EXEMPLARY FROM THE PACIFIC COAST SALMON PLAN

3.2 OVERFISHING CRITERIA

“Any fishery management plan . . . shall . . . specify objective and measurable criteria for identifying when the fishery . . . is overfished . . . and, . . . contain conservation and management measures to prevent overfishing or end overfishing and rebuild the fishery;”

Magnuson-Stevens Act, § 303(a)(10)

“The terms overfishing and overfished mean a rate or level of fishing mortality that jeopardizes the capacity of a fishery to produce the maximum sustainable yield on a continuing basis.”

Magnuson-Stevens Act, § 3(29)

In applying the Magnuson-Stevens Act definition of overfishing to salmon fisheries and establishing criteria by which to identify it, the Council must consider the uncertainty and theoretical aspects of MSY as well as the complexity and variability unique to naturally producing salmon populations. These unique aspects include the interaction of a short-lived species with frequent, sometimes protracted, and often major variations in both the freshwater and marine environments. These variations may act in unison or in opposition to affect salmon productivity in both positive and negative ways. In addition, variations in natural populations may sometimes be difficult to measure due to masking by artificially produced salmon.

3.2.1 General Application to Salmon Fisheries

In setting criteria from which to judge the conservation status of salmon stocks, the unique life history of salmon must be considered. Chinook, coho, and pink salmon are short-lived species (generally two to six years) that reproduce only once shortly before dying. Spawning escapements of coho and pink salmon are dominated by a single-year class and chinook spawning escapements may be dominated by no more than one or two-year classes. The abundance of year classes can fluctuate dramatically with combinations of natural and human-caused environmental variation. Therefore, it is not unusual for a healthy and relatively abundant salmon stock to produce occasional spawning escapements which, even with little or no fishing impacts, may be significantly below the long-term average associated with the production of MSY. This phenomenon has been observed in recent years for numerous salmon stocks, including Klamath River fall chinook and several Washington coho stocks.

Numerous West Coast salmon stocks have suffered, and continue to suffer, from an onslaught of nonfishing activities that severely reduce natural survival by such actions as the elimination or degradation of freshwater spawning and rearing habitat. The consequence of this man-caused, habitat-based variation is two fold. First, these habitat changes increase large scale variations in stock productivity and associated stock abundances, which in turn complicate the overall determination of MSY and the specific assessment of whether a stock is producing at or below that level. Secondly, as the productivity of the freshwater habitat is diminished, the benefit of
further reductions in fishing mortality to improve stock abundance decreases. Clearly, the failure of several stocks managed under this FMP to produce at an historic or consistent MSY level has little to do with current fishing impacts and often cannot be rectified with the cessation of all fishing.

To address the requirements of the Magnuson-Stevens Act to clearly identify when a stock may be approaching an overfished condition or is overfished, the Council has established two separate criteria based on a stock’s failure to meet its conservation objective. These criteria are denoted as a “conservation alert” and an “overfishing concern”. The criteria for these two categories are based on the unique life history of salmon and the large variations in annual stock abundance due to numerous environmental variables. They also take into account the uncertainty and imprecision surrounding many estimates of MSY, fishery impacts, and spawner escapements. In recognition of the unique salmon life history, the criteria differ somewhat from the general guidance in the National Standard Guidelines (§ 600.310), but equal or exceed them in addressing the overfishing issue as it relates to salmon.

3.2.2 Conservation Alert

“A fishery shall be classified as approaching a condition of being overfished if, based on trends in fishing effort, fishery resource size, and other appropriate factors, the Secretary estimates that the fishery will become overfished within two years.”

Magnuson-Stevens Act, § 304(e)(1)

To anticipate and react to potential stock declines which might lead to overfishing, the Council has established a conservation alert process with criteria and actions as described below.

3.2.2.1 Criteria

A conservation alert is triggered during the annual preseason process (Chapter 9) if a natural stock or stock complex, listed in Table 3-1, is projected to fall short of its conservation objective (MSY, MSY proxy, MSP, or floor in the case of some harvest rate objectives [e.g., 35,000 natural Klamath River fall Chinook spawners]). While a projected one-year shortfall may be of little biological concern, it may also represent the beginning of production problems and is worthy of note to help prevent future stock decline.

3.2.2.2 Council Action

For all natural stocks which meet the conservation alert criteria, the Council will notify pertinent fishery and habitat managers, advising that the stock may be temporarily depressed or approaching an overfishing concern (depending on its recent conservation status), and request that state and tribal fishery managers identify the probable causes, if known. If the stock in question has not met its conservation objective in the previous two years, the Council will request the pertinent state and tribal managers to do a formal assessment of the primary factors leading to the shortfalls and report their conclusions and recommendations to the Council no later than the March meeting prior to the next salmon season.
The Council will take the following actions for stocks which trigger a conservation alert that do not qualify as exceptions under Section 3.2.4 (see Table 3-1):

1. Close salmon fisheries within Council jurisdiction that impact the stock.

2. In the case of Washington coastal and Puget Sound salmon stocks and fisheries managed under U.S. District Court orders, the Council may allow fisheries which meet annual spawner targets developed through relevant *U.S. v. Washington*, *Hoh v. Baldrige*, and subsequent U.S. District Court ordered processes and plans, which may vary from the MSY or MSP conservation objectives.

3. In the case of Klamath River fall Chinook, fisheries subject to Council Action under a Conservation Alert are those between Cape Falcon, Oregon and Point Sur, California. Within the Cape Falcon to Point Sur area, the Council may allow *de minimis* fisheries which: permit an ocean impact rate of no more than 10% on age-4 Klamath River fall Chinook, if the projected natural spawning escapement associated with a 10% age-4 ocean impact rate, including river recreational and tribal impacts, is between the conservation objective (35,000) and 22,000. If the projected natural escapement associated with a 10% age-4 ocean impact rate is less than 22,000, the Council shall further reduce the allowable age-4 ocean impact rate to reflect the status of the stock.

During the preseason planning process to set an allowable age-4 ocean impact rate the Council shall ensure that the projected allowable ocean impact rate will not jeopardize the capacity of the fishery to produce the maximum sustainable yield on a continuing basis. In making this determination, the Council shall consider the following:

a) The potential for critically low natural spawner abundance, including the risk of Klamath Basin substocks dropping below crucial genetic thresholds;

b) A series of low spawner abundance in recent years;

c) The status of co-mingled stocks;

d) The occurrence of *El Niño* or other adverse environmental conditions;

e) Endangered Species Act (ESA) considerations; and

f) Other considerations as appropriate.

Implementation of *de minimis* fisheries will depend on year specific estimates of ocean abundance and age composition, and will be determined by the STT prior to the March Council meeting. Ocean fishery impacts to the returning brood incurred during the previous fall/winter fisheries will be counted against the allowable age-4 ocean impact rate.

Other than the exceptions noted above, the Council may not recommend ocean salmon fisheries which are expected to trigger a conservation alert.

If postseason estimates confirm that a stock conservation objective is not met, a rebuilding program for the following year is implicit in the conservation objective since it is based on annually meeting MSY or MSP. In addition, the Council reviews stock status annually and, where needed, identifies actions required to improve estimation procedures and correct biases. Such improvements provide greater assurance that objectives will be achieved in future seasons.
Consequently, a remedial response is built into the preseason planning process to address excessive fishing mortality levels relative to the conservation objective of a stock.

The Council does not believe that a one year departure from the MSY/MSP spawner objective for salmon affects the capacity of a stock to produce MSY over the long-term (i.e., does not constitute overfishing as defined by the Magnuson-Stevens Act). However, the Council’s use of a conservation alert and the rebuilding effect of the conservation objectives provides for sound resource management and responds to the concept in the National Standard Guidelines for action to address overfishing concerns in any one year. The Council’s conservation objectives which are used to trigger a conservation alert are generally based on MSY or MSP rather than a minimum stock size threshold. In this respect, the Council’s management approach is more conservative than recommended by the National Standard Guidelines.

3.2.3 Overfishing Concern

“For a fishery that is overfished, any fishery management plan, amendment, or proposed regulations . . . for such fishery shall—(A) specify a time period for ending overfishing and rebuilding the fishery that shall—(i) be as short as possible, taking into account the status and biology of any overfished stocks of fish, the needs of the fishing communities, recommendations by international organizations in which the United States participates, and the interaction of the overfished stock within the marine ecosystem; and (ii) not exceed 10 years, except in cases where the biology of the stock of fish, other environmental conditions, or management measures under an international agreement in which the United States participates dictate otherwise. . . .”

Magnuson-Stevens Act, § 304(e)(4)

The Magnuson-Stevens Act requires overfishing be ended and stocks rebuilt in as short a period as possible and, depending on other factors, no longer than ten years. For healthy salmon stocks which may experience a sudden reduction in production and/or spawner escapement, the limitation on fishing impacts provided by the Council’s MSY or MSY proxy conservation objectives provide a stock rebuilding plan that should be effective within a single salmon generation (two years for pinks, three years for coho, and three to five years for Chinook). However, additional actions may be necessary to prevent overfishing of stocks suffering from chronic depression due to fishery impacts outside Council authority, or from habitat degradation or long-term environmental fluctuations. Such stocks may meet the criteria invoking the Council’s overfishing concern.

3.2.3.1 Criteria

The Council’s criteria for an overfishing concern are met if, in three consecutive years, the postseason estimates indicate a natural stock has fallen short of its conservation objective (MSY, MSP, or spawner floor as noted for some harvest rate objectives) in Table 3-1. It is possible that this situation could represent normal variation, as has been seen in the past for several previously referenced salmon stocks which were reviewed under the Council’s former overfishing definition. However, the occurrence of three consecutive years of reduced stock size or spawner escapements, depending on the magnitude of the short-fall, could signal the beginning of a critical downward trend (e.g., Oregon coastal coho) which may result in fishing that jeopardizes
the capacity of the stock to produce MSY over the long term if appropriate actions are not taken to ensure the automatic rebuilding feature of the conservation objectives is achieved.

3.2.3.2 Assessment

When an overfishing concern is triggered, the Council will direct its STT to work with state and tribal fishery managers to complete an assessment of the stock within one year (generally, between April and the March Council meeting of the following year). The assessment will appraise the actual level and source of fishing impacts on the stock, consider if excessive fishing has been inadvertently allowed by estimation errors or other factors, identify any other pertinent factors leading to the overfishing concern, and assess the overall significance of the present stock depression with regard to achieving MSY on a continuing basis.

Depending on its findings, the STT will recommend any needed adjustments to annual management measures to assure the conservation objective is met, or recommend adjustments to the conservation objective which may more closely reflect the MSY or ensure rebuilding to that level. Within the constraints presented by the biology of the stock, variations in environmental conditions, and the needs of the fishing communities, the STT recommendations should identify actions that will recover the stock in as short a time as possible, preferably within ten years or less, and provide criteria for identifying stock recovery and the end of the overfishing concern. The STT recommendations should cover harvest management, potential enhancement activities, hatchery practices, and any needed research. The STT may identify the need for special programs or analyses by experts outside the Council advisors to assure the long-term recovery of the salmon population in question. Due to a lack of data for some stocks, environmental variation, economic and social impacts, and habitat losses or problems beyond the control or management authority of the Council, it is likely that recovery of depressed stocks in some cases could take much longer than ten years.

In addition to the STT assessment, the Council will direct its Habitat Committee (HC) to work with federal, state, local, and tribal habitat experts to review the status of the essential fish habitat affecting this stock and, as appropriate, provide recommendations to the Council for restoration and enhancement measures within a suitable time frame.

3.2.3.3 Council Action

Following its review of the STT report, the Council will specify the actions that will comprise its immediate response for ensuring that the stock’s conservation objective is met or a rebuilding plan is properly implemented and any inadvertent excessive fishing within Council jurisdiction is ended. The Council’s rebuilding plan will establish the criteria that identify recovery of the stock and the end of the overfishing concern. In some cases, it may become necessary to modify the existing conservation objective/rebuilding plan to respond to habitat or other long-term changes. Even if fishing is not the primary factor in the depression of the stock or stock complex, the Council must act to limit the exploitation rate of fisheries within its jurisdiction so as not to limit recovery of the stock or fisheries, or as is necessary to comply with ESA consultation standards. In cases where no action within Council authority can be identified which has a reasonable expectation of providing benefits to the stock unit in question, the Council will identify the actions required by other entities to recover the depressed stock. Upon
review of the report from the HC, the Council will take actions to promote any needed restitution of the identified habitat problems.

For those fishery management actions within Council authority and expertise, the Council may change analytical or procedural methodologies to improve the accuracy of estimates for abundance, harvest impacts, and MSY escapement levels, and/or reduce ocean harvest impacts when shown to be effective in stock recovery. For those causes beyond Council control or expertise, the Council may make recommendations to those entities which have the authority and expertise to change preseason prediction methodology, improve habitat, modify enhancement activities, and re-evaluate management and conservation objectives for potential modification through the appropriate Council process.

3.2.4 Exceptions

"Conservation and management measures shall take into account and allow for variations among, and contingencies in, fisheries, fishery resources, and catches."

Magnuson-Stevens Act, National Standard 6

This plan contains three exceptions to the application of overfishing criteria and subsequent Council actions for stocks or stock complexes with conservation objectives in Table 3-1: (1) hatchery stocks, (2) stocks for which Council management actions have inconsequential impacts, and (3) stocks listed under the ESA.

3.2.4.2 Natural Stocks with Minimal Harvest Impacts in Council-Managed Fisheries

Several natural stock components identified within this FMP are subject to minimal harvest impacts in Council fisheries because of migration timing and/or distribution. As a result, the Council’s ability to affect the overall trend in the abundance of these components through harvest restrictions is virtually nil. Components in this category are identified by a cumulative adult equivalent exploitation rate of less than five percent in ocean fisheries under Council jurisdiction during base periods utilized by the fishery regulation assessment models (1979-1982 for Chinook and 1979-1981 for coho). Council action for these components, when a conservation alert or an overfishing concern are triggered, will consist of confirming negligible impacts of proposed Council fisheries, identifying factors which have led to the decline or low abundance (e.g., fishery impacts outside Council jurisdiction, or degradation or loss of essential fish habitat), and monitoring of abundance trends and total harvest impact levels. Council action will focus on advocating measures to improve stock productivity, such as reduced interceptions in non-Council-managed fisheries, and improvements in spawning and rearing habitat, fish passage, flows, and other factors affecting overall stock survival.

3.2.4.3 Stocks Listed Under the Endangered Species Act

The Council regards stocks listed as endangered or threatened under the ESA as a third exception to the application of overfishing criteria of the Magnuson-Stevens Act. The ESA requires federal agencies whose actions may jeopardize listed salmon to consult with NMFS. Because NMFS implements ocean harvest regulations, it is both the action and consulting agency for actions taken under the FMP. To ensure there is no jeopardy, NMFS conducts internal consultations with respect to the effects of ocean harvest on listed salmon. The Council
implements NMFS' guidance as necessary to avoid jeopardy, as well as in recovery plans approved by NMFS. As a result of NMFS' consultation, an incidental take statement may be issued which authorizes take of listed stocks under the FMP that would otherwise be prohibited under the ESA. The Council believes that the requirements of the ESA are sufficient to meet the intent of the Magnuson-Stevens Act overfishing provisions. Those provisions are structured to maintain or rebuild stocks to levels at or above MSY and require the Council to identify and develop rebuilding plans for overfished stocks. For many fish species regulated under the Magnuson-Stevens Act, the elimination of excess fishing pressure is often the sole action necessary to rebuild depressed stocks. This is, however, not the case for many salmon stocks and, in particular, for most listed populations.

Although harvest has certainly contributed to the depletion of West Coast salmon populations, the primary reason for their decline has been the degradation and loss of freshwater spawning, rearing, and migration habitats. The quality and quantity of freshwater habitat are key factors in determining the MSY of salmon populations. The Council has no control over the destruction or recovery of freshwater habitat nor is it able to predict the length of time that may be required to implement the habitat improvements necessary to recover stocks. While the Council could theoretically establish new MSY escapement goals consistent with the limited or degraded habitat available to listed species, adoption of revised goals would potentially result in an ESA-listed stock being classified as producing at MSY and, therefore, not overfished under the Magnuson-Stevens Act. The Council believes that the intent of the ESA and the Magnuson-Stevens Act is the recovery of stocks to MSY levels associated with restored habitat conditions.

The Council considers the consultation standards and recovery plans developed by NMFS for listed populations as interim rebuilding plans. Although NMFS' consultation standards and recovery plans may not by themselves recover listed populations to historical MSY levels within ten years, they are sufficient to stabilize populations until freshwater habitats and their dependent populations can be restored and estimates of MSY developed consistent with recovered habitat conditions. As species are delisted, the Council will establish conservation objectives with subsequent overfishing criteria and manage to maintain the stocks at or above MSY levels.