligned}
& 0.006 \\
& \\
& 15,524 \\
& \hline
\end{aligned}
$$ \& 0.008

16,288 \& 0.006

17,038 \& $$
\begin{aligned}
& \text { NA } \\
& 17,897
\end{aligned}
$$

\hline | Spawning output (million eggs) ~95\% |
| :--- |
| Confidence Interval | \& 649

$216-1,082$ \& 716
$237-1,196$ \& 790
$256-1,324$ \& 856
$269-1,443$ \& 913
$277-1,550$ \& 961

$279-1,643$ \& $$
\begin{gathered}
1,002 \\
276- \\
1,729
\end{gathered}
$$ \& 1,061

$289-1,832$ \& $$
\begin{gathered}
1,123 \\
305- \\
1,940
\end{gathered}
$$ \& 1,189

$321-2,056$ \& 1,261
$340-2,181$

\hline | Recruitment ~95\% |
| :--- |
| Confidence Interval | \& 2,671

$785-4,557$ \& 2,168
$598-3,738$ \& 1,644

$409-2,879$ \& $$
\begin{aligned}
& \hline 6,240 \\
& 1,784- \\
& 10,695
\end{aligned}
$$ \& 950

$199-1,702$ \& 2,243

$619-3,867$ \& $$
\begin{gathered}
2,025 \\
501- \\
3,550
\end{gathered}
$$ \& 956

$132-1,779$ \& \[
$$
\begin{aligned}
& \hline 9,616 \\
& 1,323- \\
& 17,909
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2,466 \\
& 1,679- \\
& 3,253
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
2,491 \\
1,704- \\
3,278
\end{gathered}
$$
\]

\hline | Depletion (\%) ~95\% |
| :--- |
| Confidence Interval | \& 20%

$10-30 \%$ \& 22%
$11-34 \%$ \& 25\% \& 27%
$12-41 \%$ \& 29%
$13-44 \%$ \& 30%
$13-47 \%$ \& 31%
$13-49 \%$ \& 33%
$14-52 \%$ \& 35%
$15-55 \%$ \& 37%
$16-58 \%$ \& 39%
$17-62 \%$

\hline
\end{tabular}

Figure ES-7. Equilibrium yield curve (derived from reference point values reported in Table ES-5) for the base case model. Values are based on 2014 fishery selectivity and distribution with steepness fixed at 0.773 . The depletion is relative to unfished spawning biomass.

1 Introduction

1.1 Basic Information and Life History

Darkblotched rockfish (Sebastes crameri) are found in the Northeast Pacific Ocean from the southeastern Bering Sea and Aleutian Islands to near Santa Catalina Island in southern California. This species is most abundant from off British Columbia to Central California. Darkblotched rockfish occur at depths between 25 m and 900 m (Love et al., 2002), with the majority of fish inhabiting depths between 100 m and 600 m .

Commercially important concentrations are found from the Canadian border through Northern California, on or near the bottom, at depths between 183 m and 366 m .

This species co-occurs with an assemblage of slope rockfish, including Pacific ocean perch (Sebastes alutus), splitnose rockfish (Sebastes diploproa), yellowmouth rockfish (Sebastes reedi), and sharpchin rockfish (Sebastes zacentrus) (Rogers and Pikitch, 1992; Rogers, 1994). Pacific ocean perch and darkblotched rockfish are the most abundant members of that assemblage off the coasts of Oregon and Washington, but splitnose rockfish and darkblotched rockfish dominate off the northern coast of California.

There are no clear stock delineations for darkblotched rockfish in the waters of the United States. There are no distinct breaks in the fishery landings and catch distributions (Figure 1). Survey catches exhibit a continuous distribution of fish over most of the species range (Figure 2), with areas of higher abundance present in the Columbia, Eureka and Monterey International North Pacific Fisheries Commission (INPFC) areas.

Microsatellite analyses of spatial genetic structure in darkblotched rockfish (GomezUchida and Banks, 2005) suggested a possibility of some genetic differentiation in the stock along the coast, but the level of differentiation was low, it was indicated only in a few of the loci examined. No distinct breaks in the stock were identified. This is the most recent and perhaps the only population genetic study performed for this stock to date.

Darkblotched rockfish are among the longer living rockfish; the data used in this assessment includes individuals that have been aged to be 98 years old. In the literature, the maximum darkblotched rockfish age is reported to be 105 years (Love et al., 2002). As with many other Sebastes species, darkblotched rockfish exhibit sexually dimorphic growth; females reach larger sizes than males, while males attain maximum length earlier than females (Love et al., 2002; Nichol, 1990; Rogers et al., 2000).

Darkblotched rockfish mate from August to December, eggs are fertilized from October through March, and larvae are released from November through April (Love et al., 2002). Fecundity increases with fish size, and all larvae released in one batch. Pelagic juvenile settle at 4 to 6 cm in length in about 55 to 200 m (Love et al., 2002). As many other Sebastes, this species exhibits ontogenetic movement, with fish migrating to deeper waters as they mature and increase in size and age (Lenarz, 1993; Nichol, 1990).

It was suggested that maturity schedule of darkblotched rockfish may vary with latitude. Maturity parameters of fish collected in waters off California (Echeverria, 1987; Phillips, 1964) were found to be smaller than those of fish collected off Oregon (Nichol, 1990). However, Nichol (1990) argued that these differences are rather attributed to different criteria used to determine maturity in two studies. Also, Westrheim (1975) determined that the size at 50% maturity for darkblotched rockfish decreased, rather than increased, with increasing latitude from Oregon to Alaska.

A number of rockfish species were shown to exhibit variability in life history parameters with latitude, particularly those related to growth (Gertseva et al., 2010, Keller et al. 2012). Size-at-age parameters reported for darkblotched rockfish in literature vary widely. For instance, substantially smaller size-at-age was estimated for darkblotched rockfish off British Columbia, Canada, than for fish off Oregon (Hamel, 2008).
For this assessment, we evaluated darkblotched rockfish size at-age data along the coast, using data collected within the NMFS Northwest Fisheries Science Center shelf-slope survey, and did not find evidence of latitudinal variability in growth. Plots showing size-at-age data by sex and state, together with growth function fits are shown in Figure 3 and Figure 4. Plots showing the same data coastwide and by sex, together with growth function fits for are shown in Figure 5 and Figure 6.

For the purpose of this assessment, the species is treated as a single stock from the U.S.Canadian border in the north to the U.S.-Mexican border in the south, due to the lack of biological and genetic data supporting the presence of multiple stocks. A map depicting the spatial scope of the assessment is shown in Figure 7.

No study has been conducted to evaluate movement patterns of darkblotched rockfish within the area of assessment. Adults of darkblotched rockfish typically are observed resting on mud near cobble or boulders (Love et al., 2002). However, they feed primarily in midwater on large planktonic organisms such as krill, gammarid amphipods, copepods and salps (Love et al., 2002). This suggests that darkblotched rockfish are not extremely sedentary and spend significant time off the bottom. This is also confirmed by the fact that darkblotched rockfish are among few rockfish species that are bycaught within at-sea hake fishery which operates in the mid-water. Therefore, it is reasonable to assume that mixing of individuals within assessment area happens not only at the stage of pelagic juveniles, but also at the adult life stages. Given that, the spatial scope of the assessment is treated as a single area.

1.2 Ecosystem Considerations

Darkblotched rockfish belong to groundfish of the California Current Large Marine Ecosystem. They interact with many other species throughout their long lives (Figure 8). Larvae and juveniles darkblotched are pelagic. They are also often found perched on the highest bit of structure in the benthic habitat. Juveniles occasionally are seen around the bottoms of deepwater oil platforms. Older larvae and pelagic juvenile darkblotched rockfish are found closer to the surface than many other rockfish species. They feed on plankton, and are vulnerable to predators by other fish and seabirds. Young darkblotched are eaten by king salmon and albacore (Love et al., 2002). As they grow and mature, they
feed on variety of invertebrates and fishes. Occasionally, darkblotched rockfish take octopi. They are preyed upon by large fishes and marine mammals. Competition for prey and habitat may exist within and among groundfish, and many groundfish species prey upon other groundfish.

Basin-scale forces ultimately affect local production and the quality of the habitat types that groundfish use over the course of their lives. Circulation patterns and upwelling affect patchiness of food and retention of pelagic larvae and juveniles, and upwelling promotes spring/summer production. Temperature affects metabolic rates and growth. In some areas, strong productivity may produce excess phytoplankton, which settles to the bottom and can lead to hypoxia due to high microbial respiration (Figure 9).

Groundfish support extensive and valuable fisheries on the U.S. West Coast. Fisheries that operate with bottom trawl gear may degrade groundfish habitat. Conservation measures and precautionary fisheries management practices are implemented to sustain groundfish populations and their habitat. Also, habitat qualities and fishery opportunities may be affected by non-fishing activities related to various industrial, shipping, energy development, and land-use practices. Such activities can contribute to nutrient loading, changes in delivery of sediments, pollution and other forms of habitat alteration (Figure 10).

In this assessment, ecosystem considerations were not explicitly included in the analysis. This is primarily due to lack of relevant data and results of analyses (conducted elsewhere) that could contribute ecosystem-related quantitative information for the assessment. However, we used recently developed geostatistical delta-GLMM approach to estimate an abundance index from NWFSC shelf-slope survey data. This method uses information on the location of samples (i.e. whether located in high- or low-density habitats) to explain a portion of variability in catch rates, and thus indirectly incorporates information on habitat quality that, in many respects, shapes spatial distribution of organisms and determines density of their occurrence.

1.3 Fishery Information and Summary of Management History

Darkblotched rockfish has always been caught primarily with commercial trawl gear, as part of a complex of slope rockfish, which includes Pacific ocean perch (Sebastes alutus), splitnose rockfish (Sebastes diploproa), yellowmouth rockfish (Sebastes reedi), and sharpchin rockfish (Sebastes zacentrus) (Rogers and Pikitch, 1992; Rogers, 1994). Over the years, catches with non-trawl gear comprised 2% of the total coastwide shoreside landings (Figure 11). This species has not been taken recreationally as evident from RecFIN (www.recfin.com), a regional source of recreational data managed by the Pacific States Marine Fisheries Commission (PSMFC).

The rockfish fishery off the U.S. Pacific coast first developed off California in the late 19th century. At that time, most rockfish were taken by hook and line, with a minor amount taken by gillnets (Love et al., 2002). Until the 1940s, catches of rockfish were very small because almost all fishing efforts were directed toward the various salmon species and Pacific halibut.

The rockfish fishery was established in the early 1940s, when the United States became involved in World War II and wartime shortage of red meat created an increased demand for other sources of protein (Alverson et al., 1964; Harry and Morgan, 1961). Also, in 1943, the new balloon trawls were introduced. These balloon trawls were lighter than the old paranzellas and otter trawl nets. They were built to fish over low-lying rocky reefs and proved to be successful in taking rockfish (Love et al., 2002). With this new technology and increased demands during the World War II, the catch of rockfish increased in the mid-1940s. The increased demand caused the fishery to shift toward previously unexploited areas, including those preferred by darkblotched rockfish. The California fishery moved north, to the Eureka INPFC area; and both the California and Oregon fisheries had moved deeper into the slope area, those greater than 100 fm (183 m) (Harry and Morgan, 1961; Scofield, 1948). This is when darkblotched rockfish catch first became significant (Figure 12).

Domestic demand for rockfish declined after World War II and rockfish catches dropped (Cleaver, 1951), but in the early 1950s, the Pacific ocean perch fishery developed in Oregon and Washington (Love et al., 2002), and landings of darkblotched rockfish, which co-occur with Pacific ocean perch, also increased. Prior to 1965, Pacific ocean perch and species incidentally caught in the Pacific ocean perch fishery off of the U. S. West Coast were harvested almost entirely by U. S. and Canadian vessels. Most of these vessels were of multi-purpose design and used in other fisheries, such as salmon and herring, when not engaged in the groundfish fishery. Generally under 200 gross tons and less than 33 m in length, these vessels had very little at-sea processing capabilities. These characteristics, for the most part, restricted the distance these vessels could fish from home ports, and limited the size of their landings.

In the mid-1960s, foreign trawl fleets from the former Soviet Union, Japan, Poland, Bulgaria and East Germany came to the Northeast Pacific Ocean to target large aggregations of Pacific ocean perch over high-relief rocky outcrops (Love et al., 2002). Using very large vessels (often called factory trawlers), foreign fleets, particularly the Soviet, had the capacity to operate independently, by processing and freezing their own catch. Support vessels, such as refrigerated transports, oil tankers, and supply ships permitted these large stern trawlers to operate at sea for extended periods of time. Foreign fleets were known not to discard fish (Rogers, 2003).

Foreign catch was particularly significant between 1966 and 1968 (Figure 12). Within a short period of time, catches of Pacific ocean perch and rockfish co-occurring with Pacific ocean perch (including darkblotched rockfish) skyrocketed. However, regulations increasingly reduced catch of slope rockfish by foreign fleets. Catches declined rapidly, and the fishery proceeded with more moderate landings (Figure 12). By the late-1960s, the Soviet fleet had more or less abandoned the fishery, although the Japanese fleet continued fishing for some time. In 1976, on-bottom trawling by foreign fleets was prohibited, and the depleted Pacific ocean perch fishery became largely domestic (Love et al., 2002).

A small amount of darkblotched rockfish has also been taken as bycatch in the at-sea Pacific hake fishery (Figure 12). The at-sea Pacific hake fishery dates back to the 1960s when foreign vessels participated. In the 1980s, the fishery evolved into a joint venture with U.S. catcher vessels delivering to foreign processing vessels. By 1991, foreign vessels were no longer allowed to fish in U.S. waters, and the pacific hake fishery became completely domesticated, allowing only U.S. vessels to catch and process fish. Prior to 1977, darkblotched rockfish in the waters off the United States were managed by the individual states (within the three miles). With implementation of the MagnusonStevens Fishery Conservation and Management Act (MFCMA) in 1976, primary responsibility for management of the groundfish stocks off Washington, Oregon and California shifted from the states to a partnership between the National Marine Fisheries Service (NMFS) and the Pacific Fishery Management Council (PFMC). A summary of the major management shifts on the West Coast of the United States related to groundfish species through 2005 (prepared by PFMC’ Groundfish Management team (GMT)) is provided in Appendix 1.

Limits on shoreside rockfish catch were first instituted in 1983, with darkblotched rockfish managed as part of a group of around 50 species, designated as the Sebastes complex (Hamel, 2008). Commercial vessels were not required to separate most rockfish catches into individual species, and port biologists in each state routinely have sampled mixed-species market categories, such as the Sebastes complex, to determine the actual species composition of these mixed-species categories. In 1994, the Sebastes complex was divided into northern and southern areas, for annual harvest specifications and setting bimonthly cumulative landings limits (a.k.a. "trip limits"). In 1996, an assessment of the major species in the Sebastes complex was conducted (Rogers et al., 1996). This assessment led to a species-specific Overfishing Limit (OFL) (then called Acceptable Biological Catch (ABC)) for darkblotched rockfish in 1997.

The stock assessment conducted by Rogers et al. (2000) found the darkblotched rockfish stock to be depleted, and an overfished determination was made In 2001, darkblotched rockfish was managed with stock-specific harvest specifications with an ABC and an Optimum Yield (OY) specified. However, landed catch of darkblotched rockfish continued to be managed by trip limits established for the northern and southern minor slope rockfish complexes. Since 2000, when the stock was declared overfished, landings of darkblotched rockfish decreased substantially, primarily due to management regulations instituted for the species.

In 2002, Rockfish Conservation Areas (RCAs), which are large marine areas closed to commercial fishing, were implemented by NMFS as a measure to reduce bycatch of overfished rockfish species. Specific boundaries for the RCAs have varied considerably among bimonthly periods, years and areas; the extent and complexity of their structure has also waxed and waned since first instituted. The description of exact boundaries of the RCAs and how they change over time are available upon request. Trawl gear that is used shoreward of the RCAs is required to have small footropes (<8 " diameter), which increases the risk of gear loss in rocky areas. Reductions in trip limits for shelf rockfish species have also reduced incentives to fish in rocky areas shoreward of the RCA. Since

2005, vessels using trawl gear shoreward of the RCA north of $40^{\circ} 10^{\prime} \mathrm{N}$ latitude have also been required to use nets that are designed to be more selective for flatfish.

Since 2011, the shorebased trawl allocation (including non-hake groundfish trawl, and shorebased hake trips) has been managed under a catch share fishery, using Individual Fishing Quotas (IFQ), where each permit holder fishes an annual quota. Under this system, discard of darkblotched rockfish and many other species has decreased dramatically. This is evident in observer data. The primary driver for this is that both landed and discarded fish count towards each fisher's annual quota. Under the previous system of bimonthly landing accumulation limits (a.k.a. trip limits), discard rates could fluctuate wildly, and were negatively correlated with trip limits. Pre-IFQ discard rates for darkblotched averaged 44.2 \% (2002-2010), whereas under IFQ, the annual discard rate has averaged just 2.4 \% (2011-2013).

1.4 Management Performance

Table 1 present a summary of management performance for darkblotched rockfish over the last 10 years, which include a comparison of darkblotched rockfish Overfishing Limits (OFLs), Annual Catch Limits (ACLs), landings, and catch (i.e., landings plus discard). The stock has historically been managed with bimonthly cumulative landings limit (a.k.a. "trip limits") as most of the catch came from the limited entry bottom trawl fishery. However, since 2011, that allocation has been managed as a catch share fishery, using Individual Fishing Quotas (IFQ), where each permit holder has an annual quota. Darkblotched rockfish has been managed using species-specific harvest specifications since 2001. Over the last 10 years, the total dead catch (as estimated in this assessment) exceeded the Annual Catch Limit (ACL) in two years: 2009 and 2010. The total dead catch has not exceeded the Overfishing Limit (OFL) during last decade.

1.5 Fisheries off Canada, Alaska, and/or Mexico

Darkblotched rockfish have a widespread distribution through the Canadian West Coast Exclusive Economic Zone; however, the highest concentrations occur along the shelf northwest of Vancouver Island and in Moresby Gully southeast of the Queen Charlotte Islands. Similarly to the Unites States, the Canadian commercial trawl fleet captures this species in slope rockfish assemblage and as a bycatch to the important Pacific ocean perch fishery, but in much lower numbers than those in the Unites States. A formal stock assessment of darkblotched rockfish has not been conducted in Canada. However, a review of darkblotched rockfish biology, distribution, and abundance trends along the Pacific coast of Canada was completed by Haigh and Starr (2008). In this review Haigh and Starr (2008) use values for natural mortality and individual growth drawn from the contemporary U.S. assessments. This review was not intended to advise fisheries managers on harvest policy and, therefore did not yield a conclusion on a status and longterm trends of the stock. In the future this review could serve as a basis for a stock assessment.

In the Gulf of Alaska and the Bering Sea-Aleutian Islands, darkblotched rockfish are rare but still occur in fishery catches. It is managed within the other rockfish complex, with management measures set based on area-swept biomass estimates and natural mortality
assumptions. The range of darkblotched rockfish does not extend beyond southern California.

2 Assessment

2.1 Data

The darkblotched rockfish data used in the assessment are summarized Figure 13. These data include both fishery-dependent and fishery-independent sources.

2.1.1 Fishery-dependent data

The fishery removals in the assessment are divided among three fleets, which include shoreside fishery that contains catches from all gear types, historical catch in the foreign Pacific ocean perch (POP) fishery and bycatch in the at-sea Pacific hake fishery.

The shoreside fishery has historically reported landed catch only, even though a portion of the darkblotched catch was discarded at sea. The foreign POP fishery, on the other hand, was known not to discard fish based on fish size or species, while the at-sea hake fishery reports total catch, which includes both retained and discarded fish. To account for differences in discarding practices and catch reporting, and most importantly to avoid inflating darkblotched removals in POP and at-sea hake fisheries, the shoreside fleet and bycatch fisheries were separated. The historical discarded portion of the shoreside fleet was estimated within the model based on data collected by the West Coast Groundfish Observer Program (WCGOP) and historical discard data provided in the Pikitch study (Pikitch et al., 1988) (both described in details below). Contemporary estimates of discard are provided by WCGOP annually (2002-present).

Catches in the shoreside fishery have been traditionally dominated by bottom trawl removals, with catches of all other gear types (including non-trawl gears and mid-water trawl) contributing 2% of overall darkblotched landings. For the assessment, we combined catches from all gear types within the shoreside fishery into one fishing fleet.

Shoreside fishery landings by state are shown in Figure 12. However, the port of landing does not always coincide with where the fish were caught. For instance, Oregon vessels, particularly those from northern ports such as Astoria/Warrenton, frequently fish in waters off of Washington but return to Oregon to land their fish. The fishery operates and is managed coastwide; length composition of landings made in different states do not differ (Figure 14). Therefore, in the assessment removals by California, Oregon and Washington were combined into one fleet.

Historically, landed catch of rockfish have been reported as mixed-species groups that have similar market value, rather than as individual species (Barss and Niska, 1978; Douglas, 1998; Lynde, 1986; Niska, 1976; Tagart and Kimura, 1982). These groups are called "market categories". The species compositions of these mixed-species market categories have changed over time. In the 1960s, the state agencies in California, Oregon and Washington initiated sampling programs of commercial trawl rockfish landings, in which port biologists sampled species compositions of mixed-species category landings
to determine contributions of different species to each market category and derive per species landings time series. Sampling efforts focused on rockfish landings in the trawl fishery, since commercial landings of rockfish species with other gear types have been low. Prior to the 1960s, many of the market categories were not sampled for composition by species, so that the annual contributions of different species to these categories are largely unknown (Barss and Niska, 1978; Douglas, 1998; Lynde, 1986; Niska, 1976).

Landings of darkblotched rockfish were reconstructed back to 1916, and the assessment assumes a zero catch and equilibrium unfished biomass in 1915. The reconstructed time series of darkblotched rockfish landings by the shoreside fishery and removals by bycatch fleets are presented in Figure 12 and Table 2. Figure 1 shows the spatial distribution of darkblotched rockfish catch in shoreside fishery, as observed by the WCGOP between 2002 and 2008.

2.1.1.1 Shoreside landings

Estimates of recent shoreside landings of darkblotched rockfish (between 1981 and 2014) were obtained from the Pacific Fisheries Information Network (PacFIN), a regional fisheries database that manages fishery-dependent information in cooperation with west coast state agencies and NOAA Fisheries (www.pacfin.com). Landings data were extracted by gear type on March 6, 2015 and then combined into the fishing fleets used in the assessment.

Time series of historical (pre-1981) landings were reconstructed by gear group (trawl and non-trawl) for each state separately and then combined to produce annual coastwide estimates for shoreside fleet. The methods used to reconstruct historical landings for each state are described below.

2.1.1.1.1 Washington

The records of rockfish landings in Washington go back to 1935 (Hongskul, 1975; Tagart and Kimura, 1982). Historically, rockfish landings in Washington were reported on fish tickets in two mixed species complexes "Pacific Ocean Perch" and "Other Rockfish" (Tagart and Kimura, 1982). In 1966, the Washington Department of Fish and Wildlife (WDFW) initiated a sampling program to estimate landings of each rockfish species within these mixed species complexes. Tagart and Kimura (1982) described methodology employed in calculating rockfish landings by species based on data collected by the WDFW sampling program, and Tagart (1985) provided time series of darkblotched rockfish landings by year between 1963 and 1980. The rockfish landings for the earlier time period (1935-1962) were compiled by Hongskul (1975), but no species-specific catches were estimated. To derive estimates of darkblotched rockfish landings between 1935 and 1962, we first estimated the proportion of darkblotched rockfish in 1963-1967 rockfish landings, the earliest five years of the Tagart data (Tagart, 1985), and then applied this proportion to the 1935-1962 Hongskul (1975) landings by year. The time series of Washington landings of darkblotched rockfish as used in this assessement are presented in Table 2.

2.1.1.1.2 Oregon

Oregon records of darkblotched rockfish landings go back to late 1930s. Similar to Washington, darkblotched rockfish were historically landed in Oregon in mixed species market categories, primarily within "Pacific Ocean Perch" and "Unspecified Rockfish". A small portion of rockfish in Oregon between 1942 and the early 1980s were also landed in the "Animal Food" category (also called "Mink Food" or "Miscellaneous" by some sources). This portion of catch went to feed mink for the fur trade. Mink food consisted mainly of red meat until World War II, when horsemeat became increasingly difficult and expensive to obtain. During this period, there was an abundance of fillet carcasses, which were used as a protein source for mink. When the demand exceeded the supply, whole fish were specifically targeted to supplement the carcasses (Niska, 1969).

A time series of Oregon historical landings of darkblotched rockfish through 1986 was provided by the Oregon Department of Fish and Wildlife (ODFW), which in collaboration with the National Marine Fisheries Service (NMFS) Northwest Fisheries Science Center (NWFSC), conducted a reconstruction of historical groundfish landings in Oregon (Karnowski et al., 2014). Karnowski et al. (2014) provide a detailed description of methods used in calculating rockfish landings by species. A variety of data sources were used to reconstruct historical landings of rockfish market categories, including Oregon Department of Fish and Wildlife’s Pounds and Value reports derived from the Oregon fish ticket line data (1969-1986), Fisheries Statistics of the United States (19271977), Fisheries statistics of Oregon (Cleaver, 1951; Smith, 1956), Reports of the Technical Sub-Committee of the International Trawl Fishery Committee (now the Canada-U.S. Groundfish Committee) (1942-1975) and many others.

To inform species compositions of rockfish within different market categories, the ODFW has routinely sampled species compositions of multi-species rockfish categories from commercial bottom trawl landings since 1963. Rockfish landings by species estimated based on data collected by ODFW sampling program have been summarized in several ODFW reports, including (Barss and Niska, 1978; Douglas, 1998; Niska, 1976). The latter publication by Douglas (1998) was an expansion and improvement on earlier publications by (Niska, 1976) and (Barss and Niska, 1978). These sources were also used by Karnowski et al. (2014) in reconstructing historical landings of darkblotched rockfish in Oregon. The reconstructed landings of darkblotched rockfish in Oregon are presented in Table 2.

2.1.1.1.3 California

A time series of California landings of darkblotched rockfish during the most recent "historical" period (between 1969 and 1980) were available from the California Cooperative Groundfish Survey (CalCOM) database.

Earlier landing records (between 1916 and 1968) were reconstructed by the NMFS's Southwest Fisheries Science Center (SWFSC) (Ralston et al., 2010). These reconstructed landings, in addition to apportioning catches to trawl and non-trawl gear included a portion assigned to unknown gear type. To assign unknown gear type landings to trawl and non-trawl catches, we calculated the proportion of trawl and non-trawl landings
within landings assigned to trawl and non-trawl gear by year between 1916 and 1968, and applied these proportions to unknown gear type landings by years. The reconstructed landings of darkblotched rockfish in California are presented in Table 2.

2.1.1.2 Discard

There are three main sources of rockfish discard information on the West Coast of the United States. Since 2002, the WCGOP has collected bycatch and discard information on board fishing vessels in the trawl and fixed gear fleets along the entire coast, and produced discard ratio and total fishing mortality estimates for all species observed. The WCGOP was implemented in 2001 and began with gathering data for the limited entry trawl and fixed gear fleets. Observer coverage has expanded to include the California halibut trawl, the nearshore fixed gear and pink shrimp trawl fisheries. Since 2011, darkblotched rockfish was harvested with a catch share fishery, using Individual Fishing Quotas (IFQ), where each permit holder has an annual quota. The WCGOP provides 100% at-sea observer monitoring of catch for this new, catch share based IFQ fishery.

Prior to 2002, there were two studies of bycatch and discard in the trawl fishery, including the Enhanced Data Collection Project (EDCP) and the Pikitch study (Pikitch et al., 1988). The EDCP administered by the ODFW collected data on bycatch and discard of groundfish species off the Oregon coast from late 1995 to early 1999 (Sampson, pers.com.). The project had limited spatial coverage (Oregon waters only) and due to time constraints, the observers only recorded discarded catch for darkblotched rockfish. Retained catch of darkblotched rockfish was recorded in the logbooks and fish tickets, but only as part of a mixed-species group of rockfish, which prevented calculation of the species-specific discard ratios for darkblotched rockfish. For this reason, the EDCP data were not included in the assessment.

The Pikitch study was conducted between 1985 and 1987. The northern and southern boundaries of the study were $48^{\circ} 42^{\prime}$ and $42^{\circ} 60^{\prime}$ North latitude respectively, which is primarily within the Columbia INPFC area (Pikitch et al., 1988; Rogers and Pikitch, 1992). Participation in the study was voluntary and included vessels using bottom, midwater and shrimp trawl gears. Observers of normal fishing operations on commercial fishing vessels collected the data, estimated the total weight of the catch by tow and recorded the weight of each species retained or discarded in the sample.

The WCGOP provided estimates of the discard ratios of darkblotched rockfish for the period between 2002 and 2013. The WCGOP data are collected by gear type, fishery (e.g., open access, limited entry) and species/management units. The discard ratios were computed as the total estimated discarded weight (in pounds) on observed trips divided by the estimated total catch (discarded and retained). To aggregate these ratios into the fleet modeled in this assessment, each state, fishery and gear combination was weighted by the total estimated catch (discarded and retained weight). Thus, the discard rates used for each fleet represent the weighted estimates from each contributing segment within that fleet. Uncertainty in these values was quantified via bootstrapping the individual observations and then aggregating to the total estimate, providing a distribution of the
discard rate. From this distribution a standard error associated with year specific discard ratio estimate was provided.

Discard ratios for 1985 and 1987 were estimated from observations of retained and discarded catch collected in the Pikitch study (Pikitch et al., 1988), as described in Wallace (2015). Rodgers and Pikitch (1992) produced post-hoc assemblages based on cooccurrence of species observed in the Pikitch study tows. Wallace (2015) developed a link between Rodgers and Pikitch (1992) post-hoc strategies and fisheries landings data reported in PacFIN and expanded discard ratios and length composition from the Pikitch et al. (1988) to a fleet-wide level.

2.1.1.3 Catch in the foreign POP fishery

As described in the Introduction, between the mid-1960s and mid-1970s, foreign trawl fleets from the former Soviet Union, Japan, Poland, Bulgaria and East Germany targeted aggregations of Pacific ocean perch in the Northeast Pacific Ocean, in the waters off the U.S. West Coast (Love et al., 2002). Rogers (2003) estimated removals of POP and other species caught within this foreign POP fishery, including removals of darkblotched rockfish. In the assessment, we used estimates of darkblotched bycatch in the foreign POP fishery between 1966 and 1976 as estimated by Rogers (2003).

2.1.1.4 Bycatch in the at-sea Pacific hake fishery

As also described in the Introduction, small amounts of darkblotched rockfish are incidentally caught in in the Pacific hake fishery. The At-Sea Hake Observer Program (A-SHOP) monitors the at-sea hake processing vessels and collects total catch and bycatch data. Since the 1970s observers were deployed onto foreign fishing vessels that were catching Pacific hake. After 1991, observers continued to be deployed aboard U.S. flagged catcher processor and mothership vessels.

The annual amounts of darkblotched rockfish bycatch in the at-sea hake fishery, collected by A-SHOP, have been obtained from the North Pacific Database Program (NORPAC). Since 1991, virtually 100% of hauls in the at-sea hake fishery have been sampled for catch and species composition, and the total catch (retained and discarded) has been estimated for both targeted and bycatch species for each haul. To derive the total amount of darkblotched rockfish bycatch by year, we simply summed the estimated catch in every haul within a year. Prior to 1991 (time of foreign fishery and joint venture), not every haul was sampled. For these years, NORPAC provided an expansion factor (one for each year), which is a ratio of total hauls to sampled hauls. These year-specific expansion factors were used to estimate the total amount of darkblotched rockfish caught by multiplying the amount of total catch in sampled hauls by the expansion factor. The removals of darkblotched in the at-sea hake fishery between 1976 and 2014 are presented in Table 2 and Figure 11.

2.1.1.5 Fishery biological data

Biological information on shoreside landings was obtained from PacFIN (date of data extraction: March 6, 2015) and on commercial discard from the WCGOP and the Pikitch study. The fishery biological data were also obtained from NORPAC for darkblotched
removals in at-sea hake fishery. The fishery biological data included sex, length and age of individual fish (amount of data available varied by source, year and state). These biological data were used to generate length and age frequency distributions by sex (when possible), which were then used in the assessment to describe selectivity and retention of the shoreside fleet. The summary of sampling efforts, which include number of sampled trips, hauls (when available) and fish by source, year and state is provided in Table 3 and
Table 4. No biological information was available on darkblotched removals in foreign POP fishery.

2.1.1.5.1 Length composition data

Length composition data from commercial fisheries were compiled into 30 length bins, ranging from 4 to 62 cm . Most of the length data from PacFIN were reported for females and males separately; therefore length frequency distributions of darkblotched rockfish in commercial landings were generated by year and sex. The number of fish sampled by port samplers from different trips has not been proportional to the amount of landed catch in these trips. Sampling effort also has varied among states. To account for nonproportional sampling of darkblotched rockfish among trips and states, and to generate length frequency distributions that would be more representative of coastwide species landings, the observed length composition data were expanded using the following algorithm:

1. Length composition data were acquired at the trip level by year, state and sex;
2. For each trip, raw length observations were scaled up to represent darkblotched rockfish landings for the entire trip:
a. An expansion factor was calculated by dividing the total weight of trip landings by the total weight of darkblotched rockfish sampled for length within the same trip;
b. The observed raw length composition data within each trip were multiplied by the expansion factor and then summed up by state.
3. The expanded and summed lengths in each state were then expanded again to account for differences in species landings among states:
a. The expansion factor was computed by dividing the total weight of state landings by the total weight of organisms sampled for length within this state;
b. The length frequency distributions for each state (from step 2 of this algorithm) were multiplied by the expansion factor (from step 3.a) and then summed up to determine the coastwide sex-specific length frequency distributions by year.

We only used randomly collected samples. The coastwide length frequency distributions of darkblotched rockfish (generated as described above) landed in the shoreside fishery by year and sex are shown in Figure 15 and Figure 16.

Length frequencies distributions were developed for the period between 1977 and 2014. Length distributions between 1977 and 1979, however, were not use in the assessment as
those distributions were substantially different from distributions in the other years. More probably, length data during these years mainly represented catches in midwater trawl fishery targeting widow rockfish, the dominant rockfish fishery in the late-1970s on the U.S. West Coast or pink shrimp trawl fishery. Landings of that period, however, were not distinguished between bottom midwater or shrimp trawls; therefore, we were unable to confirm our assumption regarding the reason for observed difference.

Length-frequency distributions of darkblotched rockfish that were discarded at sea were obtained from the WCGOP for the period between 2003 and 2013, and from the Pikitch study for the year of 1986. The WCGOP discard length composition data were analyzed using a weighting method consistent with that applied to the port samples of landed catch described above. The Pikitch study length compositions were obtained from Wallace (2015). Length frequency distributions of discarded fish were developed for both sexes combined, since the vast majority of data did now have sex information associated with length measurements. The length frequency distributions of darkblotched rockfish discarded at sea by year are shown in Figure 17.

Length-frequency distributions of darkblotched rockfish bycaught at the at-sea hake fishery were available by sex for the period between 2003 and 2014. Again, these length composition data were analyzed using a weighting method consistent with the one applied to data from other sources. The length frequency distributions of darkblotched rockfish in the at-sea hake fishery by sex and year are shown in Figure 17.

The initial input sample sizes for length frequency distributions of darkblotched landings by year were calculated as a function of the number of trips and number of fish sampled using the method developed by Stewart and Miller (pers. com.):

$$
\begin{array}{ll}
N_{\text {input }}=N_{\text {trips }}+0.138 N_{\text {fish }} & \text { when } \frac{N_{\text {fish }}}{N_{\text {trips }}}<44 \\
N_{\text {input }}=7.06 N_{\text {trips }} & \text { when } \frac{N_{\text {fish }}}{N_{\text {trips }}} \geq 44
\end{array}
$$

The method was developed based on analysis of the input and model-derived effective sample sizes from west coast groundfish stock assessments. A step-wise linear regression was used to estimate the increase in effective sample size per sample based on fish-persample and the maximum effective sample size for large numbers of individual fish.

2.1.1.5.2 Age composition data

Age composition data from commercial fisheries were compiled into 36 age bins, ranging from age 0 to age 35 fish. Age estimated ages for darkblotched rockfish are available between 1980 and 2014. The amount of age data sampled from commercial landings varied among state (
Table 4). Age data on discarded fish were available from the WCGOP for 2004 and 2005. Age data from at-sea hake fishery were available for the period between 2003 and 2013.

The age data from fisheries were used to derive marginal age compositions using the same weighting methods as used for the length frequency distributions. The marginal composition approach was preferred over the conditional age-at-length compositions (used for fishery-independent data) because the commercial fishery often operates over a more protracted season than the surveys (making age-at-length less stationary during a single year) and in order to speed the computation time of model runs. The marginal age compositions for commercial landings and discards, and removals in the at-sea hake fishery used in the assessment are presented in Figure 18, Figure 19 and Figure 20.

In several previous assessment of darkblotched rockfish (Rogers, 2005; Hamel, 2008), a concern was expressed that criteria for estimating ages of darkblotched rockfish might have changed (Hamel, 2008) and that a bias may have existed in "early" age data compared to those generated in 2004 and later (Rogers 2005). The last assessment (Gertseva and Thorson, 2014) re-evaluated all the age data available for darkblotched rockfish and, based on the communication with age readers involved in ageing of darkblotched rockfish over the years (McDonald, Kamikawa, Menkel, pers. com), established that no changes were made in ageing criteria for this species. Gertseva and Thorson (2014) also explored a presence of potential bias in "early" age data by comparing double reads made by the same age reader in the "early" and "late" periods and found little support for "early" age data being biased relative to "late" age estimates or having different imprecision.

Since 2005, darkblotched rockfish age structures (otoliths) were read by a single reader (Reader 1) from the Ageing Laboratory in the Hatfield Marine Science Center in Newport (Oregon) using the break and burn method, with few other readers producing double-reads of the same age structures. Prior to 2005, several age readers were involved in ageing darkblotched rockfish, who use the same method (break and burn) and same criteria to estimate ages from darkblotched rockfish otoliths as the current age reader for this species. To account for the change in age readers in 2005, a separate pattern for ageing error was estimated in an "early" (prior to and including data aged in 2004) and "late" (after and including data aged in 2005) periods of age data (see Ageing bias and impression section for details).

2.1.2 Fishery-independent data

2.1.2.1 Surveys used in the assessment

The assessment utilizes fishery-independent data from four bottom trawl surveys conducted on the continental shelf and slope of the Northeast Pacific Ocean by NWFSC and Alaska Fisheries Science Centers (AFSC), including: 1) the AFSC shelf survey (often called "triennial", since it was conducted every third year), 2) the AFSC slope survey, 3) the NWFSC slope survey, and 4) the NWFSC shelf-slope survey (often referred to as "combo" survey). Details on latitudinal and depth coverage of these surveys by year are presented in Table 5.

The AFSC triennial survey was conducted every third year between 1977 and 2004 (in 2004 this survey was conducted by the NWFSC using the same protocols). Survey
methods are most recently described in Weinberg et al. (2002). The basic design was a series of equally spaced transects from which searches for tows in a specific depth range were initiated. Over the years, the survey area varied in depth and latitudinal range (Table 5). Prior to 1995 , the depth range was limited to $366 \mathrm{~m}(200 \mathrm{fm})$ and the surveyed area included four INPFC areas (Monterey, Eureka, Columbia and U.S. Vancouver). After 1995, the depth coverage was expanded to $500 \mathrm{~m}(275 \mathrm{fm})$ and the latitudinal range included not only the four INPFC areas covered in the earlier years, but also part of the Conception area with a southern border of $34^{\circ} 50^{\prime}$ N. latitude. For all years, except 1977, the shallower surveyed depth was $55 \mathrm{~m}(30 \mathrm{fm})$; in 1977 no tows were conducted shallower than $91 \mathrm{~m}(50 \mathrm{fm})$. The data from the 1977 survey were not used in the assessment, because of the differences in depths surveyed and the large number of "water hauls", when the trawl footrope failed to maintain contact with the bottom (Zimmermann et al., 2001). The tows conducted in Canadian and Mexican waters were also excluded. In the assessment, the triennial survey was divided into two periods: 1980-1992, and 19952004; separate catchability coefficients (Q) were estimated for each time period. This was done to account for differences in spatial coverage before and after 1995 (Table 5) and to reflect a change in the timing of the survey. The survey was conducted from midsummer to early fall in the earlier time period, and was conducted at least a full month earlier in the later time period (Figure 21).

The AFSC slope survey was initiated in 1984. The survey methods are described in Lauth (2000). Prior to 1997, the survey was conducted in different latitudinal ranges each year (Table 5). In this assessment, only data from 1997, 1999, 2000 and 2001 were used these years were consistent in latitudinal range (from $34^{\circ} 30^{\prime} \mathrm{N}$. latitude to the U.S.Canada border) and depth coverage (183-1280 m; 100-700 fm).

The NWFSC slope survey was conducted annually from 1999 to 2002 (Keller et al., 2007). The surveyed area ranged between $34^{\circ} 50^{\prime}$ and $48^{\circ} 07^{\prime} \mathrm{N}$. latitude, encompassing the U.S. Vancouver, Columbia, Eureka, Monterey INPFC areas, and a portion of the Conception area, and consistently covered depths from 100 to 700 fm (183-1280 m) (Table 5).

The NWFSC shelf-slope (combo) survey has been conducted annually since 2003, and the data between 2003 and 2012 were used in the assessment. The survey consistently covered depths between 55 and 1280 m (30 and 700 fm) and the latitudinal range between $32^{\circ} 34^{\prime}$ and $48^{\circ} 22^{\prime} \mathrm{N}$. latitude, the extent of all five INPFC areas on the U.S. west coast (Table 5). The survey is based on a random-grid design, and four industry chartered vessels per year are assigned an approximately equal number of randomly selected grid cells. The survey is conducted from late May to early October, and is divided into two passes, with two vessels operating during each pass. The survey methods are most recently described in detail in Bradburn et al. (2011).

2.1.2.2 Survey abundance indices

Indices of abundance for three out of four bottom trawl surveys (that include AFSC shelf, AFSC slope and NWFSC slope surveys) were retained from the last assessment (Gertseva and Thorson, 2013). These indices were derived using a delta-generalized
linear mixed model, or delta-GLMM (Maunder and Punt, 2004), implemented using the software from Thorson and Ward (2014).

For each survey abundance index, spatial strata were first identified based on depth and latitude, via examination of trends in size across latitude and depth and evaluation of the presence (or absence) of darkblotched in certain depth- or latitudinal areas. Survey data are based on a randomly-stratified survey design with pre-specified strata. We attempted to retain strata already recognized by the survey, while balancing the need to inform strata designation by species-specific characteristics of the stock. Also, the number of positive tows in each strata x year combination were computed to ensure that each stratum x year combination has a sufficient number of positive tows, for the estimation model to perform adequately.

Darkblotched exhibit ontogenetic movement, when fish move into deeper water as they mature, a common phenomenon observed in the genus Sebastes (Love et al., 2002). Survey data we evaluated also exhibited a rapid increase in fish size over the shallowest depths to roughly 300 m . Therefore, 300 m was used as the depth break for AFSC slope, NWFSC slope surveys and the late period (1995-2004) of the AFSC triennial shelf survey. In the early period (prior to 1995) the AFSC triennial survey went only to 400 meters and to satisfy requirement for a positive tow number, a single depth stratum was used for early AFSC survey. No darkblotched was found beyond 550 m , and in order to avoid extrapolating biomass into those deeper areas, for the analysis surveys that went passed 550 m , were cut at 549 m .

INPFC area boundaries were used as latitudinal breaks; however, due to few occurrences of darkblotched in the water off California, Conception and Monterey INPFC areas were combined into a single stratum. Also, Columbia and U.S. Vancouver INPFC areas were combined in the later period of the AFSC triennial shelf survey and AFSC slope survey, again due to very few positive tows in those areas. Resultant strata for all the surveys are shown in Table 6. These strata were used in constructing survey abidance indices used in the assessment.

The delta-GLMM approach used to construct survey abundance indices, for every tow explicitly models both the probability that it encounters the target species (using a logistic regression), and the expected catch for an encounter (using a generalized linear model). The product of these two components yields an estimate of overall abundance. Year is always included in both model components (because it is the design variable), and strata are generally included as a fixed effect. The delta-mixed-model implementation is necessary to treat vessels as a random effect for the NWFSC slope survey, because these vessels are selected in an open-bid for the sampling contract from the population of all possible commercial vessels (Helser et al., 2004). Lognormal and gamma errors structures were considered for the model component representing positive catches, while a Bernoulli error structure was assumed for the presence/absence model component.

We also explored an option to model extreme catch events (ECEs; (Thorson et al., 2011)), the large and infrequent catches observed for many rockfishes. Thorson et al.,
(2011) dealt with them during index standardization by treating the distribution of positive catches as a mixture distribution composed of the distributions for solitary individuals, and the distribution for fish shoals (treated as a loglinear offset from the distribution of solitary individuals). Simulation testing indicates that this treatment of fish shoals decreases the sampling variance that otherwise occurs from a few infrequent observations have large leverage (Thorson et al., 2012). Such approach has been shown to improve precision for estimated indices of abundance in simulated data in some cases (Thorson et al., 2012).

Abundance index for the NWFSC shelf-slope survey was derived using new geostatistical delta-GLMMs method (version 3.2.0), which was tailored to analyze data from this very survey. Recent research has advocated the use of geostatistical deltaGLMMs for analyzing survey data of patchy species such as darkblotched rockfish (Shelton et al., 2014). This advice was supported by a recent comparison of stratified and geostatistical delta-GLMMs for West Coast species, where the geostatistical method decreased the imprecision of estimated abundance indices on average for simulated data (Thorson et al., In press). The geostatistical approach to index standardization treats spatial variation in either encounter rates of positive catch rates as a random function, where the value of this random function at 1000 pre-defined locations ("knots") is treated as a random effect. In this way, annual variation and the magnitude of residual variation and variation among vessels can be treated as fixed effects, and estimated via maximum marginal likelihood. Additionally, the model includes 'survey pass' as a covariate (levels: first or second), to account for unbalanced sampling between the first and second passes of the survey, specifically in 2013, when only second pass was not completed due to government shutdown. This new geostatistical model is described in details in Thorson et al. (In press). It is implemented as an R package SpatialDeltaGLMM and is publicly available online at: https://github.com/nwfsc-assess/geostatistical_delta-GLMM. For this assessment, we run the base model with non-spatial delta-GLMM as well, and found that model outputs when using non-spatial GLMM were very similar to those generated by the base model with abundance index estimated via new geostatistical approach (Table 16, Figure 110 through Figure 113).

Model convergence was evaluated using the effective sample size of all estimates parameters (>500 was sought) and visual inspection of trace plots and autocorrelation plots (where a maximum lag-1 autocorrelation of <0.2 was sought). Model goodness-offit was evaluated using Bayesian posterior predictive checks and Q-Q plots (Figure 22 through Figure 24). For all indices, Q-Q plots indicated that an ECE error structure was necessary. Also, a comparison of average deviance between lognormal-ECE and gamma-ECE indicated support for using the gamma-ECE error structure for all indices.

We evaluated convergence of geostatistical model, following specific advice associated SpatialDeltaGLMM and made sure the final gradient of the marginal likelihood with respect to fixed effects is <0.01 for all fixed effects and the generalized delta-method generates positive (not NA) estimates for all fixed, random, and derived values. Model goodness-of-fit was evaluated using Q-Q plots, where a model that explains the data will generally have data fall on the one-to-one line, and posterior predictive plots for outliers.

Lognormal and gamma errors structures were considered for the model component representing positive catches, and lognormal model was selected for this index. Figure 25 and Figure 26 show Q-Q and posterior predictive plots, respectively, associated with this model.

2.1.2.3 Length composition data

Length composition data collected by the surveys were used to derive length frequency distributions by survey, year and sex. Amount of length composition data available for the assessment varied by survey and year. A summary of sampling efforts in all surveys are summarized in Table 7, Table 8, Table 9 and Table 10. Length composition data were compiled into 30 length bins, ranging from 4 to 62 cm . The observed length compositions were expanded to account for differences in catches among tows and spatial strata. To generate coastwide length frequency distributions the following algorithm was used:

1. For a specific year and survey, length data by sex were acquired at the tow level;
2. For each tow, the raw length observations were expanded to represent the entire tow:
a. An expansion factor was calculated by dividing the total weight of darkblotched within the tow by the total weight of darkblotched in this tow measured for length;
b. The observed length frequencies were multiplied by the expansion factor and then summed up within a spatial stratum.
3. The expanded and summed length frequencies in each spatial stratum were then expanded again to account for differences in catches among spatial strata:
a. The expansion factor was computed by dividing the total weight of darkblotched within a stratum by the total weight of darkblotched within this stratum measured for length;
b. The length frequency distributions within each stratum (calculated via step 2 above) were multiplied by the second expansion factor (from step 3.a) and then summed up to produce annual sex-specific length frequency distributions for the entire survey area.

Spatial strata used to generate annual length frequency distributions were consistent with the strata used to compute survey abundance indices (Table 6). The coast-wide length frequency distributions of female and male darkblotched rockfish by survey, year and sex are shown in Figure 27 through Figure 30.

The initial input sample sizes for the survey length frequency distribution data were calculated as a function of both the number of fish and number of tows sampled using the method developed by Stewart and Miller (NWFSC, pers.com.):

$$
\begin{array}{ll}
N_{\text {input }}=N_{\text {tows }}+0.0707 N_{\text {fish }} & \text { when } \frac{N_{\text {fish }}}{N_{\text {tows }}}<55 \\
N_{\text {input }}=4.89 N_{\text {tows }} & \text { when } \frac{N_{\text {fish }}}{N_{\text {tows }}} \geq 55
\end{array}
$$

2.1.2.4 Age composition data

Age composition data were collected for all the surveys, but the amount of data varied by survey and year. A summary of age data available for the assessment is presented in Table 7, Table 8, Table 9 and Table 10.

As in case of fishery-independent age data in several previous assessments (Hamel, 2008; Rogers, 2005), only age data generated in 2004 and later were used. The concern was that criteria for estimating ages of darkblotched rockfish might have changed (Hamel, 2008) and that a bias may have existed in "early" age data (Rogers, 2005). We re-evaluated all the age data available for darkblotched rockfish and, based on the communication with age readers involved in ageing of darkblotched rockfish over the years (McDonald, Kamikawa, Menkel, pers. com), established that no changes were made in ageing criteria for this species. We also explored a presence of potential bias in "early" age data by comparing double reads made by the same age reader in the "early" and "late" periods of age data and found little support for "early" age data being biased relative to "late" age estimates or for those data having different imprecision.

Since 2005, darkblotched rockfish age structures (otoliths) were read by a single reader (Reader 1) from the Ageing Laboratory at the Hatfield Marine Science Center in Newport (Oregon) using the break and burn method, with few other readers producing doublereads of the same age structures. Prior to 2005, several age readers were involved in ageing darkblotched rockfish; all readers used the same method (break and burn) and same criteria to estimate ages from darkblotched rockfish otoliths as the current age reader for this species. To account for the change in age readers in 2005, we estimated a separate pattern for ageing error in an "early" (prior to and including data aged in 2004) and "late" (after and including data aged in 2005) periods of age data (see Ageing bias and impression section for details).

Age composition data from the surveys were compiled as conditional distributions of ages at length by survey, year and sex. Prior to that, the observed age compositions were expanded to account for differences in catches among tows and spatial strata, using the same approach as described for length composition data above. The conditional ages at length approach uses an age-length matrix, in which columns correspond to ages and rows to length bins. The distribution of ages in each column then is treated as a separate observation, conditioned on the corresponding length bin (row). The conditional ages at length approach has been used in most recent stock assessments on the West Coast of the United States, since it has several advantages over the use of marginal age frequency distributions. Age structures are usually collected from the individuals that have been measured for length. If the standard age compositions are used along with length frequency distributions in the assessment, the information on sex ratio and year class strength may be double-counted since the same fish are contributing to likelihood components that are assumed to be independent. The use of conditional age distributions within each length bin allows avoiding such double-counting. Also, the use of conditional ages at length distributions allows the reliable estimation of growth parameters within the assessment model.

The number of ages within each length bin was used as the initial input sample sizes for conditional ages and length distributions. Conditional ages at length compositions generated and used in the assessment are shown in Figure 31 through Figure 34.

2.1.3 Biological parameters

Several biological parameters used in the assessment were estimated outside the model or obtained from literature. Their values were treated in the model as fixed, and therefore uncertainty reported for the stock assessment results does not include any uncertainty in these quantities (however some were investigated via sensitivity analyses described later in this report). These parameters include weight-length relationship parameters, female maturity and fecundity parameters, natural mortality and ageing error and impression. The methods used to derive these parameters in the assessment are described below.

2.1.3.1 Weight-length relationship

The weight-length relationship used for this assessment is based on observations from 4591 females and 5114 males collected in the NWSFC shelf-slope survey between 2003 and 2014. Male and female weight-length curves were fit separately using the following relationship:

$$
W=\alpha(L)^{\beta}
$$

Where W is individual weight $(\mathrm{kg}), L$ is total natural length (cm) and α and β are coefficients used as constants.

The parameters derived from this analysis were the following: $\alpha=1.149 \cdot 10^{-5}$ for females and $1.224 \cdot 10^{-5}$ for males, and $\beta=3.1254$ for females and 3.1065 for males. Estimated parameters fit the data well, and indicated almost no difference in the weight-length relationship between female and male darkblotched rockfish (Figure 35).

2.1.3.2 Ageing bias and imprecision

Most of the age data for this species were generated by the Ageing Laboratory at the Hatfield Marine Science Center (HMSC) in Newport, Oregon. A small portion of ages were estimated by the ODFW, in collaboration with HMSC Ageing Laboratory. To describe ageing error associated with darkblotched age data in fisheries and surveys, we followed the approach used in 2013. Two ageing error matrices were used to account for the change in age readers in 2005. Separate patterns for ageing error were estimated in an "early" (prior to and including data aged in 2004) and "late" (after and including data aged in 2005) periods of age data. To develop ageing error matrices, we analyzed data from double-reads using a state-space model developed by Punt et al. (2008) and software developed by Stewart et al. (2011).

Separate patterns in ageing error were estimated for periods before and after 2005; since 2005, darkblotched rockfish age structures (otoliths) were read by a single reader (Reader 1) using the break and burn method, with few other readers producing double-reads of the same age structures. Prior to 2005, several age readers were involved in ageing darkblotched rockfish, who used the same method (break and burn) and criteria.

Comparison of results from the "late" and "early" periods indicates greater imprecision during the early than that of in the later period (Figure 36).

2.1.3.3 Maturity schedule

Maturity data on female darkblotched rockfish were produced via histological analysis of fish collected in the NWFSC shelf-slope survey in 2011 and 2012. Methods used for identifying maturity of darkblotched rockfish are described in McDermott (1994). A female was classified as 'mature' if histological analysis suggested it was producing eggs, and that atresia was less than 25%. The presence of old (and otherwise mature) female individuals with significant atresia suggests that darkblotched rockfish will skip spawning intermittently. We therefore estimated an asymptotic maturity rate of less than one, where this maturity schedule represents the combined effect of maturation and atresia.

Maturity as a function of length was estimated from 303 records of females that had maturity and length recorded, for the last full assessment, using three parameter model (with length of 50% maturity, the slope of maturity function and asymptotic maturity estimated) and was entered in the assessment model as a maturity-at-length matrix. The maturity-at-length relationship for female darkblotched rockfish produced from that matrix is shown in Figure 42.

2.1.3.4 Fecundity

Fecundity (number of eggs) was assumed to be related to female body weight linearly as follows:

$$
\frac{\Phi}{W}=a+b W
$$

Where Φ is the number of eggs, W is female weight in kg , and a and b are constant coefficients.

This linear relationship follows the work of Dick (2009) who calculated this relationship for several species of rockfish and found the egg and female weight was not proportional. For darkblotched, Dick (2009) estimated parameters a and b to be 101100 and 44800 respectively, and we used these values in the assessment.

In several previous assessments, fecundity parameters were used as estimated by Nichol (1990) using data collected in waters off Oregon. Dick's (2009) analysis included data from several darkblotched fecundity studies, including those conducted using data from Oregon (Nichol and Pikitch, 1994), Washington (Snytko and Borets, 1973) and California (Phillips, 1964) waters. We explored the model sensitivity to fecundity parameters via a sensitivity analysis.

2.1.3.5 Natural mortality

Natural mortality has been a major axis of uncertainty in several assessments of darkblotched rockfish. Exploration of the base model in this assessment indicated that
when natural mortality was freely estimated for both sexes in the model, it resulted in implausibly large values for spawning depletion. This was true for many alternative model parameterizations (including those using the Hamel natural mortality prior; Hamel, 2015).

A number of methods have been developed to estimate natural mortality from life history traits, such as maximum age, the von Bertalanffy growth coefficient and some others. In the case of darkblotched rockfish, these different methods produce quite different estimates of natural mortality.

Then et al. (2015) evaluated the predictive performance of different life history-based methods in estimating natural mortality, and demonstrated that maximum age-based methods (particularly Hoenig, 1983) perform better than the others. They re-evaluated and extended a dataset used in past studies to estimate natural mortality and updated parameters based on this improved dataset for a Hoenig (1983) log-transformed linear regression model. They also explored fitting the Hoenig model as power functions using non-linear least squares, thus modelling M directly. Performance of non-linear and linear Hoenig estimators was very similar; values of cross-validation prediction error (CVPE) differ by a few thousandths (0.329 vs 0.323 , for non-linear and linear estimator, respectively), which is expected since transformation process is known to introduce small error.

For this assessment, we chose to fix natural mortality at $0.054 \mathrm{yr}^{-1}$, as it was estimated from the classical Hoenig linear regression model, but with recently updated parameters based on an improved database (Then et al, 2015). We chose to use this model and not proposed formulation based on non-linear fitting, because the non-linear model produces quite different natural mortality estimates from the linear model, which should not be the case. The differences in estimates can indicate potential issues with non-linear model convergence, which should be explored further.

Dimorphic growth in fish is often accompanied by different rates of natural mortality. Therefore, we chose to follow the approach taken in the 2013 assessment to fix female natural mortality and estimate male natural mortality within the base model. Even when the model is unable to reliably estimate natural mortality for both sexes, compositional data can inform the difference between the sexes well, and estimating at least one sex captures more of the uncertainty in the model results than fixing both.

2.2 History of Modeling Approaches Used for this Stock

2.2.1 Previous assessments

The first stock assessments of darkblotched rockfish was done in 1993 and stock assessments have been conducted frequently since then (Lenarz, 1993; Rogers et al., 1996; Rogers et al. 2000; Rogers, 2003; Rogers, 2005; Hamel, 2008; Wallace and Hamel, 2009; Stephens et al. 2011).

Lenarz (1993) reviewed the available life-history and fishery information on the species. Based on the Hoenig (1983) method and a maximum age of 60 to 105 years, Lenarz (1993) estimated the natural mortality rate to be between 0.025 and $0.05 \mathrm{yr}^{-1}$. Based on these values, the target fishing mortality rate ($\mathrm{F}_{35 \%}$) was estimated to be between 0.04 and 0.06 , and the overfishing level ($\mathrm{F}_{20 \%}$) between 0.07 and 0.11 . Analysis of length composition data, available at that time, indicated that average size of fish had decreased between 1983 and 1993, which was consistent with estimated fishing impacts. OFL (then called ABC) was not estimated.

Rogers et al. (1996) analyzed 13 commercially important rockfish species (including darkblotched) using an $\mathrm{F}=\mathrm{M}$ approach, which was modified to derive OFLs under the assumption of anF F_{35} \% target fishing mortality rate. Rogers et al. (1996) averaged the AFSC triennial survey abundance indices for several species over the period between 1980 and 1995 and developed a proxy adjustment factor based on the OFLs from available stock assessments of U.S. West Coast rockfish species and characteristics of each species analyzed. For darkblotched rockfish, this proxy adjustment factor was 0.8. The OFL was determined under the assumption of natural mortality rate of $0.05 \mathrm{yr}^{-1}$. At the same time, darkblotched rockfish was also assessed using a simple stock synthesis model, mostly to confirm the F = M approach, used by Rogers et al. (1996). That was a two sex model, which included two survey indices of abundance (one was derived from AFSC triennial survey and the other was based on POP bycatch effort), as well as length and age composition data from the AFSC triennial survey and the commercial fishery. The model was structured to have northern and southern fishing fleets; the modeling time period spanned between 1980 and 1995, and assumed equilibrium condition in 1979, with an equilibrium catch of 300 mt . The model produced estimates of age- 1 recruitment for the period between 1980 and 1993, estimated dome-shaped selectivity for the AFSC triennial survey and the southern fishery and asymptotic selectivity for the northern fishery. Catchability for the AFSC triennial survey was fixed at 1.0. The F $\mathrm{F}_{35 \%}$ fishing mortality rate was estimated to be 0.04 for the northern fishery and 0.02 for the southern fishery.

Rogers et al. (2000) expanded the 1996 model to develop the first full assessment of the darkblotched rockfish stock. The model covered the period from 1963 to 1999, with an equilibrium catch of 200 mt assumed prior to the first year of the model. Five abundance indices were used. In addition to the AFSC triennial and POP bycatch indices (used in the 1996 assessment), 2000 assessment included AFSC slope survey and POP survey (Wilkins and Golden, 1983) abundance indices, as well as CPUE index developed based on commercial trawl fishery logbook data. Length composition data included samples from all years of the AFSC triennial, AFSC slope and POP surveys. The model included a single fishing fleet and discard assumptions were explored only via sensitivity analysis, because incorporating discard in the assessment complicated the model without substantially changing the model output. Fishery selectivity was assumed to be asymptotic, while survey selectivity was allowed to be dome-shaped. Age-1 recruits were estimated between 1963 and 1998, with the 1999 recruitment fixed at an assumed value.

The 2000 assessment included two models - a Stock Assessment Team (STAT) model and a Stock Assessment Review Panel (STAR) model. Both models produced similar results, but their assumptions were quite different. The STAT model included subjective weights on the log-likelihood components and informative prior distributions on some of the fitted parameters as well as assumed a Beverton-Holt stock-recruitment relationship. The STAR model had all weights on the likelihood components to be either 1 or 0 , assumed no prior knowledge about the estimated parameters, and placed no bounds on the estimated recruitments. The STAT model considered CPUE and POP bycatch indices less reliable than the other indices of abundance, and the AFSC triennial survey index more reliable than AFSC slope or POP survey indices. The STAT model (similarly to the STAR model) estimated dome-shaped selectivity for all three surveys used in the assessment. The steepness prior probability distribution had a mean of 0.8 and a CV of 0.1 ; the estimated parameter value based on this prior was 0.83 . Uncertainty in the 2000 assessment was expressed both through choice between the models and through assumptions regarding the amount of darkblotched foreign bycatch relative to the estimated catch of POP. The target fishing mortality ($\mathrm{F}_{50 \%}$) was estimated to be around 0.032, regardless of the choice of model or the foreign bycatch assumption. Given the range of foreign bycatch, spawning depletion in 1999 was estimated to be between 17\% and 28% in the STAT model and between 13% and 26% in the STAR model. Base on this assessment, the stock was declared overfished.

In the 2001 update assessment, selectivity parameters and survey catchability parameters were fixed at the values estimated in the 2000 assessment. Only the age- 1 recruits were re-estimated, with 2000 and 2001 recruitment fixed at an assumed level. The fishing mortality rate at $\mathrm{F}_{50 \%}$ was estimated to be 0.032 , the spawning depletion at the beginning of 2002 was 14%, and the 2002 OFL (then called ABC) was 187 mt .

The 2003 assessment was a comprehensive update of the 2000 assessment. The model structure and values of fixed parameters used in the assessment were not changed. However, the data used in the assessment were extended through 2002 and all the fitted parameters were estimated. Newly available age composition data were not included in the model, since they were not consistent with the growth curve and the aging error parameters fixed in the 2000 model. Management-related discard was added to the 2001 and 2002 landings, using rates assumed by the PFMC (0.1 discard ratio in 2001 and 0.2 in 2002). Estimates of darkblotched catch in the foreign POP fishery between1966 and 1976 were included as estimated by Rogers (2003). The fishing mortality rate at $\mathrm{F}_{50 \%}$ was estimated to be 0.032 , the 2004 spawning depletion 11%, and the 2004 OFL (then called ABC) was 240 mt .

In 2005, full assessment (Rogers, 2005) was conducted using the Stock Synthesis 2 (SS2 v1.) modeling framework. The time series of landings were extended back to 1928, assuming unfished equilibrium condition of the stock in 1927. Discard ratio estimates were calculated from the data available for 1986 and the period between 2000 and 2004, and the full time series of discards were estimated within the model. Retention curve parameters were also estimated within the model. Only age data from otoliths read in 2004 were included in the assessment due to a concern of a bias in earlier age data. The

AFSC slope survey index was re-estimated using a GLM approach, and the NWFSC slope survey index (1999-2004) and length composition data (2000-2004) were added to the assessment. Most of the growth parameters were estimated within the assessment model, while natural mortality was fixed at the value of $0.07 \mathrm{yr}^{-1}$. The assessment used a Beverton-Holt model to describe the stock-recruitment relationship with the steepness parameter fixed at the value of 0.95 . Spawning depletion at the start of 2005 was estimated to be 17% of the unfished level. Natural mortality was used as the main axis of uncertainty for the decision table, with three states of nature encompassing the range of M values ($0.05,0.07$ and $0.09 \mathrm{yr}^{-1}$) that corresponded to low, medium (base case) and high states of nature respectively.

In 2007, another full assessment was conducted (Hamel, 2008). In that assessment, recent landings and discard ratio estimates were updated, while newly available landings, discard and NWFSC slope survey data were added. The shelf portion of the NWFSC shelf-slope (combo) survey (2003-2006) was also included in the assessment. The new GLMM approach was used to estimate abundance indices for all the surveys. Conditional ages-at-length compositions were used in the assessment for the first time for this stock to input age data from the fishery landings, fishery discards, the AFSC slope and NWFSC shelf and slope surveys. The use of age data was still limited to ages estimated during and after 2004. Data from the two year POP survey were no longer used in this assessment. Also, the average weight of discarded fish and mean size-at-age data were no longer used in the assessment since the conditional ages-at-length compositions encompass the same data sources and provide similar information. Natural mortality was fixed at the value of $0.07 \mathrm{yr}^{-1}$ and spawner-recruit steepness was first estimated (with the prior) within the model and then fixed at the estimated value (0.6). The point estimate for the depletion of the spawning output at the start of 2007 was estimated to be 22.4% relative to spawning output in an unfished equilibrium condition. The decision table was developed based on uncertainty in the assumed value of natural mortality, with natural mortality values of $0.05,0.07$ and $0.09 \mathrm{yr}^{-1}$ representing low, medium (base case) and high states of nature.

The 2007 assessment (Hamel, 2008) was updated twice; the first by Wallace and Hamel (2009) and then by Stephens et al. (2011). The 2009 update assessment retained the same model structure as the 2007 assessment, but updated the historical time series of catch with newly reconstructed California historical landings. It also included two more years of data that became available since the 2007 assessment. The point estimate of depletion was 27.5% at the start of 2009. The 2011 update assessment retained the same model structure as the 2007 full assessment, but, like the 2009 assessment, updated the time series of catch to incorporate the newly reconstructed Oregon historical landing of darkblotched rockfish. The data that became available since the 2009 were also included. The spawner-recruit steepness was updated from 0.6 (as in the 2007 and 2009 assessments) to 0.76 , based upon information from a new meta-analytic prior (Martin Dorn, pers.com.) and the model fit. In addition, selectivity for the NWFSC slope survey was found to be dome-shaped in that assessment, rather than the asymptotic as previously estimated. At the start of 2011, the spawning depletion was estimated to be 30%. The decision table was based on spawner-recruit steepness as the major axis of uncertainty (rather than natural mortality as in the 2007 full assessment and 2009 update assessment) with steepness of 0.76 to represent medium state of nature (base case). Alternative
steepness values to represent low and high states of nature (0.54 and 0.95 , respectively) were calculated as the 12.5% and 87.5% quantiles from the prior distribution on steepness.

The most recent full assessment (prior to the current assessment) was conducted in 2013 (Gertseva and Thorson, 2014). That assessment extended assessment time series back to 1915 (from 1928), divided fishery removals into two fisheries (instead of combining all removals into one fleet) and re-evaluated selectivity assumptions. The 2013 assessment treated the NWFSC shelf-slope survey as a single survey time series (instead of dividing it into slope and shelf portions, as was done in the 2007 assessment) and divided the AFSC triennial survey into two time-series (instead of treating it as a single time series). It updated most of life history parameters, including weight-length relationship, maturity, fecundity, and stock-recruit parameters. It also updated the value for natural mortality from fixed at $0.07 \mathrm{yr}^{-1}$ for both sexes, to estimating natural mortality for males, while holding the value for females fixed at $0.05 \mathrm{yr}^{-1}$. The point estimate for the depletion of spawning output at the start of 2013 was estimated to be 36% relative to spawning output in an unfished equilibrium condition. The decision table was developed based on uncertainty in the assumed value of female natural mortality, with values of 0.036, 0.05 and $0.082 \mathrm{yr}^{-1}$ representing low, medium (base case) and high states of nature.

In aggregate, these assessments have largely drawn the same conclusions regarding historical trends in stock dynamics: the darkblotched rockfish abundance declined rapidly in the 1960s and 1970s due to high fishing intensity, and continued to decline in the 1980s and 1990s reaching the lowest point around 2000 (Figure 125). For the last decade, the stock was slowly increasing primarily due to management efforts toward rebuilding of the stock.

2.2.2 Responses to 2013 STAR panel recommendation

The STAR panel report from the last full assessment (conducted in 2013) identified a number of recommendations for the next assessment as well as general long term recommendations for future assessments. Below, we list the 2013 STAR panel recommendations and explain how these recommendations were taken into account in this assessment. Not all the long-term recommendations could be addressed in this assessment, but we summarized the progress made toward each of them.

For the next assessment the following recommendations were made:

1) The base model does not use commercial age composition data for years that lacked coastwide samples. The additional age data could provide information necessary for the model to estimate such parameters as the CVs defining the distribution of lengths at older ages and natural mortality. Future research could ascertain whether additional otoliths exist for these years, and whether they could be aged using current ageing methods. Also, alternative fleet structures (with state specific fisheries) could be explored to take use of as much currently available age data as possible.

The 2013 assessment used age data for only those years when age estimates were available from all three states. This is because the assessment operated on the assumption that darkblotched rockfish (like some groundfish species) exhibit latitudinal cline in growth parameters. For this assessment, we evaluated latitudinal variability in growth along the coast and did not find evidnece for differences in growth among states (Figure 5 and Figure 6). Therefore, all age data available from PacFIN were used in this assessment. These data range from 1980 to 2014. We contacted state agencies and they confirmed that all existing age data are uploaded to PacFIN and no additional (unread) age structures are currently present.

With more ages in the model, we were able to estimate CVs defining the distribution of lengths at older ages. However, those estimates were lower than CVs defining distribution of lengths at younger ages, which created an illogical decrease in standard deviations for length-at-age estimates. Therefore, for this assessment, we switched to a different Stock Synthesis CV growth option, that estimates standard deviations as a function of length-at-age (SS option 2) to describe uncertainty in of length at young and old ages, which produced reasonable estimates.
2) There is a large quantity of age data from California that is currently being excluded from the model (<2002, and from other states >2008). Work should be continued to try to incorporate these data into the model, potentially by restructuring the fleets, reading additional historical ages, or other means. This would help to reconcile and make consistent the treatment of length data and age data over time and space. Additional ages may help to allow estimation of the CV parameters for male and female growth and perhaps explore alternate approaches to the growth parameters themselves.

See response to request 1 .
3) Use a prior for female M in the next assessment - the current likelihood profile indicates that it may be estimable given a reasonably informative prior.

For this assessment, we continued to explore the utility of natural mortality prior distribution developed from using different life history-based methods for estimating natural mortality (Hamel, 2015). The value of $0.05 \mathrm{yr}^{-1}$ used by 2013 assessments is consistent with results from the maximum age based Hoenig's (1983) method. Other life history-based methods provide wildly different estimates that are generally considered to be inconsistent with rockfish life history. In the recent study, Then et al. (2015) evaluated the predictive performance of different life history-based methods in estimating natural mortality and demonstrated that these methods are not equal in their predictive power, and that maximum age-based methods, particularly Hoenig (1983), perform superior to the rest. Then et al. (2015) also re-evaluated and extended dataset used to estimate natural mortality in Hoenig (1983) and updated the Hoenig model parameters based on this improved data set. For darkblotched, the updated value of natural mortality estimated from this updated model was $0.054 \mathrm{yr}^{-1}$. In the assessment, this value is used for female natural mortality, while male natural mortality is estimated.
4) The base model uses newly available information of female maturity collected within the NWFSC shelf-slope survey. This new information includes data on mass atresia (a form of skipped spawning), not previously available for the assessment. At present, Stock Synthesis allows incorporation of this information only when maturity is expressed as a function of age. Effort should be devoted to expand maturity options in Stock Synthesis to allow expression of maturity information (with mass atresia) as a function of female length.

The option of inputting a maturity-at-length matrix (that allows accounting for mass atresia) was added to Stock Synthesis, and we used this option in this assessment.
5) Continued collection of maturity samples would allow future researchers to explore differences in maturity at age, either spatially or over time.

No new maturity samples were available for this assessment; however, more samples are scheduled be collected within NWFSC shelf-slope survey, which will enable progress in exploring temporal and spatial variability in darkblotched maturity parameters.
6) Additional research would be important to explore whether other life history parameters, such as growth and fecundity vary spatially or change over time as well. This information will help in defining spatial structure of future models.

For this assessment we evaluated differences in size-at-age data among states, and did not find evidence of spatial variability in growth. At present, there are no other life history data available to explore potential latitudinal variability in darkblotched life history traits.
7) Given that the population range extends north to the border with Canada, it is important that future research would evaluate the impact of not accounting for any Canadian portion of population abundance. Such an analysis would require evaluation of movement of darkblotched (including larvae) along the coast, which information is currently lacking.

As the STAR panel mentioned, information regarding movement of darkblotched (including larvae) is not currently available. No additional information became available since last assessment.
8) Future research could also improve existing meta-analyses for natural mortality and steepness, which both contribute to the implied yield curve. Directions for improvements include (1) explaining variability between methods in natural mortality estimates, included in the Hamel natural mortality method and (2) developing a larger database of species for estimating steepness, perhaps by including species from other regions, e.g., Canada and Alaska.

As mentioned above, Then at al. (2015) evaluated the performance of different life history-based methods (some of those were used to estimate Hamel prior), for informing
natural morality and demonstrated that maximum age-based models perform the best, such as the Hoenig (1983) method used in this and the 2013 assessment. No changes to the method used to generate the steepness prior was made; it is based on a likelihood profile approximation to a maximum marginal likelihood, mixed-effect model for steepness from ten Tier-1 rockfish species off the U.S. West Coast.

We investigated using a new method that incorporates age-specific natural mortality (via an allometric function), but did not use it at this time, since the method (and its application in stock assessment) has not been thorough evaluated yet.
9) As a diagnostic, a natural mortality value, as indicated by the likelihood profile, that is very different value than that used in the model indicates some model misspecification. Additional effort should be made to determine what features (such as the CV of length at age for old fish, selectivity, steepness, or other model structure) might be creating this pattern.

We made a number of changes to 2013 assessment. However, these changes still did not aid an option to freely estimate natural mortality for both sexes.
10) Continue to pursue making this assessment fully Bayesian. This will allow for probabilistic interpretation of the results, as well as far more efficient reporting and treatment of uncertainty in terms of the decision table, use of priors, etc.

We did not pursue using a Bayesian assessment in 2015, due to time constrains. Analysis conducted in 2013 indicated that the estimated parameters and time series of depletion are very similar between maximum likelihood and Bayesian runs.

General recommendation for all species made by 2013 STAR Panel included:

1) Recommend that STAT teams to present a sensitivity analysis (Tables and Figures) in the draft document for any axis of uncertainty that is likely to be considered for the decision table. This would facilitate efficient discussions during the meeting.

In the pre-STAR draft of this document, we provided results (Tables and Figures) for a number of sensitivity runs, to aid in selection of the major axis of uncertainty. Alternative values of female natural mortality were used to construct the Decision Table, but exact values of natural mortality for low and high states of nature were selected based on uncertainty in both natural mortality and stock-recruit steepness (see Harvest Projections and Decision Table section for details).
2) It would be helpful to routinely include a time-series of species-specific Canadian (B.C.) landings for comparison with U.S. landings and trends.

Time series of darkblotched catches from British Columbia waters were obtained from Haigh and Starr (2008). We used these time series in sensitivity analysis to evaluate the
impact of B.C. removals on model output. The results of this sensitivity analysis are presented Figure 114 through Figure 117 and Table 16.
3) The specific treatment and results of model tuning procedures should be reported in the document including all input/output sample sizes, effective sample sizes, sigmas, RMSEs (including recruitment deviations), that are applicable.

This information is provided in Table 11 and Table 12.
4) For survey GLMM analyses, the STAT teams need to report a standard summary of the raw data, and fitting of the model including both results and diagnostics. Additional research should attempt to identify (and perhaps simulation test) a method for model selection including the error distribution, the treatment of random vs. fixed effects and the inclusion of ECE mixture distributions that can be reliably applied across all species.

Fir this assessment, indices of abundance for three out of four bottom trawl surveys (that include AFSC shelf, AFSC slope and NWFSC slope surveys) were retained from the last assessment (Gertseva and Thorson, 2013). Abundance index for the NWFSC shelf-slope survey was derived using new geostatistical delta-GLMMs method (Thorson et al, (In press). Lognormal and gamma errors structures were considered for the model component representing positive catches, and lognormal model was selected for this index. Figure 25and Figure 26show Q-Q and posterior predictive plots, respectively, associated with this lognormal model.
5) General recommendation to identify where and when E.J. Dicks fecundity relationships are better than existing data for a given species assessment.

Dick (2009) remains the most recent and thorough evaluation of rockfish fecundity relationships. The STAT confirmed with E.J. Dick that his analysis included all earlier studies on darkblotched rockfish fecundity that include Nichol and Pikitch (1994), Phillips (1964) and Snytko and Borets (1973).

2.3 Model Description

2.3.1 Changes made from the last assessment

The last full assessment of darkblotched rockfish was conducted in 2013. For this assessment, we retained a number of features of the 2013 assessment, including the extent of the modelling period, historical catch information, survey fleet structure, age and length bin structures and many others. At the same time, we included a number of improvements related to use of data and modeling techniques. Below, we describe the most important changes made since the last full assessment and explain rationale for each change:

1) Upgraded to the newest SS version. Rationale: This is standard practice to capitalize on newly developed features, corrections to older versions of the code
and increases in computational efficiency. Model results were nearly identical before and after this change.
2) Changed the structure of fishing fleets and divided fishery removals among three fisheries (instead of two as used in the last assessment). The bycatch fleet from the 2013 assessment was divided into bycatch in the historical foreign POP fishery and in the at-sea hake fishery. Rationale: The foreign POP fishery operated with bottom trawl gear, while the at-sea hake fishery uses midwater trawl gear. The selectivities of those two gear types are not the same. To accurately account for length composition of catch in the assessment, the removals by these two bycatch fleets were separated.
3) Brought in biological information on darkblotched bycatch (length and age data) collected from the at-sea hake fishery. Rationale: The biological information on darkblotched removals by the at-sea hake fishery has been collected by the at-sea hake observer program (ASHOP) since 2003. The use of these data allowed estimating darkblotched selectivity within the at-sea-hake fishery. Previously, selectivity of darkblotched bycatch within this fishery was assumed to be the same as in the bottom trawl fleet, even though at-sea hake fishery operates with midwater trawl gear.
4) Updated discard length and age frequencies for the shoreside fleet, to account for non-proportional (disproportional to discard amounts) sampling for lengths and ages and accurately describe the compositions of darkblotched removals within the shoreside fleet. Rationale: Biological sampling of discarded portion of the catch made by different gear type and within latitudinal strata is not proportional to discard amounts made by different gear types and within different areas. The normalized length and age compositions (provided from the WCGOP biological data processing script) are calculated based only upon the weighted data from the sampled trips; no information on total discard amounts by gear or area are used. To properly scale these compositions up to combined gears and areas (states, in case of this assessment), the individual normalized compositions were weighted by the total estimated darkblotched discard within each gear and area. This is analogous to the routinely used approach to generate coastwide length compositions of the landed catch from PacFIN biological data, described in this report.
5) Included biological data from shrimp trawl discard. Rationale: The pink shrimp fishery has existed since the 1950s. Landings of darkblotched in this fishery are hardly present. However, WCGOP observes some amount of discard of the small darkblotched individuals in this fishery. This is the first time that length and age data from pink shrimp fishery discard (weighted by the amount discarded) have been included in the assessment, in order to more accurately describe the compositions of darkblotched removals within shoreside fleet.
6) Used all age data from the shoreside fleet (unlike limiting age data to years with coastwide sampling as was done in 2013 assessment). Rationale: the 2013 assessments did not use ages when samples were not available from all three states, due to concerns that darkblotched rockfish may exhibit a latitudinal cline in growth. We evaluated darkblotched size-at-age data collected by California, Oregon and Washington and did not find evidence of systematic difference in growth among states.
7) Updated discard ratio estimates and length compositions from Pikitch study. Rationale: Wallace (2015) re-estimated Pikitch discard ratios and length composition using Pikitch data and fisheries landings reported in PacFIN. He used fish assemblages identified by Rodgers and Pikitch (1992) to expand discard ratios and length composition observed in Pikitch study to a fleet-wide level. Model results were nearly identical before and after this change.
8) Used the newest geostatistical delta GLMM software to construct NWFSC shelfslope survey abundance indices. Rationale: Recent research suggests that geostatistical models can explain a substantial portion of variability in catch rates via the location of samples (i.e. whether located in high- or low-density habitats), and thus use available catch-rate data more efficiently than conventional "designbased" or stratified estimators. This new software is designed to estimate spatial variation in species density from fishery-independent data and estimate total species abundance. The SSC has approved use of the geostatistical delta-GLMM for use when estimating abundance indices using data from the NWFSC shelfslope survey. Model results were not sensitive to this change (see Sensitivity analysis section).
9) Updated the weight-length relationship. Rationale: The revised estimates are based on NWSFC shelf-slope survey data from 2003 through 2014 (and not from 2003 through 2010, as in the last assessment). Model results were nearly identical before and after this change (see Sensitivity analysis section).
10) Updated the maturity settings. Rationale: The last assessment used newly available information of female maturity collected within the NWFSC shelf-slope survey. This new information included data on mass atresia (a form of skipped spawning). The 2013 assessment estimated an asymptotic maturity rate less than one, where this maturity schedule represents the combined effect of maturation and atresia. At the time of the 2013 assessment, however, the only option to incorporate this new maturity information into a Stock Synthesis model was as a maturity-at-age matrix. This current assessment uses a maturity-at-length matrix instead since this new option became available in Stock Synthesis since the last assessment. Model results were nearly identical before and after this change (see Sensitivity analysis section).
11) Used an updated prior to inform stock-recruit steepness. Rationale: For this assessment cycle, this stock-recruit steepness prior was updated using a likelihood
profile approximation to a maximum marginal likelihood mixed-effect model for steepness from ten Tier-1 rockfish species off the U.S. West Coast. In the model, stock recruit steepness is fixed at the level of mean of the prior (0.773). Model results were nearly identical when last year prior mean of 0.779 (instead of 0.773) was used (see Sensitivity analysis section).
12) Used an updated value for the female Hoenig natural mortality estimate. Rationale: In the 2013 assessment, the fixed value of 0.05 yr-1was used for natural mortality for of females, while natural mortality for male was estimated for males. This value of 0.05 yr -1was estimated outside the model using the Hoenig method, which uses the maximum age of organisms in the stock to inform natural mortality. For this assessment, we used an updated Hoenig model published in Then et al. (2015). Then et al. (2015) evaluated the predictive performance of different life history-based methods in estimating natural mortality and concluded that maximum age-based methods, and particularly the Hoenig (1983), perform superior to better than the rest. Then et al. (2015) also reevaluated and extended (compared to Hoenig (1983)) the data set to estimate natural mortality, and updated the model parameters based on this improved data set. For darkblotched, the natural mortality value estimated using these updated parameters reported in Then et al. (2015) was $0.054 \mathrm{yr}-1$. We used this updated value in the assessment.
13) Re-evaluated length-based selectivity assumptions. In the last assessment, the length-based selectivity curve of the shoreside fishery was assumed to be asymptotic, while the selectivity curve of NWFSC shelf-slope survey was estimated to be dome-shaped. This assessment fully estimated fishery selectivity, and assumes the selectivity of NWFSC shelf-slope survey to have an intermediate shape. Rationale: When fixed asymptotic, the fit to fishery length compositions exhibited a residual pattern, wherein the model systematically predicted the presence of more large individuals than observed in the data. In this assessment, we discovered that selectivity tended to be asymptotic in past assessments (when estimated) only because the initial value for selectivity parameter 2 (width of the plateau on top of the curve) was set too high. In this assessment, fishery selectivity is fully estimated and is dome-shaped. We also allowed shoreside fishery selectivity to be time-varying by putting a block on selectivity parameters for the period of the IFQ fishery (2011-2014). All of these changes helped to resolve the residual pattern.

The list above documents only the most important changes made to this assessment, compared to previous one. We also updated a number of settings in the model files to new recommended defaults. Despite the large number of changes made to data sources and model configuration, the results of this assessment are very consistent with those from previous analyses. Comparison of spawning output and depletion between this assessment and 2013 assessment is shown in Figure 37 and Figure 38, respectively.

2.3.2 Modeling software

This assessment uses the Stock Synthesis modeling framework developed by Dr. Richard Methot (NMFS, NWFSC). The most recent version (SSv3.24U, distributed on January 24,2015) was used, since it included improvements in the output statistics for producing assessment results and several corrections to older versions.

2.3.3 General model specifications

This assessment focuses on a portion of a population of darkblotched rockfish that occurs in coastal waters of the western United States, off Washington, Oregon and California, the area bounded by the U.S.-Canada border on the north and U.S.-Mexico border on the south. The population within this area is treated as a single coastwide stock, given the lack of data suggesting the presence of multiple stocks. The modeling period begins in 1916, assuming that in 1915 the stock was in an unfished equilibrium condition.

Fishery removals are divided among three fleets: 1) the shoreside fishery, 2) bycatch in the historical foreign POP fishery, and 3) bycatch in the at-sea Pacific hake fishery. As described earlier, shoreside fleet was treated separately to account for difference in handling and reporting the discards. The shoreside fishery is associated with a particular amount of catch discarded at sea. The foreign POP fishery is known not to discard fish (based on their size or species), while the at-sea hake fishery, which is managed under maximized retention regulations. There, the time series of discards, therefore, are estimated for the shoreside fleet only, and no discard is assumed for the bycatch fleet. Bycatch fleets were treated separately, since they operate with different gear types, historical foreign POP fishery used bottom trawl gear, while at-sea hake fishery operates with midwater trawl gear.

Historical catches for the shoreside fishery were reconstructed by state, and then combined into the coastwide fleet. Selectivity and retention parameters are estimated for the shoreside fleet and at-sea hake fishery bycatch fleet, while selectivity of the POP fishery bycatch fleet is mirrored to that of the shoreside fishery. Each survey is treated as a separate fleet with independently estimated selectivity and catchability parameters reflecting differences in depth and latitudinal coverage, design and methods among them. No seasons are used to structure removals or biological predictions; data collection is assumed to be relatively continuous throughout the year. Fishery removals occur instantaneously at the mid-point of each year and recruitment on the $1^{\text {st }}$ of January. Error distribution assumptions associated with different data sources used in the assessment are listed in Table 13.

This is a sex-specific model. The sex-ratio at birth is assumed to be $1: 1$. Growth of darkblotched rockfish is assumed to follow the von Bertalanffy growth model, and separate growth parameters are estimated for females and males. Females and males also have separate weight-at-length parameters.

Recruitment dynamics are assumed to be governed by a Beverton-Holt stock-recruit function. 'Main' recruitment deviations were estimated for modeled years that had information about recruitment, between 1960 and 2011 (as determined from the bias-
correction ramp). We additionally estimated 'early’ deviations between 1870 and 1959 so that age-structure in the initial modeled year (1915) would deviate from the stable agestructure that is consistent with estimated variability in recruitment. This resulted in an estimate of B_{0} that is also consistent with estimated variability in recruitment given the assumption that initial catch was negligible.

The length composition data are summarized into thirty 2-cm bins, ranging between 4 and 62 cm . Population length bins are defined at a finer, $1-\mathrm{cm}$ scale. The age data are summarized into thirty six bins, ranging being age 0 and age 35 . Age data beyond age 35 comprise less than 5% of all the age data available for the assessment. For the internal population dynamics, ages 0-45 are individually tracked, with the accumulator age of 45 determining when the 'plus-group' calculations are applied. This accumulator age is selected since little growth is predicted to occur at and beyond this age, since the model does not allow growth to continue in the plus-group.

Iterative re-weighting was used in the assessment to achieve consistency between the input sample sizes and the effective sample sizes for length and age composition samples based on model fit. This reduces the potential for particular data sources to have a disproportionate effect on total model fit.

2.3.4 Estimated and fixed parameters

In the assessment, there are parameters of three types, including life history parameters, stock-recruitment parameters and selectivity parameters. These parameters were either fixed or estimated within the model. Reasonable bounds were specified for all estimated parameters. A full list of all parameters used in the assessment is provided in Table 14.

2.3.4.1 Life history parameters

Life history parameters that were fixed in the model included weight-at-length parameters for females and males, female maturity-at-length and fecundity-at-length and natural mortality. These parameters were either derived from data or obtained from the literature, as described in Section 2.1.3.

The von Bertalanffy growth function (von Bertalanffy, 1938) was used to model the relationship between length and age in darkblotched rockfish. This is the most widely applied somatic growth model in fisheries (Haddon, 2001), and has been commonly used to model growth in rockfish species, including darkblotched (Hamel, 2008; Love et al., 2002; Rogers, 2005).

Female darkblotched rockfish were reported to reach larger sizes than males; therefore, time-invariant growth was modeled for each sex separately. The Stock Synthesis modeling framework uses the following version of the von Bertalanffy function:

$$
L_{A}=L_{\infty}+\left(L_{1}-L_{\infty}\right) e^{-k\left(A-A_{1}\right)}
$$

Where asymptotic length, L_{∞}, is calculated as:

$$
L_{\infty}=L_{1}+\frac{L_{2}-L_{1}}{1-e^{-k\left(A_{2}-A_{1}\right)}}
$$

In these equations, L_{A} is length (cm) at age A, k is the growth coefficient, L_{∞} is asymptotic length, and L_{1} and L_{2} are the sizes associated with a minimum A_{1} and maximum A_{2} reference ages.

Ages A_{1} and A_{2} were set to be 2 and 30 years, respectively. Female parameters L_{1}, L_{2}, growth coefficient k and standard deviations associated with L_{1} estimates were estimated in the model. The male L_{2} and growth coefficient k were estimated in the model while L_{1} and standard deviation associated with L_{1} were set to be identical to those of for females (the suggested default setting).

2.3.4.2 Stock recruitment parameters

Recruitment dynamics are assumed in the assessment to be governed by a Beverton-Holt stock-recruit function. This relationship is parameterized to include two estimated quantities: the log of unexploited equilibrium recruitment $\left(R_{0}\right)$ and steepness (h).

In this assessment the log of R_{0} was estimated, while h was fixed at its prior mean of 0.773. This prior was estimated using a likelihood profile approximation to a maximum marginal likelihood mixed-effect model for steepness from ten Tier-1 rockfish species off the U.S. West Coast (Pacific ocean perch, bocaccio, canary, chilipepper, black, darkblotched, gopher, splitnose, widow and yellowtail rockfish). Both northern and southern assessments of black rockfish were used, although the log-likelihood for each was given a 0.5 weighting, to ensure that the together these two assessments had an equal weighting to the other species. This likelihood profile model is intended to synthesize observation-level data from assessed species, while avoiding the use of model output and thus improving upon previous meta-analyses (Dorn, 2002; Forrest et al., 2010). This methodology has been simulation tested, and has been recommended by the PFMC’ SSC for use in stock assessments.

We estimate lognormal deviations from the standard Beverton-Holt stock-recruit relationship for the period between 1870 and 2011. Deviations are penalized in the objective function, and the standard deviation of the penalty $\left(\sigma_{R}\right)$ is specified as:

$$
\hat{\sigma}_{R}=\sqrt{\frac{\sum_{y=1870}^{2011} \hat{r}_{y}^{2}}{2011-1870}+\left(\frac{\sum_{y=1870}^{2011} \hat{s}\left(\hat{r}_{y}\right)}{2011-1870+1}\right)^{2}}
$$

Where \hat{r}_{y} is the estimated recruitment deviation in year $y, \hat{s}\left(\hat{r}_{y}\right)$ is the estimated standard error of \hat{r}_{y}, the first summand on the right-hand side represents the sample variance of the recruitment deviations; the second summand on the right-hand side represents the average standard error-squared of recruitment deviations, as recommended in the "Estimating σ_{R} " subsection of Methot and Taylor (2011) and correcting for their typo.
'Main' recruitment deviations were estimated for modeled years that had information about recruitment (as determined from the bias-correction ramp), i.e., 1960-2011. We additionally estimated 'early' deviations between 1870 and 1959 so that age-structure in the initial modeled year (1915) would deviate from the stable age-structure to a degree that is consistent with estimated variability in recruitment. This resulted in an estimate of B_{0} that is also consistent with estimated variability in recruitment given the assumption that initial catch was negligible.

Recruitment deviations are also bias-corrected following Methot and Taylor (2011), by providing a proportion of the total bias correction for year y that varies depending upon how informative the data are about r_{y}. Specifically, we used R4SS (Taylor et al., 2012) to estimate a five-parameter bias-correction ramp (Figure 39).

2.3.4.3 Selectivity parameters

Gear selectivity parameters used in this assessment were specified as a function of size. Separate size-based selectivity curves were fit to each fishery fleet and survey, for which length composition data were available. Age-based selectivity was assumed to be 1.0 for all ages beginning at age-0.

A double-normal selectivity curve was used for all fleets. The foreign POP fishery was "mirrored" to that of the shoreside fleet. The double-normal selectivity curve has six parameters, including: 1) peak, which is the length at which selectivity is fully selected, 2) width of the plateau on the top, 3) width of the ascending part of the curve, 4) width of the descending part of the curve, 5) selectivity at the first size bin, and 6) selectivity at the last size bin.

The selectivity curve for the shoreside fleet was fully estimated. It also was allowed to be time-varying, to reflect changes associated with implementation of the IFQ fishery. To accomplish this, a time block on selectivity parameters was created for the period of 2011-2014. A separate retention curve was estimated for the shoreside fleet. This retention curve is defined as a logistic function of size. It is controlled by four parameters including 1) inflection, 2) slope, 3) asymptotic retention, and 4) male offset to inflection. Male offset to retention was fixed at 0 (i.e. no male offset was applied). Asymptotic retention was set as a time-varying quantity to match the observed amount of discard between 2002 and 2010. The base value of asymptotic retention used for the period prior to 2002 and after 2010 was assumed to be 1, since only a small portion of the catch was discarded prior to 2000, and since implementation of the IFQ fishery. Inflection and the slope of the retention curve were also allowed to change in 2011 (the beginning of the IFQ fishery) since analysis of length composition data of retain catch indicated a change relative to the pre-IFQ years, with smaller fish being retained. The time-varying parameters were set via use of time blocks.

For bycatch in the at-sea hake fishery, five out of six selectivity parameters were estimated, and only one parameter, selectivity at the first size bin, was fixed, since no fish at smallest size bin was selected within this fleet. The selectivity curves of both fishery
fleets were estimated to be of varying degree selectivity between dome-shaped and asymptotic.

The selectivity curves for AFSC shelf, AFSC slope and NWFS slope survey were set up similarly to that of at-sea hake bycatch fleet, and estimated to be dome-shaped. The NWFSC shelf-slope survey selectivity curve had more complex settings. In initial runs, the selectivity for this survey was fully estimated, when selectivity for shoreside fleet was fixed asymptotic. Later, five of the six parameters (all, but selectivity at the final bin) were fixed at the estimated values. In later runs, when fishery selectivity was allowed to be dome-shaped, the selectivity at the last bin was estimated to be above its minimum value (indicating that survey is catching a portion of the largest fish), making the entire selectivity curve half-dome. For the base model, we fixed at the last bin (parameter 6) at that estimated value. These settings, although complicated in algorithm to achieve them, were retained for the base model because they resulted in the best fit to length composition data of the shoreside fleet, while producing a reasonable picture of stock dynamics.

2.4 Model Selection and Evaluation

2.4.1 Key assumptions and structural choices

A large number of alternative model configurations of different levels of complexity were explored in order to formulate a base model that would realistically describe the population dynamics of this stock and would balance realism and parsimony.

We evaluated the alternative models based on overall model fit and convergence criteria. Key assumptions and structural choices were made based on whether the modelestimated parameters and outputs make sense and are consistent with information available for the species. The base model reflects the best aspects from these exploratory analyses. It appears to be parameterized sufficiently to fit the observed data, while maintaining reasonable parameter values and parsimonious explanations for the underlying model processes.

Earlier model configurations explored splitting the shoreside fishery catches into several different fleets, corresponding to trawl, non-trawl, and midwater trawl fishery gears. Splitting midwater and bottom trawl gears proved to be challenging since historically, midwater landings were often reported combined with bottom trawl catches. Even recent data often does not separate catches by these two gears types. Separating trawl from nontrawl gear allowed us to separately estimate selectivity curves separately for these two fleets. However, non-trawl had similar selectivity to the trawl fishery, and contributed only $1-2 \%$ to the total catch of darkblotched rockfish (Figure 11). Nevertheless, the model interpreted their composition data as representative of the entire stock, and iterative tuning of the composition data could not prevent them from receiving implausibly high weight. We therefore chose to combine all gear types from shoreside fishery into one fishing fleet, but undertook careful weighting of biological samples from different gear types (as described in Section 2.1.1.5), to accurately represent length compositions of shoreside fleet removals.

Significant efforts were devoted to exploration of selectivity settings. In several past assessments, fishery selectivity was forced to be asymptotic. But even when estimated, the fishery selectivity curve tended to be asymptotic. At the same time, fit to fishery length compositions exhibited a residual pattern, when the model systematically predicted the presence of more large individuals than observed in the data. In this assessment, we discovered that selectivity tended to be asymptotic (when estimated) only because the initial value for selectivity parameter 2 (width of the plateau on the top) was set too high. We experimented with different initial values for this parameter, and found that when it is not set as high, the fishery is estimated to be dome-shaped, and no residual pattern is present. However, with all fleets (fisheries and surveys) being dome-shaped, the model produced unrealistic results, estimating current spawning output above its virgin level, which is inconsistent with our knowledge of darkblotched rockfish. We therefore focused on finding a balance that would exhibit a better fit to the length composition data, while producing reasonable output. Balance was achieved by fixing NWFSC shelf-slope survey selectivity at half-dome as described in Section 2.3.4.3, and fully estimating fishery selectivity (to be half-dome).

In this assessment, we also explored a highly flexible, non-parametric selectivity option (Stock Synthesis length selectivity option 6), to resolve the residual pattern observed in previous assessments. However, the dome-shaped double normal option (selectivity option 24), produced a much more stable model and a reasonable result.

We additionally sought to account for the effect of Rockfish Conservation Areas (RCAs) on fishery selectivity. RCAs were initiated in September of 2002, and could conceivably influence both the ascending and descending shape of a dome-shaped selectivity curve. When conducting a sensitivity run in which the various selectivity components were blocked for the period after RCAs were implemented (from 2002 forward), selectivity at both periods (before and after RCAs) were almost identical.

This could have several explanations. This could occur because there are limited data to inform estimation for blocks in the retention curve prior to 2003, and the estimated retention curve showed that after 2003, most fish smaller than 25 cm are being discarded. Additionally, there is essentially no information in the retained fishery length composition data to estimate changes in selectivity for the ascending limb affecting fish smaller than 25 cm prior to 2003.

Also, although RCAs prevent removal of darkblotched from relatively large areas along the coast, fishing still occurs in the larger areas with both small and large fish. That is, the RCA boundaries expand and contract over time, both within and between years, and those patterns change over time, so fishing in one area is prohibited one season, yet allowed in another. This dynamic can introduce noise into the relationship of RCA to selectivity. Additionally, heavy fishing effort routinely occurs just outside of those boundaries, which are moving over time. Thus, the amount of removals decreases with RCAs, but length composition of the catch may stay the same. The available data on landed catch does not indicate changes in length composition of retained catch before and
after the RCAs (before IFQ started). For all these reasons, we stipulate that fishery selectivity is constant prior to and after of implementation of RCAs.

We also explored an option of using age-specific natural mortality estimates (as opposed to a single estimate for all ages), since it is well established that natural mortality rates changes through fishes' larval, juvenile and adult life stages. It is reasonable to expect that natural mortality declines as fish grow larger, since larger individuals generally are less susceptible to predation. Senescence can dramatically increase mortality, but this is usually not a crucial aspect of exploited fish stocks when survivorship to the very oldest ages is low. In early model configurations, we estimated age-specific natural mortality following an approach developed by Councill and Harford (In review). However, outputs from this model run were drastically different from the model with a single natural mortality value. For this assessment, we chose to use a single parameter natural mortality option (but separate for females and males) until we fully explore how to best parameterize natural mortality using Councill and Harford approach.

2.4.2 Changes made during the STAR Panel meeting

During the STAR Panel meeting, analysis and evaluation of the base model were performed to further explore data sources and model assumptions, and to better understand model performance. The STAR Panel provided useful recommendations that were incorporated into the base model. Specific changes made to the pre-STAR model during the STAR Panel meeting included:

1) Including a block on the Shoreside fishery selectivity parameters to reflect changes associated with start of the IFQ program and improve fit to length composition data of this fleet for the IFQ period.
2) Extending the end year recruitment residuals from 2011 to 2013.
3) Turning estimation of forecast recruitment deviations off, to limit the impact of a large 2013 year-class into the future.

2.4.3 Evidence of search for global best estimates

For all model runs, we checked for evidence that the reported estimates were not the global optimum using following techniques. We assessed the model's ability to recover similar likelihood estimates when initialized from dispersed starting points (jitter option in SS). We re-estimated the model 25 times after 'jittering’ starting values using a standard deviation of 0.1 times their parameter range, and ensured that the reported estimates had the greatest log-likelihood of all runs. In the case of the base model, jittering resulted in recovery of the initial estimates 25 times out of the 25 tests. We also conducted a likelihood profile across different values of $\ln \left(R_{0}\right)$ from 7.0 to 9.0 by 0.2 increments, to ensure that the reported estimates were at the maximum log-likelihood of this profile. For the base model, these techniques yielded no evidence that the reported estimates differed from the global optimum.

2.4.4 Convergence criteria

A number of tests were done to verify convergence of the base model. Following conventional AD Model Builder methods (Fournier et al. 2012), we checked that the

Hessian matrix for the base model was positive definite. We also confirmed that the final gradient was below 0.01 .

2.5 Base-Model Results

The list of the all the parameters used in the assessment model and their values (either fixed or estimated) is provided in Table 14. The life history parameters estimated within the model are reasonable and consistent with what we know about the species. Both sexes follow the same trajectory in their growth. Males grow slightly faster than females, but females reach larger sizes (Figure 40). The estimated growth parameters for females and males are very close to the values used in previous assessments. Figure 41 through Figure 44 show weight-at-length relationships by sex, female maturity-at-length, fecundity-atweight and spawning output-at-length generated based on fixed parameters that were derived outside the model. Female fecundity and spawning output in the assessment are expressed in number of eggs.

The base model was able to capture general trends for indices in all surveys (Figure 45, Figure 47, Figure 49 and Figure 51). Fit to index data on log scale are presented in Figure 46, Figure 48, Figure 50and Figure 52. With the offset estimate for the AFSC triennial survey beginning in 1995, predicted survey values fit the AFSC shelf survey abundance index well (Figure 45), This survey had the lowest index values in 1995 and highest estimate in 1983. The expected index values from the base model showed a slow decline from 1980-1995 and an increase over the period 1995-2004. The model was unable to fit the first point of this survey time series (1980), and accommodate a large difference between index value in 1980 and 1983, which is the highest value in the entire index time series. The model expectations for all other indices fell within the 95% intervals of all observations. Fit to the NWFSC slope and AFSC slope surveys was generally flat, as might be expected for such short time-series. We additionally explored including an extra standard deviation parameter for these two slope surveys, but it was estimated to be zero for both of them. The NWFSC shelf-slope survey was generally flat, but exhibited a slight decrease in the last two years but the overall trend is mostly slowly increasing with flattening in the last two years. The expected index values from the base model showed a slow increase from 2003-2012 and is estimated flat 2013-2014. For the AFSC triennial and NWFSC shelf-slope surveys, the model estimated non-zero extra SD parameters (0.0176 and 0.082 for the AFSC shelf and NWFSC shelf-slope survey, respectively).

The model fit to length and age frequency distributions, by year and aggregated across year, and Pearson residuals for the fits by fleet, year and sex are shown in Figure 53 through Figure 86. The quality of fit varies among years and fleets, which reflects the differences in quantity and quality of data. The Pearson residuals, which reflect the noise in the data both within and among years, did not exhibit any strong trends.

Plots of observed and expected length composition for the shoreside landings aggregated across all years (Figure 55) shows that the model was able to replicate the length composition pretty well. Similarly, the model is able to largely match the observed length composition for surveys, which incorporates differences in selectivity at length for these fleets. The survey length composition generally exhibits smaller average length
than the fishery, and hence is more likely to pick out individual cohorts. Finally, the model is able to predict the changes in length composition of discards, including a noticeable decline in average length of discards following implementation of IFQ fishery in 2011 (Figure 61).

The fits to conditional ages at length and Pearson residuals for the fits by survey are shown in Figure 79 through Figure 86. These plots show that predicted average age at length is generally within predicted error bars around the observed average age at length, which provides support for the assumption that length at age is adequately approximated by the base model, as is necessary to model size at age internally to Stock Synthesis. For visual interpretation of fit to survey age composition data, we included the "ghost" marginal survey age compositions. These age compositions do not contribute to the likelihood and do not affect model fit in any way (Figure 87 through Figure 90).

Selectivity curves for fisheries and surveys are shown in Figure 91 through Figure 98. Both fisheries were estimated to be intermediate between asymptotic and dome-shaped, which is reasonable given that we do observe large fish in the fishery landings. Intermediate-shaped selectivity curve allowed better fit to fishery length composition data. The retention function, as expected shows changes in asymptote with changes in discard ratios as well as changes in slope and inflection of the curve at the start of the IFQ fishery. Estimated values for selectivity and retention parameters are provided in Table 14.The AFSC shelf has peak selectivity at length for slightly smaller fishes than other surveys, as is plausible for a species that has ontogenetic movement offshore. It is also estimated to be dome-shaped, which is reasonable since the AFSC shelf survey also would be expected to take fewer larger fish due to limited coverage of the depth range of the species. Selectivity curves for the slope surveys are broadly similar, which is reasonable given that they had similar coverage, and estimated to be dome-shaped (Figure 91). It is not clear why the slope surveys, which include deep waters in which larger darkblotched rockfish occur, would have dome-shape. However, the footrope and roller gear used by this survey may play a role in the catchability of darkblotched. The length compositions observed for these three fleets with strongly dome-shaped selectivity show a smaller proportion of large fish than fisheries.

Discard ratios for shoreside fishery, as estimated from WCGOP and Pikitch study data, were fit by the model well (Figure 99). Based on these data, year-specific discard fraction and discard amounts were estimated within the model (Figure 100, Figure 101). These estimates follow the assumption that discard amounts were minimal until 2000, when the species was declared overfished, and more restrictive management measures were implemented. Discard ratios increased following the implementation of management measures in the 2000s but decreased after the implementation of IFQ fishery. The retention curve is similarly estimated to shift to smaller fishes following IFQ implementation, as fishers are encouraged to retain broader sizes of fish.

The deviations from the estimated stock-recruitment function had a very large uncertainty prior to the mid-1960s, when the data first become informative about incoming cohort strengths (Figure 102). Therefore, the relative bias adjustment was ramped to the
maximum value during this period. Recruitment of darkblotched rockfish was estimated to be quite variable over the historical record, and the estimated stock-recruit function predicts a wide range of cohort sizes over the observed range of spawning biomass (Figure 103).

The estimated time series of total and summary biomass, spawning output, spawning depletion (relative to B_{0}), recruitment and fishing mortality are presented in Figure 104 through Figure 109 and Table 15. Trends in total and summary biomass, spawning output and spawning depletion track one another very closely. The spawning output of darkblotched rockfish started to decline in the 1940s, during the World War II, but exhibited a sharp decline in the 1960s during the time of the intense foreign fishery targeting Pacific ocean perch. Between 1965 and 1976, spawning output dropped from 95% to less than 65% of its unfished level. Spawning output continued to decline throughout the 1980s and 1990s and in 2000 reached its lowest estimated level of 16% of its unfished state. Since 2000, the spawning output has been slowly increasing, which corresponds to decreased removals due to management regulations. Currently, the spawning output is estimated to be 38% of its unfished level (Figure 107).

2.6 Uncertainty and Sensitivity Analyses

Parameter uncertainty in the assessment is explicitly captured in the asymptotic confidence intervals estimated within the model and reported throughout this assessment for key parameters and management quantities (Figure 106, Figure 107 and Figure 108). These intervals reflect the uncertainty in the model fits to the data sources in the assessment, but do not include the uncertainty associated with alternative model configurations and fixed parameters. To explore uncertainty associated with alternative model configurations and evaluate the responsiveness of model outputs to changes in model assumptions, a variety of sensitivity runs were performed.

2.6.1 Sensitivity Analyses

A large number of configurations of the base model addressing alternative assumptions regarding key model parameters and structural choices were explored via the sensitivity analyses. Only the most relevant ones are reported here.

2.6.1.1 Sensitivity to changes from 2013 model

For this assessment, we made a few changes in settings for the life history parameters, mainly in response to 2013 STAR panel recommendations. These changes included: 1) using a new geostatistical delta-GLMM approach to estimate the abundance index for the NWFSC shelf-slope survey, 2) expressing maturity as a function of length when the maturity function does not proceed asymptotically to 1.0 (this option was not available in 2013), 3) setting CV of the growth pattern to SD=f(LAA), which means "standard deviations as a function of length-at-age"; and 4) updating weight-length parameters with the most recent data. Results of these sensitivity runs are summarized in Table 16 and Figure 110 through Figure 113. The model was not sensitive to any of these changes. The current spawning depletion varied only slightly among these model runs (within 5\%).

2.6.1.2 Alternative assumptions about fishery removals

Historically, darkblotched rockfish landings have not been sampled at the discrete species level; therefore, time series of catch remained a source of uncertainty. Although significant progress has been made in reconstructing historical California and Oregon landings, the lack of early species composition data does not enable one to account for a gradual shift of fishing effort towards deeper areas (with increasing vessel size and horsepower), which creates the potential to overestimate the historical contribution of slope species (including darkblotched rockfish) to overall landings of the mixed-species market category (i.e. "unspecified rockfish"). To explore the model sensitivity to uncertainty in darkblotched rockfish historical removals, we ran the model assuming landings in historical (pre-1980) time series of shoreside fishery halved and doubled. These runs differed a little in the absolute estimate of B_{0} and R_{0}, trends in spawning depletion, and relative SPR ratio as well as estimated depletion levels varied only slightly (Figure 116 through Figure 117, Table 16). We also performed a run to explore the impact of including catches from British Columbia waters, and found that the model exhibited some sensitivity to this change especially in the recent years, when relative contribution of B.C. catches increased (Figure 116 through Figure 117, Table 16).

2.6.1.3 Alternative assumptions about life history parameters

A major uncertainty in darkblotched assessment has been commonly associated with life history parameters, particularly natural mortality and stock-recruit curve steepness. In this assessment these quantities, which the model is unable to estimate reliably, were fixed at the values estimated outside the model. The model response to different values of natural mortality and steepness was explored via detailed likelihood profile analyses described below. Here we present results of selected runs with values used in 2013 assessment, as well as runs that estimate natural mortality and steepness values when using priors.

Results of the model runs with assumed female natural mortality of $0.05{ }^{\mathrm{yr}-1}$ and stockrecruit steepness of 0.779 (as used in the 2013 assessment) did not differ substantially from the results of the base model (Table 17, Figure 118). However, using Hamel prior for natural mortality produced much different absolute estimate of B_{0} and overly optimistic view on relative spawning depletion (100\%) (Table 17, Figure 118). The steepness, when estimated with a prior, was 0.82 , and, thus, exceeded the mean of the prior (0.773) (Table 17, Figure 118). For this assessment, we, therefore, chose to fix steepness value at the mean of the prior distribution (0.773) obtained from 10 Tier-1 rockfish assessments off the U.S. West Coast. The stock-recruit steepness in the past darkblotched assessments ranged between 0.6 and 0.95 .

2.6.2 Retrospective analysis

A retrospective analysis was conducted, where the model is fitted to a series of shortened input data sets, with the most recent years of input data sequentially being dropped. A 4year retrospective analysis was conducted by running the model using data only through 2010, 2011, 2012 and 2013 (Figure 119 through Figure 122, Table 16). No systematic pattern was observed. All retrospective runs align well with one another, and together appear somewhat higher than the base model in spawning depletion. This is due addition of length data from the most recent year (2014) of the NWFSC shelf-slope survey (Figure

123, Figure 124, Table 16). The relative contribution of smaller lengths was higher in 2014 than in any other year of the survey since 2003. We can hypothesize that recent environmental changes might cause similar changes in observed length distributions with in the sampled areas. Large areas off the West Coast have become substantially and persistently warmer than normal since 2014. This event is unprecedented and the effects it may have on groundfish populations are largely unknown.

The second type of retrospective analysis addresses assessment error, or at least the historical context of the current result given previous analyses. Figure 125 shows the spawning depletion time series for all assessment (full and update assessment) conducted since 2000. In aggregate, these assessments have largely drawn the same conclusions regarding historical trends: that the darkblotched resource declined rapidly due to high fishing intensity in the 1960s and 1970s, with continued decline in the 1980s and 1990s reaching the lowest point around 2000. For the last decade, the stock was slowly increasing due to management efforts toward rebuilding of the stock. The 2003, 2005, 2007, 2009, 2011 and 2013 assessments estimated spawning depletion at terminal year of each assessment to be $13 \%, 17 \%, 22 \%, 28 \%, 30 \%$, and 36% respectively. This assessment estimate stock to be at 38% of its unfished state.

2.6.3 Likelihood profile analyses

The base model included several key parameters, including natural mortality and stockrecruit steepness, which were fixed at the values determined based on life-history traits of the species in a meta-analysis, using those with similar life-history characteristics. Likelihood profiles were conducted to look at the sensitivity of the model to assumptions about natural mortality (M) and steepness (h). Also, likelihood profile analysis over the $\ln \left(\mathrm{R}_{0}\right)$ parameter was conducted to explore the influence of different data sources on the scale of the population and stock status.

A likelihood profile analysis conducted over a range of values for natural mortality shows that the negative log-likelihood for the base model declines with increasing natural mortality for values between 0.04 and 0.09 (Figure 126). A value for natural mortality of 0.9 is considered to be inconsistent with the age of old individuals that have been observed, as well as previous assessments, and we therefore concluded that the model is unable to reliably estimate natural mortality. Also, the fact that the length and age composition data available for the assessment were collected only after extremely high darkblotched removals by the foreign POP fishery (therefore, these data cannot be expected to represent unfished equilibrium) provides an additional argument for the model not being able to estimate natural mortality reliably. However, as described in Section 2.1.3.4, we only fixed female natural mortality, while male natural mortality is estimated in the base model. Dimorphic growth is often accompanied by different rates of natural mortality. Although the data are insufficient to estimate natural mortality for both males and females, when female M is fixed, the compositional data should be informative about the difference in natural mortality between the sexes. Estimating natural mortality for at least one sex would capture more of the uncertainty in the model results. Time series of spawning depletion associated with different values of natural mortality ranging from 0.04 to 0.1 are shown in Figure 127.

When estimated with a meta-analytical prior, stock-recruit steepness was 0.82 . However, a likelihood profile of the base model indicated that the negative log-likelihood is the lowest with steepness value around 0.5 (Figure 128). Profile analysis also indicated that there is tension between length and age composition likelihoods, when length compositions likelihoods for all fleets have the lowest values (negative) associated with higher steepness and age composition likelihoods, on the contrary, with lower steepness. The model run associated with steepness of 0.5 produces unreasonable output when population drops to 6% of its virgin level in 2015 (Figure 129).

A likelihood profile analysis for $\ln \left(R_{0}\right)$ shows that the negative log-likelihood for the base model is optimized at a value of approximately 7.9 (same value estimated in the assessment). Different values of $\ln \left(R_{0}\right)$ scale recruitment deviations up or downward from the mean value of 0 , with low values of $\ln \left(R_{0}\right)$ having high recruitment deviations and vice-versa (Figure 130). Additionally, recruitment scales with $\ln \left(R_{0}\right)$; high values of $\ln \left(R_{0}\right)$ coincide with higher recruitment, and low values of $\ln \left(R_{0}\right)$ coincide with lower recruitment (Figure 131). This indicates that the available data cause the model to seek a particular value for recruitment, and changes in $\ln \left(R_{0}\right)$ cause the model to compensate by changing recruitment deviations in order to continue achieving that desired level of recruitment, which in turn causes recruitment deviations to contribute the greatest change in log-likelihood to $\ln \left(R_{0}\right)$. .

3 Reference Points

Unfished spawning stock output for darkblotched rockfish was estimated to be 3,203 million eggs (95% confidence interval: 2,370-4,036 million eggs). The stock is declared overfished if the current spawning output is estimated to be below 25% of unfished level. The management target for darkblotched rockfish is defined as 40% of the unfished spawning output ($\mathrm{SB}_{40 \%}$), which is estimated by the model to be 1,281 million eggs (95% confidence interval: 948-1,614), which corresponds to an exploitation rate of 0.041 . This harvest rate provides an equilibrium yield of 674 mt at SB40\% (95% confidence interval: $504-844 \mathrm{mt}$). The model estimate of maximum sustainable yield (MSY) is $728 \mathrm{mt}(95 \%$ confidence interval: 544-912 mt). The estimated spawning stock output at MSY is 815 million eggs (95% confidence interval: 603-1,026 million of eggs). The exploitation rate corresponding to the estimated $\mathrm{SPR}_{\mathrm{MSY}}$ of $\mathrm{F}_{31 \%}$ is 0.0655 .

The assessment shows that the stock of darkblotched rockfish off the continental U.S. Pacific Coast is currently at 39% of its unexploited level. This is above the overfished threshold of $\mathrm{SB}_{25 \%}$, but below the management target of $\mathrm{SB}_{40 \%}$ of unfished spawning biomass. Historically, the spawning output of darkblotched rockfish dropped below the $\mathrm{SB}_{40 \%}$ target for the first time in 1989, as a result of intense fishing by foreign and domestic fleets. It continued to decline and reached the level of 16% of its unfished output in 2000. The same year, the stock was declared overfished. Since then, the spawning output was slowly increasing primarily due to management regulations instituted for the species (Figure 107).

This assessment estimates that the 2014 SPR is 89%. The SPR used for setting the OFL is 50%, while the SPR-based management fishing mortality target, specified in the current
rebuilding plan and is used to determine the ACL, is 64.9\%. Historically, the darkblotched rockfish has been fished beyond the relative SPR ratio (calculated as 1-SPR/1-SPR Targete0.5) between 1966 and 1968, during the peak years of the Pacific ocean perch fishery, in 1973 and for a prolonged period between from 1981 and 2000 (Figure 132). Phase plot of estimated relative (1-SPR) vs. relative spawning biomass for the base case model is shown in Figure 133.

A summary of reference points for the base model is provided in Table 18. A summary of recent trends in estimated darkblotched rockfish exploitation and stock level from the assessment model is given in Table 19.

4 Harvest Projections and Decision Table

The base model estimate for 2015 spawning depletion is 39%. The primary axis of uncertainty about this estimate used in the decision table was based on female natural mortality. To identify female natural mortality values that correspond to low and high states of nature, we followed a multi-step algorithm. First, we selected alternative values of stock-recruit steepness. For this, we used a normal approximation to the prior distribution for steepness with an identical mean and standard deviation to the prior distribution from that analysis (mean=0.773, $\mathrm{SD}=0.147$). We then identified two values from that normal distribution which are half as likely as the mode. Those values are:

$$
h=0.773 \pm 0.147(1.18)=(0.600,0.946)
$$

where 0.600 represents the low and 0.946 the high steepness alternatives.
We then determined depletion levels associated with alternative steepness values; depletion under low steepness was 9%, and it was 49% under high steepness. Finally, we identified female natural mortality values associated with these low and high depletion levels; they were 0.0412 and 0.059 respectively (Figure 134). We used these values to define low and high states of nature and construct the decision table (Table 20).

Twelve-year forecasts for each state of nature were calculated based on average catch for the period between 2011 and 2014. They were also produced with future catches fixed at the 2016 darkblotched rockfish ACL. Finally, forecasts for each state of nature were calculated based on removals at a current rebuilding SPR of 64.9% for the base model.

Under the middle state of nature (which corresponds to the base model), the spawning output and depletion are projected to increase under all three considered catch streams, and reach the $\mathrm{SB}_{40 \%}$ target in 2015. Under the low state of nature, spawning depletion will stay below the $\mathrm{SB}_{40 \%}$ target within the next 12 years. Under the high state of nature, the spawning output remains above the 40% target level throughout the 12 -year projection period.

5 Regional Management Considerations

In the waters of the western United States, off California, Oregon and Washington, this species is managed coastwide, with coastwide ACLs determined for management purposes. The population within the assessed area is treated as a single coastwide stock, due to the lack of biological and genetic data indicating the presence of multiple stocks. Analysis conducted within this assessment did not find support for regional management considerations as well. However, below we identify several of areas of research that may aid evidence for regional management considerations for the future.

6 Research Needs

The following research could improve the ability of future stock assessments to determine the current status and productivity of the darkblotched rockfish population:

1) Additional population genetics research to elucidate potential spatial stock structure would be valuable for assessment and management, to ensure prevention of local depletion and preserve genetic diversity.
2) Additional research on darkblotched movement including migration patterns by latitude and depth, diurnal migration patterns through the water column, relative time spent off-bottom versus midwater, relating movements to size, age and sex would be valuable for further understanding this rockfish’s ecological niche, stock structure, and lend insight to catchability and gear selectivity patterns.
3) Given that the population range extends north to the border with Canada, it is important that future research would evaluate the impact of not accounting for any Canadian portion of population abundance. Such an analysis would require evaluation of movement of darkblotched along the coast; such information is currently lacking.
4) Continuing collection of maturity and fecundity data on darkblotched rockfish would allow further research into latitudinal variability in life history parameters that again would advance understanding this species stock structure. Multi-year data would also allow evaluation of temporal changes in darkblotched maturity and fecundity.
5) Additional research into natural mortality, as it relates to length and age would be valuable to enable more realistic and accurate modeling of this parameter, which is a common source of uncertainty in assessment of this, and other rockfish species. Councill and Harford (in review) is an example of one approach; it models natural mortality as a decaying function of size, with assumptions that mortality rates should be constrained by lifetime mortality rate.
6) Future research could also improve existing meta-analyses for natural mortality and steepness, which both contribute to the implied yield curve. Directions for improvements could include (1) weighting methods in natural mortality prior estimates included in the Hamel meta-analysis, and (2) developing a larger
database of species for estimating steepness, perhaps by including species from other regions, e.g., Canada and Alaska.
7) Research into establishing optimum methods for more precise modeling of selectivity patterns is needed. Either asymptotic or dome-shaped selectivity assumptions are frequently used in stock assessments, when neither may be the best available representation of selectivity. Assumptions of a dome shape can suggest a "cryptic" biomass, or create confounding with natural mortality assumptions, potentially inflating abundance indices (Crone et al 2013). Assumptions of asymptotic shape may also not be realistic. Simulation studies could be performed to empirically evaluate varying degrees of intermediate selectivity shapes, and how best to effectively implement them in existing stock assessment software platforms.
8) Research assessing the effects of the unprecedented warm ocean conditions off the West Coast of the U.S. during 2014 and 2015, on rockfish populations is needed. Specifically, investigations are needed that focus on how temperature and other water conditions at depth, in rockfish habitat correspond to high sea-surface temperatures recorded throughout those years, and how the fish respond to those changing conditions. Research is needed that examines whether fish move in response to changing temperatures, where, and how they move, as well as whether the conditions influence life history parameters and aspects such as mortality, feeding, fecundity and other reproductive considerations. What oceanographic and climatic forces are responsible and how long these conditions are expected to persist are also critical pieces of knowledge.

7 Literature Cited

Alverson, D.L., Pruter, A.T., Ronholt, L.L., 1964. A study of demersal fishes and fisheries of the northeastern Pacific Ocean. Institute of Fisheries, University of British Columbia.
Barss, W.H., Niska, E.L. 1978. Pacific Ocean perch (Sebastes alutus) and other rockfish (Scorpaenidae) trawl landings in Oregon 1963-1977. Oregon Department of Fish and Wildlife, Informational Report 78-6.
Bradburn, M. J., Keller, A. Horness, B. H. 2011. The 2003 to 2008 U.S. West Coast bottom trawl surveys of groundfish resources off Washington, Oregon, and California: Estimates of distribution, abundance, length, and age composition. U.S. Dept. of Commerce, NOAA Technical Memorandum NMFS-NWFSC-114.

Cleaver, F.C., 1951. Fisheries statistics of Oregon. Oregon Fish Commission 16.
Councill, E. L., Harford, W.J. In review. Allometric scaling of natural morality-size relationships for assessment of exploited fish stocks.
Crone, P., Maunder, M. Valero, J., MsDaniel, J., Semmens, B. 2013. Selectivity: theory, estimation, and application in fishery stock assessment models. Workshop Report 1. Center for the Advancement of Population Assessment Methodology (CAPAM), La Jolla, CA.
Dick, E. J. 2009. Modeling the reproductive potential of rockfishes (Sebastes spp.). Ph.D. Dissertation, University of California, Santa Cruz.
Dorn, M.W. 2002. Advice on West Coast rockfish harvest rates from Bayesian metaanalysis of stock- recruit relationships. North American Journal of Fisheries Management 22: 280-300.
Douglas, D.A., 1998. Species composition of rockfish in catches by Oregon trawlers, 1963-93. Marine Program Data Series Report, Oregon Department of Fish and Wildlife.
Echeverria, T.W., 1987. Thirty-four species of California rockfishes: Maturity and seasonality of reproduction. Fishery Bulletin 85: 229-250.
Forrest, R.E., McAllister, M.K., Dorn, M.W., Martell, S.J.D., Stanley, R.D. 2010. Hierarchical Bayesian estimation of recruitment parameters and reference points for Pacific rockfishes (Sebastes spp.) under alternative assumptions about the stock-recruit function. Canadian Journal of Fisheries and Aquatic Sciences 67: 1611-1634.
Fournier, D.A., Skaug, H.J., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M.N., Nielsen, A., Sibert, J. 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optimization Methods and Software 27: 1-17.
Gertseva, V.V. Thorson, 2014
Gertseva, V. V., J. M. Cope, S. E. Matson. 2010. Growth Variability of the Splitnose Rockfish (Sebastes diploproa) in the Northeast Pacific Ocean : pattern revisited. Marine Ecology Progress Series, 413:125-136.
Gomez-Uchida, D., Banks, M.A. 2005. Microsatellite analyses of spatial genetic structure in darkblotched rockfish (S ebastes crameri): Is pooling samples safe? Canadian Journal of Fisheries and Aquatic Sciences 62: 1874-1886.

Gunderson, D.R., Zimmerman, M, Nichol, D.G., Pearson, K. 2003. Indirect estimates of natural mortality rate for arrowtooth flounder (Atheresthes stomias) and darkblotched rockfish (Sebastes crameri). Fishery Bulletin 101:175-182.
Haddon, M. 2001 Modelling and Quantitative Methods in Fisheries. CRC Press.
Haigh, R., Starr, P. 2008. A review of darkblotched rockfish Sebastes crameri along the Pacific coast of Canada: biology, distribution, and abundance trends. Fisheries and Oceans Canada, Science.
Hamel, O.S. 2008. Status and future prospects for the darkblotched rockfish resource in waters off Washington, Oregon and California as assessed in 2007. Pacific Fishery Management Council, Portland, OR.
Hamel, O.S. 2015. A method for calculating a meta-analytical prior for the natural mortality rate using multiple life history correlates. ICES Journal of Marine Science.72: 62-69.
Harry, G., Morgan, A.R. 1961. History of the trawl fishery, 1884-1961. Oregon Fish Commission Research Briefs 19: 5-26.
Helser, T.E., Punt, A.E., Methot, R.D. 2004. A generalized linear mixed model analysis of a multi-vessel fishery resources survey. Fisheries Research 70: 251-264.
Hoenig, J.M. 1983. Empirical use of longevity data to estimate mortality rates. Fishery Bulletin 82(1): 898-902.
Hongskul, V. 1975. Fishery dynamics of the northeastern Pacific groundfish resources. Ph.D. Dissertation, University of Washington, Seattle.
Karnowski, M., Gertseva, V.V., Stephens, A. 2014. Historical Reconstruction of Oregon's Commercial Fisheries Landings. 2014-02, Oregon Department of Fish and Wildlife, Newport, Oregon, 56 p).
Keller, A.A., Horness, B.H., Simon, V.H., Tuttle, V.J., Wallace, J.R., Fruh, E.L., Bosley, K.L., Kamikawa, D.J., Buchanan, J.C. 2007. The U.S. West Coast trawl survey of groundfish resources off Washington, Oregon, and California: Estimates of distribution, abundance, and length composition in 2004. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-NWFSC.
Keller, A. A., K. J. Molton, A. C. Hicks, M. A. Haltuch, C. R. Wetzel. 2012. Variation in age and growth of greenstriped rockfish (sebastes elongatus) along the U.S. West Coast (Washington to California). Fisheries Research 119: 80-88.
Lauth, R.R. 2000. The 2000 Pacific west coast upper continental slope trawl survey of groundfish resources off Washington, Oregon, and California: Estimates of distribution, abundance, and length composition. NTIS No. PB2001-105327.
Lenarz, W.H., 1993. An initial examination of the status of the darkblotched rockfish fishery off the coasts of California, Oregon, and Washington. Append. C Append. Status Pac. Coast Groundf.
Love, M.S., Yoklavich, M.M., Thorsteinson, L.K., 2002. The rockfishes of the northeast Pacific. University of California Press.
Maunder, M.N., Punt, A.E., 2004. Standardizing catch and effort data: a review of recent approaches. Fisheries Research 70: 141-159.
Methot, R.D.J., Taylor, I.G. 2011. Adjusting for bias due to variability of estimated recruitments in fishery assessment models. Canadian Journal of Fisheries and Aquatic Sciences 68: 1744-1760.

McDermott, S.F. 1994. Reproductive Biology of Rougheye and Shortraker Rockfish, Sebastes aleutianus and Sebastes borealis. M.S. Thesis, University of Washington, Seattle.
Nichol, D.G. 1990. Life history examination of darkblotched rockfish (Sebastes crameri) off the Oregon coast. M.S. Thesis, Oregon State University, Corvallis.
Nichol, D. G., Pikitch, E.K. 1994. Reproduction of darkblotched rockfish off the Oregon coast. Transactions of the American Fisheries Society 123: 469-481.
Niska, E.L., 1969. The Oregon trawl fishery for mink food. Pacific Marine Fishery Commission. Bulletin 7.
Niska, E.L., 1976. Species composition of rockfish in catches by Oregon trawlers 19631971. Oregon Department of Fish and Wildlife, Informational Report 76-7.

Phillips, J.B., 1964. Life history studies on ten species of rockfish (genus Sebastodes). Resources Agency of California, Department of Fish and Game.
Pikitch, E.K., Erickson, D.L., Wallace, J.R., 1988. An evaluation of the effectiveness of trip limits as a management tool. Northwest and Alaska Fisheries Center, National Marine Fisheries Service, US Department of Commerce.
Punt, A.E., Smith, D.C., KrusicGolub, K., Robertson, S. 2008. Quantifying age-reading error for use in fisheries stock assessments, with application to species in Australias southern and eastern scalefish and shark fishery. Canadian Journal of Fisheries and Aquatic Sciences 65: 1991-2005.
Ralston, S., Pearson, D.E., Field, J.C., Key, M. 2010. Documentation of the California catch reconstruction project. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southwest Fisheries Science Center.
Rogers, J.B. 1994. Assemblages of groundfish caught using commercial fishing strategies off the coasts of Oregon and Washington from 1985-1987.Ph.D. Dissertation, Oregon State University, Oregon.
Rogers, J.B., Methot, R.D., Builder, T.L., Piner, K Wilkins, M. 2000. Status of the Darkblotched Rockfish (Sebastes crameri) Resource in 2000, appendix to Status of the Pacific coast groundfish fishery through 2000 and recommended acceptable biological catches for 2001. Pacific Fishery Management Council, Portland, OR.
Rogers, J.B. 2003. Species allocation of Sebastes and Sebastolobus sp. caught by foreign countries from 1965 through 1976 off Washington, Oregon, and California, USA. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service.
Rogers, J.B. 2003. Darkblotched Rockfish (Sebastes crameri) 2003 Stock Status and Rebuilding Update, appendix to Status of the Pacific coast groundfish fishery through 2003 and recommended acceptable biological catches for 2004. Pacific Fishery Management Council, Portland, OR.
Rogers, J.B., 2005. Status of the Darkblotched Rockfish (Sebastes crameri) Resource in 2005. Pacific Fishery Management Council, Portland, OR.

Rogers, J.B., Methot, R.D., Builder, T.L., Piner, K., Wilkins, M., 2000. Status of the darkblotched rockfish (Sebastes crameri) resource in 2000. Append. Status Pac. Coast Groundf. Fish.

Rogers, J.B., Pikitch, E.K., 1992. Numerical definition of groundfish assemblages caught off the coasts of Oregon and Washington using commercial fishing strategies. Canadian Journal of Fisheries and Aquatic Sciences 49: 2648-2656.
Rogers, J.B., Wilkins, M., Kamikawa, D., Wallace, F., Builder, T., Zimmerman, M., Kander, M., Culver, B. 1996. Status of the remaining rockfish in the Sebastes complex in 1996 and recommendations for management in 1997. Status Pac. Coast Groundf. Fish. 59.
Scofield, W.L. 1948. Trawling gear in California. Fishery Bulletin 72.
Shelton, A.O., Thorson, J.T., Ward, E.J., and Feist, B.E. 2014. Spatial semiparametric models improve estimates of species abundance and distribution. Can. J. Fish. Aquat. Sci. 71(11): 1655-1666.
Smith, H.S. 1956. Fisheries statistics of Oregon, 1950-1953. Fish Commission of Oregon 22.

Snytko, V. A., Borets, L.A. 1973. Some data on the fecundity of ocean perch in the Vancouver-Oregon region. (translated from Russian). Fisheries Research Board of Canada Translation Series No. 2502.
Stephens, A., Hamel, O., Taylor, I., Welzel, C. 2011. Status and Future Prospects for the Darkblotched Rockfish Resource in Waters off Washington, Oregon, and California in 2011. In: Status of the Pacific Coast Groundfish Fishery through 2011, Stock Assessment and Fishery Evaluation: Stock Assessments, STAR Panel Reports, and Rebuilding Analyses. Pacific Fishery Management Council, Portland, OR.
Stewart, I.J., Thorson, J.T., Wetzel, C. 2011. Status of the US Sablefish resource in 2011. In: Status of the Pacific Coast Groundfish Fishery through 2011, Stock Assessment and Fishery Evaluation: Stock Assessments, STAR Panel Reports, and Rebuilding Analyses. Pacific Fishery Management Council, Portland, OR.
Tagart, J., Kimura, D.K. 1982. Review of Washington’s Coastal Trawl Rockfish Fishery. Technical report 68, State of Washington Department of Fisheries.
Tagart, J.V. 1985. Estimated domestic trawl rockfish landings, 1963-1980. Unpublished manuscript and data. Washington Department of Fisheries.
Taylor, I., Stewart, I., Hicks, A., Garrison, T., Punt, A., Wallace, J., Wetzel, C. 2012. r4ss: R code for Stock Synthesis.
Then, A.Y., Hoenig, J. M., Hall, N.G., Hewitt, D.A. In press. Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species. ICES J. Mar. Sci.
Thorson, J.T., Shelton, A.O., Ward, E.J., and Skaug, H. In press. Geostatistical deltageneralized linear mixed models improve precision for estimated abundance indices for West Coast groundfishes. ICES J. Mar. Sci.
Thorson, J.T., Stewart, I., Punt, A. 2011. Accounting for fish shoals in single- and multispecies survey data using mixture distribution models. Canadian Journal of Fisheries and Aquatic Sciences 68: 1681-1693.
Thorson, J.T., Stewart, I.J., Punt, A.E. 2012. Development and application of an agentbased model to evaluate methods for estimating relative abundance indices for shoaling fish such as Pacific rockfish (Sebastes spp.). Ices Journal of Marine Sciences 69: 635-647.

Thorson, J.T., Ward, E. 2014. Accounting for space-time interactions in index standardization models. Fisheries Research 155: 168-176
von Bertalanffy, L. 1938. A quantitative theory of organic growth (inquiries on growth laws II). Human Biology 10: 181-213.
Wallace, J.R. In review. Applying information from the U.S. West Coast’s first major trawl bycatch and mesh size studies to fishery data using post-hoc fishing strategies and geographical area.
Wallace, J., Hamel, O. 2009. Status and Future Prospects for the Darkblotched Rockfish Resource in Waters off Washington, Oregon, and California as Updated in 2009. In: Status of the Pacific Coast Groundfish Fishery through 2009, Stock Assessment and Fishery Evaluation: Stock Assessments, STAR Panel Reports, and Rebuilding Analyses. Pacific Fishery Management Council, Portland, OR.
Westrheim, S.J. 1975. Reproduction, maturation, and identification of larvae of some Sebastes (Scorpaenidae) species in the northeast Pacific Ocean. Journal of the Fisheries Research Board of Canada 32: 2399-2411.
Weinberg, K.L., Wilkins, M. E., Shaw, F. R., Zimmermann, M. 2002. The 2001 Pacific west coast bottom trawl survey of groundfish resources: estimates of distribution, abundance, and length and age composition. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-AFSC-128.
Wilberg, M.J., Thorson, J.T., Linton, B.C., and Berkson, J. 2010. Incorporating timevarying catchability into population dynamic stock assessment models. Reviews in Fisheries Science 18: 7-24.
Wilkins, M.E. Golden, J.T. 1983. Condition of the Pacific ocean perch resource off Washington and Oregon during 1979: Results of a cooperative trawl survey. North American Journal of Fisheries Management 3: 103-122.
Zimmerman, M. 2001. Retrospective analysis of suspiciously small catches in the National Marine Fisheries Service West Coast Triennial bottom trawl survey. AFSC Processed Rep. 2001-03, AFSC/NMFS, Seattle.

8 Tables

Table 1: Recent darkblotched rockfish Overfishing Limits (OFLs) and Annual Catch Limits (ACLs) relative to recent total landings and total dead catch estimated in this assessment.

Year	OFL (mt)	ACL (mt)	Commercial Landings (mt)	Estimated Total Catch $(\mathrm{mt})^{*}$
2005	269	122	98	129
2006	269	122	107	194
2007	456	260	144	261
2008	456	260	117	250
2009	437	282	138	289
2010	437	282	184	351
2011	508	298	117	118
2012	508	298	94	95
2013	541	317	124	125
2014	541	317	103	104

*Includes discards estimated within the stock assessment and therefore may differ from total mortality reports used by management.

Table 2: Total landings (mt) of darkblotched rockfish for the shoreside fleet (provided here by state) and bycatch fleet (separated here as bycatch in foreign POP and in at-sea Pacific hake fisheries).

Year	Shoreside California	Shoreside Oregon	Shoreside Washingto n	Bycatch in foreign POP fishery	Bycatch in at-sea hake fishery	Total
1915	0	0	0	0	0	0
1916	13	0	0	0	0	13
1917	21	0	0	0	0	21
1918	21	0	0	0	0	21
1919	14	0	0	0	0	14
1920	14	0	0	0	0	14
1921	12	0	0	0	0	12
1922	11	0	0	0	0	11
1923	14	0	0	0	0	14
1924	14	0	0	0	0	14
1925	16	0	0	0	0	16
1926	21	0	0	0	0	21
1927	18	0	0	0	0	18
1928	18	0	0	0	0	18
1929	19	0	0	0	0	19
1930	21	0	0	0	0	21
1931	26	0	0	0	0	26
1932	16	0	0	0	0	16
1933	16	0	0	0	0	16
1934	15	0	0	0	0	15
1935	17	0	0	0	0	17
1936	11	0	0	0	0	12
1937	13	1	0	0	0	14
1938	16	0	0	0	0	17
1939	23	1	0	0	0	24
1940	20	13	0	0	0	33
1941	22	19	0	0	0	42
1942	12	36	1	0	0	48
1943	57	125	2	0	0	184
1944	177	218	3	0	0	398
1945	334	337	8	0	0	679
1946	189	209	4	0	0	401
1947	199	130	2	0	0	332
1948	99	89	3	0	0	191
1949	70	86	4	0	0	160

Year	Shoreside California	Shoreside Oregon	Shoreside Washingto n	Bycatch in foreign POP fishery	Bycatch in at-sea hake fishery	Total
1950	73	101	4	0	0	178
1951	106	96	3	0	0	206
1952	78	136	3	0	0	217
1953	87	96	1	0	0	185
1954	79	136	2	0	0	217
1955	131	123	2	0	0	256
1956	149	189	2	0	0	339
1957	190	205	1	0	0	396
1958	180	153	2	0	0	335
1959	139	142	2	0	0	283
1960	151	189	2	0	0	342
1961	120	197	2	0	0	319
1962	107	235	3	0	0	345
1963	136	225	7	0	0	368
1964	85	175	5	0	0	265
1965	97	380	6	0	0	483
1966	84	320	8	3807	0	4220
1967	102	262	6	2706	0	3076
1968	110	17	7	2288	0	2422
1969	43	80	11	153	0	287
1970	49	145	8	149	0	351
1971	65	174	11	278	0	528
1972	84	148	6	374	0	611
1973	67	67	13	768	0	914
1974	95	144	24	346	0	609
1975	106	102	111	293	0	612
1976	121	322	99	118	11	670
1977	123	130	62	0	2	318
1978	60	156	199	0	1	416
1979	148	497	88	0	4	736
1980	166	334	99	0	21	620
1981	522	266	37	0	12	836
1982	170	941	24	0	2	1136
1983	510	582	22	0	12	1126
1984	596	625	82	0	20	1323
1985	802	848	111	0	13	1774
1986	417	622	215	0	6	1260
1987	1647	686	68	0	14	2415
1988	750	789	108	0	10	1656

Year	Shoreside California	Shoreside Oregon	Shoreside Washingto n	Bycatch in foreign POP fishery	Bycatch in at-sea hake fishery	Total
1989	441	737	91	0	5	1274
1990	870	764	16	0	28	1679
1991	333	774	54	0	45	1206
1992	187	451	20	0	29	687
1993	285	892	9	0	8	1194
1994	292	550	9	0	15	866
1995	366	342	28	0	49	786
1996	408	309	19	0	6	743
1997	452	342	22	0	4	820
1998	497	395	20	0	14	927
1999	113	227	10	0	11	361
2000	114	129	8	0	8	259
2001	87	66	10	0	12	175
2002	50	52	7	0	3	112
2003	11	62	2	0	4	80
2004	39	136	7	0	7	189
2005	18	68	1	0	11	98
2006	23	71	2	0	11	107
2007	41	87	3	0	12	144
2008	34	74	3	0	6	117
2009	47	89	2	0	0	138
2010	17	152	7	0	8	184
2011	3	87	14	0	12	117
2012	7	70	15	0	2	94
2013	4	103	11	0	6	124
2014	4	77	11	0	11	103

Table 3: Summary of fishery sampling effort (number of trips, hauls and fish sampled) used to create length frequency distributions of the shoreside fishery.

Year	Lengths from retained catch						Lengths from discarded catch		
	California		Oregon		Washington				
	\# Trips	\# Fish	\# Trips	\# Fish	\# Trips	\# Fish	\# Trips	\#Hauls	\# Fish
1977	0	0	5	304	0	0	0	0	0
1978	26	263	2	200	0	0	0	0	0
1979	11	86	0	0	0	0	0	0	0
1980	31	206	0	0	0	0	0	0	0
1981	29	195	0	0	0	0	0	0	0
1982	55	444	2	300	0	0	0	0	0
1983	115	792	0	0	0	0	0	0	0
1984	161	1925	1	70	0	0	0	0	0
1985	206	2985	0	0	0	0	0	0	0
1986	145	2436	0	0	0	0	5	0	145
1987	119	2644	0	0	0	0	0	0	0
1988	93	1339	0	0	0	0	0	0	0
1989	91	1098	0	0	0	0	0	0	0
1990	89	862	1	100	0	0	0	0	0
1991	72	756	2	200	0	0	0	0	0
1992	45	421	0	0	0	0	0	0	0
1993	42	509	0	0	0	0	0	0	0
1994	39	436	2	200	0	0	0	0	0
1995	40	745	7	188	0	0	0	0	0
1996	72	1003	23	833	0	0	0	0	0
1997	52	909	22	802	0	0	0	0	0
1998	70	1232	13	541	24	317	0	0	0
1999	37	712	9	430	24	332	0	0	0
2000	50	869	7	224	20	652	0	0	0
2001	39	692	30	1005	20	660	0	0	0
2002	39	861	21	611	47	1124	0	0	0
2003	27	436	59	1398	28	580	5	18	408
2004	29	526	58	1305	19	605	107	412	3488
2005	33	567	54	1275	9	117	154	357	2268
2006	62	1129	62	1457	10	397	134	307	1182
2007	74	1520	79	2155	22	529	179	343	1245
2008	81	1795	102	2689	12	350	195	403	1508
2009	52	1214	136	2828	11	350	276	486	1827
2010	44	746	136	2855	5	206	201	415	1675
2011	53	559	148	2570	17	869	268	685	3223
2012	56	697	125	2309	17	729	292	659	2968
2013	46	380	120	2320	8	701	279	509	2234
2014	0	0	117	2003	11	372	0	0	0

Table 4: Summary of fishery sampling effort (number of trips, hauls and fish sampled) used to create age frequency distributions of the shoreside fishery.

Year	Ages from retained catch						Ages from discarded catch		
	California		Oregon		Washington				
	\# Trips	\# Fish	\# Trips	\# Fish	\# Trips	\# Fish	\# Trips	\#Hauls	\# Fish
1980	28	185	0	0	0	0	0	0	0
1981	28	193	0	0	0	0	0	0	0
1982	51	411	0	0	0	0	0	0	0
1983	79	527	0	0	0	0	0	0	0
1985	197	2872	0	0	0	0	0	0	0
1986	17	169	0	0	0	0	0	0	0
1987	48	1071	0	0	0	0	0	0	0
1988	26	356	0	0	0	0	0	0	0
1990	69	779	0	0	0	0	0	0	0
1991	34	336	0	0	0	0	0	0	0
1993	35	466	0	0	0	0	0	0	0
1994	32	397	0	0	0	0	0	0	0
1995	17	354	0	0	0	0	0	0	0
1996	58	776	0	0	0	0	0	0	0
1997	47	809	1	33	0	0	0	0	0
1998	52	854	0	0	0	0	0	0	0
1999	23	500	1	24	0	0	0	0	0
2000	30	562	6	183	0	0	0	0	0
2001	27	620	25	843	0	0	0	0	0
2002	26	583	20	610	12	388	0	0	0
2003	18	245	51	1162	11	369	0	0	0
2004	15	243	27	753	9	410	66	113	387
2005	26	448	40	897	6	103	114	222	619
2006	41	829	44	1070	7	272	0	0	0
2007	26	540	60	1705	18	423	0	0	0
2008	19	295	77	2233	9	243	0	0	0
2009	0	0	107	2486	11	272	0	0	0
2010	0	0	79	1864	4	120	0	0	0
2011	0	0	78	1652	13	532	0	0	0
2012	0	0	84	1768	10	455	0	0	0
2013	0	0	32	859	6	400	0	0	0
2014	0	0	102	335	0	0	0	0	0

Table 5: Latitudinal and depth ranges by year of four NMFS groundfish trawl surveys used in the assessment.

Survey	Year	Latitudes	Depths (fm)
AFSC shelf	1977	$34^{\circ} 00^{\prime}$ - Canadian border	50-250
	1980	$36^{\circ} 48^{\prime}-49^{\circ} 15^{\prime}$	30-200
	1983	$36^{\circ} 48^{\prime}-49^{\circ} 15^{\prime}$	30-200
	1986	$36^{\circ} 48{ }^{\prime}$ - Border	30-200
	1989	$34^{\circ} 30^{\prime}-49^{\circ} 40^{\prime}$	30-200
	1992	$34^{\circ} 30^{\prime}-49^{\circ} 40^{\prime}$	30-200
	1995	$34^{\circ} 30^{\prime}-49^{\circ} 40^{\prime}$	30-275
	1998	$34^{\circ} 30^{\prime}-49^{\circ} 40^{\prime}$	30-275
	2001	$34^{\circ} 30^{\prime}-49^{\circ} 40^{\prime}$	30-275
	2004	$34^{\circ} 30^{\prime}$ - Canadian border	30-275
AFSC slope	1988	$44^{\circ} 05^{\prime}-45^{\circ} 30{ }^{\prime}$	100-700
	1990	$44^{\circ} 30^{\prime}-40^{\circ} 30{ }^{\prime}$	100-700
	1991	$38^{\circ} 20^{\prime}-40^{\circ} 30^{\prime}$	100-700
	1992	$45^{\circ} 30 '$ - Border	100-700
	1993	$43^{\circ} 00^{\prime}-45^{\circ} 30{ }^{\prime}$	100-700
	1995	$40^{\circ} 30^{\prime}-43^{\circ} 00^{\prime}$	100-700
	1996	$43^{\circ} 00^{\prime}$ - Canadian border	100-700
	1997	$34^{\circ} 00^{\prime}$ - Canadian border	100-700
	1999	$34^{\circ} 00^{\prime}$ - Canadian border	100-700
	2000	$34^{\circ} 00^{\prime}$ - Canadian border	100-700
	2001	$34^{\circ} 00^{\prime}$ - Canadian border	100-700
NWFSC slope	1999	$34^{\circ} 50{ }^{\prime}-48^{\circ} 10 '$	100-700
	2000	$34^{\circ} 50{ }^{\prime}-48^{\circ} 10 '$	100-700
	2001	$34^{\circ} 50{ }^{\prime}-48^{\circ} 10 '$	100-700
	2002	$34^{\circ} 50{ }^{\prime}-48^{\circ} 10{ }^{\prime}$	100-700
NWFSC shelf-slope	2003	$32^{\circ} 34^{\prime}-48^{\circ} 27{ }^{\prime}$	30-700
	2004	$32^{\circ} 34^{\prime}-48^{\circ} 27^{\prime}$	30-700
	2005	$32^{\circ} 34^{\prime}-48^{\circ} 27^{\prime}$	30-700
	2006	$32^{\circ} 34^{\prime}-48^{\circ} 27{ }^{\prime}$	30-700
	2007	$32^{\circ} 34^{\prime}-48^{\circ} 27^{\prime}$	30-700
	2008	$32^{\circ} 34^{\prime}-48^{\circ} 27^{\prime}$	30-700
	2009	$32^{\circ} 34^{\prime}-48^{\circ} 27^{\prime}$	30-700
	2010	$32^{\circ} 34^{\prime}-48^{\circ} 27{ }^{\prime}$	30-700
	2011	$32^{\circ} 34^{\prime}-48^{\circ} 27{ }^{\prime}$	30-700
	2012	$32^{\circ} 34^{\prime}-48^{\circ} 27^{\prime}$	30-700
	2013	$32^{\circ} 34^{\prime}-48^{\circ} 27^{\prime}$	30-700
	2014	$32^{\circ} 34^{\prime}-48^{\circ} 27^{\prime}$	30-700

Table 6: Spatial strata used in constructing survey abundance indices via stratified deltaGLMM method.

Survey	Latitude (N. lat.)	Depth (m)
AFSC shelf (1980-1992)	$36^{0} 5^{\prime \prime}$ - $40^{0} 5^{\prime \prime}$	55-400
	$40^{0} 5^{\prime \prime}-43^{0}$	55-400
	$43^{0}-47^{0} 5^{\prime \prime}$	55-400
	$47^{0} 5^{\prime \prime}-49^{0}$	55-400
AFSC shelf (1995-2004)	$34^{0} 5^{\prime \prime}-40^{0} 5^{\prime \prime}$	$\begin{aligned} & \hline 55-300 \\ & 300-500 \end{aligned}$
	$40^{0} 5^{\prime \prime}-43^{0}$	55-300
		300-500
	$43^{0}-49^{0}$	$\begin{aligned} & 55-300 \\ & 300-500 \end{aligned}$
AFSC slope	$34^{0} 5^{\prime \prime}-43^{0}$	183-300
		300-549
	$43^{0}-49^{0}$	183-300
		300-549
NWFSC slope	$34^{0} 5^{\prime \prime}-40^{0} 5^{\prime \prime}$	183-300
		300-549
	$40^{0} 5^{\prime \prime}-43^{0}$	183-300
		300-549
	$43^{0}-47^{0} 5^{\prime \prime}$	183-300
		300-549
	$47^{0} 5^{\prime \prime}-49^{0}$	183-300
		300-549

Table 7: Summary of sampling effort used to produce AFSC shelf survey biomass index and generate length and age frequency distributions.

Year	Number of hauls	Number of positive hauls	Number of hauls with lengths	Number of lengths	Number of hauls with ages	Numbers of ages
1980	349	126	12	656	2	96
1983	521	232	44	4483	1	117
1986	484	188	39	1839	8	219
1989	505	198	91	3056	0	0
1992	482	159	43	1614	0	0
1995	512	172	163	2897	45	626
1998	528	169	169	3396	62	467
2001	506	186	186	2935	115	1030
2004	383	152	152	3578	148	1134

Table 8: Summary of sampling effort used to produce AFSC slope survey biomass index and generate length and age frequency distributions.

Year	Number of hauls	Number of positive hauls	Number of hauls with lengths	Number of lengths	Number of hauls with ages	Numbers of ages
1997	182	27	25	314	0	0
1999	199	32	32	259	0	0
2000	208	27	27	236	24	128
2001	207	22	22	363	18	191

Table 9: Summary of sampling effort used to produce NWFSC slope survey biomass index and generate length and age frequency distributions.

Year	Number of hauls	Number of positive hauls	Number of hauls with lengths	Number of lengths	Number of hauls with ages	Numbers of ages
1999	149	53	0	0	0	0
2000	153	52	25	296	25	137
2001	165	54	45	494	45	184
2002	205	55	54	1027	54	301

Table 10: Summary of sampling effort used to produce NWFSC shelf-slope survey biomass index and generate length and age frequency distributions.

Year	Number of hauls	Number of positive hauls	Number of hauls with lengths	Number of lengths	Number of hauls with ages	Numbers of ages
2003	541	101	100	2375	100	748
2004	470	92	90	1062	90	594
2005	637	112	110	1983	110	804
2006	641	130	130	1925	130	940
2007	688	132	132	2086	132	987
2008	681	111	111	1647	111	762
2009	682	126	126	2298	126	1159
2010	714	117	117	2239	117	912
2011	697	110	108	1828	108	796
2012	701	102	102	2205	102	791
2013	471	89	89	1548	89	687
2014	685	116	114	1517	114	767

Table 11: Information on inputs and sample size adjustments for length and age composition data.

	mean(inputN*Adj)	HarMean(effN)	Var_Adj	HarEffN/MeanInputN
Length composition data				
Shoreside	54.2229	52.5015	0.133114	0.9682533
At-sea hake	59.7518	59.6686	0.120528	0.9986076
AKSHLF	71.9324	70.8665	0.297514	0.9851819
AKSLP	26.8877	26.369	0.572078	0.9807087
NWSLP	38.9633	38.0429	0.485021	0.9763778
NWCBO	68.7904	66.7461	0.281543	0.9702822
Age composition data				
Shoreside	74.1563	75.2779	0.333243	1.0151248
At-sea hake	30.5763	30.74	0.167389	1.0053538
AKSHLF	3.00929	3.00631	0.170828	0.9990097
AKSLP	1.5566	1.6068	0.19336	1.0322498
NWSLP	2.81111	2.82061	0.157214	1.0033794
NWCBO	3.35207	3.42274	0.143452	1.0210825

Table 12: Root mean squared error (r.m.s.e.) of the observations around the expected values for each survey.

Fleet	Obs (SdLog)	Input (SdLog)
AKSHLF	0.302399	0.311325
AKSLP	0.164986	0.652762
NWSLP	0.402318	0.468656
NWCBO	0.278081	0.275922

Table 13: Error distribution assumptions regarding data sources used in the assessment.

Data sources used	Error distribution assumption
Landings	Assumed to be known without error
Abundance	(uncertainty explored via sensitivity analysis)
Length composition	Lognormal
Age composition	Multinomial
Mean body weight	Multinomial
Discard	Normal
	Normal

Table 14: List of parameter values used in the base model.

Parameter	Estimated value	Bounds (low, high)	Fixed value
Natural mortality (M, female)	-	NA	0.054
Individual growth			
Females:			
Length at A_{1}	15.186	$(1,20)$	-
Length at A_{2}	42.66	$(20,60)$	-
von Bertalanffy K	0.20	$(0.05,0.3)$	-
SD of length at A_{1}	1.81	$(0.5,15)$	-
SD of length at A_{2}	2.15	$(0.5,15)$	-
Males:			
Length at A_{1} (set equal to females)	-	NA	0.0
Length at A_{2}	38.35	$(50,60)$	-
von Bertalanffy K	0.245	(0.05,0.3)	-
SD of length at A_{1} (set equal to females)	-	NA	0.0
Weight at length			
Females:			
Coefficient	-	NA	1.15E-05
Exponent	-	NA	3.12536
Males:			
Coefficient	-	NA	$1.22 \mathrm{E}-05$
Exponent	-	NA	3.10647
Fecundity at length			
Inflection	-	NA	101100
Slope	-	NA	44800
Stock and recruitment			
$\operatorname{Ln}\left(R_{0}\right)$	7.93	$(5,12)$	-
Steepness (h)	-	NA	0.773
Recruitment SD (σ_{r})	-	NA	0.75
Survey catchability and variability			
$\operatorname{Ln}(Q)$ - AFSC shelf (1980-1992)	0.585	$(-10,2)$	
$\operatorname{Ln}(Q)$ - AFSC shelf offset (1995-2004) to early	0.0089	(-4,4)	
$\mathrm{Ln}(Q)$ - AFSC slope	-0.123	$(-10,2)$	
$\operatorname{Ln}(Q)$ - NWFSC slope	0.047	$(-10,2)$	
$\operatorname{Ln}(Q)$ - NWFSC shelf-slope	0.347	$(-10,2)$	
Extra additive SD for AFSC shelf	0.016	$(0,1)$	
Extra additive SD for NWFSC shelf-slope	0.082	$(0,1)$	
Selectivity and retention			
Shoreside fishery (double-normal)			
Peak	34.19	$(20,45)$	-
Peak block (2011-2014)	32.74	$(20,45)$	-
Top: width of plateau	-5.93	$(-6,4)$	-
Top: width of plateau block (2011-2014)	-3.52	$(-6,4)$	-
Ascending slope	2.68	$(-1,9)$	-
Ascending slope block (2011-2014)	1.80	$(-1,9)$	-

Parameter	Estimated value	Bounds (low, high)	Fixed value
Descending slope	1.15	$(-1,9)$	-
Descending slope block (2011-2014)	1.99	$(-1,9)$	-
Selectivity at first bin	-2.32	$(-1,9)$	-
Selectivity at last bin	0.26	$(-1,9)$	-
Selectivity at last bin block (2011-2014)	-1.07	$(-1,9)$	-
Shoreside retention (logistic function)			
Inflection base	25.13	$(15,70)$	-
Inflection block (2011-2014)	20.10	$(15,70)$	-
Slope base	1.67	$(0.1,10)$	-
Slope block (2011-2014)	2.21	$(0.1,10)$	-
Asymptotic retention base	-	NA	1
Asymptotic retention block (2002)	0.45	$(0,1)$	-
Asymptotic retention block (2003)	0.40	$(0,1)$	-
Asymptotic retention block (2004)	0.80	$(0,1)$	-
Asymptotic retention block (2005)	0.75	$(0,1)$	-
Asymptotic retention block (2006)	0.53	$(0,1)$	-
Asymptotic retention block (2007)	0.54	$(0,1)$	-
Asymptotic retention block (2008)	0.46	$(0,1)$	-
Asymptotic retention block (2009)	0.48	$(0,1)$	-
Asymptotic retention block (2010)	0.52	$(0,1)$	-
Male offset to inflection	-	NA	0
At-sea hake fishery (double-normal)			
Peak	33.17	$(10,45)$	-
Top: width of plateau	-4.48	$(-6,4)$	-
Ascending slope	3.82	$(-1,9)$	-
Descending slope base	-0.74	$(-1,9)$	-
Selectivity at first bin	-	NA	-999
Selectivity at last bin	0.33	$(-1,9)$	-
AFSC shelf survey (double-normal)			
Peak	22.11	$(10,45)$	-
Top: width of plateau	-5.97	$(-6,4)$	-
Ascending slope	3.42	$(-1,9)$	-
Descending slope base	4.86	$(-1,9)$	-
Descending slope block (1995-2004)	4.75	$(-1,9)$	-
Selectivity at first bin	-	NA	-999
Selectivity at last bin	-	NA	-999
AFSC slope survey (double-normal)			
Peak	22.20	$(10,45)$	-
Top: width of plateau	-1.68	$(-6,4)$	-
Ascending slope	1.84	$(-1,9)$	-
Descending slope	3.27	$(-1,9)$	-
Selectivity at first bin	-	NA	-999
Selectivity at last bin	-	NA	-999
NWFSC slope survey (double-normal)			
Peak	24.7	$(10,45)$	-
Top: width of plateau	-5.97	$(-6,4)$	-6
Ascending slope	3.1	$(-1,9)$	-

Parameter	Estimated value	Bounds (low, high)	Fixed value
Descending slope	4.85	$(-1,9)$	-
Selectivity at first bin	-	NA	-999
Selectivity at last bin	-	NA	-999
NWFSC shelf-slope survey (double-normal)		NA	24.4731
Peak	-	NA	-6
Top: width of plateau	-	NA	4.13751
Ascending slope	-	NA	3
Descending slope	-	NA	-999
Selectivity at first bin	-	NA	-0.841911
Selectivity at last bin	-		

Table 15: Time series of total biomass, summary biomass, spawning output, depletion relative to B_{0}, recruitment, and exploitation rate estimated in the base model.

Year	Total biomass (mt)	Summary biomass (mt)	Spawning output (million fish)	Depletion $(\%)$	Age-0 Recruits $(1000$)	Exploitation rate (catch/ age $1+$ biomass)
1915	36,459	36,454	3,201	100%	2,783	
1916	36,464	36,458	3,201	100%	2,784	0.00036
1917	36,455	36,450	3,201	100%	2,785	0.00057
1918	36,439	36,434	3,199	100%	2,786	0.00059
1919	36,424	36,418	3,198	100%	2,787	0.00038
1920	36,417	36,411	3,197	100%	2,788	0.00040
1921	36,410	36,404	3,196	100%	2,790	0.00034
1922	36,406	36,400	3,196	100%	2,791	0.00031
1923	36,404	36,398	3,195	100%	2,793	0.00038
1924	36,400	36,395	3,195	100%	2,795	0.00038
1925	36,398	36,392	3,194	100%	2,797	0.00044
1926	36,394	36,388	3,193	100%	2,799	0.00059
1927	36,386	36,380	3,192	100%	2,801	0.00051
1928	36,382	36,376	3,192	100%	2,803	0.00050
1929	36,379	36,374	3,191	100%	2,806	0.00053
1930	36,377	36,371	3,191	100%	2,809	0.00058
1931	36,374	36,369	3,190	100%	2,811	0.00072
1932	36,368	36,362	3,189	100%	2,814	0.00045
1933	36,373	36,367	3,189	100%	2,818	0.00044
1934	36,380	36,374	3,189	100%	2,821	0.00042
1935	36,389	36,383	3,189	100%	2,825	0.00048
1936	36,397	36,391	3,190	100%	2,829	0.00033
1937	36,412	36,407	3,190	100%	2,834	0.00037
1938	36,427	36,422	3,191	100%	2,840	0.00046
1939	36,441	36,435	3,192	100%	2,850	0.00066
1940	36,450	36,444	3,192	100%	2,860	0.00090
1941	36,451	36,446	3,192	100%	2,875	0.00116
1942	36,447	36,441	3,190	100%	2,892	0.00133
1943	36,440	36,434	3,189	100%	2,911	0.00507
1944	36,302	36,297	3,176	99%	2,935	0.01103
1945	35,959	35,953	3,145	98%	2,965	0.01901
1946	35,349	35,343	3,090	96%	3,003	0.01142
1947	35,043	35,036	3,059	96%	3,054	0.00953
1948	34,829	34,822	3,035	95%	3,122	0.00553
1949	34,780	34,774	3,025	94%	3,205	0.00464
1950	34,787	34,781	3,018	94%	3,304	0.00515

Year	Total biomass (mt)	Summary biomass (mt)	```Spawning output (million fish)```	Depletion (\%)	Age-0 Recruits (1000s)	Exploitation rate (catch/ age 1+ biomass)
1951	34,805	34,798	3,012	94\%	3,408	0.00596
1952	34,826	34,819	3,005	94\%	3,497	0.00627
1953	34,872	34,865	2,999	94\%	3,544	0.00533
1954	34,991	34,984	2,998	94\%	3,520	0.00625
1955	35,116	35,109	2,997	94\%	3,434	0.00735
1956	35,236	35,230	2,995	94\%	3,314	0.00970
1957	35,298	35,292	2,989	93\%	3,191	0.01131
1958	35,316	35,310	2,982	93\%	3,084	0.00956
1959	35,395	35,389	2,983	93\%	2,995	0.00806
1960	35,511	35,505	2,992	93\%	2,919	0.00971
1961	35,540	35,534	2,998	94\%	2,855	0.00904
1962	35,558	35,553	3,006	94\%	2,814	0.00978
1963	35,512	35,506	3,011	94\%	2,817	0.01044
1964	35,404	35,398	3,013	94\%	2,874	0.00754
1965	35,366	35,360	3,020	94\%	2,959	0.01375
1966	35,081	35,075	3,006	94\%	2,992	0.12040
1967	31,052	31,046	2,673	83\%	2,889	0.09917
1968	28,234	28,229	2,428	76\%	2,726	0.08583
1969	26,138	26,133	2,238	70\%	2,665	0.01101
1970	26,232	26,226	2,230	70\%	2,818	0.01345
1971	26,282	26,276	2,222	69\%	2,994	0.02018
1972	26,173	26,168	2,202	69\%	2,431	0.02344
1973	25,997	25,993	2,180	68\%	1,945	0.03523
1974	25,518	25,515	2,134	67\%	1,748	0.02396
1975	25,319	25,316	2,115	66\%	1,457	0.02426
1976	25,061	25,057	2,097	65\%	2,048	0.02689
1977	24,674	24,671	2,076	65\%	1,345	0.01298
1978	24,574	24,567	2,083	65\%	3,451	0.01705
1979	24,329	24,324	2,081	65\%	2,823	0.03046
1980	23,760	23,757	2,045	64\%	1,963	0.02627
1981	23,355	23,346	2,012	63\%	4,399	0.03610
1982	22,790	22,788	1,954	61\%	1,349	0.05029
1983	21,998	21,996	1,867	58\%	883	0.05168
1984	21,267	21,264	1,782	56\%	1,414	0.06281
1985	20,319	20,316	1,688	53\%	1,791	0.08808
1986	18,871	18,868	1,564	49\%	1,654	0.06723
1987	17,906	17,900	1,489	46\%	3,181	0.13561
1988	15,769	15,767	1,322	41\%	1,303	0.10596
1989	14,412	14,410	1,210	38\%	900	0.08932

Year	Total biomass (mt)	Summary biomass (mt)	Spawning output (million fish)	Depletion $(\%)$	Age-0 Recruits $(1000 \mathrm{~s})$	Exploitation rate (catch/ age $1+$ biomass)
1990	13,468	13,466	1,122	35%	732	0.12611
1991	12,110	12,108	996	31%	895	0.10064
1992	11,210	11,208	912	28%	792	0.06189
1993	10,793	10,792	877	27%	439	0.11156
1994	9,819	9,814	806	25%	2,306	0.08894
1995	9,143	9,136	759	24%	3,707	0.08671
1996	8,575	8,574	715	22%	965	0.08755
1997	8,144	8,141	668	21%	1,281	0.10231
1998	7,722	7,721	611	19%	828	0.12228
1999	7,247	7,234	543	17%	6,440	0.05091
2000	7,424	7,415	528	16%	4,611	0.03560
2001	7,863	7,862	533	17%	549	0.02278
2002	8,586	8,583	555	17%	1,308	0.02959
2003	9,338	9,335	578	18%	1,562	0.02134
2004	10,140	10,135	608	19%	2,609	0.02370
2005	10,855	10,850	649	20%	2,671	0.01187
2006	11,635	11,631	716	22%	2,168	0.01669
2007	12,322	12,319	790	25%	1,644	0.02115
2008	12,918	12,906	856	27%	6,240	0.01939
2009	13,521	13,519	913	29%	950	0.02139
2010	14,133	14,129	961	30%	2,243	0.02486
2011	14,725	14,721	1,002	31%	2,025	0.00799
2012	15,526	15,524	1,061	33%	956	0.00610
2013	16,307	16,288	1,123	35%	9,616	0.00766
2014	17,043	17,038	1,189	37%	2,466	0.00608
2015	17,902	17,897	1,261	39%	2,491	NA

Table 16: Comparison among selected sensitivity runs. Likelihoods in italics are not comparable across rows.

Model	Base	High catch	Low catch	B.C. catches included	Data -1 year	Data - 2 years	Data -3 years	Data -4 years	No 2014 NWCBO comps
Negative log-likelihood									
Total	1854.24	1855.52	1853.58	1852.86	1776.33	1703.77	1609.01	1535.73	1791.22
Indices	-18.6734	-18.1939	-19.0412	-19.4939	-19.3873	-18.4621	-17.7784	-16.7257	-18.6346
Length frequencies	540.814	540.688	540.785	540.403	516.003	486.048	463.221	438.636	521.387
Age frequencies	1357.46	1357.14	1357.79	1357.67	1304.27	1257.3	1187.29	1134.99	1312.59
Selected parameters									
$\mathrm{Ln}\left(\mathrm{R}_{0}\right)$	7.928	8.140	7.810	7.968	7.987	7.985	7.984	7.982	7.991
Steepness (h)	0.773	0.773	0.773	0.773	0.773	0.773	0.773	0.773	0.773
Female M	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054
Male M	0.069	0.070	0.069	0.069	0.070	0.070	0.070	0.071	0.070
Female L at A_{1}	15.187	15.188	15.187	15.189	15.135	15.091	15.121	15.038	15.139
Female L at A_{2}	42.662	42.672	42.666	42.673	42.653	42.620	42.572	42.525	42.637
Male L at A_{1}	15.187	15.188	15.187	15.189	15.135	15.091	15.121	15.038	15.139
Male L at A_{2}	38.347	38.344	38.329	38.351	38.339	38.352	38.319	38.357	38.355
Female von Bert K	0.198	0.198	0.198	0.194	0.198	0.198	0.197	0.198	0.198
Male von Bert K	0.245	0.245	0.245	0.243	0.245	0.245	0.246	0.245	0.245
Management quantities Equilibrium									
spawning output (million eggs)	3,203	3,965	2,848	3,339	3,405	3,394	3,387	3,377	3,415
2015 Spawning depletion	39\%	44\%	37\%	34\%	51\%	51\%	50\%	48\%	52\%

Table 17: Comparison among selected sensitivity runs.

Model	Base	Nonspatial GLMM	2013 maturity settings	2013 growth CV settings	2013 WL parameters	2013 female M	M estimated with Hamel prior	$\begin{gathered} 2013 \\ \text { steepness } \end{gathered}$	Steepness estimated with prior
Negative log-likelihood									
Total	1854.24	1857.39	1856.44	1887.04	1856.46	1854.9	1851.72	1854.2	1854.16
Indices	-18.6734	-15.8398	-18.7151	-18.4874	-18.7748	-18.6442	-21.5288	-18.6737	-18.5517
Length frequencies	540.814	540.826	541.893	546.608	541.847	541.071	541.901	540.706	540.637
Age frequencies	1357.46	1357.64	1357.95	1382.94	1358.06	1358.2	1353.13	1357.53	1357.41
Selected parameters									
$\mathrm{Ln}\left(\mathrm{R}_{0}\right)$	7.928	7.938	7.939	7.946	7.937	7.775	10.392	7.931	7.936
Steepness (h)	0.773	0.773	0.773	0.773	0.773	0.773	0.773	0.779	0.824
Female M	0.054	0.054	0.054	0.054	0.054	0.050	0.088	0.054	0.054
Male M	0.069	0.069	0.070	0.070	0.070	0.065	0.110	0.070	0.070
Female L at A_{1}	15.187	15.183	15.193	15.499	15.194	15.188	15.180	15.187	15.188
Female L at A_{2}	42.662	42.660	42.659	42.772	42.666	42.654	42.747	42.669	42.671
Male L at A_{1}	15.187	15.183	15.193	15.499	15.194	15.188	15.180	15.187	15.188
Male L at A_{2}	38.347	38.344	38.329	38.351	38.339	38.352	38.319	38.357	38.355
Female von Bert K	0.198	0.198	0.198	0.194	0.198	0.198	0.197	0.198	0.198
Male von Bert K	0.245	0.245	0.245	0.243	0.245	0.245	0.246	0.245	0.245
Management quantities Equilibrium									
spawning output (million eggs)	3,203	3,235	3,304	3,286	3,245	3,096	16,279	3,216	3,234
2015 Spawning depletion	39\%	41\%	44\%	44\%	41\%	32\%	100\%	40\%	43\%

Table 18: Summary of reference points for the base model.

Quantity	Estimate	$\sim 95 \%$ Confidence Interval
Unfished Spawning output (million eggs)	3,203	2,370-4,036
Unfished age 1+ biomass (mt)	36,459	27,360-45,557
Unfished recruitment (R0)	2,773	2,051-3,494
Depletion (2015)	39\%	17-62\%
Reference points based on SB40\%		
Proxy spawning output ($\mathrm{B}_{40 \%}$)(million eggs)	1,281	948-1,614
SPR resulting in $B 40 \%$ ($S P R_{B 40 \%}$)	44\%	NA
Exploitation rate resulting in $B_{40 \%}$	4.1\%	3.98-4.29\%
Yield with SPR at $B_{40 \%}(\mathrm{mt})$	674	504-844
Reference points based on SPR proxy for MSY		
Spawning output (million eggs)	1,474	1,091-1,858
$S P R_{\text {proxy }}$ (50\%	NA
Exploitation rate corresponding to $S P R_{\text {proxy }}$	3.4\%	3.3-3.5\%
Yield with $S P R_{\text {proxy }}$ at $S B_{S P R}(\mathrm{mt})$	630	472-789
Reference points based on estimated MSY values		
	815	603-1,026
$S P R_{M S Y}$	31\%	30-32\%
Exploitation rate corresponding to $S P R_{M S Y}$	6.55\%	6.24-6.74\%
MSY (mt)	728	544-912

Table 19: Summary of recent trends in estimated darkblotched rockfish exploitation and stock level from the base model.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& 2005 \& 2006 \& 2007 \& 2008 \& 2009 \& 2010 \& 2011 \& 2012 \& 2013 \& 2014 \& 2015

\hline Landings (mt) \& 98 \& 107 \& 144 \& 117 \& 138 \& 184 \& 117 \& 94 \& 124 \& 103 \& NA

\hline Estimated Total catch (mt) \& 129 \& 194 \& 261 \& 250 \& 289 \& 351 \& 118 \& 95 \& 125 \& 104 \& NA

\hline OFL (mt) \& 269 \& 269 \& 456 \& 456 \& 437 \& 437 \& 508 \& 508 \& 541 \& 541 \&

\hline ACL (mt) \& 122 \& 122 \& 260 \& 260 \& 282 \& 282 \& 298 \& 298 \& 317 \& 317 \&

\hline SPR \& 77\% \& 71\% \& 66\% \& 67\% \& 64\% \& 59\% \& 85\% \& 88\% \& 86\% \& 89\% \& NA

\hline Exploitation rate (catch/ age 1+ biomass) Age 1+ biomass (mt) \& $$
\begin{aligned}
& 0.012 \\
& \\
& 10,850
\end{aligned}
$$ \& $$
\begin{aligned}
& 0.017 \\
& \\
& 11,631
\end{aligned}
$$ \& $$
\begin{aligned}
& 0.021 \\
& \\
& 12,319
\end{aligned}
$$ \& $$
\begin{aligned}
& 0.019 \\
& \\
& 12,906
\end{aligned}
$$ \& $$
\begin{aligned}
& 0.021 \\
& \\
& 13,519
\end{aligned}
$$ \& $$
\begin{aligned}
& 0.025 \\
& \\
& 14,129 \\
& \hline
\end{aligned}
$$ \& $$
\begin{aligned}
& 0.008 \\
& 14,721 \\
& \hline
\end{aligned}
$$ \& $$
\begin{aligned}
& 0.006 \\
& \\
& 15,524 \\
& \hline
\end{aligned}
$$ \& 0.008

16,288 \& $$
\begin{aligned}
& 0.006 \\
& \\
& 17,038 \\
& \hline
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { NA } \\
& 17,897 \\
& \hline
\end{aligned}
$$
\]

\hline | Spawning output (million eggs) ~95\% |
| :--- |
| Confidence Interval | \& 649

216-1,082 \& 716
$237-1,196$ \& 790
$256-1,324$ \& 856
$269-1,443$ \& 913
$277-1,550$ \& 961

$279-1,643$ \& $$
\begin{gathered}
1,002 \\
276- \\
1,729
\end{gathered}
$$ \& 1,061

$289-1,832$ \& $$
\begin{gathered}
1,123 \\
305- \\
1,940
\end{gathered}
$$ \& 1,189

$321-2,056$ \& 1,261
$340-2,181$

\hline | Recruitment ~95\% |
| :--- |
| Confidence Interval | \& 2,671

$785-4,557$ \& 2,168
$598-3,738$ \& 1,644

$409-2,879$ \& $$
\begin{aligned}
& 6,240 \\
& 1,784- \\
& 10,695
\end{aligned}
$$ \& 950

$199-1,702$ \& 2,243

$619-3,867$ \& $$
\begin{gathered}
2,025 \\
501- \\
3,550
\end{gathered}
$$ \& 956

$132-1,779$ \& \[
$$
\begin{aligned}
& 9,616 \\
& 1,323- \\
& 17,909
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline 2,466 \\
& 1,679- \\
& 3,253
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline 2,491 \\
& 1,704- \\
& 3,278
\end{aligned}
$$
\]

\hline | Depletion (\%) ~95\% |
| :--- |
| Confidence Interval | \& 20%

$10-30 \%$ \& 22%
$11-34 \%$ \& 25\% \& 27%
$12-41 \%$ \& 29\% \& 30%
$13-47 \%$ \& 31%
$13-49 \%$ \& 33%
$14-52 \%$ \& 35%
$15-55 \%$ \& 37%
$16-58 \%$ \& 39%
$17-62 \%$

\hline
\end{tabular}

Table 20: 12-year projections for alternate states of nature defined based on female natural mortality. Columns range over low, mid, and high state of nature, and rows range over different assumptions of catch levels.

			State of nature					
			Low Female M=0.0412		Base case Female M=0.054		High Female $M=0.059$	
Management decision	Year	Catch (mt)	Spawning output (million eggs)	Depletion	$\begin{aligned} & \hline \text { Spawning } \\ & \text { output } \\ & \text { (million } \\ & \text { eggs) } \\ & \hline \end{aligned}$	Depletion	Spawning output (million eggs)	Depletion
Average catch for the period between 2011 and 2014	2015	110	263	9\%	1,261	39\%	1,660	49\%
	2016	110	278	10\%	1,331	42\%	1,744	51\%
	2017	110	291	10\%	1,396	44\%	1,820	53\%
	2018	110	305	11\%	1,459	46\%	1,893	56\%
	2019	110	324	12\%	1,531	48\%	1,976	58\%
	2020	110	349	12\%	1,618	51\%	2,077	61\%
	2021	110	379	13\%	1,711	53\%	2,183	64\%
	2022	110	410	15\%	1,799	56\%	2,283	67\%
	2023	110	442	16\%	1,878	59\%	2,369	69\%
	2024	110	474	17\%	1,948	61\%	2,442	72\%
	2025	110	507	18\%	2,008	63\%	2,503	73\%
	2026	110	539	19\%	2,062	64\%	2,555	75\%
2016 ACL catch assumed for years between 2015 and 2026	2015	338	263	9\%	1,261	39\%	1,660	49\%
	2016	346	264	9\%	1,317	41\%	1,730	51\%
	2017	346	260	9\%	1,365	43\%	1,790	53\%
	2018	346	256	9\%	1,411	44\%	1,845	54\%
	2019	346	256	9\%	1,465	46\%	1,911	56\%
	2020	346	262	9\%	1,534	48\%	1,994	58\%
	2021	346	271	10\%	1,609	50\%	2,082	61\%
	2022	346	280	10\%	1,677	52\%	2,162	63\%
	2023	346	288	10\%	1,736	54\%	2,229	65\%
	2024	346	295	11\%	1,786	56\%	2,283	67\%
	2025	346	302	11\%	1,827	57\%	2,327	68\%
	2026	346	308	11\%	1,863	58\%	2,362	69\%
Catch calculated using current rebuilding SPR of 64.9\% applied to the base model (40-10 rule and buffer applied)	2015	388	263	9\%	1,261	39\%	1,660	49\%
	2016	389	260	9\%	1,314	41\%	1,727	51\%
	2017	386	253	9\%	1,359	42\%	1,783	52\%
	2018	399	246	9\%	1,400	44\%	1,835	54\%
	2019	438	241	9\%	1,451	45\%	1,897	56\%
	2020	467	241	9\%	1,513	47\%	1,973	58\%
	2021	474	241	9\%	1,579	49\%	2,053	60\%
	2022	469	239	9\%	1,637	51\%	2,123	62\%
	2023	461	236	8\%	1,686	53\%	2,180	64\%
	2024	454	231	8\%	1,725	54\%	2,224	65\%
	2025	450	226	8\%	1,758	55\%	2,259	66\%
	2026	448	221	8\%	1,784	56\%	2,285	67\%

9 Figures

Figure 1: Spatial distribution of darkblotched rockfish catch observed by the West Coast Groundfish Observer Program and the summary area of all observed fishing events.

Observed Area	792-1,433	5,140-6,968	N
Darkblotched Rockfish Catch (lbs / sq km)	1,434-2,273	6,969-9,192	-
49-297	2,274-3,459	9,193-12,601	
298-791	3,460-5,139		Observed Data: 2002-2013 K. Somers

Figure 1 (continued): Spatial distribution of darkblotched rockfish catch observed by the West Coast Groundfish Observer Program and the summary area of all observed fishing events.

Darkblotched rockfish (Sebastes crameri)

Figure 2: Spatial distribution of darkblotched rockfish (Sebastes crameri) catch in the NWFSC groundfish survey (2003-2012) by INPFC area.

Darkblotched rockfish (Sebastes crameri)

Figure 2 (continued): Spatial distribution of darkblotched rockfish (Sebastes crameri) catch in the NWFSC groundfish survey (2003-2012) by INPFC area.

Figure 3: Fits to length-at-age data for female darkblotched rockfish, by state.

Figure 4: Fits to length-at-age data for male darkblotched rockfish, by state.

Females

Figure 5: Female length-at-age data and von Bertalanffy model fits that illustrate no differences in growth among state.

Males

Figure 6: Male length-at-age data and von Bertalanffy model fits that illustrate no differences in growth among state.

Figure 7: A map of the assessment area that includes coastal waters off three U.S. west coast states and five International North Pacific Fisheries Commission (INPFC) areas.

Figure 8: Conceptual diagram of ecological interactions of groundfish species in California Current large marine ecosystem.

Figure 9: Conceptual diagram of environmental drivers that impact groundfish species in California Current large marine ecosystem.

Figure 10: Conceptual diagram of human activities that affect groundfish species in California Current large marine ecosystem.

Figure 11: Darkblotched rockfish landings history, 1915-2014, by fleet.

Figure 12: Darkblotched rockfish landings history, 1915-2014, by state.

Figure 13: Summary of sources and data used in the assessment.

Figure 14: Comparison of darkblotched length compositions sampled from the landed catch in California, Oregon and Washington.

Figure 15: Length-frequency distributions for darkblotched rockfish (females are shown in red, males in blue) from the shoreside landings by year.

Figure 16: Length-frequency distributions for darkblotched rockfish (sexes combined) from the shoreside fleet discards by year.

Figure 17: Length-frequency distributions for darkblotched rockfish (females are shown in red, males in blue) from the at-sea hake fishery removals by year.

Figure 18: Age-frequency distributions for darkblotched rockfish (females are shown in red, males in blue) from the shoreside landings by year.

Figure 19: Age-frequency distributions for darkblotched rockfish (sexes combined) from the shoreside fleet discards by year.

Figure 20: Age-frequency distributions for darkblotched rockfish (females are shown in red, males in blue) from the at-sea hake fishery removals by year.

Figure 21: Distribution of dates of operation for the AFSC shelf (triennial) bottom trawl survey (1980-2004). Solid bars show the mean date for each survey year, points represent individual hauls dates, but are jittered to allow better delineation of the distribution of individual points.

Figure 22: Bayesian Q-Q plot for AFSC shelf survey for 1980-1992 (upper panel) and 1995-2004 (lower panel).

Figure 23: Bayesian Q-Q plot for AFSC slope survey.

Figure 24: Bayesian Q-Q plot for NWFSC slope survey.

Figure 25: Q-Q plot for lognormal model used in the geostatistical delta-GLMM for the NWFSSC shelf-slope survey.

Figure 26: Posterior predictive plot for lognormal model used in the geostatistical deltaGLMM for the NWFSSC shelf-slope survey.

Figure 27: Length-frequency distributions for darkblotched rockfish (females are shown in red, males in blue) from the AFSC shelf survey.

Figure 28: Length-frequency distributions for darkblotched rockfish (females are shown in red, males in blue) from the AFSC slope survey.

Figure 29: Length-frequency distributions for darkblotched rockfish (females are shown in red, males in blue) from the NWFSC slope survey.

Figure 30: Length-frequency distributions for darkblotched rockfish (females are shown in red, males in blue) from the NWFSC shelf-slope survey.

Figure 31: Age-frequency distributions for darkblotched rockfish (females are shown in red, males in blue) from the AFSC shelf survey.

Figure 32: Age-frequency distributions for darkblotched rockfish (females are shown in red, males in blue) from the AFSC slope survey.

Figure 33: Age-frequency distributions for darkblotched rockfish (females are shown in red, males in blue) from the NWFSC slope survey.

Figure 34: Age-frequency distributions for darkblotched (females are shown in red, males in blue) rockfish from the NWFSC shelf-slope survey.

Figure 35: Weight-length relationship for female (red) and male (blue) darkblotched rockfish used in the assessment, shown with fit to the data from the NWFSC shelf-slope survey samples (shaded points).

Figure 36: SD of observed age versus true age for "early" (red) and "late" (blue) age data used in the assessment.

Figure 37: Time series of spawning output from this and 2013 assessments with approximate 95% asymptotic confidence intervals.

Figure 38: Time series of spawning depletion from this and 2013 assessments with approximate 95% asymptotic confidence intervals.

Figure 39: Bias correction ramp estimated by R4SS using particle swarm optimization to avoid local minima.

Figure 40: Growth curves for females and males of darkblotched rockfish used in the assessment model.

Figure 41: Weight-at-length relationship for females and males of darkblotched rockfish used in the assessment model.

Figure 42: Female maturity at length relationship used in the assessment model. The parameters were estimated from the data collected within the NWFSC shelf-slope survey between 2011 and 2012.

Figure 43: Female darkblotched rockfish fecundity at weight relationship used in the assessment, based on the parameters estimated by Dick (2009).

Figure 44: Female darkblotched rockfish spawning output-at-length relationship used in the assessment model.

Figure 45: Observed and expected values of darkblotched rockfish biomass index (mt) for the AFSC shelf survey.

Figure 46: Observed and expected values of darkblotched rockfish biomass index (mt) for the AFSC shelf survey, on log scale.

Figure 47: Observed and expected values of darkblotched rockfish biomass index (mt) for the AFSC slope survey.

Figure 48: Observed and expected values of darkblotched rockfish biomass index (mt) for the AFSC slope survey, on log scale.

Figure 49: Observed and expected values of darkblotched rockfish biomass index (mt) for the NWFSC slope survey.

Figure 50: Observed and expected values of darkblotched rockfish biomass index (mt) for the NWFSC slope survey, on log scale.

Figure 51: Observed and expected values of darkblotched rockfish biomass index (mt) for the NWFSC shelf-slope survey.

Figure 52: Observed and expected values of darkblotched rockfish biomass index (mt) for the NWFSC shelf-slope survey, on log scale.

Figure 53: Fit to length-frequency distributions of darkblotched rockfish for the shoreside landings, by year.

Figure 53 (continued): Fit to length-frequency distributions of darkblotched rockfish for the shoreside landings, by year.

Length (cm)
Figure 53 (continued): Fit to length-frequency distributions of darkblotched rockfish for the shoreside landings, by year.

Figure 54: Pearson residuals for the fit to length-frequency distributions of darkblotched rockfish (females are shown in red, males in blue) for the shoreside landings, by year.

Figure 55: Fit to length-frequency distributions of darkblotched rockfish (females are shown in red, males in blue) from shoreside landings, aggregated across all years.

Figure 56: Fit to length-frequency distributions of darkblotched rockfish (sexes combined) for the shoreside fleet discard, by year.

Figure 57: Pearson residuals for the fit to length-frequency distributions of darkblotched rockfish (sexes combined) for the shoreside fleet discard, by year.

Figure 58: Fit to length-frequency distributions of darkblotched rockfish (sexes combined) from shoreside fishery discard, aggregated across all years.

Figure 59: Fit to length-frequency distributions of darkblotched rockfish for at sea hake fishery bycatch, by year.

Figure 60: Pearson residuals for the fit to length-frequency distributions of darkblotched rockfish (females are shown in red, males in blue) for the shoreside landings, by year.

Figure 61: Fit to length-frequency distributions of darkblotched rockfish from the AFSC shelf survey, by year.

Figure 62: Pearson residuals for the fit to length-frequency distributions of darkblotched rockfish (females are shown in red, males in blue) from the AFSC shelf survey, by year.

Length (cm)
Figure 63: Fit to length-frequency distributions of darkblotched rockfish from the AFSC slope survey, by year.

Figure 64: Pearson residuals for the fit to length-frequency distributions of darkblotched rockfish (females are shown in red, males in blue) from the AFSC slope survey, by year.

Length (cm)
Figure 65: Fit to length-frequency distributions of darkblotched rockfish from the NWFSC slope survey, by year.

Figure 66: Pearson residuals for the fit to length-frequency distributions of darkblotched rockfish (females are shown in red, males in blue) from the NWFSC slope survey, by year.

Figure 67: Fit to length-frequency distributions of darkblotched rockfish from the NWFSC shelf-slope survey by year.

Figure 68: Pearson residuals for the fit to length-frequency distributions of darkblotched rockfish (females are shown in red, males in blue) from the NWFSC shelf-slope survey by year.

Figure 69: Fit to length-frequency distributions of darkblotched rockfish from the at-sea hake fishery bycatch and fishery-independent surveys, aggregated across all years.

Figure 70: Fit to age-frequency distributions of darkblotched rockfish from the shoreside landings by year.

Figure 70 (continued): Fit to age-frequency distributions of darkblotched rockfish from the shoreside landings by year.

Figure 71: Pearson residuals for the fit to age-frequency distributions of darkblotched rockfish (females are shown in red, males in blue) from the shoreside landings.

Figure 72: Fit to age-frequency distributions of darkblotched rockfish from the shoreside landings, aggregated across all years.

Age (yr)
Figure 73: Fit to age-frequency distributions of darkblotched rockfish (sexes combined) from the shoreside fishery discard by year.

Figure 74: Pearson residuals for the fit to age-frequency distributions of darkblotched rockfish (sexes combined) from the shoreside fishery discard.

Figure 75: Fit to age-frequency distributions of darkblotched rockfish (sexes combined) from the shoreside fleet discard, aggregated across all years.

Figure 76: Fit to age-frequency distributions of darkblotched rockfish from the at-sea hake fishery bycatch by year.

Figure 77: Pearson residuals for the fit to age-frequency distributions of darkblotched rockfish (females are shown in red, males in blue) from the shoreside landings.

Figure 78: Fit to age-frequency distributions of darkblotched rockfish from the at-sea fishery bycatch, aggregated across all years.

Figure 79: Fit to conditional ages-at-length compositions of female darkblotched rockfish from the AFSC shelf survey.

Figure 79 (continued): Fit to conditional ages-at-length compositions of female darkblotched rockfish from the AFSC shelf survey.

Length (cm)
Figure 79 (continued): Fit to conditional ages-at-length compositions of female darkblotched rockfish from the AFSC shelf survey.

Figure 80: Pearson residuals for the fit to conditional ages-at-length compositions of darkblotched rockfish (females are shown in red, males in blue) from the AFSC shelf survey.

Figure 80 (continued): Pearson residuals for the fit to conditional ages-at-length compositions of darkblotched rockfish (females are shown in red, males in blue) from the AFSC shelf survey.

Length (cm)
Figure 81: Fit to conditional ages-at-length compositions of darkblotched rockfish from the AFSC slope survey.

Figure 82: Pearson residuals for the fit to conditional ages-at-length compositions of darkblotched rockfish (females are shown red, males in blue) from the AFSC slope survey.

Figure 83: Fit to conditional ages-at-length compositions of darkblotched rockfish from the NWFSC slope survey.

Figure 84: Pearson residuals for the fit to conditional ages-at-length compositions of darkblotched rockfish (females are shown in red, males in blue) from the NWFSC slope survey.

Figure 85: Fit to conditional ages-at-length compositions of darkblotched rockfish from the NWFSC shelf-slope survey.

Figure 85 (continued): Fit to conditional ages-at-length compositions of darkblotched rockfish from the NWFSC shelf-slope survey.

Figure 85 (continued): Fit to conditional ages-at-length compositions of darkblotched rockfish from the NWFSC shelf-slope survey.

Figure 85 (continued): Fit to conditional ages-at-length compositions of darkblotched rockfish from the NWFSC shelf-slope survey.

Figure 86: Pearson residuals for the fit to conditional ages-at-length compositions of darkblotched rockfish (females are shown in red, males in blue) from the NWFSC shelfslope survey.

Figure 86 (continued): Pearson residuals for the fit to conditional ages-at-length compositions of darkblotched rockfish (females are shown in red, males in blue) from the NWFSC shelf-slope survey.

Age (yr)
Figure 87: Implied fit to conditional ages-at-length compositions of darkblotched rockfish from the AFSC shelf survey marginal age frequencies. Fits are provided for evaluation only, but not included in the model likelihood.

Age (yr)
Figure 88: Implied fit to conditional ages-at-length compositions of darkblotched rockfish from the AFSC slope survey marginal age frequencies. Fits are provided for evaluation only, but not included in the model likelihood.

Age (yr)
Figure 89: Implied fit to conditional ages-at-length compositions of darkblotched rockfish from the NWFSC slope survey marginal age frequencies. Fits are provided for evaluation only, but not included in the model likelihood.

Figure 90: Implied fit to conditional ages-at-length compositions of darkblotched rockfish from the NWFSC shelf-slope survey marginal age frequencies. Fits are provided for evaluation only, but not included in the model likelihood.

Figure 91: Final year selectivity curves for the all fleets used in the assessment.

Figure 92: Estimated time-varying selectivity for the shoreside fishery.

Figure 93: Estimated time-varying length-based retention of shoreside fishery.

Figure 94: Length-based selectivity curve for historical at-sea hake bycatch fleet.

Figure 95: Estimated time-varying length-based selectivity curve for the AFSC shelf survey.

Figure 96: Estimated length-based selectivity curve for the AFSC slope survey.

Figure 97: Estimated length-based selectivity curve for the NWFSC slope survey.

Figure 98: Estimated length-based selectivity curve for the NWFSC shelf-slope survey.

Figure 99: Fit to the discard ratio data of the shoreside fishery.

Figure 100: Discard fraction for the shoreside fishery estimated in the assessment.

Figure 101: Predicted discard for the shoreside fishery.

Figure 102: Recruitment deviation time-series estimated in the assessment model.

Figure 103: Estimated stock-recruit function for the assessment model.

Figure 104: Time series of total biomass (mt) estimated in the assessment model.

Figure 105: Time series of summary biomass (mt) estimated in the assessment model.

Figure 106: Time series of spawning output estimated in the assessment model (solid line) with $\sim 95 \%$ interval (dashed lines). Spawning output is expressed in number of eggs.

Figure 107: Time series of spawning depletion estimated in the assessment model (solid line) with ~ 95\% interval (dashed lines).

Figure 108: Time series of recruitment estimated in the assessment model with ~ 95\% interval.

Figure 109: Time series of fishing mortality of darkblotched rockfish estimated by the assessment model.

Figure 110: Sensitivity of darkblotched rockfish spawning output to selected changes made from 2013 assessment. Spawning output time series of this assessment base model are provided with $\sim 95 \%$ interval.

Figure 111: Sensitivity of darkblotched rockfish recruitment to selected changes made from 2013 assessment. Recruitment time series of this assessment base model are provided with ~ 95\% interval.

Figure 112: Sensitivity of darkblotched rockfish spawning depletion to selected changes made from 2013 assessment. Spawning depletion time series of this assessment base model are provided with $\sim 95 \%$ interval.

Figure 113: Sensitivity of darkblotched rockfish rockfish relative SPR ratio (1-SPR/1$\mathrm{SPR}_{\text {Target }=0.50}$) to selected changes made from 2013 assessment. Time series of this assessment base model are provided with $\sim 95 \%$ interval.

Figure 114: Sensitivity of darkblotched rockfish spawning output to alternative assumptions about historical shoreside fishery removals. Spawning output time series of this assessment base model are provided with $\sim 95 \%$ interval.

Figure 115: Sensitivity of darkblotched rockfish recruitment to alternative assumptions about historical shoreside fishery removals. Recruitment time series of this assessment base model are provided with ~ 95\% interval.

Figure 116: Sensitivity of darkblotched rockfish spawning depletion to alternative assumptions about historical shoreside fishery removals. Depletion time series of this assessment base model are provided with ~ 95\% interval.

Figure 117: Sensitivity of darkblotched rockfish relative SPR ratio (1-SPR/1-
SPR $_{\text {Target }=0.50}$) to alternative assumptions about historical shoreside fishery removals.
Relative SPR ratio time series of this assessment base model are provided with $\sim 95 \%$ interval.

Figure 118: Sensitivity of darkblotched rockfish spawning depletion to alternative value of natural mortality and stock-recruit steepness. Spawning depletion time series of this assessment base model are provided with $\sim 95 \%$ interval.

Figure 119: Results of retrospective analysis. Spawning output time series of this assessment base model are provided with $\sim 95 \%$ interval.

Figure 120: Results of retrospective analysis. Recruitment time series of this assessment base model are provided with ~ 95\% interval.

Figure 121: Results of retrospective analysis. Spawning depletion time series of this assessment base model are provided with ~ 95\% interval.

Figure 122: Results of retrospective analysis. Relative SPR ratio (1-SPR/1-SPR ${ }_{\text {Target }}=0.50$) time series of this assessment base model are provided with ~ 95\% interval.

Figure 123: Comparison of spawning output time series between the base model and a run when 2014 NWFSC shelf-slope (NWCBO) composition data were excluded.

Figure 124: Comparison of spawning depletion time series between the base model and a run when 2014 NWFSC shelf-slope (NWCBO) composition data were excluded.

Figure 125: Comparison of spawning depletion time series among darkblotched rockfish assessments.

Figure 126: Negative log-likelihood profile for each data component and in total given different values of natural mortality ranging from 0.04 to 0.1 by increments of 0.01 .

Figure 127: Time series of spawning depletion associated with different values of natural mortality ranging from 0.04 (Model 1) to 0.1 (Model 7) by increments of 0.01 .

Figure 128: Negative log-likelihood profile for each data component and in total given different values of stock-recruit steepness ranging from 0.3 to 0.9 by increments of 0.1 .

Figure 129: Time series of spawning depletion associated with different values of steepness ranging from 0.3 (Model 1) to 0.9 (Model 7) by increments of 0.1 .

Figure 130: Values of recruitment deviations given different values of $\ln \left(R_{0}\right)$ ranging from 7.5 to 8.4 by increments of 0.1 .

Figure 131: Values of estimated recruitment given different values of $\ln \left(R_{0}\right)$ ranging from 7.5 to 8.4 by increments of 0.1 .

Figure 132: Time series of estimated relative spawning potential ratio (1-SPR/1$\mathrm{SPR}_{\text {Target }=0.5 \text {) }}$ for the base model (round points) with ~95\% intervals (dashed lines). Values of relative SPR above 1.0 reflect harvests in excess of the current overfishing.

Figure 133: Phase plot of estimated relative (1-SPR) vs. relative spawning biomass for the base model. The relative (1-SPR) is (1-SPR) divided by 0.649 (the SPR target). Relative depletion is the annual spawning biomass divided by the spawning biomass corresponding to 40% of the unfished spawning biomass. The red point indicates the year 2014.

Figure 134: Comparison of depletion time series for base case, runs with alternative steepness values and female natural mortality values used to construct Decision Table.

Appendix A. Management shifts related to West Coast groundfish species

Effective October 18, 1982

- First trip limits established (widow rockfish and sablefish).

Effective January 1, 1983

- Established first coastwide trip limits on Sebastes complex

Effective January 1, 1992

- First cumulative trip limits for various species and species groups (widow RF; Sebastes complex; Pacific ocean perch; deepwater complex; non-trawl sablefish).

Effective May 9, 1992

- Increased the minimum legal codend mesh size for roller trawl gear north of Point Arena, California ($40^{\circ} 30$ ' N latitude) from 3.0 inches to 4.5 inches; prohibited double-walled codends; removed provisions regarding rollers and tickler chains for roller gear with codend mesh smaller than 4.5 inches.

Effective January 1, 1994

- Divided the commercial groundfish fishery into two components: the limited entry fishery and the open access fishery.

0 A federal limited entry permit is required to participate in the limited entry segment of the fishery. Permits are issued based on the fishing history of qualifying fishing vessels.

Effective September 8, 1995

- The trawl minimum mesh size now applies throughout the net; removed the legal distinction between bottom and roller trawls and the requirement for continuous riblines; clarified the distinction between bottom and pelagic (midwater) trawls; modified chafing gear requirements;

Effective January 1, 1997

- Established first Dover sole, thornyheads, and trawl-caught sablefish (DTS) complex cumulative limits

Effective January 1, 1999:

- Dividing line between north and south management areas moved to $40^{\circ} 10^{\prime}$.

Effective January 1, 2000

- chafing gear may be used only on the last 50 meshes of a small footrope trawl, running the length of the net from the terminal (closed) end of the codend.

New rockfish categories in 2000.

- Rockfish (except thornyheads) are divided into new categories north and south of
$40^{\circ} 10^{\prime} \mathrm{N}$. lat., depending on the depth where they most often are caught: nearshore, shelf, or slope. New trip limits have been established for "minor rockfish" species according to these categories.
o Nearshore: numerous minor rockfish species including black and blue rockfishes.
o Shelf: shortbelly, widow, yellowtail, bocaccio, chilipepper, cowcod rockfishes, and others.
o Slope: Pacific ocean perch, splitnose rockfish, and others
New Limited Entry Trawl Gear Restrictions in 2000.
- Limited entry trip limits may vary depending on the type of trawl gear that is onboard a vessel during a fishing trip: large footrope, small footrope, or midwater trawl gear.
o Large footrope trawl gear is bottom trawl gear, with a footrope diameter larger than 8 in. (20 cm) (including rollers, bobbins or other material encircling or tied along the length of the footrope).
o Small footrope trawl gear is bottom trawl gear, with a footrope diameter 8 in. (20 cm) or smaller (including rollers, bobbins or other material encircling or tied along the length of the footrope), except chafing gear may be used only on the last 50 meshes of a small footrope trawl, running the length of the net from the terminal (closed) end of the codend.
o Midwater trawl gear is pelagic trawl gear, The footrope of midwater trawl gear may not be enlarged by encircling it with chains or by any other means.

Effective during 2001:

- First conservation area was established (Cowcod Conservation Area)
- The West Coast Observer Program was initiated
- It is unlawful to take and retain, possess or land petrale sole from a fishing trip if large footrope gear is onboard and the trip is conducted at least in part between May 1 and October 31

Effective during 2002:

- Darkblotched Conservation Area was established.

Effective during 2003:

- Vessel buyback program was initiated (December 4, 2003)
- Yelloweye Rockfish Conservation Area was established
- Rockfish Conservation areas for several rockfish species were established.

Effective during 2004:

- Vessel Monitoring System (VMS) was initiated.

Effective during 2005:

- Selective flatfish trawl required shoreward of the RCA North of $40^{\circ} 10^{\prime}$.

Appendix B. Assessment model files

Appendix B.1. SS data file

```
#Global specifications
1915 # Start year
2014 # End year
1 # N seasons per year
12 # Months per season
1 # Spawning Season
3 # N fishing fleets
4 # N surveys
1 # Number of areas
Shoreside%ForeignPOP%AtSeaHake%AKSHLF%AKSLP%NWSLP%NWCBO #Names divided
by "%"
0.5 0.5 0.5 0.5 0.5 0.5 0.5 #Timing of each fishery/survey
1 1 1 1 1 1 1 # Area of each fleet
111 # Units for catch by fishing fleet:
1=Biomass(mt), 2=Numbers(1000s)
0.01 0.01 0.01 # SE of log(catch) by fleet for equilibrium and
continuous options
2 # Number of Genders
45 # Accumulator age
#Landings section
# Initial equilibrium catch (landings + discard) by fishing fleet
0 0 0 # Initial equilibrium catch (landings + discard) by fishing fleet
100 # Number of lines catch data
# Landed catch (only) time series by fleet
# Catch(by fleet) Year Season
0 0 0 1915 1
13.009 0 0 1916 1
20.633 0 0 1917 1
21.345 0 0 1918 1
13.733 0 0 1919 1
14.439 0 0 1920 1
12.312 0 0 1921 1
11.311 0 0 1922 1
13.643 0 0 1923 1
13.863 0 0 1924 1
15.798 0 0 1925 1
21.328 0 0 1926 1
18.319 0 0 1927 1
18.159 0 0 1928 1
19.318 0 0 1929 1
21.079 0 0 1930 1
26.002 0 0 1931 1
16.433 0 0 1932 1
16.044 0 0 1933 1
15.249 0 0 1934 1
17.499 0 0 1935 1
11.881 0 0 1936 1
13.537 0 0 1937 1
16.741 0 0 1938 1
23.738 0 0 1939 1
32.725 0 0 1940 1
41.860 0 0 1941 1
48.165 0 0 1942 1
```

```
183.614 0 0 1943 1
397.657 0 0 1944 1
678.760 0 0 1945 1
401.009 0 0 1946 1
331.568 0 0 1947 1
191.102 0 0 1948 1
160.203 0 0 1949 1
177.770 0 0 1950 1
205.861 0 0 1951 1
216.837 0 0 1952 1
184.548 0 0 1953 1
216.901 0 0 1954 1
256.018 0 0 1955 1
339.045 0 0 1956 1
396.068 0 0 1957 1
335.049 0 0 1958 1
283.182 0 0 1959 1
342.106 0 0 1960 1
318.933 0 0 1961 1
345.280 0 0 1962 1
368.227 0 0 1963 1
264.989 0 0 1964 1
482.897 0 0 1965 1
413.119 3807 0 1966 1
370.119 2706 0 1967 1
133.875 2288 0 1968 1
133.554 153 0 1969 1
202.068 149 0 1970 1
250.117 278 0 1971 1
237.284 374 0 1972 1
146.314 768 0 1973 1
263.084 346 0 1974 1
318.595 293 0 1975 1
541.032 118 10.759 1976 1
315.707 0 2.396 1977 1
415.123 0 1.075 1978 1
732.379 0 3.716 1979 1
598.373 0 21.430 1980 1
824.186 0 11.848 1981 1
1134.167 0 1.653 1982 1
1114.261 0 11.559 1983 1
1302.935 0 19.582 1984 1
1760.725 0 12.769 1985 1
1252.661 0 5.720 1986 1
2394.355 0 13.985 1987 1
1646.823 0 9.519 1988 1
1269.285 0 5.289 1989 1
1651.773 0 28.252 1990 1
1161.048 0 44.969 1991 1
657.876 0 29.453 1992 1
1185.767 0 8.026 1993 1
851.378 0 14.734 1994 1
737.049 0 49.066 1995 1
736.793 0 5.993 1996 1
816.422 0 3.879 1997 1
912.558 0 14.058 1998 1
350.348 0 11.114 1999 1
```

```
250.741 0 8.145 2000 1
162.871 0 12.357 2001 1
109.061 0 3.217 2002 1
75.486 0 4.371 2003 1
181.779 0 7.274 2004 1
86.647 0 11.059 2005 1
95.978 0 11.148 2006 1
131.538 0 12.052 2007 1
111.054 0 6.317 2008 1
138.071 0 0.353 2009 1
176.131 0 8.176 2010 1
104.643 0 12.197 2011 1
91.528 0 2.698 2012 1
117.712 0 6.329 2013 1
92.253 0 10.672 2014 1
#Survey Indices section
29 # number of Survey data points (#_N_cpue)
#_Units: 0=numbers; 1=biomass; 2=F
#_Errtype: -1=normal; 0=lognormal; >0=T
#_Fleet Units Errtype
1 1 0 # fleet (fishery or survey) # Shoreside
2 1 0 # fleet (fishery or survey) # ForeighPOP
3 1 0 # fleet (fishery or survey) # AtSeaHake
4 1 0 # fleet (fishery or survey) # AKSHLF
51 0 # fleet (fishery or survey) # AKSLP
6 1 0 # fleet (fishery or survey) # NWSLP
71 0 # fleet (fishery or survey) # NWCBO
#Year Seas Flt/Svy Value se(log)
#AKSHLF triennial early (N=5)
1980 1 4 4329.510695 0.328855581
1983 1 4 11307.197 0.188300112
1986 1 4 5626.360727 0.2519586
198914 7000.510252 0.316365157
1992 1 4 6185.453803 0.289054054
#AKSHLF triennial late (N=4)
199514 3574.325258 0.295860335
1998 1 4 4152.80707 0.345400667
2001 1 4 3408.702865 0.325285022
2004 1 4 7329.157077 0.31872779
#AKSLP survey (N=4)
1997 1 5 1655.059106 0.558034217
199915 1917.966195 0.612989277
2000 1 5 1633.165459 0.56262013
2001 1 5 2180.37366 0.87740395
#NWSLP survey (N=4)
1999 1 6 3467.103363 0.550010623
2000 1 6 5715.048007 0.419764141
2001 1 6 2917.12162 0.454480825
2002 1 6 2341.556201 0.450368493
#NWCBO survey (N=12)
2003 1 7 10930.392 0.200477888
2004 1 7 8084.521577 0.214218431
2005 1 7 7629.426546 0.19324383
2006 1 7 7692.710983 0.180479193
2007 1 7 7520.231366 0.179195116
2008 1 7 5026.280996 0.192391668
2009 1 7 9065.893271 0.182071936
```

```
2010 1 7 6972.419485 0.187887322
2011 1 7 7133.199872 0.192604277
2012 1 7 8077.772137 0.199176192
2013 1 7 6907.602955 0.211365551
2014 1 7 5410.189388 0.189871869
1 #_N_fleets_with_discard
#_discard_units (1=same_as_catchunits(bio/num); 2=fraction; 3=numbers)
#_discard_errtype: >0 for DF of T-dist(read CV below); 0 for normal
with CV; -1 for normal with se; -2 for lognormal
#_Fleet units errtype
    1 2 -1 # Shoreside
15 # Discards N observations
# Year seas fleet obs err
#Shoreside from Pikitch study
1985 1 1 0.1053 0.242
1986 1 1 0.1195 0.2581
1987 1 1 0.0908 0.2259
#Shoreside from WCGOP, from 2013 assessment
2002 1 1 0.56 0.09
2003 1 1 0.60 0.10
2004 1 1 0.18 0.04
2005 1 1 0.24 0.05
2006 1 1 0.48 0.09
2007 1 1 0.49 0.07
2008 1 1 0.54 0.06
2009 1 1 0.55 0.05
2010 1 1 0.49 0.06
2011 1 1 0.027 0.01
2012 1 1 0.037 0.01
2013 1 1 0.024 0.01
# Mean Body Weight
0 # Number of mean body weight observations
30 # Degrees of freedom for mean body weight for T-distribution
# Population Length Structure
2 # Population Length Bin Option (1=use databins; 2=generate from
binwidth,min,max below; 3=read vector)
1
4
62
-1 # Minimum proportion for compressing tails of observed compositional
data
0.001 # Constant added to expected frequencies
0 # Combine males and females at and below this bin number
30 # Number of Observed Length Bins
# Data length bins
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52
54 56 58 60 62
90 # Length Composition Observations
#Shoreside (N=38)
#Year Seas Fleet Gender Partition Nsamp
```

19771 -1 32350000000001791.8452518363 .17100821793 .21813 38799.0702337129 .3541425809 .512178697 .766411689 .4982778000000 00000000000000002462.9332284134 .27169915879 .66499 52406.0041732515 .3890415949 .360391567 .010602025 .879169580000 207.23553760000000
$19781-1329200000000002656.01421411356 .42569$
25052.0026237573 .8206947145 .4742620718 .822223710 .3842223523 .468147 6328.1607145250 .2071253057 .8070051052 .189595000000000000 000000209.813085416371 .4227538632 .0300962263 .9652726087 .79839 13527.829398195 .67873913278 .839924958 .343891241 .44755811 .83547655 000000000
$19791-13223000000000000205.08062591082 .230207$ 3659.90451112908 .785869609 .7317836920 .5229623982 .4627714170 .445092 4011.9693573996 .3518771082 .230207000000000000000000 03408.2852756620 .4189665087 .36530113851 .002673263 .186236 14286.25427 22260.7639 11627.63025 06017.95403600000000 1980113259000000014.828082540358 .5975063488 .338185 846.93569134838 .5622055597 .6768355220 .14439710026 .7026213493 .89087 17083.69403 29294.09584 16119.20346 7457.739098 889.103459 0 1358.443691 1358.443691 00000000000000630.98223580 1073.4242362296 .3757167992 .67867612718 .3061821361 .2035727296 .63266 5042.1252271202 .229502608 .82362430000000000 198111325600000000004229.2699563917 .2191480 12767.058212215 .368724205 .28358114127 .6447978537 .5101674668 .46451 57357.2888 27438. 133717083.413646000000000000000000 00584.84142802648 .58459215337 .0574997546 .7334642934 .6651 4446.84812500000000000
19821132160000000000140.9397594391 .29671583328 .343499 5760.60145222196 .27933 30203.6145 47020.98676 149384.6987163750 .4206 196918.3866110057 .219547460 .9556713852 .327334312 .232692 2899.963037 1264.11435900000000000000841 .57375073004 .03014 1452.4902678187 .38973517140 .4391958781 .94694111737 .0575131955 .5803 40444.74033 9174.751632 1219.761206 899.0506124185 .8671596371 .7343193 130.9919078 000000
1983113222400000000001036.3783942296 .389306 2464.2130315064 .7082529489 .46640612265 .3223952048 .474946382 .79928 77414.3583444515 .4558519755 .63515321 .7412222466 .8434721118 .370212 000000000000000238.1188693306 .9346135532 .9962052 4306.1742844867 .0820621636 .8509242146 .5619148843 .4329544765 .0534 8623.4077712159 .07782645 .3355397458 .15168010883 .6989358 883.698935800000
1984113243700000077.753490140077 .75349014389 .6816841 1476.2437714921 .97121 15497.28883 18391.0852539757 .69169111038 .5944 182331.17120128 .2693165126 .6419111869 .246529543 .6502816671 .09382 1759.90831500000000000000002894 .896551 1144.281032 8753.86197612138 .1696937433 .802588837 .5371369925 .1603158017 .36718 13327.484358964 .806179803 .627364300127 .185813000000 19851132618000047.80443317000357 .4299431392 .526749 814.63064356993 .1446413709 .8228636392 .3607146407 .716838059 .19711 56666.0870175719 .874669846 .5507445135 .9216428665 .47156365 .558433 199.2500458 110.1643913 0000000000000027.91124314 673.06054382566 .8663338357 .82656918769 .2666741501 .5524653782 .3586 92846.2683482080 .0819443052 .5094518256 .811611119 .267312674 .180392 000000000
198611324810000000001076.843557115 .95647341408 .289863 5966.37182621235 .5712946228 .9043454419 .5617140622 .5273142613 .11285 32754.0149122458 .975297780 .8222632180 .155309451 .6616402000000
0000000001076.84355758 .43049225740 .44604292114 .569821 7105.28584825611 .6463338808 .1176446441 .9780436700 .2132923630 .56383 3542.396411692 .92373540000000000
19871132484000000000749.56151821644 .8531311103 .637222 5457.08132626516 .5819104751 .7924193579 .0148269186 .4632169226 .6674 108432.661232824 .561798659 .4812931527 .97981178 .3432929000000 0000000000505.2559434671 .92398634139 .90800212557 .48103 74173.11947236216 .3199324178 .0894236049 .862357055 .796539740 .822125 2768.7421551445 .4154942037 .05769500320 .908846100000 19881132278000000000535.6060301277 .83369563494 .135985 4095.6963345209 .42272761673 .8581198328 .11927100649 .701497290 .51563 65379.3144618025 .490565229 .0599292137 .132467000000000000 000000490.06229872948 .8749914314 .60908619578 .6181492493 .27226 110277.4194117378 .829740979 .747865781 .4855960209 .941491700000 0000
1989113224300000000001597.8296086721 .708761 10764.7512614526 .4557733178 .3777761675 .3500755086 .0890534343 .49709 28932.1974513502 .30749397 .3713250000000000000000000 167.1377096421 .07087079369 .7824939726 .78913619360 .9191961391 .16492 84631.4781641328 .4422918392 .033873834 .065163237 .12291170 50.5174232400000000
1990113222300000000001632.16719116908 .309944381 .23282 61619.62671121390 .852139897 .2191176789 .2359145549 .982794113 .16407 69041.9437184875 .9198734213 .290634274 .9438838509 .176359000000 00000000002095.7309712863 .51718748240 .35812113069 .7969 141342.5428210141 .9565162009 .884173035 .9602925933 .178735191 .382522 0000000000
19911132206000000001068.1022492772 .1997788293 .887483 5302.34517411224 .5575915347 .6206719495 .0949861171 .60033107924 .204 143228.35793795 .655881736 .3779768689 .9512652997 .2526513561 .517590 000000000000119.16904830435 .51321772476 .586057 3879.9181799871 .5545696916 .6058949969 .81594571946 .2469999884 .62857 100906.989639808 .1400214936 .945233625 .3185920000000000 199211321030000000000495.12045631520 .352565 2133.8272066703 .7257819901 .35404713139 .021915729 .3172521647 .14333 18164.0899613526 .87275497 .088832261 .4071658000000000000 000000302.03814041846 .8315344873 .7840925278 .2462185739 .180677 22984.8623623442 .1072910488 .841992563 .75624909 .358420456 .1154560 0000000
199311321120000000807.9120851145 .5759649186 .3779734 1607.1904531796 .1876546321 .96550813743 .7690914357 .8396216978 .87072 31568.2472220899 .6555713331 .859826500 .2558772093 .843717807 .9120851 403.9560425000000000000000988 .08157040601 .654578 3376.1000458916 .56795518746 .2513240108 .0116945405 .2938106 .28999 11668.928864369 .8250931829 .2157860000000000 19941132129000000000605.8716907853 .8256793894 .0851158 3897.89671613335 .8332136065 .2688545392 .957688083 .73734137758 .2451
 0000000546.62344412629 .87984930535 .7959193309 .2193 118977.947897488 .2117754300 .2547719094 .428813202 .0823230 1155.59129200000000
19951132176000000000428.8776955804 .3127764545 .5797094 3857.50023116162 .5777247618 .228575817 .3462574574 .5299463233 .43108 63335.2434549475 .8557618074 .27418768 .560739395 .3654171000000 0000000000203.4671469168 .4115333926 .19664258050 .24965 46309.3070368636 .09741 101575.6144 61495.62763 20212.15699 3023.399008 37.458939560000000000
19961132348000000000100.14069712137 .9631094635 .920732 8709.9673315035 .6848734224 .2403753654 .4791262205 .5465367402 .88263 62421.1104736863 .1884516779 .745326460 .0794451354 .005338000000 0000000000684.69545472895 .7570525388 .60337613031 .62081 52986.39611116784 .7847146845 .991563525 .6015527400 .182934555 .661169 829.3711155395 .5398024319 .937197100000000
199711323100000000076.459539931325 .7093936669 .466145 9194.03888117438 .0155722193 .7281356925 .3368266127 .6520167884 .60375 83988.1061658850 .1594446194 .5520126156 .0834814237 .631033722 .701006 75.4176669500000000000000211 .4771268677 .9226921 3546.5682988095 .86135918301 .2139255098 .4003106241 .093593792 .10794 77378.1452234778 .382329191 .4798422953 .92796148 .3027287000000 000
19981132395000000001029.4187423524 .4194477330 .375512 14348.5524926429 .076532505 .7467640674 .7763873785 .50658107018 .1245 78134.5281773620 .3875766252 .7805736100 .542347340 .230867624 .7394307 0000000000000001798.2006643271 .70336619937 .10349 22345.9779633751 .4943529491 .10951102923 .5241119933 .849672582 .05036 36858.07459149 .319724596 .44496101883 .203814998 .7573554000000 0
1999113227300000000328.22816363487 .59444815935 .23752
33271.6974527789 .7367525093 .8218814454 .1316930994 .6677851488 .19615 30254.6513924263 .71814671 .422094660 .0264164869 .5090981270 .0240480 00000000000000404.70370914040 .20146914568 .5094 31220.2469930433 .6103426115 .5754130718 .2629342110 .9558119953 .77329 12095.210036384 .83494650 .7137947463 .74096329012 .4629554100000 00
20001132318000000000226.219512581 .5560559975 .370862 22980.2786217422 .0565616040 .753718640 .27483826176 .3712524396 .04609 28187.8733810974 .742586188 .8021841419 .159946339 .5491326000000 0000014.3101750314 .3101750314 .31017503001742 .655232 4082.86815914001 .559425125 .5929814337 .0327715952 .4682720964 .99796 22595.692017972 .6838732822 .623079247 .382551128 .7268714320 .6338338 8.7716927320000000
20011132414000000098.45342128229 .515619256 .8086066 939.61166973868 .8808718571 .56245728698 .3736123331 .9012712215 .19313 5769.8409566677 .4427774649 .2577232805 .5946013182 .2620061633 .655822 45.581780211 .6838154500000000000000900 .3010216 $24.0847712515 .38004735430 .71093914289 .3297 \quad 27570.5073719732 .35877$ 9154.3470727886 .4447372883 .275938935 .2624458265 .175071700 239.57842230000000
200211324650000000073.10877137888 .1160194780 .9517586 1168.4031391371 .4766163912 .48796111477 .3881613368 .703896756 .38843 7107.8826317720 .3864048438 .3883234660 .8492121414 .137979180 .7423876 000000000000000119.18079531931 .908724742 .1814415 1029.8055592899 .9370558504 .4858214710 .263915595 .048787281 .867592 3750.9243141026 .863202174 .115159316 .3090852706 .88601532400000 00
20031132447000000055.4720238661 .3153053497 .579823
777.4645804420 .3972089304 .22329871472 .7399323892 .59926610846 .30559
10591.944375825 .8116465163 .2201153788 .2597283250 .97205791 .1524111
310.646307977 .222237132 .453951259000000000007 .380137284 50.03366363273 .7357506857 .9396586253 .2137808583 .84811621102 .674829 2301.6074318877 .6923510270 .180836993 .852282367 .3926631026 .857383 254.1683441105 .584327793 .16719109000035 .51234376000 200411324420000000007.82005755513 .956049181671 .473513 1201.215134129 .9843015967 .00269214212 .730319490 .7004717465 .925
17545.377429638 .7703145771 .5163394156 .487504777 .9788119205 .299332 00000000004.361265369000001323 .5097811180 .072934 4390.7457476283 .95015816097 .7818527771 .7302920267 .501658084 .037989 2385.897065129 .2195218328 .58699288 .96631960700000000 2005113236600000000013.83312229419 .297251374 .197774 3811.059227566 .4263168019 .7716717363 .172759242 .6675279167 .340427 $5955.3952132975 .1910491164 .207436 \quad 952.5947721 \quad 297.656974512 .17605144$ 000000000000000134.958047390 .6914541743 .819494 3989.32688610984 .710128759 .48205511567 .271299501 .6650344069 .809681 1017.414724260 .238060533 .535446759 .18334387200000000 200611325460000000002.53572421212 .67862106367 .8437747 1477.2617615672 .10261614401 .823929808 .7970218034 .2187676797 .77114 4772.0383672656 .6358912336 .471471408 .297091792 .1014584933 .27751318 000002.3566093920000000003 .57127306519 .29238269 315.93274712553 .2089511973 .4677714342 .0864312876 .861739712 .093036 3234.499669949 .6875876112 .854022434 .01571644000000000 20071132755000000000016.2002207884 .20798731 924.76814425025 .68507116250 .7912817509 .4321512682 .8042110468 .6259 7502.1635695115 .7389114347 .2173891710 .521423767 .0686912100 .1967878 27.7716210400000000000003 .55509968800155 .1423317 1918.2272038081 .3145517910 .7801715432 .4716411569 .295425648 .211665 2662.0203691189 .47787412 .010256519 .3510712200000000 200811328620000000045.00993237144 .1612213221 .6201213 216.5234063703 .86345813790 .36511214605 .6846817654 .611189922 .796516 7933.017026649 .2698024436 .6183482649 .1912431583 .465007303 .6195616 0113.90718650000000000007 .28866732110 .51568009 56.52812198172 .6595669219 .0552117845 .95502158125 .55500517692 .0499 16007.0877310333 .209273667 .709569851 .533605176 .382203281 .63804814 29.1735442700000000
20091132805000000005.63600829015 .04178102343 .2334731 1293.7296794033 .52377411532 .8443229230 .4261418341 .4494210747 .08287 11108.63709 9030.42607 4780.539062 1743.526889 602.7859769 8.876713057 43.434837220000000000000094 .1841529388 .54814464 $1122.1436371313 .657488 \quad 7160.48264220772 .37349 \quad 25458.4176117011 .84047$ 5416.1395932264 .288446762 .833662340 .077709260285 .0731189 43.43483722000000
20101132710000000000002.938559556871 .4868402
2349.9195467737 .85104423340 .3582533043 .6079614938 .520849550 .157533 7730.8292714803 .6145262923 .024511518 .2779033131 .8088024000000 000000000013.6770179172 .026192851262 .6346854172 .940086 12779.823827926 .5476820229 .50498177 .6064192168 .877381281 .4688059 22.8802071248 .2618223836 .142910930000000
2011113277000000000124.8975817183 .4978396127 .5033334 224.8808942706 .50290493786 .9708117550 .82969711290 .0809314042 .60676 $10050.527764472 .7057263852 .8427762745 .9292091211 .398998 \quad 67.73443565$ 63.19403468024 .34807515000000000000114 .2171507 99.25731101233 .377395254 .89271271564 .9671356997 .34268112122 .97039 15642.152917457 .091785496 .8537861517 .507651346 .682170134 .06068313 188.771820700000000
201211327130000005.6805515805 .6805515863 .45263041 253.4642348766 .20410452403 .9124266521 .49609713026 .2264211442 .8661 6517.1443655613 .2730065036 .7360043871 .1272352111 .535271943 .2362276 159.85316434 .2659251110000000000005 .6805515800 20.14714134177 .2450199791 .66012813691 .68181412245 .23912421 .13267 12542.28849565 .717843744 .5393841021 .965278149 .10285513 .156612650 00000000
201311326430000005.2361507444 .7282174434 .22596042 45.80265783105 .4981556652 .06505212967 .353515305 .54076613380 .16397 18492.107029648 .1026286234 .4060743039 .5971671267 .3467041015 .696542 282.7244038576 .9867847000000000020 .810078090013 .09037685 24.2026523119 .8117452360 .1351802966 .783061941683 .1392066444 .500385 11337.8183526554 .3636226091 .6956416896 .425135176 .810386722 .5956886 23.242081849 .373636039041 .620156180000000 20141132456000027.68209061115 .7692998124 .2411029 5.19763022255 .59986522169 .3606284994 .3239549948 .53022652505 .43379 7973.45179811167 .772238741 .2414646552 .6782864869 .9561213740 .2736 2096.5132392821 .375944588 .8562528111 .0604088164 .9340638000000 000017.08300153158 .20586955 .19763022200104 .5744238785 .2862514 693.53897494252 .26026911635 .291815456 .1419515955 .212188277 .182698 3644.6554491049 .31288778 .7700889322 .4566245819 .8408867500 86.6996617200000 \#Shoreside discard from Pikitch study ($\mathrm{N}=3$)
\#year season fleet gender partition Nsamp
1986110115000000000.003566130 .108216180 .143878405
0.1585331060 .1604758420 .386102910 .0356612980 .003566130000000 0000000000000000.003566130 .108216180 .143878405 0.1585331060 .1604758420 .386102910 .0356612980 .003566130000000 0000000 \#Shoreside discard from WCGOP ($\mathrm{N}=11$) 20031101350000000000018125.7154743693 .3428 37933.97894141540 .985144180 .58691656 .2216526662 .1759425275 .03648
 018125.7154743693 .342837933 .97894141540 .985144180 .58691656 .22165 26662.1759425275 .036484061 .3758921296 .318555798 .8584201000000 00
20041101588492.286507911583 .32098785 .15111954256 .190468 4185.581958801 .03056653710 .6369954873 .6550251235 .0473731795 .173626 4871.3695734941 .0377955119 .0668289149 .68297224705 .0750737967 .54885 34948.6728915737 .5848921643 .942348088 .3316483139 .4695011585 .852456 21.244641560000000492 .286507911583 .32098785 .1511195
4256.1904684185 .581958801 .03056653710 .6369954873 .6550251235 .047373 1795.1736264871 .3695734941 .0377955119 .0668289149 .68297224705 .07507 37967.5488534948 .6728915737 .5848921643 .942348088 .3316483139 .469501 1585.85245621 .244641560000000
20051101467191.2955394973 .30832826771 .1324013736 .2099 5907.3017483417 .1804974063 .5710043509 .4343521156 .0074171203 .160481 602.24724493442 .0730486436 .19453215615 .266725878 .3474220303 .8494 23352.6628311969 .48713416 .7526041257 .1150884124 .7472788320 .8178646 91.774288450002 .88562936000191 .2955394973 .30832826771 .132401 3736.20995907 .3017483417 .1804974063 .5710043509 .4343521156 .007417 1203.160481602 .24724493442 .0730486436 .19453215615 .266725878 .34742 20303.849423352 .6628311969 .48713416 .7526041257 .1150884124 .7472788 320.817864691 .774288450002 .88562936000
2006110129700721.51720665387 .19808116884 .530318879 .48349 13157.1010526365 .8789621830 .4960115525 .229675493 .112525503 .044497 9381.34445483217 .4412107878 .8052140143 .635573504 .9007746765 .54047 12754.0345137231 .149988387 .6444611845 .62834802 .85167610100 2083.9212600000721 .51720665387 .19808116884 .530318879 .48349 13157.1010526365 .8789621830 .4960115525 .229675493 .112525503 .044497 9381.34445483217 .4412107878 .8052140143 .635573504 .9007746765 .54047 12754.0345137231 .149988387 .6444611845 .62834802 .85167610100 2083.92126000
200711013511711.46448914065 .6850710492 .6378526240 .77309 30948.5929522881 .5234528305 .337118889 .6506313960 .053796582 .851085 4297.367641 10716.32386 7356.193552 28766.1203868921 .25543177158 .0357 89297.0794682594 .5882419168 .4855228445 .466599776 .54841639 .92306157 016.754880410000001711 .46448914065 .6850710492 .63785 26240.7730930948 .5929522881 .5234528305 .337118889 .6506313960 .05379 6582.8510854297 .367641 10716.32386 7356.193552 28766.12038 68921.25543 177158.035789297 .0794682594 .5882419168 .4855228445 .466599776 .548416 39.92306157016 .75488041000000
200811014031229.01597238271 .0993733079 .1074613257 .30465 11435.3374510815 .1685310173 .819037162 .9413236951 .792483105 .28079 3373.50463913839 .0444229593 .4079437689 .29807151194 .3213180807 .5514 90919.3369792602 .367455337 .3991216467 .762813192 .0941322953 .74798 535.429199200000001229 .01597238271 .0993733079 .10746 13257.3046511435 .3374510815 .1685310173 .819037162 .9413236951 .79248 3105.280793373 .50463913839 .0444229593 .4079437689 .29807151194 .3213 180807.551490919 .3369792602 .367455337 .3991216467 .762813192 .09413 22953.74798535 .42919920000000
20091101528017496.25267 20007.28026 46396.89454 105456.6639 55915.6647622299 .6462214687 .5404125138 .7866319353 .7339521502 .29334 14157.650610885 .2670426213 .4584193860 .70172259368 .4409122479 .6073 29165.062528666 .14987320825 .803542807 .10891820034 .3549146 .88595468 0000000017496.2526720007 .2802646396 .89454105456 .6639 55915.6647622299 .6462214687 .5404125138 .7866319353 .7339521502 .29334 14157.650610885 .2670426213 .4584193860 .70172259368 .4409122479 .6073 29165.062528666 .14987320825 .803542807 .10891820034 .3549146 .88595468 0000000
20101101432265.150267814522 .2501911270 .4627216872 .47356 15124.5969717871 .7150134892 .0261935428 .0922113266 .893174363 .486512 2108.9260538418 .1499819212 .87228163217 .1012173970 .1929141012 .3375 85615.5635750239 .7408911352 .6794134802 .01657636 .81458261072 .340436 1946.999332430 .7480145126 .42852800000265 .150267814522 .25019 11270.4627216872 .4735615124 .5969717871 .7150134892 .0261935428 .09221 13266.893174363 .4865122108 .9260538418 .1499819212 .87228163217 .1012 173970.1929141012 .337585615 .5635750239 .7408911352 .6794134802 .01657 636.81458261072 .3404361946 .999332430 .7480145126 .42852800000 201111017134475.22205213505 .053624700 .4559317484 .427016 18282.672898682 .3399383901 .1593893389 .8398552678 .657815255 .439001 1577.402031704 .6185124309 .2855351281 .3620085140 .5220748113 .6021052 133.0278439219 .914992512 .64087888 .5322658165 .5527265639 .527116914 0.91028304300 .45514152200 .9102830430004475 .22205213505 .05362 4700.4559317484 .42701618282 .672898682 .3399383901 .1593893389 .839855 2678.657815255 .4390011577 .402031704 .6185124309 .2855351281 .3620085 140.5220748113 .6021052133 .0278439219 .914992512 .64087888 .532265816 5.5527265639 .5271169140 .91028304300 .45514152200 .910283043000 20121101702589.26592968264 .20994819236 .5720142654 .36039 38529.6524814795 .2888512804 .454818803 .7432674675 .6991753361 .761251 3473.1522373189 .6324662331 .4912471131 .666292349 .0090361411 .9314556 297.699211865 .54536521201 .803417458 .719411261 .0649792219 .09805152 6.8207326874 .9343030850000000589 .26592968264 .20994819236 .57201 42654.3603938529 .6524814795 .2888512804 .454818803 .7432674675 .699175 3361.7612513473 .1522373189 .6324662331 .4912471131 .666292349 .0090361 411.9314556297 .699211865 .54536521201 .803417458 .719411261 .06497922 19.098051526 .8207326874 .934303085000000
201311015873642.18787597558 .6070342169 .8953212334 .65296 18555.011987129 .0749195359 .1127839231 .5764495561 .2446198848 .482673 5089.1342414526 .4313255519 .855294750 .7353682178 .8423452217 .3211635
263.2365595156 .88494321 .1371006980 .5912183450000000000 3642.18787597558 .6070342169 .8953212334 .6529618555 .011987129 .074919 5359.1127839231 .5764495561 .2446198848 .4826735089 .1342414526 .431325 5519.855294750 .7353682178 .8423452217 .3211635263 .2365595156 .8849432 1.1371006980 .5912183450000000000
\#AtSeaHake ($\mathrm{N}=12$)
\#year season fleet gender partition Nsamp
2003133025500000000723752415964592194112411580 321101035409800490000000430385316314527492140 134115957767520000000000
2004133038600000000012109522601723591222167166 15215247165000000000000003023166452606802564 2872772379333136000000000
20051330815000000000050812757813921374587379249 331261174271612000000000000301227715654848781 5184213151031513070000000
200613308110000000000233514857910561079732391 32826616339290121000000000000111324184750983 9228105062333319965000000
200713307340000000031126814682915221088483374 20217716118144400000000000000520572618961431 80661533175463500605000
20081330050000000000002543047235567245343167139
100419202000000000000006222493353552262181
13136151003000000
20091300590000000000030441517141425201062 2000000000000000002014326254500000000 00
20101330496000000000213837111151229357262307 6811437710500000000000000000294120175347625 3832292815220000000
201113305110000000000075525274410831180514532 2721323861000000000000000107511774710321474 193092418283000000100
20121330310000000000497170134839287486876108 864019000000000000000021061781628971724928 31130000000000
2013133042900000000206198474474312292199194176 16113991240000000000000000016210522467380209 3172885412354200000000
201413306430000000007111615974411771100349614 2651631716424400000000000000021143173967749 3056262251552911840100000
\#AKSHLF ($\mathrm{N}=9$)
\#year season fleet gender partition Nsamp
19801430540000.0856078060 .7110033140 .2001544630 .652158114 2.5575414981 .2604060232 .9061669249 .90879655510 .283685347 .689484089
4.6902059584 .6579683233 .5593964442 .1312939192 .619064140 .839453953
0.7671496760 .3856896880 .2393134080000000000000 .432028738
$0.4726869921 .1236522832 .8581008661 .8938876773 .537584122 \quad 5.111525401$
5.6370927686 .2127015155 .3312079264 .2434781613 .0874638282 .891183848
0.7671496760 .25571655900000000000
198314302050000.0860231240 .35858040 .518132822 .264531039
5.3382470260 .9277372642 .185134111 .9248217892 .4663710056 .629168062
$3.2801675972 .0531565782 .241027248 \quad 2.2677145154 .7448539448 .593220892$
5.4663844281 .8838725550 .9562073270 .2273247370000000000
0.1563659820 .7084968320 .4778670022 .4334337174 .4441966231 .24022505
2.9003942691 .1167872672 .2831655365 .3448648133 .3927598282 .459123033 3.9901776127 .4028800045 .5085377041 .4211725820 .306875686000000 0000
198614301690000.0538152150 .2428913370 .9710178470 .311189555 1.2139753551 .124803031 0.732900647 2.7228658065 .9787457398 .297019285 9.6043798466 .2452601184 .6463610212 .3106503421 .2209786271 .450753973 1.1219101960 .4353951540 .2549927940 .07256585900000000 0.04026832900 .0361796090 .3363535581 .024194690 .241435399 0.7480948871 .2367454171 .0397581872 .1286561758 .82174592813 .17018685 11.064710716 .3212388451 .9627355431 .0358218410 .8175651540 .671573697 0.2176975770 .072565859000000000
19891430290000.0846663980 .0846663980 .8373699992 .444690636 2.9192223824 .1601374425 .4923471685 .5043799826 .1870204755 .240222359 4.2464929094 .2583207361 .652101942 .2992524011 .9910270321 .584011336 1.5441723280 .7252739270 .21900085400 .0667977710000000000 0.1155600651 .2512051063 .7003035993 .0483668944 .622178634 .705095039 5.8031223034 .9688070424 .7765442594 .26008443 .8455343963 .246055374 1.539495470 .7638771130 .7562519170 .5648395450 .340998810 .1505055650 00000000
199214301320000.0544861680 .0544861680 .2182054440 .182146301 2.2683208467 .013892381 .65544594 .8555507317 .88734614915 .22556089 6.8833715691 .6447704830 .1125733430 .1228520830 .1271072460 .127107246 0.0614260410 .19704361500000000000000 .108972336 0.233595870 .3114208172 .4250385156 .4776726761 .8173698235 .909217268 10.8356964617 .278878514 .3318473360 .6856927190 .4501572790 .249959329 0.192788451000000000000 199514302830000.0553231550 .05797552 .7927846010 .236992885 1.7559487791 .783789723 .6600650158 .6680138865 .5149971393 .097656194 2.6643153372 .3899449693 .7337994423 .102801463 .4142744033 .418135549 3.3130548441 .8046102270 .7286678290 .1272856690000000000 0.1169149250 .3151347092 .9303930030 .3157781981 .580130333 .389929469 4.1311120068 .8432107074 .7996067322 .3957831022 .4478769193 .887925042 6.2567359214 .8251036321 .148766640 .1272856690 .167876394000000 0000
199814303260000.1660157451 .3196667350 .2943608891 .517200187 2.0532494226 .61004953414 .626901276 .8284164446 .0595226653 .897657058 1.4690679170 .6462723340 .9140110980 .3532574980 .1563320230 .114508974 0.7810175890 .0635061830 .026200241000000000000 .538549148 $1.7929177660 .1824403661 .7040654471 .773135705 \quad 7.72866844315 .26098968$ 8.4871426756 .283235733 .3307822712 .3781193711 .2459939061 .074043899 0.1575741720 .07659526200000 .0885323530000000 200114303460000.099070380 .7691764080 .6847219281 .489401487 13.7849115211 .957406450 .6336627641 .4216454711 .996676971 .755009519 3.60773152912 .376947655 .7500710420 .3310916950 .3786937740 .724012424 0.2140694160 .1078616050 .0153989480 .0457816760000000000 0.0671826380 .1986753740 .7248782221 .56237672713 .4539956712 .11491129 0.7066087431 .2282013821 .5863853521 .0615857263 .6778887383 .851749235 0.8836477340 .4594570280 .1828186590 .0336106220 .062684209000000 0000
2004143037100000.02698237700 .6325554491 .338322352
0.8536099081 .8616181124 .95741632610 .602133848 .5329655258 .456054094 5.6652851181 .3100814150 .7636345640 .2222289730 .0967445770 .070686156 0.025602645000000 .01344873400000000 .1420214390 .141172911 0.7128248671 .2610126081 .0788085051 .4693444586 .03739053416 .72390925 11.0808427310 .57754073 .6417864641 .2865546550 .248914050 .126909368 0.016553630 .0250436730000000000 \#AKSLP ($\mathrm{N}=4$)
\#year season fleet gender partition Nsamp
19971530470000000.4831622035 .1196580328 .865704307
8.87178043914 .073947536 .1893009670 .6373625830 .1688158781 .351805773
 0.3779830014 .30783257616 .1793898610 .024659728 .8018477677 .278500158 1.1348485241 .704715811 .9288730740 .7237277880 .7052387850 .180397765 0.17056933800000000000
199915305000.0991606090000 .1398530680 .1398530680 .197350748 0.396223048 0.681712152 0.892409864 7.477594831 22.21741689 11.99273985 3.6489557420 .5394584181 .0007175120 .5274812080 .2105315730 .225324974 000000000000000000.0981901391 .6185141320 .365488712 0.87359836415 .4918884622 .34471595 .7929868411 .3622079910 .928480591 0.4669373940 .270207919000000000000
2000153043000000.1175180010 .5915023810 .327465736 1.0638527119 .67561216710 .6389875 .6443777096 .6832790669 .920151445 1.552642188000000 .6723618040 .46387037300000000000000 0.6598225752 .1581282450 .2363684941 .41950206610 .2146848314 .13108349 3.6907071557 .7387205957 .2016977181 .6193389820 .8995086492 .123863372 0000.554953249000000000
200115304800000000.9253274176 .4473177123 .656054471
1.5654750952 .1213176135 .0885327824 .14988846316 .87238849 .318815706
2.45271298600 .3609561280 .7603901940 .19528909200000000000 00000.4112839820 .810976555 .8799270881 .6124697472 .044653958
6.3299253633 .8188346127 .99894491512 .297897652 .5048582211 .458560509 00.7219122550 .1952890920000000000
\#NWSLP ($\mathrm{N}=3$)
\#year season fleet gender partition Nsamp
2000163043000000.0554224380 .2987815340 .338302827 0.0678430152 .440299481 .58027629313 .1752186913 .1697059212 .17986314
1.5646839080 .0664465771 .2490398611 .9325505143 .7471266018 .118776642
2.544877930 .62452343900000000000000 .295707968
0.7320772130 .0538084650 .1083256740 .2793015791 .9481709682 .723250042 10.81119985 .5458576822 .2830844529 .06296502610 .504418570 .624523439 1.24904687900 .624523439000000000 2001163080000000.1289106650 .8236975994 .305546968 9.1157054841 .3788148231 .5997586022 .1471095272 .7263913183 .967119371 12.915948373 .3287741370 .9945809041 .9715763361 .6603802520 .500233731 000000000000000.6471008701 .0415496983 .446233221 9.642972862 .2966231440 .6981012143 .8492150842 .1589073766 .401656151 6.0892728627 .9848186176 .7248479510 .6962214730 .5689184810 0.189012913000000000
20021630118000000.1195644610 .6090461083 .471583472
1.5075285549 .9458296716 .736435566 .1913926534 .0574520873 .646068812 2.3848303791 .4399240910 .3372235620 .0987832160 .255888880 .049384722 0.2065041580 .3080967670 .15404838400000000000000 .186893493 0.3035108462 .8092415260 .7939840438 .13759966314 .953407468 .108280066 4.6438302493 .6624844812 .1653672080 .9773520230 .4433056920 .858338423 0.43681929900000000000
\#NWCBO ($\mathrm{N}=12$)
\#year season fleet gender partition Nsamp
2003173026800000.0096617590 .0641151110 .048337562
0.1278620080 .6077722043 .4524890194 .7261842533 .4640014334 .108514403 1.4110521555 .89301905110 .746804499 .8605672786 .2210796882 .243290534 2.7711106272 .6447751691 .6336868520 .376394363000000000000 0.1260516270 .1336498590 .315178930 .6000358933 .0693038094 .589951149
4.3686608133 .3640833491 .4449392697 .6958902478 .3012805723 .91675591
0.9451973440 .611157080 .07214292400 .0259571080 .00904615300000 00
20041730165000.020518910 .2283998480 .3645052310 .584743225 1.02691051 .5353325222 .5465287872 .2839019758 .96008487913 .90709251 6.5813591293 .8368431761 .5654455460 .7578537520 .5308302970 .255805798 0.393592310 .0852702920 .116333078000000000000 .073964576 0.1652178570 .5716294070 .9553228670 .3867205071 .8860179631 .11142403 4.28684725211 .5668752716 .663808078 .1180426483 .481637481 .310670773 1.4387869871 .2427501330 .837979080 .1986931380 .122260199000000 0000
2005173025000.0343321860 .0268588670 .1250281120 .695285723 0.8502730021 .4177458911 .6717034991 .0165968381 .1747260320 .596044897 2.4461543884 .469291164 .5095811944 .2035288295 .24075272112 .45120191 3.8157727961 .1315333670 .3695148910 .2256560960 .0631192040 .438508714 0.02217026900000000 .0343321860 .059398150 .154827756 0.8919779381 .3364895831 .9256784462 .785058147 0.930523621.585234941 1.1327297924 .0488716 .1697747414 .45238169111 .785379459 .893471388 4.8091451230 .7487156210 .2287529280 .0318769150000000000 2006173026600.0234361320 .0645253020 .0775401831 .189453787 1.1281413152 .0943560164 .7727343626 .3401629526 .3319614752 .693426072 2.1160046472 .6013054846 .677959864 .738181843 .663309242 .043225293 2.5021400370 .935575990 .8506988720 .190415650 .0474447310000000 000.0234361320 .0645311440 .2034772631 .1601294151 .493469252 1.3752195974 .8307697485 .3248562146 .5890170532 .3732413122 .374199319 4.0975728186 .4921239535 .2086160384 .4099241151 .835255910 .983937838 0.07822363900000000000
20071730279000.0236831490 .0339041750 .6182852890 .462967357 2.5941787144 .2088578224 .7268080516 .0338608833 .0869004873 .967552466 2.4720357113 .6339916384 .620662172 .5766015581 .2915476631 .120128431 0.8415852010 .838309380 .5410140970 .2563590870 .0326366750 .032636675 000000000.0236889360 .0413586950 .5132506410 .36009151 2.9911145364 .2383633675 .5073043886 .6136176484 .3323956544 .368620685 4.5570846078 .0235231775 .2231586934 .8259624262 .5948558721 .171331954 0.3759265770 .0658926310 .1253146470 .03263667500000000 20081730227000.0861630090 .0978093840 .095362210 .712123675 1.6587765671 .0163527446 .8239574978 .34906641112 .364734996 .773811766 3.1905444311 .6880340611 .9718208922 .0913949960 .6608377390 .375662497 0.53766850 .2963445930 .1792991050 .1436696520000000000 0.0861630090 .0603416420 .192694570 .946680041 .1540266271 .847767412 $8.2867856466 .67453252710 .9556787419 .341742458 \quad 2.601613265 \quad 2.356605025$ 2.5176647352 .6506963570 .7393140630 .3758874350 .0665662280 .031805502 0000000000
200917302880000.1063259391 .2757942661 .4221071820 .986268933 2.8737163483 .7697513323 .8381062934 .4068879663 .8846902663 .832962796 3.1605371833 .6912623783 .9460792313 .8655202772 .0764608061 .107611363 1.3584547191 .2830032620 .6232001420 .0635759630000000000 0.0560834682 .1751097492 .0543253191 .2101348045 .7240867094 .885039691 4.1259621285 .2258109954 .3139540193 .7497983444 .2045140825 .306540949 5.6564922481 .7465704961 .2264517950 .6374696330 .0754289570 .053909969 000000000
20101730275000.2481127910 .052527040 .1766110550 .255095037 3.1156671498 .2351339893 .9606625564 .2987325295 .9353345686 .464792107 5.1246151413 .9673686051 .5347849811 .3918698922 .1504600021 .554665602 0.7781171990 .5082732710 .5140844440 .0516045440000000000 0.2481017430 .0193668950 .1515047980 .5200779073 .151561648 .663039618 $5.5889400344 .6180598126 .029998138 \quad 6.893487658$ 5.390724892 3.449991899
1.5823239142 .0493002920 .7271589540 .3729977760 .224851526000000 00000
20111730237000.0203131280 .0471100920 .4042842020 .425786275 0.3702621190 .3153926052 .8067833536 .8686677315 .499341462 .862639642 3.454709575 .0040669585 .0573576323 .4418766792 .8453879232 .495385984 1.9480386332 .0998190981 .8348049761 .1728328560 .20949478000000 0000.02031312800 .1577299970 .5775137910 .5156983420 .344731116 2.3382528658 .2430722856 .1245862882 .7026809775 .3302996495 .99526579 6.320530965 .8658008853 .9103927261 .6888344510 .6458178880 0.034123167000000000
20121730258000.0083074910 .0083074910 .1889355320 .113834052 0.6048458262 .3743854471 .4915948114 .17121750815 .722824179 .462616292 4.5574748513 .0986845422 .7992209361 .7879509870 .9371958750 .866812268 0.5384142650 .3413351230 .3482969010 .1516558250 .144845322000000 0000.0083074910 .0083074910 .2152100190 .1054855910 .653660212 2.9641384921 .9604669345 .25085091915 .08043706 9.68348965 3.944857298 3.6550941682 .8506826261 .3366708271 .4640565510 .7748184710 .236032322 0.0886783650000000000
20131730198000.0433049490 .0456654060 .2221476590 .15247381 0.4934206321 .9471700264 .6239050415 .4699940012 .2557166681 .091679629 1.7754804862 .1341666315 .1928961753 .7698237385 .0373528753 .591627237 4.216300013 .3703367021 .8035456840 .5267048610 .207311787000000 0000.04330943700 .3183654230 .2352154320 .3771883531 .861165948 $3.5353891415 .8677578142 .573682698 \quad 2.0826898362 .0240912842 .456454181$ 6.8668949918 .164598478 8.991278742 4.954979232 1.617639555 00 0.05827544800000000
201417302210000.1084175513 .128424984 .3839111552 .039572563 1.827056062 .1227071442 .9446362672 .2460606311 .33987170313 .174842049 4.3526248935 .0145018775 .7585768014 .076366642 .0003657290 .848067013 0.3566646370 .3179355520 .267338180 .0468068120000000000 0.0697073242 .910552666 .1377396364 .0038619711 .9905593062 .123706644 2.7004186152 .5102871581 .7543313754 .70520980710 .729176088 .688528578 3.3667964951 .3449006380 .4956203950 .11385508700000000000
\#Age composition set-up
36 \# Number of Age Bins
 $\begin{array}{lllllllll}27 & 28 & 29 & 30 & 31 & 32 & 33 & 34 & 35\end{array}$

2 \# Number of Ageing Error Sets
\#1-Betty, 2-everyone else
\# Ageing error for "bkamikawa" in the ageing error "Late" dataset 0.51 .52 .53 .54 .55 .56 .57 .58 .59 .510 .511 .512 .513 .514 .515 .5 16.517 .518 .519 .520 .521 .522 .523 .524 .525 .526 .527 .528 .529 .5 30.531 .532 .533 .534 .535 .536 .537 .538 .539 .540 .541 .542 .543 .5 44.545 .5
0.1018910 .1018910 .2037820 .3056730 .4075640 .5094550 .6113460 .713238 0.8151290 .917021 .018911 .12081 .222691 .324581 .426481 .528371 .63026 1.732151 .834041 .935932 .037822 .139712 .24162 .343492 .445392 .54728 $2.649172 .75106 \quad 2.85295 \quad 2.954843 .05673 \quad 3.158623 .26051 \quad 3.362413 .4643$ 3.566193 .668083 .769973 .871863 .973754 .075644 .177534 .279434 .38132 4.483214 .5851
\# Ageing error for "jmenkel" from the DoubleReader column in the ageing error "Early" dataset
0.51 .52 .53 .54 .55 .56 .57 .58 .59 .510 .511 .512 .513 .514 .515 .5 16.517 .518 .519 .520 .521 .522 .523 .524 .525 .526 .527 .528 .529 .5
30.531 .532 .533 .534 .535 .536 .537 .538 .539 .540 .541 .542 .543 .5 44.545 .5
0.1565470 .1565470 .3130950 .4696420 .6261890 .7827370 .9392841 .09583 1.252381 .408931 .565471 .722021 .878572 .035122 .191662 .348212 .50476 2.66132 .817852 .97443 .130953 .287493 .444043 .600593 .757143 .91368 4.070234 .226784 .383334 .539874 .696424 .852975 .009515 .166065 .32261 5.479165 .63575 .792255 .94886 .105356 .261896 .418446 .574996 .73154 6.888087 .04463

858 \# Number of age comp observations
3 \# Age-Length Bin Option (1=poplenbins; 2=datalenbins; 3=lengths) 0 \# Combine Males \& Females Below this Bin \#Shoreside marginal ages ($\mathrm{N}=32$)
\#Year Seas Fleet Gender Partition AgeError LbinLo LbinHi Nsamp $198011322-1-15400000396.70916042994 .0652715433 .404842$ 5163.4569978143 .022515598 .47845232808 .3043445659 .237062119 .311429 2137.8702812944 .81227103969 .3792386013 .3185693679 .1667470 4613.4907713300 .6648512773 .8060720273 .40012462952 .721346 2180.6393940011459 .3709401502 .8187492132 .5209722520 .358577 24187.93344000001324 .20756016772 .910617321 .0225469033 .56595 4105.2986966909 .9603354278 .0120082181 .1446442181 .144644201 .769292 7312.4353540185 .206536820 .20037382376 .0845121700 .1582032806 .05022 820.20037380002132 .520972820 .2003738211 .24344320396 .70916040 820.2003738 06074.041497
$198111322-1-15500064552.1511618839 .080673893 .5077372$ 3024.3537751216 .38894217943 .723116841 .31437583392 .9507258900 .57591 33824.2282226539 .4531820755 .841066002 .1562893111 .229923636 .045384 02244.05822584 .8414283659 .9136910584 .84142800000000000 000000893.50773721566 .07537913908 .8938135713 .6550411728 .42576 30424.14735013 .88708824985 .6798628942 .2002810224 .784360 48.7367856700048 .7367856700000000000000 $198211322-1-11080000324.62575381002 .6634914121 .470407$ 5149.7358743943 .1154673751 .75048415091 .177753089 .53661310783 .76518 9089.7541079695 .2743389905 .3067636707 .658152 2063.2553765187.167558 6415.8187391065 .8436796765 .3385263725 .8394361623 .182257919 .9751656 01727.94127201016 .1509081125 .072308650 .99012940651 .5750262 290.70006321704 .9741484103 .4911540000318 .1581451849 .243275 1725.7966872848 .328109498 .33206672657 .8212082279 .8385443895 .86221 4033.0947883574 .8368642984 .4323525992 .404774470 .1981562862 .956594 669.21281181486 .4253461226 .07755321 .34873292383 .1774121316 .940136 622.65617511214 .605252338 .7798039002821 .88549823 .15216468 1168.646727290 .70006321713 .13010704522 .149814
$198311322-1-115200011.412119862020 .1428155901 .59881$ 3989.7361254222 .4316179363 .783774255 .2079657439 .382847377 .591839 6377.0947556136 .54473910049 .083251761 .39082110647 .2045910311 .9583 17160.835365617 .78990612187 .190694205 .7587919985 .25836210458 .57769 3629.600821314 .4039025414 .1772969442 .3831787972 .6362696187 .173141 9352.3469355622 .9788953647 .6181728914 .18677414962 .4849959205 .1351 00021.925535271744 .9958223026 .4619535743 .9195672635 .388001 6854.55731641 .8474095362 .0425645134 .33564314573 .619958238 .167922 6543.2800233833 .14092650 .00237611839 .788436558 .5570497510 .085547 2964.639061243 .9108186194 .522219821 .76552892463 .369986410 .8245116 9057.515611789 .0362645021 .08446925 .235050038320 .2095581088 .138307 5404.4447763445 .9872764348 .74085131658 .89695 $198511321-1-15930049.81113354430 .90035992459 .894515$ 14201.5935130586 .9825135884 .046423235 .3349812249 .73417065 .42275 15436.8803218940 .42229961 .42265112635 .5187621092 .9168410997 .82753
12345.5499211561 .8172411251 .8407212759 .816469807 .5894894556 .70071 2496.0844929778 .7024615095 .8768595862 .67893710126 .269911099 .857 8242.0083258472 .0667635712 .1432936209 .89886913991 .012543988 .326727 44489.77947000192 .20920144170 .03814710376 .8000931233 .51804 33314.060717835 .2073512563 .2132717733 .443914575 .2427313471 .31337 19934.795117582 .4539228366 .89498610571 .1170611174 .054699580 .680625 8621.21274912859 .125167172 .9748336505 .5376616262 .4566968210 .306777 7595.2523283184 .9121936186 .5205181722 .6490686155 .0708132514 .02224 3676.9503197943 .300154905 .8991146697 .97881141679 .43759
$198611321-1-1400000001835.99383216822 .1289352893 .63724$ 138798.713718078 .2212921048 .0806216421 .5059915484 .5305417890 .56951 1723.7890231723 .78902315952 .301851723 .78902301723 .789023 12410.0673612864 .04792018020 .38778156 .7020310016421 .50599 1723.7890230156 .7020311027 .822717001341 .22677900000 1027.8227175027 .18216712459 .1786539816 .784885583 .67982821426 .22995 156.7020312093 .2954897558 .16901920663 .06273313 .40406212584 .64412 1779.8914271723 .789023313 .4040622026 .5299521880 .4910541936 .593458 2183.2319833604 .28007756 .1024047200002400 .0980621723 .78902300 02293.044148
$198711322-1-119600001283.7546575807 .85768111355 .46785$ 26652.1840140295 .8793720423 .294231943 .0307532975 .6903239868 .74713 33785.5996323757 .3689133286 .3263240129 .1876458379 .7844954727 .35482 30854.4785523512 .1752829861 .2888725330 .4714343645 .667324833 .07428 11945.7884120454 .2739122248 .507559336 .74606610099 .6553413248 .16971 93.5936143313192 .119381224 .6685758247 .736893169901 .41970000 3651.2091571207 .28502813710 .8354943603 .0683942135 .2761935123 .99001 32692.8001334583 .3921524292 .3139629258 .2004248249 .523637229 .00064 42327.6970548879 .2984627821 .6263848029 .4319750300 .9324911045 .34687 19606.323378413 .36175725102 .877283256 .49839749379 .312913674 .00362 5053.02979712446 .586176717 .255189735 .8985993681 .46028035184 .66432 191401. 6334
$198811322-1-175006757.95335382318 .5728193730 .470281$ 15923.2176514484 .2182326886 .9970834513 .1300845456 .3090222382 .54264 22443.665076008 .8176445858 .7989858102 .8541848544 .4424769702 .763036 14510.710548705 .620476419 .3511255447 .8539254337 .9679018620 .390874 9319.6894255318 .2582328474 .750248 8711.295158 6936.738002 7137.057812 8019.795393554 .94301212480 .82228806628 .24012328558 .61313000 3093.473756445 .6702454379 .42913412101 .6773718352 .3809353496 .14401 24630.9761412843 .8488122038 .4334716240 .3501911193 .0790127213 .16273 11168.4279919411 .2736121067 .0078419753 .758178223 .275598916 .949803 12561.2434911489 .605165684 .7448537593 .8368129270 .17548610174 .37409 6026.9562512281 .43918385 .670751791 .83393933446 .4881801862 .630903 1062.87238 22136.15849
$199011322-1-11770002236.69046$ 2098.780828 8617.471922 38482.5501546305 .1279824444 .9230443658 .0236547074 .1030953761 .30736 31438.6534420944 .7941915821 .1834914073 .621416459 .715856918 .765681 7170.97501613131 .009437175 .1026628579 .8835028345 .6868271756 .740402 5766.58528213190 .85554384 .3630338084 .6746249600 .863927558 .2398236 558.239823603477 .590142275 .6720122392 .5383934223 .927640000 442.86069299271 .99397423213 .3224127670 .4371337175 .9134322689 .22725 62751.4345744919 .7472129972 .0577617093 .9573715905 .4114910643 .92143 9130.6703429225 .0436612374 .964027137 .0169344348 .3941119045 .825 12663.014484299 .7990034378 .557232484 .1178921859 .2686771319 .541177 4710.1422072290 .218343150 .6392816939 .0306560058 .33846373 20305. 66719
$199111321-1-1800003588.95168615253 .044679075 .758209$
9783.71112311628 .6399910337 .0231322377 .494145299 .8286377029 .624385
14994.4148114653 .667556617 .697171164 .8533796122 .6613156183 .419988 6614.163624696 .2479823387 .9870592448 .2502472104 .0735422352 .212197 3465.3004464312 .0525214519 .09514403219 .1311757503 .403297 637.83439613761 .2458931689 .627767318 .9171987151 .33368411577 .00527 0001097.449078075 .1412944589 .0000555883 .189227086 .460867 6847.39131120260 .917267252 .9013317833 .66227301 .8589395690 .072337 929.858086503257 .3851126056 .4135157507 .484871816 .445424 1923.6454033775 .245724682 .3285157733 .9792728377 .82808721230 .947535 1453.0341067507 .48487878 .23644640744 .30160680318 .91719800 3799. 306521
$199311322-1-199000003332.6909676156 .8379017662 .308792$ 10217.06516 2970.98143 7337.711678 7518.575121 11190.40638 2398.786825 4245.0019873386 .873565698 .45737164629 .666263409 .917721411 .728843 3110.9671913681 .8776623088 .259724011 .603356805 .99676272483 .556396 944.67319681664 .9402150910 .92996951656 .2986571051 .389582 2280.274027748 .72929361703 .55289223286 .617650000604 .2918206 4694.9553283801 .25685614601 .627195402 .8256445180 .6141484437 .028639 12884.220378941 .52294914548 .337589345 .2279519317 .1085957193 .968018 5057.3690678556 .1560116360 .3319865323 .0626915330 .8812436567 .729383 2451.672906942 .2727641619 .674912094 .9606124120 .5223982205 .106187 2324.8534943368 .2187721306 .7270523639 .467683352 .93221081941 .127159 17174.13432
$199411322-1-18700023.64568336629 .03435776593 .704745$ 13399.9830820461 .5949321897 .657413075 .614883153 .130698554 .583872 8467.3574995959 .620642995 .9195242595 .15276593707 .45464108 .381657 4162.5034551060 .99131612 .2886302593 .8390193479 .3757980381 .9835191 1816.159978798 .76271854077 .91727127 .648241979 .011185885092 .485953 2980.894035308 .656776127 .64824191861 .18441917027 .7716100000 6131.57403312740 .6514316280 .1359421675 .926535965 .2327589703 .781215 3403.2855041403 .7423727097 .4913545018 .5540894851 .7921976952 .825165 3854.9244161917 .895612054 .5583652105 .6135576992 .3311734898 .789645 2344.5597044130 .3049367192 .3084781345 .82623504579 .676654 4130.304936441 .3783221244 .57368974895 .13706009494 .355319 $199511322-1-1660000992.91216863547 .54310114173 .67515$ 22761.0861117792 .4791416261 .8837816870 .3306710113 .7599741 .396307 5846.5450023786 .5428245244 .1231578045 .5764775043 .9499583258 .261005 8616.6370237530 .2796894229 .0650443073 .4430352857 .6083574052 .435854 1413.326261568 .3294911352 .4948131197 .4915822394 .9831635553 .198568 0155.00323142362 .50434465 .009694222224 .78959000271 .96678470 548.60165618608 .8902815873 .3456319043 .2254216181 .7649625726 .89266 9922.17444212184 .627164183 .8950771905 .7661925044 .8658525220 .112697 8575.04703501660 .1167753565 .8829673333 .308379003226 .57654 1413.326262549 .9863959251 .2849411197 .49158201413 .3262600 492.43993221660 .11677510441 .53146
$199611322-1-1165000577.78423661049 .0235173961 .150834$ 5703.09907315665 .892623310 .3989616102 .0037312179 .8319413751 .04985 9890.7586261333 .84281611461 .1632715061 .190238537 .0085085930 .885432 10185.841771782 .0622552504 .4847146288 .752042920 .8571073415 .1734111 1547.1951442492 .6518792350 .9594883818 .554662776 .374224398 .2553188 3966.7813324502 .1175178 .08409144813 .83150323743 .69037715060 .58645 000538.9613582 2915.161962 6327.743675 13661.50808 21412.09175 21186.7629216737 .4203119554 .71078 24330.80576 6750.095426 7018.115546 8960.48545911511 .033322443 .9077099328 .2561984233 .0072864730 .916995 6428.2999322954 .4064172426 .4110044166 .8081162239 .666325309 .6208955 324.1912092620 .87561738 .355936563888 .7369643848 .308277150 .042502 52.380074022064 .891845017694 .4343
$199711322-1-11640004091.3843457812 .33038412263 .96387$ 10875.507918735 .91426332 .5131318705 .2797831647 .72029560 .632561 13403.221152572 .1779045963 .1548137248 .06166714756 .466524551 .06965 3785.5122965250 .2131981996 .320424770 .184693344 .8937397479 .301305 242.737904310293 .434165386 .44930212427 .73772 2079.45048767.55812223 3214.562934484 .90449257107 .329218686 .475566319 .508497745305 .06519 0001785.436714764 .499819277 .5833488591 .53391817584 .23267 19626.2125621487 .4897110283 .787856980 .192845862 .72867914900 .10181 7095.59801412285 .882646149 .7306267880 .5959896493 .632859485 .4758086 08338.5798447162 .8641629156 .4070675069 .55429711427 .23414
201.393020810142 .42869414 .34696112672 .6878693777 .87094443 .76037785 1818.57038303762 .37399620122 .96553
$199811321-1-11700003375.29072912237 .09411$ 12050.089 17706.9776118373 .3021521849 .7414228729 .3716123504 .1469217653 .26532 7108.4911265538 .8837857793 .50685414611 .3590911934 .6486314322 .38787 11900.755668946 .8425244030 .4819922280 .8029466396 .11237983 .008488 9126.4240432901 .5222052709 .6253043950 .30117110058 .618363522 .824523 3601.8975731446 .9650431451 .553491451 .553499286 .43930324124 .512180 002802.77876417242 .7642712990 .4378810215 .409288999 .40229 9703.0884821732 .532058554 .006576299 .7320899036 .1091751788 .06022 9710.210911612 .45308711481 .4905310804 .471493200 .5956032459 .497343 5058.6850394795 .9860749133 .7536136507 .767329569 .73951011174 .885581 2101.6075575205 .1145563923 .5542782802 .3472842450 .559454200 .8454643 02440.8331511953 .41423512815 .03611
$199911322-1-1960003708.47570651176 .9616643765 .90699$ 7334.5535972257 .0406957910 .26755922152 .851797872 .7460447415 .509268 1057.5288037779 .04151893 .70452533567 .38884197667 .6600287531 .470824 7742.310058526 .86977247908 .4530618528 .87624814427 .63707131 .2260408 7956.9637970470 .6867625216 .592451607306 .540258131 .22604080 262.4520815131 .226040808676 .0113080005046 .49785142748 .3581 39896.259028166 .8729061860 .7736242141 .720484929 .8867457044 .088176 1894.73381701915 .2024131232 .4608432290 .22643793 .70452533 3033.205844333 .72715982298 .252502131 .22604080781 .6495799 15651.4755101902 .7598817910 .267559131 .2260408304 .8949653 781.64957997348 .9831420007044 .0881767540 .809674
$200011322-1-1139000919.207474410856 .0374525022 .89313$ 17986.778647116 .9137873613 .4283717453 .5830322683 .96691610083 .67707 7037.2724755023 .7961496019 .1320742761 .2966064731 .5326523523 .044063 7478.1286684553 .0814448159 .1555763805 .417447723 .4959926767 .790258 912.13664773801 .541137205 .1584526109 .3932862670 .71896510 1669.1253710205 .158452695 .76516638116 .3791699571 .61364600 27.381713892170 .9664219222 .20835921364 .5344614963 .302069162 .897669 3986.3736513964 .6042993245 .4918751560 .3261364055 .0172613221 .020833 3600.3235665037 .523482060 .8660591071 .0780181443 .3775345512 .208553 5247.3186683360 .8752313591 .7335381827 .059321903 .58946271232 .649282 0617.24739481144 .086253767 .32695222985 .34567400875 .3319882 503.63967283275 .149327
$200111322-1-1254000729.635680710188 .6781325433 .86151$ 24356.626289077 .2997765568 .4594082563 .2582992120 .0143792783 .971728 1635.2862451768 .092077 2080.860571 1288.6890552302 .9278351659 .615818 930.6386112203 .7530092699 .09823541262 .437801327 .38017991190 .212829 183.7308084781 .5898402121 .4873584287 .5772731809 .0427327104 .3681895 0435.776000317 .88990478521 .465459605105 .6666890001803 .601258 11850.6839231387 .3000621374 .800479169 .8344492445 .30317845 .7444826 579.13875271734 .9503252131 .346471519 .5620491452 .420442661 .933671 1690.215933937 .4955047649 .04343931333 .1242151446 .24978521 .6288858
370.316576882 .73930374410 .6892836813 .8603281507 .2646187237 .3927787 00863.238491749 .61543948381 .7156835677 .927523501717 .938814 $200211322-1-1276000594.11970691435 .3934555449 .814888$ 10503.902869142 .5895467813 .1062853328 .6534641348 .3577321087 .128407 1257.7452812730 .4538841032 .39897890 .3481512923 .1724692851 .3636371 1168.354166591 .5673947 885.0178897 1110.280733 1673.609626 3310.525873 2191.187745814 .8761765170 .68632241074 .89508676 .3144104340 .5824093 889.9696702240 .8614048599 .432802864 .22487784761 .685431310076 .00596 000250.29004971584 .97164031 .1319698072 .92484210149 .3996 5395.7615761268 .791952498 .4249891549 .17758712752 .5038141467 .242738 635.68378891241 .1255131216 .0294471231 .951286 2031.390042 430.3618036 410.8944442271 .1874422135 .03351941214 .29669041230 .42555411 .90275274 $413.9098227196 .8035476329 .821125444 .57771366 \quad 202.5856997121 .2262456$ 765.9911475278 .1819039108 .60211391496 .606014
$200311322-1-132500144.46328491357 .0002761167 .674548$ 1407.6074364727 .8220449918 .7862786698 .8550312750 .6384821286 .906031 1497.7147151048 .8871971724 .84012335 .352981707 .1389541548 .32419 1786.2610661794 .684587747 .5572439313 .06765021296 .127892967 .0726208 390.06057631374 .196649943 .159522594 .08469395352 .5708736315 .683815 335.9697933394 .3397644303 .7965214477 .8415131104 .839556119 .054485 1791.15817600218 .14001541864 .1983871483 .270182243 .006448 4160.9226075140 .2303463540 .1961971886 .7218588 .9189121028 .070054 $585.0558942878 .5077929473 .0501123 \quad 254.65697091827 .435591711 .2558461$ 651.1482965183 .8212733800 .6944317605 .2284057877 .3684212502 .9398767 701.239366410 .1442703248 .825234280 .0077685344 .28983290153 .2103402 27.19005083324 .8696015302 .7413184170 .6834421417 .346487
$200411322-1-12450000482.29386044999 .6701638270 .838453$ 9404.30735713696 .9472213682 .84433848 .5613691465 .11012472 .569626 1817.6370243554 .1056542672 .9766024095 .573442342 .5925872763 .678753 473.62042042848 .7464551275 .7041271162 .0595672528 .3958244504 .652931 2226.919187629 .14925011123 .030556146 .3574777644 .46822852 .07735352 1274.679446798 .286144513 .01930854802 .28688187001 .593056000 2.852159335468 .2080979628 .30592710869 .1404316013 .9440211322 .30127 6819.1746377127 .245992235 .543781498 .1708861574 .7619871282 .18486 951.7315598405 .3854069614 .55620182608 .710088324 .7335602629 .7838396 289.869883963 .28739068773 .59622394044 .690935622 .12059242072 .031475 0314.498441157 .0593964250 .009999192 .505487930002566 .367854 $200511321-1-127200027.619988261556 .9407498327 .277655$ 11932.474026679 .955136021 .7977594281 .5432714177 .475622850 .2003466 881.3510476565 .679923693 .21591941249 .3949081263 .2082621144 .31444 764.9029861718 .3300366486 .7566959318 .8229159489 .2575853976 .2711278 1027.444986596 .968682283 .0242288304 .1757199298 .173448420 .84255458 139.042589320 .84255458399 .414944783 .9834005271 .64421852000 .336067 000138.37191241482 .7531988536 .94936911156 .338125346 .960786 5096.9675152953 .6454642583 .009614636 .048474751 .27291521161 .067463 561.0416508889 .8807564285 .8311604351 .4405409873 .9799965894 .1766766 820.0058668322 .9978653813 .8426987631 .7957264457 .03391331203 .42419 508.5987929176 .645254999 .7253666489 .80164836546 .55401650 375.0344407106 .37897414 .015718921395 .983959
$200611321-1-139200031.3149626142 .61868223389 .4484632$ 7447.39217116712 .144559345 .55934563 .2769774565 .3939443129 .326055 3007.953161864 .9566509839 .63541151371 .602745419 .84484631042 .306111 941.51541981166 .045673620 .2718639342 .3733098565 .2759309598 .4905331 565.1002224821 .8384077358 .012535493 .02559968387 .4397183515 .0706174 282.6134748278 .610364368 .8932753618 .4114627132 .789980431357 .051207 0009.74512688723 .125400091408 .4770858168 .12956413185 .34069 9596.1010594050 .8158915242 .0402834320 .343181073 .5456371071 .386942
292.27715581895 .262882922 .203307494 .88755671030 .762019769 .6100326 594.8262531454 .1769169572 .2246205590 .7291381376 .1505025 991.9006717 691.6660338204 .7993249201 .708702188 .36908511413 .5736159312 .2533231 19.4229253321 .55205368227 .2141943390 .2446904

200711321 -1 -1 47200009.626799418 890.4159927 7143.250539
16679.7824313814 .374977676 .7716054717 .0972515628 .1008712743 .348388 2591.9601722136 .302774838 .6277688 860.1900612 2151.2328141679 .310471 766.36642212132 .0111082386 .135832538 .36146941062 .8257411190 .681801 1880.3800191087 .179519875 .65756991408 .8899651287 .547818 81.54221317 705.0035272598 .6773485682 .5573139177 .4465811676 .9822240000 9.626799418699 .87755535312 .36713513582 .842038736 .4332675753 .723556 4237.3705684067 .0857332994 .3192131522 .669021214 .177044565 .4537256 478.15501441628 .473425852 .1792936889 .73227471219 .340342777 .1265301 787.70932081450 .6883360 .93798391053 .754715249 .0208509271 .5962644 291.1788955229 .9160584104 .970128424 .46896449442 .6691156102 .5233983 820.41076182763 .471321
$200811321-1-148700061.82995593414 .8149926231 .9712341$ 1677.0292858348 .66997713411 .232759460 .820074819 .9159032853 .81991 2874.2831742952 .19251721 .5469161055 .659307838 .95258671058 .78576 1231.661012962 .3809863 987.4335482 1790.115244 1097.01155 948.2166831 703.7823621 1040.331517 816.0198361 765.1513021 1060.999471 650.763878 274.4379433517 .8416241163 .0185405225 .4357192392 .71958872099 .013592 00023.76924483275 .2355918438 .15251653374 .463789840 .269716 13236.97167213 .4258253522 .4253872459 .008293521 .877181846 .440671 909.0559651798 .94602923845 .669467732 .2197537655 .3387898617 .8139903 960.6460694278 .6902707405 .8311605679 .8004598892 .4986851101 .7165653 386.8449245366 .8175732234 .9471743329 .6230624302 .9545213152 .4147745 40.718872962611 .32106578 .64079744713 .533424

200911321 -1 -1 4990006.13430760630 .35072283216 .6744251 686.51872261373 .8073685893 .8796017591 .45454212312 .814584597 .004105 2943.2952622127 .7416552244 .6581591625 .9470851424 .4467911244 .147967 1096.1694331076 .3093521020 .6951711040 .56111773 .2028959833 .827079 940.4316549672 .94018091580 .586498620 .9429942600 .6641517403 .9170818 410.1203344246 .971319164 .6037482329 .4040632109 .40897722436 .693679 0004.82724228418 .23408866162 .5961027429 .2716033979 .8316477 5076.211966017 .4610969248 .1185344010 .095492994 .0140571929 .106402 2300.5224711918 .9906131165 .069921362 .5397414569 .6181507738 .9531323 699.3969812699 .75518831165 .182494195 .27513861086 .278353657 .9033106 350.3913302228 .5421287591 .1881778501 .7200086354 .916522208 .1082218 158.1695195100 .1809686190 .66428451091 .336515
$201011321-1-135700000312.9383363708 .8638243225 .208191$ 4161.6384749505 .7140718057 .6290816812 .097936689 .1690865538 .46748 6057.2573011674 .0369992768 .2113462540 .9325231840 .9626611502 .990866 2360.8858711222 .847657949 .5724524546 .16733981297 .094861075 .655352 1599.9884321026 .20513475 .18198981248 .987175671 .850667244 .0125652 664.9362501708 .4035707178 .80497185754 .7880070009 .550455742 16.59143899295 .44038931980 .5173253536 .8833255521 .3839436611 .962051 9908.99257811308 .239255489 .9935114135 .1708663960 .6594283681 .100822 2131.7740821398 .1242071088 .3136581285 .458127489 .64427811073 .941281 1445.729533509 .57179091015 .205382638 .3172148719 .7353917372 .4265073 726.2419682758 .58180821040 .826216782 .1350401393 .4789394119 .6368555 138.14535221641 .762574
$201111321-1-1392000314.346800159 .55958889612 .8166458$ 2662.6480736490 .2630537173 .3310614043 .1870493532 .7706966539 .03018 8620.0270312707 .2549251633 .718871434 .848271597 .8561181010 .450518 571.197286517 .1082676770 .7821552181 .3262242437 .2456186709 .5727684 417.8220909658 .6059842196 .2343285399 .9640643364 .6572892286 .2264889
414.3759396795 .7677022287 .0817558341 .0020694531 .27481292217 .71140 00335.7536353174 .2974666912 .07970932753 .1168376199 .210543 4005.7835396425 .1167732838 .7284824530 .317619846 .3118022431 .523637 1297.9889292249 .02192856 .3624562526 .091815913 .6595155682 .6564858 1089.703781709 .0491929 927.2936723 981.2843648 657.0979424 682.659318 656.5743038235 .7467168211 .2361979163 .8513676672 .3379351343 .6014315 174.925769149 .5784134135 .237036671729 .765173

201211321 -1 -1 401006.28976651787 .89441022611 .5446266 1618.861247369 .26319911239 .422568275 .6078034642 .9334442252 .8703 1289.1746382000 .0653982865 .040647676 .86529921179 .4084971138 .005498 842.6808805924 .254738850 .2821319247 .6008895440 .36082253 .6090906 261.51669381126 .531155627 .9342015396 .3012369438 .2971375 218.7862643 275.5539218248 .217657560 .58350844319 .635816495 .82719296387 .1387512 2126.534682006 .2897665173 .705138033494 .5159691127 .95312 9255.8460412370 .720197521 .0387493427 .7937272243 .8061822052 .315965 2983.0813913114 .113014779 .04899531113 .308988999 .80428918 .7551575 862.0175609369 .5978672 590.2985347 328.5125821318 .51043791033 .677655 263.4657341373 .8076379231 .946708934 .9933018765 .03264538170 .1353477 409.830026241 .0045866400 .073570758 .64356253200 .88182691095 .995359 $201311321-1-12120074.776594570302 .32499862121 .43293$ 7541.10954514404 .1125615366 .353047621 .6449924019 .120691772 .1316685 1216.9898571537 .2287443937 .696738578 .9343703356 .4085867336 .4334303 312.193341331 .7212246419 .9947602756 .48679602 26.91021686 66.51952369 91.7203488025 .2008251146 .67820557039 .60930684000026 .91021686 276.441208800001141 .1273398035 .6239837682 .35740120072 .79506 15694.474213477 .23164762 .487924447 .0403193674 .613755743 .373745 7160.8945321648 .1785842173 .313182538 .048702773 .547376143 .9927207 160.1243433161 .51207861143 .421577657 .2992592461 .6415038142 .7307542 1232.60728112 .85967686174 .56490776 .52039953480 .4426726655 .94066967 6.966238818809 .01260030443 .8521602
$201411321-1-11480010.7240756510 .51784343332 .0597391$
1203.741274780 .90659761987 .1391941006 .1605751523 .431231153 .9393933 40.4669683822 .7406003238 .6475367488 .3222138745 .4837855867 .61557577 $29.66786961148 .6575298471 .871739919 .00370925 \quad 294.5414201184 .9733633$ 95.537439927 .08649025310 .11310882028 .03467612069 .9352438 73.1099164170 .5309050500200 .5139751218 .72335350021 .44815130 144.6285644816 .13910851057 .687533969 .88958711875 .31454393 .5227017 992.6678156111 .2042425582 .562040814 .07027161129 .953751583 .1111241 377.7403751212 .667111947 .642907210182 .275273229 .86493416
69.57597344029 .6093404710 .3237221618 .7716764911 .4850014400000 76.8943464465 .284496711 .08154484 \#Shoreside WCGOP discard marginal ages ($\mathrm{N}=2$)
\#Year Seas Fleet Gender Partition AgeError LbinLo LbinHi Nsamp 200411011 -1 -1 11940.53333333118 .508333386 .08333333 47.50454545264 .6490385235 .592061169 .37884184186 .8956317109 .6045821 22.05515763130 .5124 .04178980113 .341789820 .9527 .25614 .8110 104.2513 .810106 .341789800000940 .53333333118 .5083333 86.0833333347 .50454545264 .6490385235 .592061169 .37884184186 .8956317 109.604582122 .05515763130 .5124 .04178980113 .341789820 .9527 .256 14.8110104 .2513 .810106 .3417898000009 200511011 - 1 -1 199 26. 27659574 97. 83333333273.9172368 90.56079787146 .8397655800 .3860846447 .6208075446 .5661499507 .7537767 145.9142857207 .9525 .66687321239 .332727344 .886956527 .6657142868 6.95126 .233 .0130030964004126 .7327272730000101105 26.2765957497 .83333333273 .9172368 90.56079787 146.8397655 800.3860846 447.6208075446 .5661499507 .7537767145 .9142857207 .9525 .66687321
239.332727344 .886956527 .66571428686 .95126 .233 .0130030964004 126.7327272730000101105 \#AtSeaHake marginal ages ($\mathrm{N}=9$)
\#Year Seas Fleet Gender Partition AgeError LbinLo LbinHi Nsamp 200313301 -1 -1 195000654.14581091598 .764825659 .6128328 122.058186467 .23228649143 .674858312 .90112818293 .4465692 .935981159 0305.15202876 .321645121299 .07725126 .19465739826 .3503517500 3.0515864453 .0515864455 .6306822470001 .04236795004 .0421468770 00008.6822686920093 .04204614 697.3660439 1373.081067 310.2603019 64.6656526818 .0254305229 .9089856658 .420522103 .3516156360 60.8806901606 .07749309309 .56972808400 .9199705414 .30326035000 9.5697280846 .94239713318 .3288821000000000 200413301 -1 -1 30200001449.3615652256 .5673441042 .436236 307.739550588 .61769728112 .200750511 .21685398129 .8087220 13.4264892219 .816045335 .0649063328 .8393566840 .021537943 .229884956 2.39984635921 .2500464807 .9776045733 .510176213024 .7602227 23.954381183 .09656697203 .51017621300003 .1759106459 .5217786840 002.8329167341282 .7818741885 .598741084 .254532252 .8504246 26.81676854232 .498630653 .466357624 .5722676874 .1927105714 .6471907 10.216985917 .5758051718 .9237509720 .0552728631 .407386712 .900585013 024.1621887359 .5334703421 .4663028556 .9437983634 .96441544 5.0103060672 .81989397920 .3786330502 .74100106403 .2209128200 11.33183462
$200513301-1-149300005.228314597335 .4067372442 .5386344$ 131.161829633 .17184054345 .926361868 .99820137316 .37212340 15.4537240223 .41160693318 .607061140 .49882928 7.199583708 347.00255 65.678707811 .8636884912 .4279311285 .98851806336 .90428046 22.87219776 10.747474381 .8649052370000000311 .97943462 .49072125700000 242.9973039273 .544217889 .6284263748 .5980597937 .7758227381 .028552 87.382145971 .90561348804 .4112630112 .6104294357 .591474109 4.576111822061 .416898657 .131268006028 .357174931 .864452515 85.460714080002 .48828079703 .99502671100005 .850079706 200713301 -1 -1 42900005.8071540752 .24485688165 .60407014 857.3988226534 .7341212218 .985063271 .9032814021 .38526676 2.0349609722 .121053354012 .0746238100052 .0145482817 .535189220 10.0920605803 .89694777800000000000000015 .17385949 103.1188817448 .9731162117 .282554781 .7316459320 .5756848541 .25748988 24.5511452670 .138575980000006 .6079929290021 .217821920 7.4257512571 .6588753133 .8885542323 .8885542323 .1946229730 14.672961290000
$200813301-1-15800000.0768013130 .6705766690 .366247423$ 20.6093474126 .375410579 .7822002438 .9981181165 .4980164594 .300396789 4.7931460592 .3730428543 .7512526441 .7433938743 .0405674234 .069476455 2.5917099290 .1352161017 .3831143981 .2811334030 .7864782041 .359566124 0.1573046311 .7017569672 .1808042981 .6895670070 .1961559051 .482336374 0.1824893181 .086932937000 .76770248300001 .0150683170 .056933228 4.27611009817 .4148502323 .3900416418 .243874142 .6164712815 .720932681 3.7510292211 .9236055832 .9974880740 .5414936072 .4400062430 .539672815 1.2530958262 .5555004791 .93240658506 .4835296640 .273008344 0.0396122990 .2893263750 .15340219300 .23946119100 .0904532480 0.61561889000 .496863405
$200913301-1-113000003.3719233770 .1019907870 .1426620460$ 1.78436705100 .6176051741 .1362293250 .2410780780 .488561138 0.4478898781 .6211612350 .4544368770 .20681180 .1426620460 .593524169 0.13908729100 .04067125900 .14266204600 .4749806470 .08134251900 0.5935241690001 .0071477690000000 .20716348700 .805046145 0.2816940590 .9195337640 .71575642000 .5571852340 .139107963000
0.13910796300000 .10188867200000 .04069742400 .040697424 0.240996635000
$201113301-1-15500001.1892254260 .2756998374 .755219726$ 3.05012417311 .665611543 .5264411646 .27006511415 .1901770712 .08362729 1.4484581690 .553795720 .2671566791 .3857854598 .0617406071 .541968852 1.278082113001 .4567893011 .2368887641 .1892254262 .404274955
3.2171215440 .1174252592 .4673075391 .5044526390 .5381656020 .05871263
0.04766333900 .0455373763 .926537107000001 .008048556 .748757243
5.2807884099 .5224019320 .5969026074 .9241208475 .61461198722 .57050454
12.300169443 .3636667416 .23336894310 .822388259 .7608035378 .770446709
0.1711921290 .0453979897 .4089461057 .2496527666 .2841183911 .819573017
2.7963361751 .1896282470 .1664656420 .8056420650 .8681788560
4.0995921131 .5141202950 .1113550170 .0586308323 .249852377
$201213301-1-14700000.8535023912 .6439382840 .769293197$
1.9717836211 .3861074720 .5357437250 .5323076540 .0312885290 .258349787
0.5849590680 .4983590250 .1994062270 .4682378350 .1931168150 .21448665
0.115865471 .2439583790 .1645352700 .3204253240 .2979566540 .324539587
0.3788040140 .0340256160 .0698105370 .1448883670 .0889169520 .352706721
0.6440677940 .1460470620 .5223776351 .12094128600003 .967649395
3.8020848612 .0710137511 .2696302290 .454926910 .4740561360 .232032059
0.1084970451 .1848694280 .2310808460 .0889169520 .0340256160 .080153054
0.1870073960 .318362177000 .123586520 .0889169520 .051653951
0.2447611650 .062219290 .07291133400 .088916952000000 0.151909592
$201313301-1-15200000.586801612 .9485135930 .522309215$ 0.5173777460 .9031571320 .6278143390 .2456507632 .0217363530 .307701427 0.1074050780 .4653361460 .1328377220 .1032226990 .051238230 .584161428 0.0876659410 .03008320 .12422977300 .1124940630 .6943936350 .68520051 0.077217290 .60802912700 .10481397100 .0726713210 .239164497
0.0832919790 .0409377940 .6709230330000 .32642451602 .852683009
3.4651136782 .667022490 .6743144220 .4066796460 .0150276320 .140053754
0.2169007890 .1115154310 .6963558910 .0862500480 .1728856740
0.3816787690 .0819613570 .05616684800 .0767677850 .03008320 .320435815 0.0653599730 .2322941720 .0806396510 .03008320 .11918873800 0.03527677300 .0397018570 .409182014
\#AKSHLF CAAL ($\mathrm{N}=203$)
\#AKSHLF females
\#Year Seas Fleet Gender Partition AgeError LbinLo LbinHi Nsamp

 00000000000000

 00000000000000

 00000000000000

 00000000000000

 00000000000000

 00000000000000
198014102343460000033.3333333333 .3333333316 .666666670
 033.3333333333 .3333333316 .666666670016 .66666667000000000 0000000000000000
19801410236363000000033.33333333066 .666666670000
 66.66666670000000000000000000000000000

 00000000000000
 00000000000000000000000000060200200000000 000000000000000

 00000000000000

 00000000000000

 00000000000000

 00000000000000
198314102303080000037.537 .525000000000000000 00000000000000000000037.537 .5250000000000 0000000000000000000

 00000000000000
198314102343440000000002502502500250000000 00000000000000000000000002502502500250000 0000000000000000
1983141023636700000000014.2857142900028 .571428570 28.5714285714 .285714290000014 .2857142900000000000000 00000000014.2857142900028 .57142857028 .57142857
14.285714290000014 .28571429000000000000000

 02502500000000000

 40000200000000000

 0100000000000000

 000000000001000

 000000000000100

 00000000000000
198614102141410084.0636580615 .936341940000000000000 00000000000000000000000000084.0636580615 .936341940
 19861410216165014.511800685 .48819940000000000000 000000000000000000000000014.511800685 .4881994000 000000000000000000000000000000000

 00000000000000
 0000000000000000000000000073.8390121326 .16098787 000000000000000000000000000000000000 1986141022222100033.2233356455 .7022191511 .074445210000 0000000000000000000000000000000033.22333564
 0000000
19861410224241000052.2808776347 .71912237000000000 00000000000000000000000000000052.28087763
 0

 0000000000000000
19861410228281100010.1016425420 .20328508 57.29372241
 0010.1016425420 .2032850857 .2937224112 .401349970000000000 0000000000000000000
198614102303010000011.4108000422 .8216000844 .75478081 14.008546057 .004273024000000000000000000000000000 000000011.4108000422 .8216000844 .7547808114 .00854605 7.004273024000000000000000000000000000000 1986141023232110000026.7327360539 .0432424327 .75339755
 0026.7327360539 .0432424327 .753397556 .4706239740000000000 00000000000000000
19861410234347000000035.6429359164 .3570640900000 000000000000000000000000000000000035.64293591 64.35706409000000000000000000000000000000

 00000000000000

 000000000000100

 00000000000000

 00000000000000

 00000000000000
199514102181880091.183369288 .81663072100000000000 000000000000000000000000000000091.183369288 .816630721 000000000000000000000000000000000000
1995141022020140056.0542838143 .9457161900000000000 00000000000000000000000000000056.0542838143 .94571619 000000000000000000000000000000000000 199514102222220002.22286855566 .460960530 .244345730
 02.22286855566 .460960530 .2443457301 .0718252080000000000 0000000000000000000
199514102242446000.88010451472 .2908663325 .99428920
 00.88010451472 .2908663325 .994289200 .8347399550000000000 0000000000000000000
19951410226262100026.6863729657 .32667648 .522555714
 0026.6863729657 .32667648 .5225557147 .4643949220000000000 0000000000000000000
19951410228282400013.6606836655 .3944308220 .533669010
4.1524360464 .639211664001 .6195687960000000000000000 0000000000013.6606836655 .3944308220 .5336690104 .152436046 4.639211664001 .6195687960000000000000000000000 00
199514102303017000027.614525472 .38547460000000000 00000000000000000000000000027.614525472 .3854746 000000000000000000000000000000000 199514102323280003.7846634209 .47969440780 .0083100500
 00003.7846634209 .47969440780 .00831005005 .141134986 1.58619713500000000000000000000000000 199514102343430000002.3107539360095 .64705372
 02.3107539360095 .647053722 .042192339000000000000000 0000000000
1995141023636400000033.09777278033 .09777278
0.7066816530033 .097772780000000000000000000000000 000000033.09777278033 .097772780 .7066816530033 .0977727800 000000000000000000000
1995141023838300000000033.33333333033 .3333333300
 33.33333333033 .33333333000033 .333333330000000000000 000000

 00000000000000
1995141024242200000000000000000005005000000
 00000000000000

 000000000000100

 00000000000000

 00000000000000

 00000000000000

 00000000000000
1998141022020200042.2749223257 .7250776800000000000 00000000000000000000000000042.2749223257 .72507768
 1998141022222520013.9035600482 .35547533 .7409646520000 0000000000000000000000000000000013.90356004
 0000000
1998141022424430012.4972666167 .6097259119 .893007480000 0000000000000000000000000000000000000012.49726661 67.6097259119 .893007480000000000000000000000000 0000000
199814102262627009.77453144228 .7798192350 .14370294
 00000009.77453144228 .7798192350 .1437029410 .1671861800000 01.1347601990000000000000000000000000 199814102282828001.10412772413 .3568525254 .57078261
 0000000000001.10412772413 .3568525254 .570782612 .793380878
 0000
199814102303090008.799186678 .7991866721 .414637290
 08.799186678 .7991866721 .41463729060 .9869893700000000000 00000000000000000
1998141023232800005.15679911943 .7568352511 .93936501 34.316955190000044 .830045435000000000000000000000 00000005.15679911943 .7568352511 .9393650134 .3169551900000 4.8300454350000000000000000000000
1998141023434900005.1687723913 .605531314 .629029874
68.793267443 .431401102000004 .3719978810000000000000 0000000000005.1687723913 .605531314 .62902987468 .79326744 3.431401102000004 .37199788100000000000000000000 00
1998141023636600005.20891066200083 .30964021
 000005.20891066200083 .309640217 .6794264573 .8020226740000 000000000000000000000
19981410238382000000048.22167996000000

48.2216799600000051 .7783200400000000000000000000 000
19981410244040200000000000000000000060.232417300
 0060.23241730000000000000000039 .7675827

 000000000000100

 000000000000100

 000000000000100

 00000000000000

 00000000000000
200114102141458098.75107041 .248929604000000000000 0000000000000000000000000098.75107041 .2489296040

 00000000000000
20011410218181240094.855353155 .144646850000000000 000000000000000000000000000094.855353155 .14464685

2001141022020800096.604674142 .8792558880 .5160699750000
 2.8792558880 .51606997500000000000000000000000000 0000000
2001141022222500033.1392368766 .86076313000000000 000000000000000000000000000033.13923687
 0
200114102242423004.24734940524 .1936143154 .34361255
 00000004.24734940524 .1936143154 .3436125514 .52198979
 2001141022626380003.30559023744 .0025875947 .58796765
 003.30559023744 .0025875947 .587967655 .1038545160000000000 0000000000000000000
200114102282821000039.1291217344 .2865493816 .5843288900 0000000000000000000000000000000000000
39.1291217344 .2865493816 .58432889000000000000000000 00000000000
20011410230302300000.3590860933 .8773118164 .43363111
 000.3590860933 .8773118164 .433631111 .3299709900000000000 00000000000000000
2001141023232390000055.4704878540 .955021191 .654810538 1.6639463060 .25573411800000000000000000000000000 000000055.4704878540 .955021191 .6548105381 .663946306
 2001141023434240000031.8652904350 .6387449516 .62879383 0.233026304000000000000000000000000 .63414448400000 000000031.8652904350 .6387449516 .628793830 .23302630400000 000000000000000.6341444840000000
20011410236364000000032.841955070067 .15804493000 00000000000000000000000000000000000032.841955070
 2001141023838100000001000000000000000000000
 00000000000000

49.55903140000050 .440968600000000000000000000000000 00000000049.5590314000050 .44096860000000000

 001000000000000

 000000000000100

 00000000000000

 00000000000000

 00000000000000
20041410218183502.63239212896 .245805521 .12180235600000 000000000000000000000000000000002.632392128
 00000000
2004141022020160062.3837852432 .207991655 .4082231160000 0000000000000000000000000000000000062.38378524
32.207991655 .40822311600000000000000000000000000 0000000
200414102222222004.48658204462 .2833221433 .230095810000 000000000000000000000000000000004.486582044
 0000000
2004141022424390009.3168275986 .282849863 .639851792
 009.3168275986 .282849863 .6398517920 .7604707530000000000 0000000000000000000
2004141022626870001.56045805582 .8635897213 .62181452
 001.56045805582 .8635897213 .621814521 .9541377030000000000 0000000000000000000
2004141022828670000.27458490377 .1100681220 .17388267
 000.27458490377 .1100681220 .173882672 .4414643120000000000 0000000000000000000
200414102303059000020.2949578769 .2883687810 .4166733500 00000000000000000000000000000000000
20.2949578769 .2883687810 .41667335000000000000000000 00000000000
200414102323242000013.4165044577 .91581926 .064781294
 0013.4165044577 .91581926 .0647812942 .6028950570000000000 000000000000000000 2004141023434130000070.1494031114 .006597152 .312822974
 000000070.1494031114 .006597152 .31282297411 .52300956 2.0081672060000000000000000000000000000 2004141023636120000017.327641396 .28989228123 .12561874
 000000017.327641396 .28989228123 .1256187411 .63961938 41.6172282100000000000000000000000000000
20041410238383000000001.48333646698 .516663530000 000000000000000000000000000000000001.48333466
 20041410240405000000046.0333484719 .75063597
 0000000046.0333484719 .7506359719 .083469030015 .1325465300 0000000000000000000000
 0086.88898350000000013 .111016500000000000000000 0000000000086.88898350000000013 .1110165

 000000100000000
\#AKSHLF males
\#Year Seas Fleet Gender Partition AgeError LbinLo LbinHi Nsamp

 00000000000000

 00000000000000
 000000000000000010000000000000000000000000 00000000000000

 00000000000000

 00000000000000

 00000000000000

 00000000000000
198014202303060000050033.3333333316 .6666666700000 0000000000000000000000000000050033.33333333 16.6666667000000000000000000000000000000
1980142023232900000044.4444444433 .3333333322 .2222222 000
44.4444444433 .3333333322 .22222222000000000000000000 000000000
19801420234341400000007.14285714321 .4285714328 .57142857
 00000007.14285714321 .4285714328 .5714285728 .57142857
14.2857142900000000000000000000000000

 00000000000000
1980142023838300000000033.3333333366 .66666667000 00000000000000000000000000000000000000
 0

 00000000000000

 00000000000000
1983142022626300066.6666666733 .33333333000000000 000000000000000000000000000066666667
 0

 00000000000000
1983142023030110000036.3636363663 .636363640000000 0000000000000000000000000000000000036.36363636 63.6363636400000000000000000000000000000000 198314202323260000016.6666666716 .6666666733 .33333333
 000000016.6666666716 .6666666733 .3333333316 .66666667
16.666666700000000000000000000000000000 198314202343412000000000016.666666716 .666666670 33.333333338 .3333333338 .33333333308 .3333333330008 .33333333300 0000000000000000000000160666666716.666666670 33.333333338 .3333333338 .33333333308 .3333333330008 .33333333300 0000000000000
1983142023636140000000000007.14285714307 .142857143 14.28571429007 .14285714314 .2857142914 .28571429014 .285714290
 0007.14285714307 .14285714314 .28571429007 .14285714314 .28571429 14.28571429014 .2857142907 .1428571437 .142857143007 .14285714300 000000
1983142023838170000000000000000005.8823529410 5.88235294111 .7647058811 .764705885 .88235294100011 .76470588
5.8823529410005 .8823529410011 .764705880023 .5294117600000 00000000005.88235294105 .88235294111 .7647058811 .76470588 5.88235294100011 .764705885 .8823529410005 .88235294100 11.764705880023 .52941176
 16.66666667000016 .66666667000016 .666666670005000000 000000000000000016.6666667000016 .666666600000 16.6666666700050

 000000000000100

 00000000000000

 00000000000000
 00000000000000000000000000082.5856321117 .414367890 0000000000000000000000000000000000000 19861420216166010.9270835789 .07291643000000000000 0000000000000000000000000010.9270835789 .072916430
 198614202181880088.4879295711 .5120704300000000000 00000000000000000000000000000000088.4879295711 .51207043 00000000000000000000000000000000000
198614202202090070.2349375329 .765062470000000000 00000000000000000000000000000070.2349375329 .76506247
 1986142022222700057.1428571442 .85714286000000000 000000000000000000000000000057.14285714 42.8571428600000000000000000000000000000000000 0
19861420224241000029.1974764354 .012617858 .394952862
 0029.1974764354 .012617858 .3949528628 .3949528620000000000 0000000000000000000
198614202262610000031.2050504627 .188215631 .20505046
 0031.2050504627 .188215631 .2050504610 .401683490000000000 000000000000000000

 0000000000000000
1986142023030100000017.1880074564 .9451777317 .866814830

 0000000000
198614202323290000009.55272032471 .341839039 .552720324
 009.55272032471 .341839039 .5527203249 .5527203240000000000 0000000000000000
1986142023434700000044.6016796932 .2167515714 .14638589
 0044.6016796932 .2167515714 .146385899 .0351828410000000000 0000000000000000

 00000000000000

 000000000000100

 00000000000000
199514202141412095.7921323804 .20786761600000000000 000000000000000000000000000095.7921323804 .207867616

 00000000000000
199514202181870095.017769824 .98223018500000000000 0000000000000000000000000005.017769824 .982230185

1995142022020190033.4288127764 .829283361 .7419038680000
 64.829283361 .74190386800000000000000000000000000 0000000
199514202222223002.436330488 80.37936102 15.11406506
 002.43633048880 .3793610215 .114065062 .0702434320000000000 00000000000000000000
19951420224244100070.2358191517 .10999887 7.607921467 1.7845835471 .5405422801 .72113468700000000000000000 00000000000070.2358191517 .109998877 .6079214671 .784583547
 000
19951420226262700020.2782165449 .3540916319 .962428060
 00000020.2782165449 .3540916319 .9624280607 .803947826 2.60131594200000000000000000000000000000 199514202282820000048.2949320431 .386472349 .439308981
 000000048.2949320431 .386472349 .4393089814 .719654490 6.159632148000000000000000000000000000 199514202303015000013.5753185952 .8954793917 .97059327
 00000000000013.5753185952 .8954793917 .970593273 .765843934 4.2610769467 .531687868000000000000000000000000 00
1995142023232110000024.5853833815 .2438310516 .18432224
 00000000000024.5853833815 .2438310516 .1843222412 .71452232
 0
1995142023434600000000024.71875916074 .15627748000
 000024.71875916074 .156277480000 .5971848350000 .5277785210 0000000000000000
199514202236366000000000019.7269657200019 .72696572
00039.453931440019 .726965721 .36517140100000000000000 000000000019.7269657200019 .72696572000039 .4539314400 19.726965721 .36517140100000000000000
1995142023838300000000000049.40322936000
1.1935412780049 .40322936000000000000000000000000000 00000044.403229360001 .1935412780049 .403229360000000 000000000

 00000000000000

 00000000000000
19981420216169067.5051778932 .49482211000000000000 0000000000000000000000000000667.5051778932 .494822110 00000000000000000000000000000000000
199814202181815031.6900697429 .1458667239 .1640635400000 0000000000000000000000000000000000031.69006974
 00000000
19981420220201704.29095181845 .172900450 .5361477800000 000000000000000000000000000000004.290951818 45.172900450 .53614778000000000000000000000000 00000000
1998142022222390031.5824828167 .627947960 .7895692290000 00000000000000000000000000000000031.58248281 67.627947960 .7895692290000000000000000000000000 0000000
1998142022424390028.2284589160 .58299397 .706201422
 0028.2284589160 .58299397 .7062014223 .4823457710000000000 00000000000000000000
199814202262617005.00274217719 .7631097 71.65273673
1.4915603342 .089851054000000000000000000000000000 00000005.00274217719 .763109771 .652736731 .491560334
 199814202282813003.7219920919 .51587482346 .60484607
 003.7219920919 .51587482346 .6048460740 .157287020000000000 00000000000000000000
1998142023030900016.890595257 .27242564315 .27573806
 0016.890595257 .27242564315 .2757380660 .5612410400000000000 0000000000000000000 1998142023232180002.0954265053 .5456426257 .581495371
37.21250511000000047 .093572562 .471357827000000000000 0000000000002.0954265053 .5456426257 .58149537137 .21250511 000000047.093572562 .47135782700000000000000000 000
19981420234346000017.06244720030 .82677261018 .37276537
 000017.06244720030 .82677261018 .37276537014 .5774237100 19.16059112000000000000000000000

1998142023636300000000000000000000
 000000000061.5518062138 .44819379000000000000000 0

 000000000000100

 00000000000000
200114202141444094.482034165 .517965842000000000000 0000000000000000000000000094.482034165 .5179658420

20011420216161602.91919891697 .08080108000000000000 0000000000000000000000000002.91919891697 .080801080 00000000000000000000000000000000000000 20011420218181230090.96027907 7.725469243 0.238704504 0
 090.960279077 .7254692430 .23870450401 .075547180000000000 00000000000000000000
2001142022020790080.4254034817 .283903582 .2906929340000 00000000000000000000000000000000080.42540348
 0000000
200114202222270029.1600745929 .3693301125 .88346652
 0029.1600745929 .3693301125 .8834665215 .587128780000000000 00000000000000000000
20011420224241900020.5163680962 .44647781 13.79677928
 0020.5163680962 .4464778113 .796779283 .2403748220000000000 0000000000000000000
2001142022626350005.08422377246 .7465717743 .47154206
 005.08422377246 .7465717743 .471542064 .6976623980000000000 0000000000000000000 200114202282818000010.4406716723 .1031680265 .66544511
 0010.4406716723 .1031680265 .665445110 .7907152020000000000 000000000000000000
20011420230303700000.5941175613 .4480631480 .76516425
 00000000.5941175613 .4480631480 .7651642514 .05927308 1.13338197100000000000000000000000000000 200114202323233000004.1573310117 .2501003582 .41304922 4.4856845021 .3092252530000000000 .384609666000000000 0000000000004.1573310117 .2501003582 .413049224 .485684502 1.3092252530000000000 .384609666000000000000000 0
2001142023434600000012.83335798017 .69088243000 30.1102027330 .110202730000000000000000000 9.2553541220000000012 .83335798017 .6908824300030 .11020273 30.11020273000000000000000000009 .25535412200 20011420236362000000000000010000000000000 000000000000000000000000000010000000000000 00000000000000
20011420238381000000000000100000000000000000
 00000000000000

20.53252618000000000000779 .467473820000000000000 000000000020.5325261800000000000000079 .46747382
200414202121260061.4352024438 .56479756000000000000 00000000000000000000000061.4352024438 .564797560

 00000000000000

 00000000000000
20041420218183304.59401180291 .764552713 .64143549300000

 00000000
20041420220202302.34963453347 .675081726 .8817689723 .0935148 000000000000000000000000000000000000000 2.34963453347 .675081726 .8817689723 .09351480000000000000 000000000000000000
200414202222222002.21678570618 .8615574478 .921656860000 0000000000000000000000000000000002.216785706
 0000000
20041420224246200023.2600146562 .5293797712 .39308251
 0023.2600146562 .5293797712 .393082511 .8175230680000000000 0000000000000000000
2004142022626990003.53777808254 .0972541633 .48720822

003.53777808254 .0972541633 .487208228 .8777595450000000000 0000000000000000000
2004142022828690000.20582528441 .2002585956 .60580134

0000000000000.20582528441 .2002585956 .605801340 .675056534
 000
200414202303078000028.0455728854 .9174541517 .0369729800 0000000000000000000000000000000000
28.0455728854 .9174541517 .03697298000000000000000000 00000000000
200414202323241000017.6111728850 .0414910210 .1700716
17.587529442 .6575763161 .65483843600 .27732029900000000000 0000000000000000017.6111728850 .0414910210 .1700716
17.587529442 .6575763161 .65483843600 .27732029900000000000 0000000000000
20041420234343500002.83383660512 .9956245512 .69356547
39.042216519 .20048147 .7092448251 .51856408700001 .929724572
2.0767419950000000000000000000000002 .833836605 12.9956245512 .6935654739 .042216519 .20048147 .7092448251 .5185640870
 200414202363640000000020.7760640927 .2299022
28.181872230000000000023 .8121614800000000000000000 0000000020.7760640927 .229902228 .181872230000000000 23.8121614800000000000000
20041420238386000000018.781017830000000
18.146604120018 .7810178313 .50537047016 .989813540013 .79617620
00000000000000000000018.78101783000000018 .14660412 0018.7810178313 .50537047016 .989813540013 .79617620000000 00000

 010000000000000
\# AKSHLF ghost marginal ages ($\mathrm{N}=7$)
\#Year Seas Fleet Gender Partition AgeError LbinLo LbinHi Nsamp
 0000000000000003170235581084000000000000 00000000000000

 1311101012008
 00000000000000000020182110141016122121000000 00000000000000000001

 21111000000000000000
 00000000000000000060203188229112001001000310 0021000000000000002

 100000100100000000001001

 011111101101100000000000
\#AHSLP CAAL $(\mathrm{N}=49)$
\#AKSLP females
\#Year Seas Fleet Gender Partition AgeError LbinLo LbinHi Nsamp 200015102141410010000000000000000000000 0000000000000001000000000000000000000 00000000000000
20001510216162069.1775943730 .8224056300000000000 0000000000000000000000069.1775943730 .822405630 000000000000000000000000000000000 200015102181810010000000000000000000000 0000000000000001000000000000000000000 00000000000000
2000151022020300033.33333333066 .6666666700000000 000000000000000000000000033.333333330
66.666666700000000000000000000000000000000 20001510222221300044.6948057132 .6587398916 .95370719
5. 6927472030000000000000000000000000000000 0044.6948057132 .6587398916 .953707195 .6927472030000000000 0000000000000000000
20001510224241100031.1129115138 .5577961730 .32929232000 00000000000000000000000000000000031.11291151 38.5577961730 .32929232000000000000000000000000 000000
20001510226268000063.1829808536 .8170191500000000 0000000000000000000000000063.18298085
36.81701915000000000000000000000000000000000 20001510228281000003.18004944760 .9743342718 .55883306
8.019935167009 .2668480520000000000000000000000 00000003.18004944760 .9743342718 .558833068 .01993516700 9.266848052000000000000000000000000000 2000151023030100000037.541345037 .54426546426 .63390255 18.042921738 .71722280401 .52034241800000000000000000 00000000000037.541345037 .54426546426 .6339025518 .04292173 8.71722280401 .52034241800000000000000000000000 0
200015102323250000018.6505441441 .14864293040 .20081293 00000000000000000000000000000000 18.6505441441 .14864293040 .2008129300000000000000000 0000000000
200015102424210000000000000000000000100 00000000000000000000000000000000000 1000000000000000
20001510246461000000000000000000000000 0000000000010000000000000000000000000 000000000000100
200015102484810000000000000000000000000 0000000000010000000000000000000000000 000000000000100
200115102181860080.1275133119 .872486690000000000 000000000000000000000000080.1275133119 .87248669 00000000000000000000000000000000
2001151022020240089.0558243210 .944175680000000000 000000000000000000000000089.0558243210 .94417568 0000000000000000000000000000000000
2001151022222120086.3245183913 .675481610000000000 0000000000000000000000000086.3245183913 .67548161 00000000000000000000000000000000
20011510224245005.70761243852 .8538062241 .438581340000 0000000000000000000000000000000000005.707612438 52.8538062241 .43858134000000000000000000000000000 0000000

 00000000000000
2001151022828800014.2280176473 .0998080612 .67217430000 0000000000000000000000000000000014.22801764
 000000
20011510230307000017.8041657244 .5044117337 .6914225500 0000000000000000000000000000000000 17.8041657244 .5044117337 .691422550000000000000000000 00000000000
2001151023232210000031.8267718668 .173228140000000 00000000000000000000000000000000031.82677186
 20011510234341100002.4739960134 .66164097782 .54088257
 002.4739960134 .66164097782 .5408825710 .323480440000000000 000000000000000000
200115102363630000040.7835614459 .216438560000000 0000000000000000000000000000040.78356144

 00000000000000
 66.75701030000033 .242989700000000000000000000000 00000000066.75701030000033 .242989700000 \#AKSLP males
\#Year Seas Fleet Gender Partition AgeError LbinLo LbinHi Nsamp
20001520214142073.0232946326 .9767053700000000000 0000000000000000000000000073.0232946326 .976705370

 00000000000000

 00000000000000
2000152022222700051.5448951917 .3915728531 .06353196000 000000000000000000000000000000000000051.54489519 17.3915728531 .0635319600000000000000000000000000 000000
20001520224241000036.760452744 .3076453818 .93190192000 000000000000000000000000000000000036.7604527 44.3076453818 .9319019200000000000000000000000000 000000
200015202262680005.42753002326 .0481870726 .15997676
 0000000000005.42753002326 .0481870726 .159976767 .569610583
 000
20001520228281100007.49800004856 .9030135926 .1441846

007.49800004856 .9030135926 .14418469 .4548017690000000000 000000000000000000
20001520230301000005.50213162648 .089105624 .24066711
 005.50213162648 .089105624 .2406671122 .168095670000000000 000000000000000000
200015202323240000043.30581346000025 .353698660

43.30581346000025 .35369866031 .3404878800000000000000 0000000000

 00000000000000
20001520236363000000000014.215011610000000000
 14.215011610000000000058 .13063623000027 .65435215000 000000

 00000000000000
200115202181830062.3181843937 .68181561000000000000 00000000000000000000000000062.3181843937 .68181561 00000000000000000000000000000000000000
2001152022020240074.8106072325 .1893927700000000000 00000000000000000000000000000074.8106072325 .18939277
 200115202222280067.3995784332 .6004215700000000000 00000000000000000000000000000667.3995784332 .60042157 000000000000000000000000000000000000 200115202242430014.3045507185 .695449290000000000 00000000000000000000000000014.3045507185 .69544929
 20011520226266000087.799809012 .2001910000000000 000000000000000000000000000000087.799809012 .2001910 000000000000000000000000000000
20011520228287000095.416344964 .583655042000000000 00000000000000000000000000000005.41634496
 20011520230301200002.19736376824 .466115973 .3365203400 000000000000000000000000000000000000 2.19736376824 .466115973 .33652034000000000000000000 00000000000
200115202323216000011.1948209128 .443138260 .3620408900 0000000000000000000000000000000000 11.1948209128 .443138260 .362040890000000000000000000 00000000000
200115202343420000079.4972705120 .502729490000000 0000000000000000000000000000000079.49727051

 00000000000000

 000000001000000

 000000000000100 \# AKSLP ghost marginal ages ($\mathrm{N}=2$)
\#Year Seas Fleet Gender Partition AgeError LbinLo LbinHi Nsamp

 0100001000000000
 1000100000100000000032814101901001000000000 00000000000010001
\#NWSLP CAAL (N=91)
\#NWSLP females
\#Year Seas Fleet Gender Partition AgeError LbinLo LbinHi Nsamp

 000000000000000

 000000000000000

 00000000000000

 00000000000000
2000161022222800060.6976175839 .30238242000000000 00000000000000000000000000060.69761758
 0
20001610224244.50004 .05596827767 .8684186028 .0756131200
 67.8684186028 .07561312000000000000000000000000 000000
2000161022626110001.75541342763 .0344364235 .21015015000 00000000000000000000000000000000001.755413427
 000000
200016102282848000018.2765902843 .1870970824 .7130521
7.1220949496 .70116559800000000000000000000000000 000000018.2765902843 .1870970824 .71305217 .122094949
 200016102303034.500002 .00233911941 .2161695940 .17092592
 00000002.00233911941 .2161695940 .170925929 .339515018
7.271050350000000000000000000000000000000 200016102323210.50000078 .32151778 .7872965398 .620773427
 0078.32151778 .7872965398 .62077342700004 .270412332000000 00000000000000000
2000161023434100000000010000000000000000000
 00000000000000

 00000000000000
200016102383830000000000000000033.333333330 33.333333330033 .3333333300000000000000000000000000 0000000033.33333333033 .333333330033 .333333330000000 0000000
2000161024040600000000000000016.66669788 16.66669788016 .6666978833 .3332084900016 .6666978800000000 000000000000000000016.6666978816 .666697880 16.6666978833 .3332084900016 .66669788000000000000 2000161024242130000000000007.6923143410 7.692314341007 .692314341007 .6923143417 .6923143417 .692314341 7.69231434115 .3845422515 .384628687 .69231434100000000 7.6923143410000000000007 .69231434107 .69231434100 7.692314341007 .6923143417 .6923143417 .6923143417 .692314341 15.3845422515 .384628687 .692314341000000007 .692314341 200016102444450000000024.5403408200000000000 000000000000000075.459659180000000024 .54034082 000000000000000000000000000075.45965918

 000000000000100

 00000000000000
200116102161640074.1230972925 .8769027100000000000 0000000000000000000000000000074.1230972925 .87690271

 00000000000000
2001161022020220096.323906121 .8380469411 .8380469410000

 0000000
200116102222220055.5580813844 .441918620000000000 0000000000000000000000000000055.5580813844 .44191862 000000000000000000000000000000000000 200116102242470010.8064098323 .5039413865 .689648790000 0000000000000000000000000000000010.80640983 23.5039413865 .689648790000000000000000000000000 0000000
200116102262614006.75628974340 .5400423952 .703667860000 000000000000000000000000000000060756289743
 0000000
2001161022828110011.5231788111 .9722398610 .64138619 28.2237140537 .63948109000000000000000000000000000 000000011.5231788111 .9722398610 .6413861928 .22371405
 2001161023030160004.00194365928 .695755137 .30516689
 00000004.00194365928 .695755137 .3051668922 .49785076
 200116102323250002.2473440212 .39141718711 .17474891 42.6012508732 .949532952 .3758257073 .884054653000000000 2.375825707000000000000000000002 .247344021 $2.39141718711 .1747489142 .6012508732 .94953295 \quad 2.3758257073 .884054653$ 0000000002.375825707000000000000000000
2001161023434140004.6802330079 .30020550436 .01183578 39.708586350004 .0984873076 .200652050000000000000000 0000000000004.6802330079 .30020550436 .0118357839 .70858635
 000
200116102363660000031.1309067312 .1762727900
15.482862370018 .668515130022 .5414429800000000000000 0000000000031.1309067312 .176272790015 .4828623700 18.668515130022 .54144298000000000000000000000 2001161023838700000009.219776685009 .2197766850 18.4395533726 .950558290000000026 .9505582900000000000 009.21977668500000009 .2197766850009 .219776685018 .43955337 26.950558290000000026 .95055829000000000000 9.219776685
2001161024040500000000000033.2233488200 33.2233488210 .8219100511 .36569616000011 .3656961600000000 0000000000000000033.223348820033 .22334882 10.8219100511 .36569616000011 .3656961600000000000000 20011610242423000000000000033.33333333000000 033.333333330000000033 .3333333300000000000000000 00033.33333333000000033 .3333333300000000033 .33333333 000000

 00000000000000

 00000000000000

 00000000000000
2002161022020130031.3927735259 .951546278 .6556802050000 0000000000000000000000000000000031.39277352 59.951546278 .65568020500000000000000000000000000 0000000
20021610222228500098.551052461 .448947536000000000 000000000000000000000000000098.55105246
 0
2002161022424137.500087 .1640022111 .712217230 .396500205
 0087.1640022111 .712217230 .3965002050 .7272803610000000000 0000000000000000000
200216102262652.500083 .5859484314 .471643071 .94240850100 000000000000000000000000000000000000000 83.5859484314 .471643071 .9424085010000000000000000000 000000000000
2002161022828340005.27142043619 .7789851263 .71292691
 005.27142043619 .7789851263 .7129269111 .236667540000000000 0000000000000000000
200216102303029000010.5130128861 .2618504124 .61113808
 0010.5130128861 .2618504124 .611138083 .6139986280000000000 000000000000000000
20021610232321700005.61339946310 .4640801171 .0424801

005.61339946310 .4640801171 .042480112 .880040330000000000 000000000000000000
200216102343410000012.715230803 .64490908158 .2093985
 012.715230803 .64490908158 .209398525 .43046161000000000000 0000000000000000
20021610236363000000054.93609928000045 .063900720
0000000000000000000000000000000000054.936099280
 200216102444040000000042.27873102000000000 29.813603260000000000000000027 .9076657200000000 042.2787310200000000029 .8136032600000000000000000 0027.90766572

 000000000000100

 000000000000000000033.33333333066 .66666667

 000000000000100
\#NWSLP males
\#Year Seas Fleet Gender Partition AgeError LbinLo LbinHi Nsamp
20001620214142.5017 .3335674633 .883535640048 .7828969000 0000000000000000000000000000017.33356746
 00000000

 000000000000000

 00000000000000
2000162022222300061.3113443338 .68865567000000000 00000000000000000000000000061.31134433
 0
200016202242410.500013 .6929856854 .366971316 .158395111
 000000013.6929856854 .366971316 .15839511122 .36220361

200016202262616000017.0509536740 .9982013941 .9508449300
 17.0509536740 .9982013941 .95084493000000000000000000 00000000000
2000162022828380000.6352798475 .27752753441 .1226738
 00000000.6352798475 .27752753441 .122673842 .16771835

200016202303020.5000016 .8728795878 .01129402 2.23372838

000000016.8728795878 .011294022 .233728381 .706640979
1.1754570430000000000000000000000000000
20001620232327.50000018 .343307481 .2832939990
26.791132840000026 .7911328400026 .791132840000000000
00000000000018.343307481 .283293999026 .7911328400000 26.7911328400026 .791132840000000000000000000 2000162023434160000000002.36401135900013 .94796479 6.97402157820 .9219863713 .94796479006 .9740215780013 .947964790
 2.36401135900013 .947964796 .97402157820 .9219863713 .9479647900 6.9740215780013 .9479647906 .97402157806 .97402157806 .9740215780 000000
20001620236361100000000000005.9453324420
5.9453324425 .945332442040 .5467423911 .8905980805 .945332442
5.9453324425 .945332442005 .945332442000005 .94533244200000 000000000005.94533244205 .9453324425 .9453324420 40.5467423911 .8905980805 .9453324425 .9453324425 .94533244200 5.945332442000005 .9453324420000

 000000100000000

 000500000000050

 000000000100000

 00000000000000

 00000000000000

 00000000000000

 00000000000000
200116202222250087.30963481012 .69036519000000000 00000000000000000000000000087.309634810
 0
2001162022424400079.2205491620 .77945084000000000 00000000000000000000000000079.22054916
 0
20011620226262100036.893123525 .7564660332 .23873182000
 36.893123525 .7564660332 .2387318200000005 .11167865100000 00000000000000000
2001162022828900013.439572955 .9693883422 .19116249
 0013.439572955 .9693883422 .191162498 .3998762700000000000 000000000000000000
200116202303024000025.5080228226 .8572887438 .695087240
 025.5080228226 .8572887438 .6950872408 .9396012030000000000 00000000000000000
200116202323227000013.1775146244 .5548347435 .67173667 3.21712883203 .378785136000000000000000000000000000
000000013.1775146244 .5548347435 .671736673 .2171288320 3.3787851360000000000000000000000000000 200116202343425000003.64368303216 .892971739 .242387554 7.10121678112 .59216661 .58877656007 .10121678111 .11961983
 000003.64368303216 .892971739 .2423875547 .10121678112 .5921666 1.58877656007 .10121678111 .1196198316 .515527577 .1012167810000 007.101216781000000000000
2001162023636230000000010.2847829212 .16506663 10.284782922 .73749820901 .88028370812 .165066633 .7605674170 8.4041409940013 .159836650008 .34969193300008 .404140994000 008.4041409940000000010 .2847829212 .1650666310 .28478292 2.73749820901 .88028370812 .165066633 .76056741708 .40414099400 13.159836650008 .34969193300008 .404140994000008 .404140994
 18.282828280000000000081 .7171717200000000000000 000000000018.2828282800000000000081 .71717172

 000000000000100

 000000000000100

 00000000000000

 00000000000000
20021620218182500992.112315667 .88768433800000000000 00000000000000000000000000092.112315667 .887684338

2002162022020100051.4024670348 .597532970000000000 00000000000000000000000000000000051.4024670348 .59753297
 200216202222268001.51065427393 .504131293 .323476294
 001.51065427393 .504131293 .3234762941 .6617381470000000000 00000000000000000000
2002162022424127.5001 .59267421886 .8870239710 .73219321
 001.59267421886 .8870239710 .732193210 .7881085970000000000 00000000000000000000
200216202262659.500074 .1757065615 .496666987 .473859414
 000000074.1757065615 .496666987 .4738594141 .49483826100000 01.3589287880000000000000000000000 20021620228283400044.496605818 .7878577856 .7058297 10.78769396 .3831128312 .8388999890000000000000000000 000000000000044.496605818 .7878577856 .705829710 .7876939 6.3831128312 .8388999890000000000000000000000000 000
20021620230303300008.08427241565 .3328200524 .05193533
 008.08427241565 .3328200524 .051935332 .5309722130000000000 000000000000000000
2002162023232170005.26560302411 .8262872934 .19587229 21.0185002527 .6937371500000000000000000000000000 00000005.26560302411 .8262872934 .1958722921 .01850025
 2002162023434100000029.1204955946 .3975656624 .481938750 000000000000000000000000000000000000 29.1204955946 .3975656624 .48193875000000000000000000 0000000000
20021620236363000000000000000034.68335788000
 00000034.683357880000032 .65832106000000032 .65832106 000000
200216202383850000000000000000000030.850545300 000030.850545312 .2768537111 .198440260000000014 .82361543 0000000000000000030.850545300000030 .8505453 12.2768537111 .198440260000000014 .82361543
 59.630218450000023 .729611960000016 .640169580000000000 00000000000000059.630218450000023 .729611960000 16.64016958
\# NWSLP ghost marginal ages ($\mathrm{N}=3$)
\#Year Seas Fleet Gender Partition AgeError LbinLo LbinHi Nsamp
20001 -6 $302-1$-1 27000.3542037490 .2844941831 .668875353
6.69757774313 .110934988 .7581012 .2198223162 .465665372000
0.6923660171 .2490390730 .6245230450 .6245230451 .249046090 .624523045
1.249046091 .2490390730 .6245230451 .249046090 .6245230451 .24904609
1.2490390731 .249046090 .624523045000000003 .1694063850
0.7874921360 .2166512110 .5547433063 .19620534110 .623649396 .245469036
1.317331150 .690969580 .211697018000 .6245230451 .249039073
1.8735691352 .4980851621 .2490390734 .2592025361 .8735621170 .624523045
0.6245230450 .6245230451 .87356211700 .6245230450 .624523045
1.2490460900 .6245230450 .62452304500 .6245230450 .62452304500
0.624523045

2001 1-6 3 0 0 2 - 1 -1 357 0 0.12891079311 .79726675 2.53198902
5.2596691759 .0033751287 .4220413710 .7939935290 .486754490 .129825931
0.3297217540 .1985107491 .3323420160 .58027170200 .7692848020 .1890131
0.1985107490 .2977413900 .19851074900 .778782451000000
0.198510749000000 .19851074900 .64710151120 .544056972 .27592351
5.1067421936 .3898151576 .1692421620 .9442492971 .870665772 .067420444
0.8399482970 .189013100 .9086083821 .7485814121 .6092083660 .580271702
0.580271702000 .908633115000 .7100976330 .5765122160000
0.580271702000001 .929828206

20021 -6 $302-1-1819004.73714029530 .529815064 .725338105$
5.3795264913 .2080060991 .6696449870 .7075117020000 .134024406000 00.16630484300000000000000000 .16630484300 .9765658350 03.90684174526 .51182344 .4649049417 .0135721062 .582600184
1.2869345210 .12405382800000 .11277495500 .07783661600 .278928312
0000.073292015000 .5578566230 .1109984290 .10124819500 0.0732920150 .11099842900000 .211861022
\#NWCBO CAAL ($\mathrm{N}=448$)
\#NWCBO females
\#Year Seas Fleet Gender Partition AgeError LbinLo LbinHi Nsamp

 00000000000000
20031710214144089.8276737410 .1723262600000000000 0000000000000000000000089.8276737410 .172326260 000000000000000000000000000000000 20031710216163.5001000000000000000000000 0000000000000000100000000000000000000 000000000000000
200317102181870037.9524512562 .047548750000000000 000000000000000000000000037.9524512562 .04754875 0000000000000000000000000000000000
2003171022020100054.6320255945 .367974410000000000 0000000000000000000000000054.6320255945 .36797441 000000000000000000000000000000000 200317102222248.5009 .77183420472 .0851157918 .143050000 0000000000000000000000000000009.771834204 72.0851157918 .143050000000000000000000000000 000000
20031710224245200055.0276283144 .97237169000000000 0000000000000000000000000555.02762831 44.97237169000000000000000000000000000000 0
200317102262632.50005 .60909577462 .54163331 .84927123000 00000000000000000000000000000005.609095774 62.54163331 .849271230000000000000000000000000 00000
200317102282842000081.090216564 .26944328610 .44428143 4.196058716000000000000000000000000000000 0081.090216564 .26944328610 .444281434 .1960587160000000000 000000000000000000
200317102303020000015.982044682 .50125896473 .52595182 7.9907445340000000000000000000000000000000 0015.982044682 .50125896473 .525951827 .9907445340000000000 000000000000000000
20031710232321900000.730069318 .71887938915 .82313686 71.7197347203 .00817971800000000000000000000000 00000000.730069318 .71887938915 .8231368671 .719734720 3.00817971800000000000000000000000000 200317102343418000000.2340849940 .24431373233 .29884555 32.578884421 .68940582431 .95446548000000000000000000 0000000000000.2340849940 .24431373233 .2988455532 .57888442 1.68940582431 .95446548000000000000000000000000 0
200317102363628000000018.5901488925 .09560089 25.7173117224 .681470855 .237486970 .338990343000000 .3389903430 0000000000000000000000018.5901488925 .09560089 25.7173117224 .681470855 .237486970 .338990343000000 .3389903430 0000000000000000 200317102383814000000023.5828102314 .59641855 30.294181196 .8302955260 .211583669023 .4638856700 .0757284810000 0.493744444000 .4513522440000000000000000000 23.5828102314 .5964185530 .294181196 .8302955260 .2115836690
23.4638856700 .07572848100000 .493744444000 .45135224400000 0000000
20031710240406000000000044.3847206003 .6196417780 01.0582918722 .93298337744 .38472060003 .61964177800000000 00000000000000044.3847206003 .61964177800 1.0582918722 .93298337744 .38472060003 .619641778000000000 0000
20031710242427000000000000001.7649522120 4.11863237858 .740735274 .1186323780000000000001 .764952212 29.49209555000000000000000001 .76495221204 .118632378 58.740735274 .1186323780000000000001 .764952212 29.49209555 000
2003171024444100000000000000000019.418596030 0.63348378300010 .0515527600 .220007584000019 .41859603
10.05155276010 .0515527610 .0515527620 .1031055300000000000 00000019.4185960300 .63348378300010 .0515527600 .2200075840 00019.4185960310 .05155276010 .0515527610 .0515527620 .10310553 20031710246468000000000000000000000000 0000000018.94940190081 .0505981000000000000000 0000000000000000018.94940190081 .0505981

20031710248481000000000000000000000000 0000000000010000000000000000000000000 000000000000100
2004171021010401000000000000000000000000 0000000000000010000000000000000000000 00000000000000
200417102121270100000000000000000000000 0000000000000010000000000000000000000 00000000000000
2004171021414130100000000000000000000000 0000000000000010000000000000000000000 00000000000000
200417102161610.5024 .0460105975 .953989410000000000 000000000000000000000000024.0460105975 .95398941 00000000000000000000000000000000000 20041710218182400100000000000000000000000 00000000000000001000000000000000000000 00000000000000
2004171022020220029.4945495170 .505450490000000000 0000000000000000000000000029.4945495170 .50545049 00000000000000000000000000000000 2004171022222600069.3094788730 .69052113000000000 000000000000000000000000069.30947887 30.69052113000000000000000000000000000000 0
2004171022424210007.40165768391 .167466621 .430875696000 00000000000000000000000000000007.401657683 91.16746662 1.430875696 0000000000000000000000000 000000
200417102262651.50002 .35605233182 .9331244614 .7108232100 0000000000000000000000000000000 2.35605233182 .9331244614 .71082321000000000000000000 000000000000
200417102282829000074.1484052925 .85159471000000000 00000000000000000000000000074.14840529
25.85159471000000000000000000000000000000 200417102303034000056.0562499526 .9806591115 .46237682 1.50071412100000000000000000000000000000000 0056.0562499526 .9806591115 .462376821 .5007141210000000000 000000000000000000
20041710232322300005.91877669686 .053399515 .273599916
2.75422387800000000000000000000000000000000 005.91877669686 .053399515 .2735999162 .7542238780000000000 000000000000000000
200417102343480000049.070354155 .59191882733 .13120370
 049.070354155 .59191882733 .1312037012 .206523320000000000 0000000000000000
2004171023636600000009.05335688751 .15089514
 0009.05335688751 .1508951439 .79574797000000000000000 00000000000

 00050000000000
2004171024040400000000010.945461620000000
27.866900260000000000000000027 .86690026033 .32073787
0000000010.9454616200000027 .8669002600000000000 000000027.86690026033 .32073787

 000000000000100

 000000000000100

 00000000000000
20051710110103.520 .8079216179 .1920783900000000000 000000000000000000000000020.8079216179 .192078390

 000000000000000000000000000024.1261472475 .8738527600 0000000000000000000000000000000000000
 000000000000000000000082.89616217 .103838000000 0000000000000000000000000000000
200517101161620.503 .70244748396 .2975525200000000000 0000000000000000000000000003.70244748396 .29755252 0000000000000000000000000000000000000
20051710118184100098.791800121 .20819988400000000000 000000000000000000000000098.791800121 .208199884 0000000000000000000000000000000000000 2005171012020190023.6840169176 .3159830900000000000 00000000000000000000000000000023.6840169176 .31598309

 00000000000000
20051710124241200042.2362301646 .7494330611 .01433678000 000000000000000000000000000000000042.23623016
 000000
2005171012626290002.59791393617 .2067297372 .49356357
 002.59791393617 .2067297372 .493563577 .701792770000000000 0000000000000000000
20051710128283600005.69588754989 .141228995 .16288346500 0000000000000000000000000000000000 5.69588754989 .141228995 .162883465000000000000000000 00000000000
20051710130303900000.58544661269 .156394530 .2581588900 0000000000000000000000000000000000 0.58544661269 .156394530 .25815889000000000000000000 00000000000
20051710132322600000.45670262815 .3846221381 .97006022
 000.45670262815 .3846221381 .970060222 .1886150310000000000 000000000000000000
200517101343423000002.45348210923 .7104155168 .82213448
 002.45348210923 .7104155168 .822134485 .0139679040000000000 00000000000000000
20051710136361700000000.70624904837 .33498845
 00000000000000.70624904837 .3349884524 .62939387
 200517101383860000000049.577868480 .4149789350
 0049.577868480 .414978935050 .00715259000000000000000 000000000
20051710140408000000000000010.8494581618 .31385316 4.354853554000014 .450797230000033 .24091756000000 18.7901203300000000000000010 .8494581618 .31385316 4.354853554000014 .450797230000033 .24091756000000 18.79012033000
20051710142427000000000016.571065220010 .02954151 00010.0295415100010 .029541510033 .28122723010 .029541510000 0000010.02954151000000000016 .571065220010 .029541510 0010.0295415100010 .029541510033 .28122723010 .029541510000 000010.02954151
2005171014444500000000000000013.837435350000 00013.885119030000013 .8851190344 .5072075700000
13.885119030000000000000013 .8374353500000000 13.885119030000013 .8851190344 .507207570000013 .88511903

 001000000000000

 000000000000100

 0000000000000

 00000000000000

 00000000000000

 000000000000000
 000000000000000000000000000000095.122366944 .8776330640

 00000000000000
200617101181873.50096 .83158963 .168410396000000000 000000000000000000000000000096.8315896
3.168410396000000000000000000000000000000000 00
200617101202036005.66314890194 .336851100000000000 0000000000000000000000000005.66314890194 .3368511

200617101222253001.25946339683 .4344629515 .306073650000 00000000000000000000000000000000000001.259463396 83.4344629515 .3060736500000000000000000000000000 0000000
20061710124242800033.9235633966 .076436610000000000 0000000000000000000000000000000000033.92356339
 0
2006171012626180002.0772764286 .9239651910 .99875839000

 000000
20061710128281700005.87047828384 .382285138 .230076092
 005.87047828384 .382285138 .2300760921 .5171604920000000000 000000000000000000
2006171013030460000020.1892321778 .202732551 .6080352790

20.1892321778 .202732551 .608035279000000000000000000 0000000000
20061710132324600000048.2377581651 .762241840000000 0000000000000000000000000000000048.23775816
51.76224184000000000000000000000000000000000
2006171001343436000000038.46513345543 .3115214548 .22334509

00
8.46513345543 .3115214548 .22334509000000000000000000 000000000
20061710136361700000005.38607153122 .61049155
 000000005.38607153122 .6104915539 .8915222732 .111914650000 000000000000000000000
200617101383814000000000012.275763846 .83091189
 0000000012.275763846 .8309118933 .8278403307 .065483976000 000000000000000000

 00000000000000

 00000000007.234921509092 .76507849000000000

 00000000000000

 00000000000000

 00000000000000

 00000000000000
20071710114147071.6412742428 .35872576000000000000 00000000000000000000000000071.6412742428 .358725760 00000000000000000000000000000000000
20071710011616390098.4365954601 .5634045410000000000 000000000000000000000000000098.436595460 1.5634045410000000000000000000000000000000000 0
2007171011818670068.4715151429 .625334431 .9031504330000 0000000000000000000000000000000068.47151514 29.625334431 .9031504330000000000000000000000000 0000000
200717101202049.500093 .167565856 .832434154000000000 000000000000000000000000000093.16756585
 0
20071710122225900063.3972065834 .151735822 .451057601000

 000000
20071710124243400025.6213917964 .474409069 .904199144000 000000000000000000000000000000000000025.62139179
 000000
200717101262634000039.0651351836 .7385740524 .1962907700 00000000000000000000000000000000000
39.0651351836 .7385740524 .19629077000000000000000000 00000000000
2007171012828190000046.9165410124 .400307154 .018262045
 0046.9165410124 .400307154 .01826204524 .66488980000000000 00000000000000000
200717101330303200000014.4899806137 .8180349140 .80623788
 0014.4899806137 .8180349140 .806237886 .8857466060000000000 00000000000000000
20071710132324600000027.3366130654 .4266304815 .84665787
 0027.3366130654 .4266304815 .846657872 .3900985920000000000 0000000000000000
20071710134342900000017.4218697143 .2232079532 .20556215
 000000017.4218697143 .2232079532 .205562154 .210948112 2.938412085000000000000000000000000000
20071710136362200000066.68349118128 .6314486150 .26371009
 006.68349118128 .6314486150 .2637100914 .421350120000000000 0000000000000000
2007171013838100000000029.604770446 .092924926
 0000000029.604770446 .09292492624 .5537195639 .748585080000 00000000000000000000
20071710140407000000000010.36036574018 .51491066 10.36036574007 .78282435900000000052 .98153350000000 00000000000010.36036574018 .5149106610 .3603657400 7.78282435900000000052 .9815335000000000 2007171014242600000000000000014.128263610 7.88083129124 .55906728024 .5590672810 .423720410000000 18.44905014000000000000000000000000014 .128263610 7.88083129124 .55906728024 .5590672810 .423720410000000 18.449050140000000

 00000000000000
2007171014646300000000000000000009.1040327840 00000052.5208779600000000038 .375089260000000000 000000009.104032784000000052 .52087796000000000 38.37508926

 00000000000000
2008171011010312.2754847287 .7245152800000000000000 000000000000000000000000012.2754847287 .7245152800
 20081710112123034.6008377765 .3991622300000000000 00000000000000000000000034.6008377765 .399162230 000000000000000000000000000000000000
 000000000000000000000000038.1811007861 .818899220

2008171011616200018.4928943781 .5071056300000000000 0000000000000000000000000000018.4928943781 .50710563

200817101181819.50049 .7835244350 .216475570000000000 00000000000000000000000000049.78352443
50.21647557000000000000000000000000000000000 00
200817101202059000.62319456194 .864553914 .5122515290000 0000000000000000000000000000000000.623194561
 0000000
20081710122224300012.0492988686 .697017731 .253683405000 00000000000000000000000000000000012.04929886 86.697017731 .2536834050000000000000000000000000 000000
200817101242435000098.453707921 .54629207700000000 00000000000000000000000000000000098.45370792
 200817101262622000012.0882379285 .1645352 .747227085000 000000000000000000000000000000000012.08823792
 0000
20081710128281400004.59324586866 .3675834729 .0391706600 0000000000000000000000000000000000000 4.59324586866 .3675834729 .03917066000000000000000000 00000000000 2008171013030130000024.6344651440 .3128532935 .052681570 00000000000000000000000000000000000
24.6344651440 .3128532935 .05268157000000000000000000 0000000000
2008171013232270000007.31866085826 .1075270432 .24483784
 007.31866085826 .1075270432 .2448378434 .328974260000000000 0000000000000000
200817101343433000000020.5095627137 .96159969
19.311328028 .378674313 .838835290000000000000000000000 00000000000020.5095627137 .9615996919 .311328028 .3786743 13.8388352900000000000000000000000000
20081710136361100000002.7552858526 .812210872
19.269645776 .22871745213 .7967767244 .325152466 .812210872000000 000000000000000000000000002.7552858526 .812210872 19.269645776 .22871745213 .7967767244 .325152466 .812210872000000 0000000000000000
20081710138389000000000043.7550955711 .63828245
12.391294519 .8240329700000000012 .3912945000000000000 00000000000043.7550955711 .6382824512 .391294519 .82403297 0000000012.39129450000000000000
200817101404013000000003.73324631700015 .11487377 6.8785274890012 .143021160027 .73588098025 .402148826 .61264397 2.379657494000000000000000000000003 .7332463170000 15.114873776 .8785274890012 .143021160027 .73588098025 .40214882 6.612643972 .379657494000000000000
200817101424240000000000000000010.69765026000 000034.795934270034 .7959342700000019 .7104812000000 0000000000010.69765026000000034 .7959342700 34.7959342700000019 .710481200
 20.745121546 .24217599000023 .950662749 .06203976400000000 0000000000000000000020.745121546 .242175990000 23.950662749 .0620397640000000
 0508.192901427000000000441 .807098570000000000000000 000000000000508.1929014270000000041 .80709857

 00000000000000

 00000000000000

 00000000000000

 00000000000000
 000000000000000000000000000000000449.2822014750 .71779853
 20091710118183802.39771459190 .193515787 .40876962700000 0000000000000000000000000000000020.397714591
 00000000
2009171012020640042.522105652 .1784865 .2994084000000 0000000000000000000000000000042.5221056
 00000
20091710122225400074.5383738425 .461626160000000000 00000000000000000000000000074.53837384
 0
200917101242445.50004 .05428175294 .180783641 .7649346100 000000000000000000000000000000000000 4.05428175294 .180783641 .76493461000000000000000000 000000000000 200917101262650000039.182157346 .5367263614 .2811163400 0000000000000000000000000000000000000 39.182157346 .5367263614 .28111634000000000000000000 00000000000
200917101282832.500006 .09715525882 .0124323111 .03207628
 006.09715525882 .0124323111 .032076280 .8583361480000000000 000000000000000000
2009171013030230000037.0035335436 .41301143 .2130158310
 00000037.0035335436 .41301143 .21301583102 .868698269
 20091710132322400000016.348316551 .736585741 .826240494 15.296757850 .93991075613 .85218866000000000000000000 00000000000016.348316551 .736585741 .82624049415 .29675785
 200917101343432.5000000030 .3234839939 .47446362 17.0632343112 .344457240 .79436083500000000000000000000 000000000000030.3234839939 .4744636217 .06323431
 200917101363629000000024.1694875711 .41612055
 000000000000024.1694875711 .4161205562 .49706793
 200917101383821000000001.1906215662 .842474909 2.14311881848 .2926998312 .938252721 .547362488 .1993643421 .244748229
 1.1906215662 .8424749092 .14311881848 .2926998312 .938252721 .54736248
 0
20091710140401200000000000016.563376780 16.7568184321 .117294104 .94857978609 .897159571000000 4.948579786000025 .768191550000000000000000 16.56337678016 .7568184321 .117294104 .94857978609 .897159571000 0004.948579786000025 .768191550000 2009171014242100000000000000006.840473055 2.9633640580014 .933730425 .87134963514 .9337304230 .57322881 5.9710309015 .9710309010005 .9710309010005 .971030901000000 0000000000006.8404730552 .9633640580014 .93373042 5.87134963514 .9337304230 .573228815 .9710309015 .971030901000 5.9710309010005 .9710309010000
 2.316984789021 .30742617 .08432143600021 .307426100047 .98384157 00000000000000000000000002.3169847890 21.30742617 .08432143600021 .307426100047 .98384157
 0044.9692735244 .96927352000000010 .06145297000000000
0000000000000000044.9692735244 .969273520000000 10.06145297

 000000000000100

 000000000000000

 000000000000000
 0000000000000000000000000041.211357458 .7886426000 00000000000000000000000000000000
20101710116164201.00286251898 .997137480000000000000 00000000000000000000000000001.00286251898 .997137480 000000000000000000000000000000000000 201017101181897.50093 .368264786 .2588842190 .3728510010000 000000000000000000000000000000000000093.36826478
 0000000
2010171012020370036.0954510662 .441608641 .4629403020000 0000000000000000000000000000000000036.09545106
 0000000
20101710122223100050.0404474548 .699285381 .260267165000
 48.699285381 .2602671650000000000000000000000000 000000
20101710124243800010.211043782 .986150526 .802805779000 0000000000000000000000000000000000010.2110437
 000000
201017101262634000037.8919125549 .9300067512 .178080700 0000000000000000000000000000000000 37.8919125549 .9300067512 .1780807000000000000000000 00000000000
2010171001282832000022.21229372372 .8268963524 .9608099300 000000000000000000000000000000000000 2.21229372372 .8268963524 .96080993000000000000000000 00000000000
2010171013030310000019.8182324351 .7602336328 .421533940

19.8182324351 .7602336328 .42153394000000000000000000000 0000000000
20101710132321300000014.5132713785 .48672863000000 000000000000000000000000000000014.51327137
 201017101343417000000016.4010703333 .444936780
 0016.4010703333 .44493678050 .15399289000000000000000 0000000000
201017101363624000000019.132946617 .112172965
 000000000000019.132946617 .11217296510 .45836328

2010171013838140000000015.27429217017 .22125893
3.79925167127 .4500353615 .274292171 .94696675916 .870194610
2.1637083340000000000000000000000000000
15.27429217017 .221258933 .79925167127 .4500353615 .27429217
1.94696675916 .8701946102 .16370833400000000000000000 0
201017101404090000000000003.69814632203 .698146322 3.69814632222 .994377213 .2431231923 .243123192022 .99437721
 03.69814632203 .6981463223 .69814632222 .994377213 .243123192
3.243123192022 .9943772129 .012599817 .41796041300000000000 000
2010171001424240000000000000000008.5875754840
 000000008.587575484080 .52985642000010 .8825681000000 00000000
 000000000044.05524841700000044 .16130782288 .1341468600000 000000000000003.6492968990000000004 .0552484170 00004.16130782288 .13414686

 000000000000100

 0000000000000

 00000000000000

 00000000000000
20111710114149.5033 .7421858466 .257814160000000000 00000000000000000000000000000000033.7421858466 .25781416

 00000000000000
201117101181870094.008256855 .99174315300000000000
0000000000000000000000000000094.008256855 .991743153 0000000000000000000000000000000000000
2011171012020310018.6414904281 .3585095800000000000 000000000000000000000000000000000018.6414904281 .35850958 000000000000000000000000000000000000
201117101222262000099.451482560 .5485174410000000000 000000000000000000000000000000099.45148256
 0
20111710124245400079.9830519118 .668915281 .3480328010000
 18.668915281 .34803280100000000000000000000000000 000000
20111710126261900011.4367131312 .1686754176 .39461146000 00000000000000000000000000000000000000011.43671313
 000000
20111710128283100008.61203354780 .0872089611 .300757500 0000000000000000000000000000000 8.612033547 80.08720896 11.3007575 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000000000
2011171013030300000025.7547181939 .3453024533 .982292420 0000.91768693400000000000000000000000000000 025.7547181939 .3453024533 .9822924200000 .9176869340000000 0000000000000000
201117101323234000002.4434360829 .82715276745 .87847494 15.7972148326 .05372138000000000000000000000000 00000002.4434360829 .82715276745 .8784749415 .79721483
26.0537213800000000000000000000000000
20111710134342000000011.2331750131 .5425738637 .0814334 18.883743281 .2590744440000000000000000000000000 000000011.2331750131 .5425738637 .081433418 .88374328
1.2590744440000000000000000000000000
2011171013636180000000032.4168017110 .00295355
24.940862494 .04968881328 .58969344000000000000000000 000000000000032.41680171 10.00295355 24.94086249 4.04968881328 .5896934400000000000000000000000 2011171013838140000000009.4113634115 .782092633 16.7361821734 .6273580215 .481232971 .0764109271 .4041268915 .48123297 00000000000000000000000000009.411363411 5.78209263316 .7361821734 .6273580215 .481232971 .0764109271 .40412689 15.481232970000000000000000000 20111710140401500000000003.609121406051 .103748370 1.07692460511 .873656741 .0769246058 .77733292315 .213215841 .076924605 0005.0400535150000001 .152097387000000000000000 3.609121406051 .1037483701 .07692460511 .873656741 .076924605
8.77733292315 .213215841 .0769246050005 .040053515000000
1.15209738700000
2011171014242110000000000000015.56764032
11.5080269615 .567640321 .4119639190015 .567640322 .086250502
18.5341973616 .65005916000000001 .698090679001 .40849045300
00000000000015.5676403211 .5080269615 .567640321 .411963919 0015.567640322 .08625050218 .5341973616 .6500591600000000 1.698090679001 .408490453
201117101444480000000000000000001.128091623 023.27256913023 .272569130023 .2725691300025 .0773210100000 3.9768799630000000000000000001 .1280916230 23.27256913023 .272569130023 .2725691300025 .0773210100000 3.976879963

201117101464620000000000000000000000 91.684353180000000000008 .315646815000000000000 000000000091.684353180000000000008 .315646815 20111710148482000000000000000000000000 0000000000010000000000000000000000000 000000000000100
201117101880.51000000000000000000000000 0000000000000100000000000000000000000 00000000000000
20121710110100.5010000000000000000000000 0000000000000001000000000000000000000 000000000000000
20121710112126.50100000000000000000000000 0000000000000001000000000000000000000 000000000000000
20121710114145.5072 .576778627 .4232214000000000000 0000000000000000000000000072.576778627 .423221400 0000000000000000000000000000000000
201217101161619.50080 .383103719 .58076240410 .03613389000 00000000000000000000000000000000000000.38310371 9.58076240410 .0361338900000000000000000000000000 0000000
201217101181859.50091 .804949858 .195050153000000000 0000000000000000000000000001.80494985
 00
201217101202032.50046 .0199899842 .4588479511 .52116206000 0000000000000000000000000000000000004601998998
 0000000
20121710122222500020.1373065929 .23455250 .628141410000 0000000000000000000000000000000020.13730659 29.23455250 .62814141000000000000000000000000000 00000
2012171012424530001.58278541565 .5841079332 .69480917
 001.58278541565 .5841079332 .694809170 .138297480000000000 0000000000000000000
2012171012626420000.89462042764 .289588829 .951538742
 00000000.89462042764 .289588829 .95153874224 .3727198
 201217101282826000072.4839970312 .6047744314 .9112285300 0000000000000000000000000000000000000 72.4839970312 .6047744314 .91122853000000000000000000 00000000000
2012171013030270000007.25041290731 .3732242960 .76349884
 007.25041290731 .3732242960 .763498840 .6128639660000000000 00000000000000000
201217101323219000003.27191958320 .769499144 .188712020
 0000003.27191958320 .769499144 .18871202014 .39972093
17.370148360000000000000000000000000000
20121710134341700000010.9590174233 .298715535 .61084193 16.4674764228 .66979391004 .9941547990000000000000000 00000000000010.9590174233 .298715535 .6108419316 .46747642
 201217101363612000000018.60202051 .53652670944 .8786275 1.67953428318 .60202051 .26614583113 .43512468000000000000 0000000000000000018.60202051 .53652670944 .8786275 1.67953428318 .60202051 .26614583113 .43512468000000000000 0000000000
20121710013838140000000000000045.683081224 .66658749 1.0523216420 .019101635 .5718859641 .3534444791 .653577597000000
000000000000000000000000445.683081224 .66658749
1.0523216420 .019101635 .5718859641 .3534444791 .653577597000000 00000000000
20121710140401100000000000000005.783404813
16.557179185 .7834048139 .21595315841 .60456098014 .285934410 3.337014304000000003 .43254834500000000000000000
005.78340481316 .557179185 .7834048139 .21595315841 .604560980
14.2859344103 .337014304000000003 .432548345000

44.889426270016 .389463190019 .360555270000019 .36055527000 00000000000000000000444.889426270016 .3894631900 19.360555270000019 .3605552700
 20.478471920000000000079 .521528080000000000000000 000000000020.478471920000000000079 .52152808
 000000010.3448909500089 .65510905000000000000000 0000000000000000010.3448909500089 .65510905

 000000000000100

 00000000000000

 00000000000000
20131710112124.5090 .637612549 .3623874570000000000 000000000000000000000000000090.637612549 .362387457

 00000000000000
2013171011616805.64003983960 .1427546434 .2172055200000 00000000000000000000000000000000005.640039839
60.1427546434 .2172055200000000000000000000000000 00000000
2013171011818250091.248633188 .751366819000000000000 000000000000000000000000001.248633188 .751366819 00000000000000000000000000000000000000 2013171012020310010.8920409684 .212639454 .8953195980000 00000000000000000000000000000000010.89204096
 0000000
20131710122225400095.121880093 .4053585961 .472761319000 0000000000000000000000000000000000000095.12188009
 000000
20131710124242600065.3699993225 .19902715 .62704697
 0065.3699993225 .19902715 .627046973 .80392661100000000000 000000000000000000
2013171012626160004.37996667522 .7508972172 .86913612000 0000000000000000000000000000000004.379966675 22.7508972172 .8691361200000000000000000000000000 000000
201317101282821000020.1532382977 .463327542 .38343417600

 00000000000
20131710130302600006.62550406663 .5777087322 .27645931

006.62550406663 .5777087322 .276459317 .5203278910000000000 000000000000000000
201317101323221000004.56493689811 .1999989950 .05602975
 00000004.56493689811 .1999989950 .0560297533 .29066209
0.8883722760000000000000000000000000000
2013171001343419000000011.6102702618 .8342112320 .55626731
46.42606819002 .573183008000000000000000000000000 000000011.6102702618 .8342112320 .5562673146 .4260681900 2.573183008000000000000000000000000
2013171013636250000009.7259482390 .6952316553 .512796869 48.029179733 .43222474921 .4272658312 .592200980 .585151944000000 000000000000000000000009.7259482390 .695231655 3.51279686948 .02917973 3.432224749 21.42726583 12.59220098 0.585151944 0000000000000000000000 201317101383812000000002.04109687318 .777642970 20.045035628 .9624474044 .72321172415 .2484579711 .0739217700
1.397986994000000017 .730198670000000000000000000 2.04109687318 .77764297020 .045035628 .9624474044 .723211724
15.2484579711 .07392177001 .397986994000000017 .73019867000 000000
20131710014040120000000000014.42867525000 .978337870
14.42867525020 .90745114021 .2043625100013 .6238227214 .428675250 000000000000000000000014.42867525000 .978337870 14.42867525020 .90745114021 .2043625100013 .6238227214 .428675250 00000000000
20131710014242160000000000000000000002.347766605 3.0528192866 .22799336506 .22799336511 .2590778711 .25907787
10.560579919 .97149536710 .56057991000010 .560579910017 .97203655 0000000000000000002.3477666053 .0528192866 .227993365 06.22799336511 .2590778711 .2590778710 .560579919 .971495367
10.56057991000010 .560579910017 .97203655
 000036.7011948208 .7265821450000054 .572223030000000000 000000000000000000036.7011948208 .7265821450000 54.57222303

 000000000000100

 000000000000100

 0000000000000
2014171011010228.6372760471 .362723960000000000000 0000000000000000000000028.6372760471 .3627239600

 00000000000000

 00000000000000
201417101161623.5072 .8897922427 .1102077600000000000 00000000000000000000000000000072.8897922427 .11020776

2014171011818180066.1765577533 .8234422500000000000 0000000000000000000000000000666.1765577533 .82344225

2014171012020290039.1806980960 .8193019100000000000 000000000000000000000000000039.1806980960 .81930191
 201417101222235.500066 .9039172631 .488069461 .60801327900

 000000000000
20141710124243400030.3965310362 .92378301 5.075311873
 0030.3965310362 .923783015 .0753118731 .604374090000000000 0000000000000000000
2014171012626280008.35506117965 .0745272523 .69610679
 008.35506117965 .0745272523 .696106792 .8743047830000000000 0000000000000000000
20141710128282000009.57716938315 .5110616573 .17776560
 09.57716938315 .5110616573 .177765601 .7340033700000000000 0000000000000000
201417101303019000007.15547287548 .8936921841 .234083
 007.15547287548 .8936921841 .2340832 .71675194400000000000 0000000000000000
201417101323218000001.18423358920 .6085100778 .207256340 000000000000000000000000000000000000 1.18423358920 .6085100778 .20725634000000000000000000 0000000000
201417101343416000001.4738719991 .33932951818 .75076191
65.3214896310 .72994871001 .10696498901 .27763324200000000000 000000000000000001.4738719991 .33932951818 .75076191 65.3214896310 .72994871001 .10696498901 .277633242000000000 000000000000
2014171013636800000002.935473856032 .81729777
 000000000002.935473856032 .8172977731 .35832391 .530580565 31.35832390000000000000000000000000
2014171013838100000000001.97930310308 .2249303190 39.47210180049 .48888068000 .83478410000000000000000 00000000001.97930310308 .224930319039 .472101800 49.48888068000 .8347841000000000000000000 201417100140404000000000000016.82761455000 54.7490520616 .05244971012 .370883690000000000000000000 0000000000016.8276145500054 .7490520616 .052449710 12.3708836900000000000000000

 001000000000000

 00000000000000

 000000000000100
\#NWCBO males
\#Year Seas Fleet Gender Partition AgeError LbinLo LbinHi Nsamp 2003172021414401000000000000000000000000
 00000000000000
20031720216167.5023 .3052944152 .4563511724 .238354420000
00000000000000000000000000000000023.30529441 52.4563511724 .23835442000000000000000000000000000 00000000
20031720218181907.22867792252 .3788642840 .3924577900000 00000000000000000000000000000007.228677922
 00000000
2003172022020200017.4485148282 .5514851800000000000 0000000000000000000000000000017.4485148282 .55148518
 200317202222262.5001 .57267530481 .3182954516 .62399897
 001.57267530481 .3182954516 .623998970 .4850302690000000000 00000000000000000000
20031720224246800071.973808722 .646943464 .6072960920
 071.973808722 .646943464 .60729609200 .7719517460000000000 000000000000000000
200317202262662.500017 .3380094555 .0483576923 .31332086
 000000017.3380094555 .0483576923 .313320862 .839440894
 2003172022828680006.58627284564 .5020957313 .52527452 3.9488951796 .2072352772 .61511322102 .615113221000000000000 000000000000000006.58627284564 .5020957313 .52527452
3.9488951796 .2072352772 .61511322102 .61511322100000000000 00000000000000
200317202303024000019.1355181315 .2968354964 .18901121
 0019.1355181315 .2968354964 .189011211 .3786351690000000000 000000000000000000
20031720232322800001.2953999248 .0503319731 .362765475
81.272723491 .9639534862 .7375675880 .4917189911 .334779051000000
1.49076002200000000000000000000000001 .295399924
$8.0503319731 .36276547581 .272723491 .963953486 \quad 2.737567588 \quad 0.491718991$ 1.33477905100000001 .4907600220000000000000000000 20031720234343300000052.6390394215 .3509639618 .15658977 0.39861741900 .9860422978 .7099088790 .4575391091 .07865400500
 000052.6390394215 .3509639618 .156589770 .39861741900 .986042297 8.7099088790 .4575391091 .078654005000 .1579488371 .078654005 0.9860422970000000000000000 200317202363610000000012.0382779926 .18262528 21.341147774 .815594840004 .52627622800009 .7545755600 10.6707511600010 .670751160000000000000000 12.0382779926 .1826252821 .341147774 .815594840004 .526276228000 09.754575560010 .6707511600010 .67075116000000000 20031720238385000000000000.8303490030000 2.0899783360000000000044 .37170961006 .336253450000 45.37170961000000000000 .8303490030002 .0899783360000 000000045.37170961006 .33625345000045 .37170961
200317202404030000000000000000000011.01953390 000000000000000888.9804661000000000000000000 00011.01953390000000000000000088 .9804661

 000000000000100

 000000000000100

 00000000000000

 00000000000000

 00000000000000
20041720216167.5042 .6563635257 .343636480000000000 0000000000000000000000000042.6563635257 .34363648
 2004172021818300090.161667669 .8383323390000000000 000000000000000000000000000090.161667669 .838332339
 2004172022020150060.281806937 .456314782 .2618783150000 0000000000000000000000000000000060.2818069
 0000000
200417202222217009.03471491478 .7256231812 .23966190000 00000000000000000000000000000000009034714914
 0000000
20041720224243900014.6779302660 .9487694223 .61487897
 000000014.6779302660 .9487694223 .614878970 .391285333

200417202262655.50000 .51613768968 .8906865430 .5931757700

0.51613768968 .8906865430 .59317577000000000000000000 000000000000
200417202282856000070.0874841510 .3376060519 .574909800
 70.0874841510 .3376060519 .5749098000000000000000000 00000000000
2004172023030250000666.5638160333 .4361839700000000 0000000000000000000000000000066.56381603
 20041720232321300005.32122941953 .4131451724 .28578979
12.817463464 .16237215600000000000000000000000000 00000005.32122941953 .4131451724 .2857897912 .81746346 4.16237215600000000000000000000000000000000 2004172023434170000003.75721748219 .8603080814 .93886022 023.18044785009 .56579159409 .5657915949 .5657915949 .56579159400 000000000000000000000003.75721748219 .86030808 14.93886022023 .18044785009 .56579159409 .5657915949 .565791594 9.565791594000000000000000000
2004172023636900000006.458314824006 .458314824000 16.632381797 .4356047928 .7648558330007 .03990486807 .43560479200 0019.88750914000000019 .88750914000000006 .45831482400 6.45831482400016 .632381797 .4356047928 .7648558330007 .039904868 07.435604792000019 .88750914000000019 .88750914 20041720238389000000005.5645461740000000 16.9398779931 .107087976 .1862571600005 .6815535790014 .16720998 006.1862571614 .1672099800000000000005 .564546174000 000016.9398779931 .107087976 .1862571600005 .68155357900 14.16720998006 .1862571614 .1672099800000
 0072.78639320000000027 .2136068000000000000000000 0000000000072.78639320000000027 .2136068

 000000000000100
200417202881.527 .7346700572 .26532995000000000000 00000000000000000000000000027.7346700572 .2653299500

 000000000000000
2005172011212330.97921945799 .02078054000000000000 00000000000000000000000000000.97921945799 .0207805400 000000000000000000000000000000000000
200517201141441082.9064807717 .09351923000000000000 00000000000000000000000000082.9064807717 .093519230

200517201161630.500 .91314935199 .086850650000000000 000000000000000000000000000000.91314935199 .08685065

2005172011818530098.991619491 .00838050900000000000 0000000000000000000000000098.991619491 .008380509
 2005172012020230040.1380087557 .978755061 .8832361820000 0000000000000000000000000000000040.13800875
 0000000
20051720122222800091.993211488 .006788522000000000 0000000000000000000000000000001.99321148
 0
2005172012424130003.59606783896 .40393216000000000 00000000000000000000000000003.596067838
 0
200517201262632000021.051605676 .545394892 .40299950100
 21.051605676 .545394892 .402999501000000000000000000 00000000000
20051720128285500007.34497053284 .838516427 .81651304500 000000000000000000000000000000000000 7.34497053284 .838516427 .816513045000000000000000000 00000000000
20051720130304400000.17312957426 .156890172 .8658508

000.17312957426 .156890172 .86585080 .8041295300000000000 00000000000000000
2005172013232260000026.7764717914 .4132501955 .713049090
 026.7764717914 .4132501955 .7130490903 .0972289250000000000 0000000000000000
2005172013434200000009.2814250596 .82337215715 .20372385 8.15029755938 .1500288817 .305780572 .542685958002 .5426859580000 000000000000000000000009.2814250596 .823372157 15.203723858 .15029755938 .1500288817 .305780572 .54268595800 2.54268595800000000000000000000
200517201363623000000000.7967202881 .07818468 2.1368772092 .28755554746 .9608819400 .432771510 .432771510 .800893095 1.5109561900043 .5623880300000000000000000000000 00.7967202881 .078184682 .1368772092 .28755554746 .960881940 0.432771510 .432771510 .8008930951 .5109561900043 .562388030000 0000000000
200517201338310000000000000000027.720020410000 13.3182050100005 .627385795 .622988025 .62298802028 .7323869300 00006.6591025036 .696923320000000000000027 .72002041 00013.3182050100005 .627385795 .622988025 .622988020 28.732386930000006 .6591025036 .69692332
20051720144040600000000000000000000021.954906930 021.954906936 .59355064221 .95490693005 .586821638000000000 21.954906930000000000000000021 .9549069300 21.954906936 .59355064221 .95490693005 .586821638000000000 21.95490693

 0000000000000

 00000000000000
2006172011010422.0595412477 .940458760000000000000 00000000000000000000000022.0595412477 .9404587600 000000000000000000000000000000000000

 000000000000000
200617201141430089.3504881110 .64951189000000000000 000000000000000000000000000089.3504881110 .649511890 0000000000000000000000000000000000 2006172011616190090.252419719 .7475802900000000000 0000000000000000000000000000090.252419719 .74758029 00000000000000000000000000000000000000 200617201181872.50088 .6650993111 .33490069000000000 00000000000000000000000000088.66509931
 00
2006172012020380016.9635013783 .0364986300000000000 00000000000000000000000000000016.9635013783 .03649863 0000000000000000000000000000000000000
200617201222251004.350483485 .188746710 .4607699000000 000000000000000000000000000004.3504834
 000000
20061720124242200016.085060783 .91493930000000000 00000000000000000000000016.085060783 .91493930 0000000000000000000000000000000
200617201262624000035.7746508648 .3735595915 .8517895500 00000000000000000000000000000000
35.7746508648 .3735595915 .85178955000000000000000000 00000000000
20061720128283000002.45746381247 .9681221345 .59266839 3.981745664000000000000000000000000000000 002.45746381247 .9681221345 .592668393 .9817456640000000000 000000000000000000
200617201303044000007.90193244688 .618444673 .4796228840 000000000000000000000000000000000 7.90193244688 .618444673 .479622884000000000000000000 0000000000
20061720132324600000036.1803878152 .01648931 9.370043884 0.9156723941 .5174066060000000000000000000000000 000000036.1803878152 .016489319 .3700438840 .915672394 1.5174066060000000000000000000000000
20061720134344700000004.69123581764 .67659383
20.342694673 .7774005584 .1819885520 .9398711871 .3902153890000000 000000000000000000000004.69123581764 .67659383 20.342694673 .7774005584 .1819885520 .9398711871 .390215389000000 0000000000000000
200617201363615000000000012.0532563546 .01169308 27.639253791 .660162921 .7942600074 .4135927550001 .660162920 2.97335816401 .7942600070000000000000000000000 12.0532563546 .0116930827 .639253791 .660162921 .7942600074 .413592755 0001.6601629202 .97335816401 .794260007000000000000 2006172013838700000000000002.928639549 41.8994899900006 .7367417170000041 .8994899906 .53563876100 00000000000000000002.92863954941 .899489990000 6.7367417170000041 .8994899906 .53563876100000000

200617201404010000000000000000000000000 0000000001000000000000000000000000000 000000000010000
200617201660.51000000000000000000000000 0000000000000100000000000000000000000 00000000000000
200617201880.510000000000000000000000000 00000000000000100000000000000000000000 00000000000000
20071720112121101000000000000000000000000 0000000000000010000000000000000000000 00000000000000
20071720114145051.1759024248 .8240975800000000000 00000000000000000000000051.1759024248 .824097580 00000000000000000000000000000000000
20071720116164800100000000000000000000000 0000000000000001000000000000000000000 00000000000000
2007172011818550088.1033119910 .6930282201 .20365979000 0000000000000000000000000000088.10331199 10.6930282201 .2036597900000000000000000000000 0000000
200717201202062.5009 .71175212882 .852959086 .644017842 0.791270953000000000000000000000000000000
009.71175212882 .852959086 .6440178420 .7912709530000000000 00000000000000000000
20071720122225400047.0794817948 .051520024 .86899819000 000000000000000000000000000000000047.07948179
 000000
20071720124244000016.0487636953 .5843199830 .36691632000 000000000000000000000000000000000001604876369
 000000
200717201262634001.303266908032 .8597169158 .1036219
 01.303266908032 .8597169158 .10362197 .7333942910000000000 0000000000000000000 20071720128282700000.85074163320 .42307741 .0687353
 00000000.85074163320 .42307741 .06873539 .85538813227 .80205794 0000000000000000000000000000000 200717201303040000003.46387233728 .4860513435 .26702475
 005.46387233728 .4860513435 .2670247530 .783051570000000000 00000000000000000
20071720132324700000044.25233219569 .8019730812 .2398491 6.1987424282 .103247424005 .403855767000000000000000000 0000000000004.25233219569 .8019730812 .23984916 .198742428
 2007172013434460000005.14105011412 .717932748 .36610888 2.2513206353 .5941036947 .72995199716 .605428280003 .594103694000 00000000000000000000000005.14105011412 .7179327 48.366108882 .2513206353 .5941036947 .72995199716 .60542828000 3.5941036940000000000000000000
20071720136362300000001.09732619112 .75555165
$9.0712298476 .33044018410 .9558618517 .78940692 \quad 2.29699465516 .586932$ 1.2045329969 .2508433416 .330440184006 .33044018400000000000 0000000000001.09732619112 .755551659 .0712298476 .330440184 10.9558618517 .789406922 .29699465516 .5869321 .2045329969 .250843341 6.330440184006 .3304401840000000000000000
200717201383810000000000027.424647930027 .42464793 1.5218766021 .92617190201 .2662325015 .19559920500014 .960124910 10.140349510010 .140349510000000000000000000000 27.424647930027 .424647931 .5218766021 .92617190201 .266232501
5.19559920500014 .96012491010 .140349510010 .14034951000000 0000
200717201404050000000000000000000004.740885361 0047.868653000039 .7167635800000000007 .6736980600000 000000000000004.7408853610047 .868653000039 .71676358 000000007.67369806

 000000001000000

 00000000000000
2008172011010219.8920239180 .107976090000000000000 0000000000000000000000000019.8920239180 .1079760900

20081720112124046.7308203253 .2691796800000000000 0000000000000000000000046.7308203253 .269179680 000000000000000000000000000000000 200817201141426024.4678550575 .5321449500000000000 00000000000000000000000024.4678550575 .532144950 0000000000000000000000000000000000 2008172011616280010000000000000000000000 00000000000000010000000000000000000000 00000000000000
200817201181825.50049 .180497550 .81950250000000000 000000000000000000000000049.1804975 50.81950250 0 0000000000000000000000000000000 200817201202054004.83966087987 .657502417 .5028367090000 000000000000000000000000000000004.839660879 87.657502417 .502836709000000000000000000000000 0000000
20081720122224200044.1269679655 .87303204000000000 0000000000000000000000000044.12696796 55.87303204000000000000000000000000000000 0
2008172012424560000.49562348671 .6688865427 .339866490
0.495623486000000000000000000000000000000 00.49562348671 .6688865427 .3398664900 .4956234860000000000 000000000000000000
200817201262626000034.6384620465 .086876350 .27466160200 0000000000000000000000000000000
34.6384620465 .086876350 .274661602000000000000000000 00000000000
2008172012828160000043.257963469 .68332247818 .77733321 28.281380850000000000000000000000000000000 0043.257963469 .68332247818 .7773332128 .281380850000000000 00000000000000000
2008172013030200000030.4748184115 .8943249628 .03838343 8.32423492615 .9498844700001 .31835380200000000000000 00000000000030.4748184115 .8943249628 .038383438 .324234926 15.9498844700001 .31835380200000000000000000000 0
20081720132323400000011.2737976336 .6146678631 .20344148 18.9663087801 .94178425800000000000000000000000 000000011.2737976336 .6146678631 .2034414818 .966308780 1.94178425800000000000000000000000000 200817201343446000000010.1363856415 .6953105 29.433245079 .418154381020 .906153018 .5877395290002 .8018849120 1.4632271290001 .5578998320000000000000000000 10.1363856415 .695310529 .433245079 .418154381020 .90615301
8.5877395290002 .80188491201 .4632271290001 .55789983200000 0000000
200817201363612000000002.612499042016 .73852026
7.92803961617 .2964012813 .9957793313 .437201820013 .995779330000 013.99577933000000000000000000002 .6124990420 16.738520267 .92803961617 .2964012813 .9957793313 .4372018200 13.995779330000013 .99577933000000000000 20081720138388000000000000006.5943678780 11.6413794742 .907708970005 .954222354011 .641379470011 .64137947 003.28009408106 .339468303000000000000000000 6.594367878011 .6413794742 .907708970005 .954222354011 .641379470 011.64137947003 .28009408106 .3394683030000

20081720140402000000000000000000000
35.256782010000000000000000664 .74321799000000000 000000000035.256782010000000000000000 64.74321799

 000000100000000

 00000000000000

 00000000000000

 00000000000000
200917201141443097.778424232 .22157576800000000000 00000000000000000000000000000097.778424232 .2215757680

200917201161621.5053 .3757149346 .6242850700000000000 000000000000000000000000000053.3757149346 .62428507 0000000000000000000000000000000000000
20091720118185900992.916626266 .4972013880 .5861723550000

 0000000
2009172012020740035.7463070662 .110277922 .1434150170000 00000000000000000000000000000000035.74630706 62.110277922 .143415017000000000000000000000000000 0000000
200917201222263001.82179553167 .3527969429 .66695116
 001.82179553167 .3527969429 .666951161 .1584563660000000000 00000000000000000000
200917201242451.50002 .49154704391 .014456076 .49399688200 0000000000000000000000000000000000
 000000000000
200917201262649000038.8028605757 .352440143 .84469929300 0000000000000000000000000000000000000 38.8028605757 .352440143 .844699293000000000000000000 00000000000
200917201282837.500002 .15911687558 .3620275331 .67539968
0.9697982086 .83365770300000000000000000000000000 00000002.15911687558 .3620275331 .675399680 .969798208 6.8336577030000000000000000000000000000000 2009172013030370000019.5563437159 .2850728518 .10468044
 000000019.5563437159 .2850728518 .104680442 .549951341 0.5039516600000000000000000000000000000 2009172013232360000001.11074489855 .1362729625 .82249543
 0000000000001.11074489855 .1362729625 .8224954315 .90531506
 200917201343440.500000002 .34065983814 .41044996 15.5378679735 .54199928 .2606702703 .9083529670000000000000 000000000000000002.34065983814 .4104499615 .53786797
35.54199928 .2606702703 .908352967000000000000000000 0000
200917201363628000000002.27008943811 .03764737
43.598653221 .2838986255 .8540818493 .60465408816 .175218218 .607295189
4.49885552300001 .3552263260000001 .714380168000000000 00000002.27008943811 .0376473743 .598653221 .283898625
5.8540818493 .60465408816 .175218218 .6072951894 .4988555230000
1.3552263260000001 .7143801680000000
2009172013838210000000000002.7594651220
14.9897241517 .378524820003 .40937904513 .585136059 .741702588000 03.70898002208 .097233529020 .75420709003 .7089800221 .8666675560 0000000000002.759465122014 .9897241517 .37852482000 3.40937904513 .585136059 .74170258800003 .70898002208 .0972335290 20.75420709003 .7089800221 .8666675560
2009172014040800000000000000033.5573325400000 00020.315264818 .4556886796 .44442343316 .39133906 .380262856000 8.45568867900000000000000000000033 .557332540000000 020.315264818 .4556886796 .44442343316 .39133906 .380262856000 8.4556886790000

 0000000000000000018.9755713200081 .02442868

20091720144441000000000000000000000000100000
 00000000000000

 000000000000000

 000000000000000
 0000000000000000000000000000068.9707793231 .029220680 000000000000000000000000000000000000000 20101720116165001.07832367998 .92167632000000000000 00000000000000000000000001.07832367998 .921676320

201017201181894.50094 .318539575 .681460435000000000 0000000000000000000000000000094.31853957
 00
2010172012020660070.6958642126 .29767153 3.006464258 00000

26.29767153 3. 00646425800000000000000000000000000 0000000
201017201222243007.45605993956 .3746699934 .0382688
 007.45605993956 .3746699934 .03826882 .1310012710000000000 00000000000000000000
20101720124243900015.32435767 76.34197381 8.333668517 0000 00000000000000000000000000000000000015.32435767
 000000
201017201262636000026.4150461267 .84850585 .73644808000 00000000000000000000000000000000000026.41504612 67.84850585 .73644808000000000000000000000000000 0000
20101720128283500000.6586549979 .1137258812 .00557389
 000.6586549979 .1137258812 .005573898 .2220452440000000000 000000000000000000
2010172013030270000020.7451883860 .8288031518 .426008460
 20.7451883860 .8288031518 .42600846000000000000000000 0000000000
20101720132321400000024.4841551358 .427009485 .069169512
 00000000000024.4841551358 .427009485 .0691695124 .979016776
 2010172013434200000000006.66444240661 .45216448 10.3209993819 .37224507002 .1901486620000000000000000 00000000000006.66444240661 .45216448 10.32099938
 2010172013636120000000003.61392554232 .64078699 31.549835064 .02155984912 .0640904804 .02155984912 .0882422200000 00000000000000000000000003.61392554232 .64078699 31.549835064 .02155984912 .0640904804 .02155984912 .0882422200000 00000000000000
2010172013838500000000000000020.07804897
40.5024521500000000000039 .4194988800000000000000 00000000020.0780489740 .5024521500000000000 39.419498880000000

2010172014040300000000000000000006666747803
 000066.6674780300000000000033 .3325219700000

 0000000000000

 00000000000000
201117201141414.5032 .0110768867 .9889231200000000000 0000000000000000000000000032.0110768867 .98892312
 2011172011616110092.374898857 .62510114800000000000 000000000000000000000000000000092.374898857 .625101148 000000000000000000000000000000000000

 00000000000000
2011172012020310023.8533631376 .146636870000000000 000000000000000000000000000000023.8533631376 .14663687

20111720122227800096.966053983 .0339460210000000000 00000000000000000000000000096.96605398
 0
20111720124245300075.9014739216 .150239277 .948286813000

 000000
20111720126262600018.6188823811 .3076960965 .74728178
4.3261397410000000000000000000000000000000000
0018.6188823811 .3076960965 .747281784 .3261397410000000000 0000000000000000000
201117201282828000017.1289658540 .284625941 .71972193
 0017.1289658540 .284625941 .719721930 .8666863150000000000 000000000000000000
201117201303036000003.40797729352 .7369739134 .1232607
 00000003.40797729352 .7369739134 .12326078 .796499622
 20111720132324100000010.1005832140 .9237646738 .27035743 8.1779278232 .527366869000000000000000000000000000 000000010.1005832140 .9237646738 .270357438 .177927823 2.527366869000000000000000000000000000 201117201343434000000016.2129847428 .52041645 19.5374222423 .031932997 .0419825684 .3498588220 .925477416000000 00000.379924766000000000000000000016 .21298474 28.5204164519 .5374222423 .031932997 .0419825684 .3498588220 .925477416 00000000000.37992476600000000000 201117201363631000000000.5384493486 .420386226 6.86419956533 .4211051722 .127815020 .8935358325 .2797402846 .420386226 6.73160171200007 .9550653540000 .311215486000000 3.036499775000000000000 .5384493486 .4203862266 .864199565 33.4211051722 .127815020 .8935358325 .2797402846 .4203862266 .731601712 00007.9550653540000 .3112154860000003 .036499775000 2011172013838100000000000010.307286511 .3662384480 019.764567100001 .7882096131 .37423137023 .5308871319 .76456710 02.33944562219 .76456710000000000000000000 10.307286511 .3662384480019 .764567100001 .7882096131 .374231370 23.5308871319 .7645671002 .33944562219 .76456710000000

 0100000000000000

 000000000001000

 00000000000000

 000000000000000

 000000000000000
20121720114144.5076 .3968367523 .6031632500000000000 0000000000000000000000000076.3968367523 .60316325
 201217201161619.50063 .8184614422 .6132830513 .56825551000
 22.6132830513 .5682555100000000000000000000000000 0000000
201217201181870.50089 .7588669810 .241133020000000000 000000000000000000000000000089.75886698
 00
201217201202040.50072 .8478325415 .4964483111 .65571915000

 0000000
2012172012222210009.67472035489 .652223410 .673056234000
 89.652223410 .6730562340000000000000000000000000 000000
20121720124246100011.6164095568 .1445357319 .74804244

 0000000000000000000
201217201262646000070.815436228 .441184740 .74337905800
 70.815436228 .441184740 .743379058000000000000000000 00000000000
201217201282826000021.4908852346 .5329020319 .37453903
 0021.4908852346 .5329020319 .3745390312 .60167370000000000 000000000000000000 201217201303035000009.08106618547 .2198661930 .04197988 5.9768819765 .9768819760001 .70332379000000000000000 0000000000009.08106618547 .2198661930 .041979885 .976881976 5.9768819760001 .703323790000000000000000000000 0
201217201323222000002.4754028390 .6814628929 .8032631
 000000000000000002.4754028390 .6814628929 .8032631 27.1402930335 .581761413 .7451509220 .572665811000000000000 000000000000
20121720134341800000003.4566780757 .544647548 2.8944621172 .01168246820 .39916215019 .225326776 .217683764 .68908228 16.7806374216 .78063742000000000000000000000000000 03.4566780757 .5446475482 .8944621172 .01168246820 .399162150 19.225326776 .217683764 .6890822816 .7806374216 .780637420000000 00000000000
20121720136362000000000001.303353845014 .31084361 28.5119762710 .523670602 .43723798114 .951947838 .523744147
2.4372379812 .04803991308 .52374414706 .4282036820000000000 000000000001.303353845014 .3108436128 .5119762710 .5236706 02.43723798114 .951947838 .5237441472 .4372379812 .0480399130 8.52374414706 .42820368200000000000
20121720138388000000000000002.540269433
2.54026943300000034 .539276618 .9765316080041 .76637738
4.8186377720004 .818637772000000000000000000000
2.5402694332 .54026943300000034 .539276618 .97653160800
41.766377384 .8186377720004 .81863777200000

0000047.2059935400000000000044 .313698540000000000 008.480307925000000000000447 .205993540000000000 44.31369854

 000000000000100

 00000000000000
20131720112126.5094 .226811525 .7731884750000000000 00000000000000000000000094.226811525 .773188475 00000000000000000000000000000000000 20131720114144077.9951267322 .0048732700000000000 0000000000000000000000077.9951267322 .004873270 0000000000000000000000000000000000 20131720116165012.5191656387 .4808343700000000000 00000000000000000000000012.5191656387 .480834370 000000000000000000000000000000000
2013172011818220087.3584654312 .641534570000000000 000000000000000000000000087.3584654312 .64153457 0000000000000000000000000000000000 2013172012020360012.931429787 .0685703000000000000 000000000000000000000000012.931429787 .068570300 00000000000000000000000000000000 201317201222249001.16993750491 .56427285 .152832541 2.112957159000000000000000000000000000000 001.16993750491 .56427285 .1528325412 .1129571590000000000 00000000000000000000
20131720124243300049.4624915525 .5653675824 .97214087000 000000000000000000000000000000049.46249155 25.5653675824 .97214087000000000000000000000000 000000
2013172012626160003.96891559150 .1416557342 .1153496 3.7740790780000000000000000000000000000000 003.96891559150 .1416557342 .11534963 .7740790780000000000 0000000000000000000 201317201282826000011.6465670372 .416416715 .9370162800 0000000000000000000000000000000 11.6465670372 .416416715 .93701628000000000000000000 00000000000
2013172013030280000029.5429515431 .6723727910 .26922524 26.5177089301 .99774149300000000000000000000000 000000029.5429515431 .67237279 10. 2692252426.517708930 1.9977414930000000000000000000000000 201317201323237000007.61310682314 .1330599751 .45874723 17.741085651 .9655397927 .088460537000000000000000000 0000000000007.61310682314 .1330599751 .4587472317 .74108565 1.9655397927 .088460537000000000000000000000000 0
201317201343437000000.3871889491 .03759383530 .32722673 11.5848360926 .835973599 .06348599901 .6345247571 .634524757 8.3470869850 .475649162004 .33595457204 .335954572000000000 000000000000.3871889491 .03759383530 .3272267311 .58483609 26.835973599 .06348599901 .6345247571 .6345247578 .347086985 0.475649162004 .33595457204 .335954572000000000000000 201317201363632000000007.4013095311 .5084966100 7.37185586216 .041713898 .33395384602 .0109574267 .422875792 3.5519247750 .46783896721 .5621254506 .93148492306 .54483659 0.4699900770 .380636254000000000000000007 .40130953 11.50849661007 .37185586216 .041713898 .33395384602 .010957426 7.4228757923 .5519247750 .46783896721 .5621254506 .9314849230 6.544836590 .4699900770 .380636254000000000
2013172013838200000000000002.39231663710 .79419638 8.363432098011 .5238452400 .729648868006 .3461726195 .136142323
0.729648868010 .794196385 .1361423236 .3461726196 .346172619
2.3923166376 .3461726195 .136142323000 .72630931810 .760972130000
000000002.39231663710 .794196388 .363432098011 .523845240 0.729648868006 .3461726195 .1361423230 .729648868010 .79419638 5.1361423236 .3461726196 .3461726192 .3923166376 .3461726195 .136142323 000.72630931810 .76097213
 00031.1204388102 .110124686000014 .85358394000000
20.69933014000000000000000000031 .21652242000 31.1204388102 .110124686000014 .853583940000020 .69933014

 0000000000000
2014172011010152.8547900147 .145209990000000000000 0000000000000000000000000552.8547900147 .1452099900
 201417201121235098.4471015701 .552898435000000000000 0000000000000000000000000088.4471015701 .552898435 0000000000000000000000000000000000000
201417201141469099.148955240 .851044759000000000000 00000000000000000000000000099.148955240 .8510447590 000000000000000000000000000000000000
201417201161634.5080 .6736431610 .399806938 .9265499050000 0000000000000000000000000000000000.67364316 10.399806938 .926549905000000000000000000000000 00000000
20141720118181908.38241874787 .557875134 .05970612700000 00000000000000000000000000000080.382418747
 00000000
20141720120203402.46793755125 .513911769 .20622282 .81192795
 2.46793755125 .513911769 .20622282 .811927950000000000000 000000000000000000
201417201222236.500045 .598435454 .4015646000000000 000000000000000000000000000000000045.598435454 .4015646 0000000000000000000000000000000000 20141720124243100039.3520202749 .2564321311 .3915476000

 000000
2014172012626270004.69420023640 .173272552 .18290291000
 4.69420023640 .173272552 .182902910002 .949624358000000000 00000000000000000 20141720128282800004.3759242514 .11920744485 .55132231 2.2994144761 .827065761 .8270657600000000000000000000 000000000004.3759242514 .11920744485 .551322312 .299414476
 0
201417201303039000001.40267288461 .0147522929 .87236524
7.710209579000000000000000000000000000000000000 001.40267288461 .0147522929 .872365247 .7102095790000000000 00000000000000000
201417201323226000001.60541317115 .1778282453 .46044399
2.8747277199 .5449784491 .3188116982 .637808778013 .3799879500000 00000000000000000000000001.60541317115 .17782824 53.460443992 .8747277199 .5449784491 .3188116982 .6378087780 13.379987950000000000000000000000
2014172013434230000001.17194744957 .7230137619 .16072721 15.191250281 .9841109362 .1015288030 .9920554681 .675366094000000 000000000000000000000001.17194744957 .72301376 19.1607272115 .191250281 .9841109362 .1015288030 .9920554681 .675366094 0000000000000000000000
20141720136367000000007.4697776230024 .30310266 24.3031026607 .1256819735 .89854567830 .899789400000000000 00000000000000007.4697776230024 .3031026624 .30310266 07.1256819735 .89854567830 .899789400000000000000000 000
201417201383840000000000000003.5251623350 2.4626841580000091 .87487346002 .137280044000000000000 00000000000003.52516233502 .46268415800000 91.87487346002 .13728004400000000000

 091.02775921000008 .9722407900000000000000 \#NWCBO ghost marginal ages ($\mathrm{N}=12$)
\#Year Seas Fleet Gender Partition AgeError LbinLo LbinHi Nsamp 20031 -7 $302-1$-1 74800.0673542370 .4311641563 .591990083 8.8061277881 .3127603714 .10449098611 .830998698 .3479248977 .724762523 8.1214258750 .82317690 .051678332 .8079799380 .0247335670 .008852457 0.0767551791 .6743821060 .9078390720 .0260472440 .0577174090 0.0651142740 .46605618600 .00904615300000 .7984433330 .438027879 0.8265886240 .4132943120 .4132943123 .00763008600 .151749838 0.4510073929 .435735817 .6106816562 .4165367744 .0452278494 .444000756 1.3094809720 .242752180 .1653718060 .1120039150 .4660561860 .024482338 0.0821997470 .0190377700 .0084516420 .1731522260 .10552374700 0.0577174090000 .0577174090 .413294312000 .0577174090000 0.914443895

20041 -7 $302-1-15940.020557081 .3748717282 .473902052 .958458874$ 26.709294456 .6431779980 .7735211790 .5103803840 .3447839490 .35423817 000000.12383605100 .1480720330000000000 .1480720330000 000.12383605100 .4199801180 .0205519912 .0275284742 .946796294 4.43723035730 .2689257811 .123242392 .6753359870 .498285290 .290119418 00.348172814000 .1238360510 .1238360510 .1791976910 .337166635 0.3957441350 .05407427800 .05241546400 .055361640 .04966264800 0.2719080840 .14807203300 .0540742780 .12383605100000 .267644017 $20051-7301-1-18040.1898918131 .1694453163 .282405716$ 2.2199798010 .7157468658 .1212432025 .8910157563 .19006246810 .94676693 5.3417870572 .8200652577 .9769854880 .0654115340 .1366699480 .05242078 000.02625547300 .08712405800 .0262554730 .02625547300 .087124058 2.8432620420 .02625547300 .0262554730 .084159003000 .11328589700 0.0746812310 .0618083862 .5091055795 .2620288192 .0930789283 .408602605 13.797384397 .316010642 .1736590570 .2053274370 .2628564340 .523573173 0.317479332 .875288100 .1355498160 .0525109450 .048588750 .178791064 0.05251094500 .0871240582 .6690173940 .0871240580 .022187626 0.0221702860 .04434057200 .1132858970000000 .026255473 0.11352865

20061 -7 $3001-1-1940$ 0.049532917 2.128097991 7.897718616 13.247443164 .9632146794 .6856877518 .3488328244 .4163247552 .254203563 1.0418509321 .0843711670 .9373268930 .67706869600 .1414165960 0.037757454000 .59052050100000 .04605579500 .59052050100000 00000.0944374642 .3311794466 .6756651088 .8618398023 .647968458 3.9295159919 .1356733843 .181309473 .4037225540 .9683930780 .5569765 1.3706581050 .752069340 .1469215520 .6365762960 .113289893000
0.1375596200 .07632136600 .04605579500 .59052050100 .09211159100 0000.11328989300

20071 -7 3 0 1-1-1 9870.023683160 .8747258096 .758839224 11.798531096 .7814574523 .5737610045 .3576724296 .8349818563 .379532472 0.4761461040 .3079563150 .2426655710 .179307910 .1003351060 .057720467 00.1075696980 .1342798110 .0753728710 .1003351060 .0425857010000 0.195825930 .51310039900 .0753728710000000 .143082862 0.0236889470 .6021842686 .4885606638 .1071877126 .9842633165 .37097829 4.5576133955 .6530868567 .1898009620 .6279046890 .4678697311 .289690417 1.484439840 .3040785730 .5131003990 .0617139620 .582326760 .19582593 0.01939449400 .4847292240 .195825930 .19582593000 .19582593 0.16247735600000 .0753728710000 .031392341 $20081-7301-1-17620.098170080 .3552319611 .685055894$ 10.1630291222 .856859086 .1006889241 .0607394841 .3238708231 .543806241 1.2579134670 .3641364180 .4165160290 .4266925510 .1561886630 0.0239598130 .077933384000 .17800768400 .1979922930 .16281271 0.09320592300 .0932059230 .0932059230 .04036480 .0152725390000 0.04414609200 .0779333840 .0981662020 .3247450582 .595559825 7.67760376419 .8142536612 .67360490 .6123597731 .7183002321 .409378425 1.478391840 .3497713890 .084006720 .6658291720 .3118770320 .1427117530 0.0779333840 .44150745600 .08230029100 .03986062800 .19830643100 0.077933384000 .09828642700 .0424396630000 .077933384 $20091-7301-1-1115903.3684280165 .2679328595 .024825327$ 6.7873099346 .5290554322 .6895008234 .2914347392 .2998465733 .981583335 1.1802217281 .8521604350 .5304814790 .5875818690 .4190166930 .23885054 0.0436679160 .0429389170 .109214790 .1288167520 .109214790 .22359107 0.0436679160 .0436679160 .02431345300 .4901210570 .341598842000 0.4908500550000 .57786188804 .3196766858 .2062562035 .589268241 7.4142397286 .3876927045 .2773153413 .9700633582 .2289897091 .691497244 2.6011524931 .1835067220 .2177860810 .249511020 .8309009010 .449981134 0.112679783000 .0889243290 .1832351470 .1653386820 .135359739 0.0563398920 .042938917 0.10921479 0.050026404 0.042511418 0.152153707 00.2799309610 .0780118500 .0500264040 .0251774520 .092537822 20101 -7 3 0 1 -1 -1 9120.248112681 0. 36566736112.57271628 6.86568821410 .268957229 .8248611495 .6327367773 .6379695920 .970145111 0.1711975292 .1364503750 .1811240250 .5316944950 .3335678240 .075423692 0.5943247730 .0330717480 .3851115820 .0330717480 .2344851550 .295855978 0.0756446490 .04191003000000 .036750683000000 .037711846 1.0945715550 .2481016340 .45318292813 .628277864 .6669058536 .39972292 8.6650188793 .4690644932 .0552486550 .0801356010 .2273537661 .437811774 0.5112835870 .371279670 .11313001400 .1916636770 .347841650 0.1512948220000000000 .228215498000 .0756446490000 $20111-7301-1-17960.0203131150 .5816722951 .507353444$ $13.54171381 .866096526 \quad 6.3515980642 .8974828874 .5430714083 .105114688$ 2.3867813421 .1770679760 .5196787873 .3299645010 .3451785430 .400486051 0.6316512210 .7216643120 .2864726790 .4589945610 .0313072270 .690357085 0.0462580641 .1013125740 .51569799400 .3451785430000 .371946607 0.03349257100 .037651465000 .1695615580 .0203131150 .325804067 $\begin{array}{llllll}1.651528422 & 15.22634971 & 2.656151533 & 4.786641056 & 5.489739567 & 5.335749792\end{array}$ 4.5304840162 .0985806041 .9620495182 .4190897841 .4867033820 .106162498 0.2838541160 .6903570850 .3619103880000 .031230210 .4516876150 1.1013125740 .3690392320 .01673184500 .0408572790 .345178543000 0.16325101500 .0341231440

20121 -7 301 -1 -1 79100.3113481373 .2651561211 .977999204 21.863029329 .9033554484 .4949421844 .3442412650 .1444639981 .15250055 0.8221674630 .2549857790 .5992266660 .5839700020 .0134035510 .290472256 0.1725632360 .0527254670 .0776101230 .25528202500 .2409330080

```
0.020475634 0.076437745 0 0 0.066106957 0 0 0 0.035486477 0.021061823
0.066106957 0 0.623632285 0 0.337619476 3.798477529 2.991840915
22.45886807 7.246533978 3.109513568 2.634259508 1.049183217 1.181201735
0.129421639 0.320434062 0.147171181 0.670618776 0.214589184 0.066106957
0.261638706 0.39033864 0.087657271 0.025064294 0.021061823 0.254361772
0.153764228 0 0.174331257 0.307585184 0.035486477 0 0 0 0.035486477 0 0
0 0 0.167700392
2013 1 -7 3 0 1 -1 -1 687 0.043304914 0.457214632 2.637605853
10.5879304 1.795515989 3.908405394 2.012363665 2.857379415 2.43503758
6.050962031 0.187911916 1.775137998 1.122194128 0.173888303 1.021901741
0.332581743 0.817170466 0 0.996134195 0.163023931 0.332581743 0
0.865070637 1.165193888 0.601247226 0.563946662 1.06497779 0.563946662
0.532488895 0 0.126611902 0 0.563946662 0 0 2.325976509 0.043309402
0.55436573 2.216628234 10.66802879 2.016200526 4.252632344 2.299989073
6.663791639 3.503022032 3.151597043 1.305820427 0 0.850521981
1.996217439 1.756599905 0.036483829 0.767538098 0.603926297 1.225493177
0.038063449 2.086879531 0.332581743 1.397061414 0.038238464 0.570727359
0.603926297 0.300136713 0.332581743 0.332581743 0.394541427 0.332581743
0.26916809 0 0 0.038063449 0.939047996
2014 1 -7 3 0 1 -1 -1 767 0.024214332 9.664818826 2.470767103
4.378582411 3.646614325 1.278512973 4.255310589 4.18751423 2.974641459
2.513582216 2.378442103 0.20330107 3.983408531 0 0.054023357
2.652047714 0.054023357 0 0.08326034 0 0 0 0 0 0 0.046806832 0 0 0 0 0
0 0 0 0 0.046806832 0.024208046 12.86007976 2.25328443 4.172766872
3.795967471 1.879885848 15.06057921 7.666583228 1.907431851 1.247937036
0.318413441 0.368432507 0.044719823 0.658771906 0.044719823 0.740731009
0 0 0 0 0 2.013020673 0 0 0.045788473 0 0 0 0 0 0 0 0 0 0 0
0 # Mean Size at Age Observations
0 # Total number of environmental variables
0 # Total number of environmental observations
0 # No Weight frequency data
0 # No tagging data
0 # No morph composition data
999 # End data file
```


Appendix B.2. SS control file

```
# Morph setup
1 # Number of growth patterns
1 # N sub morphs within growth patterns
4 Blocks
1 1 9 1 #1: blocks in each design
2011 2014 #1: Shoreside selectivity, to reflect IFQ
2011 2014 #2: Retention inflection and slope, to reflect IFQ
2002 2002 2003 2003 2004 2004 2005 2005 2006 2006 2007 2007 2008 2008
2009 2009 2010 2010 #3: Shoreside retention asymptote to fit changes in
discard ratios
1995 2004 #4: AKSHLF selectivity for later period
# Mortality and growth specifications
0.5 # Fraction female at birth
0 # M setup: 0=single
Par,1=N_breakpoints,2=Lorenzen,3=agespecific;_4=agespec_withseasinterpo
late
1 # GrowthModel: 1=vonBert with L1&L2; 2=Richards with L1&L2;
3=notimplemented; 4=notimplemented
2 # Age for growth Lmin
30 # Age for growth Lmax or 999 = Linf
0 # SD constant added to LAA (0.1 mimics v1.xx for compatibility only)
2 # CV_Growth_Pattern: 0 CV=f(LAA); 1 CV=F(A); 2 SD=F(LAA); 3 SD=F(A)
# Maturity option: 1=length logistic, 2=age logistic, 3=read age-
maturity matrix by growth_pattern
1.33E-06 2.11E-06 3.35E-06 5.32E-06 8.45E-06 1.34E-05 2.13E-05 3.38E-05
5.36E-05 8.51E-05 0.000135006 0.000214259 0.000340019 0.000539553
0.000856075 0.001358016 0.002153592 0.003413574 0.005406529 0.008552547
0.013503105 0.021254713 0.033298395 0.051786901 0.079651256 0.120502167
0.17803042 0.254616717 0.349288029 0.456148012 0.565068736 0.66513627
0.748669634 0.813000274 0.859534081 0.891690669 0.913216425 0.927320739
0.936433142 0.942266985 0.945980094 0.948334619 0.949824125 0.950765
0.951358759 0.951733241 0.951969336 0.952118149 0.952211933 0.952211933
0.952211933 0.952211933 0.952211933 0.952211933 0.952211933 0.952211933
0.952211933 0.952211933 0.952211933
2 # First age allowed to mature, from Nickols 1990
1 # fecundity option:(1)eggs=Wt*(a+b*Wt);(2)eggs=a*L^b;(3)eggs=a*Wt^b;
(4)eggs=a+b*L; (5)eggs=a+b*W
0 # hermaphroditism option: 0=none; 1=age-specific fxn
1 # parameter_offset_approach (1=none, 2= M,G,CV_G As offset from
female-GP1, 3=like SS2 V1.x)
2 # env/block/dev_adjust_method (1=standard; 2=logistic transform keeps
in Base parm bounds; 3=standard w/ no bound check)
# Maturity & Growth Parameters
#_LO HI INIT PRIOR PR_type SD PHASE env-var use_dev devmnyr devmxyr
devstd Block Block_Fxn
# female growth
    0.01 0.15 0.054 0.08-1 99 -3 0 0 0 0 0 0 0 # NatM
    1 20 14.5 14.6 -1 99 2 0 0 0 0 0 0 0 # L_at_Amin
    2060 42.44 42.5-1 99 2 0 0 0 0 0 0 0 # L_at_Amax
    0.05 0.3 0.2 0.2-1 99 2 0 0 0 0 0 0 0 # VonBert_K
```

```
    0.5 15 3 3 -1 99 5 0 0 0 0 0 0 0 # CV_young
    0.5 15 3 3 -1 99 5 0 0 0 0 0 0 0 # CV_old
# male growth as direct estimates (parameter offset approach = 1)
    0.01 0.15 0.054 0.08-1 99 3 0 0 0 0 0 0 0 # NatM
    -3 3 0 0 -1 99 -3 0 0 0 0 0 0 0 # L_at_Amin (set equal to females)
    20 60 42.44 42.5 -1 99 2 0 0 0 0 0 0 0 # L_at_Amax
    0.05 0.3 0.2 0.2 -1 99 2 0 0 0 0 0 0 0 # VonBert_K
    -3 3 0 0 -1 99 -3 0 0 0 0 0 0 0 # CV_young
    0.5 15 2.5 2.5 -1 99 5 0 0 0 0 0 0 0 # CV_old
# female weight and maturity
    0 1 1.148601e-05 1.148601e-05 -1 99 -3 0 0 0 0 0 0 0 # Wtlen coeff #
estimated from NWFSC shelf-slope survey data 2003-2014
    2 4 3.125356 3.125356-1 99-3 0 0 0 0 0 0 0 # Wtlen Exp # estimated
from NWFSC shelf-slope survey data 2003-2014
    0 60 34.59 55-1 99-3 0 0 0 0 0 0 0 # Mat50%_Fem # from 2005
assessment, from Nickol 1990
    -3 3-0.6429-0.6429-1 99-3 0 0 0 0 0 0 0 # Mat_slope # from 2005
assessment, from Nickol 1990
    -3 150000 101100 101100-1 99-3 0 0 0 0 0 0 0 # eggs/kg intercept,
from E.J.Dick 2009
    0 50000 44800 44800-1 99-3 0 0 0 0 0 0 0 # eggs/kg slope, from
E.J.Dick 2009
# male weight as direct assignment
    0 1 1.223801e-05 1.223801e-05 -1 99 -3 0 0 0 0 0 0 0 # Wtlen coeff #
estimated from NWFSC shelf-slope survey data 2003-2014
    2 4 3.106474 3.106474-1 99-3 0 0 0 0 0 0 0 # Wtlen Exp # estimated
from NWFSC shelf-slope survey data 2003-2014
# stuff that we don't need for this model
    0 2 1 1 - 1 99-5 0 0 0 0 0 0 0 # Recruitment apportionment by growth
pattern
    0 2 1 1 -1 99-5 0 0 0 0 0 0 0 # Rec app by Area
    0 2 1 1 -1 99-5 0 0 0 0 0 0 0 # Rec app by Season
    0 2 1 1 -1 99 -5 0 0 0 0 0 0 0 # Cohort growth deviation
#_seasonal_effects_on_biology_parms
    0 0 0 0 0 0 0 0 0 0 #_femwtlen1, femwtlen2, mat1, mat2, fec1, fec2,
Malewtlen1, malewtlen2, L1, K
3 #Recruitment Function 1 BH w/flat top, 2 Ricker, 3 BH, 4 none
# Recruitment Parms
# Low High Init Prior PrType SD phase
    5 12 8.2 8 -1 99 1 # R0
    0.2 1 0.773 0.773 2 0.147 -2 # h
    0 2 0.75 0.75 -1 99 -1 # sigma R
    -5 5 0 0 -1 99 -3 # Env link coeff
    -5 5 0 0 -1 99 -3 # Init Equilb offset to virgin
    -1 1 0 0 -1 99 -1 # placeholder for Autocorrelation
0 # index of environmental variable to be used
0 # env target parameter: 0=none, 1=rec devs, 2=R0, 3=steepness
# Recruitment residuals
2 # rec dev type: 0=none, 1=devvector (zero-sum), 2=simple deviations
(no sum constraint)
1960 # Start year recruitment residuals
2013 # End year recruitment residuals
3 # Phase
```

```
1 # Read 11 advanced recruitment options: 0=no, 1=yes
1870 # first year for early rec devs
3 # phase for early rec devs
-5 # Phase for forecast recruit deviations
1 # Lambda for forecast recr devs before endyr+1
    1967.3 #_last_early_yr_nobias_adj_in_MPD
    1979.8 #_first_yr_fullbias_adj_in_MPD
    2012.9 #_last_yr_fullbias_adj_in_MPD
    2013.9 #_first_recent_yr_nobias_adj_in_MPD
    0.8166 #_max_bias_adj_in_MPD (1.0 to mimic pre-2009 models)
0 # placeholder
-5 # Lower bound rec devs
5 # Upper bound rec devs
0 # read intitial values for rec devs
# Fishing mortality setup
0.2 # F ballpark for tuning early phases
-1999 # F ballpark year
3 # F_Method: 1=Pope; 2=instan. F; 3=hybrid (hybrid is recommended)
4 # max F or harvest rate, depends on F_Method
# no additional F input needed for Fmethod 1
# if Fmethod=2; read overall start F value; overall phase; N detailed
inputs to read
# if Fmethod=3; read N iterations for tuning for Fmethod 3
4 # N iterations for tuning F in hybrid method (recommend 3 to 7)
# Initial Fishing Mortality Parameters
#LO HI INIT PRIOR PR_type SD PHASE
0 1 0 0.01 -1 99 -1 # InitF_1Shoreside
0 1 0 0.01 -1 99 -1 # InitF_2ForeignPOP
0 1 0 0.01 -1 99 -1 # InitF_3AtSeaHake
# Catchability Specification (Q_setup)
# A=do power: 0=skip, survey is prop. to abundance, 1= add par for non-
linearity
# B=env. link: 0=skip, 1= add par for env. effect on Q
# C=extra SD: 0=skip, 1= add par. for additive constant to input SE (in
ln space)
# D=type: <0=mirror lower abs(#) fleet, 0=no par Q is median unbiased,
1=no par Q is mean unbiased, 2=estimate par for ln(Q)
# 3=ln(Q) + set of devs about ln(Q) for all years. 4=ln(Q) + set of
devs about Q for indexyr-1
# A B C D
0 0 0 0 # 1 Shoreside
0 0 0 0 # 2 ForeignPOP
0 0 0 0 # 3 AtSeaHake
0 0 1 4 # 4 AKSHLF
0 0 0 2 # 5 AKSLP
0 0 0 2 # 6 NWSLP
0 0 1 2 # 7 NWCBO
#
1 #_If q has random component, Then 0=read one parm For each fleet With
random q; 1=read a parm For each Year of index
#_Q_parms(if_any)
# Lo Hi Init Prior Prior_type Prior_sd Phase
0 1 0.4 0.1 -1 99 3 # Q_extraSD_5_AKSHLF
```

```
0 1 0.4 0.1 -1 99 3 # Q_extraSD_8_NWCBO
```

\# bnd bnd value mean type SD phase Early period
-10 2 -0.0003 $0-1991$ \# AKSHLF (log) base parameter (1980)
-4 $400-199$-5 \# AKSHLF 1983 deviation
-4 $400-199$-5 \# AKSHLF 1986 deviation
-4 $400-199$-5 \# AKSHLF 1989 deviation
-4 4 0 0 -1 99 -5 \# AKSHLF 1992 deviation
\# Late period
-4 400 -1 991 \# AKSHLF 1995 deviation
-4 400 -1 99 -5 \# AKSHLF 1998 deviation
-4 $400-199-5$ \# AKSHLF 2001 deviation
-4 400 -1 99 -5 \# AKSHLF 2004 deviation
\# Other catchability parameters
-10 2 -0.0003 0-1 991 \# AKSLP (log) base parameter
-10 2 -0.0003 0-1 991 \# NWSLP (log) base parameter
-10 2-0.0003 0-1 991 \# NWCBO (log) base parameter
\# Selectivity Specification
\#_size_selex_types
\#_Pattn Discard Male Special
24100 \# 1 Shoreside
15001 \# 2 ForeignPOP
24000 \# 3 AtSeaHake
24000 \# 4 AKSHLF
24000 \# 5 AKSLP
24000 \# 6 NWSLP
24000 \# 7 NWCBO
\#_age_selex_types
\#_Pattn Discard Male Special
11000 \# 1 Shoreside
11000 \# 2 ForeignPOP
11000 \# 3 AtSeaHake
11000 \# 4 AKSHLF
11000 \# 5 AKSLP
11000 \# 6 NWSLP
11000 \# 7 NWCBO
\# Length-based selectivity, retention and discard mortality section
\#Shoreside
\#Low High Init Prior PrType SD Phase env usedev minyr maxyear sd block
blswitch
$20453632-19920000012$ \# PEAK
$-64-20-19930000012$ \# TOP:_width_of_plateau
$-1944-19920000012$ \# Asc_width
$-190.65 .5-19930000012$ \# Desc_width
$-59-5-5-19920000000$ \# INIT:_selectivity_at_fist_bin
$-5995-19930000012$ \# FINAL:_selectivity_at_last_bin
\#Shoreside retention
\#_LO HI INIT PRIOR PR_type SD PHASE env-var use_dev dev_min dev_max
dev_std Block Block_Fxn
$15702735-19920000022$ \#Inflection
$0.11021-19920000022$ \#Slope \# 1 means that parm' = baseparm

+ blockparm
$0.001111-199-30000032$ \#Asymptotic retention \# 2 means that
parm' = blockparm
$0000-199-30000000$ \#Male offset To inflection \#AtSeaHake
\#Low High Init Prior PrType SD Phase env usedev minyr maxyear sd block blswitch

$-64-50-19930000000$ \# TOP:_width_of_plateau
$-1944-19920000000$ \# Asc_width
-1 $90.65 .5-19930000000$ \# Desc_width
$-9999-999-2-199-20000000$ \# INIT:_selectivity_at_fist_bin
-5 $995-19930000000$ \# FINAL:_selectivity_at_last_bin
\#AKSHLF
\#_LO HI INIT PRIOR PR_type SD PHASE env-var use_dev dev_min dev_max dev_std Block Block_Fxn
$10452123-19920000000$ \# PEAK
-6 4 -6 -1 -1 9920000000 \# TOP:_width_of_plateau
-1 944 -1 9930000000 \# Asc_width
$-1946-19940000042$ \# Desc_width
-999 9 -999-4 -1 99-2 000000000 \# INIT:_selectivity_at_fist_bin
-999 9-999-1 -1 99-3 00000000 \# FINAL:_selectivity_at_last_bin
\#AKSLP
\#_LO HI INIT PRIOR PR_type SD PHASE env-var use_dev dev_min dev_max
dev_std Block Block_Fxn
$10452328-199200000000$ P PEAK
-6 4 -6 -1 -1 9920000000 \# TOP:_width_of_plateau
-1 $9244-19930000000$ \# Asc_width
$-1924-19930000000$ \# Desc_width
-999 9 -999-4 -1 99-4 0 0 0 0 0 0 0 0 \# INIT:_selectivity_at_fist_bin
-999 9-999-2-1 $99-30000000$ \# FINAL:_selectivity_at_last_bin \#NWSLP
\#_LO HI INIT PRIOR PR_type SD PHASE env-var use_dev dev_min dev_max
dev_std Block Block_Fxn
$10452528-19920000000$ \# PEAK
$-64-61-19950000000$ \# TOP:_width_of_plateau
$-1934-19940000000$ \# Asc_width
$-19.14-19940000000$ \# Desc_width
$-9999-999-4-199-500000000$ \# INIT:_selectivity_at_fist_bin $-9999-9991-199-40000000$ \# FINAL:_selectivity_at_last_bin \#NWCBO
\#_LO HI INIT PRIOR PR_type SD PHASE env-var use_dev dev_min dev_max dev_std Block Block_Fxn
$84524.473120-199-20000000$ \# PEAK
$-64-6-1-199-30000000$ \# TOP:_width_of_plateau
$-194.137512-199-30000000$ \# Asc_width
$-1934-199-40000000$ \# Desc_width
-999 9-999-3 -1 99-4 00000000 \# INIT:_selectivity_at_fist_bin
-5 9 -0.841911 5 -1 $99-30000000$ \#
FINAL:_selectivity_at_last_bin
\# age sel: select all ages following user manual instructions:
\# "If it is desired that age 0 fish be selected, then use pattern \#11
and set the minimum age to 0.1"
\# all ages selected for fleets 1 \& 2
$010.10 .1-199-300000.500$ \# Min age selected
$0100100100-199-300000.500$ \# Max age selected
$010.10 .1-199-300000.500$ \# Min age selected
$0100100100-199-300000.500$ \# Max age selected
$010.10 .1-199-300000.500$ \# Min age selected

```
0 100 100 100-1 99 -3 0 0 0 0 0.5 0 0 # Max age selected
0 1 0.1 0.1 -1 99-3 0 0 0 0 0.5 0 0 # Min age selected
0 100 100 100-1 99-3 0 0 0 0 0.5 0 0 # Max age selected
0 1 0.1 0.1 -1 99-3 0 0 0 0 0.5 0 0 # Min age selected
0 100 100 100-1 99-3 0 0 0 0 0.5 0 0 # Max age selected
0 1 0.1 0.1 -1 99-3 0 0 0 0 0.5 0 0 # Min age selected
0 100 100 100-1 99-3 0 0 0 0 0.5 0 0 # Max age selected
0 1 0.1 0.1 -1 99-3 0 0 0 0 0.5 0 0 # Min age selected
0 100 100 100-1 99-3 0 0 0 0 0.5 0 0 # Max age selected
1 # Selex block setup: 0=Read one line apply all, 1=read one line each
parameter
#Shoreside selex to fit length comps during IFQ
# Lo Hi Init Prior P_type SD Phase
20 45 36 32 -1 99 2 # PEAK
-6 4 -5 0 -1 99 3 # TOP:_width_of_plateau
-1 9 4 4 -1 99 2 # Asc_width
-1 9 -1 5.5 -1 99 3 # Desc_width
-5 9 9 5 -1 99 3 # FINAL:_selectivity_at_last_bin
#Shoreside retention inflection and slope, to reflect changes with IFQ
15 70 27 35 -1 99 2 #Inflection
0.1 10 2 1 -1 99 2 #Slope
#Shoreside Retention asymptote, to fit discard ratio
0 1 0.44 0.44 -1 99 3
0 1 0.4 0.4 -1 99 3
0 1 0.82 0.82 -1 99 3
0 1 0.76 0.76 -1 99 3
0 1 0.52 0.52 -1 99 3
0 1 0.51 0.51 -1 99 3
0 1 0.46 0.46 -1 99 3
0 1 0.45 0.45 -1 99 3
0 1 0.51 0.51 -1 99 3
#AKSHLF selectivity parameters 1995-2004
-1 9 5 5 -1 99 4 # Desc_width
1 #_env/block/dev_adjust_method (1=standard; 2=logistic trans to keep
in base parm bounds)
0 # Tagging flag: 0=none,1=read parameters for tagging
### Likelihood related quantities ###
# variance/sample size adjustment by fleet
1 # Do variance adjustments
0 0 0 0 0 0 0 # const added to survey CV
0 0 0 0 0 0 0 # const added to discard sd
0 0 0 0 0 0 0 # const added to body weight sd
0.133114337 1 0.120528164 0.297514455 0.572077928 0.485020519
0.281543227 # mult scalar for length comps
0.333242816 1 0.167388606 0.170827535 0.193359763 0.157214282
0.143451546 # mult scalar for age comps
1111111 # mult scalar for length at age obs
2 # Max N lambda phases: read this N values for each item below
# SD offset (CPUE, discard, mean body weight, recruitment devs):
0=omit log(s) term, 1=include
4 N N changes to default Lambdas = 1.0
# Component codes:
```

```
# 1=survey
# 2=discard
# 3=mean body weight
# 4=length frequency
# 5=age frequency
# 6=Weight frequency
# 7=size at age
# 8=catch
# 9=initial equilibrium catch
# 10=rec devs
# 11=parameter priors
# 12=parameter deviations
# 13=Crash penalty
# 14=Morph composition
# 15=Tag composition
# 16=Tag return
# Component fleet/survey phase value wtfreq_method
    4 1 1 0.5 1 #Shoreside length comps
    5 1 1 0.5 1 #Shoreside age comps
    4 3 1 0.5 1 #AtSeaHake length comps
    5 3 1 0.5 1 #AtSeaHake age comps
0 # extra SD pointer
999 # end of control file
```


Appendix B.3. SS starter file

```
darkblotched_data.SS # Data file
darkblotched_control.SS # Control file
0 # Read initial values from .par file: 0=no,1=yes
# DOS display detail: 0,1,2
2 # Report file detail: 0,1,2
0 # Detailed checkup.sso file (0,1)
0 # Write parameter iteration trace file during minimization
2 # Write cumulative report: 0=skip,1=short,2=full
0 # Include prior likelihood for non-estimated parameters
# # Use Soft Boundaries to aid convergence (0,1) (recommended)
1 # N bootstrap datafiles to create
25 # Last phase for estimation
0 # MCMC burn-in
1 # MCMC thinning interval
0 # Jitter initial parameter values by this fraction
-1 # Min year for spbio sd_report (neg val = styr-2, virgin state)
-2 # Max year for spbio sd_report (-1=endyr+1, -2=entire forecast)
0 # N individual SD years
0.0001 # Ending convergence criteria
0 # Retrospective year relative to end year (i.e. -4)
1 # Min age for summary biomass
1 # Depletion basis: denom is: 0=skip; 1=rel X*B0; 2=rel X*Bmsy;
3=rel X*B_styr
# # Fraction (X) for Depletion denominator (e.g. 0.4)
1 # (1-SPR)_reporting: 0=skip; 1=rel(1-SPR); 2=rel(1-SPR_MSY);
3=rel(1-SPR_Btarget); 4=notrel
1 # F_std reporting: 0=skip; 1=exploit(Bio); 2=exploit(Num);
3=sum(frates)
#0 45 #_min and max age over which average F will be calculated
0 # F_report_basis: 0=raw; 1=rel Fspr; 2=rel Fmsy ; 3=rel Fbtgt
999 # end of file marker
```


Appendix B.4. SS forecast file

```
1 # Benchmarks: 0=skip; 1=calc F_spr,F_btgt,F_msy
2 # MSY: 1= set to F(SPR); 2=calc F(MSY); 3=set to F(Btgt); 4=set to
F(endyr)
0.5 # SPR target (e.g. 0.40)
0.4 # Biomass target (e.g. 0.40)
#_Bmark_years: beg_bio, end_bio, beg_selex, end_selex, beg_relF,
end_relF (enter actual year, or values of 0 or -integer to be rel.
endyr)
    0 0 0 0 0 0
1 #Bmark_relF_Basis: 1 = use year range; 2 = set relF same as forecast
below
1 # Forecast: 0=none; 1=F(SPR); 2=F(MSY) 3=F(Btgt); 4=Ave F (uses
first-last relF yrs); 5=input annual F scalar
12 # N forecast years
0.20 # F scalar (only used for Do_Forecast==5)
#_Fcast_years: beg_selex, end_selex, beg_relF, end_relF (enter actual
year, or values of 0 or -integer to be rel. endyr)
    0 0 0 0
1 # Control rule method (1=catch=f(SSB) west coast; 2=F=f(SSB) )
0.40 # Control rule Biomass level for constant F (as frac of Bzero,
e.g. 0.40); (Must be > the no F level below)
0.10 # Control rule Biomass level for no F (as frac of Bzero, e.g.
0.10)
1 # Control rule target as fraction of Flimit (e.g. 0.75)
3 #_N forecast loops (1=OFL only; 2=ABC; 3=get F from forecast ABC
catch with allocations applied)
3 #_First forecast loop with stochastic recruitment
0 #_Forecast loop control #3 (reserved for future bells&whistles)
0 #_Forecast loop control #4 (reserved for future bells&whistles)
0 #_Forecast loop control #5 (reserved for future bells&whistles)
2013 #FirstYear for caps and allocations (should be after years with
fixed inputs)
0 # stddev of log(realized catch/target catch) in forecast (set
value>0.0 to cause active impl_error)
0 # Do West Coast gfish rebuilder output (0/1)
2001 # Rebuilder: first year catch could have been set to zero
(Ydecl)(-1 to set to 1999)
2011 # Rebuilder: year for current age structure (Yinit) (-1 to set to
endyear+1)
1 # fleet relative F: 1=use first-last alloc year; 2=read seas(row) x
fleet(col) below
# Note that fleet allocation is used directly as average F if
Do_Forecast=4
2 # basis for fcast catch tuning and for fcast catch caps and
allocation (2=deadbio; 3=retainbio; 5=deadnum; 6=retainnum)
# Conditional input if relative F choice = 2
# Fleet relative F: rows are seasons, columns are fleets
# max totalcatch by fleet (-1 to have no max) must enter value for each
fleet
-1 -1 -1
# max totalcatch by area (-1 to have no max); must enter value for each
fleet
-1
```

```
# fleet assignment to allocation group (enter group ID# for each fleet,
0 for not included in an alloc group)
0 0 0
#_Conditional on >1 allocation group
# allocation fraction for each of: 0 allocation groups
# no allocation groups
0 # Number of forecast catch levels to input (else calc catch from
forecast F)
2 # basis for input Fcast catch: 2=dead catch; 3=retained catch;
99=input Hrate(F) (units are from fleetunits; note new codes in
SSV3.20)
999 # verify end of input
```

